Contents

texdimens 1
Copyright and License 1
Usage 1
Aim of this package 1
Macros of this package (summary) 1
Quick review of basics: TeX points and scaled points 2
Further units known to TeX on input 2
Macros of this package (full list) 5
Extras? 11
Acknowledgements 11

texdimens

Copyright and License

Copyright (c) 2021 Jean-François Burnol
This file is part of the texdimens package distributed under the LPPL 1.3c. See file LICENSE.md.

Repository: https://github.com/jfbu/texdimens
Release: 0.99a 2021/11/04

Usage

Utilities and documentation related to TeX dimensional units, usable:

- with Plain TeX: \input texdimens
- with LaTeX: sepackage\{texdimens\}undefinedundefined

Aim of this package

The aim of this package is to provide facilities to express dimensions (or dimension expressions evaluated by \dimexpr) using the various available TeX units, to the extent possible.

Macros of this package (summary)

This package provides expandable macros:

- \texdimenpt,
- \texdimenUU, \texdimenUUup and \texdimenUUdown with UU standing for one of bp, cm, mm, in, pc, cc, nc, dd and nd,
- \texdimenbothincm (and relatives not listed here, see below),
- \texdimenwithunit.

For example \texdimenbp takes on input some dimension or dimension expression and produces on output a decimal D such that D bp is guaranteed to be the same dimension as the input, if that one admits any representation as E bp; else it will be either the closest match from above or from below (for this unit the error is at most 1 sp).

The variants \texdimenbpup and \backslash texdimenbpdown allow to choose the direction of approximation.
\texdimenwithunit $\{<$ dimen $1>\}\{<$ dimen2 $>\}$ produces a decimal D such that D \backslash dimexpr dimen2 \backslash relax is parsed by TeX into the same dimension as dimen1 if this is at all possible. If dimen $2<1 \mathrm{pt}$ all TeX dimensions dimen 1 are attainable. If dimen $2>1$ pt not all dimen 1 are attainable. If not attainable, the decimal D will ensure a closest match from below or from above but one does not know if the approximation from the other direction is better or worst.

In a sense, this macro divides <dimen1> by <dimen2> but please continue reading this documentation for relevant information on how TeX handles dimensions.

Quick review of basics: TeX points and scaled points

This project requires the e-TeX extensions \dimexpr and \numexpr. The notation <dim. expr.> in the macro descriptions refers to a dimensional expression as accepted by \dimexpr. The syntax has some peculiarities: among them the fact that $-(\ldots)$ (for example $-(3 p t)$) is illegal, one must use alternatives such as Opt-(...) or a sub-expression - \dimexpr . . . \relax for example.

TeX dimensions are represented internally by a signed integer which is in absolute value at most $0 x 3 F F F F F F F$, i.e. 1073741823 . The corresponding unit is called the "scaled point", i.e. 1 sp is $1 / 65536$ of one TeX point 1 pt , or rather 1 pt is represented internally as 65536.

If $\backslash \mathrm{foo}$ is a dimen register:

- \backslash number \backslash foo produces the integer N such as \backslash foo is the same as $N s p$,
- inside \numexpr, \foo is replaced by N,
- \the \backslash foo produces a decimal D (with at most five places) followed with pt (catcode 12 tokens) and this output Dpt can serve as input in a dimen assignment to produce the same dimension as \backslash foo. One can also use the catcode 11 characters pt for this. Digits and decimal mark must have their standard catcode 12.

When TeX encounters a dimen denotation of the type Dpt it will compute N in a way equivalent to $N=$ round $(65536 \mathrm{D})$ where ties are rounded away from zero.

Only 17 decimal places of D are kept as it can be shown that going beyond can not change the result.
When \backslash foo has been assigned as Dpt, \the \backslash foo will produce some Ept where E is not necessarily the same as D. But it is guaranteed that Ept defines the same dimension as Dpt.

Further units known to TeX on input

TeX understands on input further units: bp, cm, mm, in, pc, cc, nc, dd and nd. It also understands font-dependent units ex and em, and PDFTeX adds the px dimension unit. Japanese engines also add specific units.

The ex, em, and px units are handled somewhat differently by (pdf)TeX than bp, cm, mm , in, pc, cc, nc, dd and nd units. For the former (let's use the generic notation $u u$), the exact same dimensions are obtained from an input D uu where D is some decimal or from D <dimen> where <dimen> stands for some dimension register which records 1uu or \dimexpr1uu \backslash relax. In contrast, among the latter, i.e. the core TeX units, this is false except for the pc unit.

TeX associates (explicitly for the core units, implicitly for the units corresponding to internal dimensions) to each unit uu a fraction phi which is a conversion factor. For the internal dimensions ex, em, px or in the case of multiplying a dimension by a decimal, this phi is morally $f / 65536$ where f is the integer such that 1 uu=f sp . For core units however, the hard-coded ratio n / d never has a denominator d whici is a power of 2 , except for the pc whose associated ratio factor is $12 / 1$ (and arguably for the sp for which morally phi is $1 / 65536$ but we keep it separate from the general discussion).
Here is a table with the hard-coded conversion factors:

uu	phi	reduced	real approximation (Python output)	1uu in $\mathrm{sp}=$ [65536phi]	\backslash the<1uu>
bp	7227/7200	803/800	1.00375	65781	1.00374 pt
nd	685/642	same	1.0669781931464175	69925	1.06697 pt
dd	1238/1157	same	1.070008643042351	70124	1.07 pt
mm	7227/2540	same	2.8452755905511813	186467	2.84526 pt
pc	12/1	12	12.0	786432	12.0 pt
nc	1370/107	same	12.80373831775701	839105	12.80373 pt
cc	14856/1157	same	12.84010371650821	841489	12.8401pt
cm	7227/254	same	28.45275590551181	1864679	28.45274pt
in	7227/100	same	72.27	4736286	72.26999pt

The values of $1 u u$ in the sp and $p t$ units are irrelevant and even misleading regarding the TeX parsing of D uu input. Notice for example that \the \backslash dimexpr1bp \backslash relax gives 1.00374 pt but the actual conversion factor is 1.00375 .

When TeX parses an assignment U uu with a decimal U and a unit $u u$, be it a core unit, or a unit corresponding to an internal dimension, it first handles U as with the pt unit. This means that it computes $N=$ round ($65536 * U$). It then multiplies this N by the conversion factor phi and truncates towards zero the mathematically exact result to obtain an integer T : $\mathrm{T}=$ trunc ($\mathrm{N} * \mathrm{phi}$). The assignment Uuu is concluded by defining the value of the dimension to be Tsp.

Regarding the core units, we always have phi>1. The increasing sequence $0<=\operatorname{trunc}(\mathrm{phi})<=\operatorname{trunc}(2 \mathrm{phi})<=\ldots$ is thus strictly increasing and, as phi is never astronomically close to 1 , it always has jumps: not all TeX dimensions can be obtained from an assignment using a core unit distinct from the pt (and sp of course, but we already said it was kept out of the discussion here).

On the other hand when phi<1, then the sequence trunc (N phi) is not strictly increasing, already because trunc (phi)=0 and besides here phi=f/65536, so the 65536 integers $\mathbb{Q} .65535$ are mapped to f integers \mathbb{Q}. ($\mathrm{f}-1$) inducing non one-to-oneness. But all integers in the $0 . .(2 * * 30-1)$ range will be attained for some input, so there is surjectivity.

The "worst" unit is the largest i.e. the in whose conversion factor is 72.27. The simplest unit to understand is the pc as it corresponds to an integer ratio 12: only dimensions which in scaled points are multiple of 12 are exactly representable in the pc unit.

This also means that some dimensions expressible in one unit may not be available with another unit. For example, and perhaps surprisingly, there is no decimal D which would achieve $1 \mathrm{in}==\mathrm{Dcm}$: the "step" between attainable dimensions is $72--73 \mathrm{sp}$ for the in and $28--29 \mathrm{sp}$ for the cm , and as 1 in differs internally from 2.54 cm by only 12 sp it is impossible to adjust either the in side or the cm side to obtain equality.

In particular $1 \mathrm{in}==2.54 \mathrm{~cm}$ is false in TeX , but it is true that $100 \mathrm{in}==254 \mathrm{~cm}$. . (it is already true that $50 \mathrm{in}==127 \mathrm{~cm}$). It is also false that $10 \mathrm{in}==25.4 \mathrm{~cm}$ but it is true that $10 \mathrm{in}==254 \mathrm{~mm}$. . . It is false though that $1 \mathrm{in}==25.4 \mathrm{~mm}$!

```
>>> (\dimexpr1in, \dimexpr2.54cm);
@_1 4736286, 4736274
>>> (\dimexpr10in, \dimexpr25.4cm);
@_2 47362867, 47362855
>>> (\dimexpr100in, \dimexpr254cm);
@_3 473628672, 473628672
>>> (\dimexpr1in, \dimexpr25.4mm);
@_4 4736286, 4736285
>>> (\dimexpr10in, \dimexpr254mm);
@_5 47362867, 47362867
```

\backslash maxdimen can be expressed only with pt, bp, and nd. For the other core units the maximal attainable dimensions in $s p$ unit are given in the middle column of the next table.

maximal allowed (with 5 places)	the corresponding maximal attainable dim.	minimal TeX dimen denotation causing "Dimension too large"
16383.99999pt	1073741823 sp (=\maxdimen)	16383.99999237060546875pt
16322.78954 bp	1073741823 sp (=\maxdimen)	16322.78954315185546875 bp
15355.51532nd	1073741823 sp (=\maxdimen)	15355.51532745361328125nd
15312.02584 dd	1073741822 sp	15312.02584075927734375 dd
5758.31742 mm	1073741822 sp	5758.31742095947265625 mm
1365.33333pc	1073741820 sp	1365.33333587646484375 pc
1279.62627 nc	1073741814sp	$1279.62627410888671875 n c$
$1276.00215 c c$	1073741821 sp	1276.00215911865234375 cc
575.83174 cm	1073741822 sp	575.83174896240234375 cm
226.70540in	1073741768 sp	226.70540618896484375 in

Perhaps for these various peculiarities with dimensional units, TeX does not provide an output facility for them similar to what \backslash the achieves for the pt.

Macros of this package (full list)

The macros are all expandable, and most are f-expandable (check the source code). They parse their arguments via \dimexpr so can be nested (with appropriate units added, as the outputs always are bare decimal numbers).

Negative dimensions behave as if replaced by their absolute value, then at last step the sign (if result is not zero) is applied (so "down" means "towards zero", and "up" means "away from zero").

Remarks about "Dimension too large" issues:

1. For input X equal to (or sufficiently close to) \backslash maxdimen and those units uu for which \maxdimen is not exactly representable (i.e. all core units except pt , bp and nd), the output D of the "up" macros \texdimen<uu>up $\{X\}$, if used as Duu in a dimension assignment or expression, will (naturally) trigger a "Dimension too large" error.
2. The same potentially happens with \texdimenwithunit \{dimen1\} \{dimen2\} if \backslash maxdimen is not representable exactly by dimen 2 used as a base dimension, (which may happen only if dimen $2>1 \mathrm{pt}$): it is possible that the output D , if consequently used as $\mathrm{D} \backslash$ dimexpr dimen2 \backslash relax will will trigger "Dimension too large".
3. For dd, nc and in, and input X equal to (or sufficiently close to) \maxdimen it turns out that \backslash texdimen $<u u>\{X\}$ produces an output D such that Duu is the first "virtually attainable" TeX dimension beyond \backslash maxdimen. Hence
here also Duu will trigger on use "Dimension too large error".
4. Again for the dd, nc and in units, both the "down" and "up" macros will trigger "Dimension too large" during their execution if used with an input equal to (or sufficiently close to) \maxdimen. made.
\texdimenpt\{<dim. expr.>\}
Does \backslash the \backslash dimexpr <dim. expr.> \backslash relax then removes the pt.
```
\texdimenbp{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dbp represents the dimension exactly if possible. If not possible it will differ by 1 sp from the original dimension, but it is not known in advance if it will be above or below.
\backslash maxdimen on input produces 16322.78954 and indeed is realized as 16322.78954 bp .
\texdimenbpdown\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dbp represents the dimension exactly if possible. If not possible it will be smaller by 1 sp from the original dimension.
\texdimenbpup\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dbp represents the dimension exactly if possible. If not possible it will be larger by 1 sp from the original dimension.

```
\texdimennd{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dnd represents the dimension exactly if possible. If not possible it will differ by 1 sp from the original dimension, but it is not known in advance if it will be above or below.
\backslash maxdimen on input produces 15355.51532 and indeed is realized as 15355.51532nd.
\texdimennddown\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dnd represents the dimension exactly if possible. If not possible it will be smaller by 1 sp from the original dimension.

```
\texdimenndup{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dnd represents the dimension exactly if possible. If not possible it will be larger by 1 sp from the original dimension.

```
\texdimendd\{<dim. expr.>\}
```

Produces a decimal (with up to five decimal places) D such that Ddd represents the dimension exactly if possible. If not possible it will differ by 1 sp from the original dimension, but it is not known in advance if it will be above or below.

Warning: the output for \maxdimen is 15312.02585 but 15312.02585dd will trigger "Dimension too large" error. \backslash maxdimen-1sp is attainable via 15312.02584 dd.
\texdimendddown\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Ddd represents the dimension exactly if possible. If not possible it will be smaller by 1 sp from the original dimension.
\texdimenddup\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Ddd represents the dimension exactly if possible. If not possible it will be larger by 1 sp from the original dimension.
\texdimenmm\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dmm represents the dimension exactly if possible. If not possible it will either be the closest from below or from above, but it is not known in advance which one (and it is not known if the other choice would have been closer).
\backslash maxdimen as input produces on output 5758.31741 and indeed the maximal attainable dimension is $5758.31741 \mathrm{~mm}(1073741822 \mathrm{sp})$.
\texdimenmmdown\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dmm represents the dimension exactly if possible. If not possible it will be largest representable dimension smaller than the original one.
\texdimenmmup\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dmm represents the dimension exactly if possible. If not possible it will be smallest representable dimension larger than the original one.
\texdimenpc\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dpc represents the dimension exactly if possible. If not possible it will
be the closest representable one (in case of tie, the approximant from above is chosen).
\maxdimen as input produces on output 1365.33333 and indeed the maximal attainable dimension is 1365.33333 pc (1073741820 sp).

```
\texdimenpcdown{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dpc represents the dimension exactly if possible. If not possible it will be largest representable dimension smaller than the original one.
\texdimenpcup $\{<$ dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dpc represents the dimension exactly if possible. If not possible it will be smallest representable dimension larger than the original one.

```
\texdimennc{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dnc represents the dimension exactly if possible. If not possible it will either be the closest from below or from above, but it is not known in advance which one (and it is not known if the other choice would have been closer).

Warning: the output for \backslash maxdimen is 1279.62628 but 1279.62628 nc will trigger "Dimension too large" error. \maxdimen-9sp is attainable via 1279.62627 nc .
\texdimenncdown\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dnc represents the dimension exactly if possible. If not possible it will be largest representable dimension smaller than the original one.

```
\texdimenncup{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dnc represents the dimension exactly if possible. If not possible it will be smallest representable dimension larger than the original one.
\texdimencc\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dcc represents the dimension exactly if possible. If not possible it will either be the closest from below or from above, but it is not known in advance which one (and it is not known if the other choice would have been closer).
\backslash maxdimen as input produces on output 1276.00215 and indeed the maximal attainable dimension is $1276.00215 \mathrm{cc}(1073741821 \mathrm{sp})$.

```
\texdimenccdown{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dcc represents the dimension exactly if possible. If not possible it will be largest representable dimension smaller than the original one.

```
\texdimenccup{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Dcc represents the dimension exactly if possible. If not possible it will be smallest representable dimension larger than the original one.
\texdimencm\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dcm represents the dimension exactly if possible. If not possible it will either be the closest from below or from above, but it is not known in advance which one (and it is not known if the other choice would have been closer).
\backslash maxdimen as input produces on output 575.83174 and indeed the maximal attainable dimension is $575.83174 \mathrm{~cm}(1073741822 \mathrm{sp})$.
\texdimencmdown\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dcm represents the dimension exactly if possible. If not possible it will be largest representable dimension smaller than the original one.
\texdimencmup $\{<\operatorname{dim} . \operatorname{expr} .>\}$
Produces a decimal (with up to five decimal places) D such that Dcm represents the dimension exactly if possible. If not possible it will be smallest representable dimension larger than the original one.
\texdimenin\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Din represents the dimension exactly if possible. If not possible it will either be the closest from below or from above, but it is not known in advance which one (and it is not known if the other choice would have been closer).

Warning: the output for \maxdimen is 226.70541 but 226.70541 in will trigger "Dimension too large" error. \maxdimen-55sp is maximal attainable dimension (via 226.7054in).

```
\texdimenindown{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Din represents the dimension exactly if possible. If not possible it will be largest representable dimension smaller than the original one.

```
\texdimeninup{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Din represents the dimension exactly if possible. If not possible it will be smallest representable dimension larger than the original one.

```
\texdimenbothcmin{<dim. expr.>}
```

Produces a decimal (with up to five decimal places) D such that Din is the largest dimension smaller than the original one and exactly representable both in the in and cm units.

\texdimenbothincm\{<dim. expr.>\}

Produces a decimal (with up to five decimal places) D such that Dcm is the largest dimension smaller than the original one and exactly representable both in the in and cm units. It thus represents the same dimension as \texdimenbothcmin\{<dim. expr.>\}in.
\texdimenbothcminpt\{<dim. expr.>\}
Produces a decimal (with up to five decimal places) D such that Dpt is the largest dimension smaller than the original one and exactly representable both in the in and cm units. It thus represents the same dimension as the one provided by \texdimenbothcmin and \texdimenbothincm.
\texdimenbothincmpt\{<dim. expr.>\}
Same as \texdimenbothcminpt.
\texdimenbothcminsp\{<dim. expr.>\}
Produces an integer (explicit digit tokens) N such that Nsp is the largest dimension smaller than the original one and exactly representable both in the in and cm units.
\texdimenbothincmsp\{<dim. expr.>\}
Same as \texdimenbothcminsp.
\texdimenwithunit $\{<\operatorname{dim}$. expr. 1>\}\{<dim expr. 2>\}
Produces a decimal D such that $\mathrm{D} \backslash$ dimexpr <dim expr. $2>\backslash$ relax is considered by TeX the same as <dim. expr. $1>$ if at all possible. If not possible it will be a closest match either from above or below (but one does not know if the other direction is a better or worst match).
\texdimenwithunit\{dim\}\{1bp\} and \texdimenbp\{dim\} are not the same: The former produces a decimal D such that $D \backslash$ dimexpr $1 \mathrm{bp} \backslash \mathrm{relax}$ is represented internally as is dim if at all possible, whereas the latter produces a decimal D such that $D \mathrm{bp}$ is the one aiming at being
 factor equal to $65781 / 65536$, whereas D bp involves the $803 / 800$ conversion factor.

Extras?

As already stated the "up" and also the "down" macros for the dd, nc and in units will trigger "Dimension too large" if used with inputs equal to or very near $\backslash m a x d i m e n$. "Safe" variants which are guaranteed never to trigger this error but have some extra overhead to filter out inputs very close to \backslash maxdimen will perhaps be provided if there is some demand for it.

But of course anyhow the output from the "up" macros if used as input with the corresponding unit will be beyond \backslash maxdimen if the latter is not attainable, i.e. for all units except bp, and nd (and pt but there is no "up" macro for it).

The dimensions representable with both in and cm units have the shape trunc $(3613.5 * \mathrm{k}) \mathrm{sp}$ for some integer k . The largest one smaller than a given dimension will thus differ from it by at most about 0.055 pt , which is also about 0.02 mm .

For example \texdimenbothincm $\{1 \mathrm{~cm}\}$ expands to 0.99994 cm which maps internally to 1864566 sp which differs from TeX's 1 cm by only -113 sp . It can be obtained from 0.39368 in or 28.45102 pt .

And \texdimenbothcmin\{1in\} expands to $0.99945 i n$, maps internally to 4733685 sp which differs from TeX's 1in by -2601 sp. It can be obtained as 2.5386 cm or 72.2303 pt .

Currently the package does not provide analogous approximations from above. For the 1 in for example it would be 4737298 sp, i.e. 1.00021 in which differs from TeX's 1 in by +1012 sp and is obtained also as 2.54054 cm and 72.28543 pt .

Acknowledgements

Thanks to Denis Bitouzé for raising an issue on the LaTeX3 tracker which became the initial stimulus for this package.

Thanks to Ruixi Zhang for reviving the above linked-to thread and opening up here issue \#2 asking to add handling of the ex,em, and px cases. This was done at release 0.99 via the addition of \backslash texdimenwithunit.

