
writing macros with texapi

The first motivation for this set of macros is selfish:
after rewriting the same lines over and over and wasting so
many excruciating (yes!) hours debugging intricate loops
with one typo, I decided I could use a toolkit containing the
painful code without errors (hopefully) and use it for future
packages.

The second motivation is more ambitious: I think it's a
pity so many packages are written for one format and are
thus unusable outside it, even though those packages could
be useful to anybody. This is so, I believe, because a format
mixes two different things: decisions about typesetting
(mainly) and utility macros. The former are the essence of a
format, whereas the latter are just shorthands you can use
or not, replace, or ignore completely. But the fact is that
users of a format tend to use the utility macros shipped with
it, and thus writes macros that can't be reused elsewhere,
even though nothing crucial hinges on what utility macros
one uses. Thus, texapi aims at providing a good deal of this
kind of macros whitout relying on any particular format, so
that one can write code without having to take into account
how it will be used. Moreover, texapi is also format-aware,
meaning some commands are defined differently depending
on the format being used, and one doesn't have to create as
many macros as there are formats.

There is at least one basic assumptions, namely that
formats should contain plain TEX's allocation macros. This
the case for all formats I know.

In what follows, commands have a grey background
when they are fully expandable, e.g. they can be used inside
\csname...\endcsname, provided you don't use them with
unexpandable arguments, of course. On the other hand, all
unexpandable commands are protected.

Arguments are denoted by <text>, where `text' makes
the intended use clearer and doesn't denote any particular
type of argument, except in the case of <command>, which
denotes a control sequence (something expandable, actu-
ally), and <csname>, which denotes an argument suitable to
\csname. Braces are indicated only when mandatory, but of
course they can be used to delimit arguments as usual.

Finally, the following may be a useful indication (added
in version 1.01).

\texapiversion This a macro that holds texapi's version number. Current:
1.01.

Author: Paul Isambert
Version: 1.01

Date: 7/9/2010

Typeset in Chaparral Pro (Carol Twombly) and Lucida Sans Typewriter
(Charles Bigelow and Kris Holmes) with LuaTEX v.60.1.

engine and format detection

\texenginenumber This is a \chardef'ined number set according to the engine
used: 0 means e-TEX, or an unknown engine with e-TEX
extensions; 1 means XeTEX (detected because \XeTeXinter-
chartoks exists); 2 means pdfTEX (detected thanks to \pdf-

strcmp); 3 means LuaTEX (detected thanks to \directlua).
Numbering here allows one to detect a pdfTEX-based en-
gine with \texenginenumber>1. ConTEXt has an equivalent
\texengine, with pdfTEX=1 and XeTEX=2, though.

\formatnumber This number does the same with formats. Here, 0 means
an unknown format, 1 means plain (because \fmtname is
`plain'), 2 means eplain (because \fmtname is `eplain'), 3
means ConTEXt (because there exists an \inspectnextop-

tionalcharacter command), 4 means LaTEX2e (because
\fmtname is `LaTeX2e') and 5 means LaTEX3 (because there
exists an \ExplSyntaxOn command). There's no distinction
yet between LaTEX3 on top of LaTEX2e and LaTEX3 as a
format per se. Since \formatnumber is set only if it doesn't
already exist, you can write your package with, say, code.tex
containing the main code and code.sty and t-code.tex

as wrapper files for LaTEX and ConTEXt respectively, with
\formatnumber already set accordingly.

\priminput

\primunexpanded

Both LaTEX and ConTEXt redefines \input, and in ConTEXt
\unexpanded has not the meaning of the e-TEX primitive.
These two commands are thus the primitive \input and
\unexpanded respectively.

\loadmacrofile<file> The behavior of this command depends on \formatnumber.
The <file> should be given without extension, and the
following happens: in ConTEXt, \usemodule[<file>] is
executed, in LaTEX \RequirePackage{<file>} is used, and
in other formats it is simply \input<file>.tex. This makes
sense only with packages that are distributed as described
above, i.e. with the main code in one file and wrapper files
for LaTEX and ConTEXt, like TikZ or librarian.

\senderror<package><message> This sends an error message according to the format's cus-
tom. In plain and eplain (and in an unknown format),
it produces \errmessage{<package> error: <message>}.
In LaTEX, we get \PackageError{<package>}{<message>}{}
(no help message) and in ConTEXt \writestatus{<package>
error}{<message>} (which is far from ConTEXt's sophisti-
cated communication system but, well...).

\def\myengine{%

 \ifcase\texenginenumber

 e-\or Xe\or pdf\or Lua\fi\TeX

 }

\def\myformat{%

 \ifcase\formatnumber

 unknown\or plain\or eplain\or

 ConTeXt\or LaTeX\or LaTeX3\fi

 }

This documentation has been typeset

with \myformat\ under \myengine.

This documentation has been typeset with plain under LuaTEX.

argument man i pu lat i on

\emptycs

\spacecs

\spacechar

Pretty useful macros whose meaning is clear, but whatever:
\emptycs is an emptily defined command, \spacecs expands
to a space, and \spacechar denotes a space, i.e. it is an
implicit space and not really a macro.

\gobbleone

\gobbleoneand<code>

Those, as youmight imagine, gobble the following argument;
the second version also excutes <code> afterwards. There
are actually nine such commands in each case, and they are
(for the sake of completeness) \gobbleone, \gobbletwo,
\gobblethree, \gobblefour, \gobblefive, \gobblesix,
\gobbleseven, \gobbleeight (watch out, two e's) and \gob-

blenine for the first version, and \gobbleoneand, \gobblet-
woand, \gobblethreeand, \gobblefourand, \gobblefiveand,
\gobblesixand, \gobblesevenand, \gobbleeightand and
\gobblenineand. Note that \gobblenineand<code> takes
two expansion steps to return <code>, instead of only one
in the other cases.

\unbrace<code> This is the kind of command you probably can't see the point
of until you need it. It returns its <code> untouched, but
with outermost braces removed if any.

\swapargs <arg1><arg2>

\swapbraced <arg1><arg2>

\swapleftbraced <arg1><arg2>

\swaprightbraced<arg1><arg2>

The first of those returns <arg2><arg1> into the stream,
without any brace to delimit them. On the contrary, \swap-
braced returns {<arg2>}{<arg1>}. And, as you might imag-
ine, \swapleftbraced returns {<arg2>}<arg1> whereas
\swaprightbraced returns <arg2>{<arg1>}.

\passexpanded <arg1><arg2>

\passexpandednobraces<arg1><arg2>

The first one returns <arg1>{<arg2 expanded once>} and
the second <arg1><arg2 expanded once>. It's some sort of
long \expandafter built on \swapargs and associates, and
if <arg1> is a single token it's faster to use \expandafter
itself. It's not a real \expandafter, though, since <arg2>
is expanded to the left of <arg1> and then moved back to
its right. Which, with e.g. an \else as <arg2>, will lead
to results you probably haven't foreseen and expected. If
<arg2> is some material you want to turn into a command
with \csname, see \passcs below.

This is \gobbletwoand{very } uninteresting.

This is very interesting.

\def\foo#1#2{\detokenize{(1=#1,2=#2)}}

\def\bar{two}

\foo{one}\bar

\passexpanded{\foo{one}}\bar

(1=one,2=\bar)(1=one,2=two)

defining & using commands

\defcs <csname><parameter text>{<definition>}

\edefcs<csname><parameter text>{<definition>}

\gdefcs<csname><parameter text>{<definition>}

\xdefcs<csname><parameter text>{<definition>}

These work exactly like \def, \edef, \gdef and \xdef, except
they define a command with name <csname>. The <pa-

rameter text> is the usual one, and any the space at the
beginning is significant. I.e. \defcs{foo}#1{...} and \de-

fcs{foo} #1{...} aren't equivalent at all. Prefixes can be
appended as with \def.

\letcs <csname><command>

\lettocs <command><csname>

\letcstocs<csname><csname>

These \let the first command or command named <csname>

to the meaning of the second one. In both \lettocs and
\letcstocs, if the command with name <csname> is unde-
fined, it is not let to \relax. So these are different from
\let with \expandafter's. The \letcs command can also
be used to create an implicit character, of course.

\addleft <command><material>

\addleftcs <csname><material>

\eaddleft <command><material>

\eaddleftcs<csname><material>

This redefines <command> or a command named <csname> to
itself with <material> added at the beginning. The e-variant
performs an \edef so that <material> is fully expanded
(but not <command>). The usual prefixes can be appended.

\addright <command><material>

\addrightcs <csname><material>

\eaddright <command><material>

\eaddrightcs<csname><material>

This is the same thing as above, but the material is added at
the end. In both the left and right version, the command
thus redefined should be a simple commandworking by itself
(i.e. no argument and no delimiter). In the <csname> case,
no check is performed to ensure that <csname> is defined
(but in the worst case it ends up as \relax, because of its
being called after the implicit \def (get it?)).

\usecs <csname>

\usecsafter <csname>

\passcs <code><csname>

\passexpandedcs<code><csname>

\noexpandcs <csname>

\unexpandedcs <csname>

Variousways to use a commandwith name <csname>: \usecs
performs a simple \csname<csname>\endcsname (and doesn't
even check whether <csname> is defined or not, so this might
relax it a little bit), \usecsafter does the equivalent of
\expandafter\command, \passcs puts <csname> as a real
(unbraced) command after <code>, whereas \passexpand-
edcs passes the expansion of the control sequence with
name <csname> to <code>; \noexpandcs and \unexpandedcs

return <csname> with a \noexpand prefix or its expansion as
argument to \unexpanded (\primunexpanded, really).

\commandtoname<command> This returns the name of <command>, i.e. <command> without
its backslash (and made of catcode-12 characters, since it's
based on \string).

\defcs{foo}#1{This is foo: #1.}

\foo{bar}

This is foo: bar.

\expandafter\let\expandafter\foo

 \csname undefined\endcsname

\lettocs\bar{reallyundefined}

\letcstocs{reallyundefined}{reallyundefined}

Compare this: \meaning\foo,

and that: \meaning\bar.

And better yet: \meaning\reallyundefined.

Compare this: \relax, and that: undefined. And better yet: undefined.

\defcs{foo}{bar}

\addleftcs{foo}{In a }

\addright\foo{ (how fascinating).}

\foo

In a bar (how fascinating).

\def\bar{whatever} \def\foo#1{[#1]}

I use it: \usecs{bar},

I use it after: \usecsafter{foo}\bar,

and I pass it: \passcs\foo{bar}.

I use it: whatever, I use it after: [w]hatever, and I pass it: [whatever].

\def\foo{\bar}

I don't expand it:

\edef\foobar{\noexpandcs{foo}}%

\meaning\foobar.

Or just a little bit:

\edef\foobar{\unexpandedcs{foo}}%

\meaning\foobar.

I don't expand it: macro:->\foo . Or just a little bit: macro:->\bar .

t e s t s w i t h c o m m a n d s

\reverse Conditionals in texapi (not only those on this page) can be
prefixed with \reverse, so that if they're true the <false>
argument is executed (if specified), and if they're false,
the <true> argument is executed. So this is equivalent to
\unless.

\ifcommand <command><true><false>

\iffcommand<command><true>

This conditional executes <true> if <command> is defined. So
it is a straight version of \ifdefined. The \iff... version, like
all texapi's \iff..., considers only the <true> case (which
becomes the <false> case if the conditional is prefixed with
\reverse).

\ifcs <csname><true><false>

\iffcs<csname><true>

Same as above, but with an \ifcsname this time. It goes
without saying that <csname> isn't let to \relax thereafter
if it was undefined.

\ifemptycommand <command><true><false>

\iffemptycommand<command><true>

This is true if <command> is defined with an empty definition
text, i.e. it is equivalent to \emptycs. This is not true if
<command> takes arguments, though, so \gobbleone isn't
empty in this sense.

\ifemptycs <csname><true><false>

\iffemptycs<csname><true>

Same as above with a command named <csname>.

\ifxcs <csname><command><true><false>

\iffxcs<csname><command><true>

This is true if <csname> has the same definition as <command>,
or they're both undefined.

\ifxcscs <csname><csname><true><false>

\iffxcscs<csname><csname><true>

This is true if both <csname>'s have the same definition, or
they're both undefined.

\ifcommand\TeX{Cool}{Too bad}.

Nothing: \iffcommand\undefined{Whatever}.

Cool. Nothing: .

\reverse\iffcs{undefined}{This command is undefined.}

This command is undefined.

\def\foo{}

\ifemptycommand\foo{Empty}{Not empty}.

\reverse\iffemptycs{gobbleone}{It ain't empty}.

Empty. It ain't empty.

\iffxcs{undefined}\undefinedtoo

 {Same definitions.}

\ifxcscs{foo}{TeX}

 {These are the same}

 {These are different}.

Same definitions. These are different.

v a r i o u s c o n d i t i o n a l s

\newife<command> This defines a conditional like plain TEX's \newif, except
it takes two arguments (the <true> and <false> values)
instead of an \else... \fi structure. Besides, this conditional
is reversible with \reverse, and a `double-f' (i.e. \iff...)
version is also created, which takes the <true> part only. As
with \newif, <command>must begin with if. (The emeans
expandable, although there's nothing more expandable in
the conditionals thus constructed than in those defined
with \newif, but anyway.)

\straightenif <TEX conditional><arg><true><false>

\straighteniff<TEX conditional><arg><true>

Apart from \ifdefined and \ifcsname (in the guise of \if-
command and \ifcs respectively), none of TEX's primitive
conditionals are redefined in a straight fashion, i.e. with
two arguments instead of \else... \fi. These commands let
you use TEX's conditional in such a way. <TEX conditional>

means such a primitive without a backslash (so this con-
struction can be used inside real conditionals), e.g. ifnum or
ifvoid. The <arg> is whatever you normally feed to this
conditional. It is brutally concatenated, and you're the one
in charge of adding space if needed, as for instance with
ifnum. Chaos will ensue if you fail to do so. With condi-
tionals that don't require anything, e.g. iftrue or ifvmode,
leave <arg> empty (but don't forget it). Finally, <true> and
<false> are executed accordingly, and the whole macro can
be prefixed with \reverse.

\afterfi <code>

\afterdummyfi<code>

You shouldn't use these. The first one closes the current
conditional and executes <code>. The second one lets go
one \fi and executes <code>. So these are kinds of \ex-
pandafter's when <code> isn't just a command. Anything
before the incoming \fi is gobbled. The reason why you
should use one or the other should be clear to you, otherwise
you'll probably be messing with a conditional.

\newife\iffoo

\iffoo{There is foo}{There is no foo}.

\footrue

\reverse\iffoo{There is no foo}{There is foo}.

\ifffoo{With three f's in a row}.

There is no foo. There is foo. With three f's in a row.

 % See this space?

\straightenif{ifnum}{1=1 }{Reality is preserved}

 {Bad news}.

\reverse\straighteniff{if}{ab}

 {Different letters, obviously.}

\straightenif{iftrue}{}{Good}{Bad}.

Reality is preserved. Different letters, obviously. Good.

\iftrue

 \afterdummyfi{\afterfi{Here we are.}}

\else

 \iffalse

 Whatever.

 \fi

\fi

Here we are.

poking at what comes next

\nospace<code> This gobbles any incoming space, if any, and executes <code>.
Of course it doesn't require there to be any space to work
properly.

All the following conditionals can be prefixed with \re-

verse. And in case your head's buzzing, their names are
quite regular: take an \if, \ifcat or \ifx, add `next', and
create variants by doubling the f and/or adding nospace at
the end.

\ifnext <token><true><false>

\iffnext <token><true>

\ifnextnospace <token><true><false>

\iffnextnospace<token><true>

These poke at the next token and see whether it has the
same character code as <token>. In other words, an \if test
is performed between <token> and the next token in the
input stream. However, neither <token> nor the incoming
token are expanded, so that they can be control sequences
and no unwanted expansion will occur. Control sequences
are all equal according to this test (which can very well take
an undefined control sequence as <token>). The nospace
versionmust be pretty clear: themacro discards all incoming
spaces until it finds a non-space token to test (unfortunately,
an implicit space and a space character are undistinguishable
as far as this test (and the next ones) is concerned, so in the
very unlikely case where an implicit space was waiting in
the stream, it'll be gobbled in the nospace variant).

\ifcatnext <token><true><false>

\iffcatnext <token><true>

\ifcatnextnospace <token><true><false>

\iffcatnextnospace<token><true>

These are the same as above with an \ifcat test instead of
\if. Again, control sequences aren't expanded and they all
have the same category code.

\ifxnext <token><true><false>

\iffxnext <token><true>

\ifxnextnospace <token><true><false>

\iffxnextnospace<token><true>

Once again like the previous commands, this time with an
\ifx, i.e. the definitions of control sequences are compared,
and in case <token> and/or the next token are unexpandable
thing, both character code and category code are compared.
So these are performing real \ifx tests.

\nospace{foo} bar

foobar

Here comes \ifnext e{an }{a }e.

Here comes \reverse\ifnext e{a }{an }b.

Here comes

\iffnextnospace\foo{a control sequence: } \TeX.

Here comes an e. Here comes a b. Here comes a control sequence: TEX.

\def\tex{\TeX\iffcatnext a{ }}

A \tex is a \tex is a \tex.

A TEX is a TEX is a TEX.

\def\foo{not \string\TeX}

\reverse\iffxnextnospace\TeX

 {The incoming command isn't \string\TeX: } \foo.

The incoming command isn't \TeX: not \TeX.

s t r i n g m a n i p u l a t i o n

\ifstring <string1><string2><true><false>

\iffstring<string1><string2><true>

These return <true> if the two strings are identical. Category
codes aren't taken into account when strings are compared.

\ifemptystring <string><true><false>

\iffemptystring<string><true>

These return <true> if <string> is empty.

\newstring<string> The following operations (\ifprefix, \removesuffix, etc.)
aren't fully expandable by default. However, if a string has
been previously declared with \newstring, they magically
become fully expandable.

So, inwhat follows,macros aren'tmarked as expandable,
although they can be if the preceding condition is fulfilled.
Besides, these macro aren't \protected even though their
default behavior would require that they be. But you can
always append a \noexpand to an unprotected command,
whereas you cannot force the execution of a protected one.
(This protecting issue is of course totally irrelevant for the
\removeprefixin and \removesuffixin commands, which
aren't expandable by definition and are thus protected.)

\ifprefix <prefix><string><true><false>

\iffprefix<prefix><string><true>

This test is true if <string> begins with <prefix>. Category
codes do matter.

\ifsuffix <suffix><string><true><false>

\iffsuffix<suffix><string><true>

True if <string> ends with <suffix>.

\ifcontains <string1><string2><true><false>

\iffcontains<string1><string2><true>

Finally, this is true if <string2> contains <string1>.

\removeprefix<prefix><string>

\removesuffix<suffix><string>

These return <string> without <prefix> (resp. <suffix>).
No test is performed to check that <string> indeed begins
(resp. ends) with <prefix> (resp <suffix>), so these macros
make sense only after the adequate tests.

\removeprefixand<prefix><string><code>

\removesuffixand<suffix><string><code>

These do the same as the previous one, but feed the resulting
string to <code>, between braces. Once again, no test is
performed beforehand.

\removeprefixin<prefix><string><command>

\removesuffixin<suffix><string><command>

These define <command> as <string> without <prefix> (resp.
<suffix>). No test either. Sorry.

\splitstring<string1><string2><code> This cuts <string2> in two at <string1>'s first occurrence
and passes the two parts as braced arguments to <code>.
And, again: no test.

Two \ifstring{abc}{abc}{equal}{unequal} strings

and an \reverse\iffemptystring{something}{unempty} one.

Two equal strings and an unempty one.

\newstring{abc}

\edef\foo{\ifprefix{abc}{abcd}{True}{False}.}

\edef\bar{\reverse\iffsuffix{abc}{whatever}{No suffix}.}

\edef\foobar{\ifcontains{abc}{gee}{Yes}{No}.}

\meaning\foo\par

\meaning\bar\par

\meaning\foobar

macro:->True.
macro:->No suffix.
macro:->No.

\def\record#1 : #2.{%

 \par\bgroup

 \it\ifprefix*{#1}{\removeprefix*{#1} [live]}{#1}

 \egroup

 (\ifcontains/{#2}{\splitstring/{#2}{\dodate}}{#2})

 }

\def\dodate#1#2{recorded #1, released #2}

A somewhat incomplete list of fantastic

records by Frank Zappa:

\record Absolutely Free : 1967.

\record The Grand Wazoo : 1972.

\record L\"ather : 1977/1996.

\record *Make a Jazz Noise Here : 1988/1991.

A somewhat incomplete list of fantastic records by Frank Zappa:
Absolutely Free (1967)
The Grand Wazoo (1972)
Lather (recorded 1977, released 1996)
Make a Jazz Noise Here [live] (recorded 1988, released 1991)

various things on the same page

\setcatcodes{<list>} The <list> argument here means comma separated <char-

acters>=<category code>, with an s to characters because
you can concatenate them if you want them to share the
same <category code>. So, as you might have guessed, this
set all <characters> to characters with catcode <category
code>. And it also sets \restorecatcodes accordingly. The
changes are local. The # character requires a backslash (so
do braces and the backslash itself, but that's obvious).

\resetcatcodes This restores the catcodes of the characters changed with
the previous command, which is cumulative, i.e. \restore-
catcodes restores catcodes changed by all preceding \set-
catcodes commands, not only the last one. Since changes
are local, \restorecatcodesmay be useless in a group (and
the effect of \restorecatcodes itself is local too).

The trimming macros below are adapted from Will
Robertson's trimspace package.

\trimleft <string>

\trimright<string>

\trim <string>

These return <string> with one space removed at the be-
ginning or end or both. There's no need to check beforehand
whether there are indeed such spaces.

\passtrimleft <string><code>

\passtrimright<string><code>

\passtrim <string><code>

These return <string> trimmed of spaces as a braced argu-
ment to <code>.

\deftrimleft <command><string>

\deftrimright<command><string>

\deftrim <command><string>

The same thing again, except now those commands define
<command> to <string>, etc.

\setcatcodes{\\\#\{\}\%=12,\|=0}

Hey, were're verbatimizing:

\def\foo#1{\bar{#1}}%

|restorecatcodes

Hey, were're verbatimizing: \def\foo#1{\bar{#1}}%

\bgroup

And now in a group:\par

\setcatcodes{z=13}

\defz{ZZZZZZZZZZZZZZZZZZZZZZZZZZ}

I'm sleeping: z.\par

\egroup

And I'm not: z.

And now in a group:
I'm sleeping: ZZZZZZZZZZZZZZZZZZZZZZZZZZ.
And I'm not: z.

+\trim{ bar }+

+bar+

\deftrimleft\foo{ bar }

+\foo+

+bar +

w h i l e s t a t e m e n t s

\repeatuntil<number><code> This executes <code> <number> times. The <number> ar-
gument can be a \count register, an integer defined with
\chardef, etc., and of course a string of digits. In any case,
it is really an argument and must be surrounded by braces if
it is made of more than one token.

\dowhile<condition><code> This repeats <code> while <condition> is true. The latter
must be a `straight' if, i.e. either one of texapi's \if...
or a \straightenif{<TEX conditional>} construction, in
both cases without the <true> and <false> arguments,
because <true> is actually <code>, and <false> would make
no sense. Finally, the conditional must be a simple \if...,
not an \iff... version. Once again, this makes sense: the if
and only if clause is implicit in a while statement. If you use
an \iff..., you'll end up with many empty braces, which is
harmless unless you're in a context of expansion. You can
use \reverse in <condition>.

\newwhile<command><number><transformations><code> The \dowhilemacro is not very powerful since you must
generally change something somewhere to make it stops,
and thus its expandability is somewhat perfunctory. That's
why there is \newwhile. It creates an expandable <com-

mand> which takes <number> arguments (up to 9, as usual)
and repeats <code> indefinetely. So, at first sight, it's bad
news. But the point is <code> is supposed to launch the
\breakwhile macro below sooner or later, i.e. stop the loop.
Besides, on each iteration (barring the first), <transfor-
mations> are applied to the arguments, and this means:
the first argument is replaced by the first transformation,
the second argument by the second transformation, etc.
So there must be as many transformations as there are ar-
guments, transformations themselves being just code that
can make reference to the arguments. If you don't want to
transform an argument, just repeat it in the transformation.

\breakwhile<code> This breaks the current while loop and executes <code>,
which can make reference to the arguments of the loop.

\changewhile<new arguments> This replaces the default <transformations> defined with
\newwhile and passes the <new arguments> for the next
iteration. There must be as many arguments as required by
the loop. The original <transformations> remain in force
for the next iterations.

We have seen \repeatuntil\pageno{I} pages.\par

\edef\foo{\repeatuntil3{.}}

\meaning\foo

We have seen IIIIIIIIII pages.
macro:->...

\newife\ifbreakloop \def\foo{}

\dowhile{\reverse\ifbreakloop}

 {\addleft\foo{a}%

 \passexpanded\iffstring\foo{aaaa}

 \breaklooptrue}

\foo

aaaa

\edef\foo{%

 The inconvenience of iff...:

 \dowhile{\straighteniff{ifnum}{4=5 }}

 {whatever}

 }

\meaning\foo

macro:->The inconvenience of iff...: {}

 % Transformations.

\newwhile\largestsquare2{\numexpr(#1+1)}{#2}{%

 \reverse\straighteniff{ifnum}{\numexpr(#1*#1)<#2 }

 {The largest number whose square

 is smaller than #2 is

 \breakwhile{\the\numexpr(#1-1).}}}

\largestsquare{1}{50}\par

\largestsquare{1}{200}

The largest number whose square is smaller than 50 is 7.
The largest number whose square is smaller than 200 is 14.

for statements on the fly

\dofor<list><parameter text>{<definition>}<coda> This runs <definition> on each occurrence of <parameter
text> in <list>. The <parameter text> is a real one, hence
the braces around <definition>. The <coda> is executed
if and only if the loop goes to its natural end, i.e. it is not
terminated by one of the commands below. It must be
present, even if you don't want one (in which case, leave it
empty), and it can't make any reference to the arguments of
the parameter text. A loop thus executed is absolutely not
expandable. You can embed as many loops as you want (but
don't forget to double the #).

\dofornoempty This is the same as above, except <definition> is not exe-
cuted when the first argument is empty.

\breakfor<code> This breaks the current loop and executes <code>; the <coda>
of the loop is not executed.

\retrieverest<code> This also breaks the loop, but it retrieves the remaining
arguments in the list and pass them as a braced argument
to <code>.

\pausefor<code> This interrupts the loop and executes <code>; the loop being
interrupted means you're in the middle of the list, and
you can process it. Such a pause must be terminated by a
\resumefor if you don't want nasty internal code to surface.

\resumefor\dofor This restarts the current loop. It is necessary to specify
\dofor, because \resumefor is more general and is used
to restart any kind of loop, especially those defined with
\newfor (see next page).

The \dofor loop does not perform any kind of normal-
isation on the list. I.e. the list must be exactly designed
to match the parameter text, including spaces and other
unwelcome guests.

The \doformacro is useful for straightforward loops
used once or twice in a document. But for fully fledged
total-control fully expandable hey-that's-too-cool loops, you
should use the \newfor construction.

\dofor{a,b,c,}#1,{[#1]}{}

[a][b][c]

\dofor{(a=13)(b=3)(c=54)(d=33)(e=22)}(#1=#2){%

 \straighteniff{ifnum}{#2>50 }

 {\breakfor{There's a number larger than 50: #1=#2.}}}

 {No number larger than 50.}

There's a number larger than 50: c=54.

\dofornoempty{dd,e,,acb,3,ee4,,,}#1,{%

 \dofor{#1}##1{[##1]}{}...%

 }{}

[d][d]...[e]...[a][c][b]...[3]...[e][e][4]...

for statements: first steps

\newfor<command>{<optional passed arguments>}

<parameter text>{<definition>}[<optional coda>]
This creates a recursive <command> that will consume all
input with structure <parameter text>. Let's forget {<op-
tional arguments>} for a while, since they're optional (al-
beit braced). Let's forget the optional coda as well. So it
boils down to:

\newfor<command><parameter text>{<definition>}

so that basically \newfor works like \def. The <parameter
text> is a real parameter text as with \def, just like {<def-
inition>} is a real definition, hence the braces. The only
difference is there must be at least one argument, because
we need something to loop upon. I.e. <parameter text> is
at least #1.

Now you can launch <command> on an argument which
is made of as many occurrences of <parameter text> as
you wish, and on each occurrence <definition> will be
executed. So you've created a loop. And the good news is
that this loop is fully expandable.

It is your job to make sure that what is fed to <command>

has the correct argument structure.
If <coda> is specified, it is executed when the loop ends,

if it ends naturally, i.e. by exhausting its input, and not
by some of the loop-breaking commands on the next page.
There can be no call to arguments of <parameter text> in
the <coda>, e.g.

\newfor\foo#1{...}[...#1...]

is impossible. (You'll get raw inner code.) Such reference
to arguments in the <coda> is possible only with passed
arguments, as you'll see in two pages from here.

(Note that if there's no <coda>, any space will be gobbled
after {<definition>}. This is so because I thought it was
better to be able to write [<code>] after a space, e.g. a line
end, than to stick it to {<definition>}, even though that
brings this little inconvenience, which is probably harm-
less since \newfor is very unlikely to end up anywhere in
horizontal mode, i.e. in a paragraph.)

Macro thus created can be freely embedded into one
another.

\newfornoempty The \newfornoempty is similar to \newfor, except <defi-
nition> is not executed in the case the first argument is
empty.

\newfor\foo#1,{(#1)}

\foo{a,b,c,}

(a)(b)(c)

\newfornoempty\foo(#1,#2){[#1/#2]}

 [Input exhausted.]

\edef\bar{\foo{(a,b)(c,d)(,e)(f,)}}

\meaning\bar

macro:->[a/b][c/d][f/]Input exhausted.

\newfor\values#1=#2,{%

 The value of #1 is #2.\par

 }

\def\setvalues#1{%

 \ifsuffix,{#1}{\values{#1}}

 {\values{#1,}}%

 }

\setvalues{A=12,B=45,}

\setvalues{C=34}

The value of A is 12.
The value of B is 45.
The value of C is 34.

\newstring, % \pdfliteral requires full expansion!

\def\drawline#1{

 0 0 m % Initializes the path

 \ifsuffix,{#1}{\drawlinefor{#1}}

 {\drawlinefor{#1,}}

 } % l = line

\newfor\drawlinefor#1 #2,{#1 #2 l }[S]% S = draw path

\pdfliteral{

 q % kind of PDF \bgroup

 1 0 0 RG \drawline{20 10, 40 -15, 100 0,}

 0 1 0 RG \drawline{30 -15, 60 10, 130 0}

 Q} % kind of PDF \egroup

for statements: interruptions

(The commands on this page are the same as those intro-
duced with \dofor; they're explainedmore thoroughly here.)

\breakfor<code> Used inside a loop created with \newfor, this interrupts it,
gobbles the remaining input, and executes <code>. If the
loop had a <coda>, it is not executed. Any material between
the \breakfor command and the end of the definition of
the loop is gobbled. It is especially bad with conditionals,
so you should use \afterfi, or better yet a \straightenif
version.

\retrieverest<code> This does the same thing as \breakfor, i.e. breaks the cur-
rent loop, but it passes the rest of the material initially
passed to the loop as a braced argument to <code>. Argu-
ments in that remaining material aren't extracted from their
surrounding delimiters, if any.

\pausefor <code>

\resumefor<loop command>

The \pausefor command stops the loop and executes <code>.
That means that you're in the middle of the material being
processed and you can act on it. It is useful if the material
isn't totally regular. For instance, a typical BibTEX entry is a
list of `<field>=<value>' pairs, with each pair terminated by
a comma and the <value> either between braces or quotes.
Thus, you can't have a simple

\newfor\bibfor#1=#2,{#1...#2}

to process the entry, because a <value> may be delimited by
quotes and still contain a comma, and quotes mean nothing
to TEX, so the comma will be mistaken for the delimiter. An
oversimplified solution with \pausefor can be seen on the
right. The loop actually works on the predictable part only
(before the equal sign), is interrupted, the value is retrieved,
and the loop is resumed. (Why one would want to process a
BibTEX entry with TEX in the first place is a question I can
personally answer.)

Once \pausefor is used, theremust be somewhere down
your code a \resumefor<command> statement, to launch
the loop again, otherwise you'll end up stumbling on some
nasty internal code. It is impossible to know (in a perfectly
expandable way) the loop we're currently in, hence the
<command> as a argument to \resumefor: it is the loop one
wants to start again. Yes, it means you can also process the
rest of the material with another loop, the consequences of
which I leave it to you to ponder.

\newfor\foo#1{%

 \straighteniff{if}{\noexpand#1z}

 {\breakfor{There is a `z'!}}

 #1... % This will be gobbled.

 }[There is no `z'...]

\foo{abcdef}\par

\foo{abzdef}

a... b... c... d... e... f... There is no `z'...
a... b... There is a `z'!

\def\remainder#1{(And `#1' was still to come.)}

\newfor\foo#1=#2,{%

 \unless\ifnum#1=#2

 \afterfi{% Thrilling...

 \retrieverest{There is a false equation!

 \remainder}}%

 \fi}

\foo{3=3,2=2,451=451,7=4,78=78,9=0,}

There is a false equation! (And `78=78,9=0,' was still to come.)

\newfor\bibfor#1={%

 \pausefor{\getvalue{#1}}}

\def\getvalue#1{%

 \trim{#1}:

 \ifnextnospace"{\getquotevalue}

 {\getcommavalue}

 }

\def\getquotevalue"#1",{\showvalue{#1}}

\def\getcommavalue#1,{\showvalue{#1}}

\def\showvalue#1{%

 {\it\trim{#1}}.\par\resumefor\bibfor}

\bibfor{

 Author = {John Doe},

 Title = "Me, myself and I",

 Year = 1978,}

Author: John Doe.
Title: Me, myself and I.
Year: 1978.

for statements: passed arguments

Suppose you want to retrieve the largest number in a list
a numbers. The first example on the right shows you how to
do so. But this solution won't work if you need the loop to
be expandable, because there's a number assignment.

That's why loops defined with \newfor can pass argu-
ments from one iteration to the next. The number of those
arguments are the {<optional passed arguments>} in the
description of \newfor two pages ago. So, a typical fully-
fledged use of \newfor is:

\newfor\myloop{2}#3=#4,{...#1...#2...#3...#4...}

 [...#1...#2...]

which means that \myloop takes four arguments, two of
which are actually passed arguments, the third and the four
being in the recursive list that \myloop runs on. Besides, as
you can see, passed arguments can appear in <coda>. Now a
call to \myloop looks like:

\myloop{one}{two}{a=1,b=2,...}

where one and two are passed arguments. There can be up
to 8 passed arguments (since there must be at least one
argument to loop on), and if there are n of them, numbering
of arguments in <parameter text> must start at n+1, as in
the above example.

\passarguments<arg1><arg2>... Passed arguments are automatically retrieved from one
iteration to the next. However, if you can't change them,
they aren't very interesting. Hence this command: it passes
<arg1>, <arg2>, etc., to the next iteration, replacing the
previous ones. There must be as many arguments to \pas-

sarguments as required by the loop, even if you don't want
to pass new values for all (in which case, just pass the pre-
vious value). Beware: \passarguments ends the current
iteration, just like \breakfor, and any remaining material
in the definition of the loop is gobbled.

Thus, the second version of our \findlargest command
works as follows: it takes one harmless passed argument,
and loops on the following list. Obviously, 45 is larger than
0, so it is passed as the new first argument; then, 33 is
not larger than 45, so nothing happen, and 45 is implicitly
passed again as the first argument, and so on and so forth,
until finally the <coda> prints the largest number in the list.
And, as illustrated by the \edef, everything expands nicely.

\newcount\largest

\newfor\findlargest#1,{%

 \ifnum#1>\largest

 \largest=#1

 \fi}

 [The largest number is \the\largest.]

\findlargest{45,33,1,4844,12,655,}

The largest number is 4844.

\newfor\findlargest{1}#2,{%

 \straighteniff{ifnum}{#2>#1 }

 {\passarguments{#2}}%

 }

 [The largest number is #1.]

\edef\foo{\findlargest{0}{45,33,1,4844,12,655,}}

\meaning\foo

macro:->The largest number is 4844.

for statements: examples

Loops created with \newfor are somewhat tricky to get
a hand on, so here are some examples. First of all, you might
think that it would be nice to be able to define a loop whose
argument structure is defined but not its replacement text,
so that you can call it on similar lists but with different
operations. For instance, a generic loop that works on
all comma-separated lists. You can't do that exactly with
\newfor, but you can easily use passed arguments to do
something similar, e.g.:

\newfor\commalist{1}#2,{#1{#2}}

\commalist\tree{leaf,fruit,twig,}

\commalist\scale{b minor,f sharp,whatever lydian}

with \tree and \scale defined to process one argument:
\commalist itself has no real definition, and you don't have
to bother about passed arguments (although you can still
use them).

The first example sorts a list of numbers separated by
commas. The first loop, \sortnum, takes a passed argument
which contains the numbers already sorted (so it is empty at
the beginning) and it runs on the list to be sorted. The second
loop, \subsortnum, takes two passed arguments: the first
one is the number under investigation, the second one is the
list of numbers smaller than the number under investigation
(so it is empty too at the beginning), and it is updated
each time we find such a number as the third, non-passed
arguments to \subsortnum, which is an element of the list
of already sorted numbers as preserved in \sortnum's first
passed argument... got that?

Let's follow some iterations. The first call is:

 % incoming arguments

\sortnum{}5,12,-161,3,0,63,22,-45,

and it calls

\subsortnum{5}{}{}

so that \subsortnum terminates immediately: it has no
input. So it calls its coda:

\passarguments{5,}

(where 5 is really the first argument following the empty

\newfor\sortnum{1}#2,{%

 \subsortnum{#2}{}{#1}%

 }[Sorted list: #1]

\newfor\subsortnum{2}#3,{%

 \straightenif{ifnum}{#1<#3 }

 {\retrieverest{\passtosortnum{#2#1,#3,}}}

 {\passarguments{#1}{#2#3,}}%

 }[\passarguments{#2#1,}]

\def\passtosortnum#1#2{\passarguments{#1#2}}

\sortnum{}{5,12,-161,3,0,63,22,-45,}

Sorted list: -161,-45,0,3,5,12,22,63,

for statements: examples

second one). Since \subsortnum has terminated, this call
to \passarguments is for \sortnum, hence the following
iteration is:

 % incoming arguments

\sortnum{5,}12,-161,3,0,63,22,-45,

--> \subsortnum{12}{}5,

Ah, something new. 12 is larger than 5, so the conditional
is false. So \subsortnum passes the following to itself:

\passarguments{12}{5,}

--> \subsortnum{12}{5,}{}

and once again it terminates, hence:

\passarguments{5,12,} % incoming arguments

--> \sortnum{5,12,}-161,3,0,63,22,-45,

 % incoming argument

--> \subsortnum{-161}{}5,12,

and obviously -161 is smaller than 5, so the rest of the list
is retrieved with \retrieverest and passed as the second
argument of \passtosortnum. Once again, since this termi-
nates \subsortnum, \passarguments in \passtosortnum is
for \sortnum:

\passtosortnum{-161,5,}{12,}

 % incoming arguments

--> \sortnum{-161,5,12,}3,0,63,22,-45,

 % incoming arguments

--> \subsortnum{3}{}-161,5,12,

--> \subsortnum{3}{-161,}5,12,

--> \passarguments{161,3,5,12,}

--> \sortnum{-161,3,5,12,}0,63,22,-45,

...

and so on and so forth.
Replace the test with any other one and you have a

generic sorting function, as in the example on the right,
which sorts entries alphabetically or chronologically. It is
possible to make things both cleverer and simpler. (The
Lua code compares two strings, and it could very well have
handled the \year version.)

\newfor\sortbooks{2}#3(#4),{%

 \subsortbooks#1{#3(#4)}{}{#2}

 }[\bgroup\it#2\egroup]

\newfor\subsortbooks{3}#4(#5),{%

 #1#2{#4}{#5}{#3}

 }[\passarguments#1{#3#2,}]

\def\alpha#1(#2)#3#4#5{%

 \directlua{

 if "#1"<"#3" then

 tex.print("\noexpand\\firstoftwo")

 else

 tex.print("\noexpand\\secondoftwo")

 end}

 {\retrieverest{%

 \passtosortbooks\alpha{#5#1(#2),#3(#4),}}}

 {\passarguments\alpha{#1(#2)}{#5#3(#4),}}

 }

\def\year#1(#2)#3#4#5{

 \straightenif{ifnum}{#2<#4 }

 {\retrieverest{%

 \passtosortbooks\year{#5#1(#2),#3(#4),}}}

 {\passarguments\year{#1(#2)}{#5#3(#4),}}

 }

\def\passtosortbooks#1#2#3{\passarguments#1{#2#3}}

\def\books{

 Oblivion (2004),

 Infinite Jest (1996),

 Brief Interviews with Hideous Men (1999),

 Girl with Curious Hair (1989),

 The Broom of the System (1987),

 The Pale King (2011),% No parasitic space!

 }

David Foster Wallace's books in alphabetical order:\par

\passexpanded{\sortbooks\alpha{}}\books \par

David Foster Wallace's books ordered by date:\par

\passexpanded{\sortbooks\year{}}\books

David Foster Wallace's books in alphabetical order:
Brief Interviews with Hideous Men (1999), Girl with Curious Hair
(1989), Infinite Jest (1996), Oblivion (2004), The Broom of the
System (1987), The Pale King (2011),
David Foster Wallace's books ordered by date:
The Broom of the System (1987), Girl with Curious Hair (1989),
Infinite Jest (1996), Brief Interviews with Hideous Men (1999),
Oblivion (2004), The Pale King (2011),

for statements: examples

The next example is a palindrome detector: it returns
true if the string it is fed is made of a string followed by itself
reverse (which is not the exact definition of a palindrome,
which is a string that is its own reverse, but we keep things
simple).

The first loop, \palincount, simply counts the number
of characters in the string; it also reaccumulates it as its
second argument, something that could be avoided if there
was a wrapper macro. Once it is finished, it passes the
original string along with half the number of characters
to \palincheck, which simply accumulates in reverse this
number of characters, by decreasing it on each iteration.
Once this number is exhausted, it compares what it has
accumulated to what there remains to be processed, and if
both strings match, the original string is a palindrome.

\newfor\palincount{2}#3{%

 \passarguments{\numexpr(#1+1)}{#2#3}%

 }[\palincheck{\numexpr(#1/2)}{}{#2}]

\newfor\palincheck{2}#3{%

 \reverse\straightenif{ifnum}{\numexpr(#1-1)>0 }

 {\retrieverest{\compare{#3#2}}}

 {\passarguments{\numexpr(#1-1)}{#3#2}}%

 }

\def\compare#1#2{%

 \ifstring{#1}{#2}{TRUE}{FALSE}%

 }

\edef\foo{\palincount{0}{}{abcdeffedcba}}

\edef\bar{\palincount{0}{}{abcdff}}

\meaning\foo, \meaning\bar

macro:->TRUE, macro:->FALSE

	Writing macros with texapi
	Engine and format detection
	Argument manipulation
	Defining & using commands
	Tests with commands
	Various conditionals
	Poking at what comes next
	String manipulation
	Various things on the same page
	While statements
	For statements on the fly
	For statements: first steps
	For statements: interruptions
	For statements: passed arguments
	For statements: examples

