
PSTricks

pst-node
Nodes and node connections
v.1.10

January 22, 2010

Documentation by Package author(s):
Michael Sharpe
Herbert Voß

Timothy Van Zandt
Michael Sharpe
Herbert Voß

politische
Kommunikation

interpersonale
Kommunikation

massenmediale
Kommunikation

starke
Beziehung

schwache
Beziehung

Fernsehen Zeitungen

öffentlich-rechtl.
Fernsehen

privates
Fernsehen

Boulevard-
Zeitungen

Abonnement-
Zeitungen

This version of pst-node uses the extended keyval handling of pst-xkey and has a
lot of the macros which were recently in the package pstricks-add. This documenta-
tion describes in the first part the basic node commands and connection from the old
PSTricks documentation. The second part describes only the new and changed stuff. .

Thanks to: Denis Girou; Rolf Niepraschk; Sebastian Rahtz;

Contents 3

Contents

I. Basic commands, connections and labels 4

II. New commands 31

1. Relative nodes with \psGetNodeCenter 31

2. \ncdiag and \pcdiag 31

3. \ncdiagg and \pcdiagg 33

4. \ncbarr 34

5. \psLNode and \psLCNode 35

6. \nlput and \psLDNode 36

7. Extensions 36
7.1. Quick overview . 36
7.2. Node expressions . 37
7.3. The main macros . 38

8. List of all optional arguments for pst-node 45

References 47

Contents 4

Part I.

Basic commands, connections and
labels

VII Nodes and Node Connections

All the commands described in this part are contained in the filepst-node.tex
pst-node / pst-node.sty.

The node and node connection macros let you connect information and
place labels, without knowing the exact position of what you are connecting
or of where the lines should connect. These macros are useful for making
graphs and trees, mathematical diagrams, linguistic syntax diagrams, and
connecting ideas of any kind. They are the trickiest tricks in PSTricks!

The node and node connection macros let you connect information and
place labels, without knowing the exact position of what you are connecting
or where the lines should connect. These macros are useful for making
graphs and trees, mathematical diagrams, linguistic syntax diagrams, and
connecting ideas of any kind. They are the trickiest tricks in PSTricks!

There are three components to the node macros:

Node definitions The node definitions let you assign a name and shape to
an object. See Section30.

Node connectionsThe node connections connect two nodes, identified by
their names. See Section31.

Node labels The node label commands let you affix labels to the node con-
nections. See Section32.

You can use these macros just about anywhere. The best way to position
them depends on the application. For greatest flexibility, you can use the
nodes in a\pspicture , positioning and rotating them with\rput . You can
also use them in alignment environments.pst-node.tex contains a spe-
cial alignment environment,\psmatrix , which is designed for positioning
nodes in a grid, such as in mathematical diagrams and some graphs.\ps-
matrix is described in Section35. pst-node.tex also contains high-level
macros for trees. These are described in PartVIII .

But don’t restrict yourself to these more obvious uses. For example:

I made the file symbol a
node. Now I can draw an
arrow so that you know
what I am talking about.

1 \rnode{A}{%
2 \parbox{4cm}{\raggedright
3 I made the file symbol a node. Now I can draw an
4 arrow so that you know what I am talking about.}}
5 \ncarc[nodesep=8pt]{->}{A}{file}

Nodes and Node Connections 58

30 Nodes

Nodes have a name. a boundary and a center.PS Warning: The name is for refering to the node when making
node connections and labels. You specify the name as an ar-
gument to the node commands. The name must contain only
letters and numbers, and must begin with a letter. Bad node
names can cause PostScript errors.

The center of a node is where node connections point to. The boundary
is for determining where to connect a node connection. The various nodes
differ in how they determine the center and boundary. They also differ in
what kind of visable object they create.

Here are the nodes:

\rnode [refpoint]{name }{stuff }

\rnode putsstuff in a box. The center of the node isrefpoint , which
you can specify the same way as for\rput .

\Rnode *[par]{name }{stuff }

\Rnode also makes a box, but the center is set differently. If you
align \rnode ’s by their baseline, differences in the height and depth
of the nodes can cause connecting lines to be not quite parallel, such
as in the following example:

sp Bit
1 \Large
2 \rnode{A}{sp} \hskip 2cm \rnode{B}{Bit}
3 \ncline{A}{B}

With \Rnode , the center is determined relative to the baseline:

sp Bit
1 \Large
2 \Rnode{A}{sp} \hskip 2cm \Rnode{B}{Bit}
3 \ncline{A}{B}

You can usually get by without fiddling with the center of the node,
but to modify it you set the

href= num Default: 0
vref= dim Default: .7ex

parameters. In the horizontal direction, the center is located fraction
href from the center to the edge. E.g, ifhref=-1 , the center is on
the left edge of the box. In the vertical direction, the center is located
distancevref from the baseline. Thevref parameter is evaluated each

Nodes and Node Connections: Nodes 59

time \Rnode is used, so that you can useex units to have the distance
adjust itself to the size of the current font (but without being sensitive
to differences in the size of letters within the current font).

\pnode (x ,y){name }

This creates a zero dimensional node at(x ,y).

\cnode *[par](x ,y){radius }{name }

This draws a circle. Here is an example with\pnode and\cnode :

1 \cnode(0,1){.25}{A}
2 \pnode(3,0){B}
3 \ncline{<-}{A}{B}

\Cnode *[par](x ,y){name }

This is like \cnode , but the radius is the value of

radius= dim Default: .25cm

This is convenient when you want many circle nodes of the same
radius.

\circlenode *[par]{name }{stuff }

This is a variant of\pscirclebox that gives the node the shape of the
circle.

\cnodeput *[par]{ angle} (x ,y){name }{stuff }

This is a variant of\cput that gives the node the shape of the circle.
That is, it is like

1 \rput{angle}(x ,y){\circlenode{name}{stuff }}

\ovalnode *[par]{name }{stuff }

This is a variant of\psovalbox that gives the node the shape of an
ellipse. Here is an example with\circlenode and\ovalnode :

Circle and Oval
1 \circlenode{A}{Circle} and \ovalnode{B}{Oval}
2 \ncbar[angle=90]{A}{B}

\dianode *[par]{name }{stuff }

This is like \diabox .

\trinode *[par]{name }{stuff }

This is like \tribox .

Nodes and Node Connections: Nodes 60

Diamond

Triangle

1 \rput[tl](0,3){\dianode{A}{Diamond}}
2 \rput[br](4,0){\trinode[trimode=L]{B}{Triangle}}
3 \nccurve[angleA=-135,angleB=90]{A}{B}

\dotnode *[par](x ,y){name }

This is a variant of\psdot . For example:

u

+

1 \dotnode[dotstyle=triangle*,dotscale=2 1](0,0){A}
2 \dotnode[dotstyle=+](3,2){B}
3 \ncline[nodesep=3pt]{A}{B}

\fnode *[par](x ,y){name }

The f stands for “frame”. This is like, but easier than, putting a\ps-
frame in an \rnode .

1 \fnode{A}
2 \fnode*[framesize=1 5pt](2,2){B}
3 \ncline[nodesep=3pt]{A}{B}

There are two differences between\fnode and\psframe :

• There is a single (optional) coordinate argument, that gives the
centerof the frame.

• The width and height of the frame are set by the

framesize= dim1 ‘dim2’ Default: 10pt

parameter. If you omitdim2, you get a square frame.

31 Node connections

All the node connection commands begin withnc, and they all have the
same syntax:17,18

1 \nodeconnection[par]{arrows}{nodeA}{nodeB}

17The node connections can be used with\pscustom . The beginning of the node con-
nection is attached to the current point by a straight line, as with\psarc .

18See page145if you want to use the nodes as coordinates in other PSTricks macros.

Nodes and Node Connections: Node connections 61

A line of some sort is drawn fromnodeA to nodeB. Some of the node con-
nection commands are a little confusing, but with a little experimentation
you will figure them out, and you will be amazed at the things you can do.
When we refer to theA andB nodes below, we are referring only to the
order in which the names are given as arguments to the node connection
macros.19

The node connections use many of the usual graphics parameters, plus a
few special ones. Let’s start with one that applies to all the node connec-
tions:

nodesep= dim Default: 0pt

nodesep is the border around the nodes that is added for the purpose of
determining where to connect the lines.

For this and other node connection parameters, you can set different values
for the two ends of the node connection. Set the parameternodesepA for
the first node, and setnodesepB for the second node.

The first two node connections draw a line or arc directly between the two
nodes:

\ncline *[par]{ arrows} {nodeA }{nodeB }

This draws a straight line between the nodes. For example:

Idea 1

Idea 2

1 \rput[bl](0,0){\rnode{A}{Idea 1}}
2 \rput[tr](4,3){\rnode{B}{Idea 2}}
3 \ncline[nodesep=3pt]{<->}{A}{B}

\ncarc *[par]{ arrows} {nodeA }{nodeB }

This connects the two nodes with an arc.

X

Y
1 \cnodeput(0,0){A}{X}
2 \cnodeput(3,2){B}{Y}
3 \psset{nodesep=3pt}
4 \ncarc{->}{A}{B}
5 \ncarc{->}{B}{A}

19When a node name cannot be found on the same page as the node connection command,
you get either no node connection or a nonsense node connection. However, TEX will not
report any errors.

Nodes and Node Connections: Node connections 62

The angle between the arc and the line between the two nodes is20

arcangle= angle Default: 8

\ncline and\ncarc both determine the angle at which the node connections
join by the relative position of the two nodes. With the next group of node
connections, you specify one or both of the angles in absolute terms, by
setting the

angle= angle Default: 0

(andangleA andangleB) parameter.

You also specify the length of the line segment where the node connection
joins at one or both of the ends (the “arms”) by setting the

arm=dim Default: 10pt

(andarmA andarmB) parameter.

These node connections all consist of several line segments, including the
arms. The value oflinearc is used for rounding the corners.

Here they are, starting with the simplest one:

\ncdiag *[par]{ arrows} {nodeA }{nodeB }

An arm is drawn at each node, joining at angleangleA or angleB ,
and with a length ofarmA or armB . Then the two arms are con-
nected by a straight line, so that the whole line has three line seg-
ments. For example:

Node A

Node B

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncdiag[angleA=-90, angleB=90, arm=.5, linearc=.2]{A}{B}

You can also set one or both of the arms to zero length. For example,
if you setarm=0 , the nodes are connected by a straight line, but you
get to determine where the line connects (whereas the connection
point is determined automatically by\ncline). Compare this use of
\ncdiag with \ncline in the following example:

20Rather than using a true arc,\ncarc actually draws a bezier curve. When connecting
two circular nodes using the default parameter values, the curve will be indistinguishable
from a true arc. However,\ncarc is more flexible than an arc, and works right connecting
nodes of different shapes and sizes. You can setarcangleA andarcangleB separately, and
you can control the curvature with thencurv parameter, which is described on page??.

Nodes and Node Connections: Node connections 63

Root

XX

YY

1 \rput[r](4,1){\ovalnode{R}{Root}}
2 \cnodeput(1,2){A}{XX}
3 \cnodeput(1,0){B}{YY}
4 \ncdiag[angleB=180, arm=0]{<-}{A}{R}
5 \ncline{<-}{B}{R}

(Note that in this example, the default valueangleA=0 is used.)

\ncdiagg *[par]{ arrows} {nodeA }{nodeB }

\ncdiagg is similar to\ncdiag , but only the arm for node A is drawn.
The end of this arm is then connected directly to node B. Compare
\ncdiagg with \ncdiag whenarmB=0 :

H

T

\ncdiagg

\ncdiag

1 \cnode(0,0){12pt}{a}
2 \rput[l](3,1){\rnode{b}{H}}
3 \rput[l](3,-1){\rnode{c}{T}}
4 \ncdiagg[angleA=180, armA=1.5, nodesepA=3pt]{b}{a}
5 \ncdiag[angleA=180, armA=1.5, armB=0, nodesepA=3pt]{c}{a}

You can use\ncdiagg with armA=0 if you want a straight line that
joins to node A at the angle you specify, and to node B at an angle
that is determined automatically.

\ncbar *[par]{ arrows} {nodeA }{nodeB }

This node connection consists of a line with arms dropping “down”,
at right angles, to meet two nodes at an angleangleA . Each arm is at
least of lengtharmA or armB , but one may be need to be longer.

Connect some words!
1 \rnode{A}{Connect} some \rnode{B}{words}!
2 \ncbar[nodesep=3pt,angle=-90]{<-**}{A}{B}
3 \ncbar[nodesep=3pt,angle=70]{A}{B}

Generally, the whole line has three straight segments.

\ncangle *[par]{ arrows} {nodeA }{nodeB }

Now we get to a more complicated node connection.\ncangle typ-
ically draws three line segments, like\ncdiag . However, rather than
fixing the length of arm A, we adjust arm A so that the line joining
the two arms meets arm A at a right angle. For example:

Node A

Node B

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangle[angleA=-90,angleB=90,armB=1cm]{A}{B}

Nodes and Node Connections: Node connections 64

Now watch what happens when we changeangleA :

Node A

angleA

Node B

} armB

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangle[angleA=-70,angleB=90,armB=1cm,linewidth=1.2pt]{A}{B}

\ncangle is also a good way to join nodes by a right angle, with just
two line segments, as in this example:

Node A

Node B

1 \rput[tl](0,2){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangle[angleB=90, armB=0, linearc=.5]{A}{B}

\ncangles *[par]{ arrows} {nodeA }{nodeB }

\ncangles is similar to \ncangle , but the length of arm A is fixed
by hearmA parameter. Arm A is connected to arm B by two line
segments that eet arm A and each other at right angles. The angle
at which they join arm B, and the length of the connecting segments,
depends on the positions of the two arms.\ncangles generally draws
a total of four line segments.21 For example:

Node A

Node B

1 \rput[tl](0,4){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangles[angleA=-90, armA=1cm, armB=.5cm, linearc=.15]{A}{B}

Let’s see what happens to the previous example when we change
angleB :

21Hence there is one more angle than\ncangle , and hence thes in \ncangles .

Nodes and Node Connections: Node connections 65

Node A

Node B

angleAarmA{

angleB
armB

1 \rput[tl](0,4){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](4,0){\ovalnode{B}{Node B}}
3 \ncangles[angleA=-90, angleB=135, armA=1cm, armB=.5cm,
4 linearc=.15]{A}{B}

\ncloop *[par]{ arrows} {nodeA }{nodeB }

\ncloop is also in the same family as\ncangle and\ncangles , but
now typically 5 line segments are drawn. Hence,\ncloop can reach
around to opposite sides of the nodes. The lengths of the arms are
fixed by armA andarmB . Starting at arm A,\ncloop makes a 90
degree turn to the left, drawing a segment of length

loopsize= dim Default: 1cm

This segment connects to arm B the way arm A connects to arm B
with \ncline ; that is, two more segments are drawn, which join the
first segment and each other at right angles, and then join arm B. For
example:

A looplo
op

si
ze

1 \rnode{a}{\psframebox{\Huge A loop}}
2 \ncloop[angleB=180,loopsize=1,arm=.5,linearc=.2]{->}{a}{a}

In this example, node A and node B are the same node! You can do
this with all the node connections (but it doesn’t always make sense).

Here is an example where\ncloop connects two different nodes:

Begin End

lo
op

si
ze

1 \parbox{3cm}{%
2 \rnode{A}{\psframebox{\large\textbf{Begin}}}
3 \vspace{1cm}\hspace*{\fill}
4 \rnode{B}{\psframebox{\large\textbf{End}}}
5 \ncloop[angleA=180,loopsize=.9,arm=.5,linearc=.2]{->}{A}{B}}

The next two node connections are a little different from the rest.

\nccurve *[par]{ arrows} {nodeA }{nodeB }

\nccurve draws a bezier curve between the nodes.

Node A

Node B

1 \rput[bl](0,0){\rnode{A}{\psframebox{Node A}}}
2 \rput[tr](4,3){\ovalnode{B}{Node B}}
3 \nccurve[angleB=180]{A}{B}

Nodes and Node Connections: Node connections 66

You specify the angle at which the curve joins the nodes by setting
theangle (andangleA andangleB) parameter. The distance to the
control points is set with the

ncurv= num Default: .67

(andncurvA andncurvB) parameter. A lower number gives a tighter
curve. (The distance between the beginning of the arc and the first
control point is one-halfncurvA times the distance between the two
endpoints.)

\nccircle *[par]{ arrows} {node }{ radius }

\nccircle draws a circle, or part of a circle, that, if complete, would
pass through the center of the node counterclockwise, at an angle of
angleA .

back

1 \rnode{A}{\textbf{back}}
2 \nccircle[nodesep=3pt]{->}{A}{.7cm}
3 \kern 5pt

\nccircle can only connect a node to itself; it is the only node con-
nection with this property.\nccircle is also special because it has an
additional argument, for specifying the radius of the circle.

The last two node connections are also special. Rather than connecting the
nodes with an open curve, they enclose the nodes in a box or curved box.
You can think of them as variants of\ncline and\ncarc . In both cases, the
half the width of the box is

boxsize= dim Default: .4cm

You have to set this yourself to the right size, so that the nodes fit inside the
box. Theboxsize parameter actually sets theboxheight andboxdepth
parameters. The ends of the boxes extend beyond the nodes bynodesepA
andnodesepB .

\ncbox *[par]{nodeA }{nodeB }

\ncbox encloses the nodes in a box with straight sides. For example:

Idea 1

Idea 2
1 \rput[bl](.5,0){\rnode{A}{Idea 1}}
2 \rput[tr](3.5,2){\rnode{B}{Idea 2}}
3 \ncbox[nodesep=.5cm,boxsize=.6,linearc=.2,
4 linestyle=dashed]{A}{B}

Nodes and Node Connections: Node connections 67

\ncarcbox *[par]{nodeA }{nodeB }

\ncarcbox encloses the nodes in a curved box that isarcangleA
away from the line connecting the two nodes.

1

2
1 \rput[bl](.5,0){\rnode{A}{1}}
2 \rput[tr](3.5,2){\rnode{B}{2}}
3 \ncarcbox[nodesep=.2cm,boxsize=.4,linearc=.4,
4 arcangle=50]{<->}{A}{B}

The arc is drawn counterclockwise from node A to node B.

There is one other node connection parameter that applies to all the node
connections, except\ncarcbox :

offset= dim Default: 0pt

(You can also setoffsetA andoffsetB independently.) This shifts the point
where the connection joins up bydim (given the convention that connec-
tions go from left to right).

There are two main uses for this parameter. First, it lets you make two
parallel lines with\ncline , as in the following example:

X

Y
1 \cnodeput(0,0){A}{X}
2 \cnodeput(3,2){B}{Y}
3 \psset{nodesep=3pt,offset=4pt,arrows=->}
4 \ncline{A}{B}
5 \ncline{B}{A}

Second, it lets you join a node connection to a rectangular node at a right
angle, without limiting yourself to positions that lie directly above, below,
or to either side of the center of the node. This is useful, for example, if
you are making several connections to the same node, as in the following
example:

Word1 and Word2 and Word3
1 \rnode{A}{Word1} and \rnode{B}{Word2} and \rnode{C}{Word3}
2 \ncbar[offsetB=4pt,angleA=-90,nodesep=3pt]{->}{A}{B}
3 \ncbar[offsetA=4pt,angleA=-90,nodesep=3pt]{->}{B}{C}

Sometimes you might be aligning several nodes, such as in a tree, and you
want to ends or the arms of the node connections to line up. This won’t
happen naturally if the nodes are of different size, as you can see in this
example:

Nodes and Node Connections: Node connections 68

H a

1 \Huge
2 \cnode(1,3){4pt}{a}
3 \rput[B](0,0){\Rnode{b}{H}}
4 \rput[B](2,0){\Rnode{c}{a}}
5 \psset{angleA=90,armA=1,nodesepA=3pt}
6 \ncdiagg{b}{a}
7 \ncdiagg{c}{a}

If you set thenodesep or arm parameter to a negative value, PSTricks
will measure the distance to the beginning of the node connection or to the
end of the arm relative to the center of the node, rather than relative to the
boundary of the node or the beginning of the arm. Here is how we fix the
previous example:

H a

1 \Huge
2 \cnode(1,3){4pt}{a}
3 \rput[B](0,0){\Rnode{b}{H}}
4 \rput[B](2,0){\Rnode{c}{a}}
5 \psset{angleA=90,armA=1,YnodesepA=12pt}
6 \ncdiagg{b}{a}
7 \ncdiagg{c}{a}

Note also the use of\Rnode .

One more parameter trick: By using theborder parameter, you can create
the impression that one node connection passes over another.

The node connection commands make interesting drawing tools as well, as
an alternative to\psline for connecting two points. There are variants of
the node connection commands for this purpose. Each begins withpc (for
“point connection”) rather thannc. E.g.,

1 \pcarc{<->}(3,4)(6,9)

gives the same result as

1 \pnode(3,4){A}
2 \pnode(6,9){B}
3 \pcarc{<->}{A}{B}

Only \nccircle does not have apc variant:

Nodes and Node Connections: Node connections 69

Command Corresponds to:

\pcline { arrows} (x1,y1)(x2 ,y2) \ncline

\pccurve { arrows} (x1,y1)(x2 ,y2) \nccurve

\pcarc { arrows} (x1,y1)(x2 ,y2) \ncarc

\pcbar { arrows} (x1,y1)(x2 ,y2) \ncbar

\pcdiag { arrows} (x1,y1)(x2 ,y2) \ncdiag

\pcdiagg { arrows} (x1,y1)(x2 ,y2) \ncdiagg

\pcangle { arrows} (x1,y1)(x2 ,y2) \ncangle

\pcangles { arrows} (x1,y1)(x2 ,y2) \ncangles

\pcloop { arrows} (x1,y1)(x2 ,y2) \ncloop

\pcbox(x1,y1)(x2 ,y2) \ncbox

\pcarcbox(x1,y1)(x2 ,y2) \ncarcbox

32 Node connections labels: I

Now we come to the commands for attaching labels to the node connec-
tions. The label command must come right after the node connection to
which the label is to be attached. You can attach more than one label to a
node connection, and a label can include more nodes.

The node label commands must end up on the same TEX page as the node
connection to which the label corresponds.

There are two groups of connection labels, which differ in how they select
the point on the node connection. In this section we describe the first group:

\ncput *[par]{stuff }
\naput *[par]{stuff }
\nbput *[par]{stuff }

These three command differ in where the labels end up with respect to the
line:

\ncput on the line

\naput abovethe line

\nbput belowthe line

(using the convention that node connections go from left to right).

Here is an example:

Nodes and Node Connections: Node connections labels: I 70

above

on

below

1 \cnode(0,0){.5cm}{root}
2 \cnode*(3,1.5){4pt}{A}
3 \cnode*(3,0){4pt}{B}
4 \cnode*(3,-1.5){4pt}{C}
5 \psset{nodesep=3pt}
6 \ncline{root}{A}
7 \naput{above}
8 \ncline{root}{B}
9 \ncput*{on}

10 \ncline{root}{C}
11 \nbput{below}

\naput and\nbput use the same algorithm as\uput for displacing the la-
bels, and the distance beteen the line and labels islabelsep (at least if the
lines are straight).

\ncput uses the same system as\rput for setting the reference point. You
change the reference point by setting the

ref= ref Default: c

parameter.

Rotation is also controlled by a graphics parameter:

nrot= rot Default: 0

rot can be in any of the forms suitable for\rput , and you can also use the
form

1 {:angle}

The angle is then measured with respect to the node connection. E.g., if the
angle is{:U}, then the label runs parallel to the node connection. Since the
label can include other put commands, you really have a lot of control over
the label position.

The next example illustrates the use{:<angle>}, theoffset parameter, and
\pcline :

Length 1 \pspolygon(0,0)(4,2)(4,0)
2 \pcline[offset=12pt]{|-|}(0,0)(4,2)
3 \ncput*[nrot=:U]{Length}

Here is a repeat of an earlier example, now using{:<angle>}:

Nodes and Node Connections: Node connections labels: I 71

above

on

below

1 \cnode(0,0){.5cm}{root}
2 \cnode*(3,1.5){4pt}{A}
3 \cnode*(3,0){4pt}{B}
4 \cnode*(3,-1.5){4pt}{C}
5 \psset{nodesep=3pt,nrot=:U}
6 \ncline{root}{A}
7 \naput{above}
8 \ncline{root}{B}
9 \ncput*{on}

10 \ncline{root}{C}
11 \nbput{below}

The position on the node connection is set by the

npos= num Default:

parameter, roughly according to the following scheme: Each node connec-
tion has potentially one or more segments, including the arms and con-
necting lines. A numbernpos between 0 and 1 picks a point on the first
segment from nodeA to B (fraction npos from the beginning to the end
of the segment), a number between 1 and 2 picks a number on the second
segment, and so on.

Each node connection has its own default value ofnpos . If you leave the
npos parameter value empty (e.g.,[npos=]), then the default is substituted.
This is the default mode.

Here are the details for each node connection:

Connection Segments Range Default

\ncline 1 0≤ pos≤ 1 0.5

\nccurve 1 0≤ pos≤ 1 0.5

\ncarc 1 0≤ pos≤ 1 0.5

\ncbar 3 0≤ pos≤ 3 1.5

\ncdiag 3 0≤ pos≤ 3 1.5

\ncdiagg 2 0≤ pos≤ 2 0.5

\ncangle 3 0≤ pos≤ 3 1.5

\ncangles 4 0≤ pos≤ 4 1.5

\ncloop 5 0≤ pos≤ 5 2.5

\nccircle 1 0≤ pos≤ 1 0.5

\ncbox 4 0≤ pos≤ 4 0.5

\ncarcbox 4 0≤ pos≤ 4 0.5

Here is an example:

Nodes and Node Connections: Node connections labels: I 72

Node A

Node B

d

pa
r

1 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
2 \rput[br](3.5,0){\ovalnode{B}{Node B}}
3 \ncangles[angleA=-90,arm=.4cm,linearc=.15]{A}{B}
4 \ncput*{d}
5 \nbput[nrot=:D,npos=2.5]{par}

With \ncbox and\ncarcbox , the segments run counterclockwise, starting
with the lower side of the box. Hence, with\nbput the label ends up outside
the box, and with\naput the label ends up inside the box.

1

2

set

II 1 \rput[bl](.5,0){\rnode{A}{1}}
2 \rput[tr](3.5,2){\rnode{B}{2}}
3 \ncarcbox[nodesep=.2cm,boxsize=.4,linearc=.4,
4 arcangle=50,linestyle=dashed]{<->}{A}{B}
5 \nbput[nrot=:U]{set}
6 \nbput[npos=2]{II}

If you set the parameter

shortput= none/nab/tablr/tab Default: none

to nab, then immediately following a node connection or another node con-
nection label you can usêinstead of\naput and_ instead of\nbput .

x

y

1 \cnode(0,0){.5cm}{root}
2 \cnode*(3,1.5){4pt}{A}
3 \cnode*(3,-1.5){4pt}{C}
4 \psset{nodesep=3pt,shortput=nab}
5 \ncline{root}{A}^{x}
6 \ncline{root}{C}_{y}

You can still have parameter changes with the short^ and_ forms. Another
example is given on page78.

If you have setshortput=nab , and then you want to use a true^ or _
character right after a node connection, you must precede the^ or _ by {}
so that PSTricks does not convert it to\naput or \nbput.

You can change the characters that you use for the short form with the

\MakeShortNab{ char1 }{char2 }

command.22

22You can also use\MakeShortNab if you want to usê and_ with non-standard cate-
gory codes. Just invoke the command after you have made your\catcode changes.

Nodes and Node Connections: Node connections labels: I 73

Theshortput=tablr andshortput=tab options are described on pages75
and??, respectively.

33 Node connection labels: II

Now the second group of node connections:

\tvput *[par]{stuff }
\tlput *[par]{stuff }
\trput *[par]{stuff }
\thput *[par]{stuff }
\taput *[par]{stuff }
\tbput *[par]{stuff }

The difference between these commands and the\n*put commands is that
these find the position as an intermediate point between the centers of the
nodes, either in the horizontal or vertical direction. These are good for
trees and mathematical diagrams, where it can sometimes be nice to have
the labels be horizontally or vertically aligned. Thet stands for “tree”.

You specify the position by setting the

tpos= num Default: .5

parameter.

\tvput , \tlput and\trput find the position that lies fractiontpos in thever-
tical direction from the upper node to the lower node.\thput , \taput and
\tbput find the position that lies fractiontpos in the horizontaldirection
from the left node to the right node. Then the commands put the label on
or next to the line, as follows:

Command Direction Placement

\tvput vertical middle

\tlput vertical left

\trput vertical right

\thput horizontal middle

\taput horizontal above

\tbput horizontal below

Here is an example:

1 \[
2 \setlength{\arraycolsep}{1.1cm}
3 \begin{array}{cc}
4 \Rnode{a}{(X-A)} & \Rnode{b}{A} \\[1.5cm]

Nodes and Node Connections: Node connection labels: II 74

5 \Rnode{c}{x} & \Rnode{d}{\tilde{X}}
6 \end{array}
7 \psset{nodesep=5pt,arrows=->}
8 \everypsbox{\scriptstyle}
9 \ncline{a}{c}\tlput{r}

10 \ncline{a}{b}\taput{u}
11 \ncline[linestyle=dashed]{c}{d}\tbput{b}
12 \ncline{b}{d}\trput{s}
13 \]

(X − A) A

x X̃

r

u

b

s

(X − A) a

x X̃

r

u

b

s

On the left is the diagram with\tlput , \trput \tbput and\Rnode , as shown
in the code. On the right is the same diagram, but with\naput \nbput and
\rnode .

These do not have a rotation argument or parameter. However, you can
rotatestuff in 90 degree increments using box rotations (e.g.,\rotateleft).

If you setshortput=tablr , then you can use the following single-character
abbreviations for thet put commands:

Char. Short for:

^ \taput

_ \tbput

< \tlput

> \trput

You can change the character abbreviations with

\MakeShortTablr{ char1 }{char2 }{char3 }{char4 }

The t put commands, including an example ofshortput=tablr , will be
shown further when we get to mathematical diagrams and trees.

Driver notes: The node macros use\pstVerb and\pstverbscale .

34 Attaching labels to nodes

The command

\nput *[par]{refangle }{name }{stuff }

Nodes and Node Connections: Attaching labels to nodes 75

affixes stuff to nodename. It is positioned distancelabelsep from the
node, in the directionrefangle from the center of the node. The algorithm
is the same as for\uput . If you want to rotate the node, set the

rot= rot Default: 0

parameter, whererot is a rotation that would be valid for\rput .23 The posi-
tion of the label also takes into account theoffsetA parameter. Iflabelsep
is negative, then the distance is from the center of the node rather than from
the boundary, as withnodesep .

Here is how I used\nput to mark an angle in a previous example:

Node B

Node A

angleA

1 \rput[br](4,0){\ovalnode{B}{Node B}}
2 \rput[tl](0,3){\rnode{A}{\psframebox{Node A}}}
3 \nput[labelsep=0]{-70}{A}{%
4 \psarcn(0,0){.4cm}{0}{-70}
5 \uput{.4cm}[-35](0,0){\texttt{angleA}}}
6 \ncangle[angleA=-70,angleB=90,armB=1cm,linewidth=1.2pt]{A}{B}
7 \ncput[nrot=:U,npos=1]{\psframe[dimen=middle](0,0)(.35,.35)}

35 Mathematical diagrams and graphs

For some applications, such as mathematical diagrams and graphs, it is
useful to arrange nodes on a grid. You can do this with alignment environ-
ments, such as TEX’s \halignprimitive, LATEX’s tabular environment, and
AMS-TEX’s \matrix, but PSTricks contains its own alignment environment
that is especially adapted for this purpose24

\psmatrix{} ... \endpsmatrix

Here is an example

A

B E C

D

1 $
2 \psmatrix[colsep=1cm,rowsep=1cm]
3 & A \\
4 B & E & C \\
5 & D &
6 \endpsmatrix
7 $

As an alignment environment,\psmatrix is similar to AMS-TEX’s \matrix.
There is no argument for specifying the columns. Instead, you can just use

23Not to be confused with thenput parameter.
24LATEX users can instead write:

\begin{psmatrix} stuff \end{psmatrix}

Nodes and Node Connections: Mathematical diagrams and graphs 76

as many columns as you need. The entries are horizontally centered. Rows
are ended by\\. \psmatrix can be used in or out of math mode.

Our first example wasn’t very interesting, because we didn’t make use of
the nodes. Actually, each entry is a node. The name of the node in row
row and columncol is {<row>,<col>}, with no spaces. Let’s see some node
connections:

X

Y Z

f g

h

1 $
2 \psmatrix[colsep=1cm]
3 & X \\
4 Y & Z
5 \endpsmatrix
6 \everypsbox{\scriptstyle}%
7 \psset{nodesep=3pt,arrows=->}
8 \ncline{1,2}{2,1}
9 \tlput{f}

10 \ncline{1,2}{2,2}
11 \trput{g}
12 \ncline[linestyle=dotted]{2,1}{2,2}
13 \tbput{h}
14 $

You can include the node connections inside the\psmatrix , in the last en-
try and right before\endpsmatrix . One advantage to doing this is that
shortput=tab is the default within a\psmatrix .

U

X ×Z Y X

Y Z

y

x

q

p

f

g

1 $
2 \begin{psmatrix}
3 U \\
4 & X\times_Z Y & X \\
5 & Y & Z
6 \psset{arrows=->,nodesep=3pt}
7 \everypsbox{\scriptstyle}
8 \ncline{1,1}{2,2}_{y}
9 \ncline[doubleline=true,linestyle=dashed]{-}{1,1}{2,3}^{x}

10 \ncline{2,2}{3,2}<{q}
11 \ncline{2,2}{2,3}_{p}
12 \ncline{2,3}{3,3}>{f}
13 \ncline{3,2}{3,3}_{g}
14 \end{psmatrix}
15 $

You can change the kind of nodes that are made by setting the

mnode= type Default: R

parameter. Valid types areR, r, C, f, p, circle, oval, dia, tri, dot and
none, standing for\Rnode , \rnode , \Cnode , \fnode , \pnode , \circlen-
ode , \ovalnode , \dotnode and no node, respectively. Note that for circles,
you usemnode=C and set the radius with theradius parameter.

Nodes and Node Connections: Mathematical diagrams and graphs 77

For example:

A

B E C

D

a

b

c
d

ef

g

1 \psmatrix[mnode=circle,colsep=1]
2 & A \\
3 B & E & C \\
4 & D &
5 \endpsmatrix
6 \psset{shortput=nab,arrows=->,labelsep=3pt}
7 \small
8 \ncline{2,2}{2,3}^[npos=.75]{a}
9 \ncline{2,2}{2,1}^{b}

10 \ncline{3,2}{2,1}^{c}
11 \ncarc[arcangle=-40,border=3pt]{3,2}{1,2}
12 _[npos=.3]{d}^[npos=.7]{e}
13 \ncarc[arcangle=12]{1,2}{2,1}^{f}
14 \ncarc[arcangle=12]{2,1}{1,2}^{g}

Note that a node is made only for the non-empty entries. You can also
specify a node for the empty entries by setting the

emnode= type Default: none

parameter.

You can change parameters for a single entry by starting this entry with
the parameter changes, enclosed in square brackets. Note that the changes
affect the way the node is made, but not contents of the entry (use\psset
for this purpose). For example:

X

Y Z

1 $
2 \psmatrix[colsep=1cm]
3 & [mnode=circle] X \\
4 Y & Z
5 \endpsmatrix
6 \psset{nodesep=3pt,arrows=->}
7 \ncline{1,2}{2,1}
8 \ncline{1,2}{2,2}
9 \ncline[linestyle=dotted]{2,1}{2,2}

10 $

If you want your entry to begin with a[that is not meant to indicate param-
eter changes, the precede it by{}.

You can assign your own name to a node by setting the

name=name Default:

parameter at the beginning of the entry, as described above. You can still
refer to the node by{<row>,<col>}, but here are a few reasons for giving
your own name to a node:

Nodes and Node Connections: Mathematical diagrams and graphs 78

• The name may be easier to keep track of;

• Unlike the {<row>,<col>} names, the names you give remain valid
even when you add extra rows or columns to your matrix.

• The names remain valid even when you start a new\psmatrix that
reuses the{<row>,<col>} names.

Here a few more things you should know:

• The baselines of the nodes pass through the centers of the nodes.
\psmatrix achieves this by setting the

nodealign= true/false Default: false

parameter totrue. You can also set this parameter outside of\psma-
trix when you want this kind of alignment.

• You can left or right-justify the nodes by setting the

mcol= l/r/c Default: c

parameter.l, r andc stand forleft, right andcenter, respectively.

• The space between rows and columns is set by the

rowsep= dim Default: 1.5cm
colsep= dim Default: 1.5cm

parameters.

• If you want all the nodes to have a fixed width, set

mnodesize= dim Default: -1pt

to a positive value.

• If \psmatrix is used in math mode, all the entries are set in math
mode, but you can switch a single entry out of math mode by starting
and ending the entry with$.

• The radius of thec mnode (corresponding to\cnode) is set by the
radius parameter.

• Like in LATEX, you can end a row with\\[<dim>] to insert an extra
spacedim between rows.

• The command\psrowhookii is executed, if defined, at the beginning
of every entry in rowii (row 2), and the command\pscolhookv is
executed at athe beginning of every entry in columnv (etc.). You
can use these hooks, for example, to change the spacing between two
columns, or to use a specialmnode for all the entries in a particular
row.

Nodes and Node Connections: Mathematical diagrams and graphs 79

• An entry can itself be a node. You might do this if you want an entry
to have two shapes.

• If you want an entry to stretch across several (int) columns, use the

\psspan{ int }

at the end of the entry. This is like PLAIN TEX’s \multispan , or
LATEX’s \multicolumn , but the template for the current column (the
first column that is spanned) is still used. If you want wipe out the
template as well, use\multispan{<int>} at the beginning of the entry
instead. If you just want to wipe out the template, use\omit before
the entry.

• \psmatrix can be nested, but then all node connections and other ref-
erences to the nodes in the{<row>,<col>} form for the nested matrix
must go insidethe \psmatrix . This is how PSTricks decides which
matrix you are referring to. It is still neatest to put all the node con-
nections towards the end; just be sure to put them before\endpsma-
trix . Be careful also not to refer to a node until it actually appears.
The whole matrix can itself go inside a node, and node connections
can be made as usual. This is not the same as connecting nodes from
two different\psmatrix ’s. To do this, you must give the nodes names
and refer to them by these names.

36 Complex examples

As this environment is very powerful and can be used for a lot of struc-
tured graphics (those ofgrid-like types), we give here two more complex
examples.

First, a complex mathematical commutative diagram (rewritten from [17]):

1 $
2 \psmatrix[rowsep=1,colsep=1]
3 % Nodes
4 % First line
5 & [name=SL] \Sigma^L &
6 & & & [name=SR] \Sigma^R\\[0cm]
7 % Second line
8 [name=L] L & & [name=Lr] L_r
9 & & [name=R] R\\[1.5cm]

10 % Third line
11 [name=Lm] L_m & & [name=Krm] K_{r,m}
12 & & [name=Rm] R_{m^*}\\
13 & [name=SG] \Sigma^G &
14 & & & [name=SH] \Sigma^H\\[0cm]
15 % Fourth line
16 [name=G] G & & [name=Gr] G_{r^*}

Nodes and Node Connections: Complex examples 80

17 & & [name=H] H
18 %
19 % Links
20 \everypsbox{\scriptstyle}
21 \psset{arrows=->,nodesep=2mm,border=3pt}%
22 \ncline{Lr}{R} ^{r}
23 \ncline{Krm}{Rm} ^{r}
24 \ncline{Gr}{H} _{r^*}
25 \ncline{Lr}{L} ^[tpos=0.3]{i_1}
26 \ncline{Krm}{Lm} ^[tpos=0.3]{i_3}
27 \ncline{Gr}{G} _{i_5}
28 \ncline{SL}{SR} ^{\varphi^r}
29 \ncline{SG}{SH} _{\varphi^{r^*}}
30 \ncline{SR}{SH} >{\varphi^{m^*}}
31 \ncline{SL}{SG} <{\varphi^m}
32 \ncline{Lm}{G} <{m}
33 \ncline{Krm}{Lr} >{i_4}
34 \ncline{Rm}{H} >[tpos=0.3]{m^*}
35 \ncline{Lm}{L} <{i_2}
36 \ncline{Krm}{Gr} >[tpos=0.3]{m}
37 \ncline{Rm}{R} >{i_6}
38 \ncline{L}{SL} <[tpos=0.3]{\lambda^L}
39 \ncline{R}{SR} >[tpos=0.6]{\lambda^R}
40 \ncline{G}{SG} <[tpos=0.3]{\lambda^G}
41 \ncline[linestyle=dashed]{H}{SH} >[tpos=0.6]{\lambda^H}
42 \endpsmatrix
43 $

ΣL ΣR

L Lr R

Lm Kr,m Rm∗

ΣG ΣH

G Gr∗ H

r

r

r∗

i1

i3

i5

ϕr

ϕr∗

ϕm∗
ϕm

m

i4

m∗

i2

m

i6

λL

λR

λG

λH

And second, a general connection diagram:

1 \newcommand{\PstComputingServer}{%
2 \psovalbox[fillstyle=solid,fillcolor=Orange]{%

Nodes and Node Connections: Complex examples 81

3 \shortstack{Computing\\Server}}}
4

5 \newcommand{\PstUnicoreClient}{%
6 \psframebox[fillstyle=solid,fillcolor=Pink]{%
7 \shortstack{Unicore\\Client}}}
8

9 \newcommand{\PstVisualizationServer}{%
10 \psovalbox[fillstyle=solid,fillcolor=LemonChiffon]{%
11 \shortstack{Visualization\\Server}}}
12

13 \newcommand{\PstCorbaNameServer}{%
14 \pscirclebox[fillstyle=solid,fillcolor=cyan,framesep=0.02]{%
15 \bfseries\shortstack{CORBA\\Name\\Server}}}
16

17 \newcommand{\PstComputingClient}{%
18 \psovalbox[fillstyle=solid,fillcolor=PaleGreen]{%
19 \shortstack{Computing\\Client}}}
20

21 \rput[l](-0.5,6){%
22 \footnotesize
23 \shortstack[l]{%
24 \psline[linewidth=0.05,linecolor=black](-0.6,0.1)(-0.1,0.1)
25 Program interactions\\
26 \psline[linestyle=dashed,linecolor=red](-0.6,0.08)(-0.1,0.08)
27 Name Server interactions}}
28 %
29 \begin{psmatrix}[colsep=-0.5,rowsep=-0.5]
30 & & [name=ComputingServer] \PstComputingServer\\[1cm]
31 [name=Unicore] \PstUnicoreClient\\
32 & & & \psframebox{%
33 \begin{psmatrix}[colsep=-0.7,rowsep=0]
34 & [name=Visualization]\PstVisualizationServer\\[5mm]
35 [name=CORBA] \PstCorbaNameServer
36 \end{psmatrix}}\\
37 & [name=ComputingClient] \PstComputingClient
38 \end{psmatrix}
39 %
40 \ncline[arrowscale=1.5,linewidth=0.05]{<->}
41 {ComputingServer}{ComputingClient}
42 \ncline[arrowscale=1.5,linewidth=0.05,offsetA=0.35,offsetB=0.5,
43 nodesepA=-0.35,nodesepB=0.2]{->}
44 {ComputingClient}{Visualization}
45 \psset{linestyle=dashed,linecolor=red,arrowscale=1.3,labelsep=0.06}%
46 \ncline[offsetA=0.08,nodesepA=0.07]{<->}{Unicore}{CORBA}
47 \naput[npos=0.6,nrot=:U]{\footnotesize status}
48 \nbput[npos=0.41,nrot=:U]{\footnotesize references \ \ cleaning}
49 \ncline[nodesepB=-0.2]{->}{ComputingServer}{CORBA}
50 \naput[npos=0.3,nrot=:U]{\footnotesize registration}
51 \ncline[nodesepB=-0.15]{->}{Visualization}{CORBA}
52 \naput{\footnotesize registration}
53 \ncline[offsetA=0.2,nodesepA=-0.05,nodesepB=-0.14]{<->}
54 {ComputingClient}{CORBA}

Nodes and Node Connections: Complex examples 82

55 \nbput[nrot=:U]{\footnotesize inquiry}

Program interactions
Name Server interactions

Computing
Server

Unicore
Client

Visualization
Server

CORBA
Name
Server

Computing
Client

status

references cleaning

registration

registration

inquiry

Nodes and Node Connections: Complex examples 83

1. Relative nodes with \psGetNodeCenter 31

Part II.

New commands

1. Relative nodes with \psGetNodeCenter

\psGetNodeCenter{node name}

This command makes sense only at the PostScript level. It defines the two variables
node.x and node.y which can be used to define relative nodes. The following example
defines the node MyNode and a second one relative to the first one, with 4 units left and
4 units up. node must be an existing node name.

0 1 2 3 4 5
0

1

2

3

4

5

b

b

1 \begin{pspicture}[showgrid=true,arrowscale=2](5,5)
2 \pnode(4.5,0.5){MyNode}
3 \psdot(MyNode)
4 \pnode(! \psGetNodeCenter{MyNode}
5 MyNode.x 4 sub MyNode.y 4 add){MySecondNode}
6 \psdot(MySecondNode)
7 \ncline[linecolor=red]{<->}{MyNode}{MySecondNode}
8 \end{pspicture}

0 1 2 3 4 5
0

1

2

3

4

5

NodeA

NodeB

1 \begin{pspicture}[showgrid=true](5,5)
2 \rput(1.5,0.5){\trinode{CN}{NodeA}}
3 \rput(3.5,2.5){\trinode{EN}{NodeB}}
4 \pnode(! \psGetNodeCenter{CN}
5 CN.x 2 add CN.y 1 add){MyCNode}
6 \ncline[linecolor=red]{<->}{MyCNode}{EN}
7 \ncline[linecolor=blue]{<->}{CN}{EN}
8 \end{pspicture}

2. \ncdiag and \pcdiag

With the new option lineAngle the lines drawn by the \ncdiag macro can now have a
specified gradient. Without this option one has to define the two arms (which maybe
zero) and PSTricks draws the connection between them. Now there is only a static armA,
the second one armB is calculated when an angle lineAngle is defined. This angle is the
gradient of the intermediate line between the two arms. The syntax of \ncdiag is

2. \ncdiag and \pcdiag 32

\ncdiag [Options] {node A}{node B}

\pcdiag [Options] [node A][node B]

name meaning

lineAngle angle of the intermediate line segment. Default is 0, which is the same
than using \ncdiag without the lineAngle option.

A C E

B

D

F

line
I
line

II
line

III

1 \begin{pspicture}(5,6)
2 \circlenode{A}{A}\quad\circlenode{C}{C}%
3 \quad\circlenode{E}{E}
4 \rput(0,4){\circlenode{B}{B}}
5 \rput(1,5){\circlenode{D}{D}}
6 \rput(2,6){\circlenode{F}{F}}
7 \psset{arrowscale=2,linearc=0.2,%
8 linecolor=red,armA=0.5, angleA=90,angleB=-90}
9 \ncdiag[lineAngle=20]{->}{A}{B}

10 \ncput*[nrot=:U]{line I}
11 \ncdiag[lineAngle=20]{->}{C}{D}
12 \ncput*[nrot=:U]{line II}
13 \ncdiag[lineAngle=20]{->}{E}{F}
14 \ncput*[nrot=:U]{line III}
15 \end{pspicture}

The \ncdiagmacro sets the armB dynamically to the calculated value. Any user setting
of armB is overwritten by the macro. The armA could be set to a zero length:

A

B
1 \begin{pspicture}(4,3)
2 \rput(0.5,0.5){\circlenode{A}{A}}
3 \rput(3.5,3){\circlenode{B}{B}}
4 {\psset{linecolor=red,arrows=<-,arrowscale=2}
5 \ncdiag[lineAngle=60,%
6 armA=0,angleA=0,angleB=180]{A}{B}
7 \ncdiag[lineAngle=60,%
8 armA=0,angleA=90,angleB=180]{A}{B}}
9 \end{pspicture}

A

B

1 \begin{pspicture}(4,3)
2 \rput(1,0.5){\circlenode{A}{A}}
3 \rput(4,3){\circlenode{B}{B}}
4 {\psset{linecolor=red,arrows=<-,arrowscale=2}
5 \ncdiag[lineAngle=60,
6 armA=0.5,angleA=0,angleB=180]{A}{B}
7 \ncdiag[lineAngle=60,
8 armA=0,angleA=70,angleB=180]{A}{B}
9 \ncdiag[lineAngle=60,

10 armA=0.5,angleA=180,angleB=180]{A}{B}}
11 \end{pspicture}

3. \ncdiagg and \pcdiagg 33

1 \begin{pspicture}(4,5.5)
2 \cnode*(0,0){2pt}{A} \cnode*(0.25,0){2pt}{C}
3 \cnode*(0.5,0){2pt}{E}\cnode*(0.75,0){2pt}{G}
4 \cnode*(2,4){2pt}{B} \cnode*(2.5,4.5){2pt}{D}
5 \cnode*(3,5){2pt}{F} \cnode*(3.5,5.5){2pt}{H}
6 {\psset{arrowscale=2,linearc=0.2,
7 linecolor=red,armA=0.5, angleA=90,angleB=-90}
8 \pcdiag[lineAngle=20]{->}(A)(B)
9 \pcdiag[lineAngle=20]{->}(C)(D)

10 \pcdiag[lineAngle=20]{->}(E)(F)
11 \pcdiag[lineAngle=20]{->}(G)(H)}
12 \end{pspicture}

3. \ncdiagg and \pcdiagg

This is nearly the same as \ncdiag except that armB=0 and the angleB value is computed
by the macro, so that the line ends at the node with an angle like a \pcdiagg line. The
syntax of \ncdiagg/\pcdiagg is

\ncdiag [Options] {node A}{node B}

\pcdiag [Options] [node A][node B]

A C E

B

D

F

li
n
e
I

li
n
e
II

li
n
e
II
I

1 \begin{pspicture}(4,6)
2 \psset{linecolor=black}
3 \circlenode{A}{A}\quad\circlenode{C}{C}\quad%
4 \circlenode{E}{E}
5 \rput(0,4){\circlenode{B}{B}}
6 \rput(1,5){\circlenode{D}{D}}
7 \rput(2,6){\circlenode{F}{F}}
8 {\psset{arrowscale=2,linearc=0.2,
9 linecolor=red,armA=0.5, angleA=90}

10 \ncdiagg[lineAngle=-160]{->}{A}{B}
11 \ncput*[nrot=:U]{line I}
12 \ncdiagg[lineAngle=-160]{->}{C}{D}
13 \ncput*[nrot=:U]{line II}
14 \ncdiagg[lineAngle=-160]{->}{E}{F}
15 \ncput*[nrot=:U]{line III}}
16 \end{pspicture}

4. \ncbarr 34

1 \begin{pspicture}(4,6)
2 \psset{linecolor=black}
3 \cnode*(0,0){2pt}{A} \cnode*(0.25,0){2pt}{C}
4 \cnode*(0.5,0){2pt}{E}\cnode*(0.75,0){2pt}{G}
5 \cnode*(2,4){2pt}{B} \cnode*(2.5,4.5){2pt}{D}
6 \cnode*(3,5){2pt}{F} \cnode*(3.5,5.5){2pt}{H}
7 {\psset{arrowscale=2,linearc=0.2,
8 linecolor=red,armA=0.5, angleA=90}
9 \pcdiagg[lineAngle=20]{->}(A)(B)

10 \pcdiagg[lineAngle=20]{->}(C)(D)
11 \pcdiagg[lineAngle=20]{->}(E)(F)
12 \pcdiagg[lineAngle=20]{->}(G)(H)}
13 \end{pspicture}

The only catch for \ncdiagg is that you need the right value for lineAngle. If the
node connection is on the wrong side of the second node, then choose the corresponding
angle, e. g.: if 20 is wrong then take −160, which differs by 180.

A

H

1 \begin{pspicture}(4,1.5)
2 \circlenode{a}{A}
3 \rput[l](3,1){\rnode{b}{H}}
4 \ncdiagg[lineAngle=60,angleA=180,armA=.5,nodesepA=3pt,

linecolor=blue]{b}{a}
5 \end{pspicture}

A

H

1 \begin{pspicture}(4,1.5)
2 \circlenode{a}{A}
3 \rput[l](3,1){\rnode{b}{H}}
4 \ncdiagg[lineAngle=60,armA=.5,nodesepB=3pt,linecolor=

blue]{a}{b}
5 \end{pspicture}

A

H

1 \begin{pspicture}(4,1.5)
2 \circlenode{a}{A}
3 \rput[l](3,1){\rnode{b}{H}}
4 \ncdiagg[lineAngle=-120,armA=.5,nodesepB=3pt,linecolor

=blue]{a}{b}
5 \end{pspicture}

4. \ncbarr

This has the same behaviour as \ncbar, but has 5 segments and all are horizontal ones.
This is the reason why angleA must be 0 or alternatively 180. All other values are set to
0 by the macro. The intermediate horizontal line is symmetrical to the distance of the
two nodes.

\ncbarr [Options] {node A}{node B}

X

Y

1 \psset{arrowscale=2}%
2 \circlenode{X}{X}\\[1cm]
3 \circlenode{Y}{Y}
4 \ncbarr[angleA=0,arrows=->,arrowscale=2]{X}{Y}

5. \psLNode and \psLCNode 35

Xxxxx

Yyyy

1 \psset{arrowscale=2}%
2 \ovalnode{X}{Xxxxx}\\[1cm]
3 \circlenode{Y}{Yyyy}
4 \ncbarr[angleA=180,arrows=->,arrowscale=2,linecolor=red]{X

}{Y}

Xxxxx

Yyyy

1 \psset{arrowscale=2}%
2 \ovalnode{X}{Xxxxx}\\[1cm]
3 \circlenode{Y}{Yyyy}
4 \ncbarr[angleA=20,arm=1cm,arrows=->,arrowscale=2]{X}{Y}

5. \psLNode and \psLCNode

\psLNode interpolates the Line AB by the given value and sets a node at this point. The
syntax is

\psLNode[P1][P2]{value}{node name}
\psLCNode[P1]{value 1}[P2]{value 2}{node name}

0 1 2 3 4 5
0

1

2

3

4

5
1 \begin{pspicture}(5,5)
2 \psgrid[subgriddiv=0,griddots=10]
3 \psset{linecolor=red}
4 \psline{o-o}(1,1)(5,5)
5 \psLNode(1,1)(5,5){0.75}{PI}
6 \qdisk(PI){4pt}
7 \psset{linecolor=blue}
8 \psline{o-o}(4,3)(2,5)
9 \psLNode(4,3)(2,5){-0.5}{PII}

10 \qdisk(PII){4pt}
11 \end{pspicture}

The \psLCNode macro builds the linear combination of the two given vectors and
stores the end of the new vector as a node. All vectors start at (0, 0), so a \rput maybe
appropriate. The syntax is

0 1 2 3 4 5
0

1

2

3

1 \begin{pspicture}[showgrid=true](5,3)
2 \psset{linecolor=black}
3 \psline[linestyle=dashed]{->}(3,1.5)
4 \psline[linestyle=dashed]{->}(0.375,1.5)
5 \psset{linecolor=red}
6 \psline{->}(2,1)\psline{->}(0.5,2)
7 \psLCNode(2,1){1.5}(0.5,2){0.75}{PI}
8 \psline[linewidth=2pt]{->}(PI)
9 \psset{linecolor=black}

10 \psline[linestyle=dashed](3,1.5)(PI)
11 \psline[linestyle=dashed](0.375,1.5)(PI)
12 \end{pspicture}

6. \nlput and \psLDNode 36

6. \nlput and \psLDNode

\ncput allows you to set a label relative to the first node of the last node connection.
With \nlput this can be done absolute to a given node. The syntax is different to the
other node connection macros. It uses internally the macro \psLDNode which places a
node absolute to two given points, starting from the first one.

\nlput [Options] [A][B]{distance}{text}

\psLDNode [Options] [A][B]{distance}{node name}

Tes
t

Test Tes
t
Test

1 \begin{pspicture}(5,2)
2 \pnode(0,0){A}
3 \pnode(5,2){B}
4 \ncline{A}{B}
5 \psLDNode(A)(B){1.5cm}{KN}\qdisk(KN){2pt}
6 \nlput[nrot=:U](A)(B){1cm}{Test}
7 \nlput[nrot=:D](A)(B){2cm}{Test}
8 \nlput[nrot=:U](A)(B){3cm}{Test}
9 \nlput(A)(B){4cm}{Test}

10 \end{pspicture}

7. Extensions

7.1. Quick overview

All macros in this section are connected in one way or other with the construction or
deployment of one or more nodes of type \pnode, which is to say in effect, named points.
For the remainder of this section, node always means \pnode. Nodes are one of the most
powerful features of pstricks—the “trickiest tricks” in the words of its originator. If used
without appropriate caution, they can produce PostScript errors that can be difficult
to track down. For example, suppose you have defined a node A by \pnode(1,1){A},
and then, a little later, you want to move the node a bit to the right, and you write
\pnode([nodesep=.5cm]A){A}. On processing the file you will see an error message
from ghostscript: stackunderflow in --exch--. The lesson is: you may not assign a
node name if a node by that name is involved explicitly in its definition. To reassign a
node name safely, you have to write instead something like

\pnode([nodesep=.5cm]A){Atemp}
\pnode(Atemp){A}

This problem afflicts a number of other node-forming macros based on a \pnode con-
struction, as most are.
Nodes are more complicated than they appear. Each node is stored not only with a

recipe for finding its coordinates, but also with the coordinate system in effect when it
was defined. Part of the retrieval process involves modifying the coordinates if neces-
sary so that they represent the same point on the page even if the coordinate system
has changed. This is important, but has some unexpected consequences. Normally, the
simplest way to translate an object is with \rput.

7.2. Node expressions 37

\pnode(1,1){P}% define P as (1,1)
\rput(2,3){\psdot{P}}% places dot at original P=(1,1)

is different from

\rput(2,3){\pnode(1,1){P}\psdot{P}}
% places dot at (1,1)+(2,3)

Effectively, \rput and \uput are not useful for translating previously defined nodes, but
they are useful for defining new nodes relative to fixed positions.
The new macros in this section are of several kinds: (i) utility macros, some used

internally by the package and some of general use; (ii) macros that manipulate one or
more nodes to produce other nodes; (iii) constructions intended to be used with nodes
and node sequences. By a node sequence is meant one or more nodes having a common
root name followed by an index—eg, P0 P1 P2 ... P5 is a node sequence with root name
P. It is easy to define such node sequences using the \multido macro, or using one of a
number of macros in this section.

7.2. Node expressions

A number of macros in the package (eg, \psxline) permit the use of node expressions,
by which is meant an expression like

.25(1,3)+.333(2;90)-1.2([nodesep=.5cm]Q)

which specifies a linear combination of points (the items enclosed in parentheses) spec-
ified in any manner acceptable to \SpecialCoor.
Node expressions are handled by \nodexn, which calls the macros \hasparen and

\parsenodexn to do the real work. If you write code that needs to be able to handle
node expressions, you use

\nodexn{expr}{nodename}

which returns a node <nodename> once <expr> has been fully parsed. It is safe to reuse
a node name, as in

\nodexn{(P)+.5(1,2)}{P}

The following macros amount to special cases of node expressions.

\AtoB(A)(B){C}

defines a node by name C essentially as B-A, as vectors. It is safe to use \AtoB(Q)(P){P}
and \AtoB(Q)(P){Q}.

\AplusB(A)(B){C}

defines node by name C essentially as A+B, as vectors. It is safe to use \AplusB(Q)(P){P}
and \AplusB(Q)(P){Q}.

7.3. The main macros 38

\midAB(A)(B){C}

defines node by name C essentially as (A+B)/2, as vectors. It is safe to use \midAB(Q)(P){P}
and \midAB(Q)(P){Q}.

0 1 2 3
0

1

2

3

P

Q

QP

R

1 \begin{pspicture}[showgrid=true](-.5,-.5)
(2.5,2.5)

2 \psset{arrows=->,arrowscale=1.5}
3 \pnode(2,1){P}\pnode(.5,1){Q}
4 \AtoB(Q)(P){QP}
5 \AplusB(Q)(P){R}
6 \psline(0,0)(P)\uput[-45](P){P}
7 \psline(0,0)(Q)\uput[135](Q){Q}
8 \psline(0,0)(QP)\uput[-70](QP){QP}
9 \psline(0,0)(R)\uput[160](R){R}

10 \psline[linestyle=dashed](Q)(P)
11 \psline[linestyle=dashed](Q)(R)
12 \psline[linestyle=dashed](P)(R)
13 \end{pspicture}

7.3. The main macros

\normalvec(coords){nodename}

For example,

\normalvec(P){P}\normalvec(2;30){Q}

first redefines the node P as a node whose vector interpretation is of the same length
as the original P, but rotated 90 degrees. The second instance has the same effect as
\pnode(2;120){Q}.

\curvepnode{tval}{expression in t}{nodename}

For example,
\curvepnode{1}{cos(t) | sin(t)}{P}

sets a node named P at (cos(1), sin(1)) and a node named Ptang which represents a
unit vector in the tangent direction to the curve at P. The expression in t in this case is
algebraic, which is detected automatically by the macro.

0 1 2 3
0

1

2

b P

1 \begin{pspicture}[showgrid=true](-.5,-.5)(2.5,2)
2 \def\exn{cos(t) | sin(t)}
3 \psparametricplot[algebraic]{0}{2}{\exn}
4 \curvepnode{1}{\exn}{P}
5 \psdot(P)\uput[45](P){P}
6 \end{pspicture}

7.3. The main macros 39

\psparnode{t}{expression in t}{<nodename>}

is called by the command \curvename if the expression is PostScript, not algebraic.

\algparnode{t}{expression in t}{nodename}

is called by the command \curvename if the expression is algebraic, not PostScript.

\curvepnodes{tmin}{tmax}{expr. in t}{nodeRoot}

Uses current setting of plotpoints (default 50) to define a node sequence of points along
the curve. Eg,

\curvepnodes[plotpoints=100]{0}{1}{t+t^2 | Ex(-t)}{P}

sets nodes P0 .. P99 at equally spaced t values along the curve, and assigns the
macro \Pnodecount to 99, the highest index. The expression in t may be either alge-
braic or PostScript, and is handled automatically. The values <tmin>, <tmax> may be
expressed using PostScript—eg, {Pi neg}{PiDiv2}.

0 1 2 3
0

1

2

3

b
P50

b
P99

1 \begin{pspicture}[showgrid=true](-.5,-.5)(2.5,3)
2 \def\exn{t+t^2 | 2*Ex(-t)}
3 \psset{plotpoints=100}
4 \psparametricplot[algebraic]{0}{1}{\exn}
5 \curvepnodes{0}{1}{\exn}{P}
6 \psdot(P50)\uput[75](P50){P50}
7 \psdot(P99)\uput[75](P99){P99}
8 \end{pspicture}

\fnpnode{xval}{expression in x}{nodename}

sets a single node on the graph. Eg,

\fnpnode{.5}{x x 1 add mul 2 div}{P}

declares the node P at the point x=0.5 on the graph. It has the same effect as

\pnode(!/x 0.5 def x x x 1 add mul 2 div}){P}

If your expression in t is algebraic, you must specify the keyword algebraic, as in
\fnpnode[algebraic]{0.5}{x*(x+1)/2}{P}.

0 1 2 3
0

1

2

3

b

Q

1 \begin{pspicture}[showgrid=true](-.5,-.5)(2.5,3)
2 \def\exn{x x 1 add mul 2 div}
3 \psplot{0}{2}{\exn}
4 \fnpnode{0.5}{\exn}{Q}
5 \psdot(Q)\uput[-45](Q){Q}
6 \end{pspicture}

7.3. The main macros 40

\fnpnodes{xmin}{xmax}{expression in x}{nodeRoot}

Is similar to \curvenodes, but for the graph of a function. The keyword algebraic must
be specified if your expression is indeed algebraic.

0 1 2 3
0

1

2

3

b

A4

1 \begin{pspicture}[showgrid=true](-.5,-.5)(2.5,3)
2 \def\exn{x x 1 add mul 2 div}
3 \psplot{0}{2}{\exn}
4 \fnpnodes[plotpoints=10]{0}{2}{\exn}{A}
5 \psdot(A4)\uput[-45](A4){A4}
6 \end{pspicture}

\shownode(P)

is a debugging tool, which displays in the console window the coordinates of node P.
This will not appear until the final stage of processing the PostScript file. You will get a
PostScript error if the node you specify is undefined.

\getnodelist{node root name}{next command}

is useful in writing pstricks macros, where there is a list of parenthesized coordinates to
be read and turned into a node sequence, following which <next command> is followed.

\pnodes{P}(1,2)(2;3). . .

is effectively \getnodelist{P}{}(1,2)(2;3)..., just a quick way to turn a list of coor-
dinates into a node sequence P0 P1 ...

\psnline [Options] {arrows}(coors){name}

for example, expects that there are nodes named P3..P8, and gives the same result as

\psline[linewidth=1pt]{->}(P3)(P4)(P5)(P6)(P7)(P8)

0 1 2 3
0

1

2
1 \begin{pspicture}[showgrid=true](-.5,-.5)(2.5,2)
2 \pnodes{P}(.1,.1)(1;10)(*2 {x^2/4})(0,1.4)
3 %defines P0..P3--now join them
4 \psnline[arrowscale=2]{-D>}(0,3){P}
5 \end{pspicture}

\psLCNodeVar(node A)(node B)(factorA,factorB){node name}

is similar to \psLCNode, and provides a means of forming a linear combination of two
nodes, thought of as vectors. Where

7.3. The main macros 41

\psLCNode(A){a}(B){b}{C}

effectively makes C=aA+bB,

\psLCNodeVar(A)(B)(a,b){C}

does the same, but the third argument (a,b) may be specified in any form acceptable to
\SpecialCoor. (With \psLCNode, each coefficient may be specified in PostScript code.)
One other difference is that \psLCNodeVar allows the reuse of a node name in place.
For example, it is possible to write

\psLCNodeVar(A)(B)(2,3){A}% symbol A reassigned

where the equivalent in \psLCNode will lead to a PostScript error. Since \AtoB and
\AplusB are defined using \psLCNodeVar, they also allow node name reuse: \AtoB(Q)(P){P}
is legal.

\psRelNodeVar(node A)(node B)(radius;angle){node name}

is similar to \psRelNode, and provides a means of scaling and rotating a line segment
AB about A. The effect of

\psRelNodeVar(A)(B)(2;30){C}

is the same as

\psRelNode[angle=30](A)(B){2}{C}

but the third argument (2;30) may be specified in any form acceptable to \SpecialCoor,
while specifying the angle argument in \psRelNode using PostScript is not possible.
Note that \psRelNodeVar(0,0)(A)(B){C} may be interpreted as defining C to be the
complex product of A and B.

0 1 2 3 4
0

1

2

3

P Q

R

1 \begin{pspicture}[showgrid=true](-.5,-.5)(3.5,3)
2 \pnode(0,.5){P}\pnode(1.5,.75){Q}
3 \psRelNodeVar(P)(Q)(2;20){R}
4 \psline(Q)(P)\uput[-45](P){P}
5 \uput[-70](Q){Q}
6 \psline(P)(R)\uput[-70](R){R}
7 \end{pspicture}

\psRelLineVar(node A)(node B)(radius;angle){node name}

stands to \psRelLine as \psRelNodeVar stands relative to \psRelNode.
\psRelLineVar(A)(B)(a;b){C} defines the node C, and, in addition, draws the line

segment AC.

\rhombus{edge length}(A){B}{C}{D}

computes the two remaining vertices C, D given two opposing vertices A, B of a rhombus
with specified edge length. It does not draw the rhombus, which could be handled easily
by \psline. Internally, \rhombus uses \psRelNodeVar.

7.3. The main macros 42

\psrline(P)(Q). . .

is like \psline, but drawing a line starting at (P), with successive increments (Q)... It
has the same options as\psline.

0 1 2 3 4
0

1

2

3

P

1 \begin{pspicture}[showgrid=true](-.5,-.5)(3.5,3)
2 \pnode(0,.5){P}\pnode(1,1){Q}
3 \psrline{->}(P)(Q)(2;20)
4 \uput[-45](P){P}
5 \end{pspicture}

\psxline(basept){nodexpr1}{nodexpr2}

The x here stands for expression. The idea is that one builds a line from <basept>+<nodexpr1>
to <basept>+<nodexpr2>.

0 1 2 3 4
0

1

2

3

4

P

1 \begin{pspicture}[showgrid=true](-.5,-.5)(3.5,4)
2 \def\pfn{t | t^2/4}
3 \psparametricplot[algebraic]{0}{3.5}{\pfn}
4 \curvepnode{2}{\pfn}{P}% sets P, Ptang
5 \normalvec(Ptang){Q}\uput[-45](P){P}
6 \psxline[linecolor=red]{<->}(P){-(Ptang)}{1.5(

Ptang)}
7 \psxline[linecolor=blue]{->}(P){}{.5(Q)}%can use

{} for {(0,0)}
8 \end{pspicture}

\polyIntersections{Name1}{Name2}(A)(B){P}. . .
\polyIntersections{Name1}{Name2}(A)(B){P}{n}

is the most complicated macro in the collection. It has two forms.

\polyIntersections{<Name1>}{<Name2>}(A)(B)(1,2)(3;30)(6,5)...

defines the polyline L=(1,2)(3;30)(6,5)..., and computes the two points of inter-
section closest to A in each direction with the directed line starting at A heading toward
B. The first intersection point in the positive direction is named <Name1>, and the first
intersection point in the opposite direction (from A) is named <Name2>. If one or other of
these intersections is empty, the nodes are set to remote points on the line AB. The effect
of the line joining the constructed nodes depends on the location of A and B relative to
L, with two cases worth noting.

• if L is closed and if A, B are interior to one of its components, the resulting line
extends across that component of L, and contains AB.

7.3. The main macros 43

• If L is simple and closed, one of A, B is inside and the other outside, the resulting
line segment will contain A but not B.

\polyIntersections{<Name1>}{<Name2>}(A)(B){P}{n}

has exactly the same effect as

\polyIntersections{<Name1>}{<Name2>}(A)(B)(P0)(P1)...(Pn)

assuming P0...Pn to be previously defined nodes.

0 1 2 3 4
0

1

2

3

b

b

A
B

N1

N2

1 \begin{pspicture}[showgrid=true](-.5,-.5)
(3.5,3)

2 \pnodes{P}(0,.5)(3,.5)(2.5,2)(.5,2.5)(0,.5)
3 \pnode(1,1.1){A}\pnode(2,1.5){B}
4 \polyIntersections{N1}{N2}(A)(B){P}{4}
5 \psnline(0,4){P}
6 \psdots(A)(B)\psline(N1)(N2)
7 \uput[-60](A){A}\uput[-60](B){B}
8 \uput[0](N1){N1}\uput[-180](N2){N2}
9 \end{pspicture}

0 1 2 3 4
0

1

2

3

b

b

A

BN1

N2

1 \begin{pspicture}[showgrid=true](-.5,-.5)
(3.5,3)

2 \pnodes{P}(0,.5)(3,.5)(2.5,2)(.5,2.5)(0,.5)
3 \pnode(1,1.1){A}\pnode(2,3){B}
4 \polyIntersections{N1}{N2}(A)(B){P}{4}
5 \psnline(0,4){P}
6 \psdots(A)(B)\psline(N1)(N2)
7 \uput[-60](A){A}\uput[-60](B){B}
8 \uput[90](N1){N1}\uput[-90](N2){N2}
9 \end{pspicture}

0 1 2 3 4
0

1

2

3

b b

A B
N1

N2

1 \begin{pspicture}[showgrid=true](-.5,-.5)
(3.5,3)

2 \def\fn{1.5+sin(t)+.4*sin(2*t)%
3 | 1+cos(t)+.2*cos(2*t)+.2*sin(4*t)}%
4 \pnode(1,1.1){A}\pnode(2,1.2){B}
5 \psset{plotpoints=100}
6 \psparametricplot[algebraic]{0}{6.283}{\fn}
7 \curvepnodes{0}{6.283}{\fn}{Z}
8 \polyIntersections{N1}{N2}(A)(B){Z}{99}
9 \psdots(A)(B)\psline(N1)(N2)

10 \uput[-60](A){A}\uput[-60](B){B}
11 \uput[0](N1){N1}\uput[220](N2){N2}
12 \end{pspicture}

7.3. The main macros 44

0 1 2 3 4
0

1

2

3

b

b

A

B

N1N2

1 \begin{pspicture}[showgrid=true](-.5,-.5)
(3.5,3)

2 \def\fn{1.5+sin(t)+.4*sin(2*t)%
3 | 1+cos(t)+.2*cos(2*t)+.2*sin(4*t)}%
4 \pnode(.8,.6){A}\pnode(2.5,-.5){B}
5 \psset{plotpoints=100}
6 \psparametricplot[algebraic]{0}{6.283}{\fn}
7 \curvepnodes{0}{6.283}{\fn}{Z}
8 \polyIntersections{N1}{N2}(A)(B){Z}{99}
9 \psdots(A)(B)\psline(N1)(N2)

10 \uput[90](A){A}\uput[-60](B){B}
11 \uput[70](N1){N1}\uput[180](N2){N2}
12 \end{pspicture}

0 1 2 3 4
0

1

2

3

b

b

A
B

N1

1 \begin{pspicture}[showgrid=true](-.5,-.5)
(3.5,3)

2 \pnodes{P}(0,.5)(3,.5)(2.5,2)(.5,2.5)(0,.5)
3 \pnode(1,1.1){A}\pnode(2,1.5){B}
4 \polyIntersections{N1}{N2}(A)(B){P}{3}
5 \psnline(0,3){P}
6 \psdots(A)(B)
7 \psclip{\psframe[linestyle=none](-.5,-.5)

(3.5,2.5)}
8 \psline(N1)(N2)\endpsclip
9 \uput[-60](A){A}\uput[-60](B){B}

10 \uput[0](N1){N1}\uput[-180](N2){N2}
11 \end{pspicture}

0 1 2 3 4
0

1

2

3

b
b

A
B

N1

N2

1 \begin{pspicture}[showgrid=true](-.5,-.5)
(3.5,3)

2 \def\fn{x+sin(2*x)}
3 \psplot[algebraic]{0}{3.14}{\fn}
4 \fnpnodes[algebraic]{0}{3.14}{\fn}{P}
5 \pnode(.6,.8){A}\pnode(1.5,1.1){B}
6 \polyIntersections{N1}{N2}(A)(B){P}{49}
7 \psdots(A)(B)
8 \uput[-90](A){A}\uput[-90](B){B}
9 \psline(N1)(N2)

10 \psset{linestyle=dashed}
11 \psline(N1)(N1 | 0,0)
12 \psline(N2)(N2 | 0,0)
13 \uput[70](N1){N1}\uput[170](N2){N2}
14 \end{pspicture}

\ArrowNotch{<NodeName>}{<nodeindex>}{<direction>}{<Notch>}

takes as inputs the root name of the node sequence, the index at which the arrow tip is
to be drawn, and the direction (one of >,<) of the arrow. It then constructs the notch

8. List of all optional arguments for pst-node 45

as a node with name <Notch>. The arrowhead may then be drawn with a command
like \psline{->}(N)(P3), assuming the tip was to be P3 and the notch was N. Keep in
mind that the macro takes its settings for linewidth, arrowscale, etc from the current
values, so it is generally preferable to include them in a \psset before drawing the curve
and calling \ArrowNotch. (Alternatively, they may be included as optional settings in
\ArrowNotch.) The first example below shows a case where the native arrow direction
is not good. The second shows how to make a version using \ArrowNotch. Notice that
the minimum and maximum parameter values in the second example had to be modified
to keep the curve from protruding near the end arrowheads.
\ArrowNotch is a computationally expensive macro (quadratic in plotpoints) de-

signed to improve the placement of arrows on curves in those cases (high curvature,
large values of linewidth, arrowscale, etc) where the native arrow direction is not opti-
mal. The macro depends on the construction of a node sequence, say P0..Pn, of samples
of the curve (eg, with \curvepnodes) from which it computes the position of the notch
of the arrow so that, when drawn, the arrow notch will be located on the curve in all
cases. It operates with only two particular arrow shapes—those arrows specified with
either -> or -D>, or their reverses.

1 \def\fn{1.5+1.5*cos(t) | 1+sin(t)}
2 \psset{linewidth=2pt,arrowscale=3}
3 \begin{pspicture}(0,0)(3.5,3)
4 \psparametricplot[algebraic,arrows=<->]{PiDiv2

neg}{Pi}{\fn}
5 \end{pspicture}

1 \def\fn{1.5+1.5*cos(t) | 1+sin(t)}
2 \psset{linewidth=2pt,arrowscale=3}
3 \begin{pspicture}(0,0)(3.5,3)
4 \curvepnodes{PiDiv2 neg}{Pi}\fn{P}%create P0..

P49
5 \ArrowNotch{P}{0}{<}{Q}
6 \ArrowNotch{P}{49}{>}{R}
7 \ArrowNotch[arrowscale=1.5]{P}{27}{>}{S}
8 \psparametricplot[algebraic]{-1.47}{2.95}{\fn}
9 \psline{->}(Q)(P0)

10 \psline{->}(R)(P49)
11 \psline[arrowscale=1.5]{->}(S)(P27)
12 \end{pspicture}

8. List of all optional arguments for pst-node

Key Type Default

trueAngle boolean true
nodealign boolean [none]

Continued on next page

8. List of all optional arguments for pst-node 46

Continued from previous page

Key Type Default

href ordinary [none]
vref ordinary [none]
framesize ordinary [none]
nodesepA ordinary 0pt
nodesepB ordinary 0pt
nodesep ordinary 0pt
armA ordinary 10pt
armB ordinary 10pt
arm ordinary 10pt
XarmA ordinary
XarmB ordinary
Xarm ordinary [none]
YarmA ordinary
YarmB ordinary
Yarm ordinary
offsetA ordinary 0pt
offsetB ordinary 0pt
offset ordinary 0pt
angleA ordinary 0
angleB ordinary 0
angle ordinary 0pt
arcangleA ordinary 8
arcangleB ordinary 8
arcangle ordinary 8
ncurvA ordinary 0.67
ncurvB ordinary 0.67
ncurv ordinary 0.67
pcRef boolean true
lineAngle ordinary 0
loopsize ordinary [none]
boxheight ordinary 0.4cm
boxdepth ordinary 0.4cm
boxsize ordinary 0.4cm
nrot ordinary 0
npos ordinary
tpos ordinary 0.5
shortput ordinary none
colsep ordinary 1.5cm
rowsep ordinary 1.5cm
name ordinary \relax
mcol ordinary c
mnodesize ordinary -1pt
mnode ordinary R

Continued on next page

References 47

Continued from previous page

Key Type Default

emnode ordinary none

References

[1] Denis Girou. Présentation de PSTricks. Cahier GUTenberg, 16:21–70, April 1994.

[2] Michel Goosens, Frank Mittelbach, Sebastian Rahtz, Dennis Roegel, and Herbert
Voß. The LATEX Graphics Companion. Addison-Wesley Publishing Company, Boston,
Mass., second edition, 2007.

[3] Nikolai G. Kollock. PostScript richtig eingesetzt: vom Konzept zum praktischen
Einsatz. IWT, Vaterstetten, 1989.

[4] Herbert Voß. PSTricks – Grafik für TEX und LATEX. DANTE – Lehmanns, Heidel-
berg/Hamburg, fifth edition, 2008.

[5] Timothy Van Zandt. multido.tex - a loop macro, that supports fixed-point addition.
CTAN:/macros/generic/multido.tex, 1997.

[6] Timothy Van Zandt and Denis Girou. Inside PSTricks. TUGboat, 15:239–246,
September 1994.

Index

A
algebraic, 40
\algparnode, 39
angleA, 34
angleB, 33
\AplusB, 37, 41
armA, 31, 32
armB, 31–33
\ArrowNotch, 44, 45
\AtoB, 37, 41

C
\curvename, 39
\curvenodes, 40
\curvepnode, 38
\curvepnodes, 39, 45

F
\fnpnode, 39
\fnpnodes, 40

G
\getnodelist, 40

H
\hasparen, 37

K
Keyword
– algebraic, 40
– angleA, 34
– angleB, 33
– armA, 31, 32
– armB, 31–33
– lineAngle, 31, 32, 34

L
lineAngle, 31, 32, 34

M
Macro
– \algparnode, 39
– \AplusB, 37, 41
– \ArrowNotch, 44, 45
– \AtoB, 37, 41

– \curvename, 39
– \curvenodes, 40
– \curvepnode, 38
– \curvepnodes, 39, 45
– \fnpnode, 39
– \fnpnodes, 40
– \getnodelist, 40
– \hasparen, 37
– \midAB, 38
– \multido, 37
– \ncbar, 34
– \ncbarr, 34
– \ncdiag, 31–33
– \ncdiagg, 33, 34
– \ncput, 36
– \nlput, 36
– \nodexn, 37
– \normalvec, 38
– \parsenodexn, 37
– \pcdiag, 32, 33
– \pcdiagg, 33
– \pnode, 36, 38
– \Pnodecount, 39
– \pnodes, 40
– \polyIntersections, 42
– \psGetNodeCenter, 31
– \psLCNode, 35, 40, 41
– \psLCNodeVar, 40, 41
– \psLDNode, 36
– \psline, 41, 42, 45
– \psLNode, 35
– \psnline, 40
– \psparnode, 39
– \psRelLine, 41
– \psRelLineVar, 41
– \psRelNode, 41
– \psRelNodeVar, 41
– \psrline, 42
– \psset, 45
– \psxline, 37, 42
– \rhombus, 41
– \rput, 35–37

48

Index 49

– \shownode, 40
– \SpecialCoor, 37, 41
– \uput, 37
\midAB, 38
\multido, 37

N
\ncbar, 34
\ncbarr, 34
\ncdiag, 31–33
\ncdiagg, 33, 34
\ncput, 36
\nlput, 36
\nodexn, 37
\normalvec, 38

P
Package
– pst-node, 2
– pstricks-add, 2
\parsenodexn, 37
\pcdiag, 32, 33
\pcdiagg, 33
\pnode, 36, 38
\Pnodecount, 39
\pnodes, 40
\polyIntersections, 42
PostScript
– stackunderflow, 36
\psGetNodeCenter, 31
\psLCNode, 35, 40, 41
\psLCNodeVar, 40, 41
\psLDNode, 36
\psline, 41, 42, 45
\psLNode, 35
\psnline, 40
\psparnode, 39
\psRelLine, 41
\psRelLineVar, 41
\psRelNode, 41
\psRelNodeVar, 41
\psrline, 42
\psset, 45
pst-node, 2
pstricks-add, 2
\psxline, 37, 42

R
\rhombus, 41
\rput, 35–37

S
\shownode, 40
\SpecialCoor, 37, 41
stackunderflow, 36

U
\uput, 37

