PST-marble Commands

http://people.csail.mit.edu/jaffer/Marbling/pst-marble-commands.pdf

Colors

RGB colors can be specified in three formats:
$\left[\begin{array}{llll}0.906 & 0.8 & 0.608\end{array}\right]$
Red, green, and blue color components between 0 and 1 in square brackets.
$\left[\begin{array}{lll}231 & 204 & 155\end{array}\right]$
Red, green, and blue color components between 0 and 255 in square brackets.

(e7cc9b)

Red, green, and blue (RrGgBb) hexadecimal color components between 00 and FF (or ff) in parentheses.
In the command arguments [rgb ...] indicates a bracketed sequence of colors. For example:
[(c28847) [231 204 155] [0.635 0.008 0.094]]

Dropping Paint

$x y R_{d} r g b$ drop
Places a drop of color rgb and radius R_{d} centered at location x, y.
x y $R_{i}\left[\begin{array}{rl}r g b & . . .\end{array}\right] n$ concentric-rings
Places n rings in color sequence [rgb \quad...] centered at location x, y, each ring having thickness R_{i}.
$x y \theta\left[\begin{array}{lll}R & . .\end{array}\right][r g b \quad ..] \quad R_{d}$ line-drops
Places drops of colors [rgb ...] (in sequence) of radius R_{d} in a line through x, y at θ degrees clockwise from vertical at distances [R...] from x, y.
$x y \operatorname{R} \theta S \delta\left[\begin{array}{ll}\mathrm{rgb} & \ldots]\end{array}\right] R_{d}$ coil-drops
Places n drops of colors [rgb \quad...] (in sequence) of radius R_{d} in an arc or spiral centered at x, y starting at radius R and θ degrees clockwise from vertical, moving S along the arc and incrementing the arc radius by δ after each drop.
$x y R \theta \epsilon[r g b \quad \ldots] n R_{d}$ Gaussian-drops
Places n drops of colors [rgb ...] of radius R_{d} randomly in a circular or elliptical disk centered at x, y having mean radius R, θ degrees clockwise from vertical, and length-to-width ratio ϵ. For a circular disk, 63% of drops are within radius $R, 87 \%$ of drops are within $R \sqrt{2}$, and 98% of drops are within radius $2 R$.
$x y L_{x} L_{y} \theta\left[\begin{array}{ll}r g b & \ldots\end{array}\right] n R_{d}$ uniform-drops
Places n drops of colors $\left[\begin{array}{rl}\mathrm{rgb} & \ldots\end{array}\right]$ of radius R_{d} randomly in a L_{x} by L_{y} rectangle centered at location x, y and rotated by θ degrees clockwise from vertical.

Deformations

θ [R ...] V S D rake

Pulls tines of diameter D at θ degrees from the y-axis through the virtual tank at velocity V, moving fluid on the tine path a distance S. The tine paths are spaced [$R \ldots$...] from the tank center at their nearest points.

$$
x_{b} y_{b} x_{e} y_{e} V D \text { stylus }
$$

Pulls a single tine of diameter D from x_{b}, y_{b} to x_{e}, y_{e} at velocity V. Legacy stroke also works.
$x y[R \ldots] \omega \theta D$ stir
Pulls tines of diameter D in circular tracks of radii [$R \ldots$] (negative R is counterclockwise) around location x, y at angular velocity ω. The maximum angle through which fluid is moved is θ degrees.
$x y \Gamma t$ vortex
Rotates fluid clockwise around location x, y as would result from an impulse of circulation Γ after time t. At small t the rotational shear is concentrated close to the center. As time passes the shear propagates outward.
$\theta \lambda \Omega S$ wiggle
Applies sinsusoidal wiggle with period λ and maximum displacement S to whole tank. With $\theta=0$, a point at x, y is moved to $x+S \sin (360 y / \lambda+\Omega), y$.
θR shift
Shifts tank by R at θ degrees clockwise from vertical.
[$n S \Omega$ tines]
The tines command and its arguments are replaced by a sequence of n numbers. The difference between adjacent numbers is S and the center number is Ω when n is odd and $S / 2-\Omega$ when n is even.

