PST-marble Commands

http://people.csail.mit.edu/jaffer/Marbling/pst-marble-commands.pdf

Colors

RGB colors can be specified in three formats:

[0.906 0.8 0.608]

Red, green, and blue color components between 0 and 1 in square brackets.

[231 204 155]

Red, green, and blue color components between 0 and 255 in square brackets.

(e7cc9b)

Red, green, and blue (RrGgBb) hexadecimal color components between 00 and FF (or ff) in parentheses.

In the command arguments [rgb ...] indicates a bracketed sequence of colors. For example:

[(c28847) [231 204 155] [0.635 0.008 0.094]]

Dropping Paint

 $x \; y \; R_d \; {{ {f r}g} {f b}} \;$ drop

Places a drop of color rgb and radius R_d centered at location x, y.

 $x \ y \ R_i \ [rgb \ ...] \ n \ concentric-rings$

Places n rings in color sequence [rgb ...] centered at location x, y, each ring having thickness R_i .

 $x \ y \ \theta \ [R \dots] \ [rgb \ \dots] \ R_d$ line-drops

Places drops of colors [rgb ...] (in sequence) of radius R_d in a line through x, y at θ degrees clockwise from vertical at distances [R ...] from x, y.

 $x \ y \ R \ \theta \ S \ \delta \ [rgb \ ...] \ n \ R_d \ coil-drops$

Places n drops of colors [rgb ...] (in sequence) of radius R_d in an arc or spiral centered at x, y starting at radius R and θ degrees clockwise from vertical, moving S along the arc and incrementing the arc radius by δ after each drop.

 $x \; y \; R \; heta \; \epsilon \; [rgb \; ...] \; n \; R_d$ Gaussian-drops

Places *n* drops of colors [rgb ...] of radius R_d randomly in a circular or elliptical disk centered at x, y having mean radius R, θ degrees clockwise from vertical, and length-to-width ratio ϵ . For a circular disk, 63% of drops are within radius R, 87% of drops are within $R\sqrt{2}$, and 98% of drops are within radius 2 R.

 $x \ y \ L_x \ L_y \ \theta \ [rgb \ ...] \ n \ R_d$ uniform-drops

Places n drops of colors [rgb ...] of radius R_d randomly in a L_x by L_y rectangle centered at location x, y and rotated by θ degrees clockwise from vertical.

Deformations

θ [R ...] V S D rake

Pulls times of diameter D at θ degrees from the y-axis through the virtual tank at velocity V, moving fluid on the time path a distance S. The time paths are spaced $[R \dots]$ from the tank center at their nearest points.

 $x_b \ y_b \ x_e \ y_e \ V \ D$ stylus

Pulls a single time of diameter D from x_b, y_b to x_e, y_e at velocity V. Legacy stroke also works.

 $x y [R \dots] \omega \theta D$ stir

Pulls times of diameter D in circular tracks of radii $[R \dots]$ (negative R is counterclockwise) around location x, y at angular velocity ω . The maximum angle through which fluid is moved is θ degrees.

$x \ y \ \Gamma \ t$ vortex

Rotates fluid clockwise around location x, y as would result from an impulse of circulation Γ after time t. At small t the rotational shear is concentrated close to the center. As time passes the shear propagates outward.

$\theta \; \lambda \; \Omega \; S$ wiggle

Applies sinsusoidal wiggle with period λ and maximum displacement S to whole tank. With $\theta = 0$, a point at x, y is moved to $x + S \sin(360 y/\lambda + \Omega), y$.

$\theta \; R$ shift

Shifts tank by R at θ degrees clockwise from vertical.

[$n \ S \ \Omega$ tines]

The tines command and its arguments are replaced by a sequence of n numbers. The difference between adjacent numbers is S and the center number is Ω when n is odd and $S/2 - \Omega$ when n is even.