
Cubic B-splines Using PSTricks

Michael Sharpe

msharpe@ucsd.edu

A cubic, uniform B-spline curve with control points B0 . . . Bn (n ≥ 2) is
a curve parametrized by the interval [0, n], which is, except in degenerate
cases, C2-continuous (that is, has continuous curvature) and is on each in-
terval [k − 1, k] (0 < k ≤ n an integer) given by a cubic Bézier curve whose
control points are derived from the (Bk). These curves are discussed in any
reasonably modern text on Numerical Analysis. One easily accessible source
is the UCLA lecture notes of Kirby Baker:

http://www.math.ucla.edu/~baker/149.1.02w/handouts/dd_splines.pdf

I’ll focus on two special cases: (i) relaxed, uniform B-splines; (ii) periodic,
uniform B-splines. ‘Uniform’ refers to the condition mentioned in the first
paragraph: each Bézier sub-curve is parametrized by an interval of length 1.
‘Relaxed’ means that the curvature vanishes at the endpoints t = 0, t = n.
‘Periodic’ means in effect that the Bi repeat periodically, and the curve
generated is a closed curve.

1 Quick summary of the macros

\psbspline(1,1)(3,0)(5,2)(4,5) draws the relaxed, uniform B-spline inter-
polating the specified points.

\psBspline(1,1)(3,0)(5,2)(4,5) draws the relaxed, uniform B-spline with
specified control points.

\psBspline{B}(1,1)(3,0)(5,2)(4,5) draws the relaxed, uniform B-spline
with specified control points, using B as basename for the constructed
points.

\psBsplineE(1,1)(3,0)(5,2)(4,5) is the same as \psBspline(1,1)(3,0)(5,2)(4,5)
except that it omits the first and last segments.

\psBsplineC(1,1)(3,0)(5,2)(4,5) extends the specified points periodically,
drawing a closed curve with the specified points as control points.

\psBsplineNodes{B}{4} draws the relaxed, uniform B-spline with control
points B0..B4.

1

http://www.math.ucla.edu/~baker/149.1.02w/handouts/dd_splines.pdf

\psBsplineNodesE{B}{4} is the same as \psBsplineNodes{B}{4} except
that it omits the first and last segments.

\psBsplineNodesC{B}{4} extends the node sequence periodically, drawing
a closed curve with them as control points.

\beztobsp(1,2)(-3,-4)(5,6)(-7,-8){B} creates nodes B0..B3 for which the
curve \psBsplineNodesE{B}{3} is identical to the Bézier curve deter-
mined by the specified points. (It does not draw the curve.)

\bspcurvepoints{B}{5}{P} creates PostScript arrays to describe a sequence
of points along the curve that would be the result of the command
\psBsplineNodes{B}{5}, naming those arrays P.X, P.Y (for position),
PNormal.X, PNormal.Y, PDelta.X and PDelta.Y. (Nothing is drawn.)

\bspcurvepointsE{B}{5}{P} does the same as \bspcurvepoints, but omits
the first and last segments. (Nothing is drawn.)

\bspNode{P}{5}{1.3}{Q} requires that you first run \bspcurvepoints[E] to
create PostScript arrays with basename P. It then sets a node Q at
position t = 1.3 on the curve. (Nothing is drawn.)

\bspFnNode{P}{5}{2.3}{Q} requires that you first run \bspcurvepoints[E]

to create PostScript arrays with basename P. It then sets a node Q

at position x = 1.3 on the curve. (Nothing is drawn.) The result is
meaningful only for a B-spline curve that is the graph of a function of
x and where x0 < x1 < · · · .

\psBsplineInterp{S}{4} will construct a sequence SB0..SB4 for which the
associated B-spline curve interpolates S0..S4. (Nothing is drawn—you
have to then issue the command \psBsplineNodes{SB}{4}.)

\psBsplineInterpC{S}{4} will construct a sequence SB0..SB5 for which the
associated closed B-spline curve interpolates S0..S4. (Nothing is drawn—
you have to then issue the command \psBsplineNodesC{SB}{5}.)

\thickBspline{B}{5}{12pt}{<graphic to clip>} defines a clipping path 12pt
wide around the B-spline curve with control points B0..B5, then draws
the <graphic> clipped to that path.

\bspcurvenodes{P}{Q} creates a node sequence Q0 Q1,... from the position
data in the arrays P.X, P.Y.

Details and examples are provided below.

2

2 Relaxed, Open B-spline

The algorithm to generate such a curve from a sequence of control points
B0, · · · , Bn is as follows:

• The curve starts at B0 and ends at Bn. (Important: n ≥ 2.)

• Divide each line segment Bk−1Bk into equal thirds, with subdivision
points labeled Rk−1, Lk respectively, so that Bk has Lk as its imme-
diate neighbor to the left, and Rk as its immediate neighbor to the
right.

• For 0 < k < n, divide the line segment LkRk in half, letting Sk denote
the midpoint. In effect, for 0 < k < n, Sk = (Bk−1 + 4Bk + Bk+1)/6.

• Let S0 = B0 and Sn = Bn.

• For 0 < k ≤ n, construct the cubic Bézier curve with control points
Sk−1, Rk−1, Lk, Sk, parametrized by k − 1 ≤ t ≤ k.

The pst­Bspline package implements this algorithm as \psBspline, whose
simplest form is, for example

\psBspline(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

The coordinates are the B-spline control points. Aside from the usual key-
words, like linestyle, linecolor and arrows, there is a Boolean keyword
showframe. The effect of showframe=true is to show the intermediate points
and lines in the algorithm described above.

There is another optional argument that can be applied if you wish to be able
to refer to any of the points constructed in the algorithm. By example,

\psBspline{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

sets the root of the naming scheme to B, the effect of which is that the B-
spline control points will be nodes of type \pnode with names B0, B1 and
so on, the other points being similarly named BL0, BL1, ... , BR0, BR1, ... ,
BS0, BS1, For example, to draw a line between BL1 and BS4, just use
\ncline(BL1)(BS4).

The algorithm depends for the most part on the flexibility of nodes, and
above all the \multido macro, which allows one to construct with relative
ease items that look and feel like arrays. Use of \SpecialCoor is essen-
tial.

3

There is a closely related macro \psBsplineE which removes the first and last
Bézier segments, much as \psecurve acts in relation to \pscurve, allowing
one to draw B-splines with non-zero curvature at the endpoints.

\documentclass{article}

\usepackage{pstricks}

\usepackage{multido,pst­node,pst­bspline}

\pagestyle{empty}

\begin{document}

\SpecialCoor % essential for pst­bspline package

\psset{unit=.6in}

\begin{pspicture}[showgrid=true](­.5,­.5)(6,5)

\psBspline[showframe=true]{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

\multido{\i=0+1}{5}{\uput[20](B\i){B\i}}

\uput[90](B5){B5}\uput[90](BS1){S1}\uput[90](BS2){S2}

\uput[180](BS3){S3}\uput[270](BS4){S4}\uput[­45](BR1){R1}

\uput[­45](BL2){L2}

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

B0

B1

B2

B3

B4

B5

S1

S2

S3

S4

R1

L2

4

\documentclass{article}

\usepackage{pstricks}

\usepackage{multido,pst­node,pst­bspline}

\pagestyle{empty}

\begin{document}

\SpecialCoor % essential for pst­bspline package

\psset{unit=.6in}

\begin{pspicture}[showgrid=true](­.5,­.5)(6,5)

\psBsplineE[showframe=true]{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

\multido{\i=0+1}{5}{\uput[20](B\i){B\i}}

\uput[90](B5){B5}

\uput[90](BS1){S1}

\uput[90](BS2){S2}

\uput[180](BS3){S3}

\uput[270](BS4){S4}

\uput[­45](BR1){R1}

\uput[­45](BL2){L2}

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

B0

B1

B2

B3

B4

B5

S1

S2

S3

S4

R1

L2

5

2.1 Bézier curves as B-spline curves

Consider a Bézier curve C with control points S1, C1, C2, S2. To identify
C as a B-spline curve of the type discussed above, consider the problem of
finding the B-spline control points B0, B1, B2, B3 for which \psBsplineE

yields C. This is a simple problem in linear algebra whose solution is:

B0=6S1­7C1+2C2

B1=2C1­C2

B2=­C1+2C2

B3=6S2+2C1­7C2

In other words, any cubic Bézier curve may be considered to be the output
of \psBsplineE for the Bi described above. In this way, all macros described
for B-spline curves may be applied to an arbitrary Bézier curve as a special
case. The macro

\beztobsp(S1)(C1)(C2)(S2){B}

results in defining B0,. . . ,B3 exactly as above.

3 Periodic B-spline

The result here is a closed curve. The algorithm is essentially the same as
in the preceding case, except:

• Extend Bi periodically with period n + 1, so that Bn+1 = B0 and
Bn+2 = B1.

• Construct Ri, Li for 0 < i < n + 2, as above.

• Construct Sk as above (midpoint of LkRk), for 0 < k < n + 2.

• Set S0 = Sn+1.

• For 0 < k ≤ n+1, construct the cubic Bézier curve with control points
Sk−1, Rk−1, Lk, Sk, parametrized by k − 1 ≤ t ≤ k.

The macro in this case is \psBsplineC, where the C stands for Closed.
The code, being implemented as a \pscustom object, does not accept the
doubleline keyword, but does accept, for example,

fillstyle=solid,fillcolor=gray

6

\documentclass{article}

\usepackage{pstricks}

\usepackage{multido,pst­node,pst­bspline}

\pagestyle{empty}

\begin{document}

\SpecialCoor % essential for pst­bspline package

\psset{unit=.6in}

\begin{pspicture}[showgrid=true](­.5,­.5)(6,5)

\psBsplineC[showframe=true]{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

\multido{\i=0+1}{5}{\uput[20](B\i){B\i}}

\uput[90](B5){B5}\uput[90](BS1){S1}

\uput[90](BS2){S2}\uput[180](BS3){S3}

\uput[270](BS4){S4}\uput[­45](BR1){R1}

\uput[­45](BL2){L2}

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

b

b

B0

B1

B2

B3

B4

B5

S1

S2

S3

S4

R1

L2

7

4 Related constructions

There are in addition three additional macros that draw similar curves, but
organized in a slightly different way. They are particularly useful when there
is a sequence of points already defined as \pnodes. Here is a simple way to
define such a sequence.

4.1 The pnodes macro

The line

\pnodes{P}(2,1.5)(3,4)(5,1)

defines a sequence of \pnodes with the node root P: P0=(2,1.5), P1=(3,4)
and P0=(5,1). The sequence may be any (reasonable) length. The macro
leaves an entry in the console saying that it has defined nodes P0 .. P2.
The three new macros are:

\psBsplineNodes{<node root>}{<top index>}

\psBsplineNodesC{<node root>}{<top index>}

\psBsplineNodesE{<node root>}{<top index>}

corresponding to the macros \psBspline, \psBsplineC and \psBsplineE.
The difference is that the macros with Nodes in the name have as arguments
the root node name and the last index, rather than the list of points. For
example, with the above definition of P in force, \psBsplineNodes{P}{2} has
exactly the same effect as \psBspline(2,1.5)(3,4)(5,1).

4.2 The \bspcurvepoints macros

There are two macros that provide for B-spline curves essentially the same
functionality as the \pscurvepoints macro from pstricks­add. (That macro
takes as input a parametric curve and constructs as output (at the PostScript
level) arrays of data associated with the curve: the positions of points along
the curve, the increment from the previous point and a normal vector to the
curve. The principal uses for such data are (i) the \pspolylineticks macro
from pstricks­add, which allows placement of ticks and other marks along a
curve that has been approximated by a polyline; (ii) the \polyIntersections
macro from pst-node, which allows you to find the points of intersection

8

of the curve (approximated by a polyline) and an arbitrary line.) The
macros

\bspcurvepoints{<source name>}{<source max index>}{<dest. name>}

\bspcurvepointsE{<source name>}{<source max index>}{<dest. name>}

work, in the first case, for a relaxed, uniform B-spline curve, and in the
second, for such a curve with its initial and final segments removed, corre-
sponding to the output from \psBsplineE rather than \psBspline. In both
cases, you may set the keyword plotpoints (default value: 50) to change
the number of sample points on each Bézier component. This will result
in the construction of PostScript arrays with indices from 0 to n =num of
segments×(plotpoints-1). After running

\pnodes{B}(1,2)(3,­1)(4,1)(6,2)% define B0..B3

\bspcurvepoints[plotpoint=11]{B}{3}{P}

the following PostScript arrays are created, each indexed from 0 to 30:

P.X, P.Y (position)

PNormal.X, PNormal.Y (normal vector)

PDelta.X, PDelta.Y (increment from previous position)

and these may be used in the usual way to create nodes. For example,

\pnode(! P.X 8 get P.Y 8 get){Q}

\pnode(! PNormal.X 8 get PNormal.Y get){Dir}

\psrline(Q)(1cm;{(Dir)})

places Q at the position on the curve with index 8, defines Dir to be a normal
vector at that point, then draws a line from Q of length 1cm in the direction
of that normal.

4.3 Setting nodes on a B-spline curve

To set a node at parameter value t on a B-spline curve after running \bspcurvepoints[E],
call the macro

\bspNode{<control point root>}{<top index>}{<t>}{<node name>}

For example, if I have constructed a B-spline curve using control points
B0,. . . ,B5, then \bspNode{B}{5}{2.1}{Q} defines a node named Q at t =
2.1.

9

The macro \bspcurvenodes{P}{R} creates a node sequence R0..Rn at the
locations specified by the arrays P.X, P.Y. (Those arrays must first have
been created with one of the \bspcurvepoints macros.)

4.4 B-spline function curves

By this we mean an open B-spline curve which is the graph of a function
y = f(x) and whose orientation is toward the right. It is not analytically
simple to specify a formula for f in most cases, and to compute y from
x involves (a) finding the index of the Bézier segment containing x; (b)
solving the cubic x(t) = x for t; (c) substituting in y(t). The package
provides a macro to perform these calculations after generating the data
using \bspcurvepoints[E]:

\bspfnNode{<control point root>}{<top index>}{<x0>}{<node name>}

5 B-spline Interpolation

This is the inverse problem. Being given points (Sk)0≤k≤n, the goal is to
produce the B-spline control points Bk leading to the points Sk, so that the
associated B-spline curve interpolates the Sk.

5.1 Open curve

We discuss first the case of an open, uniform B-spline curve with relaxed
endpoints. According to the discussion above, we have to solve the equa-
tions

B0 = S0

B0 + 4B1 + B2 = 6S1

B1 + 4B2 + B3 = 6S2

· · ·

Bn−2 + 4Bn−1 + Bn = 6Sn−1

Bn = Sn

10

for the Bk. In matrix form, this becomes the tridiagonal system















4 1
1 4 1

1 4 1
· · · 1

1 4





























B1

B2

B3

· · ·

Bn−1















=















6S1 − S0

6S2

6S3

· · ·

6Sn−1 − Sn















The LU decomposition of the tridiagonal matrix may be seen to take the
form















1
m1 1

m2 1
· · ·

mn−2 1





























m−1
1 1

m−1
2 1

m−1
3 1

· · · 1

m−1
n−1















where m1 = 1/4, mk+1 = 1/(4 − mk) for k = 1, · · · , n − 2. The solution
of the original system is therefore accomplished in two steps, introducing
intermediate points (Rk), by (in pseudo-code)

R_1=6*S_1­S_0

for i=2 to n­2

R_i=6*S_i­m_{i­1}* R_{i­1}

R_{n­1}=(6*S_{n­1}­S_n)­m_{n­2}*R_{n­2}

B_{n­1}=m_{n­1}*R_{n­1}

for i=n­2 downto 1

B_i=m_i*(R_i­B_{i+1})

The code for the \psBsplineInterp command uses this algorithm to solve
for the Bk as nodes, except that in order to save node memory, the B nodes
are substituted in place for the R nodes, so that, for example, the first step
becomes B_1=6*S_1­S_0.

Assuming you have previously defined nodes S0 · · · S4,

\psBsplineInterp{S}{4}

will construct a sequence SB0 · · · SB4 of nodes at the B-spline control points
for the relaxed, uniform cubic B-spline interpolating the Sk, and this curve
may then be rendered with the command

\psBsplineNodes{SB}{4}

11

If you don’t care about keeping track of the internal operations and names
for nodes, you may generate the curve directly with, for example,

\psbspline(0,0)(.5,.1)(1.5,.6)(2.5,1.4)(3.5,1.8)(4.5,1.7)%

(5.8,1.0)(7.5,.25)(10,0)

5.2 Closed (periodic) case

We turn now to the periodic uniform B-spline curve interpolating n points
S0,...,Sn−1. Extend the sequence periodically with period n, so that Sn = S0,
Sn+1 = S1, S−1 = Sn−1, and so on. In order to find the periodic control
points Bk, we have to solve the n equations

Bn + 4B1 + B2 = 6S1

B1 + 4B2 + B3 = 6S2

· · ·

Bn−2 + 4Bn−1 + Bn = 6Sn−1

Bn−1 + 4Bn + B1 = 6Sn

for the Bk, 1 ≤ k ≤ n. In matrix form, this becomes the system















4 1 1
1 4 1

1 4 1
· · · 1

1 1 4





























B1

B2

B3

· · ·

Bn















=















6S1

6S2

6S3

· · ·

6Sn















Let (xk, yk) = 6Sk. We perform Gaussian elimination on the matrix















4 1 1 x1 y1

1 4 1 x2 y2

1 4 1 x3 y3

· · · 1
1 1 4 xn yn















As in the previous case, let m1 = 0.25, mk = 1/(4 − mk−1) for k ≥ 2. The
factor mk will be the multiplier of row k after the previous row operation,
in order to normalize the row. These are the steps in the procedure.

• Initialize: multiply row 1 by m1 so that its first entry (1,1) is 1. Replace
x1 by m1x1 and y1 by m1y1. Entry (1, n) is m1.

12

• Subtract new row 1 from row 2 and multiply the resulting row by m2.
The leading entry (2,1) becomes 1. Entry (2, n) becomes −m1m2, and
x2, y2 are updated to m2(x2 − x1), m2(y2 − y1). The superdiagonal
entry (2,3) is the only other non-zero entry, and its new value is m2.

• Subtract new row 1 from row n, so that its leading entry (n, 2) is −m1.

• Subtract new row 2 from row 3 and multiply the result by m3. The
leading entry (3,3) becomes 1 and the entry (3, n) becomes m1m2,
with x3, y3 updating to m3(x3 − x2), m3(y3 − y2). The superdiagonal
entry (3,4) is now m3.

• Subtract new row 2 times −m1 from row n, whose leading entry (n, 3)
is now m1m2.

• Continue in this way until row n−2 has been subtracted as above from
row n − 1, multiplying the result by mn−1, and a suitable multiple has
been subtracted from row n. The leading entry of row n − 1 (column
n−1) is 1 and its nth entry is 1−(−1)nm1 · · · mn−2. Row n has leading
entry in column n − 1, equal to 1.

• Finally, subtract an appropriate multiple of row n − 1 from row n so
that row n has leading entry in column n. The resulting matrix is
upper triangular, and we may now substitute back starting from the
last row to give a complete reduction.

Here are the steps in pseudocode. We keep track of row n with the array
bk, column n with the array ck. The indices for both run from 1 to n.

m(1)=0.25

for k=2 to n­1

m(k)=1/(4­m(k­1))

b(1)=1

b(n­1)=1

b(n)=4

c(n­1)=1% don’t need c(n), =b(n)

%multiply first row by m1

c(1)=m(1)

x(1)=m(1)*x(1)

y(1)=m(1)*y(1)

for k=2 to n­1

%subtract normalized row k­1 from row k, renormalize row k

c(k)=m(k)*(c(k)­c(k­1))%note that initially, c(k)=0 for 1<k<n­1

13

x(k)=m(k)*(x(k)­x(k­1))

y(k)=m(k)*(y(k)­y(k­1))

%subtract normalized row k­1 times b(k­1) from row n

b(k)=b(k)­b(k­1)*m(k­1)

b(n)=b(n)­c(k­1)*b(k­1)

x(n)=x(n)­x(k­1)*b(k­1)

y(n)=y(n)­y(k­1)*b(k­1)

% subtract row n­1 times b(n­1) from row n, renormalize by 1/b(n)

b(n)=b(n)­b(n­1)*c(n­1)

x(n)=(x(n)­x(n­1)*b(n­1))/b(n)

y(n)=(y(n)­y(n­1)*b(n­1))/b(n)

%work back

x(n­1)=x(n­1)­c(n­1)*x(n)

y(n­1)=y(n­1)­c(n­1)*y(n)

for k=n­2 downto 1

x(k)=x(k)­m(k)* x(k+1)­c(k)*x(n)

y(k)=y(k)­m(k)* y(k+1)­c(k)*y(n)

This algorithm is implemented in TEX/PostScript code in pst­bspline.tex

and may be invoked using the macro

\psBsplineInterpC{<node root>}{<index>}

You must previously have defined a sequence, say S0 · · · S100 of \pnodes
that you plan to interpolate with a closed curve. If you used \pnodes to do
this, it would have constructed a macro \Snodecount to store the value 100.
Then

\psBsplineInterpC{S}{100}

constructs the sequence SB0 · · · SB100 of B-spline control points (appending B

to the root name) for a closed curve interpolating S0 · · · S100, which may
then be rendered with the command

\psBsplineNodesC{SB}{101}

with any keywords options you wish.

IMPORTANT: The macro \psBsplineInterpC modifies the node sequence
S, setting S101=S0, and changing \Snodecount to take the value 101. This is
convenient when you use the construction:

\pnodes{S}()()()()% sets \Snodecount to 3

\psBsplineInterpC{S}{\Snodecount}% constructs B­spline control pts SB0..SB4

14

\psBsplineNodesC{SB}{\Snodecount}

The following example illustrates that there is a difference between \psccurve

and B-spline interpolation, the former having a rounder appearance. Gener-
ally speaking, B-spline interpolation comes closer to minimizing the average
curvature.

\documentclass{article}

\usepackage{pstricks}

\usepackage{pst­bspline,pstricks­add}

\begin{document}

\begin{pspicture}[showgrid=true](­.5,­.5)(6,5)

\pnodes{P}(0,1)(2,0)(5,2)(6,4)(4,5)(2,4)%

\psBsplineInterpC{P}{5}%

\psBsplineNodesC*[linecolor=gray!40]{PB}{5}%

\psccurve[linecolor=red,showpoints=true](0,1)(2,0)(5,2)(6,4)(4,5)(2,4)

\end{pspicture}

\end{document}

Slight difference between psccurve and B-spline interpolation

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

b

b

A B-spline curve can in many cases provide a good function interpolation
mechanism, but the result is not guaranteed to be the graph of a func-
tion.

\begin{pspicture}(­.5,­.5)(6,4)

\psdots(0,3.5)(1,.5)(3,2.5)(4,0)(5,2)(6,.5)%

\pnodes{S}(0,3.5)(1,.5)(3,2.5)(4,0)(5,2)(6,.5)% S0..S5

15

\psBsplineInterp{S}{5}%SB0..SB5

\psBsplineNodes{SB}{5}% draw B­spline with control pts SB0..SB5

\bspcurvepoints[plotpoints=10]{SB}{5}{P}

% construct the PS arrays

\bspFnNode{SB}{5}{4.5}{QQ}% node QQ on curve at x=4.5

\psdot[linecolor=red](QQ)%

\psaxes(0,0)(­.5,­.5)(6,4)

\end{pspicture}

b

b

b

b

b

b

b1

2

3

4

1 2 3 4 5 6

\documentclass{article}

\usepackage{pstricks}

\usepackage{pst­bspline,pstricks­add}

\begin{document}

\psset{unit=.25in}

\begin{pspicture}[showgrid=true](­.5,­.5)(6,5)

\pnodes{P}(0,1)(2,0)(5,2)(6,4)(4,5)(2,4)

\pnode(3,3){C}

\multido{\ra=0+.05,\rb=1+.05,\i=30+1}{40}{%

\psBsplineC*[linecolor=blue!\i!brown]{B}%

([nodesep=\ra]{C}P0)([nodesep=\ra]{C}P1)%

([nodesep=\ra]{C}P2)([nodesep=\ra]{C}P3)%

([nodesep=\ra]{C}P4)([nodesep=\ra]{C}P5)}

\end{pspicture}

\end{document}

16

0 1 2 3 4 5 6
0

1

2

3

4

5

6 Thick B-spline curves

Inspired by the package pst­thick, we provide a similar option for curves
generated as B-spline interpolations. The new macro that accomplishes this
is

\thickBspline#1#2#3#4

%#1=root | #2=nsegments | #3=thickness | #4=items to clip

which expects the following data.

• A node sequence. This can be constructed with a command like

\pnodes{S}(0,0)(5,1)(4,4)(1,3)%

which declares nodes S0..S3, and sets the macro \Snodecount to 3.

• An interpolation command, such as

\psBsplineInterp{S}{\Snodecount}%

which creates a framework of B-spline control points SB0..SB3.

• Create the interpolating curve and the Bézier control points for its
components, with names like SBR0..SBR2,SBL1..SBL3 etc, using

\psBsplineNodes[linestyle=none]{SB}{\Snodecount}%

(The [linestyle=none] may be omitted if you want the curve to show.)

• Create a clipping path of specified thickness around the interpolating
curve and place graphics to be clipped:

\thickBspline[plotpoints=50,linestyle=none]{S}{3}{20pt}%

{\psline[linecolor=red,linestyle=solid](0,0)(6,6)}%

17

(The [linestyle=none] controls whether the clipping path is rendered,
and plotpoints controls the number of subdivisions of each Bézier
component. Its default value is 50.)

The clipping path is drawn by default positively oriented so that objects are
clipped to its interior. By specifying the keyword reverseclip, the clipping
path will be reversed so that objects are clipped to the exterior.

\documentclass{article}

\usepackage{pstricks}

\usepackage{pst­bspline,pstricks­add}

\begin{document}

\begin{pspicture}[showgrid=true](­.5,­.5)(6,5)

\pnodes{S}(1,0)(5,1)(4,4)(1,3)%

\psdots(1,0)(5,1)(4,4)(1,3)%

\psBsplineInterp{S}{\Snodecount}%

\psBsplineNodes[linestyle=none]{SB}{\Snodecount}%

\thickBspline[plotpoints=50,linestyle=none]{S}{3}{20pt}%

{\psframe[fillstyle=crosshatch](­1,­1)(6,6)}%

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

The \thickBspline macro works as expected in the closed (periodic) case,
taking advantage of automatic incrementing of the nodecount. Note that
\thickBspline interprets thickness as visual, unaffected by possible differ-
ences between xunit and yunit.

\documentclass{article}

18

\usepackage{pstricks}

\usepackage{pst­bspline,pstricks­add}

\begin{document}

\psset{yunit=1.5cm}

\begin{pspicture}[showgrid=true](­.5,­.5)(6,5)

\pnodes{S}(1.5,0)(5,1)(4,4)(1,3)%

\psBsplineInterpC{S}{3}%

% defines nodes SB0, SB1, SB2, SB3, SB4 ­­­ the Bspline control points

% increments \Snodecount by 1 for future macros

% Don’t use C form of \psBsplineNodes with this new \Snodecount

\psBsplineNodes[linestyle=none,showpoints=false]{SB}{\Snodecount}%

% Constructs the Bezier control points SBR0, SBL1, SBR1, etc

\thickBspline[linestyle=none]{S}{\Snodecount}{22pt}%

{\psframe[fillstyle=vlines](­1,­1)(6,6)}%

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

19

	Quick summary of the macros
	Relaxed, Open B-spline
	Bézier curves as B-spline curves

	Periodic B-spline
	Related constructions
	The pnodes macro
	The `bspcurvepoints macros
	Setting nodes on a B-spline curve
	B-spline function curves

	B-spline Interpolation
	Open curve
	Closed (periodic) case

	Thick B-spline curves

