
TUGboat, Volume 22 (2001), No. 4 319

Three dimensional plots with pst-3dplot

Herbert Voß

Abstract

The well-knownpstricks package [7] offers excellent
macros for creating more or less complex graphics which
could be inserted into the document without having it
exported toEPS or PDF. pstricks itself is the base
for several other additional packages, which are typically
namedpst-xxxx , such aspst-3dplot .

There exist several packages for plotting three di-
mensional graphical objects.pst-3dplot handles three
dimensional objects, mathematical functions, and data
files similarly topst-plot in two dimensions.

1 Introduction

The pstricks packages are available as usual from
any possibleCTAN server. The base parts are lo-
cated atCTAN:graphics/pstricks/generic/ and
most of the additional packages atCTAN:graphics/

pstricks/contrib/ [7].
All \psgrid commands are only for a better view

of the examples, they are not really necessary for the 3D-

plots. They are always used with the globally defined
options
\psset{subgriddiv=0,griddots=5,%

gridlabels=7pt}

2 The parallel projection

Figure 1 shows a pointP(x,y,z) in a three dimensional
cartesian coordinate system (x,y,z) with a transformation
into P∗(x∗,y∗), the point in the two dimensional system
(xE,yE).

α: horizontal rotating angle

β : vertical rotating angle

z
6

���
���

���
���

�����
y

HHH
HHH

HHH
HHH

HHHHjx

-

xE

yE

α

α
H

HHH
HHH

HHH
HHH

HH

���
���

����

uP(x,y,z)
P∗(x∗,y∗)

x∗

y·sinα

x ·cosα

α

y·cosα
x ·sinα

6

y·sinα −x ·cosα

y·cosα +x ·sinα

Figure 1: Lengths in a three dimensional system

The angleα is the horizontal rotation with positive
values for anti-clockwise rotations of the 3D coordinates.
The angleβ is the vertical rotation (orthogonal to the
paper plane). In figure 2 we haveα = β = 0. The y-axis
comes perpendicularly out of the paper plane. Figure 3
shows the same for another angle with a view from the
side, where the x-axis shows into the paper plane and the
angleβ is greater than 0 degrees.

z
6

� x umy

Figure 2: Coordinate system forα = β = 0 (y-axis
comes out of the paper plane)

The two dimensional x coordinatex∗ is the differ-
ence of the two horizontal lengthsy · sinα andx · cosα

(figure 1):
x∗ =−x ·cosα +y·sinα (1)

The z-coordinate is unimportant, because the rota-
tion comes out of the paper plane, so we have only a

320 TUGboat, Volume 22 (2001), No. 4

differenty∗ value for the two dimensional coordinate but
no otherx∗ value. Theβ angle is well seen in figure 3
which derives from figure 2, if the coordinate system is
rotated by 90deg horizontally to the left and vertically
by β also to the left.

z

A
A

A
A

A
AK

��
�����

y

m
��@@

x

β

β

z∗1 = z·cosβ

y·cosα +x ·sinα
−(y·cosα +x ·sinα) ·sinβ

Figure 3: Coordinate system forα = 0 andβ > 0
(x-axis goes into the paper plane)

The value of the perpendicular projected z coordi-
nate isz∗ = z·cosβ . With figure 3 we see that the point
P(x,y,z) runs on an elliptical curve whenβ is constant
andα changes continously. The vertical alteration ofP
is the difference of the two “perpendicular” linesy·cosα

andx · sinα. These lines are rotated by the angleβ , so
we have to multiply them with sinβ to get the vertical
part. We get the following transformation equations:

xE =−xcosα +ysinα

yE =−(xsinα +ycosα) ·sinβ +zcosβ
(2)

or the same written in matrix form:

(
xE
yE

)
=

(
−cosα sinα 0

−sinα sinβ −cosα sinβ cosβ

)
·

x
y
z

 (3)

3 Coordinate axes

The syntax for drawing the coordinate axes is

\pstThreeDCoor[<options>]

Without any options, we get the default view seen
in figure 4 with the predefined values:

xMin=-1,xMax=4,
yMin=-1,yMax=4,
zMin=-1,zMax=4,
Alpha=45,Beta=30

There are no restrictions for the angles and the max
and min values for the axes; allpstricks options are
possible as well. The following example (5) changes the
color and the width of the axes. The anglesAlpha and
Beta are important to all macros and should always be
set withpsset to make them global to all other macros.
Otherwise they are only local inside the macro to which
they are passed.

1 \ begin {pspicture}(-2,-1)(1,2.25)
2 \psgrid

x y

z

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

Figure 4: The default 3D coordinate system

-2 -1 0 1
-1

0

1

2

x

y

z

Figure 5: Axes with a different view and color

3 \psset{ Alpha=-60,Beta=30}
4 \pstThreeDCoor[%

5 linewidth=1.5pt,linecolor=blue, %
6 xMin=-1,xMax=2,yMin=-1,yMax=2, %
7 zMin=-1,zMax=2]
8 \ end {pspicture}

4 put command

The syntax is similar to the\rput macro from the
packagepst-plot :

\pstThreeDPut[<options>]%
(x,y,z){<any material>}

-2 -1 0 1
-1

0

1

2

x

y

z

TUGboat�

Figure 6: Example for the\pstThreeDPut macro

1 \ begin {pspicture}(-2,-1)(1,2.25)

TUGboat, Volume 22 (2001), No. 4 321

x y

z

�

�

-2 -1 0 1 2
-2

-1

0

1

2

3

Figure 7: 3D dots with marked coordinates

2 \psgrid
3 \psset{ Alpha=-60,Beta=-30}
4 \pstThreeDCoor[%
5 linecolor=blue, %
6 xMin=-1,xMax=2,
7 yMin=-1,yMax=2, %
8 zMin=-1,zMax=2]
9 \pstThreeDPut(1,0.5,2){\red\ large TUGboat}

10 \pstThreeDDot[drawCoor=true](1,0.5,2)
11 \ end {pspicture}

Internally, the \pstThreeDPut macro defines a
two dimensional nodetemp@pstNode and then uses the
default \rput macro frompstricks . Because of the
perspective from which the coordinate system is viewed,
the 3D dot will not be seen as the center of the printed
material when this is also a three dimensional one. This
does not happen for figure 6, because the text is only a
two dimensional object.

5 Nodes

The syntax is

\pstThreeDNode(x,y,z){<node name>}

This node is internally transformed into a two di-
mensional node, so it cannot be used as a replacement
for the parameters(x,y,z) of the 3D dot which is
possible with the macros frompst-plot . If A and B

are two nodes, then\psline{A}{B} draws a line from
A to B. Doing the same withpst-3dplot is not yet
implemented. On the other hand, it is not a problem
to define two 3D nodesC and D and then draw a two
dimensional line fromC to D.

6 Dots

The syntax for a dot is

\pstThreeDDot[<options>](x,y,z)

Dots can be drawn with dashed lines for the three
coordinates, when the optiondrawCoor is set totrue

(figure 7).

1 \ begin {pspicture}(-2,-2)(2,2)
2 \psset{xMin=-2,xMax=2,yMin=-2, %
3 yMax=2,zMin=-1,zMax=2,Beta=25}
4 \pstThreeDCoor

5 \psset{dotstyle=*,dotscale=2, %
6 linecolor=red, %
7 drawCoor=true}
8 \pstThreeDDot(-1,1,1)
9 \pstThreeDDot(1.5,-1,-1)

10 \psgrid
11 \ end {pspicture}

In the figure 8 the coordinates of the dots are
(a,a,a) where a is−3,−2,−1,0,1,2,3.

-4 -3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

x

y

z

��

��

��

��

�	

�

�

Figure 8: Another demonstration for drawing dots

1 \ begin {pspicture}(-4,-2)(3,3.25)
2 \psgrid
3 \psset{xMin=-3.5,xMax=3.5,yMin=-7,yMax=6,zMin

=-2,zMax=2.5, %
4 Alpha=20,Beta=15}
5 \pstThreeDCoor
6 \psset{dotstyle=square,dotsize=5pt, %
7 linecolor=blue,drawCoor=true}
8 \multido{\n=-3+1}{7}{ %
9 \pstThreeDDot(\n,\n,\n) %

10 }
11 \ end {pspicture}

7 Lines

The syntax for a three dimensional line is

\pstThreeDLine[<options>]%
(x1,y1,z1)(x2,y2,z2)

All options for lines frompst-plot are possible,
there are no special ones for a 3D line. The only differ-
ence in drawing a line or a vector is that the first one has
an arrow of type- and the second type-> (figure 9).

1 \psset{xMin=-2,xMax=2,yMin=-2,yMax=2, %
2 zMin=-2,zMax=2}
3 \ begin {pspicture}(-2,-2.25)(2,2.25)
4 \pstThreeDCoor
5 \psset{dotstyle=*,linecolor=red, %
6 drawCoor=true}
7 \pstThreeDDot(-1,1,0.5)
8 \pstThreeDDot(1.5,-1,-1)
9 \pstThreeDLine[%

10 linewidth=3pt, %
11 linecolor=blue,
12 arrows=-> %
13](-1,1,0.5)(1.5,-1,-1)

322 TUGboat, Volume 22 (2001), No. 4

x y

z

�

�

-2 -1 0 1 2
-2

-1

0

1

2

Figure 9: Drawing a 3D vector

14 \psgrid
15 \ end {pspicture}

8 Triangle

A triangle is given by its three points:
\pstThreeDTriangle[<options>](P1)(P2)(P3)

When the optionfillstyle is set to value other
thannone , the triangle is filled with the active color or
with the one which is set with the optionfillcolor

(figure 10).

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

x y

z

�

�

�

Figure 10: Triangles with fill option

1 \ begin {pspicture}(-3,-4)(4,3.25)
2 \psgrid
3 \pstThreeDCoor[xMin=-4,xMax=5,yMin=-3,zMin=-4,

zMax=3]
4 \pstThreeDTriangle[%
5 fillcolor=yellow,fillstyle=solid, %
6 linecolor=blue, %
7 linewidth=1.5pt](5,1,2)(3,4,-1)(-1,-2,2)
8 \pstThreeDTriangle[%
9 drawCoor=true,linecolor=black, %

10 linewidth=2pt](3,1,-2)(1,4,-1)(-3,2,0)
11 \ end {pspicture}

For triangles especially, the optionlinejoin is
important. Its value is passed to the PostScript command
setlinejoin . The default value is 1, which gives
rounded edges (figure 11).

0 1 2 3
0

1

2

3

0 1 2 3 4
0

1

2

3

0 1 2 3
0

1

2

3

Figure 11: Meaning of the PostScript command
setlinejoin=0|1|2

9 Squares

The syntax for a 3D square is:
\pstThreeDSquare%

[<options>]
(<vector o>)%
(<vector u>)(<vector v>)

-1 0 1 2 3 4
-1

0

1

2

3

4

x
y

z

~o

~u~v

Figure 12: Drawing a square with three vectors

Squares are nothing more than a polygon with the
starting pointPo given with the origin vector~o and the
two direction vectors~u and~v, which build the sides of
the square as shown in figure 12. With thefillstyle

option the square can be filled with the inpst-plot

defined styles, for examplesolid like in figure 13. All
the options ofpstricks are allowed for this macro.

1 \ begin {pspicture}(-3,-2)(4,4)
2 \psgrid
3 \pstThreeDCoor[xMin=-3,xMax=3,yMin=-1,yMax=4,

zMin=-1,zMax=4]
4 \pstThreeDSquare[%
5 fillcolor=blue, %
6 fillstyle=solid, %
7 drawCoor=true,dotstyle=*](-2,2,3)(4,0,0)

(0,1,0)
8 \ end {pspicture}

TUGboat, Volume 22 (2001), No. 4 323

-3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

3

4

x
y

z

�

�

�

�

Figure 13: Drawing a filled square with the vectors
from figure 12

-2 -1 0 1 2 3
-1

0

1

2

3

4

x

y

z

�

~o

~u

~v
~w

Figure 14: Drawing a box with three vectors

10 Boxes

A box is a special case of a square and has the syntax

\pstThreeDBox%
[<options>]
(<vector o>%
(<vector u>)(<vector v>)(<vector w>)

All options frompstricks are possible here. The
other parameters are the origin vector~o and the three
direction vectors~u, ~v and ~w. The figure 14 shows a
box together with these four vectors. In this example the
three direction vectors are perpendicular to each other.

1 \ begin {pspicture}(-2,-1)(3,4.25)
2 \psgrid
3 \setkeys{psset}{Alpha=30,Beta=30}
4 \pstThreeDCoor[xMin=-3,xMax=1,yMin=-1,yMax=2,

zMin=-1,zMax=4]
5 \pstThreeDPut(-1,1,2){\pstThreeDBox(0,0,2)

(2,0,0)(0,1,0)}
6 \pstThreeDDot[drawCoor=true](-1,1,2)
7 \setkeys{psset}{arrows=->,arrowsize=0.2}
8 \uput[0](0.5,0.5){$\ vec {o}$}

9 \uput[0](0.9,2.25){$\ vec {u}$}
10 \uput[90](0.5,1.25){$\ vec {v}$}
11 \uput[45](2,1.){$\ vec {w}$}
12 \pstThreeDLine[linecolor=green](0,0,0)(-1,1,2)
13 \pstThreeDLine[linecolor=blue](-1,1,2)(-1,1,4)
14 \pstThreeDLine[linecolor=blue](-1,1,2)(1,1,2)
15 \pstThreeDLine[linecolor=blue](-1,1,2)(-1,2,2)
16 \ end {pspicture}

11 Ellipses and circles

The equation for a two dimensional ellipse (figure 15) is:

e :
(x−xM)2

a2 +
(y−yM)2

b2 = 1 (4)

x

y

a a

a

b

M F2

F1 ee

r1 r2

Figure 15: Definition of an ellipse

(xm;ym) is the center,a andb the eccentricity. For
a = b = 1 in equation 4 we get the “one” for the circle,
which is nothing more than a special case of an ellipse.
The equation written in parametric form is

x = a·cosα

y = b·sinα
(5)

or the same with vectors to get an ellipse in a 3D system:

e :~x =~c+cosα ·~u+sinα ·~v
0≤ α ≤ 360 (6)

where~c is the center,~u and~v the directions vectors which
must be perpendicular to each other.

11.1 Options

In addition to all possible options from the package
pst-plot , we have two special ones for the drawing of
an arc (with predefined values for a full ellipse or circle):

beginAngle=0
endAngle=360

Using the parametricplotThreeD macro (de-
scribed in section 13.2, ellipses and circles are drawn
with a default setting of 50 points for the ellipse or circle.

11.2 Ellipse

In a 3D coordinate system, it is very difficult to see the
difference between an ellipse and a circle. Depending on
the point of view an ellipse may be seen as a circle and
vice versa (figure 16). The syntax of the ellipse macro
is:

324 TUGboat, Volume 22 (2001), No. 4

-2 -1 0 1 2
-2

-1

0

1

2

x y

z

�

Figure 16: Drawing ellipses

\pstThreeDEllipse%
[<options>]%
(cx,cy,cz)%
(ux,uy,uz)(vx,vy,vz)

wherec is for center andu andv for the two direction
vectors (eq. 6).

1 \psset{xMin=-1,xMax=2,yMin=-1,yMax=2,zMin=-1,zMax
=2}

2 \ begin {pspicture}(-2,-2)(2,2)
3 \psgrid
4 \pstThreeDCoor
5 \pstThreeDDot[%
6 linecolor=red, %
7 drawCoor=true](1,0.5,0.5) % the center
8 \pstThreeDEllipse[%
9 linecolor=blue, linewidth=1.5pt] %

10 (1,0.5,0.5)(-0.5,1,0.5)(1,-0.5,-1)
11 % settings for an arc
12 \pstThreeDEllipse[%
13 beginAngle=0,endAngle=270, %
14 linecolor=green] %
15 (1,0.5,0.5)(-0.5,0.5,0.5)(0.5,0.5,-1)
16 \ end {pspicture}

11.3 Circle

The circle is a special case of an ellipse (eq. 6) with the
vectors~u and~v which are perpendicular to each other:
|~u|= |~v|= r. with~u·~v =~0

The macro\pstThreeDCircle is nothing more
than a synonym for\pstThreeDEllipse . In the fol-
lowing example the circle is drawn with only 20 plot-
points and the optionshowpoints=true .

1 \ begin {pspicture}(-2,-1)(2,2)
2 \psgrid
3 \pstThreeDCoor[%
4 xMin=-1,xMax=2,yMin=-1,yMax=2,zMin=-1,zMax

=2, %
5 linecolor=black]
6 \pstThreeDCircle[%
7 linecolor=red,linewidth=2pt, %
8 plotpoints=20,showpoints=true] %
9 (1.6,+0.6,1.7)(0.8,0.4,0.8)(0.8,-0.8,-0.4)

10 \pstThreeDDot[drawCoor=true,linecolor=blue
](1.6,+0.6,1.7)

11 \ end {pspicture}

-2 -1 0 1 2
-1

0

1

2

x y

z

������ �
� � � � � � � � �����

��

��� �

�

Figure 17: Drawing a circle with the option
showpoints

12 Spheres

Internally,pst-3dplot uses the macro from thepst-vue3d

package1 to draw spheres, and places it with the\rput

macro at the right place. The syntax for this macro is

\pstThreeDSphere[<options>](x,y,z){Radius}

(x,y,z) is the center of the sphere. For all the
other possible options or the possibility to draw demi-
spheres, refer to the documentation.[3]

-4 -3 -2 -1 0 1 2
-2

-1

0

1

2

3

4

x

y

z

×

Figure 18: Drawing a sphere with package
pst-vue3d

1 \ begin {pspicture}(-4,-2)(2,4)
2 \psgrid
3 \pstThreeDCoor[xMin=-3,xMax=4,yMin=-1,yMax=2,

zMin=-1,zMax=4]
4 \pstThreeDSphere[linecolor=blue](1,-1,2){2}
5 \pstThreeDDot[dotstyle=x,linecolor=red,drawCoor

=true](1,-1,2)
6 \ end {pspicture}

1 CTAN:graphics/pstricks/contrib/pst-vue3d, and from Manuel
Luque’s homepage[3]. The documentation is in French, but it is mostly
self-explanatory.

TUGboat, Volume 22 (2001), No. 4 325

13 Mathematical functions

There exist two macros for plotting mathematical func-
tions f (x,y), which work similarly to the one from
pst-plot .

13.1 Function f (x,y)

The macro for plotting functions does not have the same
syntax as the one frompst-plot [5], but it is used in the
same way:
\psplotThreeD[<options>]%

(xMin,xMax)(yMin,yMax)%
{<the function>}

The function has to be written in PostScript code
and the only valid variable names arex and y . For
example, {x dup mul y dup mul add sqrt} rep-
resents the math expression

√
x2 +y2. The macro

\psplotThreeD has the same plotstyle options as\psplot ,
except theplotpoints -option which is split into one
for x and one fory (table 1).

Table 1: Options for the plot macros

Option name value
plotstyle dots

line

polygon

curve

ecurve

ccurve

none (default)
showpoints default is false
xPlotpoints default is 25
yPlotpoints default is 25
hiddenLine default is false

Equation 7 is plotted with the following parameters
and seen in figure 19.

z= 10
(

x3 +xy4− x
5

)
e−(x2+y2)+

+e−((x−1.225)2+y2) (7)

1 \ begin {pspicture}(-6,-4)(6,5)
2 \psgrid
3 \psset{Alpha=45,Beta=15}
4 \psplotThreeD[%
5 plotstyle=line, %
6 yPlotpoints=40,xPlotpoints=30, %
7 linewidth=1pt](-4,4)(-4,4){ %
8 x 3 exp x y 4 exp mul add x 5 div sub

10 mul
9 2.729 x dup mul y dup mul add neg exp

mul
10 2.729 x 1.225 sub dup mul y dup mul add

neg exp add}
11 \pstThreeDCoor[xMin=-1,xMax=5,yMin=-1,yMax=5,

zMin=-1,zMax=5]
12 \ end {pspicture}

The function is calculated within two loops:

for (float y=yMin; y<yMax; y+=dy)
for (float x=xMin; x<xMax; x+=dx)

z=f(x,y);

Because of the inner loop it is only possible to
get a closed curve in x direction. Therefore fewer
yPlotpoints are not a real problem, but too few
xPlotpoints results in a bad drawing of the mathemat-
ical function, especially for the plotstyle optionline .

Drawing three dimensional mathematical functions
with curves which are transparent makes it difficult to see
if a point is before or behind another one.\psplotThreeD

has an optionhiddenLine for a primitive hidden line
mode, which only works well when the y-interval is
defined such thaty2 > y1. Then, every new curve is
plotted over the previous one and filled with the color
white. Figure 20 is the same as figure 19, only with the
optionhiddenLine=true .

13.2 Parametric plots

Parametric plots are possible for drawing curves or areas.
The syntax for this plot macro is:

\parametricplotThreeD[<options>]%
(t1,t2)(u1,u2)%
{<three parametric functions x y z}

The only possible variables aret andu with t1,t2

andu1,u2 as the range for the parameters. The order
for the functions is not important andu may be optional
when having only a three dimensional curve and not an
area.

x = f (t,u)
y = f (t,u)
z = f (t,u)

(8)

To draw a spiral we have the parametric functions:

x = r cost
y = r sint
z = t/600

(9)

In the example, thet value is divided by 600 for the
z coordinate, because we have the values fort in degrees,
here with a range of 0◦ . . .2160◦. Drawing a curve in a
three dimensional coordinate system does only require
one parameter, which is by defaultt . In this case we do
not need all parameters, so that we can write

\parametricplotThreeD[<options>]%
(t1,t2)%
{<three parametric functions x y z}

which is the same as(0,0) for the parameteru. Figure
21 shows a three dimensional curve.

1 \ begin {pspicture}(-3,-2)(3,5)
2 \psgrid
3 \parametricplotThreeD[%
4 xPlotpoints=200, %
5 linecolor=blue, %

326 TUGboat, Volume 22 (2001), No. 4

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

4

5

x y

z

Figure 19: Plot of equation 7

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

4

5

x y

z

Figure 20: Plot of equation 7 with thehiddenLine=true option

TUGboat, Volume 22 (2001), No. 4 327

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

3

4

5

x y

z

Figure 21: Drawing a 3D curve

6 linewidth=1.5pt,
7 plotstyle=curve](0,2160){ %
8 2.5 t cos mul
9 2.5 t sin mul

10 t 600 div %
11 }
12 \pstThreeDCoor[xMin=-1,xMax=4,yMin=-1,yMax=4,

zMin=-1,zMax=5]
13 \ end {pspicture}

Instead of using the\pstThreeDSphere macro
(see section 12) it is also possible to use parametric
functions for a sphere. The macro plots continous lines
only for the t parameter, so a sphere plotted with the
longitudes needs the parametric equations as

x = cost ·sinu
y = cost ·cosu
z= sint

(10)

The same is possible for a sphere drawn with the
latitudes:

x = cosu·sint
y = cosu·cost
z= sinu

(11)

and lastly, we can have both of these parametric func-
tions together in onepspicture environment (figure 22).

1 \ begin {pspicture}(-1,-1)(1,1)
2 \psgrid
3 \parametricplotThreeD[%
4 plotstyle=curve,yPlotpoints=40](0,360)(0,360){ %
5 t cos u sin mul
6 t cos u cos mul
7 t sin
8 }
9 \parametricplotThreeD[%

10 plotstyle=curve,yPlotpoints=40](0,360)(0,360){ %
11 u cos t sin mul
12 u cos t cos mul
13 u sin

14 }
15 \ end {pspicture}

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

Figure 22: Different views of the same parametric
functions

14 Plotting data files

We have the same conventions for data files which hold
3D coordinates as for 2D. For example:

0.0000 1.0000 0.0000
-0.4207 0.9972 0.0191
....

0.0000, 1.0000, 0.0000
-0.4207, 0.9972, 0.0191
....

(0.0000,1.0000,0.0000)
(-0.4207,0.9972,0.0191)
....

{0.0000,1.0000,0.0000}
{-0.4207,0.9972,0.0191}
....

There are the same three plot functions:

\fileplotThreeD[<options>]{<datafile>}
\dataplotThreeD[<options>]{<data object>}
\listplotThreeD[<options>]{<data object>}

The data file used in the following examples has
446 entries like

6.26093349..., 2.55876582..., 8.131984...

328 TUGboat, Volume 22 (2001), No. 4

Using thelistplotThreeD macro with many data
entries may take considerable time on slow machines.
The possible options for the lines are the same as earlier,
given in table 1.

14.1 \fileplotThreeD

The syntax is straightforward:
\fileplotThreeD[<options>]{<datafile>}

If the data file is not in the same directory as the
document, use the file name with the full path. Figure 23
shows a file plot with the optionlinestyle=line .

x

y

z

Figure 23: Demonstration of\fileplotThreeD
with Alpha=30 andBeta=15

1 \ begin {pspicture}(-7.5,-3)(6,10)
2 \psset{xunit=0.5cm,yunit=0.75cm, %
3 Alpha=30,Beta=30} % the global parameters
4 \pstThreeDCoor[%
5 xMin=-10,xMax=10, %
6 yMin=-10,yMax=10, %
7 zMin=-2,zMax=10]
8 \fileplotThreeD[plotstyle=polygon]{data3D.

Roessler}
9 \ end {pspicture}

14.2 \dataplotThreeD

The syntax is:
\dataplotThreeD[<options>]{<data object>}

In contrast to\fileplotThreeD , the second macro
\dataplotThreeD reads the data entries from another

macro. Using\readdata , external data can be read
from a file and saved in a macro, to be passed to
\dataThreeD [1].

\readdata{<data object>}{<datafile>}

x

y

z

Figure 24: Demonstration of\dataplotThreeD
with Alpha=-30 andBeta=30

1 \readdata{\dataThreeD}{data3D.Roessler} [...]
2 \ begin {pspicture}(-6,-2.25)(6,11)
3 \psset{xunit=0.5cm,yunit=0.75cm, %
4 Alpha=-30}
5 \pstThreeDCoor[%
6 xMin=-10,xMax=10, %
7 yMin=-10,yMax=10, %
8 zMin=-2,zMax=10]
9 \dataplotThreeD[plotstyle=line]{\dataThreeD}

10 \ end {pspicture}

14.3 \listplotThreeD

The syntax is:

\listplotThreeD[<options>]{<data object>}

There is no essential difference between the ma-
cros \istplotThreeD and \dataplotThreeD . With
\listplotThreeD , one can pass additional PostScript
code, which is appended to the data object. For example:

TUGboat, Volume 22 (2001), No. 4 329

1 \dataread{\data}{data3D.Roessler}
2 \ newcommand{\dataThreeDDraft}{ %
3 \data\ space
4 gsave % save graphic state
5 /Helvetica findfont 40 scalefont setfont
6 45 rotate % rotate 45 degrees
7 0.9 setgray % 1 ist white
8 -60 30 moveto (DRAFT) show
9 grestore

10 }

x

y

z

DRAFT

Figure 25: Demonstration of\listplotThreeD
with a view from above (Alpha=0 andBeta=90)
and some additional PostScript code

Figure 25 shows what happens with this additional
PostScript code. Another example can be found in [5],
whereScalePoints is redefined. Forpst-3dplot ,
the equivalent macro is namedScalePointsThreeD .

1 \ begin {pspicture}(-5,-4)(5,4.5)
2 \psset{xunit=0.5cm,yunit=0.5cm, %
3 Alpha=0,Beta=90}
4 \pstThreeDCoor[%
5 xMin=-10,xMax=10, %
6 yMin=-10,yMax=7.5, %
7 zMin=-2,zMax=10]
8 \listplotThreeD[plotstyle=line]{\

dataThreeDDraft}
9 \ end {pspicture}

15 PDF output

pst-3dplot is based on the popularpstricks pack-
age and writes pure PostScript code[2], so it is not possi-
ble to run TEX files with pdfLATEX when there are pstricks
macros in the document. If you need PDF output, there
are the following possibilities:

• the packagepdftricks.sty [6]

• the free (for Linux only) program VTEX/Lnx (http:

//www.micropress-inc.com/linux/

• theps2pdf (dvi →ps→pdf) or dvipdfm utilities

• theps4pdf package [4].

If you need packagegraphicx.sty , load it be-
fore anypstricks package. You do not need to load
pstricks.sty , as this will be done bypst-3dplot .

References

[1] Laura E. Jackson and Herbert Voß. Die Plot-
Funktionen von pst-plot . Die TEXnische
Komödie, 2/02:27–34, June 2002.

[2] Nikolai G. Kollock. PostScript richtig eingesetzt:
vom Konzept zum praktischen Einsatz. IWT, Vater-
stetten, 1989.

[3] Manuel Luque. Vue en 3D. http://members.

aol.com/Mluque5130/vue3d16112002.zip ,
2002.

[4] Rolf Niepraschk.ps4pdf. CTAN:/macros/latex/

contrib/ps4pdf/ , 2003.

[5] Herbert Voß. Die mathematischen Funktionen von
PostScript. Die TEXnische Komödie, 1/02:40–47,
March 2002.

[6] Herbert Voß. PSTricks Support for pdf.
http://www.educat.hu-berlin.de/~voss/

lyx/pdf/pdftricks.phtml , 2002.

[7] Timothy van Zandt. PSTricks - PostScript
macros for Generic TEX. http://www.tug.org/

application/PSTricks , 1993.

� Herbert Voß
Wasgenstr. 21
14129 Berlin GERMANY
voss@perce.de
http://www.perce.de

