
PMX – a Preprocessor for MusiXTEX

Version 2.74 – February 2016

Don Simons
Dr. Don’s PC and Harpsichord Emporium

Redondo Beach, California, USA.

Preface

Compared to version 2.73, PMX version 2.74 has minor enhancements to lyrics capabilities,
behind-the-scenes modifications to allow staff-crossing chords that are unbeamed or beamed as
illustrated in staffcrossall.pmx, and several bugfixes in scor2prt and pmx.tex.

Contents

1 Introduction 3
1.1 Conventions for This Manual . 3
1.2 Setup . 4
1.3 Basic Operation, by Example . 4

2 Elements of PMX 5
2.1 Setup Data in the Input File . 5
2.2 Structure of the Body of the Input File . 7

2.2.1 Notes . 7
2.2.2 Rests . 10
2.2.3 Chords . 11
2.2.4 Grace notes . 12
2.2.5 Ornaments . 13
2.2.6 Editorial accidentals . 13
2.2.7 Slurs . 13
2.2.8 Ties . 15
2.2.9 Line-breaking Type K slurs and ties 15
2.2.10 Dynamics . 16
2.2.11 Beams . 16
2.2.12 Clefs . 18
2.2.13 Arpeggios . 18
2.2.14 Lyrics . 18

2.3 Commands That Affect All Voices . 19
2.3.1 Repeats, double bars, forced single bars 19
2.3.2 Voltas (first and second endings) 20
2.3.3 Meter changes . 20

1

2

2.3.4 Fundamentals of key changes and transposition 20
2.3.5 More on transposition; “transposing” instruments and example files 21
2.3.6 Text . 23
2.3.7 Page numbering, centered header text 24
2.3.8 Overriding certain defaults, or getting the most from PMX . . . 24
2.3.9 Extra hardspace, horizontal shifts 27
2.3.10 Minimum spacing between notes in crowded systems 27
2.3.11 Page size . 27
2.3.12 Line, page, and movement breaks 28
2.3.13 Fractional bars . 28
2.3.14 Stem direction of bass notes . 28

2.4 Putting TEX Commands into the PMX File 28
2.5 Figured Bass . 29
2.6 Macros . 30
2.7 Include Files . 30
2.8 Batch Processing . 31

3 Making Parts from a Score 31

4 Making MIDI Files 33

5 Limits 35
5.1 Limits on quantities that a user can control 35
5.2 Limits not under immediate user control 35

6 Closing Notes 36
6.1 About the Example Files . 36
6.2 A Benign Bug . 36
6.3 Where to Get Help . 36
6.4 Acknowledgments . 37

Dedication
The MusiXTEX community was

stunned by the sudden death of
Werner Icking on
February 8, 2001. He had been a
benevolent patriarch, touching many of
us not only with his technical savvy
and gentle guidance, but also his
genuine kindness and generosity. His
spirit runs deep through all of PMX .
His encouragement fueled its
development from its very beginning.
Many enhancements have been his
proposals, including one he made on
what turned out to be his last day.
Werner, my friend, I dedicate this
work to you and your memory.

1 INTRODUCTION 3

1 Introduction

PMX is a preprocessor for MusiXTEX. Before using it you should have installed
MusiXTEX Version 1.21 or higher, and any available version of TEX that includes 2.71
e-TEX. The goal of PMX is to facilitate the efficient typesetting of scores and parts
that have an almost professional appearance. It can do all the work involved in
setting up \notes-\enotes groupings, selecting groups of notes to be beamed, defining
beam heights and slopes, spreading the entire piece evenly over specified numbers of
systems and pages, and inserting extra spaces where needed to make room for
accidentals, flags, dots, and new clefs. The input language for PMX is much simpler
than MusiXTEX. You can enter note values and rests from 64ths to double whole
notes (breves), ornaments, slurs, and limited text strings. Every voice in every bar
must have exactly the correct number of beats in the current meter, but you may
change the meter at the beginning of any measure, with or without printing the new
time signature. Before making a TEX file, PMX checks these timings and other
aspects of the input. PMX has special features for dealing with baroque chamber
music, including the ability to notate figured bass below the bottom staff in each
system. If PMX hasn’t yet learned to do something you want to do, you can usually
work around the problem by inserting literal TEX strings in the PMX input file.

You can automatically create parts from a score using scor2prt. This auxiliary
program generates a set of .pmx input files, one for each part, from a single .pmx file
for the score. You can control the appearance of the parts with special commands in
the main file, thereby making it possible to include within a single input file all the
information that defines the score and the individual parts.

The basic PMX distribution as of this version of the manual is pmx273.zip. It 2.73
contains the FORTRAN sources, binaries that will run in a DOS window on a PC
with WINDOWS95 or higher, manuals for useage and for installation in
DOS/Windows, and example typesetting files. Alternatively, the software section of
the Werner Icking Music Archive (WIMA) has instructions for acquiring and
installing MusiXTEX and PMX on various platforms (Windows, Mac-OSX, Unix-like
systems) including using automated procedures from several external
TEX distribution sites. The packages from those other sites will all eventually
incorporate all the upgrades in pmx273.zip but will take varying amounts of time to
do so. PMX is often upgraded; the most current version will always be available
directly from the “News” paragraph here.

1.1 Conventions for This Manual

Hey, this is boring stuff, but if you take a minute to understand the typographic
conventions and a little jargon, it may avoid some confusion down the road.

The typewriter typeface always indicates verbatim text as it would be input to a
computer. This includes file names, MusiXTEX tokens, and PMX commands, e.g.,
barsant.pmx, \internote, c44.

Bold is used for program names (e.g., pmxab), or when applied to a single letter,
to relate a PMX command to its meaning (e.g., “e signifies a left shift”).

When viewing the PDF version of this document on a computer screen, clickable
internal hyperlinks are colored blue, and clickable external links are underlined and
colored cyan.

Italics may mean several different things depending on the context: simple
emphasis, or the first appearance of jargon (buzz-words that need to be explicitly
defined), or finally to represent input variables for which some verbatim text would

http://icking-music-archive.org/software/pmx/pmx273.zip
http://www.icking-music-archive.org/software/htdocs/Getting_Started_Four_Scenar.html
http://www.icking-music-archive.org/software/htdocs/htdocs.html

1 INTRODUCTION 4

need to be substituted. In the latter case the variable will be surrounded by square
brackets, e.g., [basename], but the brackets are not to be included with the
substituted text.

Speaking of jargon, there are several special words that have very specific
meanings here: A staff is one set of 5 lines (plural staves), a system is a group of
staves, and voice refers to one of the one or two simultaneous allowable sequences of
notes in a staff. Note that this is a change from versions prior to 2.5, where voice was
used interchangeably with staff.

A PMX command is a string of characters with no spaces between them. The
first character determines the type of command. Any other characters are
parameters that may be either required or optional. Sometimes we loosely use the
word command to refer just to the initial character.

1.2 Setup

Here we briefly describe the setup for the Windows OS, assuming TEX and
MusiXTEX have already been installed. After compiling the FORTRAN source code,
users of other OS’s may either adapt these instructions as needed or use one of the
other setup methods referenced earlier.

After decompressing the distribution file pmx273.zip, you should have these files:
pmx273.for, scor2prt.for, two Windows executables pmxab.exe and scor2prt.exe, 2.73
several sample .pmx files, pmx.tex, ref273.tex (TEX source for a command summary),
pmx273.tex (TEX source for this file), PDF images of the latter two files,
pmx25-273.html showing changes from version 2.50 to 2.73, and install run PMX.pdf

which gives more details about installing and running on different platforms.
Once you have assembled a full set of files, put the executables somewhere in the

path or in your working directory, pmx.tex into the texinput directory, the sample
*.pmx files in your working directory (the one from which you will run PMX), and
the source code and document files wherevever you wish.

1.3 Basic Operation, by Example

Edit the 15th line of barsant.pmx to contain the path to the directory where you
want PMX to write the .tex file. For example, if you want this to be the same as the
working directory, type .\ for Windows, or ./ for UNIX.

If you haven’t done so, open a command window and navigate to the folder
containing barsant.pmx. Execute PMX by typing pmxab barsant . Alternatively, you
may just type pmxab <return> and you will be prompted for a jobname, which in this
case is just barsant . pmxab will always generate two files in the working directory:
barsant.pml is a log file, and pmxaerr.dat contains a single integer, 0 if the run was
successful, otherwise the line number in the .pmx file of the fatal error (useful for
batch processing). Also, on successful completion, barsant.tex will be placed in the
path specified in the setup.

Now you are right where you would be after entering, debugging, and
rough-editing the .tex file manually. To see the results, process barsant.tex just as
you would for any MusiXTEX file, running all three passes, and view the .dvi file, or
go on and run dvips to create a postscript file and view that with a postscript viewer
such as GSview. To make separate parts, run scor2prt by typing scor2prt barsant .
The program will create a new .pmx file for each instrument, in this case barsant1.pmx

and barsant2.pmx. You may then process these files like you did the original one to
create separate parts.

2 ELEMENTS OF PMX 5

2 Elements of PMX

2.1 Setup Data in the Input File

To see how the input file is put together, we’ll look at barsant.pmx. For reference,
here are are the first few lines:

%----------------%

%

% barsant.pmx Revised 29 June 2002

%

%----------------%

%

% nv,noinst,mtrnuml,mtrdenl,mtrnmp,mtrdnp,xmtrnum0,isig,

2 2 4 4 0 6 0 0

%

% npages,nsyst,musicsize,fracindent

1 7 20 0.07

Basso

Recorder

bt

./

The lines with % in column 1 are comments. Some special handling of comment lines
will be discussed in the section on creating parts from a score in section 3.

The rest of the lines in this example are the setup data. Starting in the first
non-comment line above,

nv (integer≤24) is the total number of staves per system. Each staff may contain 2.6
either one or two voices, but the total number of voices at any one time may not
exceed 24.

noinst (integer≤nv) is number of instruments. Each instrument has a unique name
(see below), and any instrument with more than one staff will have its staves joined
with a curly bracket. Usually there is only one staff per instrument and noinst=nv.
There are two ways to assign more than one staff to one or more instruments. If only
the first (lowest) instrument has more than one staff, such as in a score for piano and
a solo instrument, simply make noinst<nv and any difference will show up in
instrument 1, the bottom one in each system. For a more general distribution of
staves among instruments, put a minus sign in front of noinst, and follow noinst with
the number of staves in each instrument in succession, separated by spaces. These
numbers must add up to nv or your computer will explode. For a typical example of
keyboard music, see mwalmnd.pmx, in which nv=2 and noinst=1, producing two staves
per system with a curly bracket at the left.

The number of instruments can be changed as well after the start of the score,
but only to a number less than the original one. See section 2.3.12 to learn how to
start with a smaller number of instruments and later increase it.

mtrnuml is the logical numerator of the meter, or the number of beats per
measure; mtrdenl the denominator. Please note the special considerations in the
paragraph after the next. If mtrnuml is divisible by 2 or 3, beam grouping will be
automatic; otherwise you will have to force all beams using [. . .] as described in
section 2.2.11.

mtrnmp and mtrdnp are the printed numerator and denominator. These determine
the appearance of the meter in the printed output but have no effect on the internal

2 ELEMENTS OF PMX 6

timing analysis. If mtrnmp>0 then it and mtrdnp are printed literally as the numerator
and denominator of the time signature. Please note the special considerations in the
following paragraph. If mtrnmp<0, then the numerator is abs(mtrnmp) and the entire
time signature will be printed with a vertical slash through it. If mtrnmp=0, then
mtrdnp determines the printed meter as follows:

0 No meter is printed (blind meter change)
1, 2, 3, or 4 A single digit, between the 2nd and 4th lines
5 Cut time (alla breve)
6 Common time
7 Numeral 3 with a vertical slash

There are special considerations for n/16 and n/1 time signatures (where the
latter ”1” normally means a whole note). To get n/1 time, use 0 (zero) for mtrdenl

and 1 for mtrdnp. To remember this rule, recall that the printed denominator is taken
literally, while the logical denominator can always be represented by the same single
digit used for the corresponding time value when entering ordinary notes (see
section 2.2.1). So for n/16 time, use 1 for mtrdenl and 16 for mtrdnp.

If the first bar is a partial bar containing a pickup, xmtrnum0 is the number of
beats in it; otherwise set it to 0. It need not be an integer. The first bar is the only
bar that can have a different number of beats than the current value of mtrnuml
(Later we’ll see how to change the meter).

isig is the key signature, positive integer for sharps, negative for flats.
If npages>0, it is the number of pages and nsyst is the total number of systems

in the entire piece. PMX will spread the entire piece horizontally over this number
of systems, and vertically over npages pages. For proper vertical spacing there should
be from about 9 to 16 staves per page. If you specify too many staves for the number
of pages, one or more staves may spill over onto an extra sheet. If this happens it
will only become obvious when you preview the .dvi file. One solution is to use the
global option Ae (see section 2.3.8); another is to increase npages or decrease nsyst.

If npages is set to 0, then nsyst is interpreted as the average number of measures
per system. This is useful while building up a file a little at a time. PMX will
calculate how many systems to use, and spread them over an appropriate number of
pages.

musicsize is 16, 20, 24, or 29, the height of a staff in points, with 20 considered
the default. 2.6

fracindent is the indentation of the first system from the left margin, expressed
as a decimal fraction of the total line width.

Next come the names of the noinst instruments as you want them to appear
within the indentation in the first system, one per line, starting with the bottom
instrument. If you’ve set fracindent=0 and don’t want instrument names to appear,
you must still leave noinst blank lines here. Next comes a single string of nv letters
or numbers for the clefs, again starting with the bottom staff:
b, r, n, a, m, s, t, f, 8 or digits 0-8 respectively for bass, baritone, tenor, alto, 2.71
mezzo-soprano, soprano, treble, French violin clef, or octave treble clef. The last line
of setup data contains the path to the directory where you want the tex file to go
when PMX creates it. The one in barsant.pmx , ./ , represents the current directory
in UNIX and some versions of DOS. The path must terminate with / or \ .

2 ELEMENTS OF PMX 7

2.2 Structure of the Body of the Input File

The rest of the .pmx file is the body of the input. The basic unit of input from here on
is called an input block or just block, each one representing an integral number of bars.
If there is a pickup bar defined by xmtrnum0 > 0, it must be included in the first block
together with at least one full bar. If you wish to put a pickup in a separate block, for
example at the start of a new movement, set the initial logical meter to fit the pickup
bar, then after the pickup bar do a blind meter change as described in section 2.3.3).

There will usually be 4 to 8 bars in a block. 15 is the most allowed. It is good
practice to separate the blocks with comment lines that state which bars are
represented, as I’ve done in barsant.pmx. It is also advisable, although not required,
to separate the bars with the command |. Its main functions are to provide visual
separation in the input file, and to help isolate input errors: if you put one anywhere
except at a bar-end, pmxab will stop and show you where it detected the timing
error. Otherwise, with several minor exceptions, | has no effect.

At the start of each block there may be a few special commands (described
starting in section 2.3). Next come the input data for the selected number of bars of
the first (lowest in the system) voice in the first staff, followed by either / to move to
the next staff, or // to move to the next voice on the same staff. Each new voice
must start on a new line in the input file, i.e., there should be no further data on the
same input line after / or // . Continue entering other voices, each with exactly the
same number of bars as the first, terminated by / or //, until the last (topmost in
the system) ends with a / and the block is finished. Within a block every voice must
have the same number of bars, but every block needn’t have the same number of
bars as other blocks. The number of voices in a staff can only be 1 or 2, and cannot
change within a block, but may vary from block to block.

The data for each voice in each staff are a sequence of commands containing one
or more adjacent characters. Commands are separated from each other by spaces.
The line-terminating commands / and // should also naturally be preceded by a
space.

2.2.1 Notes

Commands for notes always start with a lower-case letter and, as with all commands,
end at the first space. The first letter is the note name (a-g). The rest of the
characters can be in any order with only a few restrictions. The first digit defines
the basic time value of the note: 9, 0, 2, 4, 8, 1, 3 or 6 respectively for
double-whole, whole, half, quarter, eighth, sixteenth, thirty-second, and sixty-fourth
notes. The second digit sets the octave (for reference, octave 4 runs from middle C
to the B above). Certain letters may appear after the initial one: d for dot; dd for
double dot; f, n, or s for flat, natural, or sharp (repeat the letter immediately for a
double); u or l, which force the stem direction of any un-beamed note; e or r to shift
the notehead left or right by its own width; and a (for alone) which inhibits beaming
for this note (or, if the first note of an xtuplet, for the entire xtuplet). A single
accidental may be followed by c to make it cautionary, i.e., surround it with
parentheses. Alternatively, it may also be followed by i to suppress typesetting but
still have the MIDI processor honor the accidental. Other characters allowed in note
commands are +, -, .(period), ,(comma), x, and several special characters following
x, all to be described below. Between the first letter and the end or x if present,
non-digits can be in any order with respect to each other and to the digits, with
minor exceptions involving shifting dots and accidentals.

2 ELEMENTS OF PMX 8

To move a dot from its default location, simply follow the d with one or two
decimal numbers, each predeced by + or -. The first is the vertical shift in
\internotes, the second, the horizontal shift in notehead widths.

Accidentals can be shifted too. One way is to enter + or - right after the
accidental character, then an integer for the vertical shift, then another + or -

followed by the horizontal shift in notehead widths. If you use this method, you must
enter both numbers. Or, to just shift horizontally, use < or > followed by the shift in
notehead widths. When shifting a sharp to avoid another sharp, a left shift of 0.85 is
usually best. When shifting a flat to avoid a flat above it, a left shift of 0.3 is
suggested. In chords (see section 2.2.3), if all the notes are in the same voice,
PMX will automatically shift accidentals if required. This will be disabled for the
current chord if any user-defined accidental shifts are entered, unless A is entered
along with the shift, e.g., zcsA<.5 . In that case the user-defined shift will be added
to the PMX-computed one. Another option that affects accidental positioning in
chords is Ao, entered in the main note command of a chord. It will force the
accidentals in that chord will be posted in the order they come in the source file
(starting with the main note), each one as far to the right as it will go without
crashing into a notehead, stem, or another accidental.

Dots and accidentals always have to be entered when and if a note calls for
them. i.e., they are never carried over from previous notes. On the other hand, the
octave only needs to be entered if the note is more than a fourth away from the most
recent note in the same voice. This feature lets you go for long stretches in a voice
before needing to enter the octave. An alternate way to jump more than a fourth
but less than a twelfth is to type + or -. In other words, these mean to put the note
an octave higher or lower than it otherwise would have gone. Two +’s will raise the
pitch two octaves above what it otherwise would have been, and so forth. The basic
time value is also carried over from the past if it is not re-entered, except for the
first note or rest in each voice in an input block, for which it must be entered.
Therefore, when the melody jumps more than a 4th, using + or - is often more
convenient than using a digit. This is because in order to use the digit, you must
first enter the basic time value whether it changes or not.

For example c44 d e f g a b c c0- is an ascending quarter-note scale starting
on middle C, followed by an octave jump down to a whole note middle C.

Explicit octave numbers can be combined with one or more + or - . In earlier
versions, + or - was ignored if an octave number was specified. This is a slight
backward incompatibility; PMX prints a warning when it happens.

Stem length can be shortened or lengthened by x \internote with the options Sx 2.73
or Lx . x is restricted to the range (0.5,4.0) for shortening and 0.5 to 27.5 for
lengthening. The shortening can be made “sticky” by following the number x with :

. Then every note’s stem in the voice will be shortened until one is encountered with
the option S: . By lengthening a stem enough to span to the next staff and connect
with notes there, unflagged staff-spanning chords can be constructed. See section
2.2.3 for further details about staff-spanning chords.

The first note command in each voice in a block must contain at a minimum the
note name or r for a rest (see below), and a basic time value. For notes, it is good
practice and can simplify editing if in addition an explicit octave is set here.
However if it is not, PMX will make some assumptions. At the start of the first
input block the pitch will be set as if the prior note were middle C. In later blocks
PMX will use the obvious inheritance rules from the end of the prior block.
However, if the number of voices in a staff has changed from the prior block, it is

2 ELEMENTS OF PMX 9

safest to reset the octave at the start of a new block. Duration is never inherited and
must be set at the start of each input block.

Dots can be a little tricky, because even though they affect the actual time
value, they don’t affect the basic time value, and it is only the latter that is “sticky”.
Therefore, if a note is to be dotted, you always have to enter a d (or a period, see
next paragraph) somewhere within the command, after the note name, even if the
actual time value and octave are the same as the prior note. But the basic time value
need not be re-entered if it hasn’t changed (unless the note is more than a fourth
from the prior note and you have for some strange reason elected to indicate the
octave with a number rather than + or -). So for example, consecutive dotted half
notes, each within a fourth of the previous one, could be most cleanly entered as
cd24 ed gd ed, whereas cd24 e would represent a dotted half note followed by a plain
half note (since the basic time value—as defined by the first digit—was a half note
all along).

There are two special shortcut rhythmic notations. For normal dotted rhythms
(3:1 ratio), if you include a period (.) in the note command, it will (a) assign a dot
to the note just entered, (b) terminate that note, (c) prepare to receive the next
note name without any space, and (d) automatically assign a time value to the second
note equal to one-third of the first one. No time value may be entered for the second
note, but octave and accidental data may. Ornaments and slurs (see below) following
this command will apply to the second member. If you need to follow the main note
with some modifying command, you can still use the shortcut (.) after that
command and a space. The main advantage of this shortcut comes if you want to
follow one dotted pair with another of the same rhythm; then you needn’t enter any
explicit time value for either member of the second pair. This is possible because
after using the shortcut, the basic (inheritable) duration is set to that of the first
note in the pair, without the dot.

For paired notes with 2:1 rhythmic ratios, the character , (comma) behaves
similarly to the . (period) for 3:1 rhythms.

Xtuplets, or groups of notes with their stems connected, can have from 2 to 24
notes or rests. Normally they all have the same duration, but there are several
options—described below—to change this. The command for the first note of an
xtuplet begins exactly like a note or rest command, with the name of the first note
in the xtuplet, or r if it starts with a rest (see next subsection), and an optional time
value. However, the actual time value (including a dot if present and a basic
duration that may have been inherited from the prior note) now represents the total
duration of the xtuplet. Next (with no space, as usual) comes x followed by a one- or
two-digit integer for the number of notes in the xtuplet. The only options allowed
immediately following the number are d and n . d signifies that the first note of the
xtuplet should have a dot and the second, and extra flag. n controls the printing of
the number and bracket. If n is followed by a blank, then no number will be printed.
On the other hand, an unsigned integer here is taken as a substitute number to be
printed instead of the natural one. If one or two signed decimal numbers follow n

(each starting with + or -), the first is a vertical shift in \internotes, and the second,
a horizontal shift in notehead widths. Another suboption to n is f, to flip the
number vertically from its default position. A final suboption to n is s followed by a
signed integer. It applies only to non-beamed xtuplets, for which it tweaks the slope
of the bracket above or below the xtuplet. For non-beamed xtuplets, you can further
change the appearance of the bracket and number as explain in section 2.3.8.

The second through last notes of the xtuplet are each then represented by a

2 ELEMENTS OF PMX 10

separate command containing a subset of the characters permitted for ordinary
notes or rests: note name or r (the only required character), accidental, and octave
change character (+ or -). The octave may be given explicitly instead, and any
integer will be interpreted as such, as no time values or dots are permitted.

The last note of an xtuplet may not be a rest.
To double the duration of any note in an xtuplet, add the character D to the

command for that note. This will decrease the expected number of notes in the
xtuplet by one. To add a dot to the doubled note (as Bach sometimes did), use F

instead of D. To add a dot to one note and an extra flag to the next, include d in the
note command, after the x if it’s the first note of the xtuplet as noted above.

As an example, an ascending quarter-note triplet scale would be notated
c44x3 d e f4x3 g a b4x3 c d ...

2.2.2 Rests

The command for a rest starts with r. Then for a normal rest, in either order come a
digit for the basic time value (using same codes as for notes, optional if unchanged
from previous value), a d if the rest is dotted, and a second d if double dotted. The
basic time value of a rest affects future notes and rests the same as if it had come
from a note, i.e., it applies until another value is entered with a subsequent note or
rest in the same voice. The command rp represents a full-bar rest notated with a
pause character (whole rest) regardless of the time signature; in this case no other
duration information is needed or allowed. rb, followed if necessary by a duration
specifier, denotes a blank rest, one that occupies space and time but is invisible. This
is most often used when there are two voices in a staff and one drops out for some of
the duration of the current input block. (See mwalmnd.pmx for examples). The option
o (for off-center) suppresses centering a full bar rest. If you don’t exercise this
option, then all full-bar rests will be horizontally centered between bar lines,
including pauses (rp) as well as normal rests that fill the bar. rm followed
immediately by an integer will generate a multi-bar rest, a special combination of
characters between two bar lines with an integer above representing two or more
bars of rest. This command will generally only be used in separate parts after having
been automatically generated by scor2prt. However, it may be used in a multi-line
score, provided it is entered for the same number of bars in every staff.

The default vertical position of a rest depends on whether there are one or two
voices in the staff. For one voice it is just the MusiXTEX default (approximately
centered on the middle line). On the other hand, in the lower voice in a two-voice
staff, the rest is lowered 4\internote, while in the upper voice it is raised 2\internote.
The PMX default can be manually overridden by appending + or - and an integer
representing the offset from the middle line of the staff (not from the PMX default if
there are two voices in the staff!). So for example, in a single staff in 3/4 meter, two
voices, each with a half note followed by its own quarter rest would be either

c24 r4 //

c25 r4 /

or equivalently

c24 r4-4 //

c25 r4+2 /

while

2 ELEMENTS OF PMX 11

c24 r4+0 //

c25 r4b /

would produce two notes followed by a single, vertically centered rest.
Another way to override the default vertical positioning of rests is useful in

keyboard scores, or in fact any score containing two voices on a staff. The option K

(for Keyboard) in the A command generally causes rests to be aligned horizontally
with notes in the voice in which they are entered. See section 2.3.8 for a detailed
description.

2.2.3 Chords

Chordal notes, which always share a stem and the same time value as the prior note,
are symbolized with z (for zero time) followed by a note name and optionally an
accidental, + or - as octave indicator, and e or r for a left or right shift by one
notehead width. No basic time value is allowed. If the main note is dotted, then the
chordal note will appear with a dot regardless of whether a d is entered. The only
time a d is required in a chordal note command is if the dot’s position is to be
adjusted; in this case the d is required, followed by one or two decimal numbers, each
preceded by + or -. The first is the vertical shift in \internotes; the second, the
horizontal shift in notehead widths. Any number of chordal notes can follow a single
main note. The stem direction of a chord is controlled by the main note, but may be
manually overridden with u or l in the main note command.

When chordal notes are beamed together, the default height and angle of the
beam will be determined by the main note on each stem (the one without z). If a
beam joining chordal notes looks bad, you can usually fix it either by changing which
note acts as the main one, or by fine-tuning the beam parameters as described in
section 2.2.11.

PMX uses a complex algorithm to automatically position accidentals in chords.
If you are unhappy with the result, you can manually tweak the horizontal positions
as described in section 2.2.1.

Although there is no dedicated command for it, chords can be made to span
from one staff to another using various techniques. The approach will depend on 2.73
whether the chord is single-stemmed with no flag, single-stemmed with a flag, or
beamed. If beamed, it will also depend on whether it is an xtuplet or not. Examples
of all the basic possibilities are contained in the sample file staffcrossall.pmx.

For unbeamed, unflagged staff-crossing chords, by lengthening the stem with the
L option on the main note, it can be made long enough to join with an unflagged
single-stemmed note or chord in the next staff. Single-stemmed notes with one or
more flags can be joined across staves with a trick discovered by Andre Van
Ryckeghem: In one staff create a standard note or chord with the stem pointing
away from the other staff. In the other staff, place the chord notes in a one-note
forced beam that has been lowered or raised into the first staff (e.g. [-10 b14]);
that will stretch the stem to join the other notes, but with just one note (or chord)
in the beam, the crossbar will have zero length and be invisible.

Beamed chords may also span from one staff to another, using joined beams (see
section 2.2.11). The general approach is to construct a set of chords (or single notes,
if the other chord notes are in the other staff) in each of the two staves, enclose each
set in a separate forced beam, and join the two beams with]j...[j . It is important
to remember that the lower staff is processed first. So in most cases, the end of the
segment in the lower staff must be joined (using]j) to the start of the upper

2 ELEMENTS OF PMX 12

segment (with [j). It turns out that for non-xtuplet beamed chords, in all cases
where the chord at the beginning of the beam has a note in the lower staff, this works
fine provided that the forced beams are of equal duration and cover the same time
span, and that positions in either staff with no note are represented with blank rests
\rb inside the force beam. So for example a set of beamed chords that starts only in
the lower staff and ends only in the upper could be represented by

[+28 g83 g g rb]j /

[jf rb g84 g g] /

This example highlights some other issues, viz., that the beam height or
direction of one or both beam groups may need to be altered. Often this will require
trial and error.

Unfortunately this two-group procedure breaks down if the first chord in the
beam has no notes in the lower staff. There are tricks to get around this; the user is
referred to the file staffcrossall.pmx for examples. However, there is a much more
straightforward way to define staff-crossing beamed chords that begin in the upper
staff: it simply requires defining the beamed group in each staff as an xtuplet within
a forced beam. It turns out that the treatment of staff-crossing beamed xtuplets is
more robust than for non-xtuplets, and will admit more intuitive coding. So for
example, the reverse of the above example, where the beam starts in the upper staff
and ends in the lower, could be obtained with

[+28 rb2x4n g3 g g]j /

[jf g24x4 g g rb] /

where we used the option n to suppress printing the number. As you might expect,
more general staff-crossing beamed chordal xtuplets follow the same concepts
already described for non-xtuplets, but as noted, they are more robust and admit
patterns that start in the upper staff and end in the lower one. staffcrossall.pmx

also contains examples this approach.

2.2.4 Grace notes

A grace note command starts with a G. It is entered in its natural order, normally
before the main note, but sometimes after. After G and before the note name, comes
any combination of the following options: an unsigned integer (which may have 2
digits) representing the number of notes in the grace (default is 1), m and a digit for
multiplicity (number of flags or beams, default is 1, 0 is allowed), s for slur (joining all
notes of the grace to the main note; no other s is needed on the main note), x for a
slash (only for single graces), l or u to force the direction of the stem(s), X followed
by a decimal number x to insert a gap of x notehead widths between a normal grace
and its main note, A (for After) or W (for Way-after) to associate the grace note with 2.6
the prior note. Next comes the only required character, the first note name. No time
value can be entered, but if needed, the octave or an accidental can be given as in a
normal note. Second and later notes must follow immediately in sequence, set apart
by spaces, likewise without any time value, and without any intervening commands.

Normal or after-graces will be placed immediately before or after the main note;
way-after’s, as far to right as possible before the next note or bar line. If either type
of after-grace is slurred, the slur will start on the main note and end on the last one
in the grace.

2 ELEMENTS OF PMX 13

2.2.5 Ornaments

Commands for ornaments are entered after their associated note command. The
ornaments now available are shake (ot), mordent (om), “x”- or “+”-shaped ornament
symbols (ox, o+), pizzicato (ou), strong pizzicato (op), left parenthesis before
notehead (o(), right parenthesis after notehead (o)), upper fermata (of), down
fermata (ofd), staccato (o.), tenuto (o), two different segnos (og or oG), Coda (oC), 2.71
arbitrary-length wavy-line trill with tr (oT), arbitrary-length wavy-line trill without tr
(oTt), sforzando (o>), duncecap (o^), caesura (oc), and breath (ob). All except the
parentheses, staccato, tenuto, and down fermata will normally appear above the
staff; the parentheses appear at the level of the note head, and staccato and tenuto
just above or below depending on the stem direction. The only difference between
staccato and pizzicato is the vertical positioning of the dot.

Either type of trill may immediately include an unsigned decimal number to
specify the length of the printed symbol in current \noteskips; the default is 1. Thus
oT0 represents tr with no wavy line.

Once the ornament type has been specified, most of them can be raised or
lowered from their default position by appending a signed integer to the command,
representing the vertical offset in \internotes. . A second signed integer specifies a
horizontal shift from default in notehead widths.

The caesura and breath marks differ from the others in their default horizontal
position, which is 0.5\noteskip past the note.

The og segno has several special properties. It must be entered in the first
(lowest) staff, but will appear above every staff. Its vertical position cannot be
altered, but if appended by a number...unsigned if positive...all appearances will be
shifted horizontally by that number of points. On the other hand, the oG segno has a 2.71
smaller symbol than og, applies only to the note after which it is entered, and can be
shifted just as a normal ornament.

An ornament can be automatically repeated on a series of consecutive notes,
provided the notes are all in the same voice and the same input block. To activate
this feature, terminate the first ornament command with : . Then every note in that
voice will have the same ornament until a note is followed by the repeat terminator
o: .

2.2.6 Editorial accidentals

To place a small sharp, flat, natural, or question mark above the staff, after the
affected note enter oe followed by s, f, n or ?. You may also put a question mark
right after the accidental.

2.2.7 Slurs

By default PMX will use MusiXTEX’s built-in font-based slurs. But through user
intervention it is possible to use either one of two different types of postscript slurs.
Type K slurs, developed by Stanislav Kneifl, are directly supported by PMX and will
be the focus of any future PMX enhancements. They are globally activated with Ap

and several global defaults set with other options to the A command as described in
section 2.3.8. If these are used, so will an alternate set of hairpins (see
section 2.2.10). The other postscript slur option is Hiroaki Morimoto’s Type M slurs.
These are not directly supported by PMX, but are intended to be fully compatible
with the default font-based slurs. To use them, one would use the in-line

2 ELEMENTS OF PMX 14

TEX command \\input musixpss\ , and be sure not to enter Ap . From PMX’s
standpoint they are no different from font-based slurs.

There are some advanced options available only with Type K postscript slurs,
and a few obsolete ones only with font-based. At this point the main difference in
functionality between the two is that with postscript, PMX provides support for
true ties, which are shaped and positioned slightly differently from slurs. Future
enhancements will probably only work with Type K postscript slurs. Some users do
still prefer font-based, possibly because Type K postscript slurs are not visible in
some DVI viewers. New users should experiment with the various types of slurs and
decide for themselves.

The normal commands for slurs are (placed with a space before a note, and)

placed after. The command s is equivalent to both of them (!), except that it always
follows the affected note. With font-based slurs, t is equivalent to s but with several
minor differences to be explained later. With postscript slurs, t signals to use a true
tie. The commands s and t are toggles, turning a slur or tie off if it’s already on and
starting one otherwise.

A slur or tie may end on a rest, but not start on one. The default ending height
in this case will be the same as the starting height, and it may be tweaked as
described below.

The first character is optionally followed by a single-character ID code 0-9 or
A-Z, then by other options described below. ID codes are only needed if two or more
slurs are open at the same time within one voice, such as when several chord notes
are tied. Using ID codes in such cases tells PMX which open slur to close. ID codes
cannot be used with font-based t slurs.

The rules for finding the default direction and position of a slur are complex;
many factors enter into defining visually pleasing values. But there’s no need for
gory details here; the result will usually satisfy, and if not, it can easily be tweaked.
The default direction of curvature can be overridden with u (upper), l (lower), or
equivalently d (down). Starting or ending position can be shifted from its default by
entering one or two explicitly signed numbers. The first, which must be an integer,
represents the vertical shift in \internotes; the second, which may be decimal, the
horizontal offset in notehead widths. Starting or ending position of a postscript slur 2.71
or tie can be made to align with the end of the stem of an unbeamed note by using
the option v. No other options are permitted with sv, but any desired position can
be forced with the numeric options.

The shape of the slur may be altered as well. This paragraph deals with
font-based slurs, for which the shapes may be less than fully satisfying due to
fundamental limitations of MusiXTEX. At the slur termination only, one or three
more parameters may follow the ones just described. The first, a signed, nonzero
integer, is a vertical adjustment to the mid-height of the slur in \internotes. The
next two, integers between 1 and 7 following a “:”, are alterations to the starting
and ending slopes. These numbers are passed directly as arguments of the
MusiXTEX macros \midslur (if only one is given) or \curve (if there are three).

For Type-K slurs, the shape may be changed locally by including f in either the
slur’s starting or ending command to flatten it a bit, or h, H, or HH to increase its
curvature and raise or lower its middle by increasing degrees. The default curvature
can be altered from normal with new suboptions to Ap as described in section 2.3.8.
Local curvature tweaks will take precedence over the global default. A special option
n to the slur command can be used to locally restore the normal curvature if the
default curvature has been globally changed.

2 ELEMENTS OF PMX 15

Another option peculiar to Type-K slurs and ties is to locally override the global
setting for automatic height adjustment (to avoid tangencies with staff lines). The
global defaults may be changed with the A command as described in section 2.3.8. To
override the global setting for the current slur or tie only, use the option p in the
command that starts the slur or tie, followed by + or - (to turn adjustment on or
off), followed by s or t (for slur or tie).

A dotted slur is activated by including the option b (for broken) in the
command that starts the slur.

Slurs involving grace notes are specified within the command for the grace (see
section 2.2.4).

For font-based slurs, the unique aspect of t slurs is that if one starts or ends on
the same note as an s slur, the former will be moved away from the notehead to
avoid a collision. This only works if neither slur has an ID code. This feature is only
retained for backward compatibility.

The available options should cover most circumstances, but if not, the TEX
macros \isu etc, defined in pmx.tex, can be entered as in-line TEX commands (see
section 2.4). These commands have three arguments: slur number, vertical position
(pitch, or offset from bottom staff line in \internotes), and horizontal offset in
notehead widths. When using these commands, you must choose an explicit slur
number. Use one large enough to avoid conflicts with PMX’s automatic slurs, which
are numbered from 0 upward. Also, remember that non-spacing in-line TEX
commands such as this one must come before the note they apply to, in contrast with
the PMX slur toggles which may come after.

2.2.8 Ties

With font-based slurs, in PMX the only difference between ties and slurs is the
default positioning. Ordinary slur ends are centered horizontally above or below the
notehead, while tie ends are shifted inboard and closer to the midheight of the
notehead. To specify a font-based tie in PMX, use a slur command and include the
option t in it, somewhere after the initial (,) , s or t .

With postscript slurs, ties—indicated with t or st—will have similar differences
in endpoint positions, but in addition will have a different shape (somewhat flatter)
and will always end at the same height they start. There is also an option to the A

command that affects ties across line breaks (see section 2.3.8). By default the
second part of such ties will be drawn as a complete tie symbol. However, if you
want them to be a half tie—a special shape that is horizontal at its left end—use the
command Ap+h at the start of the file.

In addition to the notation options just mentioned, ties may also be indicated
with the character { before the starting note and } after the ending note. 2.6

2.2.9 Line-breaking Type K slurs and ties

No special action is required if a slur or tie happens to cross a line break. However,
some special, manual adjustments are available for Type K postscript slurs in these
cases. The global option Apl by itself adjusts several parameters as described in
section 2.3.8. Further, if Apl has been issued, then case-by-case adjustments for
line-breaking Type K slurs and ties are available as suboptions to the slur commands.
To tweak the horizontal and vertical positions of the end of the first segment, enter
the suboption s in the command that starts the line-breaking slur or tie, followed by
two signed numbers representing respectively the vertical shift in \internotes and

2 ELEMENTS OF PMX 16

the the horizontal shift in notehead widths. To tweak the position of the start of the
second segment, follow the above by another s and two more signed numbers. The
usual curvature options h, H, HH, and f, if included in the starting command for a
line-breaking slur, will apply only to the first segment, and if in the closing
command, to the second segment. If the tweaked slur or tie does not happen to
come at a linebreak, the special position tweaks (after s) will all be ignored, and the
curvature tweaks on the closing note will take precedence as they normally would.

2.2.10 Dynamics

After the affected note, enter D followed by one of the following pppp, ppp, pp, p,

ffff, fff, ff, f, mf, mp, fp, sfz, "[any text]", >, or < . The last two are
diminuendo and crescendo, and they are toggles, i.e., the first one of each starts the
symbol and the next one ends it. The one surrounded by double quotes is an
arbitrary text string. With any dynamic mark, you can also enter position shifts,
vertical as a signed integer representing the number of \internotes, then horizontal
as a signed number representing number of notehead widths. There can only be one
of the letter-groups on each note, but there may also be D< and/or D> on the same
note. These must be entered as separate D... commands, and must come in the
right order, e.g.,

[some notes] D< [more notes] D< Dffff D> [more notes] D>

Hairpins may span from one input block to the next. 2.7
There are numerous context-sensistive automagic adjustments to the positions

of all the dynamic symbols. If you don’t like the result you can adjust the position as
just described.

Due to MusiXTEX’s limitations, there are some restrictions on hairpins when
using font-based slurs. They cannot be longer than 68mm, they cannot wrap over a
system break, and they must be horizontal. Finally, only certain specific lengths are
available so some horizontal position tweaking may be needed, especially when
letter-groups and hairpins are combined. These restrictions are all removed when
using postscript slurs.

2.2.11 Beams

For the most part, PMX automatically takes care of the details of defining beams:
selecting which notes are beamed together, and setting the angle, direction, height,
and multiplicity (the number of bars along the top or bottom). However, one may
define a forced beam—which overrides PMX’s selection of which notes are beamed
together—by surrounding the included notes with [and], being certain to separate
these commands and their options from the included note commands with spaces.
One may also wish to edit certain features of a beam even when PMX’s grouping
decision would otherwise be acceptable; here again the beamed notes must be set
apart with [and].

The [may optionally be followed immediately by several options.
u or l will override PMX’s selection of the direction of the beam, while f will

flip it from whatever PMX decided.
j joins the beam grouping to a prior one started in another system (see below).
One, two, or three consecutive integers, each preceded with + or - , will affect

the beam’s appearance. The first integer is an adjustment to the starting level (in
\internotes) and may range from -30 to 30; the second is a slope adjustment with

2 ELEMENTS OF PMX 17

the same permissible range; the third is an alternate adjustment to the starting level
(in beam thicknesses) and may only range from 1 to 3, always acting to increase the
stem length. The latter may be used to align consecutive horizontal beams which
have internal multiplicity changes. For example, in 2/4 time, c84 c1 c c c c8 would
cause two beams but the first one would be lower than the second;
[+0+0+1 c84 c1 c] c c c8 would align the tops of the beams with each other. Due
to the complexity of PMX’s beam analysis procedures, these editing commands may
sometimes produce unexpected results, and some iteration may be required to get
exactly what you want. For example, [+0+0+3 cd8 c3 c6 c] c c c3 cd8 will not
produce two aligned beams as desired, because when PMX analyzes the first beam, it
automatically raises the starting level a bit for another reason, namely, to avoid too
short a stem on the 64th notes at the end of that beam. In this case, the user could
counteract PMX’s internal adjustment by using [-1+0+3 cd8 c3 c6 c] c c c3 cd8.

The character m followed by a digit 1-4 forces the multiplicity of the beam, the
number of stem-joining bars.

The option h forces the beam to be horizontal.
By default, xtuplets are set apart with their own beam. To beam an xtuplet

together with other non-xtuplets, just include it with the other notes in a forced
beam.

Rests may also be included within forced beams, provided they are shorter than
quarter rests, and of course that they come between the first and last notes under the
beam.

It’s now easy to define a repeating forced beam pattern. If the option : (colon)
is included in the starting command [for a forced beam, then after you end the
beam, more beams of the same duration will be forced in that voice, until stopped.
They will be stopped at either the next regular forced beam, or the end of the input
block for that voice, whichever comes first.

Some users may wish to define beamed groupings with subgroups joined by a
single beam. The command][, standing alone between two note commands in a
forced beam, causes the multiplicity to decrease to unity and immediately increase
to its natural value for the next note. For example, [c14 c c c][c c c c] will
generate two doubly-beamed groups connected by a single beam.

Related to this is a single-slope beam group, which is the same as described in the
previous paragraph except that the beam disappears between segments. Segments
should be separated by]-[standing alone between two notes inside the forced beam.

If there are large jumps in pitch between notes in a beam within a single staff,
as a matter of taste you may wish to start the beam for example as an upper one
and end it as a lower. PMX will never do this automatically, but you can accomplish
it by forcing the beam with appropriately modified up/down-ness, starting level, and
slope. If you use this technique, there are two details to note: (1) if there are any
intermediate multiplicity changes, they will only be handled properly if the initially
specified up-down-ness is consistent with the vertical position of the intermediate
notes involved, and (2) for proper appearance in crowded scores you may wish to
insert hardspace or shifts as described in section 2.3.9. Some examples are included
in most.pmx.

Beams cannot normally jump staves. But if that is desired, start the beam
normally in one staff, and terminate the part of the beam in that staff with ...]j .
Then resume the beam in the new, adjacent staff with [j For staff-jumping
beams, it’s OK to have just a single note inside one or both of the members. Some
adjustment of the beam height and slope may be required. Sometimes the ending

2 ELEMENTS OF PMX 18

section’s up-downness must be overridden; you will know this is so if the ending is
shifted horizontally from its proper position by one notehead width. Each voice must
still have the right number of beats, so you will probably need to fill time with blank
rests after the first member of the beam in one staff and before the second member
in the other. There can still only be one staff-jumping beam open at a time.

2.2.12 Clefs

A clef change is signaled by C followed by a single lower-case letter or digit using the
code specified in section 2.1. If clefs come out at the wrong vertical position, refer to
the note in pmx.tex.

2.2.13 Arpeggios

To set an arpeggio (a vertical wavy line), simply place the command ? after the
commands for both the first and last note. To shift the symbol to the left by x
notehead widths, use the option -[x] . 2.6

2.2.14 Lyrics
2.73

Lyrics depend on the underlying TEX command \pmxlyr developed by Dirk Laurie,
which is defined in pmx.tex. It in turn makes use of the macro package musixlyr.tex

developed by Rainer Dunker. So to enable lyrics within PMX, you will need to
ensure that musixlyr.tex is installed somewhere in your system where your TEX
processor can find it.

Lyrics can be inserted by enclosing them in double-quotes inside the music line
just before the first note to which they apply, as in "us-ing lyr---ics now ". Once
the first double quote is encountered, PMX will ensure that musixflx.tex is input
into the TEX file.

Lyrics for several notes can be defined in one go. The lyrics in each input string
demand a specific number of notes, depending on the number of syllables, hyphens,
and underscores. If there are not enough lyrics, question marks will appear; if too
many, the excess syllables will not appear.

The rules for aligning lyrics properly with notes are as follows. Words are
separated by whitespace, with any number of spaces counting as one. Syllables
within a word that require just one note each are separated by a single hyphen.
There are two ways to extend a syllable over two or more notes. If it is the last
syllable in a word (like "now "), follow it with consecutive underscores, one for each
extra note, and finally a space. It will be printed with a continuous underscore. To
extend a syllable within a word (like "lyr---ics"), insert one extra hyphen (with no
spaces) for each extra note, and it will be printed with some number of hyphens
filling the proper space between syllables. Conversely, a tilde (~) between two words
(with no spaces) prints a space between them while assigning the last syllable of the
first and the first syllable of the second to a single note1. So in the end, in a voice
with lyrics, every note must be associated with a syllable, its extension, or two
syllables joined with a tilde.

Although underscores within a word or consecutive hyphens at the end may not
crash the code, they are not recommended for any foreseen useful purpose.

By default, lyrics will be placed below the staff where they are entered, half way
between that and the next lower staff. You may want to alter the vertical position of

1This is just an example of using a standard TEX feature within lyrics.

2 ELEMENTS OF PMX 19

a lyrics line, especially if both voices in a staff have lyrics. This is accomplished with
the opfion @, immediately following the closing quote of the lyrics string with no
space. That must be followed by either a or b for above or below the staff, then a
signed integer for the number of \internotes above or below the default height. This
command is ”sticky”; it will remain in force for later lyircs in the same voice until
altered.

It may also be necessary to allow extra vertical space where the lyrics are
positioned. There is no PMX command for this, but type 2 inline TEX can be used
to insert extra vertical space above any instrument. For example, if the voice is in
instrument #2 and lyrics are below that staff,
\\interinstrument=0\internote\\setinterinstrument1{8\internote}\ will add
8 \internotes in the space for the lyrics.

Present limitations allow lyrics at upper and lower voices on the bottom two
staves of instruments 1 to 4. Elsewhere they are quietly ignored.

Most scores with lyrics will benefit from the type 2 command \\sepbarrules\,
which stops bar lines from crossing through the vertical space between instruments.

The notation "us-ing lyr---ics now " is actually shorthand for the inline TEX
string \pmxlyr{us-ing lyr---ics now }\. All the rules given in section 2.4 for
Type 1 TEX strings apply. To ensure that the length of all the Type 1 TEX strings
belonging to a particular note combined does not exceed 128, remember to account
for the nine characters in \pmxlyr{}.

This way of entering lyrics is a convenient interface to a small subset of the
facilities offered by musixlyr. If more advanced features than those supported by
\pmxlyr are needed, the necessary musixlyr macros could be entered as in-line TEX
directly into the .pmx file - see the example file netsoos.pmx for some of those.

If really advanced features are needed (such as having several verses of lyrics at
once), most users would prefer the convenient interface to musixlyr via the program
M-Tx developed by Dirk Laurie. It is a pre-preprocessor which produces a .pmx file
containing the proper in-line TEX commands. Its input language is similar (but not
identical) to PMX and includes most PMX functionality as a subset.

2.3 Commands That Affect All Voices

Most commands that affect all the voices can only appear in the first (lowest) voice
in the first (lowest) staff. Most such commands will automatically be transferred
from score to parts when separate parts are generated by scor2prt (see section 3).

2.3.1 Repeats, double bars, forced single bars

Repeat signs, double bars, and other bar-ending options are signaled by R followed
by l, r, lr, d, D, dl, b or z for left repeat, right repeat, left-right repeat, thin-thin
double bar, thin-thick Double bar, thin-thin double bar followed by left repeat,
single bar, or blank (invisible) barline. Some of these have peculiarities. Rb forces a
single bar before a movement break (see section 2.3.12), where otherwise by default
there is a double bar. That can be useful for example if you change the number of
instruments (via an option in the movement-break command) in the middle of a
movement. Rz will cause a blank barline at the end of the current system, not
necessarily the current bar. It can be used together with blind meter changes if you
want to split a bar across a system break. If Rlr falls at a system break, PMX will
automatically split it in two. The command Rdl will likewise be split at a system
break, but if not at a system break, the d will be ignored.

2 ELEMENTS OF PMX 20

These commands must be in the first voice. It is best only to place them before
the first note in an input block or if necessary after the last one; otherwise scor2prt
may behave erratically. Using two separate R commands in succession will cause
unpredictable results.

2.3.2 Voltas (first and second endings)

Beginnings and ends of first and second endings are signaled by V (for volta). If it’s
the end of the volta, add the option b (for box) or x for no box. If it’s the start of a
volta, you can optionally enter any text at all that doesn’t include a space and
doesn’t start with b or x (most commonly 1 or 2). A period will automatically be
appended to the text. If one volta ends and another starts right away, only a single V

is needed. Voltas must only be entered in the first voice. If separate parts are to be
created from a score using scor2prt, then only a single volta is allowed in any given
input block, and it must be at the beginning of the block.

2.3.3 Meter changes

Meter can only be changed at the beginning of an input block. A meter change
command starts with the letter m. There are two different ways to complete the
command.

Method 1. Enter 4 numbers with no intervening spaces. The four numbers are
mtrnuml, mtrdenl, mtrnmp, mtrdnp as defined in section 2.1, with the following
exceptions for this method only: You must use o to represent the number 1; if you
enter the digit 1 then PMX will interpret that digit and the next as a 2-digit integer,
between 10 and 19 inclusive. 19 is the largest number that can be entered with this
method. Note that mtrdenl=0 still represents a whole note.

Method 2. Enter the four numbers verbatim in the order just listed, but
separate them with slashes (/).

2.3.4 Fundamentals of key changes and transposition

As explained in section 2.1, the intial key signature, also called the concert key, is
specified in the setup data. In order to change the key signature or to transpose (i.e.
make the printed notes appear at a different level than where they were entered),
use the K command. The syntax is K[n][k] where n and k are explicitly signed digits
respectively giving the distance to transpose in \internotes, and new key signature.
When transposing, you should always use relative accidentals, activated by the
separate command Ar at the start of the first input block (see section 2.3.8). For
example, to transpose a piece in C major to E major you would enter Ar K+2+4 at the
beginning of the first block.

To transpose by a half step to a key with the same letter name, use K-0[k] where
as before k is an explicitly signed integer giving the new signature. (Using -0 instead
of +0 eliminates confusion with a simple key change, see the next paragraph.)

A simple key change can be signalled at the start of any input block. Use the
command K with n=+0 as the first argument and the new key signature as the second.

If the signature changes from sharps to flats or vice-versa, the default will be to
include naturals in the first instance of the new signature. To suppress this behavior,
use the option n right after K . For example, to change from 2 flats to 3 sharps and 2.7
suppress the naturals, enter Kn+0+3 .

2 ELEMENTS OF PMX 21

The procedures described above will affect all instruments in the score. To
change the key of or transpose just a single instrument, use Ki[m][n][k] when m is an
unsigned integer representing the instrument number, and n and k are as just
described. For more than one instrument, you may immediately repeat everything
after K (including i). This may come either at start of score (right after setup) or at
the beginning of any later input block. But if it’s later, it must be preceded by a
normal (full score) non-transposing key change command K+0[k]. For example, to
change the keys of the second and third instruments to one sharp and two sharps
respectively, use Ki2+0+1i3+0+2 .

2.3.5 More on transposition; “transposing” instruments and example files

In practice, two fundamentally different situations may arise: (1) (Full-score
transposition) A score that has been entered in one key is to be completely
transposed to a different key and pitch level, usually to force the range to fit
different instruments than original; or (2) (“Transposing” instruments) some of the
instruments require a part printed in a different key and at a different pitch level
than it sounds.

To transpose an entire score from the key specified in the setup data (Case
TTA), simply use the K command at the beginning of the first input block, as
outlined in the previous section.

It gets more complicated when some transposing instruments are involved,
because there are three different possibilities: (Case CTS) The transposing
instruments can be entered in concert key but printed transposed in the score and in
separate parts created with scor2prt (see section 3); (Case TTS) They can be entered
transposed and printed transposed in both the score and in parts; (Case CCS) They
can be entered in concert key and printed in concert key in the score, but printed
transposed in parts. Matters are further complicated if there is a later key change.
Finally, if a MIDI file is to be produced, then in cases CTS and TTS an additional
step involving the transpose option to the MIDI command I (see section 4) must be
taken.

All of the required commands for all four of these cases are summarized in the
table below. Following that, they are discussed a bit further and illustrated in four
example files (named [Case].pmx) that are also included in the distribution.

2 ELEMENTS OF PMX 22

Case PMX entry Printed score MIDI pitch Initial commands Later key change

TTA All B flat major, All transposed up transposed K+2+2 K+0-5

later key change 2 steps to D I

to B flat minor major, later to D

minor

CTS All B flat major, Trombone (1) concert Ki2+5+1i3+1+0 K+0-5

later key change concert; alto sax IT+0-5-1 Ki2+5-2i3+1-3

to B flat minor (2) transposed up

5 to G, later G

minor; clarinet (3)

transposed up 1 to

C, later C minor.

TTS Trombone (1) Trombone (1) concert Ki2+0+1i3+0+0 K+0-5

concert; alto sax concert; alto sax IT+0-5-1 Ki2+0-2i3+0-3

(2) transposed up (2) transposed up

5 to G, later G 5 to G, later G

minor; clarinet (3) minor; clarinet (3)

transposed up 1 to transposed up 1 to

C, later C minor. C, later C minor.

CCS All B flat major, All B flat major, concert %2K+5+2 K+0-5

later key change later key change %3K+1+0

to B flat minor to B flat minor;

parts printed

transposed

Case TTA: Full score transposition. Here the entire score is to be transposed. In the
setup data the signature is set to -2. Then the command K+2+2 says to transpose up
2 steps from the initial key of B flat to D, and put 2 sharps in the key signature. No
special attention is needed for the MIDI; it will come out in the transposed key. A
later (full-score) key change requires another K command, but now the transposition
parameter is set to 0 and the new key is the concert key (I guarantee people will be
confused by this). In the example the command for the signature change is K+0-5 ,
making the new concert key B flat minor with 5 flats, and, considering the initial
transposition, causing the score and MIDI to come out in D minor with 2 flats.

Case CTS: Parts all entered in concert key, but some transposed in the printed score.
Here, to produce the printed score, parts are all entered in concert key, but
instrument-wise transposition is used for the transposed instruments. In the
example the alto sax part is entered in B flat but will be transposed up 5 steps in
the printed score, to G major. This is brought about with Ki2+5+1 . Similar logic
applies to the clarinet part, while the trombone part is not transposed. If a MIDI
file is desired, it will come out in concert key, but only after using the transpose
option in the MIDI command to undo the transpositions caused by the K command.
In the example the command IT+0-5-1 does this, “de”transposing each of the three
instruments by the necessary number of steps. For a later key change, first the
full-score K command changes the concert key, then the instrument-wise Ki command,
with the same transpositions as the initial one, sets the new key signatures for the
transposing instruments. Here the signatures to be entered are the transposed
signatures, i.e., the ones that will be printed.

Case TTS: Parts entered in respective transposed keys, and printed in those keys in the
score. In this method of scoring transposing instruments, parts for transposing

2 ELEMENTS OF PMX 23

instruments are transposed ahead of time and entered exactly as they will appear in
the score. So to produce the printed score this way, the pitch does not have to be
changed, but the key signatures must be set separately for each transposing
instrument using the Ki command. In the example, the alto sax is entered in the key
of G so the instrument-wise option for it is Ki2+0+1 . Note that +0 means no further
transposition is needed before printing, because the part was transposed on entry.
Once again, if a MIDI file is desired, it will come out in concert key, but just as in
the previous case, you must use the transpose option in the MIDI command IT to
undo the transpositions caused by the K command. For a later key change, the same
full-score K command as in the previous case is used to change the concert key. Then
the instrument-wise Ki command, now with +0 for the transpositions, sets the new
key signatures for the transposing instruments, again using the transposed
signatures.

Case CCS: Parts entered in concert key, printed in score in concert key, but transposed in
separate printed parts. This is the easiest case of all. Nothing special needs to be done
for the score, but part-only, full-score transposition commands %[instrument
number]K... should be entered in the score. Then scor2prt will generate a transposed
part. Of course if a MIDI is made from the score it will come out at concert pitch.
For example, to transpose the alto sax part up 5 steps, initially to G major, near the
top of the score file enter %2K+5+1 . Later, where the concert key changes to B flat
minor and the alto sax to G minor, enter simply K+0-5, making the new concert key
B flat minor with 5 flats. When scor2prt is invoked to make separate parts, this will
be transferred verbatim into all parts, and then PMX will internally adjust the
signature for each transposed part as required.

Making separate parts. In all of the cases discussed, if the patterns of commands in
the table are followed, then separate parts can be made as usual using scor2prt. They
will automatically come out transposed as desired.

Texts of the transposition sample files:

%TTA.pmx

3 2 4 4 4 4 0 -2

1 1 20 .13

Trombone II+III

Trombone I

bbb

.\bs

Tt

TTA

Apr

I

K+2+2

b42 d f b t b t gf df b /

b42 d f b t b t gf df b /

b42 d f b t b t gf df b /

K+0-5

b42 c d e f gs as b /

b42 c d e f gs as b /

b42 c d e f gs as b /

%CTS.pmx

3 3 4 4 4 4 0 -2

1 1 20 .1

Trombone

Alto Sax

Clarinet

btt

.\

Tt

CTS

Apr

Ki2+5+1i3+1+0

IT+0-5-1

b42 d f b t b t gf df b /

b43 d f b t b t gf df b /

b44 d f b t b t gf df b /

K+0-5

Ki2+5-2i3+1-3

b42 c d e f gs as b /

b43 c d e f gs as b /

b44 c d e f gs as b /

%TTS.pmx

3 3 4 4 4 4 0 -2

1 1 20 .1

Trombone

Alto Sax

Clarinet

btt

.\

Tt

TTS

Apr

Ki2+0+1i3+0+0

IT+0-5-1

b42 d f b t b t gf df b /

g44 b d g t g t ef bf g /

c45 e g c t c t af ef c /

K+0-5

Ki2+0-2i3+0-3

b42 c d e f gs as b /

g44 a b c d es fs g /

c45 d e f g as bs c /

%CCS.pmx

3 3 4 4 4 4 0 -2

1 1 20 .1

Trombone

Alto Sax

Clarinet

btt

.\

Tt

CCS

Apr

%2K+5+1

%3K+1+0

I

b42 d f b t b t gf df b /

b43 d f b t b t gf df b /

b44 d f b t b t gf df b /

K+0-5

b42 c d e f gs as b /

b43 c d e f gs as b /

b44 c d e f gs as b /

2.3.6 Text

The commands h or l, when placed in the first column of an input line and followed
by a blank or, for h only, by a signed integer, stand for header and lower text. They
will put a text string above or below the top staff in the first bar of the block where

2 ELEMENTS OF PMX 24

they are entered. The text string must be on a line of its own, immediately following
the command. The integer is a vertical shift in \internotes.

A title block with up to three elements can be defined at the beginning of the first
input block. Tt signals that the text on the following line is to be set as a title for the
whole piece, and it will be centered. Tc similarly indicates a composer’s name, to be
set below the title and right justified. Ti likewise stands for an instrument name,
which will be set above the title, left-justified. The text for any of these commands
can be split over two or more lines by including \\ at the location of the line break.

Ti will automatically be invoked by scor2prt when it generates parts from a score.
Extra vertical space can be added between the title block and the top system by

appending to Tt a one- or two-digit number representing the space in \internotes.
This only works if Tt is the final title block element entered.

The D command can be used to enter arbitrary text as described in
section 2.2.10.

Lyrics may be entered as described in section 2.2.14. 2.73

2.3.7 Page numbering, centered header text

If you want pages to be numbered at the top left or right, place the command P

anywhere within the PMX code that represents the first page to be numbered
(usually the first or second page). P can be followed optionally by the starting page
number and/or by l or r, the latter overriding the default locations of odds on the
right and evens on the left. There is also a special option c for centered header text.
It must be the last option in the P command. It will define text to be printed at the
top of every page after the first. If a blank follows c, the default header text will be the
instrument name entered with the command Ti . If any non-blank character except "

follows c, the header text will start with that character and end at the next blank. If
" follows c, the header text will be everything between that and the next " (this
permits headers containing spaces). The P command and its options will be ignored
when making parts from a score (since page numbering will usually be different in
the score than in the parts), but page numbering (and centered headers) for parts
can be still be initiated independently, for example with %!P2 or %1P2r (see section 3).

2.3.8 Overriding certain defaults, or getting the most from PMX

Understanding this section is important if you want to get the most out of PMX. In
many cases the switches described here represent subtle but significant improvements
that have come along since PMX was initially developed. Rather than changing the
defaults, they are treated as optional in order not to upset the layout of older scores.
For example, virtually every new score I create begins with at least Abple.

As you may have guessed, it is the command A that can be used to override a
grab-bag of default settings. The available options affect a wide range of
PMX features: sizes and interpretation of accidentals, dot positions, space before the
first note of every bar, space between staves, slur package selection, vertical
positioning of Type K postscript slurs, line-breaking Type-K slurs, curvature of
Type-K slurs, naming of parts, vertical positioning of rests in 2-voice staves, brackets 2.6
for non-beamed xtuplets, and inputting so-called normal include files.

Size of Accidentals. b makes all accidentals big, s makes them all small. By
default, big ones are used unless unaltered spacing doesn’t provide enough space.
Thus the default behavior may cause a mixture of big and small accidentals, and in
fact is not recommended.

2 ELEMENTS OF PMX 25

Relative accidentals. If transposing, then the relative accidental convention must
be used, indicated by r. This changes the way you enter accidentals. With relative
accidentals, the note options s, f, n take on unconventional meanings, now
respectively signaling that a note should be raised a half step, lowered a half step, or
left alone relative to the pitch it would have according to the key signature. So for example,
with Ar, in the key of B flat major the note command bs would cause a B natural to
be printed. By contrast, the default is the normal, absolute convention, where the
indicated pitch alteration is relative to what the pitch would be if there were no key
signature.

Vertical position of dots. If there are staves with two voices, d causes dots in the
lower one to appear on or below center, in contrast with the default.

Gap at start of bar. Use a followed by a decimal number to override the default
setting for \afterruleskip, the space before the first note in a bar. The default in
PMX is 1\elemskip, 20 percent smaller than MusiXTEX’s.

Space between staves within a system. If PMX’s vertical spacing between staves
within a system is not pleasing, use I or i , followed by a decimal number, to apply a
scale factor to \interstaff . I affects all pages, i only the current one. Shrinking the
space between staves within each system will cause the space between systems to
increase, and conversely. These options have no effect if there is only one staff per
system.

Equal space between systems. MusiXTEX normally draws a virtual box around
each system and inserts equal vertical space between boxes. When objects protrude
above the top staff in a system or below the bottom one, this can lead to unequal
spacing between the top staff line in one system and the next. If you prefer that the
vertical spacing between the staves of consecutive systems be constant for the whole
page, use the e option of the A command. One side benefit of Ae is that it will
prevent systems from spilling over onto extra pages, regardless of how many systems
are put on the page. When using this option, you may occasionally want to force
more vertical space between certain systems. There is a TEX macro \spread that can
be inserted anywhere in the system before the desired wider gap. It has one
argument, the desired extra space in \internotes.

Stop grouping systems at top in sparse pages. Another command affecting
vertical spacing is the v option of the A command (for vertical). PMX normally
spreads staves vertically over a full page, unless the white space becomes excessive,
in which case it groups all staves near the top of the page. Entering Av will suppress
this grouping near the top, and ensure that systems will always be spread vertically
regardless of how much white space is left. It is a toggle; the second time it is issued,
the behavior reverts to the default.

Make some staves smaller. The S option to the A command allows you to specify 2.7
a different size for selected staves and their notes compared to the global value set in
the setup data. It is followed by exactly noinst characters, one for each instrument,
selected from 0, -, s, or t for normal, small, small, or tiny sizes respectively.

Postscript slurs. The command Ap activates Type K postscript slurs. To use
this you must have musixps.tex somewhere that TEX can find it, and psslurs.pro

somewhere that dvips can find it. If these files happen to be missing from your
TEX distribution, they can be found here. Several suboptions affecting Type K
postscript slurs are described here and in the following paragraphs. First, by default
these slurs and ties will not have their vertical positioning tweaked to avoid
tangencies with staff lines. To activate this type of adjustment, use one of the
suboptions +s or +t for slurs or ties respectively. (For example, Ap+s). Be warned

http://www.icking-music-archive.org/software/musixtex/musixtex.zip

2 ELEMENTS OF PMX 26

that this may alter the endpoint positions from what one would normally expect. To
deactivate the adjustment, use the same command but with - . Another suboption of
Ap affects line-breaking slurs. Normally a full tie is drawn at the start of the second
line. However, the suboption Ap+h causes the use of halfties for the second part, which
are flattened at their left-hand end, and require the special font mxsk provided with
the Type K postscript slur distribution. It may be cancelled with Ap-h .

The suboption l (e.g. Apl) activates some other tweaks and tweaking
capabilities for line-breaking Type K slurs and ties. It automatically tweaks the
horizontal positions of the end point of the first segment and the start of the second,
uses a normal tie character for both segments of a tie, and enables further tweaking
of the horizontal and vertical positions of internal endpoints on a case-by-case basis,
using options in the initial slur or tie command (see section 2.2.9, and the end of the
fourth system in the example file barsant.pmx).

Another pair of suboptions to Ap affects the default curvature of Type-K
postscript slurs. Ap+c and Ap-c will respectively increase or decrease the default
curvature of all slurs to the next level in the sequence f, n, h, H, HH . (Here n

stands for normal.) Several levels may be traversed by repeating the suboption, e.g.,
Ap+c+c increases the default curvature by two levels. If you try to go outside the
allowable range, a warning will be issued, the curvature will be set to f or HH , and
processing will continue. See section 2.2.7 for further details.

If your score contains Type K slurs and if you use a program such as dviselec to
extract single pages from a .dvi file, you should use the suboption h (e.g. Aph) .
This will cause the header file psslurs.pro to be written into the postscript file at
the top of of every page.

Vertical rest positioning in keyboard scores. The option AK activates special 2.6
rules for vertical positioning of rests in two-voice staves. By way of background,
without this option, rests in two-voice staves have default positions based on a
simple rule that is not context-sensitive: those in the lower voice (the one before //)
are 4\internotes below their single-voice default positions, and those in the upper
line are 2\internotes above the single-voice default. In contrast, the option AK

invokes a set of context-sensitive rules to set the default position. The baseline rule
is to align the rest in a horizontal line with the next following note in the same bar.
If there is no following note in the bar, then it is aligned with the next prior note. If
there are simulataneous rests in both voices, the old rule is applied. When the AK

option is in force, it only affects places where there are two voices in a staff. It may
be toggled on and off at the beginning of any input block, using just AK. When the
option is in effect, any user-defined tweaks on the height of a rest will supersede the
option for that particular rest, i.e., the tweak will be applied relative to the
single-voice default position. When AK is in effect, the option L in a rest command
will cause the vertical position of that rest to be based on the preceding note, rather
than the following one as is the default.

Names of PMX files for parts. The option N to the A command allows you to
specify arbitrary names for the part files generated by scor2prt. Follow AN with the
part number and the new file base name in double quotes. Immediately follow this
with any number of additional part numbers and alternate file base names in quotes.
When part files are generated, .pmx will be appended to the requested base name.

Gapped bracket for nonbeamed xtuplets. Non-beamed xtuplets will normally be
printed with a bracket above or below, and a number above or below that. If you
would like this number instead to be positioned within a gap in the bracket itself,
enter AT .You must have tuplet.tex available to your TEX processor. If missing, this

2 ELEMENTS OF PMX 27

file can be found here.
“Include” file. PMX commands in an external file can be included at the start

of any input block by designating the file as a normal include file, using the command
AR[filename] . See section 2.7 for details.

Positioning printed pages. For printing on letter or a4 paper, the command Acl 2.7
or Ac4 will set the margins of the printed area so it will be properly centered with no
further adjustments needed when running dvips.

2.3.9 Extra hardspace, horizontal shifts

Despite the author’s best intentions to relieve you of the chore of adjusting any
horizontal spacing by hand, there may be some occasions where you will want to do
it. A command starting with X initiates one of two types of horizontal adjustment: A
shift moves one or more characters but does not affect any other spacing anywhere; a
hardspace inserts a fixed amount of space at a particular time and affects the
horizontal positions of everything in all staves in the system. If the command
includes S, it is a single shift and affects only the next note or rest. If it includes a :

it either starts or terminates a group shift. All X commands except group shift
terminations must include a decimal number for the size of the offset in notehead
widths. If the number is immediately followed by p, then the number represents
points, otherwise, notehead widths. If there is no such number but there is a : the
command signals a group shift termination. Group-shift commands must occur in
start/terminate pairs, and group shifts cannot extend across a bar line.

An X command containing neither S nor : is automatically a hardspace.
Because horizontal spacing in parts will usually differ from that in the score, by

default the hardspace command will not be copied into parts by scor2prt; however the
shift commands will be copied. These behaviors can be overridden using the
methods to be described in section 3, Alternatively, to help keep PMX score files
neat and readable, the character B can be used within the X command to signify that
it applies to both score and part, or P for part only.

2.3.10 Minimum spacing between notes in crowded systems

PMX does some special, complex analysis to adjust horizontal spacing in crowded
systems. By default, the minimum space between consecutive noteheads is 0.3
notehead widths. In very special situations you may want to change 0.3 to some
other fraction. To do so, enter W. (decimal point is required) followed by 1-9 to
represent the number of tenths of a notehead width to be used as the minimum
spacing. Use of this option is demonstrated in the example file barsant.pmx.

2.3.11 Page size

The default page size is 740 by 524 pt (10.3 by 7.3 in). To change the height or
width, use the special commands h[n][u] or w[n][u] at the beginning of the first input
block. Here n is a decimal number for the new dimension and u defines the units; i
for inches, m for millimeters, and p or nothing for points. This command can be used
together with %% or %! (see section 3) to give the parts made by scor2prt different
page sizes than the parent score.

http://www.icking-music-archive.org/software/musixtex/musixtex.zip

2 ELEMENTS OF PMX 28

2.3.12 Line, page, and movement breaks

It is possible to force line, page, or movement breaks anywhere. For a line break,
just enter L[n] at the start of an input block (in the first voice only), and the n-th
system will start there. To start page m at line n, enter L[n]P[m]. You can’t force a
page break without first forcing a line break.

To force a movement break, you must first force a line break as above, then
enter M. If a page break also occurs here, the P must precede the M. Options following
M are +[integer] to insert vertical space in \internotes before the break, i[decimal
number] to reset the first-line indentation as a fraction of the line width, and c to
continue bar numbering rather than resetting the bar number to 0. Also, to change
the number of instruments, enter n[integer], then the number of each instrument in
their new order, then a clef-designating character for each staff of each instrument.
(An instrument’s number is simply its position in the original sequence.) There can
never be more than the original number of instruments. In this instance, two-digit
instrument numbers must be preceded with : (colon). If you want to start with
some number of instruments and later increase it, you’ll need to insert a dummy
page at the beginning with the full set of instruments, then start the second page
with a movement break and decrease the number there.

Another option after M is r+ or r-, which either forces or suppresses reprinting
the instrument names. The default is to print them if the number of instruments
changes, but otherwise not.

Immediately after a movement break, any desired meter changes, key changes,
or text can be entered in the normal way.

2.3.13 Fractional bars

Often if a piece starts with a pickup, the last bar may not be complete. In such cases,
it is usually possible to place the last bar in an input block by itself, headed by a blind
meter change. For example, if the meter had been 4/4 and there was a quarter note
pickup, leaving 3 beats in the last bar, the last bar might be coded m3400 cd24 /.

2.3.14 Stem direction of bass notes

By default PMX makes stems go up for middle-line D’s in bass clef, but down for
notes on the middle line of all other clefs. If you want middle-line bass-clef notes also
to have downward stems by default, enter a B near the beginning of the file.

2.4 Putting TEX Commands into the PMX File

There are five ways to enter TEX commands into the .pmx file. Four of them are
in-line, where the commands are entered directly; the fifth is by way of an external
file.

The four categories of in-line TEX strings differ mainly in where they will appear
in the .tex file. (A TEX string consists of a starting character, a sequence of
TEX commands, and a terminal character). In the .pmx file, only type 4 TEX strings
may wrap over line breaks. All in-line TEX must adhere to the 128-character limit
per line, but each line can have more than one TEX command. Type 1 begins with a
single \ and will appear in the .tex file right before the TEX command for the next
note or rest in the .pmx file. Multiple type 1 strings associated with the same note or
rest are allowed, although the total length may not exceed 128 characters (so there is

2 ELEMENTS OF PMX 29

generally no reason not to combine all TEX commands for a single note into a single
type 1 string).

A type 2 string begins with \\ and will appear near the top of the .tex file, right
before \startmuflex, regardless of where it appears in the .pmx file. A type 3 string
starts with \\\ and will appear right before the \xbar or \alaligne at the beginning
of the current input block, before the first barline of the block. While individual
type 2 and 3 strings may not wrap over line breaks in the .pmx file, strings of like
type on consecutive lines will appear together in the .tex file. Types 1, 2, and 3
strings must end with \ (backslash-space). This means that they may not contain
the TEX macro \ (backslash-space). Finally, each type 2 or 3 string should be
isolated on a line of its own, and should be started in column 1.

Type four permits multiple lines of arbitrary text to be entered at the top of the
.pmx file; they will be transferred verbatim to the top of the .tex file. Type four is
initiated with --- alone as the top line of the .pmx file. Then follows any text on any
number of lines, until the next line starting with --- terminates the block to be
transferred.

The only other distinction among the types of in-line TEX strings arises when
scor2prt is used to make separate parts (see section 3): types 2-4 will be copied into
all parts, while type 1 only goes into its original part.

If you should want to enter a type-1 (note-based) string longer than 128
characters, you could use a series of type-2 or -3 strings to define a TEX macro
containing the desired commands.

PMX provides one further option for entering an unlimited set of
TEX commands just before \startmuflex, and before any Type 2 in-line TEX strings.
Simply put the commands into a text file named [basename].mod in the texinput
directory. It will then automatically be entered with an \input command. This
feature is retained mainly for backward compatibility; it has been essentially
replaced by the various options for in-line TEX strings.

2.5 Figured Bass

Figure commands are entered after their associated note commands. They only work
in the first (lowest) voice, and in any one other voice. Enter the characters as they 2.6
would appear from top to bottom, and as you might pronounce them, e.g., 64 or 73.
Flats here are - (minus), sharps are #, and naturals n, before the number (if there is a
number) (notice the characters are different here than in notes). So for example
sharp third is #3, just a sharp is #, six (over) flat five is 6-5, and sharp six (over) 4 is #64.
In addition to the symbols just described, the following special symbols are available:
2, 4, 5, 6, 9 . To use them, you must have the font cmrj in your TEX system, and 2.6
then just put an s after the number.

The program positions all the figures for each system below the lowest staff of
that system, with their tops aligned, and just low enough to clear the lowest beam,
notehead, or stem that could interfere. If you would like to change the vertical
alignment for the remainder of the staff starting at a figure after the first, append 2.71
v[n], where n is an integer representing the vertical shift in \internotes, which may
have a minus sign.

If you want a figure to align horizontally in the second tier, insert the
placeholder figure (underscore) before the one you want lowered. This is equivalent
to lowering the figure stack by 4 \internotes. If you want to raise the entire stack by 2.6
an integral number of \internotes, append + and the number. This can be combined

http://www.icking-music-archive.org/software/musixtex/add-ons/figbas.zip

2 ELEMENTS OF PMX 30

with the placeholder figure to provide full control over the vertical position of the
stack.

Sometimes you may need to enter a figure when there’s no bass note sounding.
To do this, just after the most recent bass note enter x, followed by a two single
digits (the first is a repeat count; the second a time value, i.e., 2,4,8,1, or 3),
immediately followed by a figure symbol as defined in the previous paragraph. This
will offset the figure from the associated note by the specified time value. For
example, if the lowest voice contained c03 x3465, there would be a whole-note c, and
3 quarter notes later a figure 65 below the staff.

There is also a continuation command, a zero followed immediately by another
unsigned number. This produces a horizontal line under the bass note, starting just
to the left and extending to the right by the given number of \noteskips. The height
and length of the line are set by the current note’s level and \noteskip respectively.
These can be mixed in with other figures to produce vertical stacks. If another
figure follows in the same command, use : as a separator. If \noteskip changes or a
note drops below the starting level before the line ends, it is possible to trick
PMX by entering separate 0[n] commands under each consecutive note; PMX will
automagically join them together at the same height (thanks to Werner Icking for
this idea).

If there are figured bass commands in a .pmx file but you want them to be
ignored, then enter the command F at the beginning of the body of the file. This
feature would most often be used in the form %1F (see section 3), which makes a
separate bass part with no figures.

Figured bass commands will not be altered in any way under transposition.
There is no universal set of interpretations of figured bass symbols, so no automatic
transposition is possible.

2.6 Macros

A PMX macro is a single command that stands literally for any any string of
characters that may occur in the input file (sorry, no variables). It may be useful if
you need to repeat the same string later. There is no practical length limit.

To record a macro, type MRn where n is between 1 and 20. Everything you then
type will be processed normally as well as stored, until you enter the command M.
The next time you need to enter the same string, just type MPn to play back the
macro.

To just save a macro without having PMX process it as you enter it, start it
with MSn.

Macros can be redefined at will. PMX will print a warning whenever this occurs.
If you use macros and want to make separate parts, some care is necessary.

Scor2prt will only transfer MR macros into the part where they originated, but will
transfer MS macros into all parts.

2.7 Include Files

Include files are separate text files containing arbitrary (but contextually appropriate)
sequences of valid PMX commands. By using the techniques described in this
section, the commands in an include file can be inserted at any desired place in the
virtual PMX file that the code processes. They will always be syntax-checked.

There are two types of include files, global and normal. There can only be one
global include file and it must be named pmx.mod. If activated, its contents will

3 MAKING PARTS FROM A SCORE 31

always be inserted right after the setup data. To activate it, two conditions must be
met: (1) an environment variable PMXMODDIR must be defined to contain a valid path,
ending with / or \ ; (2) a file named pmx.mod must be present in the directory so
defined. If PMXMODDIR is not set, or if it is defined but there is no file pmx.mod, then
processing will proceed as usual.

Normal include files can have any name and do not require any environment
variable to be set. They are activated by the PMX command AR[filename] , placed in
the .pmx file at the location where the included lines are to go. It will generally only
make sense to place this command at the beginning of an input block. PMX will
first check for the file as pointed to by [filename], which may contain a complete or
partial pathname preceding the actual file name. If [filename] is not found, then
PMX will look for %PMXMODDIR[filename], i.e., it will check the directory defined by
PMXMODDIR if PMXMODDIR has been set. However, it is not necessary to define PMXMODDIR

to use a normal include file. There may be any number of normal include files. The
same file may be used multiple times. Include files cannot contain references to
other include files via the AR command; if you try to do that your computer will
explode. The following information regarding all activated include files will be
printed both to the screen and to the .pml file: notice of opening or closing, echo of
the contents, error messages pertaining to syntax errors in the included
PMX commands, and an error message if PMX cannot find a referenced normal
include file. In the latter two cases PMX will stop.

2.8 Batch Processing

Due to the number of different programs that must be run in sequence to produce a
printed sheet of music with the MusiXTEX system, most users prefer to use a batch
script to control the process. Since batch commands are platform-dependent we will
not provide examples here, but will mention several PMX features that can facilitate
batch processing.

First, whenever pmxab terminates due to a syntax error, the exit code is set to 1.
There are various ways of detecting this with batch commands, then acting
accordingly. Second, pmxab always writes a file pmxaerr.dat containing a single
number: 0 if it exited normally, otherwise the line number in the .pmx file where the
syntax error was. With advanced batch programming techniques, this file can be
opened and read, and if there was an input error, a text editor can be opened and
the input point placed on the line with the error.

There have been several requests to allow PMX to keep running even after it
detects an input error. This has not been done because in many cases any error
messages after the first one would be meaningless, or worse, uncorrected errors could
cause crashes. In any event, all the output from pmxab will be stored in the log file
[jobname].pml.

3 Making Parts from a Score

Separate parts can be made by running scor2prt and entering the basename when
prompted. The program will create noinst separate .pmx files, one for each
instrument. By default the files will be named [basename][n].pmx, where [n] is the
sequential position of the instrument. If desired, part file names can be customized
with AN as described in section 2.3.8.

3 MAKING PARTS FROM A SCORE 32

In this section we describe how to control the layout of the parts separately
from that of the score, but by using commands that are placed in the .pmx file for the
score. This eliminates the need for ever editing the .pmx files for the parts separately.
You can make all corrections in the file for the score, and then re-run scor2prt.

Normally all lines starting with % in the parent .pmx are transferred into all the
parts. However, if a line has %% in columns 1-2, both it and the following line will be
ignored when making parts. If the ignored line contains only h , l , Tc , Ti , or Tc to
start, then one additional line will be ignored.

Conversely, if a line begins with %! then it will be ignored as usual in creating
the parent .tex file, but after stripping the first 2 characters the rest will be put in
the .pmx file for all the parts.

To enter a line into the score file that is only to be transferred to one part, begin
the line with %h, where h is an extended hexadecimal digit representing the part number 2.6
from 1 to 24 (1,2,...,9,a,b,c,...,n,o). The first two characters will then be
stripped and the rest transferred to the desired part. For example, to force a line
break to system 15 and a page break to page 2 in part 11 only, enter %bL15P2. The use
of the extended hex digits a-o creates a potential incompatibility with prior versions.
To minimize this, the character after “%” will only be interpreted as a part number if
it represents a number less than or equal to noinst; otherwise the entire line will be
treated as an ordinary comment and transferred to all parts as a comment.

Although only permitted in the first voice in the score, the following commands
with all their options will automatically be copied into all parts (unless the preceding
line has %%): m, V, R, A, h, w, K. Literal TEX strings of types 2-4 will also be copied
into all parts, while type 1 will only go into its original part.

User-defined hardspaces (X without :) are handled specially. By default they are
not copied into parts. There are two ways to circumvent this. One way to insert
hardspace x into part n is to place in the score, on a line of its own, the command
%[n]X[x] . The other way is with options in the X command in the score: B causes the
hardspace to be used in both score and parts; P puts it into the part but not the
score.

Instrument-wise transposition commands (see section 2.3.4) are also handled 2.7
specially. When scor2prt encounters Ki[n] (for instrument n) in the score, it transfers
the transposition information (transposition amount and key signature) for that
instrument into the corresponding part, replacing Ki by K and keeping only the
information for instrument n.

Lateral shifts (X[. . .]:) will be handled normally, staying with their original voice.
By default the total number of systems in each part will be the same as in the

score. If you want to override this, there is a command S[n] (where n is the desired
number of systems), which can only appear at the beginning of the first input block.
This can be used after %! to affect all the parts, or after %[h] to affect just part h.
Scor2prt will also compute how many pages it thinks each part should have, and enter
that in the startup data for that part. If you wish to override that, then in the .pmx

file for the score, insert for example %3S14P2 to force the third part to have 14
systems and 2 pages (you cannot override the number of pages without first
overriding the number of systems).

A musicsize of 20 is the default in all parts. This may be overridden with the
option m in the command S; e.g., %2S15m16 .

As already noted, a P command for page numbering in the parent file is ignored
when making parts. To initiate page numbering in the parts, use for example %!P

anywhere within the PMX code representing the first page of the parts (from TEX’s

4 MAKING MIDI FILES 33

standpoint the command must occur between the beginning and end of the page on
which the numbering is to begin). It will often be useful in this case to use the
option c , which by default causes the instrument name to be centered in small type
at the top of every page after the first.

Note the distinctions among the various usages of P: as an option with S, it sets
the total number of pages in a part; as an option with L, it forces a page break; and
as a command on its own, it controls page numbering and centered headings.

MIDI commands, i.e., those starting with I, will never be copied into parts,
unless they are in a special comment line as just described.

One function of scor2prt is to condense consecutive bars of rest into a single
group of special printed characters with a number above it. The command rm defines
such a multi-bar rest as described in section 2.2.2. Scor2prt will automatically insert
rm commands into the .pmx files for the parts where appropriate. However, for this
feature to work, the first full-bar rest in the sequence must have its duration explicitly
defined in the parent .pmx file, either with a digit or with p. I.e., the feature will not
work if the first rest in the sequence inherits its duration from the previous note.

Using the special PMX commands listed in this section, augmented where
needed with literal TEX commands, it is possible to store all the information for both
the score and the parts in a single .pmx file. This greatly simplifies the editing
process, since both the score and the part can be corrected at once, and parts need
not be re-edited each time they are regenerated from the score.

4 Making MIDI Files

PMX has an elementary capability to create MIDI files. It is intended mainly to aid
in editing scores, so it does not have advanced facilities one would want for making
musically satisfying sound files.

As of version 2.6, PMX can only generate MIDI files for scores with 15 or fewer 2.6
voices.

Entering the command I before any notes have been entered will cause a MIDI
file [jobname].mid to be generated in the current directory. Options may follow,
without spaces. They are defined in the following paragraphs. Multiple options can
be combined in one I command. I commands can appear later in the file as well, but
only at the start of an input block. Sometimes the order of the options matters,
determining for example whether or not a user-defined pause is included inside a
macro block.

tx sets the tempo to x quarter notes per minute. Default is 96. You can change
tempos as often as you like, but only at the start of an input block (as with all MIDI
commands).

ii1i2...in assigns MIDI instruments i1,i2,...,in to the respective PMX instruments.
The default is harpsichord, of course. If you use this option, you must specify all
instruments. Each in is either a 2-letter abbreviation or an integer between 1 and
255. Acceptable abbreviations are listed below. Numbers and pairs of letters may be
mixed, but consecutive pairs of numbers must be separated by : (colon) . This
option can only be exercised once per file. Also, the number of instruments cannot
change during a piece.

The number of arguments following suboption i, as well as the next three 2.7
described suboptions, must in fact equal the number of instruments. Before version
2.7, it was the number of staves (despite the incorrect description in the manual!)

4 MAKING MIDI FILES 34

These numbers may differ and this creates a backward incompatibility. Hoping this
won’t cause too much distress, I’ve enhanced the real-time error messages.

vi1:i2:...:in assigns MIDI velocities to each instrument. The colons are required.
Values may range from 1 to 127. The default is 127.

bi1:i2:...:in assigns MIDI balances to each instrument. The colons are required.
Values may range from 1 to 128. The default value is 64, which represents the
center. Smaller numbers favor the left stereo channel; larger ones the right.

T allows transposing any instrument by a selected number of steps (\internotes). 2.7
It must be followed by exactly noinst signed integers representing the amount of
transposition for each instrument in order. In practice it is useful in two situations
(1) To transpose a MIDI output up or down by one octave (7 \internotes); and (2)
when a transposing instrument is printed in the transposed key in the score after
having issued Ki, to undo the transposition in the MIDI.

M initiates a macro operation. This is used for repeats, da capo’s, etc. Macros
must have ID numbers between 1 and 20. Operations are start record macro i: MRi ;
end recording: M ; and playback (insert) macro i: MPi . Only one macro can be active
at a time, recording or playing but not both. If you try nesting or overlapping
macros, your computer will become psychotic.

px inserts a pause of x quarter notes. Decimals are allowed, but will be rounded
to the nearest sixteenth note.

gi sets the MIDI gap to i MIDI clock tics. This is a silence inserted at the end of
every note, while decreasing the sounding duration by the same amount. The default
is 10, which is 2/3 of a 64th note.

The MIDI module does not recognize graces, ornaments, repeats, voltas, or
segnos. The only ties that are recognized are those using s or (alone, with no
explicit ID number. Key signatures, time signatures (meter) and instrument names
will be written into the MIDI file, the latter as track names. This will have no effect
whatsoever on audible output but will affect on-screen appearance of some MIDI file
players and editors. Location of the PMX key-change and meter-change commands
relative to MIDI macro delimiters in the source will affect (in the obvious way) how
these data are passed to such programs.

The MIDI file generator does not yet support changing the number of
instruments in midstream. Doing so will cause unpredictable results.

The instruments are a subset of “The General MIDI Instrument Specification.”
Of course how they sound depends on your hardware and software. Instruments not
listed below can still be used but must be specified by number. The numbers listed
here are from the 1-128 range; when passed to the MIDI file they are reduced by one.

pi Acoustic Grand Piano (1)
rh Rhodes Piano (5)
ha Harpsichord (7)
ct Clavinet (8)
ma Marimba (13)
or Church Organ (20)
gu Acoustic Nylon Guitar (25)
ab Acoustic Bass (33)
vl Violin (41)

va Viola (42)
vc Cello (43)
cb Contrabass (44)
vo Synth Voice (55)
tr Trumpet (57)
tb Trombone (58)
tu Tuba (59)
fr French Horn (61)
so Soprano Sax (65)

al Alto Sax (66)
te Tenor Sax (67)
bs Baritone Sax (68)
ob Oboe (69)
ba Bassoon (71)
cl Clarinet (72)
fl Flute (74)
re Recorder (75)

5 LIMITS 35

5 Limits

For simplicity in writing the program, PMX has numerous variables with fixed
dimensions. In most cases there are no checks against these limits (hey, I’ve got
more important things to program), so occasionally there may be hangups due to
exceeding a dimension. Any of these can potentially be increased by making a
request via the mailing list. However, before making such a request, try working
around the problem by breaking the input into smaller blocks.

5.1 Limits on quantities that a user can control

(The user can control the number of these items, but cannot control the limit on the
maximum number of them.)

128 characters per input line.
24 staves. 2.6
2 voices per staff.
24 voices per system. 2.6
125 systems.
600 bars.
40 forced line breaks.
10 forced page breaks.
18 key changes.
20 pages.
600 notes per input block. 2.6
15 bars per input block.
101 slurs per input block.
74 figures (figured bass) per input block.
37 grace note groups per input block.
74 notes in grace note groups per input block.
52 literal TEX strings per input block.
6 voltas per input block.
24 trills per input block. 2.6
62 chordal notes (non-spacing) per input block.
8 beams per voice per bar.
40 forced beams per voice per input block.
10 clef changes per voice per input block.
24 notes per beam.
24 notes per xtuplet.
41 text-dynamic strings per input block.

5.2 Limits not under immediate user control

2000 \notes groups.
20 \notes groups per bar.
20 inserted standard anti-collision spaces (not xtuplet or end-of-bar) per bar.
20 inserted anti-collision spaces within xtuplets per bar.
19 inserted anti-collision end-of-bar hardspaces per system.
83 inserted anti-collision end-of-bar hardspaces.
400 inserted standard anti-collision spaces per system.
100 inserted anti-collision spaces within xtuplets per system.
1000 inserted standard anti-collision spaces.

6 CLOSING NOTES 36

200 inserted anti-collision spaces within xtuplets.
24576 bytes of MIDI output data per voice.

6 Closing Notes

6.1 About the Example Files

most.pmx contains examples of most of the PMX commands, and a few programming
tricks, including examples in the last line of beam groups whose notes vary widely in
pitch. The printed output displays the PMX commands near to the resulting typeset
characters. It is more useful to look at the printed output rather than the source
file, since the file is littered with in-line TEX needed to output the text strings
representing the PMX commands. WARNING: Do not try to play this music; it could
be hazardous.

barsant.pmx contains the first movement of a recorder sonata by the Italian
Francesco Barsanti (1690-1772). It demonstrates many of PMX’s strong points in a
“battlefield” situation: figured bass, complex beaming patterns, xtuplets, and
automatically adjusted horizontal and vertical spacing in crowded scores. In fact,
this single-page score pushes the limits of vertical and horizontal crowding. To get
the final result, it makes subtle adjustments using various available options: Ae for
equal space between systems, AI1.1 to increase the vertical space between staves in a
system, Apl to activate postscript slurs and special treatment of line-breaking
slurs/ties (note slur at end of fourth system), and W.5 to increase minimum space
between noteheads so the 64th notes don’t touch each other. This is also a good
score to try making parts with scor2prt. A special command %2S9 is used to increase
the number of systems in the recorder part.

mwalmnd.pmx is an Allemand for harpsichord by the German Matthias Weckmann
(1616-1674). It uses many techniques peculiar to keyboard scores, most notably two
voices per staff.

netsoos.pmx is an example with lyrics, including several inline TEX commands to 2.73
enhance the layout.

staffcrossall.pmx contains examples of staff-crossing chords. Some are 2.74
single-stemmed, some are beamed non-xtuplets, and finally beamed xtuplets.

6.2 A Benign Bug

When TEX’ing the output of PMX you will usually get an Underfull \vbox message
at the end of each page. This is due to my using \eject at the end of every page,
which automatically spaces the systems vertically without having to fiddle with
\staffbotmarg. As far as I know, the warning is benign, and may be ignored.

6.3 Where to Get Help

The main home of PMX on the internet is the software section of the
Werner Icking Music Archive. This site also links to a mailing list devoted to
MusiXTEX and related programs including PMX . The denizens of this list are
always willing to answer questions about any aspect of the software. New users are
strongly advised to take advantage of this resource.

http://icking-music-archive.org

6 CLOSING NOTES 37

6.4 Acknowledgments

To Daniel Taupin, Ross Mitchell, and Andreas Egler for creating MusiXTEX; to
Olivier Clary for suggesting a crucial modification in the note-entry scheme; to my
colleague John DiPol (a non-musician!) for the idea of using binary masks to define
beam groupings; to Joel Hunsberger for unraveling some deep MusiXTEX tangles; to
Dirk Laurie for making PMX accessible to vocal music by creating \pmxlyr and M-Tx;
to Stanislav Kneifl and Hiroaki Morimoto for developing the postscript slur
packages; to Christian Mondrup, Andre Van Ryckeghem, Christof Biebricher, Joerg
Anders, Olivier Vogel, and other denizens of the TeX-music mailing list for first-class
bug-finding and support in responding to queries about PMX on the mailing list; to
Luigi Cataldi, Olivier Vogel, Christof Biebricher, and Cornelius Noack for producing
translated and enhanced PMX tutorials; and to Bob Tennent for maintaining the
software section of the web site. Finally, I want to mention again the invaluable
contributions by Werner Icking: his exhaustive beta testing, uncanny bug-finding,
continuing encouragement, and promotion of PMX right up until his sudden and
premature departure from this earthly realm.

	Introduction
	Conventions for This Manual
	Setup
	Basic Operation, by Example

	Elements of PMX
	Setup Data in the Input File
	Structure of the Body of the Input File
	Notes
	Rests
	Chords
	Grace notes
	Ornaments
	Editorial accidentals
	Slurs
	Ties
	Line-breaking Type K slurs and ties
	Dynamics
	Beams
	Clefs
	Arpeggios
	Lyrics

	Commands That Affect All Voices
	Repeats, double bars, forced single bars
	Voltas (first and second endings)
	Meter changes
	Fundamentals of key changes and transposition
	More on transposition; ``transposing'' instruments and example files
	Text
	Page numbering, centered header text
	Overriding certain defaults, or getting the most from PMX
	Extra hardspace, horizontal shifts
	Minimum spacing between notes in crowded systems
	Page size
	Line, page, and movement breaks
	Fractional bars
	Stem direction of bass notes

	Putting TeX Commands into the PMX File
	Figured Bass
	Macros
	Include Files
	Batch Processing

	Making Parts from a Score
	Making MIDI Files
	Limits
	Limits on quantities that a user can control
	Limits not under immediate user control

	Closing Notes
	About the Example Files
	A Benign Bug
	Where to Get Help
	Acknowledgments

