\section{Number Printing} \label{pgfmath-numberprinting}% {\emph{An extension by Christian Feuers\"anger}} \medskip \noindent \pgfname\ supports number printing in different styles and rounds to arbitrary precision. \begin{command}{\pgfmathprintnumber\marg{x}} Generates pretty-printed output for the (real) number \meta{x}. The input number \meta{x} is parsed using |\pgfmathfloatparsenumber| which allows arbitrary precision. Numbers are typeset in math mode using the current set of number printing options, see below. Optional arguments can also be provided using |\pgfmathprintnumber[|\meta{options}|]|\meta{x}. \end{command} \begin{command}{\pgfmathprintnumberto\marg{x}\marg{macro}} Returns the resulting number into \meta{macro} instead of typesetting it directly. \end{command} \begin{key}{/pgf/number format/fixed} Configures |\pgfmathprintnumber| to round the number to a fixed number of digits after the period, discarding any trailing zeros. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed,precision=2} \pgfmathprintnumber{4.568}\hspace{1em} \pgfmathprintnumber{5e-04}\hspace{1em} \pgfmathprintnumber{0.1}\hspace{1em} \pgfmathprintnumber{24415.98123}\hspace{1em} \pgfmathprintnumber{123456.12345} \end{codeexample} See section~\ref{sec:number:styles} for how to change the appearance. \end{key} \begin{key}{/pgf/number format/fixed zerofill=\marg{boolean} (default true)} Enables or disables zero filling for any number drawn in fixed point format. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed,fixed zerofill,precision=2} \pgfmathprintnumber{4.568}\hspace{1em} \pgfmathprintnumber{5e-04}\hspace{1em} \pgfmathprintnumber{0.1}\hspace{1em} \pgfmathprintnumber{24415.98123}\hspace{1em} \pgfmathprintnumber{123456.12345} \end{codeexample} This key affects numbers drawn with |fixed| or |std| styles (the latter only if no scientific format is chosen). \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,std,fixed zerofill,precision=2} \pgfmathprintnumber{4.568}\hspace{1em} \pgfmathprintnumber{5e-05}\hspace{1em} \pgfmathprintnumber{1}\hspace{1em} \pgfmathprintnumber{123456.12345} \end{codeexample} See section~\ref{sec:number:styles} for how to change the appearance. \end{key} \begin{key}{/pgf/number format/sci} Configures |\pgfmathprintnumber| to display numbers in scientific format, that means sign, mantissa and exponent (basis~$10$). The mantissa is rounded to the desired |precision| (or |sci precision|, see below). \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,sci,precision=2} \pgfmathprintnumber{4.568}\hspace{1em} \pgfmathprintnumber{5e-04}\hspace{1em} \pgfmathprintnumber{0.1}\hspace{1em} \pgfmathprintnumber{24415.98123}\hspace{1em} \pgfmathprintnumber{123456.12345} \end{codeexample} See section~\ref{sec:number:styles} for how to change the exponential display style. \end{key} \begin{key}{/pgf/number format/sci zerofill=\marg{boolean} (default true)} Enables or disables zero filling for any number drawn in scientific format. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,sci,sci zerofill,precision=2} \pgfmathprintnumber{4.568}\hspace{1em} \pgfmathprintnumber{5e-04}\hspace{1em} \pgfmathprintnumber{0.1}\hspace{1em} \pgfmathprintnumber{24415.98123}\hspace{1em} \pgfmathprintnumber{123456.12345} \end{codeexample} As with |fixed zerofill|, this option does only affect numbers drawn in |sci| format (or |std| if the scientific format is chosen). See section~\ref{sec:number:styles} for how to change the exponential display style. \end{key} \begin{stylekey}{/pgf/number format/zerofill=\marg{boolean} (default true)} Sets both |fixed zerofill| and |sci zerofill| at once. \end{stylekey} \begin{keylist}{/pgf/number format/std,% /pgf/number format/std=\meta{lower e}, /pgf/number format/std=\meta{lower e}:\meta{upper e}} Configures |\pgfmathprintnumber| to a standard algorithm. It chooses either |fixed| or |sci|, depending on the order of magnitude. Let $n=s \cdot m \cdot 10^e$ be the input number and $p$ the current precision. If $-p/2 \le e \le 4$, the number is displayed using |fixed| format. Otherwise, it is displayed using |sci| format. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,std,precision=2} \pgfmathprintnumber{4.568}\hspace{1em} \pgfmathprintnumber{5e-04}\hspace{1em} \pgfmathprintnumber{0.1}\hspace{1em} \pgfmathprintnumber{24415.98123}\hspace{1em} \pgfmathprintnumber{123456.12345} \end{codeexample} The parameters can be customized using the optional integer argument(s): if $\text{\meta{lower e}} \le e \le \text{\meta{upper e}}$, the number is displayed in |fixed| format, otherwise in |sci| format. Note that \meta{lower e} should be negative for useful results. The precision used for the scientific format can be adjusted with |sci precision| if necessary. \end{keylist} \begin{keylist}{/pgf/number format/relative*=\meta{exponent base 10}} Configures |\pgfmathprintnumber| to format numbers relative to an order of magnitude, $10^r$, where $r$ is an integer number. This key addresses different use-cases. \paragraph{First use-case:} provide a unified format for a \emph{sequence} of numbers. Consider the following test: \begin{codeexample}[] \pgfkeys{/pgf/number format/relative*={1}} \pgfmathprintnumber{6.42e-16}\hspace{1em} \pgfmathprintnumber{1.2}\hspace{1em} \pgfmathprintnumber{6}\hspace{1em} \pgfmathprintnumber{20.6}\hspace{1em} \pgfmathprintnumber{87} \end{codeexample} \noindent With any other style, the |6.42e-16| would have been formatted as an isolated number. Here, it is rounded to |0| because when viewed relative to $10^1$ (the exponent $1$ is the argument for |relative|), it has no significant digits. \begin{codeexample}[] \pgfkeys{/pgf/number format/relative*={2}} \pgfmathprintnumber{123.345}\hspace{1em} \pgfmathprintnumber{0.0012}\hspace{1em} \pgfmathprintnumber{0.0014}\hspace{1em} \end{codeexample} \noindent The example above applies the initial |precision=2| to |123.345| -- relative to $100$. Two significant digits of |123.345| relative to $100$ are |123|. Note that the ``$2$ significant digits of |123.345|'' translates to ``round |1.2345| to $2$ digits'', which would yield |1.2300|. Similarly, the other two numbers are |0| compared to $100$ using the given |precision|. \begin{codeexample}[] \pgfkeys{/pgf/number format/relative*={-3}} \pgfmathprintnumber{123.345}\hspace{1em} \pgfmathprintnumber{0.0012}\hspace{1em} \pgfmathprintnumber{0.0014}\hspace{1em} \end{codeexample} \paragraph{Second use-case:} improve rounding in the presence of \emph{inaccurate} numbers. Let us suppose that some limited-precision arithmetics resulted in the result |123456999| (like the |fpu| of \pgfname). You know that its precision is about five or six significant digits. And you want to provide a fixed point output. In this case, the trailing digits |....999| are a numerical artifact due to the limited precision. Use |relative*=3,precision=0| to eliminate the artifacts: \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,relative*={3},precision=0} \pgfmathprintnumber{123456999}\hspace{1em} \pgfmathprintnumber{123456999.12} \end{codeexample} \noindent Here, |precision=0| means that we inspect |123456.999| and round that number to $0$ digits. Finally, we move the period back to its initial position. Adding |relative style=fixed| results in fixed point output format: \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,relative*={3},precision=0,relative style=fixed} \pgfmathprintnumber{123456999}\hspace{1em} \pgfmathprintnumber{123456999.12} \end{codeexample} \noindent Note that there is another alternative for this use-case which is discussed later: the |fixed relative| style. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed relative,precision=6} \pgfmathprintnumber{123456999}\hspace{1em} \pgfmathprintnumber{123456999.12} \end{codeexample} You might wonder why there is an asterisk in the key's name. The short answer is: there is also a \declareandlabel{/pgf/number format/relative} number printer which does unexpected things. The key |relative*| repairs this. Existing code will still use the old behavior. Technically, the key works as follows: as already explained above, |relative*=3| key applied to |123456999.12| moves the period by three positions and analyzes |123456.99912|. Mathematically speaking, we are given a number $x = \pm m \cdot 10^e$ and we attempt to apply |relative*=|$r$. The method then rounds $x / 10^r$ to |precision| digits. Afterwards, it multiplies the result by $10^r$ and typesets it. \end{keylist} \begin{stylekey}{/pgf/number format/every relative} A style which configures how the |relative| method finally displays its results. The initial configuration is \begin{codeexample}[code only] \pgfkeys{/pgf/number format/every relative/.style=std} \end{codeexample} Note that rounding is turned off when the resulting style is being evaluated (since |relative| already rounded the number). Although supported, I discourage from using |fixed zerofill| or |sci zerofill| in this context -- it may lead to a suggestion of higher precision than is actually used (because |fixed zerofill| might simply add |.00| although there was a different information before |relative| rounded the result). \end{stylekey} \begin{key}{/pgf/number format/relative style=\marg{options}} The same as |every relative/.append style=|\marg{options}. \end{key} \begin{keylist}{/pgf/number format/fixed relative} Configures |\pgfmathprintnumber| to format numbers in a similar way to the |fixed| style, but the |precision| is interpreted relatively to the number's exponent. The motivation is to get the same rounding effect as for |sci|, but to display the number in the |fixed| style: \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed relative,precision=3} \pgfmathprintnumber{1000.0123}\hspace{1em} \pgfmathprintnumber{100.0567}\hspace{1em} \pgfmathprintnumber{0.000010003452}\hspace{1em} \pgfmathprintnumber{0.010073452}\hspace{1em} \pgfmathprintnumber{1.23567}\hspace{1em} \pgfmathprintnumber{1003.75}\hspace{1em} \pgfmathprintnumber{1006.75}\hspace{1em} \end{codeexample} The effect of |fixed relative| is that the number is rounded to \emph{exactly} the first \meta{precision} non-zero digits, no matter how many leading zeros the number might have. Use |fixed relative| if you want |fixed| and if you know that only the first $n$ digits are correct. Use |sci| if you need a scientific display style and only the first $n$ digits are correct. Note that |fixed relative| ignores the |fixed zerofill| flag. See also the |relative*| key. Note that the |relative=|\marg{exponent} key explicitly moves the period to some designated position before it attempts to round the number. Afterwards, it ``rounds from the right'', i.e.\ it rounds to that explicitly chosen digit position. In contrast to that, |fixed relative| ``rounds from the left'': it takes the \emph{first} non-zero digit, temporarily places the period after this digit, and rounds that number. The rounding style |fixed| leaves the period where it is, and rounds everything behind that digit. The |sci| style is similar to |fixed relative|. \end{keylist} \begin{key}{/pgf/number format/int detect} Configures |\pgfmathprintnumber| to detect integers automatically. If the input number is an integer, no period is displayed at all. If not, the scientific format is chosen. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,int detect,precision=2} \pgfmathprintnumber{15}\hspace{1em} \pgfmathprintnumber{20}\hspace{1em} \pgfmathprintnumber{20.4}\hspace{1em} \pgfmathprintnumber{0.01}\hspace{1em} \pgfmathprintnumber{0} \end{codeexample} \end{key} \begin{command}{\pgfmathifisint\marg{number constant}\marg{true code}\marg{false code}} A command which does the same check as |int detect|, but it invokes \meta{true code} if the \meta{number constant} actually is an integer and the \meta{false code} if not. As a side-effect, |\pgfretval| will contain the parsed number, either in integer format or as parsed floating point number. The argument \meta{number constant} will be parsed with |\pgfmathfloatparsenumber|. \begin{codeexample}[] 15 \pgfmathifisint{15}{is an int: \pgfretval.}{is no int}\hspace{1em} 15.5 \pgfmathifisint{15.5}{is an int: \pgfretval.}{is no int} \end{codeexample} \end{command} \begin{key}{/pgf/number format/int trunc} Truncates every number to integers (discards any digit after the period). \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,int trunc} \pgfmathprintnumber{4.568}\hspace{1em} \pgfmathprintnumber{5e-04}\hspace{1em} \pgfmathprintnumber{0.1}\hspace{1em} \pgfmathprintnumber{24415.98123}\hspace{1em} \pgfmathprintnumber{123456.12345} \end{codeexample} \end{key} \begin{key}{/pgf/number format/frac} Displays numbers as fractionals. \begin{codeexample}[width=3cm] \pgfkeys{/pgf/number format/frac} \pgfmathprintnumber{0.333333333333333}\hspace{1em} \pgfmathprintnumber{0.5}\hspace{1em} \pgfmathprintnumber{2.133333333333325e-01}\hspace{1em} \pgfmathprintnumber{0.12}\hspace{1em} \pgfmathprintnumber{2.666666666666646e-02}\hspace{1em} \pgfmathprintnumber{-1.333333333333334e-02}\hspace{1em} \pgfmathprintnumber{7.200000000000000e-01}\hspace{1em} \pgfmathprintnumber{6.666666666666667e-02}\hspace{1em} \pgfmathprintnumber{1.333333333333333e-01}\hspace{1em} \pgfmathprintnumber{-1.333333333333333e-02}\hspace{1em} \pgfmathprintnumber{3.3333333}\hspace{1em} \pgfmathprintnumber{1.2345}\hspace{1em} \pgfmathprintnumber{1}\hspace{1em} \pgfmathprintnumber{-6} \end{codeexample} \begin{key}{/pgf/number format/frac TeX=\marg{\textbackslash macro} (initially \texttt{\textbackslash frac})} Allows to use a different implementation for |\frac| inside of the |frac| display type. \end{key} \begin{key}{/pgf/number format/frac denom=\meta{int} (initially empty)} Allows to provide a custom denominator for |frac|. \begin{codeexample}[width=3cm] \pgfkeys{/pgf/number format/.cd,frac, frac denom=10} \pgfmathprintnumber{0.1}\hspace{1em} \pgfmathprintnumber{0.5}\hspace{1em} \pgfmathprintnumber{1.2}\hspace{1em} \pgfmathprintnumber{-0.6}\hspace{1em} \pgfmathprintnumber{-1.4}\hspace{1em} \end{codeexample} \end{key} \begin{key}{/pgf/number format/frac whole=\mchoice{true,false} (initially true)} Configures whether complete integer parts shall be placed in front of the fractional part. In this case, the fractional part will be less then $1$. Use |frac whole=false| to avoid whole number parts. \begin{codeexample}[width=3cm] \pgfkeys{/pgf/number format/.cd,frac, frac whole=false} \pgfmathprintnumber{20.1}\hspace{1em} \pgfmathprintnumber{5.5}\hspace{1em} \pgfmathprintnumber{1.2}\hspace{1em} \pgfmathprintnumber{-5.6}\hspace{1em} \pgfmathprintnumber{-1.4}\hspace{1em} \end{codeexample} \end{key} \begin{key}{/pgf/number format/frac shift=\marg{integer} (initially 4)} In case you experience problems because of stability problems, try experimenting with a different |frac shift|. Higher shift values $k$ yield higher sensitivity to inaccurate data or inaccurate arithmetics. Technically, the following happens. If $r < 1$ is the fractional part of the mantissa, then a scale $i = 1/r \cdot 10^k$ is computed where $k$ is the shift; fractional parts of $i$ are neglected. The value $1/r$ is computed internally, its error is amplified. If you still experience stability problems, use |\usepackage{fp}| in your preamble. The |frac| style will then automatically employ the higher absolute precision of |fp| for the computation of $1/r$. \end{key} \end{key} \begin{key}{/pgf/number format/precision=\marg{number}} Sets the desired rounding precision for any display operation. For scientific format, this affects the mantissa. \end{key} \begin{key}{/pgf/number format/sci precision=\meta{number or empty} (initially empty)} Sets the desired rounding precision only for |sci| styles. Use |sci precision={}| to restore the initial configuration (which uses the argument provided to |precision| for all number styles). \end{key} \begin{key}{/pgf/number format/read comma as period=\mchoice{true,false} (initially false)} This is one of the few keys which allows to customize the number parser. If this switch is turned on, a comma is read just as a period. \begin{codeexample}[] \pgfkeys{/pgf/number format/read comma as period} \pgfmathprintnumber{1234,56} \end{codeexample} This is typically undesired as it can cause side--effects with math parsing instructions. However, it is supported to format input numbers or input tables. Consider |use comma| to typeset the result with a comma as well. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, read comma as period, use comma} \pgfmathprintnumber{1234,56} \end{codeexample} \end{key} \subsection{Changing display styles}% \label{sec:number:styles}% You can change the way how numbers are displayed. For example, if you use the `\texttt{fixed}' style, the input number is rounded to the desired precision and the current fixed point display style is used to typeset the number. The same is applied to any other format: first, rounding routines are used to get the correct digits, afterwards a display style generates proper \TeX-code. \begin{key}{/pgf/number format/set decimal separator=\marg{text}} Assigns \marg{text} as decimal separator for any fixed point numbers (including the mantissa in sci format). Use |\pgfkeysgetvalue{/pgf/number format/set decimal separator}\value| to get the current separator into |\value|. \end{key} \begin{stylekey}{/pgf/number format/dec sep=\marg{text}} Just another name for |set decimal separator|. \end{stylekey} \begin{key}{/pgf/number format/set thousands separator=\marg{text}} Assigns \marg{text} as thousands separator for any fixed point numbers (including the mantissa in sci format). \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill, precision=2, set thousands separator={}} \pgfmathprintnumber{1234.56} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill, precision=2, set thousands separator={}} \pgfmathprintnumber{1234567890} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill, precision=2, set thousands separator={.}} \pgfmathprintnumber{1234567890} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill, precision=2, set thousands separator={,}} \pgfmathprintnumber{1234567890} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill, precision=2, set thousands separator={{{,}}}} \pgfmathprintnumber{1234567890} \end{codeexample} The last example employs commas and disables the default comma-spacing. Use |\pgfkeysgetvalue{/pgf/number format/set thousands separator}\value| to get the current separator into |\value|. \end{key} \begin{stylekey}{/pgf/number format/1000 sep=\marg{text}} Just another name for |set thousands separator|. \end{stylekey} \begin{key}{/pgf/number format/1000 sep in fractionals=\marg{boolean} (initially false)} Configures whether the fractional part should also be grouped into groups of three digits. The value |true| will active the |1000 sep| for both, integer and fractional parts. The value |false| will active |1000 sep| only for the integer part. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, precision=999, set thousands separator={\,}, 1000 sep in fractionals, } \pgfmathprintnumber{1234.1234567} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed,fixed zerofill, precision=9, set thousands separator={\,}, 1000 sep in fractionals, } \pgfmathprintnumber{1234.1234567} \end{codeexample} \end{key} \begin{key}{/pgf/number format/min exponent for 1000 sep=\marg{number} (initially 0)} Defines the smallest exponent in scientific notation which is required to draw thousand separators. The exponent is the number of digits minus one, so $\meta{number}=4$ will use thousand separators starting with $1e4 = 10000$. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, int detect, 1000 sep={\,}, min exponent for 1000 sep=0} \pgfmathprintnumber{5000}; \pgfmathprintnumber{1000000} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, int detect, 1000 sep={\,}, min exponent for 1000 sep=4} \pgfmathprintnumber{1000}; \pgfmathprintnumber{5000} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, int detect, 1000 sep={\,}, min exponent for 1000 sep=4} \pgfmathprintnumber{10000}; \pgfmathprintnumber{1000000} \end{codeexample} \noindent A value of |0| disables this feature (negative values are ignored). \end{key} \begin{key}{/pgf/number format/use period} A predefined style which installs periods ``\texttt{.}'' as decimal separators and commas ``\texttt{,}'' as thousands separators. This style is the default. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period} \pgfmathprintnumber{12.3456} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use period} \pgfmathprintnumber{1234.56} \end{codeexample} \end{key} \begin{key}{/pgf/number format/use comma} A predefined style which installs commas ``\texttt{,}'' as decimal separators and periods ``\texttt{.}'' as thousands separators. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma} \pgfmathprintnumber{12.3456} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,fixed,precision=2,use comma} \pgfmathprintnumber{1234.56} \end{codeexample} \end{key} \begin{key}{/pgf/number format/skip 0.=\marg{boolean} (initially false)} Configures whether numbers like $0.1$ shall be typeset as $.1$ or not. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill,precision=2, skip 0.} \pgfmathprintnumber{0.56} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd, fixed, fixed zerofill,precision=2, skip 0.=false} \pgfmathprintnumber{0.56} \end{codeexample} \end{key} \begin{key}{/pgf/number format/showpos=\marg{boolean} (initially false)} Enables or disables the display of plus signs for non-negative numbers. \begin{codeexample}[] \pgfkeys{/pgf/number format/showpos} \pgfmathprintnumber{12.345} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/showpos=false} \pgfmathprintnumber{12.345} \end{codeexample} \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,showpos,sci} \pgfmathprintnumber{12.345} \end{codeexample} \end{key} \begin{stylekey}{/pgf/number format/print sign=\marg{boolean}} A style which is simply an alias for |showpos=|\marg{boolean}. \end{stylekey} \begin{key}{/pgf/number format/sci 10e} Uses $m \cdot 10^e$ for any number displayed in scientific format. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,sci,sci 10e} \pgfmathprintnumber{12.345} \end{codeexample} \end{key} \begin{key}{/pgf/number format/sci 10\textasciicircum e} The same as `|sci 10e|'. \end{key} \begin{key}{/pgf/number format/sci e} Uses the `$1e{+}0$' format which is generated by common scientific tools for any number displayed in scientific format. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,sci,sci e} \pgfmathprintnumber{12.345} \end{codeexample} \end{key} \begin{key}{/pgf/number format/sci E} The same with an uppercase `\texttt{E}'. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,sci,sci E} \pgfmathprintnumber{12.345} \end{codeexample} \end{key} \begin{key}{/pgf/number format/sci subscript} Typesets the exponent as subscript for any number displayed in scientific format. This style requires very little space. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,sci,sci subscript} \pgfmathprintnumber{12.345} \end{codeexample} \end{key} \begin{key}{/pgf/number format/sci superscript} Typesets the exponent as superscript for any number displayed in scientific format. This style requires very little space. \begin{codeexample}[] \pgfkeys{/pgf/number format/.cd,sci,sci superscript} \pgfmathprintnumber{12.345} \end{codeexample} \end{key} \begin{key}{/pgf/number format/sci generic=\marg{keys}} Allows to define an own number style for the scientific format. Here, \meta{keys} can be one of the following choices (omit the long key prefix): \begin{key}{/pgf/number format/sci generic/mantissa sep=\marg{text} (initially empty)} Provides the separator between a mantissa and the exponent. It might be |\cdot|, for example, \end{key} \begin{key}{/pgf/number format/sci generic/exponent=\marg{text} (initially empty)} Provides text to format the exponent. The actual exponent is available as argument |#1| (see below). \end{key} \begin{codeexample}[] \pgfkeys{ /pgf/number format/.cd, sci, sci generic={mantissa sep=\times,exponent={10^{#1}}}} \pgfmathprintnumber{12.345}; \pgfmathprintnumber{0.00012345} \end{codeexample} The \meta{keys} can depend on three parameters, namely on |#1| which is the exponent, |#2| containing the flags entity of the floating point number and |#3| is the (unprocessed and unformatted) mantissa. Note that |sci generic| is \emph{not} suitable to modify the appearance of fixed point numbers, nor can it be used to format the mantissa (which is typeset like fixed point numbers). Use |dec sep|, |1000 sep| and |print sign| to customize the mantissa. \end{key} \begin{key}{/pgf/number format/\protect\atmarktext dec sep mark=\marg{text}} Will be placed right before the place where a decimal separator belongs to. However, \marg{text} will be inserted even if there is no decimal separator. It is intended as place-holder for auxiliary routines to find alignment positions. This key should never be used to change the decimal separator! Use |dec sep| instead. \end{key} \begin{key}{/pgf/number format/\protect\atmarktext sci exponent mark=\marg{text}} Will be placed right before exponents in scientific notation. It is intended as place-holder for auxiliary routines to find alignment positions. This key should never be used to change the exponent! \end{key} \begin{key}{/pgf/number format/assume math mode=\marg{boolean} (default true)} Set this to |true| if you don't want any checks for math mode. The initial setting checks whether math mode is active using |\pgfutilensuremath| for each final number. Use |assume math mode=true| if you know that math mode is active. In that case, the final number is typeset as-is, no further checking is performed. \end{key} \begin{stylekey}{/pgf/number format/verbatim} A style which configures the number printer to produce verbatim text output, i.\,e., it doesn't contain \TeX\ macros. \begin{codeexample}[] \pgfkeys{ /pgf/fpu, /pgf/number format/.cd, sci, verbatim} \pgfmathprintnumber{12.345}; \pgfmathprintnumber{0.00012345}; \pgfmathparse{exp(15)} \pgfmathprintnumber{\pgfmathresult} \end{codeexample} The style resets |1000 sep|, |dec sep|, |print sign|, |skip 0.| and sets |assume math mode|. Furthermore, it installs a |sci generic| format for verbatim output of scientific numbers. However, it will still respect |precision|, |fixed zerofill|, |sci zerofill| and the overall styles |fixed|, |sci|, |int detect| (and their variants). It might be useful if you intend to write output files. \end{stylekey} %-------------------------------------------------- % \subsubsection{Defining own display styles} % You can define own display styles, although this may require some insight into \TeX-programming. Here are two examples: % \begin{enumerate} % \item A new fixed point display style: The following code defines a new style named `\texttt{my own fixed point style}' which uses $1{\cdot}00$ instead of $1.00$. % \begin{lstlisting} % \def\myfixedpointstyleimpl#1.#2\relax{% % #1{\cdot}#2% % }% % \def\myfixedpointstyle#1{% % \pgfutilensuremath{% % \ifpgfmathfloatroundhasperiod % \expandafter\myfixedpointstyleimpl#1\relax % \else % #1% % \fi % }% % } % \pgfkeys{/my own fixed point style/.code={% % \let\pgfmathprintnumber@fixed@style=\myfixedpointstyle} % }% % \end{lstlisting} % You only need to overwrite the macro \lstinline!\pgfmathprintnumber@fixed@style!. This macro takes one argument (the result of any numerical computations). The \TeX-boolean \lstinline!\ifpgfmathfloatroundhasperiod! is true if and only if the input number contains a period. % % \item An example for a new scientific display style: % \begin{lstlisting} % % #1: % % 0 == '0' (the number is +- 0.0), % % 1 == '+', % % 2 == '-', % % 3 == 'not a number' % % 4 == '+ infinity' % % 5 == '- infinity' % % #2: the mantissa % % #3: the exponent % \def\myscistyle#1#2e#3\relax{% % ... % } % \pgfkeys{/my own sci style/.code={% % \let\pgfmathfloatrounddisplaystyle=\myscistyle}, % }% % \end{lstlisting} % \end{enumerate} %--------------------------------------------------