1

Manual for Version 2.00

\ begi n{ } \ nodeshadowed [at={(-5,8)}, yslant=0.05]
\coordinate (front) at (0,0); {\ Huge Ti\textcol or{orange}{\enph{k}}Z};
\coordi nate (horizon) at (O, .31\paperheight); \ nodeshadowed [at={(O, 8.3)}]

\coordinate (botton) at (O,-.6\paperheight); {\ huge \textcol or{green! 50! bl ack! 50} {\ & };
\coordi nate (sky) at (0,.57\paperheight); \ nodeshadowed [at={(5,8)}, yslant=-0.05]
\coordinate (left) at (-.51\paperw dth,0); {\Huge \textsc{PG}};
\coordinate (right) at (.51\paperwi dth,0); \ nodeshadowed [at={(0,5)}]
{Manual for Version \pgftypesetversion};
\ [bott om col or =whi te,
top col or=bl ue! 30! bl ack! 50] \foreach \i in {0.5,0.6,...,2}
([yshift=-5mmj horizon -| left) \
rectangle (sky -| right); [white, opacity=\i/2,
decor ati on=Koch snowf | ake,
\ [bot t om col or =bl ack! 70! gr een! 25, shi ft=(horizon), shift={(rand*11, rnd«7)},
top col or=bl ack! 70! gr een! 10] scal e=\i, doubl e copy shadow={
(front -| left) -- (horizon -| left) opaci t y=0. 2, shadow xshi ft =0pt,
decorat e [decoration=random steps] { shadow yshift=3x\i pt,
-- (horizon -| right) } =whi te, =none}]
-- (front -| right) -- cycle; decorate {
decorate {
\ [top col or=bl ack! 70! gr een! 25, decorate {
bot t om col or =bl ack! 25] (0,0)- ++(60:1) -- ++(-60:1) -- cycle
([yshift=-5nm1pt]front -| left) Y} o)
rectangle ([yshift=1pt]front -| right);
\ (left text)
\ [bl ack! 25] \ (right text)
(bottom- | left)
rectangle ([yshift=-5mjfront -| right); \ [decorate,
decorati on={f oot prints, foot of=gnone},
\ def \ nodeshadowed][#1] #2; { opaci ty=.5, brown] (left text.south)
\ [scal e=2, above, #1] {#2}; to [out=-45,in=135] (right text.north);
\ [scal e=2, above, #1, yscal e=-1, \ [decor at e,
scope fadi ng=sout h, opaci ty=0. 4] { #2}; decoration={footprints,foot of=felis silvestris,
} foot |ength=5pt,stride |ength=15pt, foot angl e=0},

opaci ty=.5, green! 50! bl ack] (left text.south)
to [out=20,in=180] (right text.north west);
\ end{ }

Fiir meinen Vater, damit er noch viele schone TEX-Graphiken erschaffen kann.

Till

Copyright 2007 by Till Tantau

Permission is granted to copy, distribute and/or modify the documentation under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled GNU Free Documentation License.

Permission is granted to copy, distribute and/or modify the code of the package under the terms of the GNU
Public License, Version 2 or any later version published by the Free Software Foundation. A copy of the
license is included in the section entitled GNU Public License.

Permission is also granted to distribute and/or modify both the documentation and the code under the
conditions of the LaTeX Project Public License, either version 1.3 of this license or (at your option) any
later version. A copy of the license is included in the section entitled KTEX Project Public License.

The TikZ and PGF Packages

Manual for version 2.00
http://sourceforge.net/projects/pgf

Till Tantau™*

Institut fiir Theoretische Informatik
Universitat zu Liibeck

February 20, 2008

Contents
1 Introduction 16
1.1 Structure of the System L L 16
1.2 Comparison with Other Graphics Packages 17
1.3 Utility Packages e e 17
1.4 How to Read This Manual 18
1.5 Authors and Acknowledgements L 18
1.6 Getting Help 0 oo e 18
I Tutorials and Guidelines 19
2 Tutorial: A Picture for Karl’s Students 20
2.1 Problem Statement L 20
2.2 Setting up the Environment L o 20
2.2.1 Setting up the Environment in BTEX L Lo 20
2.2.2 Setting up the Environment in Plain TEX 21
2.2.3 Setting up the Environment in ConTEXt 21
2.3 Straight Path Construction L e 22
2.4 Curved Path Construction 22
2.5 Circle Path Construction 23
2.6 Rectangle Path Construction 23
2.7 Grid Path Construction 24
2.8 Adding a Touch of Style e 24
2.9 Drawing Options e 25
2.10 Arc Path Construction e 25
2.11 Clipping a Path o o 26
2.12 Parabola and Sine Path Construction L o 27
2.13 Filling and Drawing L e 27
2.14 Shading e e 28
2.15 Specifying Coordinates L 28
2.16 Adding Arrow Tips e 30
207 SCOPING . . . v ot e e e 31
2.18 Transformations e 31
2.19 Repeating Things: For-Loops 32
220 Adding Text L 33

*Editor of this documentation. Parts of this documentation have been written by other authors as indicated in these parts
or chapters and in Section 1.5.

http://sourceforge.net/projects/pgf

3 Tutorial: A Petri-Net for Hagen

3.1 Problem Statement e e
3.2 Setting up the Environment oL o
3.2.1 Setting up the Environment in BTEX L oL
3.2.2 Setting up the Environment in Plain TEX,
3.2.3 Setting up the Environment in ConTEXt
3.3 Introduction to Nodes e
3.4 Placing Nodes Using the At Syntax
3.5 Using Styles o e
3.6 Node Size e
3.7 Naming Nodes e
3.8 Placing Nodes Using Relative Placement
3.9 Adding Labels Next to Nodes
3.10 Connecting Nodes e
3.11 Adding Labels Next to Lines
3.12 Adding the Snaked Line and Multi-Line Text
3.13 Using Layers: The Background Rectangles
3.14 The Complete Code o
Tutorial: Euclid’s Amber Version of the Elements
4.1 Book I, Proposition I e
4.1.1 Setting up the Environment oL oL oL
4.1.2 The Line AB
4.1.3 The Circle Around A o
4.1.4 The Intersection of the Circles
4.1.5 The Complete Code o
4.2 Book I, Proposition IT e
4.2.1 Using Partway Calculations for the Construction of D
4.2.2 Intersecting a Lineand a Circle 0.
4.2.3 The Complete Code e
Tutorial: Putting a Diagram in Chains
5.1 Styling the Nodes e
5.2 Aligning the Nodes Using Positioning Options
5.3 Aligning the Nodes Using Matrices i i i i ittt
54 Using Chains e
5.4.1 Creating a Simple Chain
5.4.2 Branching and Joining a Chain o oL
5.4.3 Chaining Together Already Positioned Nodes
5.4.4 Combined Use of Matrices and Chains
Guidelines on Graphics
6.1 Planning the Time Needed for the Creation of Graphics
6.2 Workflow for Creating a Graphic
6.3 Linking Graphics With the Main Text
6.4 Consistency Between Graphics and Text
6.5 Labelsin Graphics e e
6.6 Plotsand Charts e e
6.7 Attention and Distraction e

II Installation and Configuration

7 Installation

7.1 Package and Driver Versions L e
7.2 Installing Prebundled Packages
7.2.1 Debian e
722 MiKTeX . . . o e
7.3 Installation in a texmf Tree L

37
37
37
37
37
38
38
39
39
40
40
41
41
42
44
45
46
46

48
48
48
49
49
51
52
52
53
54
55

56
56
o8
60
61
61
62
63
64

65
65
65
66
66
67
67
70

7.4

8.1
8.2

8.3

8.4

7.3.1 Installation that Keeps Everything Together

7.3.2 Installation that is TDS-Compliant
Updating the Installation
8 Licenses and Copyright
Which License Applies? e
The GNU Public License, Version 2 ittt
8.2.1 Preamble. e
8.2.2 Terms and Conditions For Copying, Distribution and Modification
8.2.3 No Warranty e
The ETEX Project Public License, Version 1.3c 2006-05-20
8.3.1 Preamble. e
8.3.2 Definitions e e e
8.3.3 Conditions on Distribution and Modification
8.3.4 No Warranty e e
8.3.5 Maintenance of The Work
8.3.6 Whether and How to Distribute Works under This License
8.3.7 Choosing This License or Another License
8.3.8 A Recommendation on Modification Without Distribution
8.3.9 How to Use This License
8.3.10 Derived Works That Are Not Replacements
8.3.11 Important Recommendations L L oo
GNU Free Documentation License, Version 1.2, November 2002
8.4.1 Preamble. e
8.4.2 Applicability and definitions L L
8.4.3 Verbatim Copying e
8.4.4 Copying in Quantity
8.4.5 Modifications e e
8.4.6 Combining Documents
8.4.7 Collection of Documents
8.4.8 Aggregating with independent Workso oL
8.4.9 Translation
8.4.10 Termination e e e
8.4.11 Future Revisions of this License
8.4.12 Addendum: How to use this License for your documents

9 Input and Output Formats

9.1

9.2

Supported Input Formats
9.1.1 Using the BXTEX Format
9.1.2 Using the Plain TEX Format
9.1.3 Using the ConTEXt Format
Supported Output Formats
9.2.1 Selecting the Backend Driver
9.2.2 Producing PDF Output
9.2.3 Producing PostScript Output
9.2.4 Producing HTML / SVG Output e
9.2.5 Producing Perfectly Portable DVI Output

III TikZ ist kein Zeichenprogramm

10 Design Principles

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Special Syntax For Specifying Points L 0 o o
Special Syntax For Path Specifications oL
Actions on Paths L
Key-Value Syntax for Graphic Parameters
Special Syntax for Specifying Nodes oo
Special Syntax for Specifying Trees L
Grouping of Graphic Parameters o

11

12

13

10.8 Coordinate Transformation System L 95

Hierarchical Structures: Package, Environments, Scopes, and Styles 96
11.1 Loading the Package and the Libraries 96
11.2 Creating a Picture 96
11.2.1 Creating a Picture Using an Environment 96
11.2.2 Creating a Picture Using a Command 98
11.2.3 Adding a Background 98
11.3 Using Scopes to Structure a Picture oL Lo 99
11.3.1 The Scope Environment L L 99
11.3.2 Shorthand for Scope Environments L L. 99
11.3.3 Using Scopes Inside Paths L 100
11.4 Using Graphic Options e 100
11.4.1 How Graphic Options Are Processed 100
11.4.2 Using Styles to Manage How Pictures Look 101
Specifying Coordinates 103
121 Overview oL e e 103
12.2 Coordinate Systems L 103
12.2.1 Canvas, XYZ, and Polar Coordinate Systems 103
12.2.2 Barycentric Systems 106
12.2.3 Node Coordinate System 107
12.2.4 Intersection Coordinate Systems L o 109
12.2.5 Tangent Coordinate Systems 111
12.2.6 Defining New Coordinate Systems 111
12.3 Relative and Incremental Coordinates L oo 112
12.3.1 Specifying Relative Coordinates L 112
12.3.2 Relative Coordinates and Scopes 112
12.4 Coordinate Calculations 113
12.4.1 The General Syntax e 113
12.4.2 The Syntax of Factors 114
12.4.3 The Syntax of Partway Modifiers 114
12.4.4 The Syntax of Distance Modifiers L . 115
12.4.5 The Syntax of Projection Modifiers 116
Syntax for Path Specifications 117
13.1 The Move-To Operation i ittt e e 118
13.2 The Line-To Operation o e 118
13.2.1 Straight Lines L 118
13.2.2 Horizontal and Vertical Lines o 118
13.3 The Curve-To Operation it e e 119
13.4 The Cycle Operation 119
13.5 The Rectangle Operation 120
13.6 Rounding Corners L e e 120
13.7 The Circle and Ellipse Operations it 121
13.8 The Arc Operation i e 121
13.9 The Grid Operation e 121
13.10 The Parabola Operation 123
13.11 The Sine and Cosine Operation 124
13.12 The Plot Operation e 124
13.13 The To Path Operation et e e 125
13.14 The Let Operation e 127
13.15 The Scoping Operation e 128
13.16 The Node and Edge Operations e 128
13.17 The PGF-Extra Operation it s 129

14 Actions on Paths 130

141 OVErvIeW o o ot e 130
14.2 Specifying a Color L e 131
14.3 Drawing a Path L 131
14.3.1 Graphic Parameters: Line Width, Line Cap, and Line Join 132
14.3.2 Graphic Parameters: Dash Pattern 0oL 133
14.3.3 Graphic Parameters: Draw Opacity 134
14.3.4 Graphic Parameters: Arrow Tips 134
14.3.5 Graphic Parameters: Double Lines and Bordered Lines 136

14.4 Filling a Path e 136
14.4.1 Graphic Parameters: Fill Pattern o oL 137
14.4.2 Graphic Parameters: Interior Rules L. 138
14.4.3 Graphic Parameters: Fill Opacity 139

14.5 Shading a Path L 139
14.5.1 Choosing a Shading Type e 139

14.5.2 Choosing a Shading Color 140

14.6 Establishing a Bounding Box L o 141
14.7 Clipping and Fading (Soft Clipping) o 142
14.8 Doing Multiple Actionson a Path L oL o 143
14.9 Decorating and Morphing a Path oo oL oo 145
15 Nodes and Edges 146
15.1 OVErvIEW o o e e 146
15.2 Nodes and Their Shapes 146
15.2.1 Predefined Shapes 148
15.2.2 Common Options: Separations, Margins, Padding and Border Rotation 148

15.3 Multi-Part Nodes 0 . e 151
15.4 Options for the Text in Nodes 152
15.5 Positioning Nodes L 154
15.5.1 Positioning Nodes Using Anchors 154
15.5.2 Basic Placement Options L 155
15.5.3 Advanced Placement Options 156
15.5.4 Arranging Nodes Using a Chains and Matrices 160

15.6 Fitting Nodes to a Set of Coordinates 160
15.7 Transformations 161
15.8 Placing Nodes on a Line or Curve Explicitly, 161
15.9 Placing Nodes on a Line or Curve Implicitly 164
15.10 The Label and Pin Options 0 165
15.11 Connecting Nodes: Using Nodes as Coordinates 167
15.12 Connecting Nodes: Using the Edge Operation 168
15.13 Referencing Nodes Outside the Current Pictures 169
15.13.1 Referencing a Node in a Different Picture 169
15.13.2 Referencing the Current Page Node — Absolute Positioning 170

15.14 Late Code and Options 0 i i it e 171
15.14.1 Executing Code After Nodes 171

15.15 Late Options o o e e 171
16 Matrices and Alignment 172
16.1 OVerview o o o e e e 172
16.2 Matrices are Nodes L e 172
16.3 Cell Pictures o . o e 173
16.3.1 Alignment of Cell Pictures 173
16.3.2 Setting and Adjusting Column and Row Spacing 174
16.3.3 Cell Styles and Options 176

16.4 Anchoring a Matrix 178
16.5 Considerations Concerning Active Characters 179
16.6 Examples. oL e e 179

17 Making Trees Grow
17.1 Introduction to the Child Operation
17.2 Child Paths and the Child Nodes
17.3 Naming Child Nodes e
17.4 Specifying Options for Trees and Children
17.5 Placing Child Nodes e
17.5.1 BasicIdea e
17.5.2 Default Growth Function
17.5.3 Missing Children L e
17.5.4 Custom Growth Functions
17.6 Edges From the Parent Node
18 Plots of Functions
18.1 When Should One Use TikZ for Generating Plots?
18.2 The Plot Path Operation
18.3 Plotting Points Given Inline L
18.4 Plotting Points Read From an External File
18.5 Plotting a Function
18.6 Plotting a Function Using Gnuplot
18.7 Placing Marks on the Plot
18.8 Smooth Plots, Sharp Plots, and Comb Plots
19 Transparency
19.1 Overview oL e e
19.2 Specifying a Uniform Opacity e
19.3 Fadings o e
19.3.1 Creating Fadings L
19.3.2 Fadinga Path 0
19.3.3 Fading a Scope
19.4 Transparency Groups oo v v it it e e e e
20 Decorated Paths
20.1 OVErview e e e
20.2 Decorating a Subpath Using the Decorate Path Command
20.3 Decorating a Complete Path
20.4 Adjusting Decorations L e
20.4.1 Positioning Decorations Relative to the To-Be-Decorate Path
20.4.2 Starting and Ending Decorations Early or Late
21 Transformations
21.1 The Different Coordinate Systems L L
21.2 The XY- and XYZ-Coordinate Systems o
21.3 Coordinate Transformations
21.4 Canvas Transformations

IV Libraries

22 Arrow Tip Library

22.1
22.2
22.3
224
22.5
22.6
22.7

Triangular Arrow Tips L
Barbed Arrow Tips e
Bracket-Like Arrow Tips e
Circle and Diamond Arrow Tips
Serif-Like Arrow Tips o o o
Partial Arrow Tips o o e e e e
Line Caps o o

183
183
184
184
185
186
186
187
189
190
191

193
193
193
194
194
194
196
198
199

202
202
202
204
204
206
208
208

210
210
212
213
214
214
215

217
217
217
218
221

23 Automata Drawing Library
23.1 Drawing Automata L e e
23.2 States With and Without Output
23.3 Imitial and Accepting States L L
23.4 Examples. e
24 Background Library
25 Calendar Library
25.1 Calendar Command e e
25.1.1 Creating a Simple List of Days
25.1.2 Adding a Month Label
25.1.3 Creating a Week List Arrangemento
25.1.4 Creating a Month List Arrangement
25.2 Arrangements Ll e e e
25.3 Month Labels e
25.4 Examples. e
26 Chains
26.1 OVErview e e
26.2 Starting and Continuing a Chain L L
26.3 Nodesona Chain e
26.4 Joining Nodes on a Chain
26.5 Branches
27 Decoration Library
27.1 Overview and Common Options
27.2 Path Morphing Decorations L
27.2.1 Decorations Producing Straight Line Paths
27.2.2 Decorations Producing Curved Line Paths
27.3 Path Replacing Decorations L L
27.4 Decorations with Shapes
27.5 Text Decorations L e
27.6 Mark Decorations: Adding Arrow Tips and Nodesona Path
27.7 Fractal Decorations
27.8 Footprint Decorations Lo
28 Entity-Relationship Diagram Drawing Library
28.1 Emtities L e
28.2 Relationships L
28.3 Attributes e e

29 Fading Library

30 Fitting Library

31 Matrix Library

31.1
31.2
31.3

Matrices of Nodes
End-of-Lines and End-of-Row Characters in Matrices of Nodes
Dellmiters o o o e e

32 Mindmap Drawing Library

32.1
32.2
32.3

324

OVEIVIEW . . . v o o o e e e e
The Mindmap Style L e
Concepts Nodes o o
32.3.1 Isolated Concepts o i e e
32.3.2 Concepts in Trees o o
Connecting Concepts o oL e e
32.4.1 Simple Connections e
32.4.2 The Circle Connection Bar Decoration

226
226
227
227
229

231

234
234
241
241
241
242
242
244
247

251
251
251
252
255
255

257
257
258
258
259
261
262
266
267
270
271

273
273
273
274

275

276

278
278
279
280

32.4.3 The Circle Connection Bar To-Path 288

3244 Tree Edges« . e e e 289

32.5 Adding Annotations 290

33 Paper Folding Diagrams Library 292
34 Pattern Library 296
34.1 Form-Only Patterns 296
34.2 Inherently Colored Patterns 296

35 Petri-Net Drawing Library 297
35.1 Places e e 297
35.2 Transitions e 297
35.3 Tokens e 298
35.4 Examples. 300

36 Plot Handler Library 302
36.1 Curve Plot Handlers 302
36.2 Comb Plot Handlers 303
36.3 Mark Plot Handler 303

37 Plot Mark Library 306
38 Shadow Library 307
38.1 OVEIrVIEW o e e 307
38.2 The General Shadow Option 307
38.3 Shadows for Arbitrary Paths and Shapes 308
38.3.1 Drop Shadows L e 308

38.3.2 Copy Shadows 308

38.4 Shadows for Special Paths and Nodes 309

39 Shape Library 311
39.1 OVErvIew e e e 311
39.2 Predefined Shapes L e 311
39.3 Geometric Shapes e 312
39.4 Symbol Shapes 327
39.5 Arrow Shapes 334
39.6 Shapes with Multiple Text Parts. 340
39.7 Callout Shapes e 344
39.8 Logic Gate Shapes e 348
39.8.1 OVErVIEW v i e e e e e e e 348

39.8.2 US Logic Gates e 349

39.8.3 IEC Logic Gates e 358

39.9 Miscellaneous Shapes L 361
40 To Path Library 367
40.1 Straight Lines L e 367
40.2 CUIVES . . v o vt e e e 367
40.3 LoopSo e e 370
41 Through Library 371
42 Tree Library 372
42.1 Growth Functions e 372
42.2 Edges From Parento e 374

V Utilities 375

10

43 Key Management

43.1

43.2
43.3

43.4

43.5

Introduction

43.1.1 Comparison to Other Packages
43.1.2 Quick Guide to Using the Key Mechanism

The Key Tree
Setting Keys

43.3.1 Default Arguments
43.3.2 Keys That Execute Commands
43.3.3 Keys That Store Values
43.3.4 Keys That Are Handled
43.3.5 Keys That Are Unknown

Key Handlers

43.4.1 Handlers for Path Management
43.4.2 Setting Defaults L
43.4.3 Defining Key Codes
43.4.4 Defining Styles L
43.4.5 Defining Value-, Macro-, If- and Choice-Keys
43.4.6 Expanding Values L
43.4.7 Handlers for Testing Keys
43.4.8 Handlers for Key Inspection o

Error Keys . .

44 Repeating Things: The Foreach Statement

45 Date and Calendar Utility Macros

45.1

46 Page Management

Handling Dates

45.1.1 Conversions Between Date Types oo
45.1.2 Checking Dates
45.1.3 Typesetting Dates e
45.1.4 Localization L
45.2 Typesetting Calendars L e

46.1 Basic Usage o . e
46.2 The Predefined Layouts
46.3 Defining a Layout L e
46.4 Creating Logical Pages e
47 Extended Color Support
VI Mathematical Engine
48 Design Principles
48.1 Loading the Mathematical Engine oo
48.2 Layers of the Mathematical Engine o oL
48.3 Efficiency and Accuracy of the Mathematical Engine
49 Evaluating Mathematical Expressions
49.1 Commands for Parsing Expressionso
49.2 Syntax for mathematical expressions

50 Evaluating Mathematical Operations

Basic Operations and Functions
Trignometric Functions oL Lo
Pseudo-Random Numbers L
Conversion Between Bases

50.1
50.2
50.3
50.4

51 Reimplementing the Computations of the Mathematical Engine

11

376
376
376
376
377
379
379
380
381
381
381
382
382
382
383
384
385
386
387
387
388

389

393
393
393
394
395
396
396

399
399
400
402
405

406

407

408
408
408
408

409
409
411

415
415
416
417
417

419

VII The Basic Layer 420

52 Design Principles 421
52.1 Core and Modules L 421
52.2 Communicating with the Basic Layer via Macros 421
52.3 Path-Centered Approach 422
52.4 Coordinate Versus Canvas Transformations 422

53 Hierarchical Structures: Package, Environments, Scopes, and Text 423
531 OVEIrvVIEW e e e e 423

53.1.1 The Hierarchical Structure of the Package 423
53.1.2 The Hierarchical Structure of Graphics 423
53.2 The Hierarchical Structure of the Package 424
53.2.1 The Core Package 424
53.2.2 The Modules e 425
53.2.3 The Library Packages L e 425
53.3 The Hierarchical Structure of the Graphics 425
53.3.1 The Main Environment e 425
53.3.2 Graphic Scope Environmentso oo 427
53.3.3 Imserting Text and Images L L 430

54 Specifying Coordinates 432
541 OVErvIEW o o e e 432
54.2 Basic Coordinate Commands oL 432
54.3 Coordinates in the XY-Coordinate System 432
54.4 Three Dimensional Coordinates e 433
54.5 Building Coordinates From Other Coordinates 434

54.5.1 Basic Manipulations of Coordinates L oL 434
54.5.2 Points Traveling along Lines and Curves 435
54.5.3 Points on Borders of Objects 436
54.5.4 Points on the Intersection of Lines L. 437
54.5.5 Points on the Intersection of Two Circles 437
54.6 Extracting Coordinates L 437
54.7 Internals of How Point Commands Work 438

55 Constructing Paths 439
55.1 OVerview e e e 439
55.2 The Move-To Path Operation 439
55.3 The Line-To Path Operation 440
55.4 The Curve-To Path Operation 440
55.5 The Close Path Operation 441
55.6 Arc, Ellipse and Circle Path Operations 441
55.7 Rectangle Path Operations 442
55.8 The Grid Path Operation 443
55.9 The Parabola Path Operation 444
55.10 Sine and Cosine Path Operations 444
55.11 Plot Path Operations 445
55.12 Rounded Corners e 445
55.13 Internal Tracking of Bounding Boxes for Paths and Pictures 446

56 Decorations 448
56.1 OVErvIEW o e e 448
56.2 Decoration Automatao e 448

56.2.1 The Different Paths 448
56.2.2 Segments and States 449
56.3 Declaring Decorations L 450
56.3.1 Predefined Decorations L Lo 454
56.4 Using Decorations L 454
56.5 Meta-Decorations e e e e 457

12

56.5.1 Declaring Meta-Decorations Lo
56.5.2 Predefined Meta-decorations o
56.5.3 Using Meta-Decorations e
57 Using Paths
B7.1 OVErvIEw o o e e e e
57.2 Stroking a Path e
57.2.1 Graphic Parameter: Line Width L.
57.2.2 Graphic Parameter: Caps and Joins. L.
57.2.3 Graphic Parameter: Dashing L oL oo
57.2.4 Graphic Parameter: Stroke Color L.
57.2.5 Graphic Parameter: Stroke Opacity L oL
57.2.6 Graphic Parameter: Arrows
57.3 Filling a Path e
57.3.1 Graphic Parameter: Interior Rule oL
57.3.2 Graphic Parameter: Filling Color
57.3.3 Graphic Parameter: Fill Opacity
57.4 Clipping a Path
57.5 Using a Path as a Bounding Box
58 Arrow Tips
BB OVEIVIEW v v o e e e e e e e e e e e
58.1.1 When Does PGF Draw Arrow Tips? i
58.1.2 Meta-Arrow Tips o
58.2 Declaring an Arrow Tip Kind
58.3 Declaring a Derived Arrow Tip Kind
58.4 Using an Arrow Tip Kind 0o
58.5 Predefined Arrow Tip Kinds
59 Nodes and Shapes
5.1 OVEIVIEW v v o e e e e e e e e e e e e
59.1.1 Creating and Referencing Nodes
59.1.2 Anchors e
59.1.3 Layers of a Shape
59.1.4 Node Parts. o e
59.2 Creating Nodes e e
59.3 Using Anchors
59.3.1 Referencing Anchors of Nodes in the Same Picture
59.3.2 Referencing Anchors of Nodes in Different Pictures
59.4 Special Nodes e
59.5 Declaring New Shapes 0 e
59.5.1 What Must Be Defined For a Shape?
59.5.2 Normal Anchors Versus Saved Anchors
59.5.3 Command for Declaring New Shapes
60 Matrices
60.1 OVerview e e
60.2 Cell Pictures and Their Alignment
60.3 The Matrix Command L e
60.4 Row and Column Spacing e
60.5 Callbacks e e e
61 Coordinate and Canvas Transformations
61.1 OVEIVIEW o o o e e e e e e
61.2 Coordinate Transformations L
61.2.1 How PGF Keeps Track of the Coordinate Transformation Matrix
61.2.2 Commands for Relative Coordinate Transformations
61.2.3 Commands for Absolute Coordinate Transformations
61.2.4 Saving and Restoring the Coordinate Transformation Matrix

13

61.3 Canvas Transformations
62 Patterns
62.1 OVerview L e
62.2 Declaring a Patterno
62.3 Setting a Pattern
63 Externalizing Graphics
63.1 OVerview e e e
63.2 Workflow Step 1: Naming Graphics
63.3 Workflow Step 2: Generating the External Graphics
63.4 Workflow Step 3: Including the External Graphics
63.5 A Complete Example
64 Creating Plots
64.1 Overview L
64.2 Generating Plot Streamso
64.2.1 Basic Building Blocks of Plot Streams
64.2.2 Commands That Generate Plot Streams
64.3 Plot Handlers e e
65 Layered Graphics
65.1 OVEIVIEW o o o e e e e
65.2 Declaring Layers L e
65.3 Using Layers L
66 Shadings
66.1 OVEIVIEW v v o e s e e e e e e e e e e e
66.2 Declaring Shadings L
66.2.1 Horizontal and Vertical Shadings
66.2.2 Radial Shadings
66.2.3 General (Functional) Shadings Lo
66.3 Using Shadings e
67 Transparency
67.1 Specifying a Uniform Opacity
67.2 Specifying a Fading e
67.3 Transparency Groups it e e
68 Quick Commands
68.1 Quick Coordiante Commands e
68.2 Quick Path Construction Commands
68.3 Quick Path Usage Commands
68.4 Quick Text Box Commands e

VIII The System Layer

69 Design of the System Layer
69.1 Driver Files e
69.2 Common Definition Files

70 Commands of the System Layer
70.1 Beginning and Ending a Stream of System Commands
70.2 Path Construction System Commands
70.3 Canvas Transformation System Commands
70.4 Stroking, Filling, and Clipping System Commands
70.5 Graphic State Option System Commands,
70.6 Color System Commands L
70.7 Pattern System Commands. Lo e

14

498
498
498
499

500
500
500
501
502
503

505
505
505
505
506
507

509
509
509
509

511
511
511
511
512
512
513

517
517
517
519

521
521
521
522
522

70.8

70.9

70.10
70.11
70.12
70.13
70.14
70.15

Scoping System Commands
Image System Commands L
Shading System Commands L e
Transparency System Commands
Reusable Objects System Commands o
Invisibility System Commands L L
Position Tracking Commands L e
Internal Conversion Commands e

71 The Soft Path Subsystem

71.1
71.2
71.3
714

Path Creation Process e
Starting and Ending a Soft Path
Soft Path Creation Commands
The Soft Path Data Structure e

72 The Protocol Subsystem

IX References and Index

Index

15

540

541

1 Introduction

The PGF package, where “PGF” is supposed to mean “portable graphics format” (or “pretty, good, functional”
if you prefer...), is a package for creating graphics in an “inline” manner. It defines a number of TEX
commands that draw graphics. For example, the code \tikz \draw (Opt,Opt) -- (20pt,6pt); yields the
line — and the code \tikz \fill[orange] (lex,lex) circle (lex); yields

In a sense, when you use PGF you “program” your graphics, just as you “program” your document when
you use TEX. You get all the advantages of the “TEX-approach to typesetting” for your graphics: quick
creation of simple graphics, precise positioning, the use of macros, often superior typography. You also
inherit all the disadvantages: steep learning curve, no WySIwya, small changes require a long recompilation
time, and the code does not really “show” how things will look like.

1.1 Structure of the System

The PGF system consists of different layers:

System layer: This layer provides a complete abstraction of what is going on “in the driver.” The driver
is a program like dvips or dvipdfm that takes a .dvi file as input and generates a .ps or a .pdf file.
(The pdftex program also counts as a driver, even though it does not take a .dvi file as input. Never
mind.) Each driver has its own syntax for the generation of graphics, causing headaches to everyone
who wants to create graphics in a portable way. PGF’s system layer “abstracts away” these differences.
For example, the system command \pgfsys@lineto{10pt}{10pt} extends the current path to the
coordinate (10pt, 10pt) of the current {pgfpicture}. Depending on whether dvips, dvipdfm, or
pdftex is used to process the document, the system command will be converted to different \special
commands. The system layer is as “minimalistic” as possible since each additional command makes it
more work to port PGF to a new driver.

As a user, you will not use the system layer directly.

Basic layer: The basic layer provides a set of basic commands that allow you to produce complex graphics
in a much easier manner than by using the system layer directly. For example, the system layer provides
no commands for creating circles since circles can be composed from the more basic Bézier curves (well,
almost). However, as a user you will want to have a simple command to create circles (at least I do)
instead of having to write down half a page of Bézier curve support coordinates. Thus, the basic layer
provides a command \pgfpathcircle that generates the necessary curve coordinates for you.

The basic layer is consists of a core, which consists of several interdependent packages that can only be
loaded en bloc, and additional modules that extend the core by more special-purpose commands like
node management or a plotting interface. For instance, the BEAMER package uses only the core and
not, say, the shapes modules.

Frontend layer: A frontend (of which there can be several) is a set of commands or a special syntax that
makes using the basic layer easier. A problem with directly using the basic layer is that code written
for this layer is often too “verbose.” For example, to draw a simple triangle, you may need as many as
five commands when using the basic layer: One for beginning a path at the first corner of the triangle,
one for extending the path to the second corner, one for going to the third, one for closing the path,
and one for actually painting the triangle (as opposed to filling it). With the tikz frontend all this
boils down to a single simple METAFONT-like command:

\draw (0,0) -- (1,0) -- (1,1) -- cycle;

There are different frontends:

e The TikZ frontend is the “natural” frontend for PGF. It gives you access to all features of PGF,
but it is intended to be easy to use. The syntax is a mixture of METAFONT and PSTRICKS and
some ideas of myself. This frontend is neither a complete METAFONT compatibility layer nor a
PSTRICKS compatibility layer and it is not intended to become either.

e The pgfpict2e frontend reimplements the standard ETEX {picture} environment and com-
mands like \1ine or \vector using the PGF basic layer. This layer is not really “necessary” since
the pict2e.sty package does at least as good a job at reimplementing the {picture} environ-
ment. Rather, the idea behind this package is to have a simple demonstration of how a frontend
can be implemented.

16

It would be possible to implement a pgftricks frontend that maps PSTRICKS commands to PGF
commands. However, I have not done this and even if fully implemented, many things that work in
PSTRICKS will not work, namely whenever some PSTRICKS command relies too heavily on PostScript
trickery. Nevertheless, such a package might be useful in some situations.

As a user of PGF you will use the commands of a frontend plus perhaps some commands of the basic
layer. For this reason, this manual explains the frontends first, then the basic layer, and finally the system

layer.

1.2

Comparison with Other Graphics Packages

PGF is not the only graphics package for TEX. In the following, I try to give a reasonably fair comparison of
the PGF-system and other packages.

1.

1.3

The standard BTEX {picture} environment allows you to create simple graphics, but little more. This
is certainly not due to a lack of knowledge or imagination on the part of WTEX’s designer(s). Rather,
this is the price paid for the {picture} environment’s portability: It works together with all backend
drivers.

. The pstricks package is certainly powerful enough to create any conceivable kind of graphic, but it

is not portable at all. Most importantly, it does not work with pdftex nor with any other driver that
produces anything but PostScript code.

Compared to PGF, pstricks has a broader support base. There are many nice extra packages for
special purpose situations that have been contributed by users over the last decade.

The TikZ syntax is more consistent than the pstricks syntax as TikZ was developed “in a more
centralized manner” and also “with the shortcomings on pstricks in mind.”

Note that a number of neat tricks that pstricks can do are impossible in PGF. In particular, pstricks
has access to the powerful PostScript programming language, which allows trickery such as inline
function plotting.

. The xypic package is an older package for creating graphics. However, it is more difficult to use and

to learn because the syntax and the documentation are a bit cryptic.

. The dratex package is a small graphic package for creating a graphics. Compared to the other package,

including PGF, it is very small, which may or may not be an advantage.

The metapost program is a very powerful alternative to PGF. However, it is an external program,
which entails a bunch of problems. The time needed both to create a small graphic and also to compile
it is much greater than in PGF. The main problem with metapost, however, is the inclusion of labels.
This is much easier to achieve using PGF.

. The xfig program is an important alternative to TikZ for users who do not wish to “program” their

graphics as is necessary with TikZ and the other packages above. Their is a conversion program that
will convert xfig graphics to both TikZ and for PGF, but it is still under construction.

Utility Packages

The PGF package comes along with a numer of utility package that are not really about creating graphics and
which can be used independently of PGF. However, they are bundled with PGF, partly out of convenience,
partly because their functionality is closely intertwined with PGF. These utility packages are:

1.

The pgfkeys package defines a powerful key management facility. It can be used completely indepen-
dently of PGF.

. The pgffor package defines a useful \foreach statement.

The pgfcalendar package defines macros for creating calendars. Typically, these calendars will be
rendered using PGF’s graphic engine, but you can use pgfcalendar also typeset calendars using normal
text. The package also defines commands for “working” with dates.

17

4. The pgfpages package is used to assemble several pages into a single page. It provides commands for
assembling several “virtual pages” into a single “physical page.” The idea is that whenever TEX has a
page ready for “shipout,” pgfpages interrupts this shipout and instead stores the page to be shipped
out in a special box. When enough “virtual pages” have been accumulated in this way, they are scaled
down and arranged on a “physical page,” which then really shipped out. This mechanism allows you
to create “two page on one page” versions of a document directly inside KTEX without the use of any
external programs. However, pgfpages can do quite a lot more than that. You can use it to put logos
and watermark on pages, print up to 16 pages on one page, add borders to pages, and more.

1.4 How to Read This Manual

This manual describes both the design of the PGF system and its usage. The organization is very roughly
according to “user-friendliness.” The commands and subpackages that are easiest and most frequently used
are described first, more low-level and esoteric features are discussed later.

If you have not yet installed PGF, please read the installation first. Second, it might be a good idea to
read the tutorial. Finally, you might wish to skim through the description of TikZ. Typically, you will not
need to read the sections on the basic layer. You will only need to read the part on the system layer if you
intend to write your own frontend or if you wish to port PGF to a new driver.

The “public” commands and environments provided by the pgf package are described throughout the
text. In each such description, the described command, environment or option is printed in red. Text shown
in green is optional and can be left out.

1.5 Authors and Acknowledgements

The bulk of the PGF system and its documentation was written by Till Tantau. The PGF mathematical engine,
many shapes, and the decoration engine were written and documented by Mark Wibrow. Additionally,
numerous people have contributed to the PGF system by writing emails, spotting bugs, or sending libraries.
Many thanks to all these people, who are too numerous to name them all!

1.6 Getting Help
When you need help with pGF and TikZ, please do the following:

1. Read the manual, at least the part that has to do with your problem.

2. If that does not solve the problem, try having a look at the sourceforge development page for PGF and
TikZ (see the title of this document). Perhaps someone has already reported a similar problem and
someone has found a solution.

3. On the website you will find numerous forums for getting help. There, you can write to help forums,
file bug reports, join mailing lists, and so on.

4. Before you file a bug report, especially a bug report concerning the installation, make sure that this
is really a bug. In particular, have a look at the .log file that results when you TEX your files. This
.log file should show that all the right files are loaded from the right directories. Nearly all installation
problems can be resolved by looking at the .1log file.

5. As a last resort you can try to email me (Till Tantau) or, if the problem concerns the mathematical
engine, Mark Wibrow. I do not mind getting emails, I simply get way too many of them. Because of
this, I cannot guarantee that your emails will be answered timely or even at all. Your chances that
your problem will be fixed are somewhat higher if you mail to the PGF mailing list (naturally, I read
this list and answer questions when I have the time).

6. Please, do not phone me in my office (unless, of course, you attend one of my lectures).

18

Part 1
Tutorials and Guidelines
by Till Tantau

To help you get started with TikZ, instead of a long installation and configuration section, this manual starts
with tutorials. They explain all the basic and some of the more advanced features of the system, without
going into all the details. This part also contains some guidelines on how you should proceed when creating
graphics using TikZ.

\tikz \draw[thick,rounded corners=8pt]
(0,0) -- (0,2) -- (1,3.25) -- (2,2) -- (2,0) -- (0,2) -- (2,2) -- (0,0) -- (2,0);

19

2 Tutorial: A Picture for Karl’s Students

This tutorial is intended for new users of PGF and TikZ. It does not give an exhaustive account of all the
features of TikZ or PGF, just of those that you are likely to use right away.

Karl is a math and chemistry high-school teacher. He used to create the graphics in his worksheets and
exams using BTEX’s {picture} environment. While the results were acceptable, creating the graphics often
turned out to be a lengthy process. Also, there tended to be problems with lines having slightly wrong angles
and circles also seemed to be hard to get right. Naturally, his students could not care less whether the lines
had the exact right angles and they find Karl’s exams too difficult no matter how nicely they were drawn.
But Karl was never entirely satisfied with the result.

Karl’s son, who was even less satisfied with the results (he did not have to take the exams, after all),
told Karl that he might wish to try out a new package for creating graphics. A bit confusingly, this package
seems to have two names: First, Karl had to download and install a package called PGF. Then it turns out
that inside this package there is another package called TikZ, which is supposed to stand for “TikZ ist kein
Zeichenprogramm.” Karl finds this all a bit strange and TikZ seems to indicate that the package does not
do what he needs. However, having used GNU software for quite some time and “GNU not being Unix,” there
seems to be hope yet. His son assures him that TikZ’s name is intended to warn people that TikZ is not a
program that you can use to draw graphics with your mouse or tablet. Rather, it is more like a “graphics
language.”

2.1 Problem Statement

Karl wants to put a graphic on the next worksheet for his students. He is currently teaching his students
about sine and cosine. What he would like to have is something that looks like this (ideally):
Y

The angle « is 30° in the example
1 (w/6 in radians). The sine of «, which
— is the height of the red line, is

sina = 1/2.

N[

sin By the Theorem of Pythagoras we

cosa have cos® o + sin® & = 1. Thus the

« length of the blue line, which is the
cos o 1 cosine of a, must be

/ cosa=+/1-1/4=1V3.

This shows that tan «, which is the
height of the orange line, is

sin o tana =

DO

- sin o
1 tan o = =1/+/3.
COS v

2.2 Setting up the Environment

In TikZ, to draw a picture, at the start of the picture you need to tell TEX or KIEX that you want to
start a picture. In KTEX this is done using the environment {tikzpicture}, in plain TEX you just use
\tikzpicture to start the picture and \endtikzpicture to end it.

2.2.1 Setting up the Environment in BKTgX
Karl, being a KTEX user, thus sets up his file as follows:

20

\documentclass{article} / say
\usepackage{tikz}
\begin{document}
We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.
\end{document}

When executed, that is, run via pdflatex or via latex followed by dvips, the resulting will contain
something that looks like this:

We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.

We are working on

Admittedly, not quite the whole picture, yet, but we do have the axes established. Well, not quite, but
we have the lines that make up the axes drawn. Karl suddenly has a sinking feeling that the picture is still
some way off.

Let’s have a more detailed look at the code. First, the package tikz is loaded. This package is a so-called
“frontend” to the basic PGF system. The basic layer, which is also described in this manual, is somewhat
more, well, basic and thus harder to use. The frontend makes things easier by providing a simpler syntax.

Inside the environment there are two \draw commands. They mean: “The path, which is specified follow-
ing the command up to the semicolon, should be drawn.” The first path is specified as (-1.5,0) -- (0,1.5),
which means “a straight line from the point at position (—1.5,0) to the point at position (0, 1.5).” Here, the
positions are specified within a special coordinate system in which, initially, one unit is lcm.

Karl is quite pleased to note that the environment automatically reserves enough space to encompass the
picture.

2.2.2 Setting up the Environment in Plain TgX

Karl’s wife Gerda, who also happens to be a math teacher, is not a KTEX user, but uses plain TEX since
she prefers to do things “the old way.” She can also use TikZ. Instead of \usepackage{tikz} she has
to write \input tikz.tex and instead of \begin{tikzpicture} she writes \tikzpicture and instead of
\end{tikzpicture} she writes \endtikzpicture.

Thus, she would use:

%% Plain TeX file
\input tikz.tex
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
We are working on
\tikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\endtikzpicture.
\bye

Gerda can typeset this file using either pdftex or tex together with dvips. TikZ will automatically
discern which driver she is using. If she wishes to use dvipdfm together with tex, she either needs to
modify the file pgf.cfg or can write \def\pgfsysdriver{pgfsys-dvipdfm.def} somewhere before she
inputs tikz.tex or pgf.tex.

2.2.3 Setting up the Environment in ConTEXt

Karl’s uncle Hans uses ConTEXt. Like Gerda, Hans can also use TikZ. Instead of \usepackage{tikz} he
says \usemodule[tikz]. Instead of \begin{tikzpicture} he writes \starttikzpicture and instead of
\end{tikzpicture} he writes \stoptikzpicture.

21

His version of the example looks like this:

%% ConTeXt file
\usemodule [tikz]

\starttext
We are working on
\starttikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\stoptikzpicture.
\stoptext

Hans will now typeset this file in the usual way using texexec.

2.3 Straight Path Construction

The basic building block of all pictures in TikZ is the path. A path is a series of straight lines and curves
that are connected (that is not the whole picture, but let us ignore the complications for the moment). You
start a path by specifying the coordinates of the start position as a point in round brackets, as in (0,0).
This is followed by a series of “path extension operations.” The simplest is —--, which we used already. It
must be followed by another coordinate and it extends the path in a straight line to this new position. For
example, if we were to turn the two paths of the axes into one path, the following would result:

\tikz \draw (-1.5,0) -- (1.5,0) -- (0,-1.5) -- (0,1.5);

Karl is a bit confused by the fact that there is no {tikzpicture} environment, here. Instead, the little
command \tikz is used. This command either takes one argument (starting with an opening brace as in
\tikz{\draw (0,0) -- (1.5,0)}, which yields) or collects everything up to the next semicolon
and puts it inside a {tikzpicture} environment. As a rule of thumb, all TikZ graphic drawing commands
must occur as an argument of \tikz or inside a {tikzpicture} environment. Fortunately, the command
\draw will only be defined inside this environment, so there is little chance that you will accidentally do
something wrong here.

2.4 Curved Path Construction

The next thing Karl wants to do is to draw the circle. For this, straight lines obviously will not do. Instead,
we need some way to draw curves. For this, TikZ provides a special syntax. One or two “control points”
are needed. The math behind them is not quite trivial, but here is the basic idea: Suppose you are at point
x and the first control point is y. Then the curve will start “going in the direction of y at z,” that is, the
tangent of the curve at x will point toward y. Next, suppose the curve should end at z and the second
support point is w. Then the curve will, indeed, end at z and the tangent of the curve at point z will go
through w.
Here is an example (the control points have been added for clarity):

° ® \begin{tikzpicture}

\filldraw [gray] (0,0) circle (2pt)
(1,1) circle (2pt)
(2,1) circle (2pt)

(2,0) circle (2pt);
\draw (0,0) .. comntrols (1,1) and (2,1) .. (2,0);

\end{tikzpicture}
The general syntax for extending a path in a “curved” way is .. controls (first control point) and
(second control point) .. (end point). You can leave out the and (second control point), which causes the

first one to be used twice.
So, Karl can now add the first half circle to the picture:

22

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (-1,0) .. controls (-1,0.555) and (-0.555,1) .. (0,1)
.. controls (0.555,1) and (1,0.555) .. (1,0);

\end{tikzpicture}

Karl is happy with the result, but finds specifying circles in this way to be extremely awkward. Fortu-
nately, there is a much simpler way.

2.5 Circle Path Construction

In order to draw a circle, the path construction operation circle can be used. This operation is followed
by a radius in round brackets as in the following example: (Note that the previous position is used as the
center of the circle.)

<:::> \tikz \draw (0,0) circle (10pt);

You can also append an ellipse to the path using the ellipse operation. Instead of a single radius you
can specify two of them, one for the z-direction and one for the y-direction, separated by and:

<::::::::> \tikz \draw (0,0) ellipse (20pt and 10pt);

To draw an ellipse whose axes are not horizontal and vertical, but point in an arbitrary direction (a
“turned ellipse” like &) you can use transformations, which are explained later. The code for the little
ellipse is \tikz \draw[rotate=30] (0,0) ellipse (6pt and 3pt);, by the way.

So, returning to Karl’s problem, he can write \draw (0,0) circle (lcm); to draw the circle:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);
\\\\\‘_////// \end{tikzpicture}

At this point, Karl is a bit alarmed that the circle is so small when he wants the final picture to be much
bigger. He is pleased to learn that TikZ has powerful transformation options and scaling everything by a
factor of three is very easy. But let us leave the size as it is for the moment to save some space.

2.6 Rectangle Path Construction

The next things we would like to have is the grid in the background. There are several ways to produce it.
For example, one might draw lots of rectangles. Since rectangles are so common, there is a special syntax
for them: To add a rectangle to the current path, use the rectangle path construction operation. This
operation should be followed by another coordinate and will append a rectangle to the path such that the
previous coordinate and the next coordinates are corners of the rectangle. So, let us add two rectangles to
the picture:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (1lcm);

\draw (0,0) rectangle (0.5,0.5);

\draw (-0.5,-0.5) rectangle (-1,-1);
\end{tikzpicture}

23

While this may be nice in other situations, this is not really leading anywhere with Karl’s problem: First,
we would need an awful lot of these rectangles and then there is the border that is not “closed.”

So, Karl is about to resort to simply drawing four vertical and four horizontal lines using the nice \draw
command, when he learns that there is a grid path construction operation.

2.7 Grid Path Construction

The grid path operation adds a grid to the current path. It will add lines making up a grid that fills
the rectangle whose one corner is the current point and whose other corner is the point following the grid
operation. For example, the code \tikz \draw[step=2pt] (0,0) grid (10pt,10pt); produces B Note
how the optional argument for \draw can be used to specify a grid width (there are also xstep and ystep to
define the steppings independently). As Karl will learn soon, there are lots of things that can be influenced
using such options.

For Karl, the following code could be used:

\begin{tikzpicture}

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (1lcm);

\draw[step=.5cm] (-1.4,-1.4) grid (1.4,1.4);
\end{tikzpicture}

Having another look at the desired picture, Karl notices that it would be nice for the grid to be more
subdued. (His son told him that grids tend to be distracting if they are not subdued.) To subdue the grid,
Karl adds two more options to the \draw command that draws the grid. First, he uses the color gray for the
grid lines. Second, he reduces the line width to very thin. Finally, he swaps the ordering of the commands
so that the grid is drawn first and everything else on top.

\begin{tikzpicture}
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);
\end{tikzpicture}

2.8 Adding a Touch of Style

Instead of the options gray,very thin Karl could also have said help lines. Styles are predefined sets of
options that can be used to organize how a graphic is drawn. By saying help lines you say “use the style
that I (or someone else) has set for drawing help lines.” If Karl decides, at some later point, that grids should
be drawn, say, using the color blue!50 instead of gray, he could provide the following option somewhere:

help lines/.style={color=blue!50,very thin}

The effect of this “style setter” is that in the current scope or environement the help lines option has
the same effect as color=blue! 50,very thin.

Using styles makes your graphics code more flexible. You can change the way things look easily in a
consistent manner. Normally, styles are defined at the beginning of a picture. However, you may sometimes
wish to define a style globally, so that all pictures of your document can use this style. Then you can easily
change the way all graphics look by changing this one style. In this situation you can use the \tikzset
command at the beginning of the document as in

\tikzset{help lines/.style=very thin}

To build a hierarchy of styles you can have one style use another. So in order to define a style Karl’s grid
that is based on the grid style Karl could say

\tikzset{Karl’s grid/.style={help lines,color=blue!50}}

\draw[Karl’s grid] (0,0) grid (5,5);

24

Styles are made even more powerful by parametrization. This means that, like other options, styles can
also be used with a parameter. For instance, Karl could parametrize his grid so that, by default, it is blue,
but he could also use another color.

\begin{tikzpicture}
[Karl’s grid/.style ={help lines,color=#1!50},
Karl’s grid/.default=blue]

\draw[Karl’s grid] (0,0) grid (1.5,2);
\draw[Karl’s grid=red] (2,0) grid (3.5,2);
\end{tikzpicture}

2.9 Drawing Options

Karl wonders what other options there are that influence how a path is drawn. He saw already that the
color=(color) option can be used to set the line’s color. The option draw=(color) does nearly the same, only
it sets the color for the lines only and a different color can be used for filling (Karl will need this when he
fills the arc for the angle).

He saw that the style very thin yields very thin lines. Karl is not really surprised by this and neither
is he surprised to learn that thin yields thin lines, thick yields thick lines, very thick yields very thick
lines, ultra thick yields really, really thick lines and ultra thin yields lines that are so thin that low-
resolution printers and displays will have trouble showing them. He wonders what gives lines of “normal”
thickness. It turns out that thin is the correct choice. This seems strange to Karl, but his son explains
him that ITEX has two commands called \thinlines and \thicklines and that \thinlines gives the line
width of “normal” lines, more precisely, of the thickness that, say, the stem of a letter like “T” or “i” has.
Nevertheless, Karl would like to know whether there is anything “in the middle” between thin and thick.
There is: semithick.

Another useful thing one can do with lines is to dash or dot them. For this, the two styles dashed and
dotted can be used, yielding -~ and ... Both options also exist in a loose and a dense version, called
loosely dashed, densely dashed, loosely dotted, and densely dotted. If he really, really needs to,
Karl can also define much more complex dashing patterns with the dash pattern option, but his son insists
that dashing is to be used with utmost care and mostly distracts. Karl’s son claims that complicated dashing
patterns are evil. Karl’s students do not care about dashing patterns.

2.10 Arc Path Construction

Our next obstacle is to draw the arc for the angle. For this, the arc path construction operation is useful,
which draws part of a circle or ellipse. This arc operation must be followed by a triple in rounded brackets,
where the components of the triple are separated by colons. The first two components are angles, the last
one is a radius. An example would be (10:80:10pt), which means “an arc from 10 degrees to 80 degrees
on a circle of radius 10pt.” Karl obviously needs an arc from 0° to 30°. The radius should be something
relatively small, perhaps around one third of the circle’s radius. This gives: (0:30:3mm).

When one uses the arc path construction operation, the specified arc will be added with its starting point
at the current position. So, we first have to “get there.”

\begin{tikzpicture}
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\ \draw (0,0) circle (icm);
\draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

Karl thinks this is really a bit small and he cannot continue unless he learns how to do scaling. For this,
he can add the [scale=3] option. He could add this option to each \draw command, but that would be
awkward. Instead, he adds it to the whole environment, which causes this option to apply to everything
within.

25

\begin{tikzpicture}[scale=3]
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);
\draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

As for circles, you can specify “two” radii in order to get an elliptical arc.

\tikz \draw (0,0) arc (0:315:1.75cm and 1cm);

2.11 Clipping a Path

In order to save space in this manual, it would be nice to clip Karl’s graphics a bit so that we can focus on
the “interesting” parts. Clipping is pretty easy in TikZ. You can use the \clip command clip all subsequent
drawing. It works like \draw, only it does not draw anything, but uses the given path to clip everything
subsequently.

\begin{tikzpicture} [scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);
\ \draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

You can also do both at the same time: Draw and clip a path. For this, use the \draw command and
add the clip option. (This is not the whole picture: You can also use the \clip command and add the
draw option. Well, that is also not the whole picture: In reality, \draw is just a shorthand for \path[draw]
and \clip is a shorthand for \path[clip] and you could also say \path[draw,clip]l.) Here is an example:

26

\begin{tikzpicture} [scale=3]

\clip[draw] (0.5,0.5) circle (.6cm);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);
\draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

2.12 Parabola and Sine Path Construction

Althqugh Karl doegfot need them for his picture, he is pleased to learn that there are parabola and sin and
cos path operations for adding parabolas and sine and cosine curves to the current path. For the parabola
tio e current point will lie on the parabola as well as the point given after the parabola operation.

Consider the following example:

\tikz \draw (0,0) rectangle (1,1) (0,0) parabola (1,1);

It is also possible to place the bend somewhere else:

/\ \tikz \draw[x=1pt,y=1pt] (0,0) parabola bend (4,16) (6,12);

The operations sin and cos add a sine or cosine curve in the interval [0,7/2] such that the previous
current point is at the start of the curve and the curve ends at the given end point. Here are two examples:

A sine .~ curve. A sine \tikz \draw[x=lex,y=1ex] (0,0) sin (1.57,1); curve.

7§:>C; \tikz \draw[x=1.57ex,y=1lex] (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0)
(0,1) cos (1,0) sin (2,-1) cos (3,0) sin (4,1);

2.13 Filling and Drawing

Returning to the picture, Karl now wants the angle to be “filled” with a very light green. For this he uses
\fill instead of \draw. Here is what Karl does:

\begin{tikzpicture}[scale=3]

\clip (-0.1,-0.2) rectangle (1.1,0.75);

\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);

\fill[green!20!white] (0,0) -- (3mm,Omm) arc (0:30:3mm) -- (0,0);
\end{tikzpicture}

The color green!20!white means 20% green and 80% white mixed together. Such color expression are
possible since PGF uses Uwe Kern’s xcolor package, see the documentation of that package for details on
color expressions.

What would have happened, if Karl had not “closed” the path using --(0,0) at the end? In this case,
the path is closed automatically, so this could have been omitted. Indeed, it would even have been better to
write the following, instead:

\fill[green!20!white] (0,0) -- (3mm,Omm) arc (0:30:3mm) -- cycle;

The --cycle causes the current path to be closed (actually the current part of the current path) by
smoothly joining the first and last point. To appreciate the difference, consider the following example:

\begin{tikzpicture}[line width=5pt]
\draw (0,0) -- (1,0) -- (1,1) -- (0,0);
\draw (2,0) -- (3,0) -- (3,1) -- cycle;
\useasboundingbox (0,1.5); 7 make bounding box higher
\end{tikzpicture}

27

You can also fill and draw a path at the same time using the \filldraw command. This will first draw
the path, then fill it. This may not seem too useful, but you can specify different colors to be used for filling
and for stroking. These are specified as optional arguments like this:

\begin{tikzpicture}[scale=3]

\clip (-0.1,-0.2) rectangle (1.1,0.75);

\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);

\filldraw[fill=green!20!white, draw=green!50!black]

(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;

\end{tikzpicture}

2.14 Shading

Karl briefly considers the possibility of making the angle “more fancy” by shading it. Instead of filling the
with a uniform color, a smooth transition between different colors is used. For this, \shade and \shadedraw,
for shading and drawing at the same time, can be used:

e 4 \tikz \shade (0,0) rectangle (2,1) (3,0.5) circle (.5cm);

The default shading is a smooth transition from gray to white. To specify different colors, you can use
options:

we B B30

\begin{tikzpicture} [rounded corners,ultra thick]
\shade [top color=yellow,bottom color=black] (0,0) rectangle +(2,1);
\shade[left color=yellow,right color=black] (3,0) rectangle +(2,1);
\shadedraw[inner color=yellow,outer color=black,draw=yellow] (6,0) rectangle +(2,1);
\shade[ball color=green] (9,.5) circle (.5cm);
\end{tikzpicture}

For Karl, the following might be appropriate:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (lcm);
ﬁA \shadedraw[left color=gray,right color=green, draw=green!50!black]
(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\end{tikzpicture}

However, he wisely decides that shadings usually only distract without adding anything to the picture.

2.15 Specifying Coordinates

Karl now wants to add the sine and cosine lines. He knows already that he can use the color= option to set
the lines’s colors. So, what is the best way to specify the coordinates?

There are different ways of specifying coordinates. The easiest way is to say something like (10pt,2cm).
This means 10pt in z-direction and 2cm in y-directions. Alternatively, you can also leave out the units as in
(1,2), which means “one times the current xz-vector plus twice the current y-vector.” These vectors default
to lem in the z-direction and lcm in the gy-direction, respectively.

In order to specify points in polar coordinates, use the notation (30:1cm), which means lcm in direction
30 degree. This is obviously quite useful to “get to the point (cos30°,sin30°) on the circle.”

You can add a single + sign in front of a coordinate or two of them as in +(1cm,0cm) or ++(Ocm,2cm).
Such coordinates are interpreted differently: The first form means “lcm upwards from the previous specified
position” and the second means “2cm to the right of the previous specified position, making this the new
specified position.” For example, we can draw the sine line as follows:

28

\begin{tikzpicture} [scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);
\filldraw[fill=green!20,draw=green!50!black]
(0,0) -- (3mm,Omm) arc (0:30:3mm) -- cycle;
\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\end{tikzpicture}

Karl used the fact sin 30° = 1/2. However, he very much doubts that his students know this, so it would
be nice to have a way of specifying “the point straight down from (30:1cm) that lies on the z-axis.” This
is, indeed, possible using a special syntax: Karl can write (30:1cm |- 0,0). In general, the meaning of
({p) 1= (q)) is “the intersection of a vertical line through p and a horizontal line through ¢.”

Next, let us draw the cosine line. One way would be to say (30:1cm |- 0,0) -- (0,0). Another way
is the following: we “continue” from where the sine ends:

\begin{tikzpicture} [scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw [step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);
,////\ \filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm) arc
(0:30:3mm) -- cycle;
\draw([red,very thick] (30:1cm) -- +(0,-0.5);
\draw[blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);
\end{tikzpicture}

Note the there is no -- between (30:1cm) and +(0,-0.5). In detail, this path is interpreted as follows:
“First, the (30:1cm) tells me to move by pen to (cos30°,1/2). Next, there comes another coordinate
specification, so I move my pen there without drawing anything. This new point is half a unit down from
the last position, thus it is at (cos30°,0). Finally, I move the pen to the origin, but this time drawing
something (because of the --).”

To appreciate the difference between + and ++ consider the following example:

\begin{tikzpicture}
\def\rectanglepath{-- ++(icm,0cm) -- ++(Ocm,1cm) -- ++(-1cm,0Ocm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

By comparison, when using a single +, the coordinates are different:

\begin{tikzpicture}
\def\rectanglepath{-- +(1cm,0cm) -- +(icm,1cm) -- +(Ocm,lcm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

Naturally, all of this could have been written more clearly and more economically like this (either with
a single of a double +):

\tikz \draw (0,0) rectangle +(1,1) (1.5,0) rectangle +(1,1);

Karl is left with the line for tan a, which seems difficult to specify using transformations and polar
coordinates. For this he needs another way of specifying coordinates: Karl can specify intersections of lines
as coordinates. The line for tana starts at (1,0) and goes upward to a point that is at the intersection
of a line going “up” and a line going from the origin through (30:1cm). The syntax for this point is the
following:

\draw[very thick,orange] (1,0) -- (intersection of 1,0--1,1 and 0,0--30:1cm);

In the following, two final examples of how to use relative positioning are presented. Note that the
transformation options, which are explained later, are often more useful for shifting than relative positioning.

29

E:> \begin{tikzpicture}[scale=0.5]
\draw (0,0) -- (90:1cm) arc (90:360:1cm) arc (0:30:1cm) -- cycle;
\draw (60:5pt) -- +(30:1cm) arc (30:90:1cm) -- cycle;
\draw (3,0) +(0:1cm) -- +(72:1cm) -- +(144:1cm) -- +(216:1cm) --

+(288:1cm) -- cycle;
\end{tikzpicture}

2.16 Adding Arrow Tips

Karl now wants to add the little arrow tips at the end of the axes. He has noticed that in many plots, even
in scientific journals, these arrow tips seem to missing, presumably because the generating programs cannot
produce them. Karl thinks arrow tips belong at the end of axes. His son agrees. His students do not care
about arrow tips.

It turns out that adding arrow tips is pretty easy: Karl adds the option -> to the drawing commands for
the axes:

\begin{tikzpicture} [scale=3]
\clip (-0.1,-0.2) rectangle (1.1,1.51);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw[->] (-1.5,0) -- (1.5,0);
\draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm) arc
(0:30:3mm) -- cycle;
\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\draw[blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);
\draw [orange,very thick] (1,0) -- (intersection of 1,0--1,1 and 0,0--30:1cm);
\end{tikzpicture}

)

A

If Karl had used the option <- instead of ->, arrow tips would have been put at the beginning of the
path. The option <-> puts arrow tips at both ends of the path.

There are certain restrictions to the kind of paths to which arrow tips can be added. As a rule of thumb,
you can add arrow tips only to a single open “line.” For example, you should not try to add tips to, say,
a rectangle or a circle. (You can try, but no guarantees as to what will happen now or in future versions.)
However, you can add arrow tips to curved paths and to paths that have several segments, as in the following
examples:

{’"\y K//“\\V//ﬂ \begin{tikzpicture}

\draw [<->] (0,0) arc (180:30:10pt);
\draw [<->] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl has a more detailed look at the arrow that TikZ puts at the end. It looks like this when he zooms
it: —. The shape seems vaguely familiar and, indeed, this is exactly the end of TEX’s standard arrow used
in something like f: A — B.

Karl likes the arrow, especially since it is not “as thick” as the arrows offered by many other packages.
However, he expects that, sometimes, he might need to use some other kinds of arrow. To do so, Karl can
say >=(right arrow tip kind), where (right arrow tip kind) is a special arrow tip specification. For example,
if Karl says >=stealth, then he tells TikZ that he would like “stealth-fighter-like” arrow tips:

Y ‘Z(A\\~/// \begin{tikzpicture} [>=stealth]

\draw [->] (0,0) arc (180:30:10pt);
\draw [<<-,very thick] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl wonders whether such a military name for the arrow type is really necessary. He is not really
mollified when his son tells him that Microsoft’s PowerPoint uses the same name. He decides to have his
students discuss this at some point.

In addition to stealth there are several other predefined arrow tip kinds Karl can choose from, see
Section 22. Furthermore, he can define arrows types himself, if he needs new ones.

30

2.17 Scoping

Karl saw already that there are numerous graphic options that affect how paths are rendered. Often, he
would like to apply certain options to a whole set of graphic commands. For example, Karl might wish to
draw three paths using a thick pen, but would like everything else to be drawn “normally.”

If Karl wishes to set a certain graphic option for the whole picture, he can simply pass this option to
the \tikz command or to the {tikzpicture} environment (Gerda would pass the options to \tikzpicture
and Hans passes them to \starttikzpicture). However, if Karl wants to apply graphic options to a local
group, he put these commands inside a {scope} environment (Gerda uses \scope and \endscope, Hans
uses \startscope and \stopscope). This environment takes graphic options as an optional argument and
these options apply to everything inside the scope, but not to anything outside.

Here is an example:

\begin{tikzpicture} [ultra thick]
\draw (0,0) -- (0,1);
\begin{scope} [thin]
\draw (1,0) -- (1,1);
\draw (2,0) -- (2,1);
\end{scope}
\draw (3,0) -- (3,1);
\end{tikzpicture}

Scoping has another interesting effect: Any changes to the clipping area are local to the scope. Thus,
if you say \clip somewhere inside a scope, the effect of the \clip command ends at the end of the scope.
This is useful since there is no other way of “enlarging” the clipping area.

Karl has also already seen that giving options to commands like \draw apply only to that command.
In turns out that the situation is slightly more complex. First, options to a command like \draw are
not really options to the command, but they are “path options” and can be given anywhere on the
path. So, instead of \draw[thin] (0,0) -- (1,0); one can also write \draw (0,0) [thin] -- (1,0);
or \draw (0,0) -- (1,0) [thin];; all of these have the same effect. This might seem strange since in the
last case, it would appear that the thin should take effect only “after” the line from (0,0) to (1,0) has been
draw. However, most graphic options only apply to the whole path. Indeed, if you say both thin and thick
on the same path, the last option given will “win.”

When reading the above, Karl notices that only “most” graphic options apply to the whole path. Indeed,
all transformation options do not apply to the whole path, but only to “everything following them on the
path.” We will have a more detailed look at this in a moment. Nevertheless, all options given during a path
construction apply only to this path.

2.18 Transformations

When you specify a coordinate like (1cm,1cm), where is that coordinate placed on the page? To determine
the position, TikZ, TEX, and PDF or PostScript all apply certain transformations to the given coordinate in
order to determine the finally position on the page.

TikZ provides numerous options that allow you to transform coordinates in PGF’s private coordinate
system. For example, the xshift option allows you to shift all subsequent points by a certain amount:

“ \tikz \draw (0,0) -- (0,0.5) [xshift=2pt] (0,0) -- (0,0.5);

It is important to note that you can change transformation “in the middle of a path,” a feature that is
not supported by PDF or PostScript. The reason is that PGF keeps track of its own transformation matrix.
Here is a more complicated example:

\begin{tikzpicture}[even odd rule,rounded corners=2pt,x=10pt,y=10pt]
\filldraw[fill=examplefill]l (0,0) rectangle (1,1)
[xshift=5pt,yshift=bpt] (0,0) rectangle (1,1)
[rotate=30] (-1,-1) rectangle (2,2);
\end{tikzpicture}

The most useful transformations are xshift and yshift for shifting, shift for shifting to a given point
as in shift={(1,0)} or shift={+(0,0)} (the braces are necessary so that TEX does not mistake the comma
for separating options), rotate for rotating by a certain angle (there is also a rotate around for rotating
around a given point), scale for scaling by a certain factor, xscale and yscale for scaling only in the z-
or y-direction (xscale=-1 is a flip), and xslant and yslant for slanting. If these transformation and those

31

that I have not mentioned are not sufficient, the cm option allows you to apply an arbitrary transformation
matrix. Karl’s students, by the way, do not know what a transformation matrix is.

2.19 Repeating Things: For-Loops

Karl’s next aim is to add little ticks on the axes at positions —1, —1/2, 1/2, and 1. For this, it would be
nice to use some kind of “loop,” especially since he wishes to do the same thing at each of these positions.
There are different packages for doing this. EXTEX has its own internal command for this, pstricks comes
along with the powerful \mulitdo command. All of these can be used together with PGF and TikZ, so if
you are familiar with them, feel free to use them. PGF introduces yet another command, called \foreach,
which I introduced since I could never remember the syntax of the other packages. \foreach is defined in
the package pgffor and can be used independently of PGF. TikZ includes it automatically.
In its basic form, the \foreach command is easy to use:

r=1, =2 =3, \foreach \x in {1,2,3} {$x =\x$, }

The general syntax is \foreach (variable) in {(list of values)} (commands). Inside the {commands),
the (variable) will be assigned to the different values. If the (commands) do not start with a brace, everything
up to the next semicolon is used as (commands).

For Karl and the ticks on the axes, he could use the following code:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,1.51);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm) arc
(0:30:3mm) -- cycle;
\draw[->] (-1.5,0) -- (1.5,0);
\draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);

\foreach \x in {-1cm,-0.5cm,1lcm}
\draw (\x,-1pt) -- (\x,1pt);
\foreach \y in {-1cm,-0.5cm,0.5cm,lcm}
\draw (-1pt,\y) -- (1pt,\y);
\end{tikzpicture}

As a matter of fact, there are many different ways of creating the ticks. For example, Karl could have
put the \draw ...; inside curly braces. He could also have used, say,

\foreach \x in {-1,-0.5,1}
\draw [xshift=\x cm] (Opt,-ipt) -- (Opt,1pt);

Karl is curious what would happen in a more complicated situation where there are, say, 20 ticks. It
seems bothersome to explicitly mention all these numbers in the set for \foreach. Indeed, it is possible to
use ... inside the \foreach statement to iterate over a large number of values (which must, however, be
dimensionless real numbers) as in the following example:

OOOOOOOO0OO

\tikz \foreach \x in {1,...,10}
\draw (\x,0) circle (0.4cm);

If you provide two numbers before the ..., the \foreach statement will use their difference for the
stepping:

\tikz \foreach \x in {-1,-0.5,...,1}
\draw (\x cm,-1pt) -- (\x cm,1pt);

We can also nest loops to create interesting effects:

32

15| 25| 35| 45| 55 75 | 85| 95 | 105|115] 12,5
14 | 24| 34| 44|54 74 | 84 | 94 104|114 | 124
1312333 43]53 7318393 |103|11,3]123
12122]32] 42| 52 72182192 (102]11,2]122
11| 21|31 4151 71 | 81| 91 | 101|111 12,1
\begin{tikzpicture}

\foreach \x in {1,2,...,5,7,8,...,12}

\foreach \y in {1,...,5}

{

\draw (\x,\y) +(-.5,-.5) rectangle ++(.5,.5);
\draw (\x,\y) node{\x,\y};
}
\end{tikzpicture}

The \foreach statement can do even trickier stuff, but the above gives the idea.

2.20 Adding Text

Karl is, by now, quite satisfied with the picture. However, the most important parts, namely the labels, are
still missing!

TikZ offers an easy-to-use and powerful system for adding text and, more generally, complex shapes
to a picture at specific positions. The basic idea is the following: When TikZ is constructing a path and
encounters the keyword node in the middle of a path, it reads a node specification. The keyword node is
typically followed by some options and then some text between curly braces. This text is put inside a normal
TEX box (if the node specification directly follows a coordinate, which is usually the case, TikZ is able to
perform some magic so that it is even possible to use verbatim text inside the boxes) and then placed at the
current position, that is, at the last specified position (possibly shifted a bit, according to the given options).
However, all nodes are drawn only after the path has been completely drawn/filled /shaded/clipped/whatever.

\begin{tikzpicture}
Text at node 2 \draw (0,0) rectangle (2,2);
\draw (0.5,0.5) node [fill=examplefill]
/ {Text at \verb!node 1!}
Text at node 1 -- (1.5,1.5) node {Text at \verb!mode 2!};

\end{tikzpicture}

Obviously, Karl would not only like to place nodes on the last specified position, but also to the left
or the right of these positions. For this, every node object that you put in your picture is equipped with
several anchors. For example, the north anchor is in the middle at the upper end of the shape, the south
anchor is at the bottom and the north east anchor is in the upper right corner. When you given the option
anchor=north, the text will be placed such that this northern anchor will lie on the current position and
the text is, thus, below the current position. Karl uses this to draw the ticks as follows:

33

\begin{tikzpicture} [scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50!black]
1 (0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
L \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);

\foreach \x in {-1,-0.5,1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\x};
\foreach \y in {-1,-0.5,0.5,1}
\draw (ipt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\y};
\end{tikzpicture}

@
at

This is quite nice, already. Using these anchors, Karl can now add most of the other text elements.
However, Karl thinks that, though “correct,” it is quite counter-intuitive that in order to place something
below a given point, he has to use the north anchor. For this reason, there is an option called below, which
does the same as anchor=north. Similarly, above right does the same as anchor=south east. In addition,
below takes an optional dimension argument. If given, the shape will additionally be shifted downwards by
the given amount. So, below=1pt can be used to put a text label below some point and, additionally shift
it 1pt downwards.

Karl is not quite satisfied with the ticks. He would like to have 1/2 or % shown instead of 0.5, partly to
show off the nice capabilities of TEX and TikZ, partly because for positions like 1/3 or 7 it is certainly very
much preferable to have the “mathematical” tick there instead of just the “numeric” tick. His students, on
the other hand, prefer 0.5 over 1/2 since they are not too fond of fractions in general.

Karl now faces a problem: For the \foreach statement, the position \x should still be given as 0.5 since
TikZ will not know where \frac{1}{2} is supposed to be. On the other hand, the typeset text should really
be \frac{1}{2}. To solve this problem, \foreach offers a special syntax: Instead of having one variable \x,
Karl can specify two (or even more) variables separated by a slash as in \x / \xtext. Then, the elements
in the set over which \foreach iterates must also be of the form (first)/({second). In each iteration, \x will
be set to (first) and \xtext will be set to (second). If no (second) is given, the (first) will be used again.
So, here is the new code for the ticks:

\begin{tikzpicture} [scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50!black]
1 (0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
/////”I \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
2 \draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\xtext};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\ytext};
\end{tikzpicture}

-

N

Karl is quite pleased with the result, but his son points out that this is still not perfectly satisfactory:
The grid and the circle interfere with the numbers and decrease their legibility. Karl is not very concerned
by this (his students do not even notice), but his son insists that there is an easy solution: Karl can add the
[fill=white] option to fill out the background of the text shape with a white color.

The next thing Karl wants to do is to add the labels like sin a. For this, he would like to place a label
“in the middle of line.” To do so, instead of specifying the label node {$\sin\alpha$} directly after one
of the endpoints of the line (which would place the label at that endpoint), Karl can give the label directly
after the ——, before the coordinate. By default, this places the label in the middle of the line, but the pos=
options can be used to modify this. Also, options like near start and near end can be used to modify this
position:

34

N|—=

sin «

S111 ¢ CcOos «

-1 —

Ol

COS (v 1

\begin{tikzpicture} [scale=3]
\clip (-2,-0.2) rectangle (2,0.8);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\filldraw([fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm) arc
(0:30:3mm) -- cycle;
\draw[->] (-1.5,0) -- (1.5,0) coordinate (x axis);
\draw[->] (0,-1.5) -- (0,1.5) coordinate (y axis);
\draw (0,0) circle (icm);

\draw [very thick,red]

(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:icm |- x axis);
\draw [very thick,blue]

(30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\draw[very thick,orange] (1,0) -- node [right=1pt,fill=whitel

{$\displaystyle \tan \alpha \color{blackl}=

\frac{{\color{red}\sin \alpha}}{\color{blue}\cos \alphal}$}
(intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t);

\draw (0,0) -- (t);

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north,fill=white] {\xtext};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (ipt,\y cm) -- (-1pt,\y cm) node[anchor=east,fill=white] {\ytext};
\end{tikzpicture}

You can also position labels on curves and, by adding the sloped option, have them rotated such that
they match the line’s slope. Here is an example:

Very
le
ar enq

\begin{tikzpicture}
\draw (0,0) .. controls (6,1) and (9,1)
node [near start,sloped,above] {near start}
node {midway}
node [very near end,sloped,below] {very near end} (12,0);
\end{tikzpicture}

It remains to draw the explanatory text at the right of the picture. The main difficulty here lies in
limiting the width of the text “label,” which is quite long, so that line breaking is used. Fortunately, Karl
can use the option text width=6cm to get the desired effect. So, here is the full code:

35

\begin{tikzpicture}
[scale=3,1line cap=round
% Styles
axes/.style=,
important line/.style={very thick},
information text/.style={rounded corners,fill=red!10,inner sep=lex}]

% Local definitions
\def\costhirty{0.8660256}

% Colors
\colorlet{anglecolor}{green!50!black}
\colorlet{sincolor}{red}
\colorlet{tancolor}{orange!80!black}
\colorlet{coscolor}{blue}

% The graphic
\draw[help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4);

\draw (0,0) circle (icm);

\begin{scope} [axes]
\draw[->] (-1.5,0) -- (1.5,0) node[right] {x} coordinate(x axis);
\draw[->] (0,-1.5) -- (0,1.5) nodel[above] {y} coordinate(y axis);

\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw[xshift=\x cm] (Opt,ipt) -- (Opt,-1pt) node[below,fill=white] {\xtext};

\foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
\draw[yshift=\y cm] (1pt,Opt) -- (-1pt,Opt) nodel[left,fill=white] {\ytext};
\end{scope}

\filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,Opt) arc(0:30:3mm);
\draw (15:2mm) node[anglecolor] {α};

\draw [important line,sincolor]
(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:1cm |- x axis);

\draw [important line,coscolor]
(30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);

\draw [important line,tancolor] (1,0) -- node[right=1pt,fill=white] {
$\displaystyle \tan \alpha \color{blackl}=
\frac{{\color{sincolor}\sin \alpha}}{\color{coscolor}\cos \alpha}$}
(intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t);

\draw (0,0) -- (t);

\draw [xshift=1.85cm]

node [right,text width=6cm,information text]

{
The {\color{anglecolor} angle α} is $30"\circ$ in the
example ($\pi/6$ in radians). The {\color{sincolorl}sine of

α}, which is the height of the red line, is

\ [
{\color{sincolor} \sin \alpha} = 1/2.
\]
By the Theorem of Pythagoras ...

};

\end{tikzpicture}

36

3 Tutorial: A Petri-Net for Hagen

In this second tutorial we explore the node mechanism of TikZ and PGF.

Hagen must give a talk tomorrow about his favorite formalism for distributed systems: Petri nets!
Hagen used to give his talks using a blackboard and everyone seemed to be perfectly concent with this.
Unfortunately, his audience has been spoiled recently with fancy projector-based presentations and there
seems to be a certain amount of peer pressure that this Petri nets should also be drawn using a graphic
program. One of the professors at his institutes recommends TikZ for this and Hagen decides to give it a
try.

3.1 Problem Statement

For his talk, Hagen wishes to create a graphic that demonstrates how a net with place capacities can be
simulated by a net without capacities. The graphic should look like this, ideally:

replacement of

ﬁ
the capacity
3C<>3< by two places
ANNNNNNNNNNAND

j

3.2 Setting up the Environment

For the picture Hagen will need to load the TikZ package as did Karl in the previous tutorial. However,
Hagen will also need to load some additional library packages that Karl did not need. These library packages
contain additional definitions like extra arrow tips that are typically not needed in a picture and that need
to be loaded explicitly.

Hagen will need to load several libraries: The arrows library for the special arrow tip used in the graphic,
the decoration.pathmorphing library for the “snaking line” in the middle, the background library for the
two rectangular areas that are behind the two main parts of the picture, the fit library to easily compute
the sizes of these ractangles, and the placements library for placing nodes relative to other nodes.

3.2.1 Setting up the Environment in KTEX
When using ITEX use:

\documentclass{article} 7 say

\usepackage{tikz}
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,placments,fit}

\begin{document}
\begin{tikzpicture}
\draw (0,0) -- (1,1);

\end{tikzpicture}
\end{document}

3.2.2 Setting up the Environment in Plain TgX

When using plain TEX use:

37

%% Plain TeX file
\input tikz.tex
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,placments,fit}
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
\tikzpicture
\draw (0,0) -- (1,1);
\endtikzpicture
\bye

3.2.3 Setting up the Environment in ConTEXt
When using ConTEX use:

%% ConTeXt file
\usemodule [tikz]
\usetikzlibrary[arrows,decorations.pathmorphing,backgrounds,placments,fit]

\starttext
\starttikzpicture
\draw (0,0) -- (1,1);
\stoptikzpicture
\startext

3.3 Introduction to Nodes

In principle, we already know how to create the graphics that Hagen desires (except perhaps for the snaked
line, we will come to that): We start with big light gray rectangle and then add lots of circles and small
rectangle, plus some arrows.

However, this approach has numerous disadvantages: First, it is hard to change anything at a later stage.
For example, if we decide to add more places to the Petri nets (the circles are called places in Petri net
theory), all of the coordinates change and we need to recalculate everything. Second, it is hard to read the
code for the Petri net as it just a long and complicated list of coordinates and drawing commands — the
underlying structure of the Petri net is lost.

Fortunately, TikZ offers a powerful mechanism for avoiding the above problems: nodes. We already came
across nodes in the previous tutorial, where we used them to add labels to Karl’s graphic. In the present
tutorial we will see that nodes are much more powerful.

A node is a small part of a picture. When a node is created, you provide a position where the node
should be drawn and a shape. A node of shape circle will be drawn as a circle, a node of shape rectangle
as a rectangle, and so on. A node may also contain same text, which is why Karl used nodes to show text.
Finally, a node can get a name for later reference.

In Hagen'’s picture we will use nodes for the places and for the transitions of the Petri net (the places are
the circles, the transitions are the rectangles). Let us start with the upper half of the left Petir net. In this
upper half we have three places and two transitions. Instead of drawing three circles and two rectangles, we
use three nodes of shape circle and two nodes of shape rectangle.

O \begin{tikzpicture}
\path (0,2) node [shape=circle,draw] {}
(0,1) node [shape=circle,draw] {}
O () 0 (0,0) node [shape=circle,draw] {}
(1,1) node [shape=rectangle,draw] {}
(-1,1) node [shape=rectangle,draw] {};
() \end{tikzpicture}

Hagen notes that this does not quite look like the final picture, but it seems like a good first step.

Let us have a more detailed look at the code. The whole picture consists of a single path. Ignoring the
node operations there is not much going on in this path: It is just a sequence of coordinates with nothing
“happening” between them. Indeed, even if something were to happen like a line-to or a curve-to, the \path
command would not “do” anything with the resulting path. So, all the magic must be in the node commands.

In the previous tutorial we learned that a node will add a piece of text at the last coordinate. Thus,
each of the five nodes is added at a different position. In the above code, this text is empty (because of the
empty {}). So, why do we see anything at all? The answer is the draw option for the node operation: It
causes the “shape around the text” to be drawn.

38

So, the code (0,2) node [shape=circle,draw] {} means the following: “In the main path, add a
move-to to the coordinate (0,2). Then, temporarily suspend the construction of the main path while the
node is build. This node will be a circle around an empty text. This circle is to be drawn, but not filled
or otherwise used. Once this whole node is constructed, it is saved until after the main path is finished.
Then, it is drawn.” Then following (0,1) node [shape=circle,draw] {} then has the following effect:
“Continue the main path with a move-to to (0,1). Then construct a node at this position also. This node
is also shown after the main path is finished.” And so on.

3.4 Placing Nodes Using the At Syntax

Hagen now understands how the node operation adds nodes to the path, but it seems a bit silly to create a
path using the \path operation, consisting of numerous superfluous move-to operations, only to place nodes.
He is pleased to learn that there are ways to add nodes in a more sensible manner.

First, the node operation allows one to add at ({coordinate)) in order to directly specify where the node
should be placed, sidestepping the rule that nodes are placed on the last coordinate. Hagen can then write
the following;:

\begin{tikzpicture}

O

\path node
node
node
node
node

O

QO O

at
at
at
at
at

(0,2
(0,1)
(0,0
(1,1)
(-1,1)

[shape=circle,draw] {}
[shape=circle,draw] {}
[shape=circle,draw] {}
[shape=rectangle,draw] {}
[shape=rectangle,draw] {};

\end{tikzpicture}

O

Now Hagen is still left with a single empty path, but at least the path no longer contains strange move-
tos. It turns out that this can be improved further: The \node command is an abbreviation for \path node,
which allows Hagen to write:

O

\begin{tikzpicture}
\node at (0,2) [circle,draw] {};
\node at (0,1) [circle,draw] {};
\node at (0,0) [circle,draw] {};
\node at (1,1) [rectangle,draw] {};
\node at (-1,1) [rectangle,draw] {};
\end{tikzpicture}

0 0

O
O

Hagen likes this syntax much better than the previous one. Note that Hagen has also omitted the shape=
since, like color=, TikZ allows you to omit the shape= if there is no confusion.

3.5 Using Styles

Feeling adventurous, Hagen tries to make the nodes look nicer. In the final picture, the circles and rectangle
should be filled with different colors, resulting in the following code:

\begin{tikzpicture} [thick]
\node at (0,2) [circle,draw=blue!50,fill=blue!20] {};
\node at (0,1) [circle,draw=blue!50,fill=blue!20] {};
\node at (0,0) [circle,draw=blue!50,fill=blue!20] {};
\node at (1,1) [rectangle,draw=black!50,fill=black!20] {};
\node at (-1,1) [rectangle,draw=black!50,fill=black!20] {I};
\end{tikzpicture}

a

While this looks nicer in the picture, the code starts to get a bit ugly. Ideally, we would like our code
to transport the message “there are three places and two transitions” and not so much which filling colors
should be used.

To solve this problem, Hagen uses styles. He defines a style for places and another style for transitions:

\begin{tikzpicture}
[place/.style={circle,draw=blue!50,fill=blue!20,thick},
transition/.style={rectangle,draw=black!50,fill=black!20,thick}]
\node at (0,2) [place] {};
\node at (0,1) [place] {};
\node at (0,0) [place]l {};
\node at (1,1) [transition] {};
\node at (-1,1) [transition] {};

\end{tikzpicture}

39

3.6 Node Size

Before Hagen starts naming and connecting the nodes, let us first make sure that the nodes get their final
appearance. They are still too small. Indeed, Hagen wonders why they have any size at all, after all, the
text is empty. The reason is than TikZ automatically adds some space around the text. The amount is set
using the option inner sep. So, to increase the size of the nodes, Hagen could write:

\begin{tikzpicture}
[inner sep=2mm,
place/.style={circle,draw=blue!50,fill=blue!20,thick},

[:] [:] transition/.style={rectangle,draw=black!50,fill=black!20,thick}]

\node at (0,2) [place] {};
\node at (0,1) [place] {};
\node at (0,0) [place] {};
\node at (1,1) [transition] {};
\node at (-1,1) [transition] {};

\end{tikzpicture}

However, this is not really the best way to achieve the desired effect. It is much better to use the
minimum size option instead. This option allows Hagen to specify a minimum size that the node should
have. If the nodes actually needs to be bigger because of a longer text, it will be larger, but if the text
is empty, then the node will have minimum size. This option is also useful to ensure that several nodes
containing different amounts of text have the same size. The options minimum height and minimum width
allow you to specify the minimum height and width independently.

So, what Hagen needs to do is to provide minimum size for the nodes. To be on the safe side, he also
sets inner sep=Opt. This ensures that the nodes will really have size minimum size and not, for very small
minimum sizes, the minimal size necessary to encompass the automatically added space.

\begin{tikzpicture}
[place/.style={circle,draw=blue!50,fill=blue!20,thick,
inner sep=0pt,minimum size=6mm},

transition/.style={rectangle,draw=black!50,fill=black!20,thick,
[:] [:] inner sep=0pt,minimum size=4mm}]

\node at (0,2) [place] {};

\node at (0,1) [place] {};

\node at (0,0) [place] {};

\node at (1,1) [transition] {};

\node at (-1,1) [transition] {};
\end{tikzpicture}

3.7 Naming Nodes

Hagen’s next aim is to connect the nodes using arrows. This seems like a tricky business since the arrows
should not start in the middle of the nodes, but somewhere on the border and Hagen would very much like
to avoid computing these positions by hand.

Fortunately, PGF will perform all the necessary calculations for him. However, he first has to assign
names to the nodes so that he can reference them later on.

There are two ways to name a node. The first is the use the name= option. The second method is to
write the desired name in parentheses after the node operation. Hagen thinks that this second method seems
strange, but he will soon change his opinion.

/% ... setup styles
\begin{tikzpicture}
\node (waiting 1) at (0,2) [placel {};
\node (critical 1) at (0,1) [place]l {};
[:] [:] \node (semaphore) at (0,0) [place]l {};

\node (leave critical) at (1,1) [transition] {};
\node (enter critical) at (-1,1) [transition] {};
\end{tikzpicture}

Hagen is pleased to note that the names help in understanding the code. Names for nodes can be
pretty arbitrary, but they should not contain commas, periods, parentheses, colons, and some other special
characters. However, they can contain underscores and hyphens.

The syntax for the node operation is quite liberal with respect to the order in which node names, the at
specifier, and the options must come. Indeed, you can even have multiple option blocks between the node

40

and the text in curly braces, they accumulate. You can rearrange them arbitrarily and perhaps the following
might be preferable:

\begin{tikzpicture}
\node [place] (waiting 1) at (0,2) {};
\node [place] (critical 1) at (0,1) {3;
\node [place] (semaphore) at (0,0) {};
[:] [:] \node [transition] (leave critical) at (1,1) {};
\node[transition] (enter critical) at (-1,1) {};

\end{tikzpicture}

3.8 Placing Nodes Using Relative Placement

Although Hagen still wishes to connect the nodes, he first wishes to address another problem again: The
placement of the nodes. Although he likes the at syntax, in this particular case he would prefer placing the
nodes “relative to each other.” So, Hagen would like to say that the critical 1 node should be below the
waiting 1 node, wherever the waiting 1 node might be. There are different ways of achieving this, but
the nicest one in Hagen’s case is the below option:

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall] {};
[:] [:] \node [transition] (enter critical) [left=of criticall {};
\end{tikzpicture}

With the replacements library loaded, when an option like below is followed by of, then the position of
the node is shifted such a manner that it is placed at the distance node distance in the specified direction
of the given direction. The node distance is either the distance between the centers of the nodes (when
the on grid option is set to true) or the distance between the borders (when the on grid option is set to
false, which is the default).

Even though the above code has the same effect the earlier code, Hagen can pass it to his colleagues who
will be able to just read and understand it, perhaps without even having to see the picture.

3.9 Adding Labels Next to Nodes

Before we have a look at how Hagen can connect the nodes, let us add the capacity “s < 3” to the bottom
node. For this, two approaches are possible:

1. Hagen can just add a new node above the north anchor of the semaphore node.

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall] {};
[:] [:] \node [transition] (enter critical) [left=of criticall {};

\node [red,above] at (semaphore.north) {$s\le 3$};
\end{tikzpicture}

This is a general approach that will “always work.”

2. Hagen can use the special label option. This option is given to a node and it causes another node
to be added next to the node where the option is given. Here is the idea: When we construct the
semaphore node, we wish to indicate that we want another node with the capacity above it. For this,

41

we use the option label=above:$s\le 3$. This option is interpreted as follows: We want a node
above the semaphore node and this node should read “s < 3.” Instead of above we could also use
things like below left before the colon or a number like 60.

\begin{tikzpicture}
<::> \node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical,
label=above:$s\1le3$] {};
[:] <::> [:] \node [transition] (leave critical) [right=of criticall] {};
\node [transition] (enter critical) [left=of criticall {};
\end{tikzpicture}
s<3

O

It is also possible to give multiple label options, this causes multiple labels to be drawn.

600 \tikz
\node [circle,draw,label=60:$60"\circ$,label=below:$-90"\circ$] {my circle};

—90°

Hagen is not fully satisfied with the label option since the label is not red. To achieve this, he has
two options: First, he can redefine the every label style. Second, he can add options to the label’s
node. These options are given following the label=, so he would write label=[red]above:$s\1le3$.
However, this does not quite work since TEX thinks that the] closes the whole option list of the
semaphore node. So, Hagen has to add braces and writes label={[red]above:$s\1le3$}. Since this
looks a bit ugly, Hagen decides to redefine the every label style.

\begin{tikzpicture}[every label/.style={red}]
<::> \node [place] (waiting) {;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of critical,
label=above:$s\1e3$] {};
[:] <::> [:] \node [transition] (leave critical) [right=of criticall] {};
\node [transition] (enter critical) [left=of criticall {};
\end{tikzpicture}
s<3

O

3.10 Connecting Nodes

It is now high time to connect the nodes. Let us start with something simple, namely with the straight line
from enter critical to critical. We want this line to start at the right side of enter critical and to
end at the left side of critical. For this, we can use the anchors of the nodes. Every node defines a whole
bunch of anchors that lie on its border or inside it. For example, the center anchor is at the center of the
node, the west anchor is on the left of the node, and so on. To access the coordinate of a node, we use a
coordinate that contains the node’s name followed by a dot, followed by the anchor’s name:

42

\begin{tikzpicture}

\node [place] (waiting) {;
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall {};
[:] [:] \node[transition] (enter critical) [left=of criticall {};
\draw [->] (critical.west) -- (enter critical.east);
\end{tikzpicture}

Next, let us tackle the curve from waiting to enter critical. This can be specified using curves and
controls:

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall] {};
[:] [:] \node [transition] (enter critical) [left=of criticall {};
\draw [->] (enter critical.east) -- (critical.west);
\draw [->] (waiting.west) .. controls +(left:5mm) and +(up:5mm)
. (enter critical.north);
\end{tikzpicture}

Hagen sees how he can now add all his edges, but the whole process seems a but awkward and not very
flexible. Again, the code seems to obscure the structure of the graphic rather than showing it.
So, let us start improving the code for the edges. First, Hagen can leave out the anchors:

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of criticall {};
\node [transition] (leave critical) [right=of criticall {};
[:] \node[transition] (enter critical) [left=of criticall]l {};
\draw [->] (enter critical) -- (critical);
\draw [->] (waiting) .. controls +(left:8mm) and +(up:8mm)
. (enter critical);
\end{tikzpicture}

Hagen is a bit surprised that this works. After all, how did TikZ know that the line from enter critical
to critical should actually start on the borders? Whenever TikZ encounters a whole node name as a
“coordinate,” it tries to “be smart” about the anchor that it should choose for this node. Depending on
what happens next, TikZ will choose an anchor that lies on the border of the node on a line to the next
coordinate or control point. The exact rules are a bit complex, but the chosen point will usually be correct
— and when it is not, Hagen can still specify the desired anchor by hand.

Hagen would now like to simplify the curve operation somehow. It turns out that this can be accomplished
using a special path operation: the to operation. This operation takes many options (you can even define
new ones yourself). One pair of option is useful for Hagen: The pair in and out. These options take angles
at which a curve should leave or reach the start or target coordinates. Without these options, a straight line
is drawn:

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of criticall] {};
\node [transition] (leave critical) [right=of criticall {};
[:] \node[transition] (enter critical) [left=of criticall {};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [out=180,in=90] (enter critical);
\end{tikzpicture}

43

There is another option for the to operation, that is even better suited to Hagen’s problem: The
bend right option. This option also takes an angle, but this angle only specifies the angle by which
the curve is bend to the right:

\begin{tikzpicture}
\node [place] (waiting) Ors
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall {};
[:] \node [transition] (enter critical) [left=of criticall {};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [bend right=45] (enter critical);
\draw [->] (enter critical) to [bend right=45] (semaphore);
\end{tikzpicture}

It is now time for Hagen to learn about yet another way of specifying edges: Using the edge path
operation. This operation is very similar to the to operation, but there is one important difference: Like a
node the edge generated by the edge operation is not part of the main path, but is added only later. This
may not seem very important, but is has some nice consequences. For example, every edge can have its own
arrow tips and its own color and so one and, still, all the edges can be given on the same path. This allows
Hagen to write the following:

\begin{tikzpicture}
\node [place] (waiting) s
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};
\node[transition] (leave critical) [right=of critical] {};
[:] \node[transition] (enter critical) [left=of critical] {}
edge [->] (critical)

edge [<-,bend left=45] (waiting)
edge [->,bend right=45] (semaphore);
\end{tikzpicture}

%

Each edge caused a new path to be constructed, consisting of a to between the node enter critical
and the node following the edge command.

The finishing touch is to introduce two styles pre and post and to use the bend angle=45 option to set
the bend angle once and for all:

% Styles place and transition as before
\begin{tikzpicture}
[bend angle=45,
pre/.style={<-,shorten <=1pt,>=stealth’,semithick},
post/.style={->,shorten >=1pt,>=stealth’,semithick}]

\node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};

o0

\node[transition] (leave critical) [right=of criticall {}
edge [pre] (critical)
edge [post,bend right] (waiting)
edge [pre, bend left] (semaphore);

\node [transition] (enter critical) [left=of critical]l {}
edge [post] (critical)
edge [pre, bend left] (waiting)
edge [post,bend right] (semaphore);

\end{tikzpicture}

3.11 Adding Labels Next to Lines

The next thing that Hagen needs to add is the “2” at the arcs. For this Hagen can use TikZ’s automatic
node placement: By adding the option auto, TikZ will position nodes on curves and lines in such a way that
they are not on the curve but next to it. Adding swap will mirror the label with respect to the line. Here is
a general example:

44

1° \begin{tikzpicture}[auto,bend right]

120° \node (a) at (0:1) {$0"\circ$};
} \node (b) at (120:1) {$120"\circ$};
2 (9 0° \node (c) at (240:1) {$240"\circ$};
’ji/// \draw (a) to node {1} node [swap] {1’} (b)
240° 3’ (b) to node {2} node [swap]l {2’} (c)
(c) to node {3} node [swap]l {3’} (a);
\end{tikzpicture}

What is happening here? The nodes are given somehow inside the to operation! When this is done, the
node is placed on the middle of the curve or line created by the to operation. The auto option then causes
the node to be moved in such a way that it does not lie on the curve, but next to it. In the example we
provide even two nodes on each to operation.

For Hagen that auto option is not really necessary since the two “2” labels could also easily be placed
“by hand.” However, in a complicated plot with numerous edges automatic placement can be a blessing.

% Styles as before
9 \begin{tikzpicture} [bend angle=45]

\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};
\node [place] (semaphore) [below=of critical] {};

\node [transition] (leave critical) [right=of criticall] {}

edge [prel (critical)

edge [post,bend right] node[auto,swap] {2} (waiting)

edge [pre, bend left] (semaphore) ;
\node [transition] (enter critical) [left=of criticall {}

edge [post] (critical)

edge [pre, bend left] (waiting)

edge [post,bend right] (semaphore) ;

\end{tikzpicture}

3.12 Adding the Snaked Line and Multi-Line Text

With the node mechanism Hagen can now easily create the two Petri nets. What he is unsure of is how he
can create the snaked line between the nets.

For this he can use a decoration. To draw the snake, Hagen only needs to set the two options
decoration=snake and decorate on the path. This causes all lines of the path to be replaced by snakes.
It is also possible to use snakes only in certain parts of a path, but Hagen will not need this.

ANANNANSY \begin{tikzpicture}
\draw [->,decorate,decoration=snake] (0,0) -- (2,0);
\end{tikzpicture}

Well, that does not look quite right, yet. The problem is that the snake happens to end exactly at the
position where the arrow begins. Fortunately, there is an option that helps here. Also, the snake should be
a bit smaller, which can be influenced by even more options.

ANNNNANANANANANANANNAN—> \begin{tikzpicture}

\draw [->,decorate,
decoration={snake,amplitude=.4mm,segment length=2mm,post length=1mm}]
(0,0) -- (3,0);
\end{tikzpicture}

Now Hagen needs to add the text above the snake. This text is a bit challenging since it is a multi-line
text. To typeset such text, Hagen needs to specify a width for the text and he needs to specify that the text
should be centered.

\begin{tikzpicture}
\draw [->,decorate,
decoration={snake,amplitude=.4mm,segment length=2mm,post length=1mm}]

replacement of
the capacity

by two places (0,0) -- (3,0)
node [above,text width=3cm,text centered,midway]
{

replacement of the \textcolor{red}{capacity} by
\textcolor{red}{two places}
};
\end{tikzpicture}

45

3.13 Using Layers: The Background Rectangles

Hagen still needs to add the background rectangles. These are a bit tricky: Hagen would like to draw the
rectangles after the Petri nets are finished. The reason is that only then can he conveniently refer to the
coordinates that make up the corners of the rectangle. If Hagen draws the rectangle first, then he needs to
know the exact size of the Petri net — which he does not.

The solution is to use layers. When the background library is loaded, Hagen can put parts of his picture
inside a {pgfonlayer} environment. Then this part of the picture becomes part of the layer that is given
as an argument to this environment. When the {tikzpicture} environment ends, the layers are put on top
of each other, starting with the background layer. This causes everything drawn on the background layer to
be behind the main text.

The next tricky question is, how big should the rectangle be? Naturally, Hagen can compute the size “by
hand” or using some clever observations concerning the x- and y-coordinates of the nodes, but it would be
nicer to just have TikZ compute a rectangle into which all the nodes “fit.” For this, the fit library can be
used. It defines the fit options, which, when give to a node, causes the node to be resized and shifted such
that it exactly covers all the nodes and coordinates given as parameters to the fit option.

% Styles as before
\begin{tikzpicture}[bend angle=45]

\node [place] (waiting) Ors
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};

\node[transition] (leave critical) [right=of criticall {}

edge [pre] (critical)
edge [post,bend right] nodel[auto,swap] {2} (waiting)
edge [pre, bend left] (semaphore) ;
\node [transition] (enter critical) [left=of critical] {}
edge [post] (critical)
edge [pre, bend left] (waiting)
edge [post,bend right] (semaphore) ;

\begin{pgfonlayer}{background}
\node [fill=black!30,fit=(waiting) (critical) (semaphore)
(leave critical) (enter critical)] {};
\end{pgfonlayer}
\end{tikzpicture}

3.14 The Complete Code

Hagen has now finally put everything together. Only then does he learn that there is already a library for
drawing Petri nets! It turns out that this library mainly provides the same definitions as Hagen did. For
example, it defines a place style in a similar way as Hagen did. Adjusting the code so that it uses the library
shortens Hagen code a bit, as shown in the following.

First, Hagen needs less style definitions, but he still needs to specify the colors of places and transitions.

\begin{tikzpicture}
[node distance=1.3cm,on grid,>=stealth’,bend angle=45,auto,
every place/.style= {minimum size=6mm,thick,draw=blue!75,fill=blue!20},
every transition/.style={thick,draw=black!75,fill=black!20},
red place/.style= {place,draw=red!75,fill=red!20},
every label/.style= {red}]

Now comes the code for the nets:

46

\node [place,tokens=1] (w1) {1

2 \node [place] (c1) [below=of wi] 03

\node [place] (s) [below=of cl,label=above:$s\le 3$] {I};

\node [placel (c2) [below=of s] {3};

() \node [place,tokens=1] (w2) [below=of c2] U5

\node [transition] (el) [left=of c1] {}

5§<3 edge [pre,bend left] (w1)
edge [post,bend right] (s)
edge [post] (c1);
\node [transition] (e2) [left=of c2] {}
edge [pre,bend right] (w2)

(::)4444, edge [post,bend left] (s)
edge [post] (c2);
\node [transition] (11) [right=of c1] {}
edge [prel (c1)
2 edge [pre,bend left] (s)
edge [post,bend right] nodelswap]l {2} (w1);
\node [transition] (12) [right=of c2] {}

edge [prel (c2)

edge [pre,bend right] (s)

edge [post,bend left] mnode {2} (w2);
\begin{scope} [xshift=6cm]

2 \node [place,tokens=1] (wi?) {};
\node [place] (c1’) [below=of wi’] Wrg
\node [red place] (s1’) [below=of c1’,xshift=-5mm]

[label=left:s] {};
\node [red place,tokens=3] (s2’) [below=of c1’,xshift=5mm]

[label=right:$\bar s$] {};
\node [placel (c2’) [below=of s1’,xshift=5mm] {};
\node [place,tokens=1] (w2’) [below=of c2’] {r;

\node [transition] (el’) [left=of c1’] {}

edge [pre,bend left] (wi’)
edge [post] (s1’)
edge [pre] (s2)
edge [post] (@il?)g
\node [transition] (e2’) [left=of c2’] {}
edge [pre,bend right] (w2?)
edge [post] (s1?)
edge [prel (s2)
edge [post] (c2’);
\node [transition] (11’) [right=of c1’] {}
edge [prel (c1’)
edge [pre] (s1°)
edge [post] (s2’)

edge [post,bend right] nodel[swap] {2} (wi’);
\node [transition] (12’) [right=of c2’] {}

edge [prel (c2?)

edge [pre] (s17)

edge [post] (s2?)

edge [post,bend left] mnode {2} w2’);
\end{scope}

The code for the background and the snake is the following:

\begin{pgfonlayer}{background}

\node (r1) [fill=black!10,rounded corners,fit=(wl) (w2) (el) (e2)(11)(12)] {3};

\node (r2) [fill=black!10,rounded corners,fit=(wl’) (w2’) (el’)(e2’)(11°)(12’)] {};
\end{pgfonlayer}

\draw [shorten >=1mm,-to,thick,decorate,
decoration={snake,amplitude=.4mm,segment length=2mm,
pre=moveto,pre length=1mm,post length=2mm}]
(r1) -- (r2) node [above=1mm,midway,text width=3cm,text centered]
{replacement of the \textcolor{red}{capacity} by \textcolor{red}{two placesl}};
\end{tikzpicture}

47

4 Tutorial: Euclid’s Amber Version of the FElements

In this third tutorial we have a look at how TikZ can be used to draw geometric constructions.

Euclid is currently quite busy writing his new book series, whose working title is “Elements” (Euclid is
not quite sure whether this title will convey the message of the series to future generations correctly, but he
intends to change the title before it goes to the publisher). Up to know, he wrote down his text and graphics
on papyrus, but his publisher suddenly insists that he must submit in electronic form. Euclid tries to argue
with the publisher that electronics will only be discovered thousands of years later, but the publisher informs
him that the use of amber is no longer cutting edge technology and Euclid will just have to keep up with
modern tools.

Slightly disgruntled, Euclid starts converting his papyrus entitled “Book I, Proposition I” to an amber
version.

4.1 Book I, Proposition I
The drawing on his papyrus looks like this:!

Proposition 1
To construct an on a given finite straight line.

- Let AB be the given finite straight line. It is required to construct an
on the straight line AB.

Describe the circle BC'D with center A and radius AB. Again describe

the circle ACE with center B and radius BA. Join the straight lines

‘ B/ CA and CB from the point C at which the circles cut one another to

-

|
D As
\ the points A and B.

\\ / Now, since the point A is the center of the circle C DB, therefore AC
_ equals AB. Again, since the point B is the center of the circle CAE,

therefore BC' equals BA. But AC was proved equal to AB, therefore

each of the straight lines AC' and BC' equals AB. And things which

equal the same thing also equal one another, therefore AC' also equals

BC. Therefore the three straight lines AC, AB, and BC equal one

another. Therefore the ABC' is equilateral, and it has been

constructed on the given finite straight line AB.

Let us have a look at how Euclid can turn this into TikZ code.

4.1.1 Setting up the Environment

As in the previous tutorials, Euclid needs to load TikZ, together with some libraries. These libraries are
calc, through, and backgrounds. Depending on which format he uses, Euclid would use one of the following
in the preamble:

% For LaTeX:
\usepackage{tikz}
\usetikzlibrary{calc,through,backgrounds}

% For plain TeX:
\input tikz.tex
\usetikzlibrary{calc,through,backgrounds}

% For ConTeXt:
\usemodule [tikz]
\usetikzlibrary[calc,through,backgrounds]

IThe text is taken from the wonderful interactive version of Euclid’s Elements by David E. Joyce, to be found on his website
at Clark University.

48

4.1.2 The Line AB

The first part of the picture that Euclid wishes to draw is the line AB. That is easy enough, something like
\draw (0,0) -- (2,1); might do. However, Euclid does not wish to reference the two points A and B as
(0,0) and (2,1) subsequently. Rather, he wishes to just write A and B. Indeed, the whole point of his book
is that the points A and B can be arbitrary and all other points (like C') are constructed in terms of their
positions. It would not do if Euclid were to write down the coordinates of C' explicitly.

So, Euclid starts with defining two coordinates using the \coordinate command:

___— \begin{tikzpicture}
\coordinate (A) at (0,0);
\coordinate (B) at (1.25,0.25);

\draw[blue] (A) -- (B);
\end{tikzpicture}

That was easy enough. What is missing at this point are the labels for the coordinates. Euclid does not
want them on the points, but next to them. He decides to use the label option:

B \begin{tikzpicture}
A _— \coordinate [label=left:\textcolor{blue}{A}] (A) at (0,0);
\coordinate [label=right:\textcolor{blue}{B}] (B) at (1.25,0.25);

\draw[blue]l (A) -- (B);
\end{tikzpicture}

At this point, Euclid decides that it would be even nicer if the points A and B were in some sense
“random.” Then, neither Euclid nor the reader can make the mistake of taking “anything for granted”
concerning these position of these points. Euclid is pleased to learn that there is a rand function in TikZ
that does exactly what he needs: It produces a number between —1 and 1. Since TikZ can do a bit of math,
Euclid can change the coordinates of the points as follows:

\coordinate [...] (A) at (0+0.1*rand,0+0.1*rand);
\coordinate [...] (B) at (1.25+0.1*rand,0.25+0.1*rand);

This works fine. However, Euclid is not quite satisfied since he would prefer that the “main coordinates”
(0,0) and (1.25,0.25) are “kept separate” from the perturbation 0.1(rand, rand). This means, he would like
to specify that coordinate A as “The point that is at (0,0) plus one tenth of the vector (rand, rand).”

It turns out that the calc library allows him to do exactly this kind of computation. When this library is
loaded, you can use special coordinates that start with ($ and end with $) rather than just (and). Inside
these special coordinates you can give a linear combination of coordinates. (Note that the dollar signs are
only intended to signal that a “computation” is going on; no mathematical typesetting is done.)

The new code for the coordinates is the following:

\coordinate [...] (&) at ($ (0,0) + .1*(rand,rand) $);
\coordinate [...] (B) at ($ (1.25,0.25) + .1*(rand,rand) $);

Note that if a coordinate in such a computation has a factor (like .1) you must place a * directly before
the opening parenthesis of the coordinate. You can nest such computations.

4.1.3 The Circle Around A

The first tricky construction is the circle around A. We will see later how to do this in a very simple manner,
but first let us do it the “hard” way.

The idea is the following: We draw a circle around the point A whose radius is given by the length of
the line AB. The difficulty lies in computing the length of this line.

Two ideas “nearly” solve this problem: First, we can write ($ (A) - (B) $) for the vector that is the
difference between A and B. All we need is the length of this vector. Second, given two numbers z and
y, one can write veclen(x,y) inside a mathematical expression. This gives the value y/x? + y2, which is
exactly the desired length.

The only remaining problem is to access the z- and y-coordinate of the vector AB. For this, we need
a new concept: the let operation. A let operation can be given anywhere on a path where a normal path
operation like a line-to or a move-to is expected. The effect of a let operation is to evaluate some coordinates
and to assign the results to special macros. These macros make it easy to access the z- and y-coordinates of
the coordinates.

Euclid would write the following;:

49

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (&) -- (B);

\draw (A) let
\pl = ($ (B) - (A) $
in
circle ({veclen(\x1,\y1)});
\end{tikzpicture}

Each assignment in a let operation starts with \p, usually followed by a (digit). Then comes an equal
sign and a coordinate. The coordinate is evaluated and the result is stored internally. From then on you can
use the following expressions:

1. \x(digit) yields the xz-coordinate of the resulting point.
2. \y(digit) yields the y-coordinate of the resulting point.
3. \p(digit) yields the same as \x{digit), \y(digit).

You can have multiple assignments in a let operation, just separate them with commas. In later assignments
you can already use the results of earlier assignments.

Note that \p1 is not a coordinate in the usual sense. Rather, it just expands to a string like 10pt,20pt.
So, you cannot write, for instance, (\pl.center) since this would just expand to (10pt,20pt.center),
which makes no sense.

Next, we want to draw both circles at the same time. Each time the radius is veclen(\x1,\y1). It
seems natural to compute this radius only once. For this, we can also use a let operation: Instead of
writing \pl = ..., we write \n2 = Here, “n” stands for “number” (while “p” stands for “point”).
The assignment of a number should be followed by a number in curly braces.

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \p1
\n2

$ B - A 9,
{veclen(\x1,\y1)}

in
(A) circle (\n2)
(B) circle (\n2);
\end{tikzpicture}

In the above example, you may wonder, what \n1 would yield? The answer is that it would be undefined
— the \p, \x, and \y macros refer to the same logical point, while the \n macro has “its own namespace.”
We could even have replaced \n2 in the example by \n1 and it would still work. Indeed, the digits following
these macros are just normal TEX parameters. We could also use a longer name, but then we have to use
curly braces:

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \pi1
\n{radius}

¢ ® - @ %,
{veclen(\x1,\y1)}

in
(A) circle (\n{radius})
(B) circle (\n{radius});
\end{tikzpicture}

At the beginning of this section it was promised that there is an easier way to create the desired circle.
The trick is to use the through library. As the name suggests, it contains code for creating shapes that go
through a given point.

The option that we are looking for is circle through. This option is given to a mode and has the
following effects: First, it causes the node’s inner and outer separations to be set to zero. Then it sets the
shape of the node to circle. Finally, it sets the radius of the node such that it goes through the parameter
given to circle through. This radius is computed in essentially the same way as above.

50

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (A) -- (B);

\node [draw,circle through=(B),label=left:D] at (A) {I};
\end{tikzpicture}

4.1.4 The Intersection of the Circles

Euclid can now draw the line and the circles. The final problem is to compute the intersection of the
two circles. This computation is a bit involved if you want to do it “by hand.” Fortunately, the so-called
intersection coordinate system allows us to specify points as the intersection of two objects (in order for the
following code to work, the calc library must be loaded; it defines the necessary code for computing the
intersection of circles):

C

N, e

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\node (D) [draw,circle through=(B),label=left:D] at (A) {};
\node (E) [draw,circle through=(A),label=right:E] at (B) {};

\coordinate [label=above:C] (C) at (intersection 2 of D and E);

\draw [red] (A) -- (C);
\draw [red] (B) -- (C);
\end{tikzpicture}

We could also have written intersection 1 of or just intersection of to get access to the other
intersection of the circles.

Although Euclid does not need it for the current picture, it is just a small step to computing the bisection
of the line AB:

C
“ E
’ |\
'
\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);

\draw (A) -- (B);

\node (D) [draw,circle through=(B),label=left:D] at (A) {};
\node (E) [draw,circle through=(A),label=right:E] at (B) {};

\coordinate [label=above:C] (C) at (intersection 2 of D and E);
\coordinate [label=below:$C’$] (C’) at (intersection 1 of D and E);

\draw [red] (C) -- (C’);

\node [fill=red,inner sep=1pt,label=-45:F] (F) at (intersection of C--C’ and A--B) {};
\end{tikzpicture}

51

4.1.5 The Complete Code

Back to Euclid’s code. He introduces a few macros to make life simpler, like a \A macro for typesetting a
blue A. He also uses the background layer for drawing the triangle behind everything at the end.

Proposition I
To construct an on a given finite straight line.

Let AB be the given finite straight line. ...

\begin{tikzpicture} [thick,help lines/.style={thin,draw=black!50}]

\def\A{\textcolor{input}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{output}{C}} \def\D{D}
\def\E{E}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\colorlet{triangle}{orange}

\coordinate [label=left:\A] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B] (B) at ($ (1.25,0.25) + .1x(rand,rand) $);

\draw [input] (A) -- (B);

\node [help lines,draw,label=left:\D] (D) at (A) [circle through=(B)] {};
\node [help lines,draw,label=right:\E] (E) at (B) [circle through=(A)] {3};

\coordinate [label=above:\C] (C) at (intersection 2 of D and E);
\draw [output] (A) —-- (C) -- (B);

\foreach \point in {A,B,C}
\fill [black,opacity=.5] (\point) circle (2pt);

\begin{pgfonlayer}{background}
\fill[triangle!80] (A) -- (C) -- (B) -- cycle;
\end{pgfonlayer}

\node [below right, text width=10cm,text justified] at (4,3) {
\small\textbf{Proposition I}\par
\emph{To construct an \textcolor{triangle}{equilateral triangle}
on a given \textcolor{input}{finite straight line}.}
\par\vskiplem
Let \A\B\ be the given \textcolor{input}{finite straight line}. \dots
};
\end{tikzpicture}

4.2 Book I, Proposition 11

The second proposition in the Elements is the following:

52

Proposition II
To place a straight line equal to a given straight line with one
end at a

Let A be the given point, and BC the given straight line. It is
required to place a straight line equal to the given straight line
BC with one end at the point
Join the straight line AB from the point A to the point B, and
construct the equilateral triangle DAB on it.
Produce the straight lines AFE and BF' in a straight line with D
and DB. Describe the circle CG H with center B and radius BC,
and again, describe the circle GK L with center D and radius
DG.
Since the point B is the center of the circle CGH, therefore BC
equals BG. Again, since the point D is the center of the circle
GK L, therefore DL equals DG. And in these DA equals DB,
therefore the remainder AL equals the remainder BG. But BC'
was also proved equal to BG, therefore each of the straight lines
L and BC equals BG. And things which equal the same thing
also equal one another, therefore AL also equals BC'

Therefore the straight line AL equal to the given straight line
BC has been placed with one end at the

4.2.1 Using Partway Calculations for the Construction of D

Euclid’s construction starts with “referencing” Proposition I for the construction of the point D. Now, while
we could simply repeat the construction, it seems a bit bothersome that one has to draw all these circles
and do all these complicated constructions.

For this reason, TikZ supports some simplifications. First, there is a simple syntax for computing a point
that is “partway” on a line from p to ¢: You place these two points in a coordinate calculation — remember,
they start with ($ and end with $) — and then combine them using !(part)!. A (part) of 0 refers to the first
coordinate, a (part) of 1 refers to the second coordinate, and a value in between refers to a point on the line
from p to q. Thus, the syntax is similar to the xcolor syntax for mixing colors.

Here is the computation of the point in the middle of the line AB:

B \begin{tikzpicture}
A _— \coordinate [label=left:A] (A) at (0,0);
X \coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);
\node [fill=red,inner sep=1pt,label=below:X] (X) at ($ (A)!.5!'(B) $) {};
\end{tikzpicture}

The computation of the point D in Euclid’s second proposition is a bit more complicated. It can be
expressed as follows: Consider the line from X to B. Suppose we rotate this line around X for 90° and then
stretch it by a factor of sin(60°)/2. This yields the desired point D. We can do the stretching using the
partway modifier above, for the rotation we need a new modifier: the rotation modifier. The idea is that
the second coordinate in a partway computation can be prefixed by an angle. Then the partway point is
computed normally (as if no angle were given), but the resulting point is rotated by this angle around the
first point.

D \begin{tikzpicture}
- \coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);
B \node [fill=red,inner sep=1pt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
A X \node [fill=red,inner sep=1pt,label=above:D] (D) at
($ (X) ! {sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

Finally, it is not necessary to explicitly name the point X. Rather, again like in the xcolor package, it
is possible to chain partway modifiers:

53

D \begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

B \node [fill=red,inner sep=1pt,label=above:D] (D) at
A ($ (A) ! .51 (B) ! {sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

4.2.2 Intersecting a Line and a Circle

The next step in the construction is to draw a circle around B through C', which is easy enough to do using
the circle through option. Extending the lines DA and DB can be done using partway calculations, but
this time with a part value outside the range [0, 1]:

\begin{tikzpicture}

\coordinate [label=left:A] (A) at (0,0);

\coordinate [label=right:B] (B) at (0.75,0.25);

\coordinate [label=above:C] (C) at (1,1.5);

\draw (A) -- (B) -- (C);

\coordinate [label=above:D] (D) at

($ (A) ' .51 (B) ! {sin(60)*2} ! 90:(B) $) {};

\node (H) [label=135:H,draw,circle through=(C)] at (B) {};

\draw (D) -- ($ (D) ! 3.5 ! (B) $) coordinate [label=below:F] (F);

\draw (D) -- ($ (D) ! 2.5 ! (A) $) coordinate [label=below:E] (E);
E F \end{tikzpicture}

We now face the problem of finding the point G, which is the intersection of the line BF and the circle
H. One way is to use yet another variant of the partway computation: Normally, a partway computation
has the form (p)!(factor)!{q), resulting in the point (1 — (factor))(p) + (factor){q). Alternatively, instead
of (factor) you can also use a (dimension) between the points. In this case, you get the point that is
(dimension) removed from (p) on the straight line to (g).

We know that the point G is on the way from B to F'. The distance is given by the radius of the circle H.
Here is the code form computing H:

\path let \pl = ($ (B) - (C) $) in
coordinate [label=left:G] (G) at ($ (B) ! veclen(\x1,\yl1) ! (F) $);
\fill[red,opacity=.5] (G) circle (2pt);

However, there is a simpler way: As for circles, we can also intersect a line and a circle using the
intersection coordinate system:

\coordinate [label=left:G] (G) at (intersection of B--F and H);
\fill[red,opacity=.5] (G) circle (2pt);

54

4.2.3 The Complete Code

\begin{tikzpicture}[thick,help lines/.style={thin,draw=black!50}]
\def\A{\textcolor{orange}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{input}{C}} \def\D{D2}

\def\E{E} \def\F{F}
\def\G{G} \def\H{H}
\def\K{K} \def\L{\textcolor{output}{L}}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\coordinate [label=left:\A] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B] (B) at ($ (1,0.2) + .1x(rand,rand) $);
\coordinate [label=above:\C] (C) at ($ (1,2) + .1*(rand,rand) $);

\draw [input] (B) -- (C);
\draw [help lines] (4) -- (B);

\coordinate [label=above:\D] (D) at ($ (A)!.5!(B) ! {sin(60)*2} ! 90:(B) $);

\draw [help lines] (D) -- ($ (D)!3.75!(A) $) coordinate [label=-135:\E] (E);
\draw [help lines] (D) -- ($ (D)!3.75!(B) $) coordinate [label=-45:\F] (F);

\node (H) at (B) [help lines,circle through=(C),draw,label=135:\H] {};
\coordinate [label=right:\G] (G) at (intersection of B--F and H);
\node (K) at (D) [help lines,circle through=(G),draw,label=135:\K] {};
\coordinate [label=below:\L] (L) at (intersection of A--E and K);
\draw [output] (A) -- (L);

\foreach \point in {4,B,C,D,G,L}
\fill [black,opacity=.5] (\point) circle (2pt);

% \node ...
\end{tikzpicture}

55

5 Tutorial: Putting a Diagram in Chains
In this tutorial we have a look at how chains and matrices can be used to typeset a diagram.
Ilka, who just got tenure for her professorship on Old and Lovable Programming Languages, has recently

dug up a technical report entitled The Programming Language Pascal in the dusty cellar of the library of
her university. Having been created in the good old times using pens and rules, it looks like this?:

—»tmsigned integer ‘ ll' E l l :Lunsigned integer

For her next lecture, Ilka decides to redo this diagram, but this time perhaps a bit cleaner and perhaps

also bit “cooler.”
_I—’< digit) l { @ [} unsigned integer —]—>

Having read the previous tutorials, Ilka knows already how to setup the environment for her diagram,
namely using a tikzpicture environment. She wonders which libraries she will need. She decides that she
will postpone the decision and add the necessary libraries as needed as she constructs the picture.

—>| unsigned integer J—»@

5.1 Styling the Nodes

The bulk of this tutorial will be about arranging the nodes and connecting them using chains, but let us
start with setting up styles for the nodes.

There are two kinds of nodes in the diagram, namely what theoreticians like to call terminals and
nonterminals. For the terminals, Ilka decides to use a black color, which visually shows that “nothing needs
to be done about them.” The nonterminals, which still need to be “processed” further, get a bit of red mixed
in.

Ilka starts with the simpler nonterminals, as there are no rounded corners involved. Naturally, she sets
up a style:

\begin{tikzpicture}[
nonterminal/.style={
% The shape:
rectangle,
% The size:
minimum size=6mm,
% The border:
very thick,
draw=red!50!'black!50, % 507 red and 50j black,
% and that mixed with 507 white

unsigned integer

% The filling:

top color=white, /4 a shading that is white at the top...
bottom color=red!50!black!20, 7 and something else at the bottom
% Font
font=\itshape
]
\node [nonterminal] {unsigned integer};
\end{tikzpicture}

Ilka is pretty proud of the use of the minimum size option: As the name suggests, this option ensures
that the node is at least 6mm by 6mm, but it will expand in size as necessary to accommodate longer text.
By giving this option to all nodes, they will all have the same height of 6mm.

Styling the terminals is a bit more difficult because of the round corners. Ilka has several options how
she can achieve them. Once way is to use the rounded corners option. It gets a dimension as parameter
and causes all corners to be replaced by little arcs with the given dimension as radius. By setting the radius

2The shown diagram was not scanned, but rather typeset using TikZ. The jittering lines were created using the random
steps decoration.

56

to 3mm, she will get exactly what she needs: circles, when the shapes are, indeed, exactly 6mm by 6mm
and otherwise half circles on the sides:

. . \begin{tikzpicture}[node distance=5mm,
@ @ terminal/.style={
% The shape:
rectangle,minimum size=6mm,rounded corners=3mm,
% The rest
very thick,draw=black!50,
top color=white,bottom color=black!20,

font=\ttfamily}]

\node (dot) [terminal] LaJrg

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};
\end{tikzpicture}

Another possibility is to use a shape that is specially made for typesetting rectangles with arcs on the
sides (she has to use the shapes.misc library to use it). This shape gives Ilka much more control over the
appearance. For instance, she could have an arc only on the left side, but she will not need this.

.. \begin{tikzpicture}[node distance=5mm,

@ @ terminal/.style={
% The shape:
rounded rectangle,
minimum size=6mm,
% The rest
very thick,draw=black!50,
top color=white,bottom color=black!20,
font=\ttfamily}]

\node (dot) [terminal] Ao g

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};
\end{tikzpicture}

At this point, she notices a problem. The baseline of the text in the nodes is not aligned:

f‘\ ST m \begin{tikzpicture}[node distance=5mm]

N \ / < \node (dot) [terminal] {.}
\node (digit) [terminal,right=of dot] {digit};
\node (E) [terminal,right=of digit] {E};

\draw [help lines] let \pl = (dot.base),
\p2 = (digit.base),
\p3 = (E.base)
in (-.5,\y1) -- (3.5,\y1)
(-.5,\y2) -- (3.5,\y2)
(-.5,\y3) -- (3.5,\y3);

\end{tikzpicture}

(Ilka has moved the style definition to the preamble by saying \tikzset{terminal/.style=...}, so that
she can use it in all pictures.)

For the digit and the E the difference in the baselines is almost imperceptible, but for the dot the
problem is quite severe: It looks more like a multiplication dot than a period.

Ilka toys with the idea of using the base right=of... option rather than right=of... to align the
nodes in such a way that the baselines are all on the same line (the base right option places a node right
of something so that the baseline is right of the baseline of the other object). However, this does not have
the desired effect:

.. \begin{tikzpicture}[node distance=5mm]
@ @ \node (dot) [terminall Lodrg
\node (digit) [terminal,base right=of dot] {digit};
\node (E) [terminal,base right=of digit] {E};

\end{tikzpicture}

The nodes suddenly “dance around”! There is no hope of changing the position of text inside a node
using anchors. Instead, Ilka must use a trick: The problem of mismatching baselines is caused by the fact
that . and digit and E all have different heights and depth. If they all had the same, they would all be
positioned vertically in the same manner. So, all Ilka needs to do is to use the text height and text depth
options to explicitly specify a height and depth for the nodes.

57

. \begin{tikzpicture}[node distance=5mm,
text height=1.5ex,text depth=.25ex]

\node (dot) [terminall LoD8

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};
\end{tikzpicture}

5.2 Aligning the Nodes Using Positioning Options

Ilka now has the “styling” of the nodes ready. The next problem is to place them in the right places. There
are several ways to do this. The most straightforward is to simply explicitly place the nodes at certain
coordinates “calculated by hand.” For very simple graphics this is perfectly alright, but it has several
disadvantages:

1. For more difficult graphics, the calculation may become complicated.
2. Changing the text of the nodes may make it necessary to recalculate the coordinates.

3. The source code of the graphic is not very clear since the relationships between the positions of the
nodes are not made explicit.

For these reasons, Ilka decides to try out different ways of arranging the nodes on the page.

The first method is the use of positioning options. To use them, you need to load the positioning
library. This gives you access to advanced implementations of options like above or left, since you can
now say above=of some node in order to place a node above of some node, with the borders separated by
node distance.

Ilka can use this to draw the place the nodes in a long row:

unsigned integer @ @ unsigned integer

\begin{tikzpicture}[node distance=5mm and 5mm]

\node (uil) [nonterminal] {unsigned integer};
\node (dot) [terminal,right=of uill {.}

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};

\node (plus) [terminal,above right=of E] {+};

\node (minus) [terminal,below right=of E] {-};

\node (ui2) [nonterminal ,below right=of plus] {unsigned integer};

\end{tikzpicture}

For the plus and minus nodes, Ilka is a bit startled by their placements. Shouldn’t they be more to the
right? The reason they are placed in that manner is the following: The north east anchor of the E node
lies at the “upper start of the right arc,” which, a bit unfortunately in this case, happens to be the top of the
node. Likewise, the south west anchor of the + node is actually at its bottom and, indeed, the horizontal
and vertical distances between the top of the E node and the bottom of the + node are both 5mm.

There are several ways of fixing this problem. The easiest way is to simply add a little bit of horizontal
shift by hand:

@ unsigned integer

58

\begin{tikzpicture}[node distance=5mm and 5mm]

\node (E) [terminall {E};

\node (plus) [terminal,above right=of E,xshift=5mm] {+};

\node (minus) [terminal,below right=of E,xshift=5mm] {-};

\node (ui2) [nonterminal ,below right=of plus,xshift=5mm] {unsigned integer};
\end{tikzpicture}

A second way is to revert back to the idea of using a normal rectangle for the terminals, but with rounded
corners. Since corner rounding does not affect anchors, she gets the following result:

@ unsigned integer

\begin{tikzpicture} [node distance=5mm and 5mm,terminal/.append style={rectangle,rounded corners=3mm}]

\node (E) [terminal] {E};

\node (plus) [terminal,above right=of E] {+};

\node (minus) [terminal,below right=of E] {-};

\node (ui2) [nonterminal,below right=of plus] {unsigned integerl};
\end{tikzpicture}

A third way is to use matrices, which we will do later.

Now that the nodes have been placed, Ilka needs to add connections. Here, some connections are more
difficult than other. Consider for instance the “repeat” line around the digit. One way of describing this
line is to say “it starts a little to the right of digit than goes down and then goes to the left and finally
ends at a point a little to the left of digit.” Ilka can put this into code as follows:

. \begin{tikzpicture}[node distance=5mm and 5mm]
.@ \node (dot) [terminall {.};
\node (digit) [terminal,right=of dot] {digit};
\node (E) [terminal,right=of digit] {E};

\path (dot) edge[->] (digit) J simple edges
(digit) edgel->] (E);

\draw [->]

/4 start right of digit.east, that is, at the point that is the
% linear combination of digit.east and the vector (2mm,Opt). We
/4 use the ($... $) notation for computing linear combinations
($ (digit.east) + (2mm,0) $)
% Now go down
-- ++(0,-.5)
% And back to the left of digit.west
-1 ($ (digit.west) - (2mm,0) $);

\end{tikzpicture}

Since Ilka needs this “go up/down then horizontally and than up/down to a target” several times, it
seems sensible to define a special to-path for this. Whenever the edge command is used, it simply adds the
current value of to path to the path. So, Ilka can setup a style that contains the correct path:

. \begin{tikzpicture}[node distance=5mm and 5mm,
. ‘. skip loop/.style={to path={-- ++(0,-.5) -| (\tikztotarget)}}]

\node (dot) [terminall {.};

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};

\path (dot) edgel->] (digit) /% simple edges
(digit) edge[->] (E)

($ (digit.east) + (2mm,0) $)
edge[->,skip loop] ($ (digit.west) - (2mm,0) $);
\end{tikzpicture}

Ilka can even go a step further and make her skip look style parametrized. For this, the skip loop’s
vertical offset is passed as parameter #1. Also, in the following code Ilka specifies the start and targets
differently, namely as the positions that are “in the middle between the nodes.”

59

. \begin{tikzpicture}[node distance=5mm and 5mm,
. I. skip loop/.style={to path={-- ++(0,#1) -| (\tikztotarget)}}]
\node (dot) [terminal] {.}

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};

\path (dot) edgel->] (digit) 7% simple edges
(digit) edge[->] (E)

($ (digit.east)!.5!(E.west) $)
edge [->,skip loop=-bmm] ($ (digit.west)!.5!(dot.east) $);
\end{tikzpicture}

5.3 Aligning the Nodes Using Matrices

Ilka is still bothered a bit by the placement of the plus and minus nodes. Somehow, having to add an explicit
xshift seems too much like cheating.

A perhaps better way of positioning the nodes is to use a matriz. In TikZ matrices can be used to align
quite arbitrary graphical objects in rows and columns. The syntax is very similar to the use of arrays and
tables in TEX (indeed, internally TEX tables are used, but a lot of stuff is going on additionally).

In Tlka’s graphic, there will be three rows: One row containing only the plus node, one row containing
the main nodes and one row containing only the minus node.

unsigned integer Q @ unsigned integer

\begin{tikzpicture}
\matrix[row sep=1imm,column sep=5mm] {
% First row:
& & & & \node [terminall {+}; & \\
% Second row:
\node [nonterminall] {unsigned integer}; &
\node [terminal] {.} &
\node [terminal] {digit}; &
\node [terminal] SENE &
&
\node [nonterminal] {unsigned integer}; \\
% Third row:
& & & & \node [terminall {-}; & \\
};
\end{tikzpicture}

That was easy! By toying around with the row and columns separations, Ilka can achieve all sorts of
pleasing arrangements of the nodes.

Ilka now faces the same connecting problem as before. This time, she has an idea: She adds small
nodes (they will be turned into coordinates later on and be invisible) at all the places where she would like
connections to start and end.

* | unsigned integer J~ @ { T l @ . . | unsigned integer|

60

\begin{tikzpicture}[point/.style={circle,inner sep=Opt,minimum size=2pt,fill=red},
skip loop/.style={to path={-- ++(0,#1) -| (\tikztotarget)1}}]
\matrix[row sep=imm,column sep=2mm] {
% First row:
& & & & & & & & & & & \node [terminall {+};\\
% Second row:

\node (p1) [point] {3; & \node [nonterminal] {unsigned integer}; &
\node (p2) [point] {}; & \node [terminall {.}; &
\node (p3) [point]l {3}; & \node [terminal] {digit}; &
\node (p4) [point] {}; & \node (p5) [point] {}; &
\node (p6) [pointl {}; & \node [terminal] {E}; &
\node (p7) [point]l {}; & &
\node (p8) [point] {}; & \node [nonterminal] {unsigned integer}; &
\node (p9) [point] {3; A\
% Third row:
& & & & & & & & & & & \node [terminal] {-};\\

};

\path (p4) edge [->,skip loop=-5mm] (p3)
(p2) edge [->,skip loop=5mm] (p6);
\end{tikzpicture}

Now, its only a small step to add all the missing edges.

5.4 Using Chains

Matrices allow Ilka to align the nodes nicely, but the connections are not quite perfect. The problem is that
the code does not really reflect the paths that underlie the diagram.

For this reason, Ilka decides to try out chains by including the chain library. Basically, a chain is just
a sequence of (usually) connected nodes. The nodes can already have been constructed or they can be
constructed as the chain is constructed (or these processes can be mixed).

5.4.1 Creating a Simple Chain

Ilka starts with creating a chain from scratch. For this, she starts a chain using the start chain option in
a scope. Then, inside the scope, she uses the on chain option on nodes to add them to the chain.

unsigned integer @ @ unsigned integer

\begin{tikzpicture} [start chain,node distance=5mm]
\node [on chain,nonterminal] {unsigned integer};

\node [on chain,terminall {.};

\node [on chain,terminall {digit};

\node [on chain,terminall {E};

\node [on chain,nonterminal] {unsigned integer};
\end{tikzpicture}

(Ilka will add the plus and minus nodes later.)

As can be seen, the nodes of a chain are placed in a row. This can be changed, for instance by saying
start chain=going below we get a chain where each node is below the previous one.

The next step is to join the nodes of the chain. For this, we add the join option to each node. This
joins the node with the previous node (for the first node nothing happens).

unsigned integer . e unsigned integer

\begin{tikzpicture}[start chain,node distance=5mm]
\node [on chain,join,nonterminal] {unsigned integer};

\node [on chain,join,terminal] {.};

\node [on chain,join,terminall {digit};

\node [on chain,join,terminal] {E};

\node [on chain,join,nonterminal] {unsigned integer};
\end{tikzpicture}

In order to get a arrow tip, we redefine the every join style. Also, we move the join and on chain
options to the every node style so that we do not have to repeat them so often.

unsigned integer . G unsigned integer

61

\begin{tikzpicture}[start chain,node distance=5mm, every node/.style={on chain,join}, every join/.style={->}]
\node [nonterminal] {unsigned integer};

\node [terminall {.};

\node [terminall {digit};

\node [terminall =g

\node [nonterminal] {unsigned integer};
\end{tikzpicture}

5.4.2 Branching and Joining a Chain

It is now time to add the plus and minus signs. They obviously branch off the main chain. For this reason,
we start a branch for them using the start branch option.

unsigned integer unsigned integer

\begin{tikzpicture} [start chain,node distance=5mm, every node/.style={on chain,join}, every join/.style={->}]
\node [nonterminal] {unsigned integer};

\node [terminall {.};
\node [terminall] {digit};
\node [terminall {E};

\begin{scopel}[start branch=plus]
\node (plus) [terminal,on chain=going above right] {+};
\end{scope}
\begin{scope}[start branch=minus]
\node (minus) [terminal,on chain=going below right] {-};
\end{scope}
\node [nonterminal,join=with plus,join=with minus] {unsigned integer};
\end{tikzpicture}

Let us see, what is going on here. First, the start branch begins a branch, starting with the node
last created on the current chain, which is the E node in our case. This is implicitly also the first node
on this branch. A branch is nothing different from a chain, which is why the plus node is put on this
branch using the on chain option. However, this time we specify the placement of the node explicitly using
going (direction). This causes the plus sign to be placed above and right of the E node. It is automatically
joined to its predecessor on the branch by the implicit join option.

When the first branch ends, only the plus node has been added and the current chain is the original
chain once more and we are back to the E node. Now we start a new branch for the minus node. After this
branch, the current chain ens at E node once more.

Finally, the rightmost unsigned integer is added to the (main) chain, which is why it is joined correctly
with the E node. The two additional join options get a special with parameter. This allows you to join a
node with a node other than the predecessor on the chain. The with should be followed by the name of a
node.

Since Ilka will need scopes more often in the following, she includes the scopes library. This allows her
to replace \begin{scope} simply by an opening brace and \end{scope} by the corresponding closing brace.
Also, in the following example we reference the nodes plus and minus using their automatic name: The ith
node on a chain is called chain-(i). For a branch (branch), the ith node is called chain/(branch)-(i). The
(#) can be replaced by begin and end to reference the first and (currently) last node on the chain.

unsigned integer unsigned integer

62

\begin{tikzpicture}[start chain,node distance=5mm, every on chain/.style={join}, every join/.style={->}]
\node [on chain,nonterminal] {unsigned integer};

\node [on chain,terminall {.};
\node [on chain,terminall {digit};
\node [on chain,terminall {E};

{ [start branch=plus]
\node (plus) [terminal,on chain=going above right] {+};
¥
{ [start branch=minus]
\node (minus) [terminal,on chain=going below right] {-};
}
\node [nonterminal,on chain,join=with chain/plus-end,join=with chain/minus-end] {unsigned integer};
\end{tikzpicture}

The next step is to add intermediate coordinate nodes in the same manner as Ilka did for the matrix. For
them, we change the join style slightly, namely for these nodes we do not want an arrow tip. This can be
achieved either by (locally) changing the every join style or, which is what is done in the below example,
by giving the desired style using join=by ..., where ... is the style to be used for the join.

— unsigned integer *-HQH-HH%@ / <+D\ unsigned integer |—

\begin{tikzpicture} [start chain,node distance=5mm and 2mm,
every node/.style={on chain},
nonterminal/.append style={join=by ->},
terminal/.append style={join=by ->},
point/.style={join=by -,circle,fill=red,minimum size=2pt,inner sep=Opt}]
\node [point] {}; \node [nonterminal] {unsigned integer};
\node [point] {}; \node [terminall {.};
\node [point] {}; \node [terminall {digit};
\node [point] {}; \node [point] {};
\node [point] {}; \node [terminall {E};
\node [point] {};
{ [node distance=5mm and 1cm] J local change in horizontal distance
{ [start branch=plus]
\node (plus) [terminal,on chain=going above right] {+};
}
{ [start branch=minus]
\node (minus) [terminal,on chain=going below right] {-};
}
\node [point,below right=of plus,join=with chain/plus-end by ->,join=with chain/minus-end by ->] {};

}

\node [nonterminal] {unsigned integer};

\node [point] {3;
\end{tikzpicture}

5.4.3 Chaining Together Already Positioned Nodes

The final step is to add the missing arrows. We can also use branches for them (even though we do not have
to, but it is good practice and they exhibit the structure of the diagram in the code).

Let us start with the repeat loop around the digit. This can be thought of as a branch that starts at
the point after the digit and that ends at the point before the digit. However, we have already constructed
the point before the digit! In such cases, it is possible to “chain in” an already positioned node, using
the \chainin command. This command must be followed by a coordinate that contains a node name and
optionally some options. The effect is that the named node is made part of the current chain.

.. \begin{tikzpicture}[start chain] % plus some styles that are not shown
7 N \node [point] {};

\node (before digit) [point] {};
\node [terminal] {digit};
\node [point] {};
{ [start branch=digit loop]
\chainin (before digit) [join=by {->,skip loop=-5mm}];
}
\node [point] {};
\end{tikzpicture}

63

5.4.4 Combined Use of Matrices and Chains

Ilka’s final idea is to combine matrices and chains in the following manner: She will use a matrix to position
the nodes. However, to show the logical “flow structure” inside the diagram, she will create chains and
branches that show what is going on.

Ilka starts with the matrix we had earlier, only with slightly adapted styles. Then she writes down the
main chain and its branches:

—>| unsigned integer J—»@—l—>(digit) l @ [ll unsigned integer —J—>

\begin{tikzpicture}[point/.style={coordinate},>=stealth’,thick,draw=black!50,
tip/.style={->,shorten >=1pt},every join/.style={rounded corners},
hv path/.style={to path={-| (\tikztotarget)}},
vh path/.style={to path={|- (\tikztotarget)}}]

\matrix[column sep=4mm] {
% First row:
& & & & & & & & & & & \node (plus) [terminal] {+};\\
% Second row:

\node (p1) [point] {3}; & \node (uil) [nonterminal] {unsigned integerl}; &
\node (p2) [point] {}; & \node (dot) [terminal] {.}; &
\node (p3) [point] {}; & \node (digit) [terminal] {digit}; &
\node (p4) [point] {}; & \node (p5) [point] {}; &
\node (p6) [point] {}; & \node (e) [terminal] {E}; &
\node (p7) [point]l {3}; & &
\node (p8) [point] {}; & \node (ui2) [nonterminal] {unsigned integer}; &
\node (p9) [point] {}; & \node (p10) [point] {3\

% Third row:
& & & & & & & & & & & \node (minus) [terminal]l {-};\\
T

{ [start chain]
\chainin (p1);
\chainin (uil) [join=by tip];
\chainin (p2) [join];
\chainin (dot) [join=by tipl;
\chainin (p3) [join];
\chainin (digit) [join=by tip];
\chainin (p4) [join];
{ [start branch=digit loop]
\chainin (p3) [join=by {skip loop=-6mm,tip}];
}
\chainin (p5) [join, join=with p2 by {skip loop=6mm,tip}];
\chainin (p6) [join];
\chainin (e) [join=by tipl;
\chainin (p7) [join];
{ [start branch=plus]
\chainin (plus) [join=by {vh path,tip}];
\chainin (p8) [join=by {hv path,tipl}];
}
{ [start branch=minus]
\chainin (minus) [join=by {vh path,tip}];
\chainin (p8) [join=by {hv path,tipl}];
}
\chainin (p8) [join];
\chainin (ui2) [join=by tip];
\chainin (p9) [join, join=with p6 by {skip loop=-1imm,tip}];
\chainin (p10) [join=by tip];
}
\end{tikzpicture}

64

6 Guidelines on Graphics

The present section is not about PGF or TikZ, but about general guidelines and principles concerning the
creation of graphics for scientific presentations, papers, and books.

The guidelines in this section come from different sources. Many of them are just what I would like to
claim is “common sense,” some reflect my personal experience (though, hopefully, not my personal prefer-
ences), some come from books (the bibliography is still missing, sorry) on graphic design and typography.
The most influential source are the brilliant books by Edward Tufte. While I do not agree with everything
written in these books, many of Tufte’s arguments are so convincing that I decided to repeat them in the
following guidelines.

The first thing you should ask yourself when someone presents a bunch of guidelines is: Should I really
follow these guidelines? This is an important questions, because there are good reasons not to follow general
guidelines. The person who setup the guidelines may have had other objectives than you do. For example,
a guideline might say “use the color red for emphasis.” While this guideline makes perfect sense for, say,
a presentation using a projector, red “color” has the opposite effect of “emphasis” when printed using a
black-and-white printer. Guidelines were almost always setup to address a specific situation. If you are not
in this situation, following a guideline can do more harm than good.

The second thing you should be aware of is the basic rule of typography is: “Every rule can be broken, as
long as you are aware that you are breaking a rule.” This rule also applies to graphics. Phrased differently,
the basic rule states: “The only mistakes in typography are things done is ignorance.” When you are aware
of a rule and when you decide that breaking the rule has a desirable effect, break the rule.

6.1 Planning the Time Needed for the Creation of Graphics

When you create a paper with numerous graphics, the time needed to create these graphics becomes an
important factor. How much time should you calculate for the creation of graphics?

As a general rule, assume that a graphic will need as much time to create as would a text of the same
length. For example, when I write a paper, I need about one hour per page for the first draft. Later, I
need between two and four hours per page for revisions. Thus, I expect to need about half an hour for the
creation of a first draft of a half page graphic. Later on, I expect another one to two hours before the final
graphic is finished.

In many publications, even in good journals, the authors and editors have obviously invested a lot of time
on the text, but seem to have spend about five minutes to create all of the graphics. Graphics often seem to
have been added as an “afterthought” or look like a screen shot of whatever the authors’s statistical software
shows them. As will be argued later on, the graphics that programs like GNUPLOT produce by default are
of poor quality.

Creating informative graphics that help the reader and that fit together with the main text is a difficult,
lengthy process.

e Treat graphics as first-class citizens of your papers. They deserve as much time and energy as the text
does. Indeed, the creation of graphics might deserve even more time than the writing of the main text
since more attention will be paid to the graphics and they will be looked at first.

e Plan as much time for the creation and revision of a graphic as you would plan for text of the same
size.

e Difficult graphics with a high information density may require even more time.

e Very simple graphics will require less time, but most likely you do not want to have “very simple
graphics” in your paper, anyway; just as you would not like to have a “very simple text” of the same
size.

6.2 Workflow for Creating a Graphic

When you write a (scientific) paper, you will most likely follow the following pattern: You have some
results/ideas that you would like to report about. The creation of the paper will typically start with
compiling a rough outline. Then, the different sections are filled with text to create a first draft. This draft
is then revised repeatedly until, often after substantial revision, a final paper results. In a good journal
paper there is typically not be a single sentence that has survived unmodified from the first draft.

Creating a graphics follows the same pattern:

65

e Decide on what the graphic should communicate. Make this a conscious decision, that is, determine
“What is the graphic supposed to tell the reader?”

e Create an “outline,” that is, the rough overall “shape” of the graphic, containing the most crucial
elements. Often, it is useful to do this using pencil and paper.

e Fill out the finer details of the graphic to create a first draft.

e Revise the graphic repeatedly along with the rest of the paper.

6.3 Linking Graphics With the Main Text

Graphics can be placed at different places in a text. Either, they can be inlined, meaning they are somewhere
“in the middle of the text” or they can be placed in standalone “figures.” Since printers (the people) like to
have their pages “filled,” (both for aesthetic and economic reasons) standalone figures may traditionally be
placed on pages in the document far removed from the main text that refers to them. I2TEX and TgX tend
to encourage this “drifting away” of graphics for technical reasons.

When a graphic is inlined, it will more or less automatically be linked with the main text in the sense
that the labels of the graphic will be implicitly explained by the surrounding text. Also, the main text will
typically make it clear what the graphic is about and what is shown.

Quite differently, a standalone figure will often be viewed at a time when the main text that this graphic
belongs to either has not yet been read or has been read some time ago. For this reason, you should follow
the following guidelines when creating standalone figures:

e Standalone figures should have a caption than should make them “understandable by themselves.”

For example, suppose a graphic shows an example of the different stages of a quicksort algorithm. Then
the figure’s caption should, at the very least, inform the reader that “The figure shows the different
stages of the quicksort algorithm introduced on page xyz.” and not just “Quicksort algorithm.”

e A good caption adds as much context information as possible. For example, you could say: “The
figure shows the different stages of the quicksort algorithm introduced on page xyz. In the first line,
the pivot element 5 is chosen. This causes...” While this information can also be given in the main
text, putting it in the caption will ensure that the context is kept. Do not feel afraid of a 5-line caption.
(Your editor may hate you for this. Consider hating them back.)

e Reference the graphic in your main text as in “For an example of quicksort ‘in action,” see Figure 2.1
on page xyz.”

e Most books on style and typography recommend that you do not use abbreviations as in “Fig. 2.1”
but write “Figure 2.1.”

The main argument against abbreviations is that “a period is too valuable to waste it on an abbrevi-
ation.” The idea is that a period will make the reader assume that the sentence ends after “Fig” and
it takes a “conscious backtracking” to realize that the sentence did not end after all.

The argument in favor of abbreviations is that they save space.

Personally, I am not really convinced by either argument. On the one hand, I have not yet seen any
hard evidence that abbreviations slow readers down. On the other hand, abbreviating all “Figure” by
“Fig.” is most unlikely to save even a single line in most documents. I avoid abbreviations.

6.4 Consistency Between Graphics and Text

Perhaps the most common “mistake” people do when creating graphics (remember that a “mistake” in
design is always just “ignorance”) is to have a mismatch between the way their graphics look and the way
their text looks.

It is quite common that authors use several different programs for creating the graphics of a paper. An
author might produce some plots using GNUPLOT, a diagram using XFIG, and include an .eps graphic a
coauthor contributed using some unknown program. All these graphics will, most likely, use different line
widths, different fonts, and have different sizes. In addition, authors often use options like [height=5cm]
when including graphics to scale them to some “nice size.”

If the same approach were taken to writing the main text, every section would be written in a different
font at a different size. In some sections all theorems would be underlined, in another they would be printed

66

all in uppercase letters, and in another in red. In addition, the margins would be different on each page.
Readers and editors would not tolerate a text if it were written in this fashion, but with graphics they often
have to.

To create consistency between graphics and text, stick to the following guidelines:

e Do not scale graphics.

This means that when generating graphics using an external program, create them “at the right size.”
e Use the same font(s) both in graphics and the body text.

e Use the same line width in text and graphics.

The “line width” for normal text is the width of the stem of letters like T. For TgX, this is usually
0.4 pt. However, some journals will not accept graphics with a normal line width below 0.5 pt.

e When using colors, use a consistent color coding in the text and in graphics. For example, if red is
supposed to alert the reader to something in the main text, use red also in graphics for important parts
of the graphic. If blue is used for structural elements like headlines and section titles, use blue also for
structural elements of your graphic.

However, graphics may also use a logical intrinsic color coding. For example, no matter what colors
you normally use, readers will generally assume, say, that the color green as “positive, go, ok” and red
as “alert, warning, action.”

Creating consistency when using different graphic programs is almost impossible. For this reason, you
should consider sticking to a single graphics program.

6.5 Labels in Graphics

Almost all graphics will contain labels, that is, pieces of text that explain parts of the graphics. When
placing labels, stick to the following guidelines:

e Follow the rule of consistency when placing labels. You should do so in two ways: First, be consistent
with the main text, that is, use the same font as the main text also for labels. Second, be consistent
between labels, that is, if you format some labels in some particular way, format all labels in this way.

e In addition to using the same fonts in text and graphics, you should also use the same notation. For
example, if you write 1/2 in your main text, also use “1/2” as labels in graphics, not “0.5”. A 7 is a
“m” and not “3.141”. Finally, e™'" is “e™"”, not “—1”, let alone “-1”.

e Labels should be legible. They should not only have a reasonably large size, they also should not be
obscured by lines or other text. This also applies to of lines and text behind the labels.

e Labels should be “in place.” Whenever there is enough space, labels should be placed next to the
thing they label. Ounly if necessary, add a (subdued) line from the label to the labeled object. Try to
avoid labels that only reference explanations in external legends. Reader have to jump back and forth
between the explanation and the object that is described.

e Consider subduing “unimportant” labels using, for example, a gray color. This will keep the focus on
the actual graphic.

6.6 Plots and Charts

One of the most frequent kind of graphics, especially in scientific papers, are plots. They come in a large
variety, including simple line plots, parametric plots, three dimensional plots, pie charts, and many more.

Unfortunately, plots are notoriously hard to get right. Partly, the default settings of programs like
GNUPLOT or Excel are to blame for this since these programs make it very convenient to create bad plots.

The first question you should ask yourself when creating a plot is, Are there enough data points to merit
a plot? If the answer is “not really,” use a table.

A typical situation where a plot is unnecessary is when people present a few numbers in a bar diagram.
Here is a real-life example: At the end of a seminar a lecturer asked the participants for feedback. Of the 50
participants, 30 returned the feedback form. According to the feedback, three participants considered the

67

seminar “very good,” nine considered it “good,” ten “ok,” eight “bad,” and no one thought that the seminar

was “very bad.”
A simple way of summing up this information is the following table:

Rating given Participants (out of 50) Percentage
who gave this rating

“very good” 3 6%
“good” 9 18%
“ok” 10 20%
“bad” 8 16%
“very bad” 0 0%
none 20 40%

What the lecturer did was to visualize the data using a 3D bar diagram. It looked like this (except
that in reality the numbers where typeset using some extremely low-resolution bitmap font and were near-
unreadable):

s

100
80
60
40
20

0

good

ok

bad

very bad

o)
Q
o
o0
>
[
o
>

Both the table and the “plot” have about the same size. If your first thought is “the graphic looks nicer
than the table,” try to answer the following questions based on the information in the table or in the graphic:

1. How many participants where there?

How many participants returned the feedback form?

What percentage of the participants returned the feedback form?
How many participants checked “very good”?

What percentage out of all participants checked “very good”?

Did more than a quarter of the participants check “bad” or “very bad”?

Noe o e

What percentage of the participants that returned the form checked “very good”?

Sadly, the graphic does not allow us to answer a single one of these questions. The table answers all of
them directly, except for the last one. In essence, the information density of the graphic is very nearly zero.
The table has a much higher information density; despite the fact that it uses quite a lot of white space to
present a few numbers. Here is the list of things that went wrong with the 3D-bar diagram:

e The whole graphic is dominated by irritating background lines.

e It is not clear what the numbers at the left mean; presumably percentages, but it might also be the
absolute number of participants.

e The labels at the bottom are rotated, making them hard to read.

(In the real presentation that I saw, the text was rendered at a very low resolution with about 10 by
6 pixels per letter with wrong kerning, making the rotated text almost impossible to read.)

e The third dimension adds complexity to the graphic without adding information.

68

e The three dimensional setup makes it much harder to gauge the height of the bars correctly. Consider
the “bad” bar. It the number this bar stands for more than 20 or less? While the front of the bar is
below the 20 line, the back of the bar (which counts) is above.

e [t is impossible to tell which numbers are represented by the bars. Thus, the bars needlessly hide the
information these bars are all about.

e What do the bar heights add up to? Is it 100% or 60%?
e Does the bar for “very bad” represent 0 or 17
e Why are the bars blue?

You might argue that in the example the exact numbers are not important for the graphic. The important
things is the “message,” which is that there are more “very good” and “good” ratings than “bad” and “very
bad.” However, to convey this message either use a sentence that says so or use a graphic that conveys this
message more clearly:

none: 20 (40%)

“very good”: 3 (6%)
Ratings given by “very bad”: 0 (0%)

50 participants

“good”: 9 (18%) “bad”: 8 (16%)

“ok”: 10 (20%)

The above graphic has about the same information density as the table (about the same size and the
same numbers are shown). In addition, one can directly “see” that there are more good or very good ratings
than bad ones. One can also “see” that the number of people who gave no rating at all is not negligible,
which is quite common for feedback forms.

Charts are not always a good idea. Let us look at an example that I redrew from a pie chart in Die Zeit,
June 4th, 2005:

Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

Sonstige (16,5 kWh) 2,9% Regenerative (53,7 kWh)/davon Wind 4,4% (25,0 kWh)

Mineraldlprodukte (9,2 kwh) 1,6%
Erdgas (59,2 kWh) /10 4%

Kernenergie
(158,4 kWh)

Steinkohle (127,1 kWh) Braunkohle (146,0 kWh)

This graphic has been redrawn in TikZ, but the original looks almost exactly the same.
At first sight, the graphic looks “nice and informative,” but there are a lot of things that went wrong;:

e The chart is three dimensional. However, the shadings add nothing “information-wise,” at best, they
distract.

69

e In a 3D-pie-chart the relative sizes are very strongly distorted. For example, the area taken up by the
gray color of “Braunkohle” is larger than the area taken up by the green color of “Kernenergie” despite
the fact that the percentage of Braunkohle is less than the percentage of Kernenergie.

e The 3D-distortion gets worse for small areas. The area of “Regenerative” somewhat larger than the
area of “Erdgas.” The area of “Wind” is slightly smaller than the area of “Mineraldlprodukte” although
the percentage of Wind is nearly three times larger than the percentage of Mineralélprodukte.

In the last case, the different sizes are only partly due to distortion. The designer(s) of the original
graphic have also made the “Wind” slice too small, even taking distortion into account. (Just compare
the size of “Wind” to “Regenerative” in general.)

e According to its caption, this chart is supposed to inform us that coal was the most important energy
source in Germany in 2004. Ignoring the strong distortions caused by the superfluous and misleading
3D-setup, it takes quite a while for this message to get across.

Coal as an energy source is split up into two slices: one for “Steinkohle” and one for “Braunkohle”
(two different kinds of coal). When you add them up, you see that the whole lower half of the pie chart
is taken up by coal.

The two areas for the different kinds of coal are not visually linked at all. Rather, two different colors
are used, the labels are on different sides of the graphic. By comparison, “Regenerative” and “Wind”
are very closely linked.

e The color coding of the graphic follows no logical pattern at all. Why is nuclear energy green? Re-
generative energy is light blue, “other sources” are blue. It seems more like a joke that the area for
“Braunkohle” (which literally translates to “brown coal”) is stone gray, while the area for “Steinkohle”
(which literally translates to “stone coal”) is brown.

e The area with the lightest color is used for “Erdgas.” This area stands out most because of the brighter
color. However, for this chart “Erdgas” is not really important at all.

Edward Tufte calls graphics like the above “chart junk.” (I am happy to announce, however, that Die Zeit
has stopped using 3D pie charts and their information graphics have got somewhat better.)
Here are a few recommendations that may help you avoid producing chart junk:

e Do not use 3D pie charts. They are ewvil.
e Consider using a table instead of a pie chart.
e Due not apply colors randomly; use them to direct the readers’s focus and to group things.

e Do not use background patterns, like a crosshatch or diagonal lines, instead of colors. They distract.
Background patterns in information graphics are ewvil.

6.7 Attention and Distraction

Pick up your favorite fiction novel and have a look at a typical page. You will notice that the page is very
uniform. Nothing is there to distract the reader while reading; no large headlines, no bold text, no large
white areas. Indeed, even when the author does wish to emphasize something, this is done using italic
letters. Such letters blend nicely with the main text—at a distance you will not be able to tell whether a
page contains italic letters, but you would notice a single bold word immediately. The reason novels are
typeset this way is the following paradigm: Avoid distractions.

Good typography (like good organization) is something you do not notice. The job of typography is to
make reading the text, that is, “absorbing” its information content, as effortless as possible. For a novel,
readers absorb the content by reading the text line-by-line, as if they were listening to someone telling the
story. In this situation anything on the page that distracts the eye from going quickly and evenly from line
to line will make the text harder to read.

Now, pick up your favorite weekly magazine or newspaper and have a look at a typical page. You will
notice that there is quite a lot “going on” on the page. Fonts are used at different sizes and in different
arrangements, the text is organized in narrow columns, typically interleaved with pictures. The reason
magazines are typeset in this way is another paradigm: Steer attention.

Readers will not read a magazine like a novel. Instead of reading a magazine line-by-line, we use headlines
and short abstracts to check whether we want to read a certain article or not. The job of typography is to

70

steer our attention to these abstracts and headlines, first. Once we have decided that we want to read an
article, however, we no longer tolerate distractions, which is why the main text of articles is typeset exactly
the same way as a novel.

The two principles “avoid distractions” and “steer attention” also apply to graphics. When you design a
graphic, you should eliminate everything that will “distract the eye.” At the same time, you should try to
actively help the reader “through the graphic” by using fonts/colors/line widths to highlight different parts.

Here is a non-exhaustive list of things that can distract readers:

e Strong contrasts will always be registered first by the eye. For example, consider the following two
grids:

Even though the left grid comes first in English reading order, the right one is much more likely to
be seen first: The white-to-black contrast is higher than the gray-to-white contrast. In addition, there
are more “places” adding to the overall contrast in the right grid.

Things like grids and, more generally, help lines usually should not grab the attention of the readers
and, hence, should be typeset with a low contrast to the background. Also, a loosely-spaced grid is
less distracting than a very closely-spaced grid.

e Dashed lines create many points at which there is black-to-white contrast. Dashed or dotted lines can
be very distracting and, hence, should be avoided in general.

Do not use different dashing patterns to differentiate curves in plots. You loose data points this way
and the eye is not particularly good at “grouping things according to a dashing pattern.” The eye is
much better at grouping things according to colors.

e Background patterns filling an area using diagonal lines or horizontal and vertical lines or just dots are
almost always distracting and, usually, serve no real purpose.

e Background images and shadings distract and only seldom add anything of importance to a graphic.

e Cute little cliparts can easily draw attention away from the data.

71

Part 11

Installation and Configuration

by Till Tantau

This part explains how the system is installed. Typically, someone has already done so for your system, so
this part can be skipped; but if this is not the case and you are the poor fellow who has to do the installation,

read the present part.

start —

1,0,R

LLR

1,0,R

The current candidate for the busy beaver for five
states. It is presumed that this Turing machine
writes a maximum number of 1’s before halting
among all Turing machines with five states and the
tape alphabet {0,1}. Proving this conjecture is an
open research problem.

\begin{tikzpicture}[->,>=stealth’,shorten >=1pt,auto,node distance=2.8cm,on grid,semithick,
every state/.style={fill=red,draw=none,circular drop shadow,text=whitel}]

\node[initial,state] (A)

\node [state] (B) [above right=of

\node [state] (D) [below right=of

\node [state] (C) [below right=of
\node [state] (E) [below=of D]

\path (A) edge node {0,1,L}

edge node {1,1,R}

(B) edge [loop above] node {1,1,L}

edge node {0,1,L}

(C) edge node {0,1,L}

edge [bend left] mnode {1,0,R}
(D) edge [loop below] node {1,1,R}
edge node {0,1,R}
(E) edge [bend left] mnode {1,0,R}

\node [right=1cm,text width=8cm] at (C)
{

{q_a};

Al {q_b};
Al {q_ds};
B] {q_c};

(B)
©)
(B)
©
(D)
(E)
(D)
(A)

{q_e3;

(A);

The current candidate for the busy beaver for five states. It is
presumed that this Turing machine writes a maximum number of

1’s before halting among all Turing machines with five states
and the tape alphabet $\{0, 1\}$. Proving this conjecture is an

open research problem.
I
\end{tikzpicture}

72

7 Installation

There are different ways of installing PGF, depending on your system and needs, and you may need to install
other packages as well as, see below. Before installing, you may wish to review the licenses under which the
package is distributed, see Section 8.

Typically, the package will already be installed on your system. Naturally, in this case you do not need
to worry about the installation process at all and you can skip the rest of this section.

7.1 Package and Driver Versions

This documentation is part of version 2.00 of the PGF package. In order to run PGF, you need a reasonably
recent TEX installation. When using ITEX, you need the following packages installed (newer versions should
also work):

e xcolor version 2.00.

With plain TEX, xcolor is not needed, but you obviously do not get its (full) functionality.
Currently, PGF supports the following backend drivers:

e pdftex version 0.14 or higher. Earlier versions do not work.

e dvips version 5.94a or higher. Earlier versions may also work.

For inter-picture connections, you need process pictures using pdftex version 1.40 or higher running
in DVI mode.

e dvipdfm version 0.13.2¢ or higher. Earlier versions may also work.

For inter-picture connections, you need process pictures using pdftex version 1.40 or higher running
in DVI mode.

e tex4ht version 2003-05-05 or higher. Earlier versions may also work.

e vtex version 8.46a or higher. Earlier versions may also work.

e textures version 2.1 or higher. Earlier versions may also work.

e xetex version 0.996 or higher. Earlier versions may also work.

Currently, PGF supports the following formats:

e latex with complete functionality.

e plain with complete functionality, except for graphics inclusion, which works only for pdfTEX.

e context with complete functionality, except for graphics inclusion, which works only for pdfTEX.

For more details, see Section 9.

7.2 Installing Prebundled Packages

I do not create or manage prebundled packages of PGF, but, fortunately, nice other people do. I cannot give
detailed instructions on how to install these packages, since I do not manage them, but I can tell you were
to find them. If you have a problem with installing, you might wish to have a look at the Debian page or
the MikTEX page first.

7.2.1 Debian

The command “aptitude install pgf” should do the trick. Sit back and relax. In detail, the following
packages are installed:

http://packages.debian.org/pgf
http://packages.debian.org/latex-xcolor

7.2.2 MiKTeX
For MiKTgX, use the update wizard to install the (latest versions of the) packages called pgf and xcolor.

73

7.3 Installation in a texmf Tree

For a permanent installation, you place the files of the the PGF package in an appropriate texmf tree.

When you ask TEX to use a certain class or package, it usually looks for the necessary files in so-called
texmf trees. These trees are simply huge directories that contain these files. By default, TEX looks for files
in three different texmf trees:

e The root texmf tree, which is usually located at /usr/share/texmf/ or c:\texmf\ or somewhere
similar.

e The local texmf tree, which is usually located at /usr/local/share/texmf/ or c:\localtexmf\ or
somewhere similar.

e Your personal texmf tree, which is usually located in your home directory at ~/texmf/ or
“/Library/texmf/.

You should install the packages either in the local tree or in your personal tree, depending on whether
you have write access to the local tree. Installation in the root tree can cause problems, since an update of
the whole TEX installation will replace this whole tree.

7.3.1 Installation that Keeps Everything Together

Once you have located the right texmf tree, you must decide whether you want to install PGF in such a way
that “all its files are kept in one place” or whether you want to be “TDS-compliant,” where TDS means “TEX
directory structure.”

If you want to keep “everything in one place,” inside the texmf tree that you have chosen create a
sub-sub-directory called texmf/tex/generic/pgf or texmf/tex/generic/pgf-2.00, if you prefer. Then
place all files of the pgf package in this directory. Finally, rebuild TEX’s filename database. This is done by
running the command texhash or mktexlsr (they are the same). In MikTEX, there is a menu option to do
this.

7.3.2 Installation that is TDS-Compliant

While the above installation process is the most “natural” one and although I would like to recommend it
since it makes updating and managing the PGF package easy, it is not TDS-compliant. If you want to be
TDS-compliant, proceed as follows: (If you do not know what TDs-compliant means, you probably do not
want to be TDs-compliant.)

The .tar file of the pgf package contains the following files and directories at its root: README, doc,
generic, plain, and latex. You should “merge” each of the four directories with the following directories
texmf/doc, texmf/tex/generic, texmf/tex/plain, and texmf/tex/latex. For example, in the .tar file
the doc directory contains just the directory pgf, and this directory has to be moved to texmf/doc/pgf.
The root README file can be ignored since it is reproduced in doc/pgf/README.

You may also consider keeping everything in one place and using symbolic links to point from the TDS-
compliant directories to the central installation.

For a more detailed explanation of the standard installation process of packages, you might wish to
consult http://www.ctan.org/installationadvice/. However, note that the PGF package does not come
with a .ins file (simply skip that part).

7.4 Updating the Installation

To update your installation from a previous version, all you need to do is to replace everything in the directory
texmf /tex/generic/pgf with the files of the new version (or in all the directories where pgf was installed, if
you chose a TDs-compliant installation). The easiest way to do this is to first delete the old version and then
proceed as described above. Sometimes, there are changes in the syntax of certain command from version
to version. If things no longer work that used to work, you may wish to have a look at the release notes and
at the change log.

74

http://www.ctan.org/installationadvice/

8 Licenses and Copyright
8.1 Which License Applies?

Different parts of the PGF package are distributed under different licenses:

1. The code of the package is dual-license. This means that you can decide which license you wish to use
when using the PGF package. The two options are:

(a) You can use the GNU Public License, version 2.
(b) You can use the WTEX Project Public License, version 1.3c.

2. The documentation of the package is also dual-license. Again, you can choose between two options:

(a) You can use the GNU Free Documentation License, version 1.2.
(b) You can use the ITEX Project Public License, version 1.3c.

The “documentation of the package” refers to all files in the subdirectory doc of the pgf package. A
detailed listing can be found in the file doc/generic/pgf/licenses/manifest-documentation.txt. All
files in other directories are part of the “code of the package.” A detailed listing can be found in the file
doc/generic/pgf/licenses/manifest-code.txt.

In the resest of this section, the licenses are presented. The following text is copyrighted, see the plain
text versions of these licenses in the directory doc/generic/pgf/licenses for details.

The example picture used in this manual, the Brave GNU World logo, is taken from the Brave GNU World
homepage, where it is copyrighted as follows: “Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004 Georg
C. F. Greve. Permission is granted to make and distribute verbatim copies of this transcript as long as the
copyright and this permission notice appear.”

8.2 The GNU Public License, Version 2
8.2.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

(0]

8.2.2 Terms and Conditions For Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(¢) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

76

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsubsection
b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

7

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

8.2.3 No Warranty

10. Because the program is licensed free of charge, there is no warranty for the program, to the extent
permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or correction.

11. In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out of the
use or inability to use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility of such damages.

8.3 The ETEX Project Public License, Version 1.3c 2006-05-20
8.3.1 Preamble

The I¥TEX Project Public License (LPPL) is the primary license under which the the ITEX kernel and the
base ITEX packages are distributed.

You may use this license for any work of which you hold the copyright and which you wish to distribute.
This license may be particularly suitable if your work is TEX-related (such as a BTEX package), but it is
written in such a way that you can use it even if your work is unrelated to TEX.

The section ‘WHETER AND HOW TO DISTRIBUTE WORKS UNDER THIS LICENSE’, below, gives instructions,
examples, and recommendations for authors who are considering distributing their works under this license.

This license gives conditions under which a work may be distributed and modified, as well as conditions
under which modified versions of that work may be distributed.

We, the BTEX3 Project, believe that the conditions below give you the freedom to make and distribute
modified versions of your work that conform with whatever technical specifications you wish while maintain-
ing the availability, integrity, and reliability of that work. If you do not see how to achieve your goal while
meeting these conditions, then read the document ‘cfgguide.tex’ and ‘modguide.tex’ in the base BITEX
distribution for suggestions.

8.3.2 Definitions

In this license document the following terms are used:

Work Any work being distributed under this License.

78

Derived Work Any work that under any applicable law is derived from the Work.

Modification Any procedure that produces a Derived Work under any applicable law — for example, the
production of a file containing an original file associated with the Work or a significant portion of such
a file, either verbatim or with modifications and/or translated into another language.

Modify To apply any procedure that produces a Derived Work under any applicable law.

Distribution Making copies of the Work available from one person to another, in whole or in part. Distri-
bution includes (but is not limited to) making any electronic components of the Work accessible by file
transfer protocols such as FTP or HTTP or by shared file systems such as Sun’s Network File System
(NFS).

Compiled Work A version of the Work that has been processed into a form where it is directly usable on
a computer system. This processing may include using installation facilities provided by the Work,
transformations of the Work, copying of components of the Work, or other activities. Note that
modification of any installation facilities provided by the Work constitutes modification of the Work.

Current Maintainer A person or persons nominated as such within the Work. If there is no such explicit
nomination then it is the ‘Copyright Holder’ under any applicable law.

Base Interpreter A program or process that is normally needed for running or interpreting a part or the
whole of the Work.

A Base Interpreter may depend on external components but these are not considered part of the
Base Interpreter provided that each external component clearly identifies itself whenever it is used
interactively. Unless explicitly specified when applying the license to the Work, the only applicable
Base Interpreter is a ‘BTEX-Format’ or in the case of files belonging to the ‘BTEX-format’ a program
implementing the ‘TEX language’.

8.3.3 Conditions on Distribution and Modification

1. Activities other than distribution and/or modification of the Work are not covered by this license; they
are outside its scope. In particular, the act of running the Work is not restricted and no requirements
are made concerning any offers of support for the Work.

2. You may distribute a complete, unmodified copy of the Work as you received it. Distribution of only
part of the Work is considered modification of the Work, and no right to distribute such a Derived
Work may be assumed under the terms of this clause.

3. You may distribute a Compiled Work that has been generated from a complete, unmodified copy of
the Work as distributed under Clause 2 above, as long as that Compiled Work is distributed in such a
way that the recipients may install the Compiled Work on their system exactly as it would have been
installed if they generated a Compiled Work directly from the Work.

4. If you are the Current Maintainer of the Work, you may, without restriction, modify the Work, thus
creating a Derived Work. You may also distribute the Derived Work without restriction, including
Compiled Works generated from the Derived Work. Derived Works distributed in this manner by the
Current Maintainer are considered to be updated versions of the Work.

5. If you are not the Current Maintainer of the Work, you may modify your copy of the Work, thus
creating a Derived Work based on the Work, and compile this Derived Work, thus creating a Compiled
Work based on the Derived Work.

6. If you are not the Current Maintainer of the Work, you may distribute a Derived Work provided the
following conditions are met for every component of the Work unless that component clearly states in
the copyright notice that it is exempt from that condition. Only the Current Maintainer is allowed to
add such statements of exemption to a component of the Work.

(a) If a component of this Derived Work can be a direct replacement for a component of the Work when
that component is used with the Base Interpreter, then, wherever this component of the Work
identifies itself to the user when used interactively with that Base Interpreter, the replacement
component of this Derived Work clearly and unambiguously identifies itself as a modified version
of this component to the user when used interactively with that Base Interpreter.

79

(b) Every component of the Derived Work contains prominent notices detailing the nature of the
changes to that component, or a prominent reference to another file that is distributed as part of
the Derived Work and that contains a complete and accurate log of the changes.

(¢) No information in the Derived Work implies that any persons, including (but not limited to) the
authors of the original version of the Work, provide any support, including (but not limited to)
the reporting and handling of errors, to recipients of the Derived Work unless those persons have
stated explicitly that they do provide such support for the Derived Work.

(d) You distribute at least one of the following with the Derived Work:

i. A complete, unmodified copy of the Work; if your distribution of a modified component
is made by offering access to copy the modified component from a designated place, then
offering equivalent access to copy the Work from the same or some similar place meets this
condition, even though third parties are not compelled to copy the Work along with the
modified component;

ii. Information that is sufficient to obtain a complete, unmodified copy of the Work.

7. If you are not the Current Maintainer of the Work, you may distribute a Compiled Work generated
from a Derived Work, as long as the Derived Work is distributed to all recipients of the Compiled
Work, and as long as the conditions of Clause 6, above, are met with regard to the Derived Work.

8. The conditions above are not intended to prohibit, and hence do not apply to, the modification, by
any method, of any component so that it becomes identical to an updated version of that component
of the Work as it is distributed by the Current Maintainer under Clause 4, above.

9. Distribution of the Work or any Derived Work in an alternative format, where the Work or that Derived
Work (in whole or in part) is then produced by applying some process to that format, does not relax
or nullify any sections of this license as they pertain to the results of applying that process.

10. (a) A Derived Work may be distributed under a different license provided that license itself honors
the conditions listed in Clause 6 above, in regard to the Work, though it does not have to honor
the rest of the conditions in this license.

(b) If a Derived Work is distributed under a different license, that Derived Work must provide suf-
ficient documentation as part of itself to allow each recipient of that Derived Work to honor the
restrictions in Clause 6 above, concerning changes from the Work.

11. This license places no restrictions on works that are unrelated to the Work, nor does this license place
any restrictions on aggregating such works with the Work by any means.

12. Nothing in this license is intended to, or may be used to, prevent complete compliance by all parties
with all applicable laws.

8.3.4 No Warranty

There is no warranty for the Work. Except when otherwise stated in writing, the Copyright Holder provides
the Work ‘as is’, without warranty of any kind, either expressed or implied, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the
quality and performance of the Work is with you. Should the Work prove defective, you assume the cost of
all necessary servicing, repair, or correction.

In no event unless required by applicable law or agreed to in writing will The Copyright Holder, or
any author named in the components of the Work, or any other party who may distribute and/or modify
the Work as permitted above, be liable to you for damages, including any general, special, incidental or
consequential damages arising out of any use of the Work or out of inability to use the Work (including, but
not limited to, loss of data, data being rendered inaccurate, or losses sustained by anyone as a result of any
failure of the Work to operate with any other programs), even if the Copyright Holder or said author or said
other party has been advised of the possibility of such damages.

80

8.3.5 Maintenance of The Work

The Work has the status ‘author-maintained’ if the Copyright Holder explicitly and prominently states near
the primary copyright notice in the Work that the Work can only be maintained by the Copyright Holder
or simply that it is ‘author-maintained’.

The Work has the status ‘maintained’ if there is a Current Maintainer who has indicated in the Work
that they are willing to receive error reports for the Work (for example, by supplying a valid e-mail address).
It is not required for the Current Maintainer to acknowledge or act upon these error reports.

The Work changes from status ‘maintained’ to ‘unmaintained’ if there is no Current Maintainer, or the
person stated to be Current Maintainer of the work cannot be reached through the indicated means of
communication for a period of six months, and there are no other significant signs of active maintenance.

You can become the Current Maintainer of the Work by agreement with any existing Current Maintainer
to take over this role.

If the Work is unmaintained, you can become the Current Maintainer of the Work through the following
steps:

1. Make a reasonable attempt to trace the Current Maintainer (and the Copyright Holder, if the two
differ) through the means of an Internet or similar search.

2. If this search is successful, then enquire whether the Work is still maintained.

(a) If it is being maintained, then ask the Current Maintainer to update their communication data
within one month.

(b) If the search is unsuccessful or no action to resume active maintenance is taken by the Cur-
rent Maintainer, then announce within the pertinent community your intention to take over
maintenance. (If the Work is a BTEX work, this could be done, for example, by posting to
comp.text.tex.)

3. (a) If the Current Maintainer is reachable and agrees to pass maintenance of the Work to you, then
this takes effect immediately upon announcement.

(b) If the Current Maintainer is not reachable and the Copyright Holder agrees that maintenance of
the Work be passed to you, then this takes effect immediately upon announcement.

4. If you make an ‘intention announcement’ as described in 2b above and after three months your intention
is challenged neither by the Current Maintainer nor by the Copyright Holder nor by other people, then
you may arrange for the Work to be changed so as to name you as the (new) Current Maintainer.

5. If the previously unreachable Current Maintainer becomes reachable once more within three months of
a change completed under the terms of 3b or 4, then that Current Maintainer must become or remain
the Current Maintainer upon request provided they then update their communication data within one
month.

A change in the Current Maintainer does not, of itself, alter the fact that the Work is distributed under the
LPPL license.

If you become the Current Maintainer of the Work, you should immediately provide, within the Work,
a prominent and unambiguous statement of your status as Current Maintainer. You should also announce
your new status to the same pertinent community as in 2b above.

8.3.6 Whether and How to Distribute Works under This License

This section contains important instructions, examples, and recommendations for authors who are consid-
ering distributing their works under this license. These authors are addressed as ‘you’ in this section.

8.3.7 Choosing This License or Another License

If for any part of your work you want or need to use distribution conditions that differ significantly from
those in this license, then do not refer to this license anywhere in your work but, instead, distribute your
work under a different license. You may use the text of this license as a model for your own license, but your
license should not refer to the LPPL or otherwise give the impression that your work is distributed under the
LPPL.

The document ‘modguide.tex’ in the base ITEX distribution explains the motivation behind the con-
ditions of this license. It explains, for example, why distributing I¥TEX under the GNU General Public

81

License (GPL) was considered inappropriate. Even if your work is unrelated to IATEX, the discussion in
‘modguide.tex’ may still be relevant, and authors intending to distribute their works under any license are
encouraged to read it.

8.3.8 A Recommendation on Modification Without Distribution

It is wise never to modify a component of the Work, even for your own personal use, without also meeting the
above conditions for distributing the modified component. While you might intend that such modifications
will never be distributed, often this will happen by accident — you may forget that you have modified that
component; or it may not occur to you when allowing others to access the modified version that you are
thus distributing it and violating the conditions of this license in ways that could have legal implications
and, worse, cause problems for the community. It is therefore usually in your best interest to keep your copy
of the Work identical with the public one. Many works provide ways to control the behavior of that work
without altering any of its licensed components.

8.3.9 How to Use This License

To use this license, place in each of the components of your work both an explicit copyright notice including

your name and the year the work was authored and/or last substantially modified. Include also a statement

that the distribution and/or modification of that component is constrained by the conditions in this license.
Here is an example of such a notice and statement:

%h pig.dtx

%% Copyright 2005 M. Y. Name

%

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3 or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

% This work has the LPPL maintenance status ‘maintained’.
% The Current Maintainer of this work is M. Y. Name.

% This work consists of the files pig.dtx and pig.ins
% and the derived file pig.sty.

Given such a notice and statement in a file, the conditions given in this license document would apply,
with the ‘Work’ referring to the three files ‘pig.dtx’, ‘pig.ins’, and ‘pig.sty’ (the last being generated
from ‘pig.dtx’ using ‘pig.ins’), the ‘Base Interpreter’ referring to any ‘WTEX-Format’, and both ‘Copyright
Holder’ and ‘Current Maintainer’ referring to the person ‘M. Y. Name’.

If you do not want the Maintenance section of LPPL to apply to your Work, change ‘maintained’ above
into ‘author-maintained’. However, we recommend that you use ‘maintained’ as the Maintenance section
was added in order to ensure that your Work remains useful to the community even when you can no longer
maintain and support it yourself.

8.3.10 Derived Works That Are Not Replacements

Several clauses of the LPPL specify means to provide reliability and stability for the user community. They
therefore concern themselves with the case that a Derived Work is intended to be used as a (compatible or
incompatible) replacement of the original Work. If this is not the case (e.g., if a few lines of code are reused
for a completely different task), then clauses 6b and 6d shall not apply.

8.3.11 Important Recommendations

Defining What Constitutes the Work The LPPL requires that distributions of the Work contain all
the files of the Work. It is therefore important that you provide a way for the licensee to determine which

82

files constitute the Work. This could, for example, be achieved by explicitly listing all the files of the Work
near the copyright notice of each file or by using a line such as:

% This work consists of all files listed in manifest.txt.

in that place. In the absence of an unequivocal list it might be impossible for the licensee to determine
what is considered by you to comprise the Work and, in such a case, the licensee would be entitled to make
reasonable conjectures as to which files comprise the Work.

8.4 GNU Free Documentation License, Version 1.2, November 2002
8.4.1 Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

8.4.2 Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

83

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have
is void and has no effect on the meaning of this License.

8.4.3 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

8.4.4 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

8.4.5 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified

84

Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A.

CENCERCES

@

N.

0.

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

. Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

. Preserve the network location, if any, given in the Document for public access to a Transparent copy

of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and

preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section

numbers or the equivalent are not considered part of the section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any

85

one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

8.4.6 Combining Documents

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

8.4.7 Collection of Documents

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

8.4.8 Aggregating with independent Works

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8.4.9 Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

8.4.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will

86

automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

8.4.11 Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

8.4.12 Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ... Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

87

9 Input and Output Formats

TEX was designed to be a flexible system. This is true both for the input for TEX as well as for the output.
The present section explains which input formats there are and how they are supported by PGF. It also
explains which different output formats can be produced.

9.1 Supported Input Formats

TEX does not prescribe exactly how your input should be formatted. While it is customary that, say,
an opening brace starts a scope in TgEX, this is by no means necessary. Likewise, it is customary that
environments start with \begin, but TEX could not really care less about the exact command name.

Even though TEX can be reconfigured, users can not. For this reason, certain input formats specify a set
of commands and conventions how input for TEX should be formatted. There are currently three “major”
formats: Donald Knuth’s original plain TEX format, Leslie Lamport’s popular IXTEX format, and Hans
Hangen’s ConTEXt format.

9.1.1 Using the BTEX Format

Using PGF and TikZ with the ITEX format is easy: You say \usepackage{pgf} or \usepackage{tikz}.
Usually, that is all you need to do, all configuration will be done automatically and (hopefully) correctly.

The style files used for the I¥TEX format reside in the subdirectory latex/pgf/ of the PGF-system.
Mainly, what these files do is to include files in the directory generic/pgf. For example, here is the content
of the file latex/pgf/frontends/tikz.sty:

% Copyright 2006 by Till Tantau
% This file may be distributed and/or modified

% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.

% See the file doc/generic/pgf/licenses/LICENSE for more details.

\RequirePackage{pgf ,pgffor}
\input{tikz.code.tex}
\endinput

The files in the generic/pgf directory do the actual work.

9.1.2 Using the Plain TEX Format

When using the plain TEX format, you say \input{pgf.tex} or \input{tikz.tex}. Then, instead of
\begin{pgfpicture} and \end{pgfpicture} you use \pgfpicture and \endpgfpicture.

Unlike for the ITEX format, PGF is not as good at discerning the appropriate configuration for the plain
TEX format. In particular, it can only automatically determine the correct output format if you use pdftex
or tex plus dvips. For all other output formats you need to set the macro \pgfsysdriver to the correct
value. See the description of using output formats later on.

PGF was originally written for use with ITEX and this shows in a number of places. Nevertheless, the
plain TEX support is reasonably good.

Like the IATEX style files, the plain TEX files like tikz.tex also just include the correct tikz.code.tex
file.

9.1.3 Using the ConTEXt Format

When using the ConTEXt format, you say \usemodule[pgf] or \usemodule[tikz]. As for the plain
TEX format you also have to replace the start- and end-of-environment tags as follows: Instead of
\begin{pgfpicture} and \end{pgfpicture} you use \startpgfpicture and \stoppgfpicture; similarly,
instead of \begin{tikzpicture} and \end{tikzpicture} you use must now use \starttikzpicture and
\stoptikzpicture; and so on for other environments.

The ConTEXt support is very similar to the plain TEX support, so the same restrictions apply: You may
have to set the output format directly and graphics inclusion may be a problem.

88

In addition to pgf and tikz there also exist modules like pgfcore or pgfmodulematrix. To use them,
you may need to include the module pgfmod first (the modules pgf and tikz both include pgfmod for you, so
typically you can skip this). This special module is necessary since ConTEXt satanically restricts the length
of module names to 6 characters and PGF’s long names are mapped to cryptic 6-letter-names for you by the
module pgfmod.

9.2 Supported Output Formats

An output format is a format in which TEX outputs the text it has typeset. Producing the output is
(conceptually) a two-stage process:

1. TEX typesets your text and graphics. The result of this typesetting is mainly a long list of letter—
coordinate pairs, plus (possibly) some “special” commands. This long list of pairs is written to some-
thing called a .dvi-file.

2. Some other program reads this .dvi-file and translates the letter—coordinate pairs into, say, PostScript
commands for placing the given letter at the given coordinate.

The classical example of this process is the combination of latex and dvips. The latex program (which
is just the tex program called with the KTEX-macros preinstalled) produces a .dvi-file as its output. The
dvips program takes this output and produces a .ps-file (a PostScript) file. Possibly, this file is further
converted using, say, ps2pdf, whose name is supposed to mean “PostScript to PDF.” Another example of
programs using this process is the combination of tex and dvipdfm. The dvipdfm program takes a .dvi-
file as input and translates the letter—coordinate pairs therein into PDF-commands, resulting in a .pdf file
directly. Finally, the tex4ht is also a program that takes a .dvi-file and produces an output, this time it
is a .html file. The programs pdftex and pdflatex are special: They directly produce a .pdf-file without
the intermediate .dvi-stage. However, from the programmer’s point of view they behave exactly as if there
where an intermediate stage.

Normally, TEX only produces letter—coordinate pairs as its “output.” This obviously makes is difficult
to draw, say, a curve. For this, “special” commands can be used. Unfortunately, these special commands
are not the same for the different programs that process the .dvi-file. Indeed, every program that takes a
.dvi-file as input has a totally different syntax for the special commands.

One of the main jobs of PGF is to “abstract way” the difference in the syntax of the different programs.
However, this means that support for each program has to be “programmed,” which is a time-consuming
and complicated process.

9.2.1 Selecting the Backend Driver

When TEX typesets your document, it does not know which program you are going to use to transform the
.dvi-file. If your .dvi-file does not contain any special commands, this would be fine; but these days almost
all .dvi-files contain lots of special commands. It is thus necessary to tell TEX which program you are going
to use later on.

Unfortunately, there is no “standard” way of telling this to TEX. For the IATEX format a sophisticated
mechanism exists inside the graphics package and PGF plugs into this mechanism. For other formats and
when this plugging does not work as expected, it is necessary to tell PGF directly which program you are
going to use. This is done by redefining the macro \pgfsysdriver to an appropriate value before you load
pgf. If you are going to use the dvips program, you set this macro to the value pgfsys-dvips.def; if
you use pdftex or pdflatex, you set it to pgfsys-pdftex.def; and so on. In the following, details of the
support of the different programs are discussed.

9.2.2 Producing PDF Output

PGF supports three programs that produce PDF output (PDF means “portable document format” and was
invented by the Adobe company): dvipdfm, pdftex, and vtex. The pdflatex program is the same as the
pdftex program: it uses a different input format, but the output is exactly the same.

File pgfsys-pdftex.def

This is the driver file for use with pdfTEX, that is, with the pdftex or pdflatex command. It includes
pgfsys-common-pdf.def.

This driver has the “complete” functionality. This means, everything PGF “can do at all” is implemented
in this driver.

89

File pgfsys-dvipdfm.def

This is a driver file for use with (1a)tex followed by dvipdfm. It includes pgfsys-common-pdf .def.

This driver supports most of PGF’s features, but there are some restrictions:

1. In I¥TEX mode it uses graphicx for the graphics inclusion and does not support masking.

2. In plain TEX mode it does not support image inclusion.

For remembering of pictures (inter-picture connections) you need to use a recent version of pdftex
running in DVI-mode.

4. Patterns are not (cannot) be supported.

5. Functional shadings are not (cannot) be supported.

File pgfsys-xetex.def

This is a driver file for use with xe(la)tex followed by xdvipdfmx. This driver supports the same
operations as the dvipdfm driver, except that remembering of pictures (inter-picture connections) always
works.

File pgfsys-vtex.def

This is the driver file for use with the commercial VTEX program. Even though it produces PDF output,
it includes pgfsys-common-postscript.def. Note that the VTEX program can produce both Postscript
and PDF output, depending on the command line parameters. However, whether you produce Postscript
or PDF output does not change anything with respect to the driver.

This driver supports most of PGF’s features, except for the following restrictions:

G LD

In BTEX mode it uses graphicx for the graphics inclusion and does not support masking.
In plain TEX mode it does not support image inclusion.

Shading is fully implemented, but yields the same quality as the implementation for dvips.
Opacity is not supported.

Remembering of pictures (inter-picture connections) is not supported.

It is also possible to produce a .pdf-file by first producing a PostScript file (see below) and then using a
PostScript-to-PDF conversion program like ps2pdf or the Acrobat Distiller.

9.2.3 Producing PostScript Output

File pgfsys-dvips.def

This is a driver file for use with (1a)tex followed by dvips. It includes pgfsys-common-postscript.def.

This driver also supports most of PGF’s features, except for the following restrictions:

1.
2.

In ETEX mode it uses graphicx for the graphics inclusion and does not support masking.

In plain TEX mode it does not support image inclusion.

3. Shading is fully implemented, but the results will not be as good as with a driver producing .pdf

as output.

Opacity works only in conjunction with newer versions of GhostScript.

5. For remembering of pictures (inter-picture connections) you need to use a recent version of pdftex

running in DVI-mode.

File pgfsys-textures.def

This is a driver file for use with the TEXTURES program. It includes pgfsys-common-postscript.def.

This driver has exactly the same restrictions as the driver for dvips.

You can also use the vtex program together with pgfsys-vtex.def to produce Postscript output.

90

9.2.4 Producing HTML / SVG Output

The tex4dht program converts .dvi-files to .html-files. While the HTML-format cannot be used to draw
graphics, the svG-format can. Using the following driver, you can ask PGF to produce an SVG-picture for
each PGF graphic in your text.

File pgfsys-tex4ht.def

This is a driver file for use with the tex4ht program. It includes pgfsys-common-svg.def.

When using this driver you should be aware of the following restrictions:

6.
7.
8.

1. In I¥TEX mode it uses graphicx for the graphics inclusion.
2. In plain TEX mode it does not support image inclusion.

3.
4

. Text inside pgfpictures is not supported very well. The reason is that the SvG specification

Remembering of pictures (inter-picture connections) is not supported.

currently does not support text very well and it is also not possible to correctly “escape back” to
HTML. All these problems will hopefully disappear in the future, but currently only two kinds of
text work reasonably well: First, plain text without math mode, special characters or anything
else special. Second, very simple mathematical text that contains subscripts or superscripts. Even
then, variables are not correctly set in italics and, in general, text simple does not look very nice.

If you use text that contains anything special, even something as simple as α, this may
corrupt the graphic since text4ht does not always produce valid XML code. So, once more, stick
to very simple node text inside graphics. Sorry.

Unlike for other output formats, the bounding box of a picture “really crops” the picture.
Matrices do not work.

Functional shadings are not supported.

The driver basically works as follows: When a {pgfpicture} is started, appropriate \special com-
mands are used to directed the output of tex4ht to a new file called \jobname-xxx.svg, where xxx
is a number that is increased for each graphic. Then, till the end of the picture, each (system layer)
graphic command creates a special that inserts appropriate svG literal text into the output file. The
exact details are a bit complicated since the imaging model and the processing model of PostScript/PDF
and SVG are not quite the same; but they are “close enough” for PGF’s purposes.

9.2.5 Producing Perfectly Portable DVI Output

File pgfsys-dvi.def

This is a driver file that can be used with any output driver, except for tex4ht.

The driver will produce perfectly portable .dvi files by composing all pictures entirely of black rectan-
gles, the basic and only graphic shape supported by the TEX core. Even straight, but slanted lines are
tricky to get right in this model (they need to be composed of lots of little squares).

Naturally, very little is possible with this driver. In fact, so little is possible that it is easier to list what
is possible:

e Text boxes can be placed in the normal way.

e Lines and curves can be drawn (stroked). If they are not horizontal or vertical, they are composed

of hundred of small rectangles.

e Lines of different width are supported.

e Transformations are supported.

Note that, say, even filling is not supported! (Let alone color or anything fancy.)

This driver has only one real application: It might be useful when you only need horizontal or vertical
lines in a picture. Then, the results are quite satisfactory.

91

Part 111
TikZ ist kein Zeichenprogramm

by Till Tantau

F
c [
/s When we assume that AB and C'D
are parallel, i.e., AB || CD, then o = 6
@ and B = 7.
A /// b B
E
\begin{tikzpicture}

\draw[fill=yellow] (0,0) -- (60:.75cm) arc (60:180:.75cm);
\draw(120:0.4cm) node {α};

\draw[fill=green!30] (0,0) -- (right:.75cm) arc (0:60:.75cm);
\draw(30:0.5cm) node {β};

\begin{scopel} [shift={(60:2cm)}]
\draw[fill=green!30] (0,0) -- (180:.75cm) arc (180:240:.75cm);
\draw (30:-0.5cm) node {γ};

\draw[fill=yellow] (0,0) -- (240:.75cm) arc (240:360:.75cm);
\draw (-60:0.4cm) node {δ};

\end{scope}

\begin{scopel} [thick]
\draw (60:-1cm) node[fill=white] {E} -- (60:3cm) node[fill=white] {F};
\draw[red] (-2,0) node[left] {A} -- (3,0) node[right]{B};

\draw[blue,shift={(60:2cm)}] (-3,0) node[left] {C} -- (2,0) node[right]{D};

\draw[shift={(60:1cm)},xshift=4cm]

node [right,text width=6cm,rounded corners,fill=red!20,inner sep=1lex]

{
When we assume that $\color{red}AB$ and $\color{blue}CD$ are
parallel, i.\,e., ${\color{red}AB} \mathbin{\|} \color{blue}CD$,
then $\alpha = \delta$ and $\beta = \gamma$.

g

\end{scope}

\end{tikzpicture}

92

10 Design Principles

This section describes the design principles behind the TikZ frontend, where TikZ means “TikZ ist kein
Zeichenprogramm.” To use TikZ, as a ITEX user say \usepackage{tikz} somewhere in the preamble, as
a plain TEX user say \input tikz.tex. TikZ’s job is to make your life easier by providing an easy-to-learn
and easy-to-use syntax for describing graphics.

The commands and syntax of TikZ were influenced by several sources. The basic command names and
the notion of path operations is taken from METAFONT, the option mechanism comes from PSTRICKS, the
notion of styles is reminiscent of svG. To make it all work together, some compromises were necessary. |
also added some ideas of my own, like coordinate transformations.

The following basic design principles underlie TikZ:

—_

. Special syntax for specifying points.

2. Special syntax for path specifications.

3. Actions on paths.

4. Key-value syntax for graphic parameters.
5. Special syntax for nodes.

6. Special syntax for trees.

7. Grouping of graphic parameters.

8. Coordinate transformation system.

10.1 Special Syntax For Specifying Points

TikZ provides a special syntax for specifying points and coordinates. In the simplest case, you provide two
TEX dimensions, separated by commas, in round brackets as in (1cm,2pt).

You can also specify a point in polar coordinates by using a colon instead of a comma as in (30:1cm),
which means “lcm in a 30 degrees direction.”

If you do not provide a unit, as in (2,1), you specify a point in PGF’s zy-coordinate system. By default,
the unit z-vector goes lem to the right and the unit y-vector goes lecm upward.

By specifying three numbers as in (1,1,1) you specify a point in PGF’s xyz-coordinate system.

It is also possible to use an anchor of a previously defined shape as in (first node.south).

You can add two plus signs before a coordinate as in ++(1cm,Opt). This means “lcm to the
right of the last point used.” This allows you to easily specify relative movements. For example,
(1,0) ++(1,0) ++(0,1) specifies the three coordinates (1,0), then (2,0), and (2,1).

Finally, instead of two plus signs, you can also add a single one. This also specifies a point in a relative
manner, but it does not “change” the current point used in subsequent relative commands. For example,
(1,0) +(1,0) +(0,1) specifies the three coordinates (1,0), then (2,0), and (1,1).

10.2 Special Syntax For Path Specifications

When creating a picture using TikZ, your main job is the specification of paths. A path is a series of straight
or curved lines, which need not be connected. TikZ makes it easy to specify paths, partly using the syntax
of METAPOST. For example, to specify a triangular path you use

(6pt,0pt) -- (Opt,Opt) -- (Opt,5pt) -- cycle

and you get b when you draw this path.

10.3 Actions on Paths

A path is just a series of straight and curved lines, but it is not yet specified what should happen with it.
One can draw a path, fill a path, shade it, clip it, or do any combination of these. Drawing (also known
as stroking) can be thought of as taking a pen of a certain thickness and moving it along the path, thereby
drawing on the canvas. Filling means that the interior of the path is filled with a uniform color. Obviously,
filling makes sense only for closed paths and a path is automatically closed prior to filling, if necessary.

93

Given a path asin \path (0,0) rectangle (2ex,lex);,you can draw it by adding the draw option as in
\path[draw] (0,0) rectangle (2ex,lex);, which yields @. The \draw command is just an abbreviation
for \path[draw]. To fill a path, use the £i11l option or the \fill command, which is an abbreviation for
\path[fil11]. The \filldraw command is an abbreviation for \path[fill,draw]. Shading is caused by
the shade option (there are \shade and \shadedraw abbreviations) and clipping by the clip option. There
is is also a \clip command, which does the same as \path[clip], but not commands like \drawclip. Use,
say, \draw[clip] or \path[draw,clip] instead.

All of these commands can only be used inside {tikzpicture} environments.

TikZ allows you to use different colors for filling and stroking.

10.4 Key-Value Syntax for Graphic Parameters

Whenever TikZ draws or fills a path, a large number of graphic parameters influenced the rendering. Ex-
amples include the colors used, the dashing pattern, the clipping area, the line width, and many others. In
TikZ, all these options are specified as lists of so called key-value pairs, as in color=red, that are passed
as optional parameters to the path drawing and filling commands. This usage is similar to PSTRICKS. For
example, the following will draw a thick, red triangle;

\tikz \draw[line width=2pt,color=red] (1,0) -- (0,0) -- (1,0) -- cycle;

10.5 Special Syntax for Specifying Nodes

TikZ introduces a special syntax for adding text or, more generally, nodes to a graphic. When you specify
a path, add nodes as in the following example:

/ \tikz \draw (1,1) node {text} -- (2,2);
text

Nodes are inserted at the current position of the path, but only after the path has been rendered. When
special options are given, as in \draw (1,1) nodel[circle,draw] {text};, the text is not just put at the
current position. Rather, it is surrounded by a circle and this circle is “drawn.”

You can add a name to a node for later reference either by using the option name=(node name) or by
stating the node name in parentheses outside the text as in node [circle] (name){text}.

Predefined shapes include rectangle, circle, and ellipse, but it is possible (though a bit challenging)
to define new shapes.

10.6 Special Syntax for Specifying Trees

In addition to the “node syntax,” TikZ also introduces a special syntax for drawing trees. The syntax is
intergrated with the special node syntax and only few new commands need to be remebered. In essence, a
node can be followed by any number of children, each introduced by the keyword child. The children are
nodes themselves, each of which may have children in turn.

L0 \begin{tikzpicture}
\node {root}
child {node {left}}
child {node {right}
. child {node {child}}
left right child {node {child}}

I8
/ \ \end{tikzpicture}

child child

Since trees are made up from nodes, it is possible to use options to modify the way trees are drawn. Here
are two examples of the above tree, redrawn with different options:

94

\begin{tikzpicture}

root
[edge from parent fork down,
every node/.style={fill=red!30,rounded corners},
edge from parent/.style={red,-o,thick,draw}]
. \node {root}
left right child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}
child child b
\end{tikzpicture}
Jnlldl \begin{tikzpicture}
[parent anchor=east,child anchor=west,grow=east,
. every node/.style={ball color=red,circle,text=white}
rlghﬁ edge from parent/.style={draw,dashed,thick,red}]
\node {root}
root child child {node {leftl}}
child {node {right}
left child {node {child}}
child {node {child}}
Ire
\end{tikzpicture}

10.7 Grouping of Graphic Parameters

Graphic parameters should often apply to several path drawing or filling commands. For example, we
may wish to draw numerous lines all with the same line width of 1pt. For this, we put these commands
in a {scope} environment that takes the desired graphic options as an optional parameter. Naturally,
the specified graphic parameters apply only to the drawing and filling commands inside the environment.
Furthermore, nested {scope} environments or individual drawing commands can override the graphic pa-
rameters of outer {scope} environments. In the following example, three red lines, two green lines, and one
blue line are drawn:

\begin{tikzpicture}
- \begin{scope} [color=red]
\draw (Omm,10mm) -- (10mm,10mm) ;
\draw (Omm, 8mm) -- (10mm, 8mm);
\draw (Omm, 6mm) -- (10mm, 6mm);

\end{scope}
\begin{scope} [color=green]
\draw (Omm, 4mm) -- (10mm, 4mm);
\draw (Omm, 2mm) -- (10mm, 2mm);
\draw[color=blue] (Omm, Omm) -- (10mm, Omm) ;
\end{scope}
\end{tikzpicture}

The {tikzpicture} environment itself also behaves like a {scope} environment, that is, you can specify
graphic parameters using an optional argument. These optional apply to all commands in the picture.

10.8 Coordinate Transformation System

TikZ supports both PGF’s coordinate transformation system to perform transformations as well as canvas
transformations, a more low-level transformation system. (For details on the difference between coordinate
transformations and canvas transformations see Section 52.4.)

The syntax is setup in such a way that is harder to use canvas transformations than coordinate trans-
formations. There are two reasons for this: First, the canvas transformation must be used with great care
and often results in “bad” graphics with changing line width and text in wrong sizes. Second, PGF looses
track of where nodes and shapes are positioned when canvas transformations are used. So, in almost all
circumstances, you should use coordinate transformations rather than canvas transformations.

95

11 Hierarchical Structures:
Package, Environments, Scopes, and Styles

The present section explains how your files should be structured when you use TikZ. On the top level,
you need to include the tikz package. In the main text, each graphic needs to be put in a {tikzpicture}
environment. Inside these environments, you can use {scope} environments to create internal groups. Inside
the scopes you use \path commands to actually draw something. On all levels (except for the package level),
graphic options can be given that apply to everything within the environment.

11.1 Loading the Package and the Libraries

\usepackage{tikz} 7 EX
\input tikz.tex % plain TX
\usemodule[tikz] % ConTEXt
This package does not have any options.
This will automatically load the PGF and the pgffor package.

PGF needs to know what TEX driver you are intending to use. In most cases PGF is clever enough to
determine the correct driver for you; this is true in particular if you use KTEX. Currently, the only
situation where PGF cannot know the driver “by itself” is when you use plain TEX or ConTEXt together
with dvipdfm. In this case, you have to write \def\pgfsysdriver{pgfsys-dvipdfm.def} before you
input tikz.tex.

\usetikzlibrary{(list of libraries)}

Once TikZ has been loaded, you can use this command to load further libraries. The list of libraries
should contain the names of libraries separated by commas. Instead of curly braces, you can also use
square brackets, which is something ConTEXt users will like. If you try to load a library a second time,
nothing will happen.

Example: \usetikzlibrary{arrows}
The above command will load a whole bunch of extra arrow tip definitions.

What this command does is to load the file tikzlibrary(library).code.tex for each (library) in the
(list of libraries). Thus, to write your own library file, all you need to do is to place a file of the
appropriate name somewhere where TEX can find it. BTREX, plain TEX, and ConTEXt users can then
use your library.

11.2 Creating a Picture
11.2.1 Creating a Picture Using an Environment

The “outermost” scope of TikZ is the {tikzpicture} environment. You may give drawing commands only
inside this environment, giving them outside (as is possible in many other packages) will result in chaos.

In TikZ, the way graphics are rendered is strongly influenced by graphic options. For example, there
is an option for setting the color used for drawing, another for setting the color used for filling, and also
more obscure ones like the option for setting the prefix used in the filenames of temporary files written while
plotting functions using an external program. The graphic options are specified in key lists, see Section 11.4
below for details. All graphic options are local to the {tikzpicture} to which they apply.

\begin{tikzpicture} [(options)]
(environment contents)
\end{tikzpicture}

All TikZ commands should be given inside this environment, except for the \tikzset command. Unlike
other packages, it is not possible to use, say, \pgfpathmoveto outside this environment and doing so
will result in chaos. For TikZ, commands like \path are only defined inside this environment, so there
is little chance that you will do something wrong here.

When this environment is encountered, the (options) are parsed, see Section 11.4. All options given
here will apply to the whole picture.

Next, the contents of the environment is processed and the graphic commands therein are put into a
box. Non-graphic text is suppressed as well as possible, but non-PGF commands inside a {tikzpicture}

96

environment should not produce any “output” since this may totally scramble the positioning system
of the backend drivers. The suppressing of normal text, by the way, is done by temporarily switching
the font to \nullfont. You can, however, “escape back” to normal TEX typesetting. This happens, for
example, when you specify a node.

At the end of the environment, PGF tries to make a good guess at the size of a bounding box of the
graphic and then resizes the picture box such that the box has this size. To “make its guess,” everytime
PGF encounters a coordinate, it updates the bounding box’s size such that it encompasses all these
coordinates. This will usually give a good approximation of the bounding box, but will not always be
accurate. First, the line thickness of diagonal lines is not taken into account correctly. Second, controls
points of a curve often lie far “outside” the curve and make the bounding box too large. In this case,
you should use the [use as bounding box] option.

The following key influences the baseline of the resulting picture:

/tikz/baseline=(dimension or coordinate) (default Opt)

Normally, the lower end of the picture is put on the baseline of the surrounding text. For example,
when you give the code \tikz\draw(0,0)circle(.5ex);, PGF will find out that the lower end of
the picture is at —.5ex and that the upper end is at .5ex. Then, the lower end will be put on the
baseline, resulting in the following: o.

Using this option, you can specify that the picture should be raised or lowered such that the height
(dimension) is on the baseline. For example, \tikz[baseline=0pt]\draw(0,0)circle(.5ex);
yields 4 since, now, the baseline is on the height of the z-axis.

This options is often useful for “inlined” graphics as in

A—» B $A \mathbin{\tikz[baseline] \draw[->>] (Opt,.5ex) -- (3ex,.5ex);} B$

Instead of a (dimension) you can also provide a coordinate in parantheses. Then the effect is to
put the baseline on the y-coordinate that the give {coordinate) has at the end of the picture. This
means that, at the end of the picture, the (coordinate) is evaluated and then the baseline is set to
the y-coordinate of the resulting point. This makes it easy to reference the y-coordinate of, say,
the base line of nodes.

Hello
I{elki}i@fﬁi: \tikz[baseline=(X.base)]

\node [cross out,draw] (X) {world.};

Top align: Top align:
L—— \tikz[baseline=(current bounding box.north)]
\draw (0,0) rectangle (icm,lex);

/tikz/execute at begin picture=(code) (no default)

This option causes (code) to be executed at the beginning of the picture. This option must be given
in the argument of the {tikzpicture} environment itself since this option will not have an effect
otherwise. After all, the picture has already “started” later on. The effect of multiply setting this
option accumulates.

This option is mainly used in styles like the every picture style to execute certain code at the
start of a picture.

/tikz/execute at end picture=(code) (no default)

This option installs {code) that will be executed at the end of the picture. Using this option multiple
times will cause the code to accumulate. This option must also be given in the optional argument
of the {tikzpicture} environment.

97

Y \begin{tikzpicture}[execute at end picture=}
{

\begin{pgfonlayer}{background}
X \path[fill=yellow,rounded corners]
(current bounding box.south west) rectangle
(current bounding box.north east);
\end{pgfonlayer}
H
\node at (0,0) {X};
\node at (2,1) {Y};
\end{tikzpicture}

All options “end” at the end of the picture. To set an option “globally” change the following style:

/tikz/every picture (style, initially empty)
This style is installed at the beginning of each picture.

\tikzset{every picture/.style=semithick}

Note that you should not use \tikzset to set options directly. For instance, if you want to use a
line width of 1pt by default, do not try to say \tikzset{line width=1pt} at the beginning of your
document. This will not work since the line width is changed in many places. Instead, say

\tikzset{every picture/.style={line width=1ptl}}
This will have the desired effect.
In other TEX format, you should use instead the following commands:

\tikzpicture [{options)]
(environment contents)
\endtikzpicture

This is the plain TEX version of the environment.
\starttikzpicture[(options)]

(environment contents)
\stoptikzpicture

This is the ConTEXt version of the environment.

11.2.2 Creating a Picture Using a Command

The following two commands are used for “small” graphics.

\tikz [(options)]{({commands)}

This command places the (commands) inside a {tikzpicture} environment and adds a semicolon at
the end. This is just a convenience.

The (commands) may not contain a paragraph (an empty line). This is a precaution to ensure that
users really use this command only for small graphics.

Example: \tikz{\draw (0,0) rectangle (2ex,lex)} yields &

\tikz [(options)](text);

If the (text) does not start with an opening brace, the end of the (text) is the next semicolon that is
encountered.

Example: \tikz \draw (0,0) rectangle (2ex,lex); yields O

11.2.3 Adding a Background

By default, pictures do not have any background, that is, they are “transparent” on all parts on which you
do not draw anything. You may instead wish to have a colored background behind your picture or a black
frame around it or lines above and below it or some other kind of decoration.

Since backgrounds are often not needed at all, the definition of styles for adding backgrounds has been
put in the library package backgrounds. This package is documented in Section 24.

98

11.3 Using Scopes to Structure a Picture

Inside a {tikzpicture} environment you can create scopes using the {scope} environment. This environ-
ment is available only inside the {tikzpicture} environment, so once more, there is little chance of doing
anything wrong.

11.3.1 The Scope Environment

\begin{scope} [(options)]
(environment contents)
\end{scope}

All (options) are local to the (environment contents). Furthermore, the clipping path is also local to
the environment, that is, any clipping done inside the environment “ends” at its end.

\begin{tikzpicture} [ultra thick]
\begin{scope} [red]
\draw (Omm,10mm) -- (10mm,10mm) ;
\draw (Omm,8mm) -- (10mm,Smm);

\end{scope}
\draw (Omm,6mm) -- (10mm,6mm) ;
\begin{scope} [green]

\draw (Omm,4mm) -- (10mm,4mm) ;
\draw (Omm,2mm) -- (10mm,2mm) ;
\draw[blue] (Omm,Omm) -- (10mm,Omm);
\end{scope}
\end{tikzpicture}

The following style influences scopes:

/tikz/every scope (style, initially empty)
This style is installed at the beginning of every scope.

The following options are useful for scopes:

/tikz/execute at begin scope=(code) (no default)

This option install some code that will be executed at the beginning of the scope. This option must
be given in the argument of the {scope} environment.

The effect applies only to the current scope, not to subscopes.

/tikz/execute at end scope=(code) (no default)

This option installs some code that will be executed at the end of the current scope. Using this
option multiple times will cause the code to accumulate. This option must also be given in the
optional argument of the {scope} environment.

Again, the effect applies only to the current scope, not to subscopes.

\scope [(options)]
(environment contents)
\endscope

Plain TEX version of the environment.

\startscope [{options)]
(environment contents)
\stopscope

ConTEXt version of the environment.

11.3.2 Shorthand for Scope Environments

There is a small library that makes using scopes a bit easier:

\usetikzlibrary{scopes} % EFX and plain TX
\usetikzlibrary[scopes] 7% ConTgKt

This library defines a shorthand for starting and ending {scope} environments.

99

When this library is loaded, the following happens: At certain places inside a TikZ picture, it is allowed to
start a scope just using a single brace, provided the single brace is followed by options in square brackets:

\begin{tikzpicture}
{ [ultra thick]
{ [red]
\draw (Omm,10mm) -- (10mm,10mm);
\draw (Omm,8mm) -- (10mm,8mm);
}
\draw (Omm,6mm) -- (10mm,6mm) ;
}
{ [green]
\draw (Omm,4mm) -- (10mm,4mm) ;
\draw (Omm,2mm) -- (10mm,2mm);
\draw[blue] (Omm,Omm) -- (10mm,Omm) ;
}
\end{tikzpicture}

In the above example, { [thick] actually causes a \begin{scopel}[thick] to be inserted, and the
corresponding closing } causes an \end{scope} to be inserted.

The “certain places” where an opening brace has this special meaning are the following: First, right after
the semicolon that ends a path. Second, right after the end of a scope. Third, right at the beginning of a
scope, which includes the beginning of a picture. Also note that some square bracket must follow, otherwise
the brace is treated as a normal TEX scope.

11.3.3 Using Scopes Inside Paths

The \path command, which is described in much more detail in later sections, also takes graphic options.
These options are local to the path. Furthermore, it is possible to create local scopes within a path simply
by using curly braces as in

\tikz \draw (0,0) -- (1,1)
{[rounded corners] -- (2,0) -- (3,1)}
— (3,00 — (2,1);

Note that many options apply only to the path as a whole and cannot be scoped in this way. For example,
it is not possible to scope the color of the path. See the explanations in the section on paths for more details.

Finally, certain elements that you specify in the argument to the \path command also take local options.
For example, a node specification takes options. In this case, the options apply only to the node, not to the
surrounding path.

11.4 Using Graphic Options
11.4.1 How Graphic Options Are Processed

Many commands and environments of TikZ accept options. These options are so-called key lists. To process
the options, the following command is used, which you can also call yourself. Note that it is usually better
not to call this command directly, since this will ensure that the effect of options are local to a well-defined
scope.

\tikzset{({options)}

This command will process the (options) using the \pgfkeys command, documented in detail in Sec-
tion 43, with the default path set to /tikz. Under normal circumstances, the (options) will be lists of
comma-separated pairs of the form (key)=(value), but more fancy things can happen when you use the
power of the pgfkeys mechanism, see Section 43 once more.

When a pair (key)=(value) is processed, the following happens:

1. If the (key) is a full key (starts with a slash) it is handled directly as described in Section 43.

2. Otherwise (which is usually the case), it is checked whether /tikz/(key) is a key and, if so, it is
executed.

3. Otherwise, it is checked whether /pgf/(key) is a key and, if so, it is executed.
4. Otherwise, it is checked whether (key) is a color and, if so, color=(key) is executed.

5. Otherwise, it is checked whether (key) contains a dash and, if so, arrows=(key) is executed.

100

6. Otherwise, it is checked whether (key) is the name of a shape and, if so, shape=(key) is executed.

7. Otherwise, an error message is printed.

Note that by the above description, all keys starting with /tikz and also all keys starting with /pgf
can be used as (key)s in an (options) list.

11.4.2 Using Styles to Manage How Pictures Look

There is a way of organizing sets of graphic options “orthogonally” to the normal scoping mechanism. For
example, you might wish all your “help lines” to be drawn in a certain way like, say, gray and thin (do not
dash them, that distracts). For this, you can use styles.

A style is a key that, when used, causes a set of graphic options to be processed. Once a style has been
defined, it can be used like any other key. For example, the predefined help lines style, which you should
use for lines in the background like grid lines or construction lines.

\begin{tikzpicture}
\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);
\end{tikzpicture}

Defining styles is also done using options. Suppose we wish to define a style called my style and when
this style is used, we want the draw color to be set to red and the fill color be set to red!20. To achieve
this, we use the following option:

my style/.style={draw=red,fill=red!20}

The meaning of the curious /.style is the following: “The key my style should not be used here but,
rather, be defined. So, setup things such that using the key my style will, in the following, have the same
effect as if we had written draw=red,fill=red!20 instead.”

Returning to the help lines example, suppose we prefer blue help lines. This could be achieved as follows:

\begin{tikzpicture} [help lines/.style={blue!50,very thin}]

\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);
\end{tikzpicture}

Naturally, one of the main ideas behind styles is that they can be used in different pictures. In this case,
we have to use the \tikzset command somewhere at the beginning.

\tikzset{help lines/.style={blue!50,very thin}}
Ao
\begin{tikzpicture}
\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);
\end{tikzpicture}

Since styles are just special cases of pgfkeys’s general style facility, you can actually do quite a bit more.
Let us start with adding options to an already existing style. This is done using /.append style instead of
/ .style:

\begin{tikzpicture}[help lines/.append style=blue!50]

\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);
\end{tikzpicture}

In the above example, the option blue!50 is appended to the style help lines, which now has the same
effect as black!50,very thin,blue!50. Note that two colors are set, so the last one will “win.” There also
exists a handler called /.prefix style that adds something at the beginning of the style.

Just as normal keys, styles can be parametrized. This means that you write (style)=(value) when you
use the style instead of just (style). In this case, all occurrences of #1 in (style) are replaced by (value).
Here is an example that shows how this can be used.

101

red \begin{tikzpicturel} [outline/.style={draw=#1,thick,fill=#1!50}]
\node [outline=red] at (0,1) {red};
\node [outline=blue] at (0,0) {blue};

- \end{tikzpicture}
For parametrized styles you can also set a default value using the /.default handler:

- \begin{tikzpicture} [outline/.style={draw=#1,thick,fill=#1!50},
outline/.default=black]

\node [outline] at (0,1) {default};
- \node [outline=blue] at (0,0) {blue};
\end{tikzpicture}

For more details on using and setting styles, see also Section 43.

102

12 Specifying Coordinates

12.1 Overview

A coordinate is a position on the canvas on which your picture is drawn. TikZ uses a special syntax for specify-
ing coordinates. Coordinates are always put in round brackets. The general syntax is ([{options)](coordinate
specification)) .

The (coordinate specification) specified coordinates using one of many different possible coordinate sys-
tems. Examples are the Cartesian coordinate system or polar coordinates or spherical coordinates. No
matter which coordinate system is used, in the end, a specific point on the canvas is represented by the
coordinate.

There are two ways of specifying which coordinate system should be used:

Explicitly You can specify the coordinate system explicitly. To do so, you give the name of the coordi-
nate system at the beginning, followed by cs:, which stands for “coordinate system,” followed by a
specification of the coordinate using the key-value syntax. Thus, the general syntax for (coordinate
specification) in the explicit case is ((coordinate system) cs:{list of key-value pairs specific to the
coordinate system)).

Implicitly The explicit specification is often too verbose when numerous coordinates should be given.
Because of this, for the coordinate systems that you are likely to use often a special syntax is provided.
TikZ will notice when you use a coordinate specified in a special syntax and will choose the correct
coordinate system automatically.

Here is an example in which explicit the coordinate systems are specified explicitly:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (canvas cs:x=0cm,y=2mm)
-- (canvas polar cs:radius=2cm,angle=30);

\end{tikzpicture}

In the next example, the coordinate systems are implicit:

\draw[help lines] (0,0) grid (3,2);
\draw (Ocm,2mm) -- (30:2cm);

\begin{tikzpicture}
\end{tikzpicture}

It is possible to give options that apply only to a single coordinate, although this makes sense for
transformation options only. To give transformation options for a single coordinate, give these options at
the beginning in brackets:

\begin{tikzpicture}

\draw[help lines] (0,0) grid (3,2);

\draw (0,00 —- (1,1);

\draw[red] (0,0) -- ([xshift=3pt] 1,1);

\draw (1,0) -- +(30:2cm);

\draw[red] (1,0) -- +([shift=(135:5pt)] 30:2cm);
\end{tikzpicture}

12.2 Coordinate Systems
12.2.1 Canvas, XYZ, and Polar Coordinate Systems
Let us start with the basic coordinate systems.

Coordinate system canvas

The simplest way of specifying a coordinate is to use the canvas coordinate system. You provide a
dimension d, using the x= option and another dimension d, using the y= option. The position on the
canvas is located at the position that is d; to the right and d,, above the origin.

103

/tikz/cs/x=(dimension) (no default, initially Opt)

Distance by which the coordinate is to the right of the origin. You can also write things like 1cm+2pt
since the mathematical engine is used to evaluate the (dimension).

/tikz/cs/y=(dimension) (no default, initially Opt)

Distance by which the coordinate is above the origin.

\begin{tikzpicture}
° \draw[help lines] (0,0) grid (3,2);

\fill (canvas cs:x=1cm,y=1.5cm) circle (2pt);
\fill (canvas cs:x=2cm,y=-5mm+2pt) circle (2pt);
\end{tikzpicture}

To specify a coordinate in the coordinate system implicitly, you use two dimensions that are separated
by a comma as in (Ocm,3pt) or (2cm,\textheight).

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

°

\fill (2cm,-5mm+2pt) circle (2pt);

\fill (icm,1.5cm) circle (2pt);
\end{tikzpicture}

Coordinate system xyz
The xyz coordinate system allows you to specify a point as a multiple of three vectors called the
x-, y-, and z-vectors. By default, the z-vector points lecm to the right, the y-vector points lcm up-
wards, but this can be changed arbitrarily as explained in Section 21.2. The default z-vector points to

1
(—5Cm, — ﬁcm) .
To specify the factors by which the vectors should be multiplied before being added, you use the following
three options:

/tikz/cs/x=(factor) (no default, initially 0)
Factor by which the x-vector is multiplied.

/tikz/cs/y=(factor) (no default, initially 0)
Works like x.

/tikz/cs/z=(factor) (no default, initially 0)
Works like x.

\begin{tikzpicture}[->]
\draw (0,0) -- (xyz cs:x=1);
\draw (0,0) -- (xyz cs:y=1);
\draw (0,0) -- (xyz cs:z=1);
\end{tikzpicture}

This coordinate system can also be selected implicitly. To do so, you just provide two or three comma-
separated factors (not dimensions).

\begin{tikzpicture} [->]
\draw (0,0) -- (1,0);
\draw (0,0) -- (0,1,0);
\draw (0,0) -- (0,0,1);

\end{tikzpicture}

Note: Tt is possible to use coordinates like (1,2cm), which are neither canvas coordinates nor xyz
coordinates. The rule is the following: If a coordinate is of the implicit form ({z),(y)), then (z) and (y)

104

are checked, independently, whether they have a dimension or whether they are dimensionless. If both have
a dimension, the canvas coordinate system is used. If both lack a dimension, the xyz coordinate system
is used. If (z) has a dimension and (y) has not, then the sum of two coordinate ({(z),0pt) and (0,(y)) is
used. If (y) has a dimension and (z) has not, then the sum of two coordinate ({z),0) and (Opt,(y)) is
used.

Note furthermore: An expression like (2+3cm,0) does not mean the same as (2cm+3cm,0). Instead, if
(z) or (y) internally uses a mixture of dimensions and dimensionless values, then all dimensionless values
are “upgraded” to dimensions by interpreting them as pt. So, 2+3cm is the same dimension as 2pt+3cm.

Coordinate system canvas polar

The canvas polar coordinate system allows you to specify polar coordinates. You provide an angle
using the angle= option and a radius using the radius= option. This yields the point on the canvas
that is at the given radius distance from the origin at the given degree. A degree of zero points to the
right, a degree of 90 upward.

/tikz/cs/angle=(degrees) (no default)
The angle of the coordinate. The angle must always be given in degrees and should be between
—360 and 720.

/tikz/cs/radius=(dimension) (no default)

The distance from the origin.

/tikz/cs/x radius=(dimension) (no default)

A polar coordinate is, after all, just a point on a circle of the given (radius). When you provide an
z-radius and also a y-radius, you specify an ellipse instead of a circle. The radius option has the
same effect as specifying identical x radius and y radius options.

/tikz/cs/y radius=(dimension) (no default)

Works like x radius.

/ \tikz \draw (0,0) -- (canvas polar cs:angle=30,radius=1cm);

The implicit form for canvas polar coordinates is the following: you specify the angle and the distance,
separated by a colon as in (30:1cm).

\tikz \draw (0cm,0cm) -- (30:1cm) -- (60:1cm) -- (90:1cm)
f> -- (120:1cm) -- (150:1cm) -- (180:1cm);

Two different radii are specified by writing (30:1cm and 2cm).

For the implicit form, instead of an angle given as a number you can also use certain words. For example,
up is the same as 90, so that you can write \tikz \draw (0,0) -- (2ex,0pt) -- +(up:1lex); and get
_1. Apart from up you can use down, left, right, north, south, west, east, north east, north west,
south east, south west, all of which have their natural meaning.

Coordinate system xyz polar
This coordinate system work similarly to the canvas polar system. However, the radius and the angle
are interpreted in the xy-coordinate system, not in the canvas system. More detailed, consider the circle
or ellipse whose half axes are given by the current z-vector and the current y-vector. Then, consider the
point that lies at a given angle on this ellipse, where an angle of zero is the same as the z-vector and
an angle of 90 is the y-vector. Finally, multiply the resulting vector by the given radius factor. Voila.
/tikz/cs/angle=(degrees) (no default)

The angle of the coordinate interpreted in the ellipse whose axes are the x-vector and the y-vector.

/tikz/cs/radius={factor) (no default)

A factor by which the z-vector and y-vector are multiplied prior to forming the ellipse.

105

/tikz/cs/x radius=(dimension)

(no default)

A specific factor by which only the z-vector is multiplied.

/tikz/cs/y radius=(dimension)

Works like x radius.

\draw
\draw
\draw
\draw

\draw

(0,0)
(0,0)
(0,0)
(0,0)

(xyz
(xyz
(xyz
(xyz

-- (xyz
- (xyz
-- (xyz
-- (xyz

polar cs:
polar cs:
polar cs:
polar cs:

\end{tikzpicture}

polar
polar
polar
polar

Ccs

(no default)

\begin{tikzpicture}[x=1.5cm,y=1cm]
~\\\\\\ \draw[help lines] (Ocm,Ocm) grid (3cm,2cm);

:angle=0,radius=1) ;
cs:
cs:
cs:

angle=30,radius=1) ;
angle=60,radius=1);
angle=90,radius=1) ;

angle=0,radius=2)

angle=30,radius=2)
angle=60,radius=2)
angle=90,radius=2) ;

The implicit version of this option is the same as the implicit version of canvas polar, only you do not

provide a unit.

\tikz[x={(0cm,1cm)},y={(-1cm,Ocm)}]
(0,0) -- (80:1) -- (60:1) -- (90:1)
-- (120:1) -- (150:1) -- (180:1);

\draw

Coordinate system xy polar

This is just an alias for xyz polar, which some people might prefer as there is no z-coordinate involved

in the xyz polar coordinates.

12.2.2 Barycentric Systems

In the barycentric coordinate system a point is expressed as the linear combination of multiple vectors. The

idea is that you specify vectors vy, v, ..

specified by these vectors and numbers is

., U, and numbers a1, aa, ..., a,. Then the barycentric coordinate

Q101 + QU2 + - + QpUp

art+azt-- o

The barycentric cs allows you to specify such coordinates easily.

Coordinate system barycentric

For this coordinate system, the (coordinate specification) should be a comma-separated list of expressions
of the form (node name)={number). Note that (currently) the list should not contain any spaces before
or after the (node name) (unlike normal key-value pairs).

The specified coordinate is now computed as follows: Each pair provides one vector and a number. The
vector is the center anchor of the (node name). The number is the (number). Note that (currently)
you cannot specify a different anchor, so that in order to use, say, the north anchor of a node you first
have to create a new coordinate at this north anchor. (Using for instance \coordinate (mynorth) at

(mynode.north) ;.)

106

content oriented

ETEX
L Word PostScript
PDF

HTML

yalalal
\olele)
structure oriented form oriented
\begin{tikzpicture}
\coordinate (content) at (90:3cm);
\coordinate (structure) at (210:3cm);
\coordinate (form) at (-30:3cm);
\node [above] at (content) {content oriented};
\node [below left] at (structure) {structure oriented};
\node [below right] at (form) {form oriented};
\draw [thick,gray] (content.south) -- (structure.north east) -- (form.north west) -- cycle;
\small
\node at (barycentric cs:content=0.5,structure=0.1 ,form=1) {PostScript};
\node at (barycentric cs:content=1 ,structure=0 ,form=0.4) {DVI};
\node at (barycentric cs:content=0.5,structure=0.5 ,form=1) {PDF};
\node at (barycentric cs:content=0 ,structure=0.25,form=1) {CSs};
\node at (barycentric cs:content=0.5,structure=1 ,form=0) {XML};

\node at (barycentric cs:content=0.5,structure=1 ,form=0.4) {HTML};

\node at (barycentric cs:content=1 ,structure=0.2 ,form=0.8) {\TeX};

\node at (barycentric cs:content=1 ,structure=0.6 ,form=0.8) {\LaTeX};

\node at (barycentric cs:content=0.8,structure=0.8 ,form=1) {Word};

\node at (barycentric cs:content=1 ,structure=0.05,form=0.05) {ASCII};
\end{tikzpicture}

12.2.3 Node Coordinate System

In PGF and in TikZ it is quite easy to define a node that you wish to reference at a later point. Once
you have defined a node, there are different ways of referencing points of the node. To do so, you use the
following coordinate system:

Coordinate system node

This coordinate system is used to reference a specific point inside or on the border of a previously
defined node. It can be used in different ways, so let us go over them one by one.

You can use three options to specify which coordinate you mean:

/tikz/cs/name=(node name) (no default)
Specifies the node in which you which to specify a coordinate. The (node name) is the name that
was previously used to name the node using the name=(node name) option or the special node name
syntax.

/tikz/anchor=(anchor) (no default)

Specifies an anchor of the node. Here is an example:

class Shape

AN

class Rectangle‘ class Circle ’class Ellipse

107

\begin{tikzpicture}
\node (shape) at (0,2) [draw] {l|class Shapel};
\node (rect) at (-2,0) [draw] {lclass Rectanglel|};
\node (circle) at (2,0) [draw] {lclass Circlel};
\node (ellipse) at (6,0) [draw] {lclass Ellipsel};

\draw (node cs:name=circle,anchor=north) |- (0,1);
\draw (node cs:name=ellipse,anchor=north) |- (0,1);
\draw[-open triangle 90] (node cs:name=rect,anchor=north)
|- (0,1) -| (node cs:name=shape,anchor=south);
\end{tikzpicture}
/tikz/cs/angle=(degrees) (no default)

It is also possible to provide an angle instead of an anchor. This coordinate refers to a point of
the node’s border where a ray shot from the center in the given angle hits the border. Here is an

example:
\begin{tikzpicture}
\node (start) [draw,shape=ellipse] {start};
\foreach \angle in {-90, -80, ..., 90}

\draw (node cs:name=start,angle=\angle)
. controls +(\angle:lcm) and +(-1,0) .. (2.5,0);
\end{tikzpicture}

It is possible to provide neither the anchor= option nor the angle= option. In this case, TikZ will
calculate an appropriate border position for you. Here is an example:

An elipse

\begin{tikzpicture}
\path (0,0) node(a) [ellipse,rotate=10,draw] {An ellipse}
(3,-1) node(b) [circle,draw] {A circle};
\draw[thick] (node cs:name=a) -- (node cs:name=b);
\end{tikzpicture}

TikZ will be reasonably clever at determining the border points that you “mean,” but, naturally, this
may fail in some situations. If TikZ fails to determine an appropriate border point, the center will be
used instead.

Automatic computation of anchors works only with the line-to operations --, the vertical /horizontal
versions |- and -1, and with the curve-to operation . .. For other path commands, such as parabola or
plot, the center will be used. If this is not desired, you should give a named anchor or an angle anchor.

Note that if you use an automatic coordinate for both the start and the end of a line-to, as in
--(node cs:name=b)--, then two border coordinates are computed with a move-to between them.
This is usually exactly what you want.

If you use relative coordinates together with automatic anchor coordinates, the relative coordinates are
computed relative to the node’s center, not relative to the border point. Here is an example:

\tikz \draw (0,0) node(x) [draw] {Text}
rectangle (1,1)
T‘ATT (node cs:name=x) -- +(1,1);
xt

Similarly, in the following examples both control points are (1, 1):

\tikz \draw (0,0) node(x) [draw] {X}
(2,0) node(y) {Y}
(node cs:name=x) .. controls +(1,1) and +(-1,1) ..
Y (node cs:name=y);

108

The implicit way of specifying the node coordinate system is to simply use the name of the node in
parentheses as in (a) or to specify a name together with an anchor or an angle separated by a dot as
in (a.north) or (a.10).

Here is a more complete example:

N 1eC %
\/{ Qag /G

<ﬁmpse D) \

A circle

\begin{tikzpicture} [fill=blue!20]
\draw[help lines] (-1,-2) grid (6,3);
\path (0,0) node(a) [ellipse,rotate=10,draw,fill] {An ellipse}
(3,-1) node(b) [circle,draw,fill] {A circle}
(2,2) node(c) [rectangle,rotate=20,draw,fill] {A rectangle}
(5,2) node(d) [rectangle,rotate=-30,draw,fill] {Another rectanglel};
\draw[thick] (a.south) -- (b) -- (c) -- (d);
\draw[thick,red,->] (a) |- +(1,3) -| (c) |- (b);
\draw[thick,blue,<->] (b) .. controls +(right:2cm) and +(down:lcm) .. (d);
\end{tikzpicture}

12.2.4 Intersection Coordinate Systems

Often you wish to specify a point that is on the intersection of two lines or shapes. For this, the following
coordinate system is useful:

Coordinate system intersection

First, you must specify two objects that should be intersected. These “objects” can either be lines or
the shapes of nodes. There are two option to specify the first object:

/tikz/cs/first line={({first coordinate))--({second coordinate))} (no default)

Specifies that the first object is a line that goes from (first coordinate) to metasecond coordinate.

Note that you have to write —— between the coordinate, but this does not mean that anything is added
to the path. This is simply a special syntax.

/tikz/cs/first node=(node) (no default)
Specifies that the first object is a previously defined node named (node).

To specify the second object, you use one of the following keys:

/tikz/cs/second line={({(first coordinate))--({second coordinate))} (no default)
As above.
/tikz/cs/second node=(node) (no default)

Specifies that the second object is a previously defined node named (node).

Since it is possible that two objects have multiple intersections, you may need to specify which solution
you want:

/tikz/cs/solution=(number) (no default, initially 1)
Specifies which solution should be used. Numbering starts with 1.

109

The coordinate specified in this way is the (number)th intersection of the two objects. If the objects do
not intersect, an error may occur.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) coordinate (A) -- (3,2) coordinate (B)
(1,2) -- (3,0);

\fill[red] (intersection cs:
first line={(A)--(B)},
second line={(1,2)--(3,0)}) circle (2pt);
\end{tikzpicture}

The implicit way of specifying this coordinate system is to write (intersection (number) of (first
object) and (second object)). Here, (first obejct) either has the form (p1)--(p2) or it is just a node name.
Likewise for (second object). Note that there are no parentheses around the p;. Thus, you would write
(intersection of A--B and 1,2--3,0) for the intersection of the line through the coordinates A and
B and the line through the points (1, 2) and (3,0). You would write (intersection 2 of c_1 and c_2)
for the second intersection of the node named c_1 and the node named c_2.

TikZ needs an explicit algorithm for computing the intersection of two shapes and such an algorithm is
available only for few shapes. Currently, the following intersection will be computed correctly:

e a line and a line

e a circle node and a line (in any order)

e g circle and a circle

\begin{tikzpicture}[scale=.25]
\coordinate [label=-135:a] (a) at ($ (0,0) + (rand,rand) $);
b \coordinate [label=45:b] (b) at ($ (3,2) + (rand,rand) $);

' <\
‘ d \coordinate [label=-135:u] (u) at (-1,1);

\coordinate [label=45:v] (v) at (6,0);

\draw (a) -- (b)
() -- (v);

\node (c1) at (a) [draw,circle through=(b)] {};
\node (c2) at (b) [draw,circle through=(a)] {};

\coordinate [label=135:c] (c) at (intersection 2 of cl and c2);
\coordinate [label=-45:d] (d) at (intersection of u--v and c2);
\coordinate [label=135:e] (e) at (intersection of u--v and a--b);

\foreach \p in {a,b,c,d,e,u,v}
\fill [opacity=.5] (\p) circle (8pt);
\end{tikzpicture}

A frequent special case of intersections is the intersection of a vertical line going through a point p and
a horizontal line going through some other point ¢. For this situation there is another coordinate system.

Coordinate system perpendicular

This coordinate system works the same way as intersection, only the lines are specified differently:

/tikz/cs/horizontal line through={((coordinate))} (no default)

Specifies that one line is a horizontal line that goes through the given coordinate.

/tikz/cs/vertical line through={({coordinate))} (no default)

Specifies that the other line is vertical and goes through the given coordinate.

The implicit syntax is to write ((p) |- (¢)) or ({q) -| (p)).

For example, (2,1 |- 3,4) and (3,4 -| 2,1) both yield the same as (2,4) (provided the zy-
coordinate system has not been modified).

The most useful application of the syntax is to draw a line up to some point on a vertical or horizontal
line. Here is an example:

110

q2 \begin{tikzpicture}

I \path (30:1cm) node(p1l) {p_1} (75:1cm) node(p2) {$p_2%3};
2

1 \draw (-0.2,0) -- (1.2,0) node(xline) [right] {q_1};

¢ \draw (2,-0.2) -- (2,1.2) node(yline) [above]l {q_2};
\draw[->] (p1) -- (p1 |- xline);
\draw[->] (p2) -- (p2 |- xline);
\draw[->] (p1) -- (p1 -| yline);

\draw[->] (p2) -- (p2 -| yline);
\end{tikzpicture}

12.2.5 Tangent Coordinate Systems

Coordinate system tangent

This coordinate system, which is available only when the TikZ library calc is loaded, allows you to
compute the point that lies tangent to a shape. In detail, consider a (node) and a (point). Now, draw a
straight line from the (point) so that it “touches” the (node) (more formally, so that it is tangent to this
(node)). The point where the line touches the shape is the point referred to by the tangent coordinate
system.

The following options may be given:
/tikz/cs/node=(node) (no default)
This key specifies the node on whose border the tangent should lie.

/tikz/cs/point=(point) (no default)
This key speicifes the point through which the tangent should go.

/tikz/cs/solution=(number) (no default)

Specifies which solution should be used if there are more than one.

As for intersection coordinate system, a special algorithm is needed in order to compute the tangent for
a given shape. Currently, tangents can be computed for nodes whose shape is one of the following;:

e coordinate

e circle

\begin{tikzpicture}
f \draw[help lines] (0,0) grid (3,2);

\\\\- \coordinate (a) at (3,2);

\node [circle,draw] (c) at (1,1) [minimum size=40pt] {c};

\draw[red] (a) -- (tangent cs:node=c,point={(a)},solution=1) --
(c.center) -- (tangent cs:node=c,point={(a)l},solution=2) -- cycle;
\end{tikzpicture}

There is no implicit syntax for this coordinate system.

12.2.6 Defining New Coordinate Systems

While the set of coordinate systems that TikZ can parse via their special syntax is fixed, it is possible and
quite easy to define new explicitly named coordinate systems. For this, the following commands are used:

\tikzdeclarecoordinatesystem{(name)}{{code)}

This command declares a new coordinate system named (name) that can later on be used by writing
({name) cs:{arguments)). When TikZ encounters a coordinate specified in this way, the (arguments)
are passed to (code) as argument #1.

It is now the job of (code) to make sense of the (arguments). At the end of (code), the two TEX
dimensions \pgf@x and \pgf@y should be have the z- and y-canvas coordinate of the coordinate.

It is not necessary, but customary, to parse (arguments) using the key-value syntax. However, you can
also parse it in any way you like.

111

In the following example, a coordinate system cylindrical is defined.

. \makeatletter
* \define@key{cylindricalkeys}{angle}{\def\myangle{#1}}
o \define@key{cylindricalkeys}{radius}{\def\myradius{#1}}
Lt \define@key{cylindricalkeys}{z}{\def\myz{#1}}
\tikzdeclarecoordinatesystem{cylindrical}
{1
\setkeys{cylindricalkeys}{#1}/
\pgfpointadd{\pgfpointxyz{0}{0}{\myz}}{\pgfpointpolarxy{\myangle}{\myradius}}

\begin{tikzpicture}[z=0.2pt]
\draw [->] (0,0,0) -- (0,0,350);

\foreach \num in {0,10,...,350}
\fill (cylindrical cs:angle=\num,radius=1,z=\num) circle (ipt);
\end{tikzpicture}

\tikzaliascoordinatesystem{(new name)}{{old name)}

Creates an alias of (old name).

12.3 Relative and Incremental Coordinates
12.3.1 Specifying Relative Coordinates

You can prefix coordinates by ++ to make them “relative.” A coordinate such as ++(1cm,Opt) means “lcm
to the right of the previous position.” Relative coordinates are often useful in “local” contexts:

\begin{tikzpicture}
\draw (0,0) -= ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (2,0) -— ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (1.5,1.5) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\end{tikzpicture}

Instead of ++ you can also use a single +. This also specifies a relative coordinate, but it does not “update”
the current point for subsequent usages of relative coordinates. Thus, you can use this notation to specify
numerous points, all relative to the same “initial” point:

\begin{tikzpicture}
\draw (0,0) -- +(1,0) —- +(1,1) -- +(0,1) -- cycle;
\draw (2,0) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\draw (1.5,1.5) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\end{tikzpicture}

There is a special situation, where relative coordinates are interpreted differently. If you use a relative
coordinate as a control point of a Bézier curve, the following rule applies: First, a relative first control point
is taken relative to the beginning of the curve. Second, a relative second control point is taken relative to
the end of the curve. Third, a relative end point of a curve is taken relative to the start of the curve.

This special behavior makes it easy to specify that a curve should “leave or arrives from a certain
direction” at the start or end. In the following example, the curve “leaves” at 30° and “arrives” at 60°:

\begin{tikzpicture}
\draw (1,0) .. controls +(30:1cm) and +(60:1cm) .. (3,-1);
\draw[gray,->] (1,0) -- +(30:1cm);
\draw[gray,<-] (3,-1) -- +(60:1cm);

\end{tikzpicture}

12.3.2 Relative Coordinates and Scopes

An interesting question is, how do relative coordinates behave in the presence of scopes? That is, suppose
we use curly braces in a path to make part of it “local,” how does that affect the current position? On the

112

one hand, the current position certainly changes since the scope only affects options, not the path itself. On
the other hand, it may be useful to “temporarily escape” from the updating of the current point.

Since both interpretations of how the current point and scopes should “interact” are useful, there is a
(local!) option that allows you to decide which you need.

/tikz/current point is local=(boolean) (no default, initially false)

Normally, the scope path operation has no effect on the current point. That is, curly braces on a path
have no effect on the current position:

\begin{tikzpicture}
\draw (0,0) -= ++(1,0) -- ++(0,1) -- ++(-1,0);
\draw[red] (2,0) -- ++(1,0) { -- ++(0,1) } -- ++(-1,0);
\end{tikzpicture}

If you set this key to true, this behaviour changes. In this case, at the end of a group created on a path,
the last current position reverts to whatever value it had at the beginning of the scope. More precisely,
when TikZ encounters } on a path, it checks whether at this particular moment the key is set to true.
If so, the current position reverts to the value is had when the matching { was read.

] \begin{tikzpicture}
\draw (0,0) -- ++(1,0) -- ++(0,1) -—- ++(-1,0);
\draw([red] (2,0) -- ++(1,0)
{ [current point is local] -- ++(0,1) } —-- ++(-1,0);
\end{tikzpicture}

In the above example, we could also have given the option outside the scope, for instance as a parameter
to the whole scope.

12.4 Coordinate Calculations

\usetikzlibrary{calc} % ElX and plain TX

\usetikzlibrary[calc] % ConTiKt
You need to load this library in order to use the coordinate calculation functions described in the present
section.

It is possible to do some basic calculations that involve coordinates. In essence, you can add and subtract
coordinates, scale them, compute midpoints, and do projections. For instance, ($(a) + 1/3*(1cm,0)$) is
the coordinate that is 1/3cm to the right of the point a:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

N \node (a) at (1,1) {A};
\fill [red] ($(a) + 1/3*(1cm,0)$) circle (2pt);
\end{tikzpicture}

12.4.1 The General Syntax
The general syntax is the following;:
([{options)1${coordinate computation)$).

As you can see, the syntax uses the TEX math symbol $ to indicate that a “mathematical computation”
is involved. However, the $ has no other effect, in particular, no mathematical text is typeset.
The (coordinate computation) has the following structure:

1. It starts with
(factor)*(coordinate){modifiers)
2. This is optionally followed by + or - and then another
(factor)*(coordinate) (modifiers)
3. This is once more followed by + or - and another of the above modified coordinate; and so on.

In the following, the syntax of factors and of the different modifiers is explained in detail.

113

12.4.2 The Syntax of Factors

The (factor)s are optional and detected by checking whether the (coordinate computation) starts with a (.
Also, after each + a (factor) is present if, and only if, the + or - sign is not directly followed by (.

If a (factor) is present, it is evaluated using the \pgfmathparse macro. This means that you can use
pretty complicated computations inside a factor. A (factor) may even contain opening parentheses, which
creates a complication: How does TikZ know where a (factor) ends and where a coordinate starts? For
instance, if the beginning of a (coordinate computation) is 2% (3+4. .., it is not clear whether 3+4 is part of a
(coordinate) or part of a (factor). Because of this, the following rule is used: Once it has been determined,
that a (factor) is present, in principle, the (factor) contains everything up to the next occurrence of *(.
Note that there is no space between the asterisk and the parenthesis.

It is permissible to put the (factor) is curly braces. This can be used whenever it is unclear where the
(factor) would end.

Here are some examples of coordinate specifications that consist of exactly one (factor) and one
(coordinate):

\begin{tikzpicture}
[\draw [help lines] (0,0) grid (3,2);

\fill [green] (${1+1}*(1,.5)$) circle (2pt);

\fill [blue] ($cos(0)*sin(90)*(1,1)$) circle (2pt);

\fill [black] (${3*(4-3)}*(1,0.5)$) circle (2pt);
\end{tikzpicture}

b \fill [red] ($2%(1,1)$) circle (2pt);

12.4.3 The Syntax of Partway Modifiers

A (coordinate) can be followed by different (modifiers). The first kind of modifier is the partway modifier.
The syntax (which is loosely inspired by Uwe Kern’s xcolor package) is the following:

(coordinate) ! (number)! (angle) : (second coordinate)

One could write for instance
(1,2)!.751(3,4)

The meaning of this is: “Use the coordinate that is three quarters on the way from (1,2) to (3,4).”
In general, (coordinate)!{number)!{coordinate y) yields the coordinate (1 — (number)){coordinate) +
(number){coordinate y). Note that this is a bit different from the way the (number) is interpreted in the
xcolor package: First, you use a factor between 0 and 1, not a percentage, and, second, as the (number)
approaches 1, we approach the second coordinate, not the first. It is permissible to use (numbers) that are
smaller than 0 or larger than 1. The (number) is evaluated using the \pgfmathparse command and, thus,
it can involve complicated computations.

\begin{tikzpicture}
{ \draw [help lines] (0,0) grid (3,2);

n \draw (1,0) -- (3,2);

\foreach \i in {0,0.2,0.5,0.9,1}
\node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}

The (second coordinate) may be prefixed by an (angle), separated with a colon, as in (1,1)!.5!60:(2,2).
The general meaning of (a)!(factor)!(angle):(b) is “First, consider the line from (a) to (b). Then rotate
this line by (angle) around the point (a). Then the two endpoints of this line will be (a) and some point (c).
Use this point (c¢) for the subsequent computation, namely the partway computation.”

Here are two examples:

114

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,3);
/ \coordinate (a) at (1,0);
’/ \coordinate (b) at (3,2);
\draw[->] (a) -- (b);
\coordinate (c) at ($ (a)!1! 10:(b) $);
\draw[->,red] (a) -- (c);
\£fill ($ (a)!.5! 10:(b) $) circle (2pt);
\end{tikzpicture}
\begin{tikzpicture}
\draw [help lines] (0,0) grid (4,4);
\foreach \i in {0,0.1,...,2}
0®% \fill ($(2,2) !\i! \i*180:(3,2)$) circle (2pt);
n‘ \end{tikzpicture}
o
> .
] ®
® e o °

You can repeatedly apply modifiers. That is, after any modifier you can add another (possibly different)
modifier.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

\draw (0,0) -- (3,2);

\draw[red] ($(0,0)!.3!(3,2)$) -- (3,0);
T \filllred] ($(0,0)!.3!(3,2)!.7!(3,0)$) circle (2pt);
\end{tikzpicture}

12.4.4 The Syntax of Distance Modifiers

A distance modifier has nearly the same syntax as a partway modifier, only you use a (dimension) (something
like 1cm) instead of a (factor) (something like 0.5):

(coordinate) ! (dimension) ! (angle): (second coordinate)

When you write (a)!{dimension)!(b), this means the following: Use the point that is distanced
(dimension) from (a) on the straight line from (a) to (b). Here is an example:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
1” m \draw (1,0) -- (3,2);
a \foreach \i in {Ocm,1cm,15mm}
Digaigl \node at ($(1,0)!\i!(3,2)$) {\i};

\end{tikzpicture}

As before, if you use a (angle), the (second coordinate) is rotated by this much around the {coordinate)
before it is used.

The combination of an (angle) of 90 degrees with a distance can be used to “offset” a point relative to
a line. Suppose, for instance, that you have computed a point (c) that lies somewhere on a line from (a)
to (b) and you now wish to offset this point by 1cm so that the distance from this offset point to the line is
1cm. This can be achieved as follows:

115

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

= \coordinate (b) at (3,1);

3 \coordinate (a) at (1,0);

\draw (a) -- (b);

\coordinate (c) at ($ (a)!.25!(b) $);
\coordinate (d) at ($ (c)!1cm!90:(b) $);

\draw [<->] (c) -- (d) node [sloped,midway,above] {lcm};
\end{tikzpicture}

12.4.5 The Syntax of Projection Modifiers

The projection modifier is also similar to the above modifiers: It also gives a point on a line from the
(coordinate) to the (second coordinate). However, the (number) or (dimension) is replaced by a (projection
coordinate):

{coordinate) ! (projection coordinate)! (angle): (second coordinate)
Here is an example:
(1,2)!1(0,5)!(3,4)

The effect is the following: We project the (projection coordinate) orthogonally onto to the line from
(coordinate) to (second coordinate). This makes it easy to compute projected points:

\begin{tikzpicture}
7 \draw [help lines] (0,0) grid (3,2);

\coordinate (a) at (0,1);
T \coordinate (b) at (3,2);
\coordinate (c) at (2.5,0);

\draw (a) -- (b) -- (c) -- cycle;

\draw [red] (a) = ($M ' @' E)P;

\draw[orange] (b) -- ($(a)!(b)!(c)$);

\draw [blue] (c) - ($)!1)'M);
\end{tikzpicture}

116

13 Syntax for Path Specifications

A path is a series of straight and curved line segments. It is specified following a \path command and the
specification must follow a special syntax, which is described in the subsections of the present section.

\path(specification) ;
This command is available only inside a {tikzpicture} environment.
The (specification) is a long stream of path operations. Most of these path operations tell TikZ how the
path is build. For example, when you write --(0,0), you use a line-to operation and it means “continue
the path from wherever you are to the origin.”

At any point where TikZ expects a path operation, you can also give some graphic options, which is a
list of options in brackets, such as [rounded corners]. These options can have different effects:

1. Some options take “immediate” effect and apply to all subsequent path operations on the path. For
example, the rounded corners option will round all following corners, but not the corners “before”
and if the sharp corners is given later on the path (in a new set of brackets), the rounding effect
will end.

\tikz \draw (0,0) -- (1,1)
[rounded cornmers] -- (2,0) -- (3,1)
[sharp corners] -- (3,0) -- (2,1);

Another example are the transformation options, which also apply only to subsequent coordinates.

2. The options that have immediate effect can be “scoped” by putting part of a path in curly braces.
For example, the above example could also be written as follows:

\tikz \draw (0,0) -- (1,1)
{[rounded corners] -- (2,0) -- (3,1)}
= (B,0) == @,i)s

3. Some options only apply to the path as a whole. For example, the color= option for determining
the color used for, say, drawing the path always applies to all parts of the path. If several different
colors are given for different parts of the path, only the last one (on the outermost scope) “wins”:

\tikz \draw (0,0) -- (1,1)
[color=red] -- (2,0) -- (3,1)
[color=blue] -- (3,0) -- (2,1);

Most options are of this type. In the above example, we would have had to “split up” the path
into several \path commands:

\tikz{\draw (0,0) -- (1,1);
\draw [color=red] (2,0) -- (3,1);
\draw [color=blue] (3,0) -- (2,1);}

By default, the \path command does “nothing” with the path, it just “throws it away.” Thus, if you
write \path(0,0)--(1,1);, nothing is drawn in your picture. The only effect is that the area occupied
by the picture is (possibly) enlarged so that the path fits inside the area. To actually “do” something
with the path, an option like draw or £ill must be given somewhere on the path. Commands like
\draw do this implicitly.

Finally, it is also possible to give node specifications on a path. Such specifications can come at different
locations, but they are always allowed when a normal path operation could follow. A node specification
starts with node. Basically, the effect is to typeset the node’s text as normal TEX text and to place it
at the “current location” on the path. The details are explained in Section 15.

Note, however, that the nodes are not part of the path in any way. Rather, after everything has been
done with the path what is specified by the path options (like filling and drawing the path due to a £i11
and a draw option somewhere in the (specification)), the nodes are added in a post-processing step.

The following style influences scopes:

117

/tikz/every path (style, initially empty)
This style is installed at the beginning of every path. This can be useful for (temporarily) adding,
say, the draw option to everything in a scope.

[\begin{tikzpicture}
[fill=examplefill, % only sets the color
every path/.style={draw}] J all paths are drawn
\fill (0,0) rectangle +(1,1);
\shade (2,0) rectangle +(1,1);

\end{tikzpicture}

13.1 The Move-To Operation

The perhaps simplest operation is the move-to operation, which is specified by just giving a coordinate where
a path operation is expected.

\path ... (coordinate) ...;

The move-to operation normally starts a path at a certain point. This does not cause a line segment to
be created, but it specifies the starting point of the next segment. If a path is already under construction,
that is, if several segments have already been created, a move-to operation will start a new part of the
path that is not connected to any of the previous segments.

\begin{tikzpicture}
\draw (0,0) --(2,0) (0,1) --(2,1);
\end{tikzpicture}

In the specification (0,0) --(2,0) (0,1) --(2,1) two move-to operations are specified: (0,0) and
(0,1). The other two operations, namely --(2,0) and --(2,1) are line-to operations, described next.

13.2 The Line-To Operation
13.2.1 Straight Lines

\path ... -=(coordinate) ... ;

The line-to operation extends the current path from the current point in a straight line to the given
coordinate. The “current point” is the endpoint of the previous drawing operation or the point specified
by a prior move-to operation.

You use two minus signs followed by a coordinate in round brackets. You can add spaces before and
after the —-.

When a line-to operation is used and some path segment has just been constructed, for example by
another line-to operation, the two line segments become joined. This means that if they are drawn, the
point where they meet is “joined” smoothly. To appreciate the difference, consider the following two
examples: In the left example, the path consists of two path segments that are not joined, but that
happen to share a point, while in the right example a smooth join is shown.

\begin{tikzpicture}[line width=10pt]

\draw (0,0) —-(1,1) (1,1) --(2,0);

\draw (3,0) -- (4,1) -- (5,0);

\useasboundingbox (0,1.5); 7 make bounding box higher
\end{tikzpicture}

13.2.2 Horizontal and Vertical Lines

Sometimes you want to connect two points via straight lines that are only horizontal and vertical. For this,
you can use two path construction operations.

118

\path ... -I|{coordinate) ...;
This operation means “first horizontal, then vertical.”

\begin{tikzpicture}
E \draw (0,0) node(a) [draw] {A} (1,1) node(b) [draw] {B};
\draw (a.north) |- (b.west);
\draw[color=red] (a.east) -| (2,1.5) -| (b.north);
\end{tikzpicture}

\path ... |=(coordinate) ...;
This operations means “first vertical, then horizontal.”

13.3 The Curve-To Operation

The curve-to operation allows you to extend a path using a Bézier curve.

\pathcontrols(c)and(d)..(y) ...;

This operation extends the current path from the current point, let us call it x, via a curve to a the
current point y. The curve is a cubic Bézier curve. For such a curve, apart from y, you also specify
two control points ¢ and d. The idea is that the curve starts at x, “heading” in the direction of c.
Mathematically spoken, the tangent of the curve at x goes through c. Similarly, the curve ends at y,
“coming from” the other control point, d. The larger the distance between x and ¢ and between d and y,
the larger the curve will be.

If the “and(d)” part is not given, d is assumed to be equal to c.

\begin{tikzpicture}
\draw[line width=10pt] (0,0) .. controls (1,1) .. (4,0)
. controls (5,0) and (5,1) .. (4,1);
\draw[color=gray] (0,0) -- (1,1) -- (4,0) -- (5,0) —- (5,1) -- (4,1);
\end{tikzpicture}

As with the line-to operation, it makes a difference whether two curves are joined because they resulted
from consecutive curve-to or line-to operations, or whether they just happen to have the same ending:

\begin{tikzpicture}[line width=10pt]
\draw (0,0) -- (1,1) (1,1) .. controls (1,0) and (2,0) .. (2,0);
\draw (3,0) -- (4,1) .. controls (4,0) and (5,0) .. (5,0);
\useasboundingbox (0,1.5); 7 make bounding box higher
\end{tikzpicture}

13.4 The Cycle Operation

\path ... --cycle...;

This operation adds a straight line from the current point to the last point specified by a move-to
operation. Note that this need not be the beginning of the path. Furthermore, a smooth join is created
between the first segment created after the last move-to operation and the straight line appended by
the cycle operation.

Consider the following example. In the left example, two triangles are created using three straight lines,
but they are not joined at the ends. In the second example cycle operations are used.

119

4d4 44

\begin{tikzpicture}[line width=10pt]
\draw (0,0) -- (1,1) -- (1,0) -- (0,0) (2,0) -- (3,1) -- (3,0) —- (2,0);
\draw (5,0) -- (6,1) -- (6,0) -- cycle (7,0) —-- (8,1) —- (8,0) -- cycle;
\useasboundingbox (0,1.5); 7 make bounding box higher

\end{tikzpicture}

13.5 The Rectangle Operation

A rectangle can obviously be created using four straight lines and a cycle operation. However, since rectangles
are needed so often, a special syntax is available for them.
\path ... rectangle(corner) ...;

When this operation is used, one corner will be the current point, another corner is given by {corner),
which becomes the new current point.

\begin{tikzpicture}

\draw (0,0) rectangle (1,1);

\draw (.5,1) rectangle (2,0.5) (3,0) rectangle (3.5,1.5) -- (2,0);
\end{tikzpicture}

13.6 Rounding Corners
All of the path construction operations mentioned up to now are influenced by the following option:

/tikz/rounded corners={inset) (default 4pt)

When this option is in force, all corners (places where a line is continued either via line-to or a curve-to
operation) are replaced by little arcs so that the corner becomes smooth.

\tikz \draw [rounded cormers] (0,0) -- (1,1)
/V\ -- (2,0) .. controls (3,1) .. (4,0);

The (inset) describes how big the corner is. Note that the (inset) is not scaled along if you use a scaling
option like scale=2.

\ \begin{tikzpicture}
‘ \draw[color=gray,very thin] (10pt,15pt) circle (10pt);
' \draw[rounded corners=10pt] (0,0) -- (Opt,25pt) -- (40pt,25pt);
\end{tikzpicture}

You can switch the rounded corners on and off “in the middle of path” and different corners in the same
path can have different corner radii:

\begin{tikzpicture}
\draw (0,0) [rounded corners=10pt] -- (1,1) -- (2,1)
[sharp corners] -- (2,0)

[rounded corners=5pt] -- cycle;
\end{tikzpicture}

Here is a rectangle with rounded corners:

(:::) \tikz \draw[rounded corners=lex] (0,0) rectangle (20pt,2ex);

You should be aware, that there are several pitfalls when using this option. First, the rounded corner
will only be an arc (part of a circle) if the angle is 90°. In other cases, the rounded corner will still be
round, but “not as nice.”

Second, if there are very short line segments in a path, the “rounding” may cause inadverted effects. In
such case it may be necessary to temporarily switch off the rounding using sharp corners.

120

/tikz/sharp corners (no value)

This options switches off any rounding on subsequent corners of the path.

13.7 The Circle and Ellipse Operations

A circle can be approximated well using four Bézier curves. However, it is difficult to do so correctly. For
this reason, a special syntax is available for adding such an approximation of a circle to the current path.

\path ... circle((radius)) ...;

The center of the circle is given by the current point. The new current point of the path will remain to
be the center of the circle.

\path ... ellipse((half width) and (half height)) ...;

Note that you can add spaces after ellipse, but you have to place spaces around and.

O

\begin{tikzpicture}
\draw (1,0) circle (.5cm);
\draw (3,0) ellipse (lcm and .5cm) -- ++(3,0) circle (.5cm)
-- ++(2,-.5) circle (.25cm);
\end{tikzpicture}

13.8 The Arc Operation
The arc operation allows you to add an arc to the current path.

\path ... arc((start angle):(end angle): (radius) and (half height)) ...;

The arc operation adds a part of a circle of the given radius between the given angles. The arc will
start at the current point and will end at the end of the arc.

N 2 O

\begin{tikzpicture}
\draw (0,0) arc (180:90:1cm) -- (2,.5) arc (90:0:1cm);
\draw (4,0) -- +(30:1cm) arc (30:60:1cm) -- cycle;
\draw (8,0) arc (0:270:1cm and .5cm) -- cycle;

\end{tikzpicture}
\begin{tikzpicture}
\draw (-1,0) -- +(3.5,0);
a \draw (1,0) ++(210:2cm) -- +(30:4cm);
[3 \draw (1,0) +(0:1cm) arc (0:30:1cm);
\draw (1,0) +(180:1cm) arc (180:210:1cm);
/////X////// \path (1,0) ++(15:.75cm) node{α};
\path (1,0) ++(15:-.75cm) node{β};
\end{tikzpicture}

13.9 The Grid Operation

You can add a grid to the current path using the grid path operation.

\path ... grid[(options)]{corner) ...;
This operations adds a grid filling a rectangle whose two corners are given by (corner) and by the previous
coordinate. Thus, the typical way in which a grid is drawn is \draw (1,1) grid (3,3);, which yields
a grid filling the rectangle whose corners are at (1,1) and (3,3). All coordinate transformations apply
to the grid.

121

\tikz[rotate=30] \draw[step=imm] (0,0) grid (2,2);

The (options), which are local to the grid operation, can be used to influence the appearance of the
grid. The stepping of the grid is governed by the following options:

/tikz/step=(number or dimension or coordinate) (no default, initially 1cm)

Sets the stepping in both the x and y-direction. If a dimension is provided, this is used directly. If
a number is provided, this number is interpreted in the zy-coordinate system. For example, if you
provide the number 2, then the z-step is twice the z-vector and the y-step is twice the y-vector set
by the x= and y= options. Finally, if you provide a coordinate, then the z-part of this coordinate
will be used as the z-step and the y-part will be used as the y-coordinate.

_/

\begin{tikzpicture} [x=.5cm]
\draw[thick] (0,0) grid [step=1] (3,2);
\draw[red] (0,0) grid [step=.75cm] (3,2);
\end{tikzpicture}
\begin{tikzpicture}
\draw (0,0) circle (1);
\draw[blue]l (0,0) grid [step=(45:1)]1 (3,2);
\end{tikzpicture}

A complication arises when the z- and/or y-vector do not point along the axes. Because
of this, the actual rule for computing the xz-step and the y-step is the following: As the
- and y-steps we use the x- and y-components or the following two vectors: The first vec-
tor is either ((z-grid-step-number),0) or ({z-grid-step-dimension),0pt), the second vector is
(0, (y-grid-step-number)) or (Opt, (z-grid-step-dimension)).

/tikz/xstep=(dimension or number) (no default, initially 1cm)

Sets the stepping in the z-direction.

\tikz \draw (0,0) grid [xstep=.5,ystep=.75] (3,2);

/tikz/ystep=(dimension or number) (no default, initially 1cm)

Sets the stepping in the y-direction.

It is important to note that the grid is always “phased” such that it contains the point (0, 0) if that point
happens to be inside the rectangle. Thus, the grid does not always have an intersection at the corner
points; this occurs only if the corner points are multiples of the stepping. Note that due to rounding
errors, the “last” lines of a grid may be omitted. In this case, you have to add an epsilon to the corner
points.

The following style is useful for drawing grids:

122

/tikz/help lines (style, initially 1ine width=0.2pt,gray)
This style makes lines “subdued” by using thin gray lines for them. However, this style is not
installed automatically and you have to say for example:

\tikz \draw[help lines] (0,0) grid (3,3);

13.10 The Parabola Operation

The parabola path operation continues the current path with a parabola. A parabola is a (shifted and
scaled) curve defined by the equation f(z) = 22 and looks like this: \/.

\path ... parabolal(options)lbend(bend coordinate){coordinate) ... ;

This operation adds a parabola through the current point and the given (coordinate). If the bend is
given, it specifies where the bend should go; the (options) can also be used to specify where the bend
is. By default, the bend is at the old current point.

\begin{tikzpicture}
\draw (0,0) rectangle (1,1.5)
(0,0) parabola (1,1.5);
\draw[xshift=1.5cm] (0,0) rectangle (1,1.5)
(0,0) parabola[bend at end] (1,1.5);
\draw [xshift=3cm] (0,0) rectangle (1,1.5)
(0,0) parabola bend (.75,1.75) (1,1.5);
\end{tikzpicture}

The following options influence parabolas:

/tikz/bend={coordinate) (no default)

Has the same effect as saying bend(coordinate) outside the (options). The option specifies that
the bend of the parabola should be at the given (coordinate). You have to take care yourself
that the bend position is a “valid” position; which means that if there is no parabola of the form
f(x) = ax? + bx + ¢ that goes through the old current point, the given bend, and the new current
point, the result will not be a parabola.

There is one special property of the (coordinate): When a relative coordinate is given like +(0,0),
the position relative to which this coordinate is “flexible.” More precisely, this position lies some-
where on a line from the old current point to the new current point. The exact position depends
on the next option.

/tikz/bend pos=(fraction) (no default)
Specifies where the “previous” point is relative to which the bend is calculated. The previous point
will be at the (fraction)th part of the line from the old current point to the new current point.
The idea is the following: If you say bend pos=0 and bend +(0,0), the bend will be at the old
current point. If you say bend pos=1 and bend +(0,0), the bend will be at the new current point.
If you say bend pos=0.5 and bend +(0,2cm) the bend will be 2cm above the middle of the line
between the start and end point. This is most useful in situations such as the following:

\draw[help lines] (0,0) grid (3,2);
\draw (-1,0) parabola[bend pos=0.5] bend +(0,2) +(3,0);

\begin{tikzpicture}
\end{tikzpicture}

In the above example, the bend +(0,2) essentially means “a parabola that is 2cm high” and +(3,0)
means “and 3cm wide.” Since this situation arises often, there is a special shortcut option:

123

/tikz/parabola height=(dimension) (no default)
This option has the same effect as [bend pos=0.5,bend={+(0pt, (dimension))}].

\draw[help lines] (0,0) grid (3,2);
\draw (-1,0) parabola[parabola height=2cm] +(3,0);

\begin{tikzpicture}
\end{tikzpicture}

The following styles are useful shortcuts:

/tikz/bend at start (style, no value)
This places the bend at the start of a parabola. It is a shortcut for the following options:
bend pos=0,bend={+(0,0)}.

/tikz/bend at end (style, no value)
This places the bend at the end of a parabola.

13.11 The Sine and Cosine Operation

The sin and cos operations are similar to the parabola operation. They, too, can be used to draw (parts
of) a sine or cosine curve.

\path ... sin(coordinate) ... ;

The effect of sin is to draw a scaled and shifted version of a sine curve in the interval [0,7/2]. The
scaling and shifting is done in such a way that the start of the sine curve in the interval is at the old
current point and that the end of the curve in the interval is at (coordinate). Here is an example that
should clarify this:

\tikz \draw (0,0) rectangle (1,1) (0,0) sin (1,1)
(2,0) rectangle +(1.57,1) (2,0) sin +(1.57,1);

\path ... cos{coordinate) ... ;

This operation works similarly, only a cosine in the interval [0,7/2] is drawn. By correctly alternating
sin and cos operations, you can create a complete sine or cosine curve:

\begin{tikzpicture} [xscale=1.57]

\draw (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0) sin (5,1);

\draw[color=red] (0,1.5) cos (1,0) sin (2,-1.5) cos (3,0) sin (4,1.5) cos (5,0);
\end{tikzpicture}

Note that there is no way to (conveniently) draw an interval on a sine or cosine curve whose end points
are not multiples of 7/2.

13.12 The Plot Operation

The plot operation can be used to append a line or curve to the path that goes through a large number of
coordinates. These coordinates are either given in a simple list of coordinates, read from some file, or they
are computed on the fly.

Since the syntax and the behaviour of this command are a bit complex, they are described in the separated
Section 18.

124

13.13 The To Path Operation

The to operation is used to add a user-defined path from the previous coordinate to the following coordinate.
When you write (a) to (b), a straight line is added from a to b, exactly as if you had written (a) -- (b).
However, if you write (a) to [out=135,in=45] (b) a curve is added to the path, which leaves at an angle
of 135° at a and arrives at an angle of 45° at b. This is because the options in and out trigger a special
path to be used instead of the straight line.

\path ... to[{options)] (nodes) ((coordinate)) ... ;

This path operation inserts the path current set via the to path option at the current position. The
(options) can be used to modify (perhaps implicitly) the to path and to setup how the path will be
rendered.

Before the to path is inserted, a number of macros are setup that can “help” the to path. These are
\tikztostart, \tikztotarget, and \tikztonodes; they are explained in the following.

Start and Target Coordinates. The to operation is always followed by a (coordinate), called the
target coordinate. The macro \tikztotarget is set to this coordinate (without the parentheses).
There is also a start coordinate, which is the coordinate preceding the to operation. This coordinate
can be accessed via the macro \tikztostart. In the following example, for the first to, the macro
\tikztostart is Opt,Opt and the \tikztotarget is 0,2. For the second to, the macro \tikztostart
is 10pt,10pt and \tikztotarget is a.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw (0,0) to (0,2);

\node (a) at (2,2) {a};

\draw[red] (10pt,10pt) to (a);
\end{tikzpicture}

Nodes on tos. It is possible to add nodes to the paths constructed by a to operation. To do so, you
specify the nodes between the to keyword and the coordinate (if there are options to the to operation,
these come first). The effect of (a) to node {x} (b) (typically) is the same as if you had written
(a) -- node {x} (b), namely that the node is placed on the to. This can be used to add labels to tos:

\begin{tikzpicture}

* \draw (0,0) to node [sloped,above] {x} (3,2);

\draw (0,0) to[out=90,in=180] node [sloped,abovel {x} (3,2);
\end{tikzpicture}

Styles for nodes. In addition to the (options) given after the to operation, the following style is also

set at the beginning of the to path:

/tikz/every to (style, initially empty)
This style is installed at the beginning of every to. By default, it is set to draw.

_- \tikz[every to/.style={draw,dashed}]
- \path (0,0) to (3,2);

Options. The (options) given with the to allow you to influence the appearance of the to path.
Mostly, these options are used to change the to path. This can be used to change the path from a
straight line to, say, a curve.

The path used is set using the following option:

125

/tikz/to path=(path) (no default)

Whenever an to operation is used, the (path) is inserted. More precisely, the following path is
added:

[every to,{options)] (path)

The (options) are the options given to the to operation, the (path) is the path set by this option
to path.

Inside the (path), different macros are used to reference the from- and to-coordinates. In detail,
these are:

e \tikztostart will expand to the from-coordinate (without the parentheses).
e \tikztotarget will expand to the to-coordinate.

e \tikztonodes will expand to the nodes between the to operation and the coordinate. Fur-
thermore, these nodes will have the pos option set implicitly.

Let us have a look at a simple example. The standard straight line for an to is achieved by the
following (path):

-- (\tikztotarget) \tikztonodes

Indeed, this is the default setting for the path. When we write (a) to (b), the (path) will expand
to (a) -- (b), when we write

(a) to[red] node {x} (b)
the (path) will expand to
(a) -- (b) nodelpos] {x}
It is not possible to specify the path
—-- \tikztonodes (\tikztotarget)

since TikZ does not allow one to have a macro after -- that expands to a node.

Now let us have a look at how we can modify the (path) sensibly. The simplest way is to use a

curve.
c \begin{tikzpicturel}[to path={
. controls +(1,0) and +(1,0) .. (\tikztotarget) \tikztonodesl}]
b \node (a) at (0,0) {a};

\node (b) at (2,1) {b};
\node (c) at (1,2) {c};

a
\draw (a) to node {x} (b)
(a) to @F
\end{tikzpicture}
Here is another example:
\tikzset{
my loop/.style={->,to path={

. controls +(80:1) and +(100:1) .. (\tikztotarget) \tikztonodes}},

@ my state/.style={circle,draw}}
1

\begin{tikzpicturel} [shorten >=2pt]
\node [my state] (a) at (210:1) {q_a};
\node [my state] (b) at (330:1) {q_b};

\draw (a) to node [below] {1} (®)
to [my loop] nodelabove right] {0} (b);
\end{tikzpicture}
/tikz/execute at begin to=(code) (no default)

The (code) is executed prior to the to. This can be used to draw one or more additional paths
or to do additional computations.

/tikz/executed at end to=(code) (no default)
Works like the previous option, only this code is executed after the to path has been added.

126

/tikz/every to (style, initially empty)
This style is installed at the beginning of every to.

There are a number of predefined to paths, see Section 40 for a reference.

13.14 The Let Operation

The let operation is the first of a number of path operations that do not actually extend that path, but have
different, mostly local, effects.

\path ... let{assignment) ,(assignment),{assignment)... in ...;
When this path operation is encountered, the (assignment)s are evaluated, one by one. This will store
coordinate and number in special registers (which are local to TikZ, they have nothing to do with TgX
registers). Subsequently, one can access the contents of these registers using the macros \p, \x, \y, and

\n.

The first kind of permissible (assignment)s have the following form:
\n(number register)={{formula)}

When an assignment has this form, the (formula) is evaluated using the \pgfmathparse operation. The
result stored in the (number register). If the (formula) involves a dimension anywhere (as in 2*3cm/2),
then the (number register) stores the resulting dimension with a trailing pt. A (number register) can be
named arbitrarily and is a normal TEX parameter to the \n macro. Possible names are {left corner},
but also just a single digit like 5.

Let us call the path that follows a let operation its body. Inside the body, the \n macro can be used to
access the register.

\n{(number register)
When this macro is used on the left-hand side of an =-sign in a let operation, it has no effect and
is just there for readability. When the macro is used on the right-hand side of an =-sign or in the
body of the let operation, then it expands to the value stored in the (number register). This will
either be a dimensionless number like 2.0 or a dimension like 5.6pt.
For instance, if we say let \nl={1pt+2pt}, \n2={1+2} in ..., then inside the ... part the
macro \nl will expand to 3pt and \n2 expands to 3.

The second kind of {assignements) have the following form:
\p(point register)={{formula)}

Point position registers store a single point, consisting of an z-part and a y-part measured in TEX points
(pt). In particular, point registers do not stored nodes or node names. Here is an example:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

(0,0) == (\p2) -- (\p{foo});
\end{tikzpicture}

\draw let \p{foo} = (1,1), \p2 = (2,0) in

\p{(point register)}

When this macro is used on the left-hand side of an =-sign in a let operation, it has no effect and
is just there for readability. When the macro is used on the right-hand side of an =-sign or in the
body of the let operation, then it expands to the a-part (measured in TEX points) of the coordinate
stored in the (register), followed, by a comma, followed by the y-part.

For instance, if we say let \p1=(1pt,1pt+2pt) in ..., then inside the ... part the macro \p1
will expand to exactly the seven characters “1pt,3pt”. This means that you when you write (\p1),
this expands to (1pt,3pt), which is presumably exactly what you intended.

\x{(point register)}
This macro expand just to the z-part of the point register. If we say as above, as we did above,
let \pl=(lpt,1pt+2pt) in ..., then inside the ... part the macro \x1 expands to 1pt.

127

\y{(point register)}
Works like \x, only for the y-part.

Note that the above macros are available only inside a let operation.

Here is an example where let clauses are used to assemble a coordinate from the xz-coordinate of a first
point and the y-coordinate of a second point. Naturally, using the |- notation, this could be written
much more compactly.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

-- (3,2) coordinate (second point) ;

\draw (1,0) coordinate (first point)

\fill[red] let \pl = (first point),
\p2 = (second point) in
(\x1,\y2) circle (2pt);
\end{tikzpicture}

Note that the effect of a let operation is local to the body of the let operation. If you wish to access a
computed coordinate outside the body, you must use a coordinate path operation:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

\path 7 let’s define some points:
let
\p1 = (1,0),
\p2 = (3,2),
\p{center} = ($ (\p1) !'.5! (\p2) $) 7 center

in
coordinate (p1) at (\p1)
coordinate (p2) at (\p2)
coordinate (center) at (\p{center});

\draw (p1) -- (p2);
\fill[red] (center) circle (2pt);
\end{tikzpicture}

For a more useful application of the let operation, let use draw a circle that touches a given line:

\coordinate (a) at (rnd,rnd);
\coordinate (b) at (3-rnd,3-rnd);

\draw (a) -- (b);

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,3);

\node (c) at (1,2) {x};

\draw let \p1 = ($ (@)!()! () - (c) $),
\n1 = {veclen(\x1,\y1)}
in (c) circle (\nl);
\end{tikzpicture}

13.15 The Scoping Operation

When TikZ encounters and opening or a closing brace ({ or }) at some point where a path operation should
come, it will open or close a scope. All options that can be applied “locally” will be scoped inside the
scope. For example, if you apply a transformation like [xshift=1cm] inside the scoped area, the shifting
only applies to the scope. On the other hand, an option like color=red does not have any effect inside a
scope since it can only be applied to the path as a whole.

Concerning the effect of scopes on relative coordinates, please see Section 12.3.2.

13.16 The Node and Edge Operations

There are two more operations that can be found in paths: node and edge. The first is used to add a
so-called node to a path. This operation is special in the following sense: It does not change the current

128

path in any way. In other words, this operation is not really a path operation, but has an effect that is
“external” to the path. The edge operation has similar effect in that it adds something after the main path
has been drawn. However, it works like the to operation, that is, it adds a to path to the picture after the
main path has been drawn.

Since these operations are quite complex, they are described in the separate Section 15.

13.17 The PGF-Extra Operation

In some cases you may need to “do some calculations or some other stuff” while a path is constructed. For
this, you would like to suspend the construction of the path and suspend TikZ’s parsing of the path, you
would then like to have some TEX code executed, and would then like to resume the parsing of the path.
This effect can be achieved using the following path operation \pgfextra. Note that this operation should
only be used by real experts and should only be used deep inside clever macros, not on normal paths.

\pgfextra{({code)}

This command may only be used inside a TikZ path. There it is used like a normal path operation.
The construction of the path is temporarily suspended and the (code) is executed. Then, the path
construction is resumed.

\newdimen\mydim
\begin{tikzpicture}

\mydim=1cm

\draw (Opt,\mydim) \pgfextra{\mydim=2cm} -- (Opt,\mydim);
\end{tikzpicture}

\pgfextra(code) \endpgfextra

This is an alternative syntax for the \pgfextra command. If the code following \pgfextra does not
start with a brace, the (code) is executed until \endpgfextra is encountered. What actually happens is
that \pgfextra that is not followed by a brace completely shuts down the TikZ parse and \endpgfextra
is a normal macro that restarts the parser.

\newdimen\mydim
\begin{tikzpicture}
\mydim=1cm
\draw (Opt,\mydim)
\pgfextra \mydim=2cm \endpgfextra -- (Opt,\mydim) ;
\end{tikzpicture}

129

14 Actions on Paths

14.1 Overview

Once a path has been constructed, different things can be done with it. It can be drawn (or stroked) with
a “pen,” it can be filled with a color or shading, it can be used for clipping subsequent drawing, it can be
used to specify the extend of the picture—or any combination of these actions at the same time.

To decide what is to be done with a path, two methods can be used. First, you can use a special-purpose
command like \draw to indicate that the path should be drawn. However, commands like \draw and \fill
are just abbreviations for special cases of the more general method: Here, the \path command is used to
specify the path. Then, options encountered on the path indicate what should be done with the path.

For example, \path (0,0) circle (lcm); means “This is a path consisting of a circle around the origin.
Do not do anything with it (throw it away).” However, if the option draw is encountered anywhere on the
path, the circle will be drawn. “Anywhere” is any point on the path where an option can be given, which is
everywhere where a path command like circle (lcm) or rectangle (1,1) or even just (0,0) would also
be allowed. Thus, the following commands all draw the same circle:

\path [draw] (0,0) circle (lcm);
\path (0,0) [draw] circle (icm);
\path (0,0) circle (icm) [draw];

Finally, \draw (0,0) circle (icm); also draws a path, because \draw is an abbreviation for
\path [draw] and thus the command expands to the first line of the above example.

Similarly, \fill is an abbreviation for \path[£fi1l] and \filldraw is an abbreviation for the command
\path[fill,draw]. Since options accumulate, the following commands all have the same effect:

\path [draw,fill] (0,0) circle (icm);
\path [draw] [£ill] (0,0) circle (icm);
\path [£fill] (0,0) circle (1icm) [draw];
\draw [fill] (0,0) circle (icm);

\fill (0,0) [draw] circle (icm);
\filldraw (0,0) circle (lcm);

In the following subsection the different actions are explained that can be performed on a path. The
following commands are abbreviations for certain sets of actions, but for many useful combinations there are
no abbreviations:

\draw
Inside {tikzpicture} this is an abbreviation for \path[draw].

\fill
Inside {tikzpicture} this is an abbreviation for \path[fill].

\filldraw
Inside {tikzpicture} this is an abbreviation for \path[fill,draw].

\pattern
Inside {tikzpicture} this is an abbreviation for \path[pattern].

\shade
Inside {tikzpicture} this is an abbreviation for \path[shade].

\shadedraw
Inside {tikzpicture} this is an abbreviation for \path[shade,draw].

\clip
Inside {tikzpicture} this is an abbreviation for \path[clip].

\useasboundingbox

Inside {tikzpicture} this is an abbreviation for \path[use as bounding box].

130

14.2 Specifying a Color
The most unspecific option for setting colors is the following:

/tikz/color=(color name) (no default)

This option sets the color that is used for fill, drawing, and text inside the current scope. Any special
settings for filling colors or drawing colors are immediately “overruled” by this option.

The (color name) is the name of a previously defined color. For ITEX users, this is just a normal
“I4TEX-color” and the xcolor extensions are allows. Here is an example:

\tikz \fill[color=red!20] (0,0) circle (lex);

It is possible to “leave out” the color= part and you can also write:

\tikz \fill[red!20] (0,0) circle (lex);

What happens is that every option that TikZ does not know, like red!20, gets a “second chance” as a
color name.

For plain TEX users, it is not so easy to specify colors since plain TEX has no “standardized” color naming
mechanism. Because of this, PGF emulates the xcolor package, though the emulation is eztremely basic
(more precisely, what I could hack together in two hours or so). The emulation allows you to do the
following:

e Specify a new color using \definecolor. Only the two color models gray and rgb are supported.

Example: \definecolor{orange}{rgb}{1,0.5,0%}

e Use \colorlet to define a new color based on an old one. Here, the ! mechanism is supported,
though only “once” (use multiple \colorlet for more fancy colors).

Ezxample: \colorlet{lightgray}{black!25}

e Use \color{{color name)} to set the color in the current TEX group. \aftergroup-hackery is used
to restore the color after the group.

As pointed out above, the color= option applies to “everything” (except to shadings), which is not
always what you want. Because of this, there are several more specialized color options. For example, the
draw= option sets the color used for drawing, but does not modify the color used for filling. These color
options are documented where the path action they influence is described.

14.3 Drawing a Path

You can draw a path using the following option:

/tikz/draw=(color) (default is scope’s color setting)

Causes the path to be drawn. “Drawing” (also known as “stroking”) can be thought of as picking up a
pen and moving it along the path, thereby leaving “ink” on the canvas.

There are numerous parameters that influence how a line is drawn, like the thickness or the dash pattern.
These options are explained below.

If the optional {color) argument is given, drawing is done using the given (color). This color can be
different from the current filling color, which allows you to draw and fill a path with different colors. If
no (color) argument is given, the last usage of the color= option is used.

If the special color name none is given, this option causes drawing to be “switched off.” This is useful
if a style has previously switched on drawing and you locally wish to undo this effect.

Although this option is normally used on paths to indicate that the path should be drawn, it also makes
sense to use the option with a {scope} or {tikzpicturel} environment. However, this will not cause all
path to drawn. Instead, this just sets the (color) to be used for drawing paths inside the environment.

\begin{tikzpicture}

\path[draw=red] (0,0) -- (1,1) -- (2,1) circle (10pt);
\end{tikzpicture}

131

The following subsections list the different options that influence how a path is drawn. All of these
options only have an effect if the draw options is given (directly or indirectly).

14.3.1 Graphic Parameters: Line Width, Line Cap, and Line Join

/tikz/line width=(dimension) (no default, initially 0.4pt)
Specifies the line width. Note the space.

’ \tikz \draw[line width=5pt] (0,0) -- (lcm,1.5ex);

There are a number of predefined styles that provide more “natural” ways of setting the line width. You
can also redefine these styles.

/tikz/ultra thin (style, no value)
Sets the line width to 0.1pt.

_— \tikz \draw[ultra thin] (0,0) -- (lcm,1.5ex);

/tikz/very thin (style, no value)
Sets the line width to 0.2pt.

_— \tikz \draw[very thin] (0,0) -- (lcm,1.5ex);

/tikz/thin (style, no value)
Sets the line width to 0.4pt.

_— \tikz \draw([thin] (0,0) -- (i1cm,1.5ex);

/tikz/semithick (style, no value)
Sets the line width to 0.6pt.

_— \tikz \draw[semithick] (0,0) -- (lcm,1.5ex);

/tikz/thick (style, no value)
Sets the line width to 0.8pt.

_— \tikz \draw([thick] (0,0) -- (i1cm,1.5ex);

/tikz/very thick (style, no value)
Sets the line width to 1.2pt.

— \tikz \draw[very thick] (0,0) -- (lcm,1.5ex);

/tikz/ultra thick (style, no value)
Sets the line width to 1.6pt.

—_— \tikz \draw[ultra thick] (0,0) -- (icm,1.5ex);

/tikz/line cap=(type) (no default, initially butt)

Specifies how lines “end.” Permissible (type) are round, rect, and butt. They have the following
effects:

132

= \begin{tikzpicture}

\begin{scope}[line width=10pt]

I
| \draw[line cap=rect] (0,0) -- (1,0);
= \draw[line cap=butt] (0,.5) -- (1,.5);
\draw[line cap=round] (0,1) -- (1,1);
\end{scope}
\draw [white,line width=1pt]
(0,0) -- (1,0) (0,.5) -- (1,.5) (0,1) -- (1,1);
\end{tikzpicture}

/tikz/line join=(type) (no default, initially miter)
Specifies how lines “join.” Permissible (type) are round, bevel, and miter. They have the following
effects:

\begin{tikzpicture}[line width=10pt]
\draw[line join=round] (0,0) -- ++(.5,1) -- ++(.5,-1);
\draw[line join=bevel]l (1.25,0) -- ++(.5,1) -- ++(.5,-1);
\draw[line join=miter] (2.5,0) -- ++(.5,1) -- ++(.5,-1);
\useasboundingbox (0,1.5); 7 make bounding box bigger
\end{tikzpicture}
/tikz/miter limit=(factor) (no default, initially 10)

When you use the miter join and there is a very sharp corner (a small angle), the miter join may
protrude very far over the actual joining point. In this case, if it were to protrude by more than
(factor) times the line width, the miter join is replaced by a bevel join.

\begin{tikzpicture}[line width=5pt]
\draw (0,0) -- ++(5,.5) -- ++(-5,.5);
\draw[miter limit=25] (6,0) -- ++(5,.5) -- ++(-5,.5);
\useasboundingbox (14,0); 7 make bounding box bigger
\end{tikzpicture}

14.3.2 Graphic Parameters: Dash Pattern

/tikz/dash pattern=({dash pattern) (no default)

Sets the dashing pattern. The syntax is the same as in METAFONT. For example following pattern
on 2pt off 3pt on 4pt off 4pt means “draw 2pt, then leave out 3pt, then draw 4pt once more,
then leave out 4pt again, repeat”.

\begin{tikzpicture}[dash pattern=on 2pt off 3pt on 4pt off 4pt]
\draw (Opt,Opt) -- (3.5cm,Opt);
\end{tikzpicture}

/tikz/dash phase=(dash phase) (no default, initially Opt)
Shifts the start of the dash pattern by (phase).

— — \begin{tikzpicture}[dash pattern=on 20pt off 10pt]
\draw[dash phase=0pt] (Opt,3pt) -- (3.5cm,3pt);
\draw[dash phase=10pt] (Opt,Opt) -- (3.5cm,0pt);

\end{tikzpicture}

As for the line thickness, some predefined styles allow you to set the dashing conveniently.

/tikz/solid (style, no value)
Shorthand for setting a solid line as “dash pattern.” This is the default.

\tikz \draw[solid] (Opt,Opt) -- (50pt,Opt);

133

/tikz/dotted (style, no value)
Shorthand for setting a dotted dash pattern.

\tikz \draw[dotted] (Opt,Opt) -- (50pt,Opt);

/tikz/densely dotted (style, no value)
Shorthand for setting a densely dotted dash pattern.

\tikz \draw[densely dotted] (Opt,Opt) -- (50pt,Opt);

/tikz/loosely dotted (style, no value)
Shorthand for setting a loosely dotted dash pattern.

\tikz \draw[loosely dotted] (Opt,Opt) -- (50pt,Opt);

/tikz/dashed (style, no value)
Shorthand for setting a dashed dash pattern.

\tikz \draw[dashed] (Opt,Opt) -- (50pt,Opt);

/tikz/densely dashed (style, no value)
Shorthand for setting a densely dashed dash pattern.

\tikz \draw[densely dashed] (Opt,Opt) -- (50pt,Opt);

/tikz/loosely dashed (style, no value)
Shorthand for setting a loosely dashed dash pattern.

\tikz \draw[loosely dashed] (Opt,Opt) -- (50pt,Opt);

14.3.3 Graphic Parameters: Draw Opacity

When a line is drawn, it will normally “obscure” everything behind it as if you has used perfectly opaque
ink. Tt is also possible to ask TikZ to use an ink that is a little bit (or a big bit) transparent using the
draw opacity option. This is explained in Section 19 on transparency in more detail.

14.3.4 Graphic Parameters: Arrow Tips

When you draw a line, you can add arrow tips at the ends. It is only possible to add one arrow tip at the
start and one at the end. If the path consists of several segments, only the last segment gets arrow tips. The
behavior for paths that are closed is not specified and may change in the future.

/tikz/arrows=(start arrow kind)-{end arrow kind) (no default)

This option sets the start and end arrow tips (an empty value as in -> indicates that no arrow tip should
be drawn at the start).

Note: Since the arrow option is so often used, you can leave out the text arrows=. What happens is
that every option that contains a - is interpreted as an arrow specification.

oO—>

\begin{tikzpicture}
\draw[->] 0,00 - (1,0);
\draw[o-stealth] (0,0.3) -- (1,0.3);
\end{tikzpicture}

The permissible values are all predefined arrow tips, though you can also define new arrow tip kinds as
explained in Section 58. This is often necessary to obtain “double” arrow tips and arrow tips that have
a fixed size. Since pgflibraryarrows is loaded by default, all arrow tips described in Section 22 are
available.

134

One arrow tip kind is special: > (and all arrow tip kinds containing the arrow tip kind such as << or
>|). This arrow tip type is not fixed. Rather, you can redefine it using the >= option, see below.

FEzxzample: You can also combine arrow tip types as in

\begin{tikzpicture} [thick]
\draw[to reversed-to] (0,0) .. controls +(.5,0) and +(-.5,-.5) .. +(1.5,1);
\draw[[-latex reversed] (1,0) .. controls +(.5,0) and +(-.5,-.5) .. +(1.5,1);
\draw[latex-)] (2,0) .. controls +(.5,0) and +(-.5,-.5) .. +(1.5,1);

\useasboundingbox (-.1,-.1) rectangle (3.1,1.1); J make bounding box bigger
\end{tikzpicture}

/tikz/>=(end arrow kind) (no default)

This option can be used to redefine the “standard” arrow tip >. The idea is that different people
have different ideas what arrow tip kind should normally be used. I prefer the arrow tip of TEX’s \to
command (which is used in things like f: A — B). Other people will prefer IXTEX’s standard arrow tip,
which looks like this: —». Since the arrow tip kind > is certainly the most “natural” one to use, it is
kept free of any predefined meaning. Instead, you can change it by saying >=to to set the “standard”
arrow tip kind to TEX’s arrow tip, whereas >=latex will set it to N TEX’s arrow tip and >=stealth will
use a PSTRICKS-like arrow tip.

Apart from redefining the arrow tip kind > (and < for the start), this option also redefines the following
arrow tip kinds: > and < as the swapped version of (end arrow kind), << and >> as doubled versions,
>> and << as swapped doubled versions, and |< and >| as arrow tips ending with a vertical bar.

— " \begin{tikzpicture}[scale=2]
h__________”‘ \begin{scopel} [>=1latex]
\draw[->] (Opt,6ex) -- (lcm,6ex);
R \draw[>->>] (Opt,b5ex) -- (lcm,5ex);
o oo \draw[|<->|] (Opt,4ex) -- (icm,4ex);

> @ \end{scope}
\begin{scope} [>=diamond]
\draw[->] (Opt,2ex) -- (lcm,2ex);
\draw[>->>] (Opt,lex) -- (lcm,lex);
\draw[|<->|] (Opt,0ex) -- (icm,Oex);
\end{scope}
\end{tikzpicture}

/tikz/shorten >=(dimension) (no default, initially Opt)

This option will shorten the end of lines by the given (dimension). If you specify an arrow tip, lines are
already shortened a bit such that the arrow tip touches the specified endpoint and does not “protrude
over” this point. Here is an example:

\begin{tikzpicture}[line width=20pt]
\useasboundingbox (0,-1.5) rectangle (3.5,1.5);

\draw[red] (0,0) -- (3,0);
\draw [gray,->] (0,0) -- (3,0);
\end{tikzpicture}

The shorten > option allows you to shorten the end on the line additionally by the given distance.
This option can also be useful if you have not specified an arrow tip at all.

\begin{tikzpicture}[line width=20pt]
\useasboundingbox (0,-1.5) rectangle (3.5,1.5);

\draw[red] (0,0) -- (3,0);
\draw[-to,shorten >=10pt,gray] (0,0) -- (3,0);
\end{tikzpicture}

135

/tikz/shorten <=(dimension) (no default)
Works like shorten >, but for the start.

14.3.5 Graphic Parameters: Double Lines and Bordered Lines
/tikz/double=(core color) (default white)

This option causes “two” lines to be drawn instead of a single one. However, this is not what really
happens. In reality, the path is drawn twice. First, with the normal drawing color, secondly with the
(core color), which is normally white. Upon the second drawing, the line width is reduced. The net
effect is that it appears as if two lines had been drawn and this works well even with complicated, curved

paths:
\tikz \draw[double]
N plot[smooth cycle] coordinates{(0,0) (1,1) (1,0) (0,1)};

You can also use the doubling option to create an effect in which a line seems to have a certain “border”:

/// \begin{tikzpicture}
\draw (0,0) -- (1,1);
/// \draw [draw=white,double=red,very thick] (0,1) -- (1,0);

\end{tikzpicture}

/tikz/double distance=(dimension) (no default, initially 0.6pt)

Sets the distance the “two” lines are spaced apart. In reality, this is the thickness of the line that is
used to draw the path for the second time. The thickness of the first time the path is drawn is twice the
normal line width plus the given (dimension). As a side-effect, this option “selects” the double option.

\begin{tikzpicture}
\draw[very thick,double] (0,0) arc (180:90:1cm);
\draw[very thick,double distance=2pt] (1,0) arc (180:90:1cm);

\draw[thin,double distance=2pt] (2,0) arc (180:90:1cm);
\end{tikzpicture}

14.4 Filling a Path
To fill a path, use the following option:

/tikz/£i11=(color) (default is scope’s color setting)

This option causes the path to be filled. All unclosed parts of the path are first closed, if necessary.
Then, the area enclosed by the path is filled with the current filling color, which is either the last color
set using the general color= option or the optional color (color). For self-intersection paths and for
paths consisting of several closed areas, the “enclosed area” is somewhat complicated to define and
two different definitions exist, namely the nonzero winding number rule and the even odd rule, see the
explanation of these options, below.

Just as for the draw option, setting (color) to none disables filling locally.

Y B |

\begin{tikzpicture}
\fill (0,0) -- (1,1) -- (2,1);
\fill (4,0) circle (.5cm) (4.5,0) circle (.5cm);
\fill[even odd rule] (6,0) circle (.5cm) (6.5,0) circle (.5cm);
\fill (8,0) -- (9,1) -- (10,0) circle (.5cm);
\end{tikzpicture}

If the £i11 option is used together with the draw option (either because both are given as options or
because a \filldraw command is used), the path is filled first, then the path is drawn second. This

136

is especially useful if different colors are selected for drawing and for filling. Even if the same color is
used, there is a difference between this command and a plain £i11l: A “filldrawn” area will be slightly
larger than a filled area because of the thickness of the “pen.”

T o® o

\begin{tikzpicture}[fill=examplefill,line width=5pt]
\filldraw (0,0) -- (1,1) -- (2,1);
\filldraw (4,0) circle (.5cm) (4.5,0) circle (.5cm);
\filldraw[even odd rule] (6,0) circle (.5cm) (6.5,0) circle (.5cm);
\filldraw (8,0) -- (9,1) -- (10,0) circle (.5cm);
\end{tikzpicture}

14.4.1 Graphic Parameters: Fill Pattern

Instead of filling a path with a single solid color, it is also possible to fill it with a tiling pattern. Imagine a
small tile that contains a simple picture like a star. Then these tiles are (conceptually) repeated infinitely
in all directions, but clipped against the path.

Tiling patterns come in two variants: inherently colored patterns and form-only patterns. An inherently
colored pattern is, say, a red star with a black border and will always look like this. A form-only pattern
may have a different color each time it is used, only the form of the pattern will stay the same. As such,
form-only patterhns do not have any colors of their own, but when it is used the current pattern color is
used as its color.

Patterns are not overly flexible. In particular, it is not possible to change the size or orientation of a
pattern without declaring a new pattern. For complicated case, it may be easier to use two nested \foreach
statements to simulate a pattern, but patterns are rendered much more quickly than simulated ones.

/tikz/pattern=(name) (default is scope’s pattern)

This option causes the path to be filled with a pattern. If the (name) is given, this pattern is used,
otherwise the pattern set in the enclosing scope is used. As for the draw and fill options, setting
(name) to none disables filling locally.

The pattern works like a fill color. In particular, setting a new fill color will fill the path with a solid
color once more.

Strangely, no (name)s are permissible by default. You need to load for instance pgflibrarypatterns,
see Section 34, to install predefined patterns.

\begin{tikzpicture}
\draw[pattern=dots] (0,0) circle (icm);
\draw[pattern=fivepointed stars] (0,0) rectangle (3,1);
\end{tikzpicture}

/tikz/pattern color=(color) (no default)

This option is used to set the color to be used for form-only patterns. This option has no effect on
inherently colored patterns.

kK X% % * & * *x *x x 1 \begin{tikzpicture}

k% % k k& k * Kk % 3 \draw [pattern color=red,pattern=fivepointed stars] (0,0) circle (lcm);

k ok k& ok ok ok ok ok ok \draw[pattern color=blue,pattern=fivepointed stars] (0,0) rectangle (3,1);
\end{tikzpicture}

137

\begin{tikzpicture}
\def\mypath{(0,0) -- +(0,1) arc (180:0:1.5cm) -- +(0,-1)}

\fill [red] \mypath;
\pattern[pattern color=white,pattern=bricks] \mypath;
\end{tikzpicture}

14.4.2 Graphic Parameters: Interior Rules

The following two options can be used to decide how interior points should be determined:

/tikz/nonzero rule (no value)

If this rule is used (which is the default), the following method is used to determine whether a given
point is “inside” the path: From the point, shoot a ray in some direction towards infinity (the direction
is chosen such that no strange borderline cases occur). Then the ray may hit the path. Whenever it
hits the path, we increase or decrease a counter, which is initially zero. If the ray hits the path as the
path goes “from left to right” (relative to the ray), the counter is increased, otherwise it is decreased.
Then, at the end, we check whether the counter is nonzero (hence the name). If so, the point is deemed
to lie “inside,” otherwise it is “outside.” Sounds complicated? It is.

\begin{tikzpicture}
\filldraw[fill=examplefill]

T % Clockwise rectangle

[ﬂ:} (0,0) -- (0,1) -- (1,1) —- (1,0) -- cycle

crossings: —14+1 =20

% Counter-clockwise rectangle
(0.25,0.25) -- (0.75,0.25) -- (0.75,0.75) -- (0.25,0.75) -- cycle;

\draw[->] (0,1) -- (.4,1);
\draw[->] (0.75,0.75) -- (0.3,.75);

crossings: 1 +1 =2

[

\begin{scope} [yshift=-3cm]
[ﬂ:] \filldraw[fill=examplefill]
% Clockwise rectangle
(0,0) -- (0,1) -- (1,1) -- (1,0) -- cycle
% Clockwise rectangle
(0.25,0.25) -- (0.25,0.75) -- (0.75,0.75) -- (0.75,0.25) -- cycle;

\draw[->] (0.5,0.5) -- +(0,1) nodel[above] {crossings: $-1+1 = 0$};

\draw[->] (0,1) -- (.4,1);
\draw[->] (0.25,0.75) -- (0.4,.75);

\draw[->] (0.5,0.5) -- +(0,1) node[above] {crossings: $1+1 = 2$};
\end{scope}
\end{tikzpicture}

/tikz/even odd rule (no value)

This option causes a different method to be used for determining the inside and outside of paths. While
it is less flexible, it turns out to be more intuitive.

With this method, we also shoot rays from the point for which we wish to determine whether it is inside
or outside the filling area. However, this time we only count how often we “hit” the path and declare
the point to be “inside” if the number of hits is odd.

Using the even-odd rule, it is easy to “drill holes” into a path.

i e _ \begin{tikzpicture}
crossings- ISl =2 \filldraw[fill=examplefill,even odd rule]
T (0,0) rectangle (1,1) (0.5,0.5) circle (0.4cm);
\draw[->] (0.5,0.5) -- +(0,1) [above] node{crossings: $1+1 = 2$};
<:T:> \end{tikzpicture}

138

14.4.3 Graphic Parameters: Fill Opacity

Analogously to the draw opacity, you can also set the filling opacity. Please see Section 19 for more details.

14.5 Shading a Path

You can shade a path using the shade option. A shading is like a filling, only the shading changes its color
smoothly from one color to another.

/tikz/shade (no value)

Causes the path to be shaded using the currently selected shading (more on this later). If this option
is used together with the draw option, then the path is first shaded, then drawn.

It is not an error to use this option together with the £i1l option, but it makes no sense.

- \tikz \shade (0,0) circle (lex);
O \tikz \shadedraw (0,0) circle (lex);

For some shadings it is not really clear how they can “fill” the path. For example, the ball shading
normally looks like this: @. How is this supposed to shade a rectangle? Or a triangle?

To solve this problem, the predefined shadings like ball or axis fill a large rectangle completely in a
sensible way. Then, when the shading is used to “shade” a path, what actually happens is that the path
is temporarily used for clipping and then the rectangular shading is drawn, scaled and shifted such that all
parts of the path are filled.

14.5.1 Choosing a Shading Type

The default shading is a smooth transition from gray to white and from above to bottom. However, other
shadings are also possible, for example a shading that will sweep a color from the center to the corners
outward. To choose the shading, you can use the shading= option, which will also automatically invoke the
shade option. Note that this does not change the shading color, only the way the colors sweep. For changing
the colors, other options are needed, which are explained below.

/tikz/shading=(name) (no default)

This selects a shading named (name). The following shadings are predefined:

e axis This is the default shading in which the color changes gradually between three horizontal
lines. The top line is at the top (uppermost) point of the path, the middle is in the middle, the
bottom line is at the bottom of the path.

D \tikz \shadedraw [shading=axis] (0,0) rectangle (1,1);

The default top color is gray, the default bottom color is white, the default middle is the “middle”
of these two.

e radial This shading fills the path with a gradual sweep from a certain color in the middle to
another color at the border. If the path is a circle, the outer color will be reached exactly at the
border. If the shading is not a circle, the outer color will continue a bit towards the corners. The
default inner color is gray, the default outer color is white.

\tikz \shadedraw [shading=radial] (0,0) rectangle (1,1);

e ball This shading fills the path with a shading that “looks like a ball.” The default “color” of the
ball is blue (for no particular reason).

139

. \tikz \shadedraw [shading=ball] (0,0) rectangle (1,1);
' \tikz \shadedraw [shading=ball] (0,0) circle (.5cm);

/tikz/shading angle=(degrees) (no default, initially 0)

This option rotates the shading (not the path!) by the given angle. For example, we can turn a
top-to-bottom axis shading into a left-to-right shading by rotating it by 90°.

I \tikz \shadedraw [shading=axis,shading angle=90] (0,0) rectangle (1,1);

You can also define new shading types yourself. However, for this, you need to use the basic layer directly,
which is, well, more basic and harder to use. Details on how to create a shading appropriate for filling paths
are given in Section 66.3.

14.5.2 Choosing a Shading Color

The following options can be used to change the colors used for shadings. When one of these options is
given, the shade option is automatically selected and also the “right” shading.

/tikz/top color={color) (no default)

This option prescribes the color to be used at the top in an axis shading. When this option is given,
several things happen:

1. The shade option is selected.
2. The shading=axis option is selected.

3. The middle color of the axis shading is set to the average of the given top color {color) and of
whatever color is currently selected for the bottom.

4. The rotation angle of the shading is set to 0.

: \tikz \draw[top color=red] (0,0) rectangle (2,1);

/tikz/bottom color={color) (no default)

This option works like top color, only for the bottom color.

/tikz/middle color=(color) (no default)

This option specifies the color for the middle of an axis shading. It also sets the shade and shading=axis
options, but it does not change the rotation angle.

Note: Since both top color and bottom color change the middle color, this option should be given
last if all of these options need to be given:

\tikz \draw[top color=white,bottom color=black,middle color=red]
(0,0) rectangle (2,1);

/tikz/left color=(color) (no default)

This option does exactly the same as top color, except that the shading angle is set to 90°.

140

/tikz/right color=(color) (no default)
Works like 1eft color.

/tikz/inner color={color) (no default)

This option sets the color used at the center of a radial shading. When this option is used, the shade
and shading=radial options are set.

\tikz \draw[inner color=red] (0,0) rectangle (2,1);

/tikz/outer color=(color) (no default)

This option sets the color used at the border and outside of a radial shading.

\tikz \draw[outer color=red,inner color=white]
(0,0) rectangle (2,1);

/tikz/ball color=(color) (no default)

This option sets the color used for the ball shading. It sets the shade and shading=ball options. Note
that the ball will never “completely” have the color (color). At its “highlight” spot a certain amount
of white is mixed in, at the border a certain amount of black. Because of this, it also makes sense to
say ball color=white or ball color=black

\begin{tikzpicture}
\shade[ball color=white] (0,0) circle (2ex);
\shade[ball color=red] (1,0) circle (2ex);

\shade[ball color=black] (2,0) circle (2ex);
\end{tikzpicture}

14.6 Establishing a Bounding Box

PGF is reasonably good at keeping track of the size of your picture and reserving just the right amount of space
for it in the main document. However, in some cases you may want to say things like “do not count this for the
picture size” or “the picture is actually a little large.” For this you can use the option use as bounding box
or the command \useasboundingbox, which is just a shorthand for \path[use as bounding box].

/tikz/use as bounding box (no value)

Normally, when this option is given on a path, the bounding box of the present path is used to determine
the size of the picture and the size of all subsequent paths are ignored. However, if there were previous
path operations that have already established a larger bounding box, it will not be made smaller by
this operation.

In a sense, use as bounding box has the same effect as clipping all subsequent drawing against the
current path—without actually doing the clipping, only making PGF treat everything as if it were
clipped.

The first application of this option is to have a {tikzpicture} overlap with the main text:

/
. / . .
Left of pieturel right of picture.

Left of picture\begin{tikzpicturel}
\draw[use as bounding box] (2,0) rectangle (3,1);
\draw (1,0) -- (4,.75);

\end{tikzpicture}right of picture.

In a second application this option can be used to get better control over the white space around the
picture:

141

Left of picture . right of picture.

Left of picture
\begin{tikzpicture}
\useasboundingbox (0,0) rectangle (3,1);
\fill (.75,.25) circle (.5cm);
\end{tikzpicture}
right of picture.

Note: If this option is used on a path inside a TEX group (scope), the effect “lasts” only till the end of
the scope. Again, this behavior is the same as for clipping.

There is a node that allows you to get the size of the current bounding box. The current bounding box
node has the rectangle shape and its size is always the size of the current bounding box.

Similarly, the current path bounding box node has the rectangle hape and the size of the bounding
box of the current path.

@ \begin{tikzpicture}
\draw[red] (0,0) circle (2pt);
\draw[red] (2,1) circle (3pt);

\draw (current bounding box.south west) rectangle
(current bounding box.north east);

\draw[red] (3,-1) circle (4pt);

\draw[thick] (current bounding box.south west) rectangle
(current bounding box.north east);
\end{tikzpicture}

14.7 Clipping and Fading (Soft Clipping)

Clipping path means that all painting on the page is restricted to a certain area. This area need not be
rectangular, rather an arbitrary path can be used to specify this area. The clip option, explained below, is
used to specify the region that is to be used for clipping.

A fading (a term that I propose, fadings are commonly known as soft masks, transparency masks,
opacity masks or soft clips) is similar to clipping, but a fading allows parts of the picture to be only “half
clipped.” This means that a fading can specify that newly painted pixels should be partly transparent. The
specification and handling of fadings is a bit complex and it is detailed in Section 19, which is devoted to
transparency in general.

/tikz/clip (no value)

This option causes all subsequent drawings to be clipped against the current path and the size of
subsequent paths will not be important for the picture size. If you clip against a self-intersecting path,
the even-odd rule or the nonzero winding number rule is used to determine whether a point is inside or
outside the clipping region.

The clipping path is a graphic state parameter, so it will be reset at the end of the current scope.
Multiple clippings accumulate, that is, clipping is always done against the intersection of all clipping
areas that have been specified inside the current scopes. The only way of enlarging the clipping area is
to end a {scope}.

\begin{tikzpicture}
\draw[clip] (0,0) circle (icm);
\fill[red] (1,0) circle (icm);
\end{tikzpicture}

It is usually a very good idea to apply the clip option only to the first path command in a scope.

If you “only wish to clip” and do not wish to draw anything, you can use the \clip command, which
is a shorthand for \path[clip].

142

\begin{tikzpicture}
\clip (0,0) circle (lcm);
\fill[red] (1,0) circle (icm);
\end{tikzpicture}

To keep clipping local, use {scope} environments as in the following example:

\begin{tikzpicture}
\draw (0,0) -- (O:1cm);
\draw (0,0) -- (10:1cm);

\draw (0,0) -- (20:1cm);
\draw (0,0) -- (30:1cm);
\begin{scope} [fill=red]
\fill[clip] (0.2,0.2) rectangle (0.5,0.5);

\draw (0,0) -- (40:1cm);
\draw (0,0) -- (50:1cm);
\draw (0,0) -- (60:1cm);
\end{scope}
\draw (0,0) -- (70:1cm);
\draw (0,0) -- (80:1cm);
\draw (0,0) -- (90:1cm);
\end{tikzpicture}

There is a slightly annoying catch: You cannot specify certain graphic options for the command used
for clipping. For example, in the above code we could not have moved the fill=red to the \fill
command. The reasons for this have to do with the internals of the PDF specification. You do not want
to know the details. It is best simply not to specify any options for these commands.

14.8 Doing Multiple Actions on a Path

If more than one of the basic actions like drawing, clipping and filling are requested, they are automatically
applied in a sensible order: First, a path is filled, then drawn, and then clipped (although it took Apple two
mayor revisions of their operating system to get this right...). Sometimes, however, you need finer control
over what is done with a path. For instance, you might wish to first fill a path with a color, then repaint the
path with a pattern and then repaint it with yet another pattern. In such cases you can use the following
two options:

/tikz/preactions=(options) (no default)

This option can be given to a \path command (or to derived commands like \draw which internally
call \path). Similarly to options like draw, this option only has an effect when given to a \path or as
part of the options of a node; as an option to a {scope} it has no effect.

When this option is used on a \path, the effect is the following: When the path has been completely
constructed and is about to be used, a scope is created. Inside this scope, the path is used but not with
the original path options, but with (options) instead. Then, the path is used in the usual manner. In
other words, the path is used twice: Once with (options) in force and then again with the normal path
options in force.

Here is an example in which the path consists of a rectangle. The main action is to draw this path in
red (which is why we see a red rectangle). However, the preaction is to draw the path in blue, which is
why we see a blue rectangle behind the red rectangle.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw
[preaction={draw,line width=4mm,blue}]
[line width=2mm,red] (0,0) rectangle (2,2);
\end{tikzpicture}

Note that when the preactions are preformed, then the path is already “finished.” In particular, applying
a coordinate transformation to the path has no effect. By comparison, applying a canvas transformation

143

does have an effect. Let us use this to add a “shadow” to a path. For this, we use the preaction to fill
the path in gray, shifted a bit to the right and down:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw
[preaction={fill=black,opacity=.5,
transform canvas={xshift=1mm,yshift=-1mm}}]
[fill=red] (0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

Naturally, you would normally create a style shadow that contains the above code. The shadow library,
see Section 38, contains predefined shadows of this kind.

It is possible to use the preaction option multiple times. In this case, for each use of the preaction
option, the path is used again (thus, the (options) do not accumulate in a single usage of the path).
The path is used in the order of preaction options given.

In the following example, we use one preaction to add a shadow and another to provide a shading,
while the main action is to use a pattern.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw [pattern=fivepointed stars]
[preaction={fill=black,opacity=.5,

* * transform canvas={xshift=1mm,yshift=-1mm}}]
* * [preaction={top color=blue,bottom color=white}]
* * (0,0) rectangle (1,2)
* * (1,2) circle (5mm);
\end{tikzpicture}

A complicated application is shown in the following example, where the path is used several times with
different fadings and shadings to create a special visual effect:

\begin{tikzpicture}
[
% Define an interesting style
button/.style={
/4 First preaction: Fuzzy shadow
preaction={fill=black,path fading=circle with fuzzy edge 20 percent,
opacity=.5,transform canvas={xshift=1mm,yshift=-1mm}},
% Second preaction: Background pattern
preaction={pattern=#1,
path fading=circle with fuzzy edge 15 percent},
% Third preaction: Make background shiny
preaction={top color=white,
bottom color=black!50,
shading angle=45,
path fading=circle with fuzzy edge 15 percent,
opacity=0.2},
% Fourth preaction: Make edge especially shiny
preaction={path fading=fuzzy ring 15 percent,
top color=black!5,
bottom color=black!80,
shading angle=45},
inner sep=2ex
1,
button/.default=horizontal lines light blue,
circle

]

\draw [help lines] (0,0) grid (4,3);
\node [button] at (2.2,1) {\Huge Big};
\node [button=crosshatch dots light steel blue,

text=white] at (1,1.5) {Small};
\end{tikzpicture}

/tikz/postaction=(options) (no default)

144

The postactions work in the same way as the preactions, only they are applied after the main action
has been taken. Like preactions, multiple postaction options may be given to a \path command, in
which case the path is reused several times, each time with a different set of options in force.

If both pre- and postactions are specified, then the preactions are taken first, then the main action, and
then the post actions.
In the first example, we use a postaction to draw the path, after it has already been drawn:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw
[postaction={draw,line width=2mm,bluel}]
[line width=4mm,red,fill=white] (0,0) rectangle (2,2);
\end{tikzpicture}

In another example, we use a postaction to “colorzie” a path:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw
[postaction={path fading=south,fill=whitel}]
[postaction={path fading=south,fading angle=45,fill=blue,opacity=.5}]
[left color=black,right color=red,draw=white,line width=2mm]
(0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

14.9 Decorating and Morphing a Path

Before a path is used, it is possible to first “decorate” and/or “morph” it. Morphing means that the path
is replaced by another path that slightly varied. Such morphings are a special case of the more general
“decorations” described in detail in Section 20. For instance, in the following example the path is drawn
twice: Once normally and then in a morphed (=decorated) manner.

\begin{tikzpicture}
\draw (0,0) rectangle (3,2);
\draw [red, decorate, decoration=zigzag]
(0,0) rectangle (3,2);
\end{tikzpicture}

~

Naturally, we could have combined this into a single command using pre- or postaction. It is also possible
to deform shapes:
\begin{tikzpicture}
\node [circular drop shadow={shadow scale=1.05},minimum size=3.13cm,
decorate, decoration=zigzag,

fill=blue!20,draw,thick,circle] {Hello!'};
\end{tikzpicture}

145

15 Nodes and Edges

15.1 Overview

In the present section, the usage of nodes in TikZ is explained. A node is typically a rectangle or circle or
another simple shape with some text on it.

Nodes are added to paths using the special path operation node. Nodes are not part of the path itself.
Rather, they are added to the picture after the path has been drawn.

In Section 15.2 the basic syntax of the node operation is explained, followed in Section 15.3 by the syntax
for multi-part nodes, which are nodes that contain several different text parts. After this, the different
options for the text in nodes are explained. In Section 15.5 the concept of anchors is introduced along
with their usage. In Section 15.7 the different ways transformations affect nodes are studied. Sections 15.8
and 15.9 are about placing nodes on or next to straight lines and curves. In Section 15.11 it is explained
how a node can be used as a “pseudo-coordinate.” Section 15.12 introduces the edge operation, which works
similar to the to operation and also similar to the node operation. Finally, Section 15.14.1 explains the
special after node path options.

15.2 Nodes and Their Shapes

In the simplest case, a node is just some text that is placed at some coordinate. However, a node can also
have a border drawn around it or have a more complex background and foreground. Indeed, some nodes do
not have a text at all, but consist solely of the background. You can name nodes so that you can reference
their coordinates later in the same picture or, if certain precautions are taken as explained in Section 15.13,
also in different pictures.

There are no special TEX commands for adding a node to a picture; rather, there is path operation called
node for this. Nodes are created whenever TikZ encounters node or coordinate at a point on a path where
it would expect a normal path operation (like == (1,1) or sin (1,1)). It is also possible to give node
specifications inside certain path operations as explained later.

The node operation is typically followed by some options, which apply only to the node. Then, you can
optionally name the node by providing a name in round braces. Lastly, for the node operation you must
provide some label text for the node in curly braces, while for the coordinate operation you may not. The
node is placed at the current position of the path after the path has been drawn. Thus, all nodes are drawn
“on top” of the path and retained until the path is complete. If there are several nodes on a path, they are
drawn on top of the path in the order they are encountered.

\tikz \fill[fill=examplefill]
(0,0) node {first node}

-- (1,1) node {second node}
-- (0,2) node {third node};

third node
second node

first node

The syntax for specifying nodes is the following;:

\path ... nodel[{options)] ({name))at ({coordinate)){(text)} ... ;

The effect of at is to place the node at the coordinate given after at and not, as would normally be the
case, at the last position. The at syntax is not available when a node is given inside a path operation
(it would not make any sense, there).

The ({name)) is a name for later reference and it is optional. You may also add the option name=(name)
to the (option) list; it has the same effect.

/tikz/name=(node name) (no default)

Assigns a name to the node for later reference. Since this is a “high-level” name (drivers never
know of it), you can use spaces, number, letters, or whatever you like when naming a node. Thus,
you can name a node just 1 or perhaps start of chart or even y_1. Your node name should not
contain any punctuation like a dot, a comma, or a colon since these are used to detect what kind
of coordinate you mean when you reference a node.

/tikz/alias=(another node name) (no default)

146

This option allows you to provide another name for the node. Giving this option multiple times
will allow you to access the node via several aliases. Using the late options options, you can also
assign an alias name to a node at a later point.

/tikz/at=(coordinate) (no default)

This is another way of specifying ath at coordinate. Note that, typically, you will have to enclose
the (coordinate) in curly braces so that a comma inside the (coordinate) does not confuse TEX.

The (options) is an optional list of options that apply only to the node and have no effect outside. The
other way round, most “outside” options also apply to the node, but not all. For example, the “outside”
rotation does not apply to nodes (unless some special options are used, sigh). Also, the outside path
action, like draw or £i11, never applies to the node and must be given in the node (unless some special
other options are used, deep sigh).

As mentioned before, we can add a border and even a background to a node:
: \tikz \fill[fill=examplefill]
third node (0,0) node {first node}
-- (1,1) node[draw] {second node}

-- (0,2) node[fill=red!20,draw,double,rounded corners] {third node};
second node

first node

The “border” is actually just a special case of a much more general mechanism. Each node has a certain
shape which, by default, is a rectangle. However, we can also ask TikZ to use a circle shape instead or
an ellipse shape (you have to include pgflibraryshapes for the latter shape):

\tikz \fill[fill=examplefill]
(0,0) node{first node}
-- (1,1) nodel[ellipse,draw] {second node}

third node -- (0,2) nodelcircle,fill=red!20] {third node};

first node

In the future, there might be much more complicated shapes available such as, say, a shape for a resistor
or a shape for a UML class. Unfortunately, creating new shapes is a bit tricky and makes it necessary
to use the basic layer directly. Life is hard.

To select the shape of a node, the following option is used:

/tikz/shape=(shape name) (no default, initially rectangle)

Select the shape either of the current node or, when this option is not given inside a node but
somewhere outside, the shape of all nodes in the current scope.

Since this option is used often, you can leave out the shape=. When TikZ encounters an option like
circle that it does not know, it will, after everything else has failed, check whether this option is
the name of some shape. If so, that shape is selected as if you had said shape=(shape name).

By default, the following shapes are available: rectangle, circle, coordinate, and, when the
package pgflibraryshapes is loaded, also ellipse. Details of these shapes, like their anchors and
size options, are discussed in Section 15.2.1.

The following styles influences how nodes are rendered:
/tikz/every node (style, initially empty)
This style is installed at the beginning of every node.

\begin{tikzpicture}[every node/.style={draw}]
\draw (0,0) node {A} -- (1,1) node {B};
\end{tikzpicture}

147

/tikz/every (shape) node (style, initially empty)
These styles are installed at the beginning of a node of a given (shape). For example,
every rectangle node is used for rectangle nodes, and so on.

\begin{tikzpicture}
[every rectangle node/.style={draw},

every circle node/.style={draw,double}]
\draw (0,0) node[rectangle] {A} -- (1,1) nodelcircle] {B};
m \end{tikzpicture}

There is a special syntax for specifying “light-weighed” nodes:

\path ... coordinate [(options)] ({name))at ({coordinate)) ...;
This has the same effect as
node [shape=coordinatel] [{options)] ({name)) at ({coordinate)){},
where the at part might be missing.

Since nodes are often the only path operation on paths, there are two special commands for creating
paths containing only a node:

\node
Inside {tikzpicture} this is an abbreviation for \path node.

\coordinate

Inside {tikzpicture} this is an abbreviation for \path coordinate.

15.2.1 Predefined Shapes
PGF and TikZ define three shapes, by default:

e rectangle,
e circle, and
e coordinate.

By loading library packages, you can define more shapes like ellipses or diamonds; see Section 39 for the
complete list of shapes.

The coordinate shape is handled in a special way by TikZ. When a node x whose shape is coordinate
is used as a coordinate (x), this has the same effect as if you had said (x.center). None of the special “line
shortening rules” apply in this case. This can be useful since, normally, the line shortening causes paths to
be segmented and they cannot be used for filling. Here is an example that demonstrates the difference:

[(—11 \begin{tikzpicture}[every node/.style={draw}]
\path[yshift=1.5cm,shape=rectangle]

(0,0) node(a1){} (1,0) node(a2){}
—-1 (1,1) node(a3){} (0,1) node(ad){};
\filldraw[fill=examplefill] (al) -- (a2) -- (a3) -- (a4);

\path [shape=coordinate]
(0,0) coordinate(bl) (1,0) coordinate(b2)
(1,1) coordinate(b3) (0,1) coordinate(b4);
\filldraw[fill=examplefill] (b1) -- (b2) -- (b3) -- (b4);
\end{tikzpicture}

15.2.2 Common Options: Separations, Margins, Padding and Border Rotation

The exact behaviour of shapes differs, shapes defined for more special purposes (like a, say, transistor shape)
will have even more custom behaviors. However, there are some options that apply to most shapes:

/pgf/inner sep=(dimension) (no default, initially .3333em)

148

alias /tikz/inner sep
An additional (invisible) separation space of (dimension) will be added inside the shape, between the
text and the shape’s background path. The effect is as if you had added appropriate horizontal and
vertical skips at the beginning and end of the text to make it a bit “larger.”

For those familiar with ¢SS, this is the same as padding.

default \pegin{tikzpicture}

\draw (0,0) node [inner sep=Opt,draw] {tight}
(Ocm,2em) node[inner sep=5pt,draw] {loose}
OEEE (Ocm,4em) node[fill=examplefill] {default};
\end{tikzpicture}
tight]
/pgf/inner xsep=(dimension) (no default, initially .3333em)

alias /tikz/inner xsep

Specifies the inner separation in the z-direction, only.

/pgf/inner ysep=(dimension) (no default, initially .3333em)
alias /tikz/inner ysep
Specifies the inner separation in the y-direction, only.

/pgf/outer sep=(dimension) (no default, initially .5\pgflinewidth)
alias /tikz/outer sep
This option adds an additional (invisible) separation space of {dimension) outside the background path.
The main effect of this option is that all anchors will move a little “to the outside.”
For those familiar with €SS, this is same as margin.

The default for this option is half the line width. When the default is used and when the background
path is draw, the anchors will lie exactly on the “outside border” of the path (not on the path itself).
When the shape is filled, but not drawn, this may not be desirable. In this case, the outer sep should
be set to zero point.

\begin{tikzpicture}
filled drawn \draw[line width=5pt]
7 (0,0) node[outer sep=Opt,fill=examplefill] (£) {filled}
(2,0) nodelinner sep=.5\pgflinewidth+2pt,draw] (d) {drawn};

\draw[->] (1,-1) -- (£);
\draw[->] (1,-1) -- (d);
\end{tikzpicture}

/pgf/outer xsep=(dimension) (no default, initially .5\pgflinewidth)
alias /tikz/outer xsep

Specifies the outer separation in the x-direction, only.

/pgf/outer ysep=(dimension) (no default, initially .5\pgflinewidth)
alias /tikz/outer ysep

Specifies the outer separation in the y-direction, only.

/pgf/minimum height=(dimension) (no default, initially Opt)
alias /tikz/minimum height
This option ensures that the height of the shape (including the inner, but ignoring the outer separation)
will be at least (dimension). Thus, if the text plus the inner separation is not at least as large as
(dimension), the shape will be enlarged appropriately. However, if the text is already larger than
(dimension), the shape will not be shrunk.

\begin{tikzpicture}
lcm Ocm \draw (0,0) node[minimum height=1cm,draw] {1lcm}
(2,0) node[minimum height=0cm,draw] {Ocm};
\end{tikzpicture}
/pgf/minimum width=({dimension) (no default, initially Opt)

149

alias /tikz/minimum width
Same as minimum height, only for the width.

\begin{tikzpicture}
\draw (0,0) node[minimum height=2cm,minimum width=3cm,draw] {3×2};
\end{tikzpicture}
3 X2
/pgf/minimum size=(dimension) (no default)

alias /tikz/minimum size
Sets both the minimum height and width at the same time.

\begin{tikzpicture}
\draw (0,0) node[minimum size=2cm,draw] {square};
\draw (0,-2) node[minimum size=2cm,draw,circle] {circle};

ECUEIC \end{tikzpicture}

circle

/pgf/shape aspect=(aspect ratio) (no default)
alias /tikz/shape aspect
Sets a desired aspect ratio for the shape. For the diamond shape, this option sets the ratio between
width and height of the shape.

\begin{tikzpicture}
\draw (0,0) nodel[shape aspect=1,diamond,draw] {aspect 1};
\draw (0,-2) node[shape aspect=2,diamond,draw] {aspect 2};
\end{tikzpicture}

Some shapes (but not all), support a special kind of rotation. This rotation affects only the border of a
shape and is independent of the node contents, but in addition to any other transformations.

\tikzstyle{every node}=[dart, shape border uses incircle,
inner sep=1pt, draw]
\begin{tikzpicture}

\foreach \a/\b/\c in {A/0/0, B/45/0, C/0/45, D/45/45}
\node [shape border rotate=\b, rotate=\c] at (\b/36,-\c/36) {\a};
\end{tikzpicture}

There are two types of rotation: restricted and unrestricted. Which type of rotation is applied is deter-
mined by on how the shape border is constructed. If the shape border is contructed using an incircle, that is,
a circle that tightly fits the node contents (including the inner sep), then the rotation can be unrestricted.
If, however, the border is constructed using the natural dimensions of the node contents, the rotation is
restricted to integer multiples of 90 degrees.

Why should there be two kinds of rotation and border construction? Borders constructed using the
natural dimensions of the node contents provide a much tighter fit to the node contents, but to maintain
this tight fit, the border rotation must be restricted to integer multiples of 90 degrees. By using an incircle,
unrestricted rotation is possible, but the border will not make a very tight fit to the node contents.

150

\tikzstyle{every node}=[isosceles triangle, draw]

\begin{tikzpicture}
\node {abc};
\node [shape border uses incircle] at (2,0) {abcl};

\end{tikzpicture}

There are PGF keys determine how a shape border is contructed, and to specify its rotation. It should
be noted that not all shapes support these keys, so reference should be made to the documentation for
individual shapes.

/pgf/shape border uses incircle=(boolean) (default true)
alias /tikz/shape border uses incircle
Determines if the border of a shape is constructed using the incircle. If no value is given (boolean) will
take the default value true.

/pgf/shape border rotate=(angle) (no default, initially 0)
alias /tikz/shape border rotate
Rotates the border of a shape independently of the node contents, but in addition to any other trans-
formations. If the shape border is not constructed using the incircle, the rotation will be rounded to
the nearest integer multiple of 90 degrees when the shape is drawn.

Note that if the border of the shape is rotated, the compass point anchors, and ‘text box’ anchors
(including mid east, base west, and so on), do not rotate, but the other anchors do:

\tikzstyle{every node}=[shape=trapezium, draw, shape border uses incirclel
\begin{tikzpicture}
\node at (0,0) (A) {A};

\node [shape border rotate=30] at (1.5,0) (B) {B};
\foreach \s/\t in
{left side/base east, bottom side/north, bottom left corner/basel}{
\fill[red] (A.\s) circle(1.5pt) (B.\s) circle(1.5pt);
\fill[blue] (A.\t) circle(1.5pt) (B.\t) circle(l.5pt);
}
\end{tikzpicture}

Finally, a somewhat unfortunate side-effect of rotating shape borders is that the supporting shapes do
not distinguish between outer xsep and outer ysep, and typically, the larger of the two values will be
used.

15.3 Multi-Part Nodes

Most nodes just have a single simple text label. However, nodes of a more complicated shapes might be
made up from several node parts. For example, in automata theory a so-called Moore state has a state name,
drawn in the upper part of the state circle, and an output text, drawn in the lower part of the state circle.
These two parts are quite independent. Similarly, a UML class shape would have a name part, a method
part, and an attributes part. Different molecule shape might use parts for the different atoms to be drawn
at the different positions, and so on.

Both pcrF and TikZ support such multipart nodes. On the lower level, PGF provides a system for
specifying that a shape consists of several parts. On the TikZ level, you specify the different node parts by
using the following command:

\nodepart{{part name)}

This command can only be used inside the (text) argument of a node path operation. It works a little
bit like a \part command in BTEX. It will stop the typesetting of whatever node part was typeset until
now and then start putting all following text into the node part named (part name)—until another
\partname is encountered or until the node (text) ends.

\begin{tikzpicture}
a \node [circle split,draw,double,fill=red!20]
o/ ¢

% No \nodepart has been used, yet. So, the following is put in the
% ¢‘text’’ node part by default.
$q_1%
\nodepart{lower} 7 Ok, end ‘‘text’’ part, start ‘‘output’’ part
$00%
}; 7% output part ended.
\end{tikzpicture}

151

You will have to lookup which parts are defined by a shape.

The following styles influences node parts:

/tikz/every (part name) node part (style, initially empty)

This style is installed at the beginning of every node part named (part name).

m \tikz [every lower node part/.style={red}]
\node [circle split,draw] {q_1 \nodepart{lower} 00};

15.4 Options for the Text in Nodes

The simplest option for the text in nodes is its color. Normally, this color is just the last color installed
using color=, possibly inherited from another scope. However, it is possible to specificly set the color used
for text using the following option:

/tikz/text={color) (no default)
Sets the color to be used for text labels. A color= option will immediately override this option.

. " . \begin{tikzpicture}
sgdl wed e \draw [red] (0,0) -- +(1,1) node[abovel {red};

\draw[text=red] (1,0) -- +(1,1) node[above] {red};
\draw (2,0) -- +(1,1) nodel[above,red] {red};
\end{tikzpicture}

Just like the color itself, you may also wish to set the opacity of the text only. For this, use the option
text opacity option, which is detailed in Section 19.
Next, you may wish to adjust the font used for the text. Use the following option for this:

/tikz/font=(font commands) (no default)
Sets the font used for text labels.

italic ~ \peginltikzpicture}
\draw[font=\itshape] (1,0) -- +(1,1) node[above] {italic};

/ \end{tikzpicture}

A perhaps more useful example is the following;:
\tikz [every text node part/.style={font=\itshapel,
every lower node part/.style={font=\footnotesize}]

W \node [circle split,draw] {state \nodepart{lower} output};

Normally, when a node is typeset, all the text you give in the braces is but in one long line (in an \hbox,
to be precise) and the node will become as wide as necessary.

You can change this behaviour using the following options. They allow you to limit the width of a node
(naturally, at the expense of its height).

/tikz/text width=(dimension) (no default)
This option will put the text of a node in a box of the given width (more precisely, in a {minipage} of
this width; for plain TEX a rudimentary “minipage emulation” is used).

If the node text is not as wide as {dimension), it will nevertheless be put in a box of this width. If it is
larger, line breaking will be done.

By default, when this option is given, a ragged right border will be used. This is sensible since, typically,
these boxes are narrow and justifying the text looks ugly.

152

\tikz \draw (0,0) node[fill=examplefill,text width=3cm]

This is a demon-
{This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

/tikz/text justified (no value)
Causes the text to be justified instead of (right)ragged. Use this only with pretty broad nodes.

\tikz \draw (0,0) node[fill=examplefill,text width=3cm,text justified]

This is a demon- {This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

In the above example, TEX complains (rightfully) about three very badly typeset lines. (For this manual
I asked TEX to stop complaining by using \hbadness=10000, but this is a foul deed, indeed.)

/tikz/text ragged (no value)

Causes the text to be typeset with a ragged right. This uses the original plain TEX definition of a ragged
right border, in which TEX will try to balance the right border as well as possible. This is the default.

\tikz \draw (0,0) node[fill=examplefill,text width=3cm,text ragged]

This is a demon- {This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

/tikz/text badly ragged (no value)

Causes the right border to be ragged in the ITEX-style, in which no balancing occurs. This looks ugly,
but it may be useful for very narrow boxes and when you wish to avoid hyphenations.

e de & \tikz \draw (0,0) node[fill=examplefill,text width=3cm,text badly ragged]

. {This is a demonstration text for showing how line breaking works.l};
demonstration text

for showing how
line breaking
works.

/tikz/text centered (no value)

Centers the text, but tries to balance the lines.

\tikz \draw (0,0) node[fill=examplefill,text width=3cm,text centered]

This is a demon- {This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

/tikz/text badly centered (no value)

Centers the text, without balancing the lines.

T T \tikz \draw (0,0) node[fill=examplefill,text width=3cm,text badly centered]

i {This is a demonstration text for showing how line breaking works.l};
demonstration text

for showing how
line breaking
works.

153

In addition to changing the width of nodes, you can also change the height of nodes. This can be done in
two ways: First, you can use the option minimum height, which ensures that the height of the whole node
is at least the given height (this option is described in more detail later). Second, you can use the option
text height, which sets the height of the text itself, more precisely, of the TEX text box of the text. Note
that the text height typically is not the height of the shape’s box: In addition to the text height, an
internal inner sep is added as extra space and the text depth is also taken into account.

I recommend using minimum size instead of text height except for special situations.

/tikz/text height=(dimension) (no default)

Sets the height of the text boxes in shapes. Thus, when you write something like node {text}, the
text is first typeset, resulting in some box of a certain height. This height is then replaced by the height
text height. The resulting box is then used to determine the size of the shape, which will typically be
larger. When you write text height= without specifying anything, the “natural” size of the text box
remains unchanged.

\tikz \node [draw] {y};
y \tikz \node[draw,text height=10pt] {y};

/tikz/text depth=(dimension) (no default)

This option works like text height, only for the depth of the text box. This option is mostly useful
when you need to ensure a uniform depth of text boxes that need to be aligned.

15.5 Positioning Nodes

When you place a node at some coordinate, the node is centered on this coordinate by default. This is often
undesirable and it would be better to have the node to the right or above the actual coordinate.

15.5.1 Positioning Nodes Using Anchors

PGF uses a so-called anchoring mechanism to give you a very fine control over the placement. The idea is
simple: Imaging a node of rectangular shape of a certain size. PGF defines numerous anchor positions in
the shape. For example to upper right corner is called, well, not “upper right anchor,” but the north east
anchor of the shape. The center of the shape has an anchor called center on top of it, and so on. Here are
some examples (a complete list is given in Section 15.2.1).

north west north north east
[] [) L)
weste Big gode ecast
base

Now, when you place a node at a certain coordinate, you can ask TikZ to place the node shifted around
in such a way that a certain anchor is at the coordinate. In the following example, we ask TikZ to shift the
first node such that its north east anchor is at coordinate (0,0) and that the west anchor of the second
node is at coordinate (1,1).

second node

first node

\tikz \draw (0,0) node[anchor=north east] {first node}
rectangle (1,1) node[anchor=west] {second node};

Since the default anchor is center, the default behaviour is to shift the node in such a way that it is
centered on the current position.

/tikz/anchor=(anchor name) (no default)

Causes the node to be shifted such that it’s anchor (anchor name) lies on the current coordinate.

154

The only anchor that is present in all shapes is center. However, most shapes will at least define
anchors in all “compass directions.” Furthermore, the standard shapes also define a base anchor, as
well as base west and base east, for placing things on the baseline of the text.

The standard shapes also define a mid anchor (and mid west and mid east). This anchor is half the
height of the character “x” above the base line. This anchor is useful for vertically centering multiple
nodes that have different heights and depth. Here is an example:

X—Y—+t
X vy ¢t
X—y—4

\begin{tikzpicture}[scale=3,transform shape]
/ First, center alignment -> wobbles
\draw[anchor=center] (0,1) mnode{x} -- (0.5,1) mnode{y} -- (1,1) node{t};
/% Second, base alignment -> no wobble, but too high
\draw [anchor=base] (0,.5) node{x} -- (0.5,.5) node{y} -- (1,.5) node{t};
% Third, mid alignment
\draw [anchor=mid] (0,0) node{x} -- (0.5,0) mnode{y} -- (1,0) mnode{t};
\end{tikzpicture}

15.5.2 Basic Placement Options

Unfortunately, while perfectly logical, it is often rather counter-intuitive that in order to place a node above

a given point, you need to specify the south anchor. For this reason, there are some useful options that

allow you to select the standard anchors more intuitively:

/tikz/above=(offset) (default Opt)
Does the same as anchor=south. If the (offset) is specified, the node is additionally shifted upwards by
the given (offset).

abgve \tikz \fill (0,0) circle (2pt) node[above] {abovel};

aTheRE \tikz \fill (0,0) circle (2pt) node[above=2pt] {abovel};

/tikz/below=(offset) (default Opt)
Similar to above.

/tikz/left=(offset) (default Opt)
Similar to above.

/tikz/right=(offset) (default Opt)
Similar to above.

/tikz/above left (no value)
Does the same as anchor=south east. Note that giving both above and left options does not have
the same effect as above left, rather only the last left “wins.” Actually, this option also takes an
(offset) parameter, but using this parameter without using the positioning library is deprecated. (The
positioning library changes the meaning of this parameter to something more sensible.)

ATHERE 1eft. \tikz \fill (0,0) circle (2pt) node[above left] {above left};

155

/tikz/above right (no value)
Similar to above left.

above right \tikz \fill (0,0) circle (2pt) node[above right] {above right};
°

/tikz/below left (no value)

Similar to above left.

/tikz/below right (no value)

Similar to above left.

15.5.3 Advanced Placement Options

While the standard placement options suffice for simple cases, the positioning library offers more convenient
placement options.

\usetikzlibrary{positioning} % ELX and plain TgX

\usetikzlibrary[positioning] % ConTsXt
The library defines additional options for placing nodes conveniently. It also redefines the standard
options like above so that they give you better control of node placement.

When this library is loaded, the options like above or above left behave differently.

/tikz/above=(specification) (default Opt)
With the positioning library loaded, the above option does not take a simple (dimension) as its
paramter. Rather, it can (also) take a more elaborate (specification) as parameter. This (specification)
has the following general form: It starts with an optional (shifting part) and is followed by an optional
(of-part). Let us start with the (shifting part), which can have three forms:

1. It can simply be a (dimension) (or a mathematical expression that evaluates to a dimension) like
2cm or 3cm/2+4cm. In this case, the following happens: the node’s anchor is set to south and the
node is vertically shifted upwards by (dimension).

\begin{tikzpicture}
[éii)ve \draw[help lines] (0,0) grid (2,2);
\node at (1,1) [above=2pt+3pt,draw] {above};
\end{tikzpicture}

This use of the above option is the same as if the positioning library were not loaded.

2. It can be a (number) (that is, any mathematical expression that does not include a unit like pt or
cm). Examples are 2 or 3+sin(60). In this case, the anchor is also set to south and the node is
vertically shifted by the vertical component of the coordinate (0, (number)).

\begin{tikzpicture}
[éig)ve \draw[help lines] (0,0) grid (2,2);
\node at (1,1) [above=.2,draw] {above};
% south border of the node is now 2mm above (1,1)
\end{tikzpicture}

3. It can be of the form (number or dimension 1) and (number or dimension 2). This specifica-

tion does not make particular sense for the above option, it is much more useful for options like
above left. The reason it is allowed for the above option is that it is sometimes automatically
used, as explained later.
The effect of this option is the following. First, the point ({number of dimension 2),{number or
dimension 1)) is computed (note the inversed order), using the normal rules for evaluating such
a coordinate, yielding some position. Then, the node is shifted by the vertical component of this
point. The anchor is set to south.

156

\begin{tikzpicture}

T I— \draw[help lines] (0,0) grid (2,2);

\node at (1,1) [above=.2 and 3mm,draw] {above};
7 south border of the node is also 2mm above (1,1)
\end{tikzpicture}

The (shifting part) can optionally be followed by a (of-part), which has one of the following forms:

1. The (of-part) can be declareof (coordinate), where(coordinate) is not in parentheses and it is not
just a node name. An example would be of somenode.north or of 2,3. In this case, the following
happens: First, the node’s at parameter is set to the (coordinate). Second, the node is shifted
according to the (shift-part). Third, the anchor is set to south.

Here is

a basic example:

l lcm of somenode.north l

\begin{tikzpicture}[every node/.style=draw]

5mm |of somen

\draw[help lines] (0,0) grid (2,2);
\node (somenode) at (1,1) {some node};

de.north east

o ode]

i
SOULIIC I1OUC

As can

\node [above=bmm of somenode.north east] {\tiny 5mm of somenode.north east};
\node [above=lcm of somenode.north] {\tiny 1cm of somenode.north};
\end{tikzpicture}

be seen the above=b5mm of somenode.north east option does, indeed, place the node

5mm above the north east anchor of somenode. The same effect could have been achieved writing
above=5mm followed by at=(somenode.north east).

If the (

is used,

shift-part) is missing, the shift is not zero, but rather the value of the node distance key
see below.

2. The (of-part) can have be of (node name). An example would be of somenode. In this case, the
following usually happens:

e The anchor is set to south.
e The node is shifted according to the (shifting part) or, if it is missing, according to the value
of node distance.

e The node’s at parameter is set to (node name) .north.

The net effect of all this is that the new node will be placed in such a way that the distance between
is south border and (node name)’s north border is exactly the given distance.

l above=1lcm

\begin{tikzpicture} [every node/.style=draw]

of some node l

\draw[help lines] (0,0) grid (2,2);

lem \node (some node) at (1,1) {some node};

\node (other node) [above=lcm of some node] {\tiny above=1icm of some nodel};

\draw [<->] (some node.north) -- (other node.south)
node [midway,right,draw=none] {lcm};

\end{tikzpicture}

It is possible to change the behaviour of this (specification) rather drastically, using the following

key:

/tikz/on grid=(boolean) (no default, initially false)

When this key is set to true, an {of-part) of the current form behaves differently: The anchors
set for the current node as well as the anchor used for other (node name) are set the center.

This has the following effect: When you say above=1cm of somenode with on grid set to
true, the new node will be placed in such a way that its center is lcm above the center of
somenode. Repeatedly placing nodes in this way will result in nodes that are centered on “grid
coordinate,” hence the name of the option.

157

[E] \begin{tikzpicture}[every node/.style=draw]

\draw[help lines] (0,0) grid (2,3);
Fi] % Not gridded
L \node (al) at (0,0) {not gridded};
[ﬁiéi] \node (b1l) [above=lcm of al] {fooyl};
FE:::] \node (c1) [above=1icm of bi] {a};
oy
% gridded
ridded ["ri \node (a2) at (2,0) {gridded};
’nOt & LS ded‘ \node (b2) [on grid,above=icm of a2] {fooy};
\node (c2) [on grid,above=icm of b2] {a};
\end{tikzpicture}

/tikz/node distance=(shifting part) (no default, initially 1cm and lcm)
The value of this key is used as (shifting part) is used if and only if a (of-part) is present, but no
(shifting part).

\begin{tikzpicture}[every node/.style=draw,node distance=5mm]
\draw[help lines] (0,0) grid (2,3);
[:1
il

% Not gridded

\node (al) at (0,0) {not gridded};
\node (b1l) [above=of all {fooy};

:} \node (c1l) [above=of bl] {a};

% gridded
‘ \begin{scopel}[on grid]
\node (a2) at (2,0) {gridded};
\node (b2) [above=of a2] {fooy};
\node (c2) [above=of b2] {a};
\end{scope}
\end{tikzpicture}

/tikz/below=(specification) (no default)

This key is redefined in the same manner as above.

/tikz/left=(specification) (no default)
This key is redefined in the same manner as above, only all vertical shifts are replaced by horizontal
shifts.

/tikz/right=(specification) (no default)

This key is redefined in the same manner as left.

/tikz/above left=(specification) (no default)
This key is also redefined in a manner similar to the above, but behaviour of the (shifting part) is more
complicated:

1. When the (shifting part) is of the form (number or dimension) and (number or dimension), it has
(essentially) the effect of shifting the node vertically upwards by the first {(number or dimension) and
to the left by the second. To be more precise, the coordinate ({second number or dimension), (first
number or dimension)) is computed and then the node is shifted vertically by the y-part of the
resulting coordinate and horizontally be the negated z-part of the result. (This is exactly what
you expect, except possibly when you have used the x and y options to modify the xy-coordinate
system so that the unit vectors no longer point in the expected directions.)

2. When the (shifting part) is of the form (number or dimension), the node is shifted by this (number
or dimension) in the direction of 135°. This means that there is a difference between a (shifting
part) of 1cm and of 1cm and 1cm: In the second case, the node is shifted by lem upward and lem
to the left; in the first case it is shifted by %\@cm upward and by the same amount to the left. A
more mathematical way of phrasing this is the following: A plain (dimension) is measured in the
lo-norm, while a (dimension) and (dimension) is measured in the [;-norm.

The following example should help to illustrate the difference:

158

=)

@w@? OFRO

\draw[help lines] (0,0) grid (2,5);
\begin{scope} [node distance=5mm]
\node (a) at (1,1) {a};
\node [left=of a] {1}; \node
\node [above=of a] {3}; \node
\node [above left=of a] {5}; \node
\node [below left=of a] {7}; \node
\end{scope}

ANSVERN,

\node (b) at (1,4) {b};

HPE Y6
MY\ AR

\node [left=of b] {1}; \node
\node [above=of b] {3}; \node
<> \node [above left=of b] {5}; \node
\node [below left=of b] {7}; \node
\end{scope}
\end{tikzpicture}

:

\begin{tikzpicture}[every node/.style={draw,circlel}]

[right=of al {2};
[below=of a] {4};
[above right=of a]
[below right=of al

\begin{scope} [node distance=5mm and 5mm]

[right=of bl {2};
[below=of b] {4};
[above right=of b]
[below right=of b]

\begin{tikzpicture} [every node/.style={draw,rectanglel}]

[right=of al {2};
[below=of a] {4};
[above right=of a]
[below right=of al

[right=of bl {2};
[below=of b] {4};
[above right=of b]
[below right=of bl

\draw[help lines] (0,0) grid (2,5);
\begin{scope}[node distance=5mm]
[F 4] F] \node (a) at (1,1) {a};
il I I \node [left=of a] {1}; \node
\node [above=of a] {3}; \node
[; (1] fj \node [above left=of a] {5}; \node
- (Bl = \node [below left=of al] {7}; \node
\end{scope}
5 \begin{scope} [node distance=5mm and 5mm]
5 2] |6 \node (b) at (1,4) {b};
\node [left=of b] {1}; \node
[F PN C] \node [above=of b] {3}; \node
= = = \node [above left=of b] {5}; \node
\node [below left=of b] {7}; \node
E \end{scope}
\end{tikzpicture}

\draw[help lines] (0,0) grid (4,4);
\begin{scope} [node distance=1]

[<
=]

r]ﬂ Al [] \node (a) at (2,3) {a};
L] L 2] \node [left=of a] {1}; \node
\node [above=of a] {3}; \node
i \node [above left=of a] {5}; \node
Lel \node [below left=of a] {7}; \node
\end{scope}
(=] [a] (] \begin{scope} [node distance=1 and 1]
L] L2 2] \node (b) at (2,0) {b};
\node [left=of b] {1}; \node
Tﬂ [4L] [$] \node [above=of b] {3}; \node
=] 2] =] \node [above left=of b] {5}; \node
\node [below left=of b] {7}; \node
\end{scope}
\end{tikzpicture}

/tikz/below left=(specification)

Works similar to above left.

/tikz/above left=(specification)

Works similar to above left.

/tikz/above right=(specification)

‘Works similar to above left.

\begin{tikzpicturel}[every node/.style={draw,rectangle},on

[right=of a] {2};
[below=of a] {4};
[above right=of al
[below right=of a]

[right=of bl {2};
[below=of bl {4};
[above right=of b]
[below right=of b]

The positioning package also introduces the following new placement keys:

/tikz/base left=(specification)

159

{6};
{8};

{6};
{8};

{6};
{8};

{6};
{8};

grid]

{6};
{8};

{6};
{8};

(no default)

(no default)

(no default)

(no default)

This key works like the 1eft key, only instead of the east anchor, the base east anchor is used and,
when the second form of an (of-part) is used, the corresponding base west anchor.

This key is useful for chaining together nodes so that their base lines are aligned.

\begin{tikzpicture}[node distance=1ex]

}(a } \draw[help lines] (0,0) grid (3,1);
\huge
\node (X) at (0,1) {X};
}{ EL :y* tnode (a) [r:?.ghtiof X1 {a};
node (y) [right=of al {y};
\node (X) at (0,0) {X};
\node (a) [base right=of X] {a};
\node (y) [base right=of a] {y};
\end{tikzpicture}
/tikz/base right=(specification) (no default)
Works like base left.
/tikz/mid left=(specification) (no default)

Works like base left, but with mid east and mid west anchors instead of base east and base west.

/tikz/mid right=(specification) (no default)
Works like mid left.

15.5.4 Arranging Nodes Using a Chains and Matrices

The simple above and right options may not always suffice for arranging a large number of nodes. For such
situations TikZ offers two libraries that make positioning easier: The chains library and the matrix library.
The first is mostly useful for creating “chains of nodes” and, more generally, “flows.” The second allows you
to arrange multiple nodes in rows and columns. These methods for positioning nodes are described in two
separate Sections 16 and 26.

15.6 Fitting Nodes to a Set of Coordinates

It is sometimes desirable that the size and position of a node is not given using anchors and size parameters,
rather one would sometimes have a box be placed and be sized such that it “is just large enough to contain
this, that, and that point.” This situation typically arises when a picture has been drawn an, afterwards,
parts of the picture are supposed to be encircled or hilighted.

In this situation the fit option from the fit library is useful, see Section 30 for a the details. The idea is
that you may give the £it option to a node. The fit option expects a list of coordinates (one after the other
without commas) as its parameter. The effect will be that the node’s text area has exactly the necessary
size so that it contains all the given coordinates. Here is an example:

\begin{tikzpicturel}[level distance=8mm]
\node (root) {root}
child { node (a) {a} }
child { node (b) {b}
a child { node (d) {d} }
child { node (e) {e} } }
child { node (c) {c} };

\node [draw=red, inner sep=0pt,thick,ellipse,fit=(root) (b) (d) (e)] {};
\node [draw=blue, inner sep=Opt,thick,ellipse,fit=(b) (c) (e)] {I};
\end{tikzpicture}

If you want to fill the fitted node you will usually have to place it on a background layer.

160

\begin{tikzpicture}[level distance=8mm]
\node (root) {root}

root child { node (a) {a} }
/ | \ child { node (b) {b}
a b ¢ child { node (d) {d} }
// \\\ child { node (e) {e} } }

child { node (c) {c} };

\begin{pgfonlayer}{background}
\node[fill=red!20, inner sep=0pt,ellipse,fit=(root) (b) (d) (e)] {};
\node [fill=blue!20,inner sep=Opt,ellipse,fit=(b) (c) (e)] {};
\end{pgfonlayer}
\end{tikzpicture}

15.7 Transformations

It is possible to transform nodes, but, by default, transformations do not apply to nodes. The reason is that
you usually do not want your text to be scaled or rotated even if the main graphic is transformed. Scaling
text is evil, rotating slightly less so.

However, sometimes you do wish to transform a node, for example, it certainly sometimes makes sense
to rotate a node by 90 degrees. There are two ways in which you can achieve this:

1. You can use the following option:

/tikz/transform shape (no value)
Causes the current “external” transformation matrix to be applied to the shape. For example, if
you said \tikz[scale=3] and then say node[transform shape] {X}, you will get a “huge” X in
your graphic.

2. You can give transformation option inside the option list of the node. These transformations always
apply to the node.

\begin{tikzpicture} [every node/.style={draw}]
é;r \draw[help lines](0,0) grid (3,2);

\draw (1,0) node{A}
(2,0) nodelrotate=90,scale=1.5] {B};

[a'a)
\ — \draw[rotate=30] (1,0) node{A}
}\} (2,0) nodelrotate=90,scale=1.5] {B};
F;:T A \draw[rotate=60] (1,0) node[transform shape] {A}
[(2,0) node[transform shape,rotate=90,scale=1.5] {B};

\end{tikzpicture}

15.8 Placing Nodes on a Line or Curve Explicitly

Until now, we always placed node on a coordinate that is mentioned in the path. Often, however, we wish
to place nodes on “the middle” of a line and we do not wish to compute these coordinates “by hand.” To
facilitate such placements, TikZ allows you to specify that a certain node should be somewhere “on” a line.
There are two ways of specifying this: Either explicitly by using the pos option or implicitly by placing the
node “inside” a path operation. These two ways are described in the following.

/tikz/pos={fraction) (no default)
When this option is given, the node is not anchored on the last coordinate. Rather, it is anchored on
some point on the line from the previous coordinate to the current point. The (fraction) dictates how
“far” on the line the point should be. A (fraction) or 0 is the previous coordinate, 1 is the current one,
everything else is in between. In particular, 0.5 is the middle.

Now, what is “the previous line”? This depends on the previous path construction operation.
In the simplest case, the previous path operation was a “line-to” operation, that is, a —==(coordinate)
operation:

\tikz \draw (0,0) -- (3,1)
node [pos=0]{0} node[pos=0.5]1{1/2} node[pos=0.91{9/10};

161

The next case is the curve-to operation (the .. operation). In this case, the “middle” of the curve, that
is, the position 0.5 is not necessarily the point at the exact half distance on the line. Rather, it is some
point at “time” 0.5 of a point traveling from the start of the curve, where it is at time 0, to the end of
the curve, which it reaches at time 0.5. The “speed” of the point depends on the length of the support
vectors (the vectors that connect the start and end points to the control points). The exact math is a
bit complicated (depending on your point of view, of course); you may wish to consult a good book on
computer graphics and Bézier curves if you are intrigued.

\tikz \draw (0,0) .. controls +(right:3.5cm) and +(right:3.5cm) .. (0,3)
\foreach \p in {0,0.125,...,1} {node[pos=\pl{\p}};

Another interesting case are the horizontal /vertical line-to operations |- and -|. For them, the position
(or time) 0.5 is exactly the corner point.

\tikz \draw (0,0) |- (3,1)

1 node [pos=0]1{0} node[pos=0.5]1{1/2} node[pos=0.91{9/10};
9/110 \tikz \draw (0,0) -| (3,1)
node [pos=0]{0} node[pos=0.5]{1/2} node[pos=0.9]1{9/10};
0 12

For all other path construction operations, the position placement does not work, currently. This will
hopefully change in the future (especially for the arc operation).

/tikz/auto=(left or right) (default is scope’s setting)

This option causes an anchor positions to be calculated automatically according to the following rule.
Consider a line between to points. If the (direction) is left, then the anchor is chosen such that the
node is to the left of this line. If the (direction) is right, then the node is to the right of this line.
Leaving out (direction) causes automatic placement to be enabled with the last value of 1left or right
used. A (direction) of false disables automatic placement. This happens also whenever an anchor is
given explicitly by the anchor option or by one of the above, below, etc. options.

This option only has an effect for nodes that are placed on lines or curves.

\begin{tikzpicture}
[scale=.8,auto=1left,every node/.style={circle,fill=blue!20}]

Lo lef a0\ \node (a) at (-1,-2) {a};
f-g de g \node (b) at (1,-2) {b};
\node (c) at (2,-1) {c};
L \node (d) at (2, 1) {d};
& v cd \node (e) at (1, 2) {e};
\node (f) at (-1, 2) {f};
h 14 b—c © \node (g) at (-2, 1) {g};
a-b ,/Z \node (h) at (-2,-1) {h};

\foreach \from/\to in {a/b,b/c,c/d,d/e,e/f,f/g,g/h,h/a}
\draw [->] (\from) -- (\to)
node [midway,fill=red!20] {\from--\to};
\end{tikzpicture}

/tikz/swap (no value)

This option exchanges the roles of left and right in automatic placement. That is, if left is the
current auto placement, right is set instead and the other way round.

162

\begin{tikzpicture} [auto]

[
0.5 . : .
0.6 0.4 \draw[help lines,use as bounding box] (0,-.5) grid (4,5);
e o
0.7 /0 S 0.3 \draw (0.5,0) .. controls (9,6) and (-5,6) .. (3.5,0)
\foreach \pos in {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}
0.8 0.2 {node [pos=\pos,swap,fill=red!20] {\pos}}
- - \foreach \pos in {0.025,0.2,0.4,0.6,0.8,0.975}
0.8 0.2 {node [pos=\pos,fill=blue!20] {\posl}};
\end{tikzpicture}
0.9 0.1
| |
0.025 0.975
0 1

\begin{tikzpicturel} [shorten >=1pt,node distance=2cm,auto]
\draw[help lines] (0,0) grid (3,2);

o<

\node[state] (q_1) [above right of=q_0] {$q_1$3};
\node [state] (g_2) [below right of=q_0] {$q_2%$};
\node [state] (q_3) [below right of=q_1] {q_3};

\node [state] (q_0) {$q_083;

4

q q3 \path[->] (q_0) edge node {0} (q_1)
edge node [swap] {1} (q_2)
(q_1) edge node {1} (q_3)

1 0 edge [loop abovel node {0} O
(q_2) edge node [swap] {0} (q_3)
edge [loop below] node {1} O;

\end{tikzpicture}

/tikz/sloped (no value)

This option causes the node to be rotated such that a horizontal line becomes a tangent to the curve.
The rotation is normally done in such a way that text is never “upside down.” To get upside-down text,
use can use [rotate=180] or [allow upside down], see below.

1 \tikz \draw (0,0) .. controls +(up:2cm) and +(left:2cm) .. (1,3)

cha \foreach \p in {0,0.25,...,1} {node[sloped,above,pos=\pl{\p}};
e
o
o
(%)
ot
(en]
T \begin{tikzpicture} [->]
\draw (0,0) -- (2,0.5) node[midway,sloped,above] {x};
\draw (2,-.5) -- (0,0) node[midway,sloped,below] {y};
v \end{tikzpicture}
/tikz/allow upside down=(boolean) (default true, initially false)

If set to true, TikZ will not “righten” upside down text.

163

\tikz [allow upside down]

1
cha \draw (0,0) .. controls +(up:2cm) and +(left:2cm) .. (1,3)
\foreach \p in {0,0.25,...,1} {nodel[sloped,above,pos=\pl{\p}};
Yo)
o
Ne)
[
o
o
T \begin{tikzpicture}[->,allow upside down]
\draw (0,0) -- (2,0.5) node[midway,sloped,above] {x};
7 \draw (2,-.5) -- (0,0) node [midway,sloped,below] {yl};
\end{tikzpicture}

There exist styles for specifying positions a bit less “technically”:

/tikz/midway (style, no value)
This has the same effect as pos=0.5.

d \tikz \draw (0,0) .. controls +(up:2cm) and +(left:3cm) .. (1,5)
very hich node[at end] {lat end|}
neay end node [very near end] {|very near endl|}
node [near end] {Inear end|}
node [midway] {Imidway |}
. node [near start] {|near start|}
midway node [very near start] {|very near start|}
node[at start] {lat start|};
near start
very near start
at start
/tikz/near start (style, no value)
Set to pos=0.25.
/tikz/near end (style, no value)
Set to pos=0.75.
/tikz/very near start (style, no value)
Set to pos=0.125.
/tikz/very near end (style, no value)
Set to pos=0.875.
/tikz/at start (style, no value)
Set to pos=0.
/tikz/at end (style, no value)
Set to pos=1.

15.9 Placing Nodes on a Line or Curve Implicitly

When you wish to place a node on the line (0,0) -- (1,1), it is natural to specify the node not following the
(1,1), but “somewhere in the middle.” This is, indeed, possible and you can write (0,0) -- node{a} (1,1)
to place a node midway between (0,0) and (1,1).

164

What happens is the following: The syntax of the line-to path operation is actually -- node(node
specification){coordinate). (It is even possible to give multiple nodes in this way.) When the optional
node is encountered, that is, when the -- is directly followed by node, then the specification(s) are read and
“stored away.” Then, after the (coordinate) has finally been reached, they are inserted again, but with the
pos option set.

There are two things to note about this: When a node specification is “stored,” its catcodes become
fixed. This means that you cannot use overly complicated verbatim text in them. If you really need, say, a
verbatim text, you will have to put it in a normal node following the coordinate and add the pos option.

Second, which pos is chosen for the node? The position is inherited from the surrounding scope. However,
this holds only for nodes specified in this implicit way. Thus, if you add the option [near end] to a scope,
this does not mean that all nodes given in this scope will be put on near the end of lines. Only the nodes
for which an implicit pos is added will be placed near the end. Typically, this is what you want. Here are
some examples that should make this clearer:

A \begin{tikzpicture}[near end]
e \draw (Ocm,4em) -- (3cm,4em) node{A};
& 2 \draw (Ocm,3em) -- node{B} (3cm,3em) ;
1\5\ \draw (Ocm,2em) -- node [midway] {C} (3cm,2em);
> \draw (Ocm,lem) -- (3cm,lem) node[midway] {D} ;
\end{tikzpicture}

Like the line-to operation, the curve-to operation .. also allows you to specify nodes “inside” the opera-
tion. After both the first .. and also after the second .. you can place node specifications. Like for the —-
operation, these will be collected and then reinserted after the operation with the pos option set.

15.10 The Label and Pin Options

In addition to the node path operation, nodes can also be added using the label and the pin option. This
is mostly useful for simple nodes.

/tikz/label=[{options)] {angle): (text) (no default)
When this option is given to a node operation, it causes another node to be added to the path after the
current node has been finished. This extra node will have the text (text). It is placed according to the
following rule: Suppose the node currently under construction is called main node and let us call the
label node label node. Then the anchor of label node is placed at main node. (angle). The anchor
that is chosen depends on the (angle). If the (angle) lies between —3° and +3°, then the anchor west is
chosen, which causes label node to be placed right of the right end main node. If (angle) lies between
4° and 86°, the anchor south west is chosen, causing the label node to be placed above and right of
the main node; and so on.

60° \tikz
\node [circle,draw,label=60:$60"\circ$,label=below:$-90"\circ$] {my circle};

-90°

As can be seen in the above example, instead of specifying (angle) as a number, it is also possible to
use left, right, above, above left, and so on.

You can pass (options) to the node label node. For this, you provide the options in square brackets
before the (angle). If you do so, you need to add braces around the whole argument of the label option
and this is also the case if you have brackets or commas or semicolons or anything special in the (text).

X \tikz \node [circle,draw,label={[red]above:X}] {my circle};

165

\begin{tikzpicture}
///// \node [circle,draw,label={[name=label node]above left:a,b}] {};
\draw (label node) -- +(1,1);
\end{tikzpicture}

a,b
O

If you provide multiple 1abel options, then multiple extra label nodes are added in the order they are
given.

The following styles influence how labels are drawn:

/tikz/label distance=(distance) (no default, initially Opt)
The (distance) is additionally inserted between the main node and the label node.
7 \tikz[label distance=5mm]
\node [circle,draw,label=right:X,

label=above right:Y,
label=above:Z] {my circle};

/tikz/every label (style, initially empty)
This style is used in every node created by the label option. The default is draw=none,fill=none.

/tikz/pin=[{options)]{angle): (text) (no default)
This is option is quite similar to the label option, but there is one difference: In addition to adding a

extra node to the picture, it also adds an edge from this node to the main node. This causes the node
to look like a pin that has been added to the main node:

Qo \tikz \node [circle,fill=blue!50,minimum size=1cm,pin=60:$q_0%$] {};

The meaning of the (options) and the (angle) and the (text) is exactly the same as for the node option.
Only, the options and styles the influence the way pins look are different:
/tikz/pin distance={distance) (no default, initially 3ex)

This (distance) is used instead of the label distance for the distance between the main node and
the label node.

7 \tikz[pin distance=1cm]
\node [circle,draw,pin=right:X,
Y pin=above right:Y,
/ pin=above:Z] {my circle};
X
/tikz/every pin (initially draw=none,fill=none) (style, no default)

This style is used in every node created by the pin option.

/tikz/every pin edge (style, initially help lines)
This style is used in every edge created by the pin optins.

166

7 \tikz [pin distance=15mm,
every pin edge/.style={<-,shorten <=1pt,decorate,
% Y decoration={snake,pre length=4pt}}]

J\YJ\jJ \node [circle,draw,pin=right:X,

pin=above right:Y,
(||||||||)U\/\/\/\X

pin=above:Z] {my circle};

/tikz/pin edge=(options) (no default, initially empty)
This option can be used to set the options that are to be used in the edge created by the pin
option.

\tikz[pin distance=10mm]
\node [circle,draw,pin={[pin edge={blue,thick}]right:X},

Z
pin=above:Z] {my circle};
X

\tikz [every pin edge/.style={},
initial/.style={pin={[pin distance=5mm,
start — pin edge={<-,shorten <=iptl}]left:startl}}]
\node [circle,draw,initial]l {my circle};

15.11 Connecting Nodes: Using Nodes as Coordinates

Once you have defined a node and given it a name, you can use this name to reference it. This can be
done in two ways, see also Section 12.2.3. Suppose you have said \path(0,0) node(x) {Hello World!'};
in order to define a node named x.

1. Once the node x has been defined, you can use (x.{anchor)) wherever you would normally use a
normal coordinate. This will yield the position at which the given (anchor) is in the picture. Note
that transformations do not apply to this coordinate, that is, (x.north) will be the northern anchor
of x even if you have said scale=3 or xshift=4cm. This is usually what you would expect.

2. You can also just use (x) as a coordinate. In most cases, this gives the same coordinate as (x.center).
Indeed, if the shape of x is coordinate, then (x) and (x.center) have exactly the same effect.

However, for most other shapes, some path construction operations like == try to be “clever” when
this they are asked to draw a line from such a coordinate or to such a coordinate. When you say
(x)--(1,1), the —- path operation will not draw a line from the center of x, but from the border of x
in the direction going towards (1,1). Likewise, (1,1)--(x) will also have the line end on the border
in the direction coming from (1,1).

In addition to --, the curve-to path operation .. and the path operations -| and |- will also handle
nodes without anchors correctly. Here is an example, see also Section 12.2.3:

Hello World! — 1

label

167

\begin{tikzpicture}
\path (0,0) node (x) {Hello World!'}
(3,1) nodelcircle,draw] (y) {$\int_1"2 x \mathrm d x$};

\draw [->,blue] x) —- (y);

\draw[->,red] (x) -| node[near start,below] {label} (y);

\draw[->,orange] (x) .. controls +(up:1lcm) and +(left:1cm) .. node[above,sloped] {labell} (y);
\end{tikzpicture}

15.12 Connecting Nodes: Using the Edge Operation

The edge operation works like a to operation that is added after the main path has been drawn, much like
a node is added after the main path has been drawn. This allows you to have each edge to have a different
appearance. As the node operation, an edge temporarily suspends the construction of the current path and
a new path p is constructed. This new path p will be drawn after the main path has been drawn. Note that
p can be totally different from the main path with respect to its options. Also note that if there are several
to and/or node operations in the main path, each creates its own path(s) and they are drawn in the order
that they are encountered on the path.

\path ... edgel[(options)] (nodes) ({coordinate)) ...;
The effect of the edge operation is that after the main path the following path is added to the picture:

\path[every edge,(options)] (\tikztostart) (path);

Here, (path) is the to path. Note that, unlike the path added by the to operation, the (\tikztostart)
is added before the (path) (which is unnecessary for the to operation, since this coordinate is already
part of the main path).

The \tikztostart is the last coordinate on the path just before the edge operation, just as for the node
or to operations. However, there is one exception to this rule: If the edge operation is directly preceded
by a node operation, then this just-declared node is the start coordinate (and not, as would normally
be the case, the coordinate where this just-declared node is placed — a small, but subtle difference). In
this regard, edge differs from both node and to.

If there are several edge operations in a row, the start coordinate is the same for all of them as their
target coordiantes are not, after all, part of the main path. The start coordinate is, thus, the coordinate
preceding the first edge operation. This is similar to nodes insofar as the edge operation does not
modify the current path at all. In particular, it does not change the last coordinate visited, see the
following example:

\begin{tikzpicture}

b \node (a) at (0:1) {a};
//// \\\& \node (b) at (90:1) {b} edge [->] (a);
c a \node (c) at (180:1) {c} edge [->] (a)
edge [<-] (®);
\\\& ///] \node (d) at (270:1) {d} edge [->] (a)
d edge [dotted] (b)
edge [<-] (c);

\end{tikzpicture}

A different way of specifying the above graph using the edge operation is the following;:

\begin{tikzpicture}

b \foreach \name/\angle in {a/0,b/90,c/180,d/270}
1/// \\\& \node (\name) at (\angle:1) {\namel};
C— a

\path[->] (b) edge (a)
\\\& ///] edge (c)
d edge [-,dotted] (d)
(c) edge (a)
edge (d)
(d) edge (a);
\end{tikzpicture}

As can be seen, the path of the edge operation inherits the options from the main path, but you can
locally overrule them.

168

\begin{tikzpicture}

b \foreach \name/\angle in {a/0,b/90,c/180,d/270}
L/////// \\\\Ei& \node (\name) at (\angle:1.5) {\name};
E. \path[->] (b) edge node [above right] {5} (a)
c o a edge (c)
\\\\\:f //fj//} edge [-,dotted] node[below,sloped] {missing} (d)
K\ (c) edge (a)
D g
o° edge (@)
d (d) edge [red] node [above,sloped] {very}
node [below,sloped] {bad} (a);
\end{tikzpicture}

Instead of every to, the style every edge is installed at the beginning of the main path.

/tikz/every edge (inititially draw) (style, no value)
Executed for each edge.
_-" \begin{tikzpicture}[every to/.style={draw,dashed}]

- \path (0,0) to (3,2);
- \end{tikzpicture}

15.13 Referencing Nodes Outside the Current Pictures

15.13.1 Referencing a Node in a Different Picture

It is possible (but not quite trivial) to reference nodes in pictures other than the current one. This means
that you can create a picture and a node therein and, later, you can draw a line from some other position
to this node.

To reference nodes in different pictures, proceed as follows:

1. You need to add the remember picture option to all pictures that contain nodes that you wish to
reference and also to all pictures from which you wish to reference a node in another picture.

2. You need to add the overlay option to paths or to whole pictures that contain references to nodes in
different pictures. (This option switches the computation of the bounding box off.)

3. You need to use a driver that supports picture remembering and you need to run TEX twice.

(For more details on what is going on behind the scenes, see Section 59.3.2.)

Let us have a look at the effect of these options.

/tikz/remember picture=(boolean) (no default, initially false)

This option tells TikZ that it should attempt to remember the position of the current picture on the
page. This attempt may fail depending on which backend driver is used. Also, even if remembering
works, the position may only be available on a second run of TEX.

Provided that remebering works, you may consider saying
\tikzsytle{every picturel}+=[remember picture]

to make TikZ remember all pictures. This will add one line in the .aux file for each picture in your
document — which typically is not very much. Then, you do not have to worry about remembered
pictures at all.

/tikz/overlay (no value)

This option is mainly intended for use when nodes in other pictures are referenced, but you can also use
it in other situations. The effect of this option is that everything within the current scope is not taken
into consideration when the bounding box of the current picture is computed.

You need to specify this option on all paths (or at least on all parts of paths) that contain a reference
to a node in another picture. The reason is that, otherwise, TikZ will attempt to make the current
picture large enough to encompass the node in the other picture. However, on a second run of TEX this

169

will create an even bigger picture, leading to larger and larger pictures. Unless you know what you
are doing, I suggest specifying the overlay option with all pictures that contain references to other
pictures.

Let us now have a look at a few examples. These examples work only if this document is processed with
a driver that supports picture remembering.

Inside the current text we place two pictures, containing nodes named n1 and n2, using

\tikz[remember picture] \nodelcircle,fill=red!50] (n1) {};

which yields (5 and
\tikz[remember p\cture] \node[fill=blue!50] (n2) {};

yielding the node M. To connect these nodes, we create another picture using the overlay option and also
the remember picture option.

\begin{tikzpicture} [remember picture,overlayl
\draw[->,very thick] (nl) -- (n2);
\end{tikzpicture}

Note that the last picture is seemingly empty. What happens is that it has zero size and contains an arrow
that lies well outside its bounds. As a last example, we connect a node in another picture to the first two
nodes. Here,\we provide the overlay option only with the line that we do not wish to count as part of the
picture.

\begin{tikzpicture} [remember pigture]
\node (c)’ [circle,draw] {Big circlel}s;

Big circle
\draw/ [overlay,->,very thick,red,opacitys.5]

(c) tol[bend left] (n1) (n1) -| (n2);
\end{tikzpicture}

15.13.2 Referencing the Current Page Node — Absolute Positioning

There is a special node called current page that can‘be used to access the current page. It is a node

of shape rectangle whose south west anchor is the lower left corner of the page and whose north east

anchor is the upper right corner of the page. While this node is handled in a special way internally, you can

reference it as if it were defined in some remembered picture other than the current one. Thus, by giving the

remembered picture and the overlay options to a picture, you can position nodes absolutely on a page.
The first example places some text in the lower-left-corner of the current page:

\begin{tikzpicture} [remember picture,overlay]
\node [xshift=lcm,yshift=1cm] at (current page.south west)
[text width=7cm,fill=red!20,rounded corners,above right]
{
This is an absolutely positioned text in the
lower left corner. No shipout-hackery is used.
};
\end{tikzpicture}

The next example adds a circle in the middle of the page.

\begin{tikzpicture} [remember picture,overlay]
\draw [line width=1mm,opacity=.25]
(current page.center) circle (3cm);
\end{tikzpicture}

The final example overlays some text over the page (depending on where this example is found on the
page, the text may also be behind the page).

\begin{tikzpicture} [remember picture,overlay]
\node [rotate=60,scale=10,text opacity=0.2]
at (current page.center) {Examplel};
\end{tikzpicture}

This is an absolutely positioned text in the
lower left corner. No shipout-hackery is 170

used.

15.14 Late Code and Options

All options given to a node only locally affect this one node. While this is a blessing in most cases, you may
sometimes want to cause options to have effects “later” on. The other way round, you may sometimes note
“only later” that some options should be added to the options of a node. The present section describes ways
of achieving these effects.

15.14.1 Executing Code After Nodes

It is possible to add a path right after a node using the option after node path. The idea is that a style
might use this option to add some additional stuff to the node that has just been typeset. Examples of such
styles include the label option and the pin option.

/tikz/after node path=(path) (no default)

The (path) is added to the main path right after the node, as if you had given the path thereafter. This
option can only be given inside the option list of a node and multiple calls of this option accumulate.

Inside the (path) you have access to the node that has just been created via the macro \tikzlastnode.

\tikz
\draw node [draw,after node path={(\tikzlastnode) circle (2cm)l}]
{hello};

Note that in the above example, if we had written \path instead of \draw, the circle would not have
been drawn since the circle is part of the main path, not part of the node itself.

\tikzaddafternodepathoption{(code)}

This command allows you to specify that the (code) should be executed at the beginning of the
after node path of the current node. The code will also be executed immediately, but also again
at the beginning of an after node path.

15.15 Late Options

A late option for a node is an option that is given a long time after the node has already been constructed.

/tikz/late options=(options) (no default)

This option can be given on a path (but not as an argument to a node path command). It has the
following effect: An already (existing node) is determined (in a way to be described in a moment) and,
then, the (options) are executed in a local scope. Most of these options will have no effect since you
cannot change the appearance of the node, that is, you cannot change a red node into a green node
using late options. However, giving the the after node path option inside the (options) (directly or
indirectly) does have the desired effect: The after node path gets executed with the \tikzlastnode set
to the determined node.

The net effect of all this is that you can provide, say, the label option inside the (options) to a add a
label to a node that has already been constructed. Likewise, you can use the on chain option to make
an already (existing node) part of a chain.

The (existing node) is determined as follows: If the name=(ezisting node) option is used inside the
(options), then this name is used. Otherwise, if the last coordinate on the current path was of the form
({existing node)), then this (ezisting node) name is used. Otherwise, an error results.

\begin{tikzpicture}
world \node (a) [draw,circle] {Hello};

\path (a) [late options={label=above:world}];
\end{tikzpicture}

171

16 Matrices and Alignment

16.1 Overview

When creating pictures, one often faces the problem of correctly aligning parts of the picture. For example,
you might wish that the base lines of certain nodes should be on the same line and some further nodes should
be below these nodes with, say, their centers on a vertical lines. There are different ways of solving such
problems. For example, by making clever use of anchors, nearly all such alignment problems can be solved.
However, this often leads to complicated code. An often simpler way is to use matrices, the use of which is
explaied in the current section.

A TikZ matrix is similar to XTEX’s {tabular} or {array} environment, only instead of text each cell
contains a little picture or a node. The sizes of the cells are automatically adjusted such that they are large
enough to contain all the cell contents.

Matrices are a powerful tool and they need to handled with some care. For impatient readers who skip
the rest of this section: you must end every row with \\. In particular, the last row must be ended with \\.

Many of the ideas implemented in TikZ’s matrix support are due to Mark Wibrow — many thanks to
Mark at this point!

16.2 Matrices are Nodes

Matrices are special in many ways, but for most purposes matrices are treated like nodes. This means, that
you use the node path command to create a matrix and you only use a special option, namely the matrix
option, to signal that the node will contain a matrix. Instead of the usual TEX-box that makes up the text
part of the node’s shape, the matrix is used. Thus, in particular, a matrix can have a shape, this shape
can be drawn or filled, it can be used in a tree, and so on. Also, you can refer to the different anchors of a
matrix.

/tikz/matrix=(true or false) (default true)

This option can be passed to a node path command. It signals that the node will contain a matrix.

‘ ‘ ‘ \begin{tikzpicture}
\draw[help lines] (0,0) grid (4,2);
X{éﬂo \node [matrix,fill=red!20,draw=blue,very thick] (my matrix) at (2,1)

hd

{
\draw (0,0) circle (4mm); & \node[rotate=10] {Hello}; A\
\draw (0.2,0) circle (2mm); & \filll[red] (0,0) circle (3mm); \\
5

\draw [very thick,->] (0,0) |- (my matrix.west);
\end{tikzpicture}

The exact syntax of the matrix is explained in the course of this section.

/tikz/every matrix (style, initially empty)

This style is used in every matrix.

Even more so than nodes, matrices will often be the only object on a path. Because of this, there is a
special abbreviation for creating matrices:

\matrix

Inside {tikzpicture} this is an abbreviation for \path node [matrix].

Even though matrices are nodes, some options do not have the same effect as for normal nodes:

1. Rotations and scaling have no effect on a matrix as a whole (however, you can still transform the
contents of the cells normally). Before the matrix is typeset, the rotational and scaling part of the
transformation matrix is reset.

2. For multi-part shapes you can only set the text part of the node.

3. All options starting with text such as text width have no effect.

172

16.3 Cell Pictures

A matrix consists of rows of cells. Each row (including the last one!) is ended by the command \\. The
character & is used to separate cells. Inside each cell, you must place commands for drawing a picture,
called the cell picture in the following. (However, cell pictures are not enclosed in a complete {pgfpicture}
environment, they are a bit more light-weight. The main difference is that cell pictures cannot have layers.)
It is not necessary to specify beforehand how many rows or columns there are going to be and if a row
contains less cell pictures than another line, empty cells are automatically added as needed.

16.3.1 Alignment of Cell Pictures

For each cell picture a bounding box is computed. These bounding boxes and the origins of the cell pictures
determine how the cells are aligned. Let us start with the rows: Consider the cell pictures on the first row.
Each has a bounding box and somewhere inside this bounding box the origin of the cell picture can be found
(the origin might even lie outside the bounding box, but let us ignore this problem for the moment). The
cell pictures are then shifted around such that all origins lie on the same horizontal line. This may make it
necessary to shift some cell pictures upwards and other downwards, but it can be done and this yields the
vertical alignment of the cell pictures this row. The top of the row is then given by the top of the “highest”
cell picture in the row, the bottom of the row is given by the bottom of the lowest cell picture. (To be more
precise, the height of the row is the maximum y-value of any of the bounding boxes and the depth of the
row is the negated minimum y-value of the bounding boxes).

\begin{tikzpicture}
a X g [every node/.style={draw=black,anchor=base,font=\huge}]
0

\matrix [draw=red]

{
\node {a}; \fill[blue] (0,0) circle (2pt); &
\node {X}; \fill[blue] (0,0) circle (2pt); &
\node {g}; \fill[blue] (0,0) circle (2pt); \\

I8

\end{tikzpicture}

Each row is aligned in this fashion: For each row the cell pictures are vertically aligned such that the
origins lie on the same line. Then the second row is placed below the first row such that the bottom of the
first row touches the top of the second row (unless a row sep is used to add a bit of space). Then the bottom
of the second row touches the top of the third row, and so on. Typically, each row will have an individual
height and depth.

\begin{tikzpicture}
EE [every node/.style={draw=black,anchor=base}]
EE \matrix [draw=red]
{
\node {a}; & \node {X}; & \node {g}; \\
EE \node {a}; & \node {X}; & \node {g}; \\
};
EE \matrix [row sep=3mm,draw=red] at (0,-2)
{

\node {a}; & \node {X}; & \node {g}; \\
\node {a}; & \node {X}; & \node {g}; \\
I8
\end{tikzpicture}

Let us now have a look at the columns. The rules for how the pictures on any given column are aligned are
very similar to the row alignment: Consider all cell pictures in the first column. Each is shifted horizontally
such that the origins lie on the same vertical line. Then, the left end of the column is at the left end of the
bounding box that protrudes furthest to the left. The right end of the column is at the right end of the
bounding box that protrudes furthest to the left. This fixes the horizontal alignment of the cell pictures in
the first column and the same happens the cell pictures in the other columns. Then, the right end of the
first column touches the left end of the second column (unless column sep is used). The right end of the
second column touches the left end of the third column, and so on. (Internally, two columns are actually
used to achieve the desired horizontal alignment, but that is only and implementation detail.)

173

\begin{tikzpicture}[every node/.style={draw}]
\matrix [draw=red]
¢
\node[left] {Hallo}; \fill[blue] (0,0) circle (2pt); \\
\node {X}; \fill[blue] (0,0) circle (2pt); \\
\node [right] {g}; \fill[blue] (0,0) circle (2pt); \\
};
\end{tikzpicture}

\begin{tikzpicture} [every node/.style={draw}]
E \matrix [draw=red,column sep=1cm]

3 5 7 {
. . . \node {8}; & \node{1}; & \node {6}; \\
ﬂ \node {3}; & \node{5}; & \node {7}; \\
\node {4}; & \node{9}; & \node {2}; \\
Irg
\end{tikzpicture}

16.3.2 Setting and Adjusting Column and Row Spacing

There are different ways of setting and adjusting the spacing between columns and rows. First, you can use
the options column sep and row sep to set a default spacing for all rows and all columns. Second, you can
add options to the & character and the \\ command to adjust the spacing between two specific columns or
rows. Additionally, you can specify whether the space between two columns or rows should be considered
between the origins of cells in the column or row or between their borders.

/tikz/column sep=(spacing list) (no default)

This option sets a default space that is added between every two columns. This space can be positive
or negative and is zero by default. The (spacing list) normally contains a single dimension like 2pt.

123 Tcm
123

\begin{tikzpicture}
\matrix [draw,column sep=1cm,nodes=draw]
{
\node(a) {123}; & \node (b) {1}; & \node {1}; \\
\node {12}; & \node {12}; & \node {1}; \\
\node(c) {1}; & \node (d) {123}; & \node {1}; \\
g
\draw [red,thick] (a.east) -- (a.east |- c)
(d.west) -- (d.west |- b);
\draw [<->,red,thick] (a.east) -- (d.west |- b)
node [above,midway] {lcm};
\end{tikzpicture}

More generally, the (spacing list) may contain a whole list of numbers, separated by commas, and
occurrences of the two key words between origins and between borders. The effect of specifying
such a list is the following: First, all numbers occurring in the list are simply added to compute the final
spacing. Second, concerning the two keywords, the last occurrence of one of the keywords is important.
If the last occurrence is between borders or if neither occurs, then the space is inserted between the
two columns normally. However, if the last occurs is between origins, then the following happens:
The distance between the columns is adjusted such that the difference between the origins of all the
cells in the first column (remember that they all lie on straight line) and the origins of all the cells in
the second column is exactly the given distance.

The between origins option can only be used for columns mentioned in the first row, that is, you
cannot specify this option for columns introduced only in later rows.

174

\begin{tikzpicture}

\matrix [draw,column sep={lcm,between origins},nodes=draw]
{
\node(a) {123}; & \node (b) {1}; & \node {1}; \\
\node {12}; & \node {12}; & \node {1}; \\
\node {1}; & \node {123}; & \node {1}; \\
15
\draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {lcm};
\end{tikzpicture}
/tikz/row sep=(spacing list) (no default)

This option works like column sep, only for rows. Here, too, you can specify whether the space is added
between the lower end of the first row and the upper end of the second row, or whether the space is
computed between the origins of the two rows.

\begin{tikzpicture}
\matrix [draw,row sep=1lcm,nodes=draw]
{
lem \node (a) {123}; & \node {1}; & \node {1}; \\
\node (b) {12}; & \node {12}; & \node {1}; \\
121112111 \node {1}; & \node {123}; & \node {1}; \\
iz
\draw [<->,red,thick] (a.south) -- (b.north) node [right,midway] {ilcm};
\end{tikzpicture}

\begin{tikzpicture}
\matrix [draw,row sep={lcm,between origins},nodes=draw]
lem {
\node (a) {123}; & \node {1}; & \node {1}; \\
m \node (b) {12}; & \node {12}; & \node {1}; \\
\node {1}; & \node {123}; & \node {1}; \\

};
\draw [<->,red,thick] (a.center) -- (b.center) node [right,midway] {lcm};

\end{tikzpicture}

The row-end command \\ allows you to provide an optional argument, which must be a dimension.
This dimension will be added to the list in row sep. This means that, firstly, any numbers you list in
this argument will be added as an extra row separation between the line being ended and the next line
and, secondly, you can use the keywords between origins and between borders to locally overrule the
standard setting for this line pair.

\begin{tikzpicture}
(:X:> \matrix [row sep=1mm]
{
\draw (0,0) circle (2mm); & \draw (0,0) circle (2mm); \\
\draw (0,0) circle (2mm); & \draw (0,0) circle (2mm); \\[-1mm]
lem \draw (0,0) coordinate (a) circle (2mm); &
\draw (0,0) circle (2mm); \\[lcm,between origins]
\draw (0,0) coordinate (b) circle (2mm); &
\draw (0,0) circle (2mm); \\
Irg
\draw [<->,red,thick] (a.center) -- (b.center) node [right,midway] {lcm};
\end{tikzpicture}

The cell separation character & also takes an optional argument, which must also be a spacing list. This
spacing list is added to the column sep having a similar effect as the option for the \\ command for rows.

This optional spacing list can only be given the first time a new column is started (usually in the first
row), subsequent usages of this option in later rows have no effect.

\begin{tikzpicture}
116 \matrix [draw,nodes=draw,column sep=1mm]

8]
13| [5]7 <

\node {8}; &[2mm] \node{1}; &[-1mm] \node {6}; \\

912 \node {3}; & \node{5}; & \node {73}; \\
\node {4}; & \node{9}; & \node {2}; \\
g
\end{tikzpicture}

175

\begin{tikzpicture}

\matrix [draw,nodes=draw,column sep=1mm]
{
\node {8}; &[2mm] \node(a){1}; &[lcm,between origins] \node(b){6}; \\
\node {3}; & \node {5}; & \node {7}; \\
\node {4}; & \node {9}; & \node {2}; \\
15
\draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {11imm};
\end{tikzpicture}
\begin{tikzpicture}
\matrix [draw,nodes=draw,column sep={lcm,between origins}]
{
\node (a) {8}; & \node (b) {1}; &[between borders] \mode (c) {6}; \\
\node {3}; & \node {5}; & \node {7} \\
\node {4}; & \node {9}; & \node {2}; \\
I8
\draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {10mm};
\draw [<->,red,thick] (b.east) -- (c.west) node [above,midway] {10mm};
\end{tikzpicture}

16.3.3 Cell Styles and Options

For following style and option are useful for changing the appearance of the all cell pictures:

/tikz/every cell={(row)}{{column)} (style, no default, initially empty)

This style is installed at the beginning of each cell picture with the two parameters being the current
(row) and (column) of the cell. Note that setting this style to draw will not cause all nodes to be drawn
since the draw option has to be passed to each node individually.

Inside this style (and inside all cells), the current (row) and (column) number are also accessible via the
counters \pgfmatrixcurrentrow and \pgfmatrixcurrentcolumn.

/tikz/cells=(options) (no default)

This key adds the (options) to the style every cell. It mainly just a shorthand for the code
every cell/.append style=(options).

/tikz/nodes=(options) (no default)

This key adds the (options) to the style every node. It mainly just a shorthand for the code
every node/.append style=(options).

The main use of this option is the install some options for the nodes inside the matrix that should not
apply to the matrix itself.

\begin{tikzpicture}
8 1 6 \matrix [nodes={fill=blue!20,minimum size=5mm}]
35 7 t
\node {8}; & \node{1}; & \node {6}; \\
4 9 2 \node {3}; & \node{5}; & \node {73}; \\
\node {4}; & \node{9}; & \node {2}; \\
g
\end{tikzpicture}

The next set of styles can be used to change the appearance of certain rows, columns, or cells. If more
than one of these styles is defined, they are executed in the below order (the every cell style is executed
before all of the below).

/tikz/column (number) (style, no value)

This style is used for every cell in column (number).

/tikz/every odd column (style, no value)

This style is used for every cell in an odd column.

/tikz/every even column (style, no value)

This style is used for every cell in an even column.

176

/tikz/row (number)

This style is used for every cell in row (number).

/tikz/every odd row

This style is used for every cell in an odd row.

/tikz/every even row

This style is used for every cell in an even row.

/tikz/row (row number) column (column number)

This style is used for the cell in row (row number) and column (column number).

> W 0o
© ot
N g D

\begin{tikzpicture}

[row 1/.style={red},

column 2/.style={green!50!black},

row 3 column 3/.style={blue}]

\matrix

{

\node
\node
\node

{8}; & \node{1}; & \node {6};
{3}; & \node{5}; & \node {7};
{4}; & \node{9}; & \node {2};

Irg

\end{tikzpicture}

\\

\\

(style,

(style,

(style,

(style,

You can use the column (number) option to change the alignment for different columuns.

123 456 789
12 45 78
1 4 7

\begin{tikzpicture}

[column 1/.style={anchor=base west},
column 2/.style={anchor=base east},
column 3/.style={anchor=base}]
\matrix

{

\node {123}; & \node{456}; & \node {789}; \\
\node {12}; & \node{45}; & \node {78}; \\
\node {1}; & \node{4}; & \node {7};

Irg

\end{tikzpicture}

\\

no value)

no value)

no value)

no value)

In many matrices all cell pictures have nearly the same code. For example, cells typically start with

\nodeq{ and end };. The following options allow you to execute such code in all cells:

/tikz/execute at begin cell={code)

The code will be executed at the beginning of each nonempty cell.

/tikz/execute at end cell=(code)

The code will be executed at the end of each nonempty cell.

/tikz/execute at empty cell={code)

The code will be executed inside each empty cell.

=~ W
© Ot =
[NCIEEN B

\begin{tikzpicture}

[matrix of nodes/.style={

execute at begin cell=\node\bgroup,

execute at end cell=\egroup;/
H

\matrix [matrix of nodes]

{
8 & 1 &6 \\
3&5&7\\
4% 9 & 2 \\
};
\end{tikzpicture}

177

(no default)

(no default)

(no default)

\begin{tikzpicture}
81— [matrix of nodes/.style={

3 — 7 execute at begin cell=\node\bgroup,
9 execute at end cell=\egroup;,/
execute at empty cell=\node{--};7%

}H
\matrix [matrix of nodes]

{

1 \\

&1&
& & 7 \\
& &2 \\
I
\end{tikzpicture}

The matrix library defines a number of styles that make use of the above options.

16.4 Anchoring a Matrix

Since matrices are nodes, they can be anchored in the usual fashion using the anchor option. However, there
are two ways to influence this placement further. First, the following option is often useful:

/tikz/matrix anchor=(anchor) (no default)
This option has the same effect as anchor, but the option applies only to the matrix itself, not to the
cells inside. If you just say anchor=north as an option to the matrix node, all nodes inside matrix will
also have this anchor, unless it is explicitly set differently for each node. By comparison, matrix anchor
sets the anchor for the matrix, but for the nodes inside the value of anchor remain unchanged.

\begin{tikzpicture}

123 \matrix [matrix anchor=west] at (0,0)
12 {
1 \node {123}; \\ 7 still center anchor
\node {12}; \\
\node {1}; \\
g
123 \matrix [anchor=west] at (0,-2)
12 {
1 \node {123}; \\ / inherited west anchor

\node {12}; \\
\node {1}; \\

};
\end{tikzpicture}

The second way to anchor a matrix is to use an anchor of a node inside the matriz. For this, the anchor
option has a special effect when given as an argument to a matrix:

/tikz/anchor={anchor or node.anchor) (no default)

Normally, the argument of this option refers to anchor of the matrix node, which is the node than includes
all of the stuff of the matrix. However, you can also provide an argument of the form (node) . (anchor)
where (node) must be node defined inside the matrix and (anchor) is an anchor of this node. In this
case, the whole matrix is shifted around in such a way that this particular anchor of this particular node
lies at the at position of the matrix. The same is true for matrix anchor.

\begin{tikzpicture}
abecd \draw[help lines] (0,0) grid (3,2);
\matrix[matrix anchor=inner node.south,anchor=base,row sep=3mm] at (1,1)
abcd {
\node {a}; & \node {b}; & \node {c}; & \node {d}; \\
abcd \node {a}; & \node(inner node) {b}; & \node {c}; & \node {d}; \\
\node {a}; & \node {b}; & \node {c}; & \node {d}; \\
I8
\draw (inner node.south) circle (1pt);
\end{tikzpicture}

178

16.5 Considerations Concerning Active Characters

Even though TikZ seems to use & to separate cells, PGF actually uses a different command to separate cells,
namely the command \pgfmatrixnextcell and using a normal & character will normally fail. What happens
is that, TikZ makes & an active character and then defines this character to be equal to \pgfmatrixnextcell.
In most situations this will work nicely, but sometimes & cannot be made active; for instance because the
matrix is used in an argument of some macro or the matrix contains nodes that contain normal {tabular}
environments. In this case you can use the following option to avoid having to type \pgfmatrixnextcell
each time:

/tikz/ampersand replacement=(macro name or empty) (no default)

If a macro name is provided, this macro will be defined to be equal to \pgfmatrixnextcell inside
matrices and & will not be made active. For instance, you could say ampersand replacement=\& and
then use & to separate columns as in the following example:

\tikz
<:::> &{éﬂo \matrix [ampersand replacement=\&]
{
O ‘ \draw (0,0) circle (4mm); \& \node[rotate=10] {Hello}; \\

\draw (0.2,0) circle (2mm); \& \fill[red] (0,0) circle (3mm); \\
g

16.6 Examples

The following examples are adapted from code by Mark Wibrow. The first two redraw pictures from Timothy
van Zandt’s PSTricks documentation:

\begin{tikzpicture}
U S \matrix [matrix of math nodes,row sep=1icm]
§§§ {
N o, ()| U &[2nm] glemm] \\
e & | (XZY) | X \times_Z Y & [X)] X \\
Xx,Y p\"X) & ol Y & 1(2)] Z \\
a f \begin{scope} [every node/.style={midway,auto,font=\scriptsize}]
\draw [double, dashed] (U) -- node {x} (X);
\draw X) -- node {p} (X -| XZY.east)
Y —/— 2 (X) -- node {$£$} (2)
-- node {g} (Y)
-- node {q} (XZY)
-- node {y} (U);
\end{scope}
\end{tikzpicture}

179

\begin{tikzpicture} [>=stealth,->,shorten >=2pt,looseness=.5,auto]
\matrix [matrix of math nodes,
column sep={2cm,between origins},
row sep={3cm,between origins},
nodes={circle, draw, minimum size=7.5mm}]

{
& (D] Ak \\
I(B)I B& I(E)I E& I(C)] C\\
& | (D)| D \\

};

\begin{scopel}[every node/.style={font=\small\itshapel}]
\draw (A) to [bend left] (B) node [midway] {g};
\draw (B) to [bend left] (A) node [midway] {f};

\draw (D) -- (B) node [midway]l {c};
\draw (E) -- (B) node [midway] {b};
\draw (E) -- (C) node [near end] {a};

\draw [-,line width=8pt,draw=graphicbackground]
(D) to [bend right, looseness=1] (A);
\draw (D) to [bend right, looseness=1] (A)
node [near start] {b} node [near end] {e};
\end{scope}
\end{tikzpicture}

\begin{tikzpicture}
\matrix (network)
[matrix of nodes,/
nodes in empty cells,
nodes={outer sep=0pt,circle,minimum size=4pt,draw},
column sep={lcm,between origins},
row sep={lcm,between origins}]

{
& & & \\
& & & \\
| [draw=none] | & |[xshift=1mm]| & | [xshift=-1mm] | A\
Ig
\foreach \a in {1,...,4}{
\draw (network-3-2) -- (network-2-\a);
\draw (network-3-3) -- (network-2-\a);
\draw [-stealth] ([yshift=5mm]network-1-\a.north) -- (network-1-\a);
\foreach \b in {1,...,4}
\draw (network-1-\a) -- (network-2-\b);
}
\draw [stealth-] ([yshift=-5mm]network-3-2.south) -- (network-3-2);
\draw [stealth-] ([yshift=-bmm]network-3-3.south) -- (network-3-3);
\end{tikzpicture}

The following example is adapted from code written by Kjell Magne Fauske, which is based on the fol-
lowing paper: K. Bossley, M. Brown, and C. Harris, Neurofuzzy identification of an autonomous underwater
vehicle, International Journal of Systems Science, 1999, 30, 901-913.

180

—
initialize
model

!

identify
candidate
model

update
model

s)
evaluate

candidate
models

!

is best
candidate

stop

181

182

17 Making Trees Grow
17.1 Introduction to the Child Operation

Trees are a common way of visualizing hierarchical structures. A simple tree looks like this:

root \begin{tikzpicture}
\node {root}
child {node {leftl}}
child {node {right}
) child {node {child}}
left right child {node {child}}

};
/// \\\ \end{tikzpicture}

child child

Admittedly, in reality trees are more likely to grow upward and not downward as above. You can tell
whether the author of a paper is a mathematician or a computer scientist by looking at the direction their
trees grow. A computer scientist’s trees will grow downward while a mathematician’s tree will grow upward.
Naturally, the correct way is the mathematician’s way, which can be specify as follows:

. o \begin{tikzpicture}
clbill itk \node {root} [grow’=up]
child {node {leftl}}
child {node {right}
\ child {node {child}}
left right child {node {child}}
I8
\\\\ //// \end{tikzpicture}
root

In TikZ, trees are specified by adding children to a node on a path using the child operation:

\path ... child[{options)]foreach(variables)in{(values)}{{child path)} ...;

This operation should directly follow a completed node operation or another child operation, although
it is permissible that the first child operation is preceded by options (we will come to that).

When a node operation like node {X} is followed by child, TikZ starts counting the number of child
nodes that follow the original node {X}. For this, it scans the input and stores away each child and
its arguments until it reaches a path operation that is not a child. Note that this will fix the character
codes of all text inside the child arguments, which means, in essence, that you cannot use verbatim text
inside the nodes inside a child. Sorry.

Once the children have been collected and counted, TikZ starts generating the child nodes. For each
child of a parent node TikZ computes an appropriate position where the child is placed. For each child,
the coordinate system is transformed so that the origin is at this position. Then the (child path) is
drawn. Typically, the child path just consists of a node specification, which results in a node being
drawn at the child’s position. Finally, an edge is drawn from the first node in the (child path) to the
parent node.

The optional foreach part (note that there is no backslash before foreach) allows you to specify
multiple children in a single child command. The idea is the following: A \foreach statement is
(internally) used to iterate over the list of (values). For each value in this list, a new child is added to
the node. The syntax for (variables) and for (values) is the same as for the \foreach statement, see
Section 44. For example, when you say

node {root} child [red] foreach \name in {1,2} {node {\name}}
the effect will be the same as if you had said

node {root} child[red] {node {1}} child[ref] {node {2}}
When you write

node {root} child[\pos] foreach \name/\pos in {1/left,2/right} {node[\pos] {\name}}

183

the effect will be the same as for
node {root} child[left] {node[left] {1}} child[right] {nodel[right] {2}}
You can nest things as in the following example:

\begin{tikzpicture}
[level distance=4mm,level/.style={sibling distance=8mm/#1}]
\coordinate
child foreach \x in {0,1}
{child foreach \y in {0,1}
{child foreach \z in {0,1}}};
\end{tikzpicture}

The details and options for this operation are described in the rest of this present section.

17.2 Child Paths and the Child Nodes

For each child of a root node, its (child path) is inserted at a specific location in the picture (the placement
rules are discussed in Section 17.5). The first node in the (child path), if it exists, is special and called
the child node. If there is no first node in the (child path), that is, if the {child path) is missing (including
the curly braces) or if it does not start with node or with coordinate, then an empty child node of shape
coordinate is automatically added.

Consider the example \node {x} child {node {y}} child;. For the first child, the (child path) has
the child node node {y}. For the second child, no child node is specified and, thus, it is just coordinate.

As for any normal node, you can give the child node a name, shift it around, or use options to influence
how it is rendered.

- \begin{tikzpicture}
root
\node [rectangle,draw] {root}

child {node([circle,draw] (left node) {left}}
child {node[ellipse,draw] (right node) {right}};

\draw[dashed,->] (left node) -- (right node);
B \end{tikzpicture}

In many cases, the (child path) will just consist of a specification of a child node and, possibly, children
of this child node. However, the node specification may be followed by arbitrary other material that will be
added to the picture, transformed to the child’s coordinate system. For your convenience, a move-to (0,0)
operation is inserted automatically at the beginning of the path. Here is an example:

root \begin{tikzpicture}

\node {root}
child {[£fill] circle (2pt)}
child {[£ill] circle (2pt)};
\end{tikzpicture}

At the end of the (child path) you may add a special path operation called edge from parent. If this
operation is not given by yourself somewhere on the path, it will be automatically added at the end. This
option causes a connecting edge from the parent node to the child node to be added to the path. By
giving options to this operation you can influence how the edge is rendered. Also, nodes following the
edge from parent operation will be placed on this edge, see Section 17.6 for details.

To sum up:

1. The child path starts with a node specification. If it is not there, it is added automatically.
2. The child path ends with a edge from parent operation, possibly followed by nodes to be put on this
edge. If the operation is not given at the end, it is added automatically.

17.3 Naming Child Nodes

Child nodes can be named like any other node using either the name option or the special syntax in which
the name of the node is placed in round parentheses between the node operation and the node’s text.

If you do not assign a name to a child node, TikZ will automatically assign a name as follows: Assume
that the name of the parent node is, say, parent. (If you did not assign a name to the parent, TikZ will do

184

so itself, but that name will not be user-accessible.) The first child of parent will be named parent-1, the
second child is named parent-2, and so on.

This naming convention works recursively. If the second child parent-2 has children, then the first of
these children will be called parent-2-1 and the second parent-2-2 and so on.

If you assign a name to a child node yourself, no name is generated automatically (the node does not have
two names). However, “counting continues,” which means that the third child of parent is called parent-3
independently of whether you have assigned names to the first and/or second child of parent.

Here is an example:

oG \begin{tikzpicture}

\node (root) {root}

child

child {

child {coordinate (special)}
root-1 root-2 child

13
\node at (root-1) {root-1};
\node at (root-2) {root-2};

spetial root-2-2 \node at (special) {special};

\node at (root-2-2) {root-2-2};
\end{tikzpicture}

17.4 Specifying Options for Trees and Children

Each child may have its own (options), which apply to “the whole child,” including all of its grandchildren.
Here is an example:

\begin{tikzpicture}
[thick,level 2/.style={sibling distance=10mm}]
\coordinate
child[red] {child child}
child[green] {child child[bluel};
\ \end{tikzpicture}

The options of the root node have no effect on the children since the options of a node are always “local”
to that node. Because of this, the edges in the following tree are black, not red.

root \begin{tikzpicture} [thick]

\node [red] {root}
child
child;
\end{tikzpicture}

This raises the problem of how to set options for all children. Naturally, you could always set options for
the whole path as in \path [red] node {root} child child; but this is bothersome in some situations.
Instead, it is easier to give the options before the first child as follows:

\begin{tikzpicturel} [thick]
\node [red] {root}
[green] J option applies to all children
child
child;
\end{tikzpicture}

root

Here is the set of rules:

1. Options for the whole tree are given before the root node.

2. Options for the root node are given directly to the node operation of the root.
Options for all children can be given between the root node and the first child.

Options applying to a specific child path are given as options to the child operation.

ek @

Options applying to the node of a child, but not to the whole child path, are given as options to the
node command inside the (child path).

185

\begin{tikzpicture}

\path
[...] % Options apply to the whole tree
node[...] {root} 7/ Options apply to the root node only
[% Options apply to all children
childl[...] % Options apply to this child and all its children
{
nodel[...] {} 7 Options apply to the child node only
+
childl...] % Options apply to this child and all its children
\end{tikzpicture}

There are additional styles that influence how children are rendered:

/tikz/every child (style, initially empty)
This style is used at the beginning of each child, as if you had given the style’s contents as options to
the child operation.

/tikz/every child node (style, initially empty)
This style is used at the beginning of each child node in addition to the every node style.

/tikz/level=(number) (style, no default, initially empty)

This style is executed at the beginning of each set of children, where (number) is the current level in
the current tree. For example, when you say \node {x} child child;, then level=1 is used before
the first child. The style or code of this key will be passed (number) as its first parameter. If this first
child has children itself, then 1level=2 would be used for them.

root \begin{tikzpicture}[level/.style={sibling distance=20mm/#1}]

\node {root}
child { child child }
child { child child child };
\end{tikzpicture}

/tikz/level (number) (style, initially empty)

This style is used in addition to the level style. So, when you say \node {x} child child;, then the
following key list is executed: level=1,level 1.

root \begin{tikzpicture}

[level 1/.style={sibling distance=20mm},
level 2/.style={sibling distance=5mm}]
\node {root}
child { child child }
child { child child child };
\end{tikzpicture}

17.5 Placing Child Nodes
17.5.1 Basic Idea

Perhaps the most difficult part in drawing a tree is the correct layout of the children. Typically, the children
have different sizes and it is not easy to arrange them in such a manner that not too much space is wasted, the
children do not overlap, and they are either evenly spaced or their centers are evenly distributed. Calculating
good positions is especially difficult since a good position for the first child may depend on the size of the
last child.

186

In TikZ, a comparatively simple approach is taken to placing the children. In order to compute a child’s
position, all that is taken into account is the number of the current child in the list of children and the
number of children in this list. Thus, if a node has five children, then there is a fixed position for the first
child, a position for the second child, and so on. These positions do not depend on the size of the children
and, hence, children can easily overlap. However, since you can use options to shift individual children a bit,
this is not as great a problem as it may seem.

Although the placement of the children only depends on their number in the list of children and the
total number of children, everything else about the placement is highly configurable. You can change the
distance between children (appropriately called the sibling distance) and the distance between levels of
the tree. These distances may change from level to level. The direction in which the tree grows can be
changed globally and for parts of the tree. You can even specify your own “growth function” to arrange
children on a circle or along special lines or curves.

17.5.2 Default Growth Function

The default growth function works as follows: Assume that we are given a node and five children. These
children will be placed on a line with their centers (or, more generally, with their anchors) spaced apart by
the current sibling distance. The line is orthogonal to the current direction of growth, which is set with
the grow and grow’ option (the latter option reverses the ordering of the children). The distance from the

line to the parent node is given by the level distance.

A \begin{tikzpicture}
\path [help lines]
/ node (root) {root}
[grow=-10]
/ child {node {1}}
/ 3 child {node {2}}

i M%/Ce child {node {3}}
N child {node {4}};
\draw[|<->|,thick] (root-1.center)
-- node[above,sloped] {sibling distance} (root-2.center);

\draw[|<->|,thick] (root.center)
-- node[above,sloped] {level distance} +(-10:\tikzleveldistance);

\end{tikzpicture}

/tikz/level distance=(distance) (no default, initially 15mm)

This key determines the distance between different levels of the tree, more precisely, between the parent
and the line on which its children are arranged. When given to a single child, this will set the distance

for this child only.

\begin{tikzpicture}

\node {root}
\\\\\\\\ [level distance=20mm]

child

child {
[level distance=5mm]
child
child
child

}

child[level distance=10mm];

\end{tikzpicture}

T00t

187

root \begin{tikzpicture}

[level 1/.style={level distance=10mm},
//////// \\\\\\\\ level 2/.style={level distance=5mm}]
\node {root}
child
child {
child
child[level distance=10mm]
child
}
child;
\end{tikzpicture}

/tikz/sibling distance=(distance) (no default, initially 15mm)

This key specifies the distance between the anchors of the children of a parent node.

\begin{tikzpicture}
[level distance=4mm,
level 1/.style={sibling distance=8mm},
level 2/.style={sibling distance=4mm},
level 3/.style={sibling distance=2mm}]
\coordinate
child {
child {child child}
child {child child}
}
child {
child {child child}
child {child child}
};
\end{tikzpicture}

31 \begin{tikzpicture}
[level distance=10mm,
every node/.style={fill=red!60,circle,inner sep=1ipt},

30 20 level 1/.style={sibling distance=20mm,nodes={fill=red!45}},
level 2/.style={sibling distance=10mm,nodes={fill=red!30}},
// \\ // \\ level 3/.style={sibling distance=5mm,nodes={fill=red!25}}]

\node {31}
20 10 19 18 child {node {30}

/ \ / \ / child {node {20}
child {node {5}}
54911 child {node {4}}
}
child {node {10}
child {node {9}}
child {node {1}}
}
}
child {node {20}
child {node {19}
child {node {1}}
child[missing]
}
child {node {18}}
g
\end{tikzpicture}

/tikz/grow=(direction) (no default)

This key is used to define the (direction) in which the tree will grow. The (direction) can either be
an angle in degrees or one of the following special text strings: down, up, left, right, north, south,
east, west, north east, north west, south east, and south west. All of these have “their obvious
meaning,” so, say, south west is the same as the angle —135°.

As a side effect, this option installs the default growth function.

In addition to setting the direction, this option also has a seemingly strange effect: It sets the sibling
distance for the current level to Opt, but leaves the sibling distance for later levels unchanged.

188

This somewhat strange behaviour has a highly desirable effect: If you give this option before the list
of children of a node starts, the “current level” is still the parent level. Each child will be on a later
level and, hence, the sibling distance will be as specified originally. This will cause the children to be
neatly aligned in a line orthogonal to the given (direction). However, if you give this option locally to a
single child, then “current level” will be the same as the child’s level. The zero sibling distance will then
cause the child to be placed exactly at a point at distance level distance in the direction (direction).
However, the children of the child will be placed “normally” on a line orthogonal to the (direction).

These placement effects are best demonstrated by some examples:

/////// \tikz \node {root} [grow=right] child child;

root

N

root \tikz \node {root} [grow=south west] child child;

i

\begin{tikzpicturel}[level distance=10mm,sibling distance=5mm]
root \node {root}
/ ‘ [grow=down]

child

child

child[grow=right] {
child child child

}
\end{tikzpicture}
H O \begin{tikzpicture}[level distance=2em]
| | \node {C}
A A child [grow=up] {node {H}}
H (‘j N (‘j H child[grow=left] {node {H}}
child[grow=down] {node {H}}
H H child[grow=right] {node {C}
o child[grow=up] {node {H}}
This is wrong! child[grow=right] {node {H}}

child[grow=down] {node {H}}
edge from parent[double]
coordinate (wrong)
};
\draw[<-,red] ([yshift=-2mm]wrong) -- +(0,-1)
node [below]{This is wrong!};
\end{tikzpicture}

. . \begin{tikzpicture}
the middle is here \node [rectangle,draw] (a) at (0,0) {start node};

\node [rectangle,draw] (b) at (2,1) {end};

\draw (a) -- (b)
node [coordinate,midway] {}
child[grow=100,<-] {node[above] {the middle is herel}};
\end{tikzpicture}

/tikz/grow’=(direction) (no default)
This key has the same effect as grow, only the children are arranged in the opposite order.

17.5.3 Missing Children

Sometimes one or more of the children of a node are “missing.” Such a missing child will count as a child
with respect to the total number of children and also with respect to the current child count, but it will not
be rendered.

189

/tikz/missing=(true or false) (default true)
If this option is given to a child, the current child counter is increased, but the child is otherwise ignored.
In particular, the normal contents of the child is completely ignored.

\begin{tikzpicture}[level distance=10mm,sibling distance=5mm]

1ot \node {root} [grow=down]

/// \\ child { node {1} }
child { node {2} }

L2 3 DG child { node {3} }
child[missing] { node {4} }

child { node {5} }

child { node {6} };

\end{tikzpicture}

17.5.4 Custom Growth Functions

/tikz/growth parent anchor=(anchor) (no default, initially center)

This key allows you to specify which anchor of the parent node is to be used for computing the children’s
position. For example, when there is only one child and the level distance is 2cm, then the child node
will be placed two centimeters below the {(anchor) of the parent node. “Beinng placed” means that the
child node’s anchor (which is the anchor specified using the anchor= option in the node command of
the child) is two centimeters below the parent node’s {anchor).

In the following example, the two red lines both have length 1cm.

\begin{tikzpicture}[level distance=1cm]

root o0t

\node [rectangle,draw] (a) at (0,0) {root}
1

[growth parent anchor=south] child;

\node [rectangle,draw] (b) at (2,0) {root}
[growth parent anchor=north east] child;

\draw [red,thick,dashed] (a.south) -- (a-1);
\draw [red,thick,dashed] (b.north east) -- (b-1);
\end{tikzpicture}

In the next example, the top and bottom nodes are aligned at the top and the bottom.

\begin{tikzpicture}
[level distance=2cm,growth parent anchor=north,
every node/.style={anchor=north,rectangle,draw}
every child node/.style={anchor=south}]

root big root

. \node at (0,0) {root} child {node {small}};
small big

\node at (2,0) {big root} child {node {\large bigl}};
\end{tikzpicture}

/tikz/growth function=(macro name) (no default, initially an internal function)

This rather low-level option allows you to set a new growth function. The (macro name) must be the
name of a macro without parameters. This macro will be called for each child of a node. The initial
function is an internal function that corresponds to downward growth.

The effect of executing the macro should be the following: It should transform the coordinate system
in such a way that the origin becomes the place where the current child should be anchored. When the
macro is called, the current coordinate system will be setup such that the anchor of the parent node
is in the origin. Thus, in each call, the (macro name) must essentially do a shift to the child’s origin.
When the macro is called, the TEX counter \tikznumberofchildren will be set to the total number of
children of the parent node and the counter \tikznumberofcurrentchild will be set to the number of
the current child.

The macro may, in addition to shifting the coordinate system, also transform the coordinate system
further. For example, it could be rotated or scaled.

Additional growth functions are defined in the library, see Section 42.

190

17.6 Edges From the Parent Node

Every child node is connected to its parent node via a special kind of edge called the edge from parent.
This edge is added to the (child path) when the following path operation is encountered:

\path ... edge from parent [(options)] ...;
This path operation can only be used inside (child paths) and should be given at the end, possibly
followed by node specifications (we will come to that). If a (child path) does not contain this operation,
it will be added at the end of the (child path) automatically.
This operation has several effects. The most important is that it inserts the current “edge from parent
path” into the child path. The edge from parent path can be set using the following key:

/tikz/edge from parent path=(path) (no default, initially code shown below)
This options allows you to set the edge from parent path to a new path. Initially, this path is the
following:

(\tikzparentnode\tikzparentanchor) -- (\tikzchildnode\tikzchildanchor)

The \