1

Manual for Version 2.10

\begin { }
\coordinate (front) at (0,0);
\coordinate (horizon) at (0, .31\paperheight);
\coordinate (bottom) at (0,-.6\paperheight);
\coordinate (sky) at (0, .57\paperheight);
\coordinate (left) at (-.51\paperwidth,0);
\coordinate (right) at (.51\paperwidth,0);
\ [bottom color=white,
top color=blue!30!black!50]
([yshift=-5mm]horizon -| 1left)

rectangle (sky -| right);

\ [bottom color=black!70!green!25,
top color=black!70!green!10]
(front -| left) -- (horizon -| left)
decorate [decoration=random steps] {
-- (horizon -| right) }
-- (front -| right) -- cycle;

\ [top color=black!70!green!25,
bottom color=black!25]
([yshift=-5mm-1pt]front -| left)
rectangle ([yshift=1pt]front -| right);

\ [black!25]
(bottom —| left)
rectangle ([yshift=-5mm]front -| right);

\def\nodeshadowed [#1]#2; {
\ [scale=2, above, #1] {
\global\setbox\mybox=\hbox{#2}
\copy \mybox} ;
\ [scale=2, above, #1, yscale=-1,
scope fading=south,opacity=0.4] {\box\mybox};

\nodeshadowed [at={ (-5,8)},yslant=0.05]
{\Huge Ti\textcolor{orange}{\emph{k}}Z};
\nodeshadowed [at={(0,8.3)}]
{\huge \textcolor{green!50!black!50}{\&}};
\nodeshadowed [at={(5,8)},yslant=-0.05]
{\Huge \textsc{PGF}};
\nodeshadowed [at={(0,5)}]

{Manual for Version \pgftypesetversion};

\foreach \where in {-9cm, 9cm} {
\nodeshadowed [at={ (\where,5cm)}] { \tikz
\ [green!20!black, rotate=90,

l-system={rule set={F —> FF-[-F+F]+[+F-F]},
axiom=F, order=4, step=2pt,
randomize step percent=50, angle=30,

randomize angle percent=5}] l-system; }}
\foreach \i in {0.5,0.6,...,2}
\
[white, opacity=\i/2,
decoration=Koch snowflake,
shift= (horizon),shift={ (randx11l, rndx7) },
scale=\i,double copy shadow={
opacity=0.2, shadow xshift=0pt,
shadow yshift=3x\i pt, =white, =none}]
decorate {
decorate {
decorate {
(0,0)- ++(60:1) —-— ++(-60:1) -- cycle
L
\ (left text)
\ (right text)
\ [decorate, decoration={footprints, foot of=gnome},
opacity=.5,brown] (rand*8, —-rnd*10)

to [out=randx180,in=rand*x180] (rand*8,-rndx*10);

\end{ }

Fiir meinen Vater, damit er noch viele schone TEX-Graphiken erschaffen kann.

Till

Copyright 2007 by Till Tantau

Permission is granted to copy, distribute and/or modify the documentation under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in
the section entitled GNU Free Documentation License.

Permission is granted to copy, distribute and/or modify the code of the package under the terms of the GNU
Public License, Version 2 or any later version published by the Free Software Foundation. A copy of the
license is included in the section entitled GNU Public License.

Permission is also granted to distribute and/or modify both the documentation and the code under the
conditions of the LaTeX Project Public License, either version 1.3 of this license or (at your option) any
later version. A copy of the license is included in the section entitled KTEX Project Public License.

The TikZ and PGF Packages

Manual for version 2.10
http://sourceforge.net/projects/pgf

Till Tantau™*

Institut fiir Theoretische Informatik
Universitat zu Liibeck

October 25, 2010

Contents
1 Introduction 19
1.1 Structure of the System Lo 19
1.2 Comparison with Other Graphics Packages, 20
1.3 Utility Packages« . e e 20
1.4 How to Read This Manual 21
1.5 Authors and Acknowledgements L 21
1.6 Getting Help o o oo e 21
I Tutorials and Guidelines 22
2 Tutorial: A Picture for Karl’s Students 23
2.1 Problem Statement 23
2.2 Setting up the Environment L oL 23
2.2.1 Setting up the Environment in BTEX Lo Lo 23
2.2.2 Setting up the Environment in Plain TEX o0 24
2.2.3 Setting up the Environment in ConTEXt 24
2.3 Straight Path Construction L e 25
2.4 Curved Path Construction 25
2.5 Circle Path Construction 26
2.6 Rectangle Path Construction L 26
2.7 Grid Path Construction 27
2.8 Adding a Touch of Style e 27
2.9 Drawing Options e 28
2.10 Arc Path Construction e 28
2.11 Clipping a Path o e 29
2.12 Parabola and Sine Path Construction L 30
2.13 Filling and Drawing L e e e e 30
2.14 Shading e 31
2.15 Specifying Coordinates L e 31
2.16 Intersecting Paths L 32
2.17 Adding Arrow Tips L 33
208 SCOPING . . v v v o e e e 34
2.19 Transformations L e 34
2.20 Repeating Things: For-Loops e 35
2.21 Adding Text e 36

*Editor of this documentation. Parts of this documentation have been written by other authors as indicated in these parts
or chapters and in Section 1.5.

http://sourceforge.net/projects/pgf

3 Tutorial: A Petri-Net for Hagen

3.1 Problem Statement
3.2 Setting up the Environment oL L
3.2.1 Setting up the Environment in BTEXo oL
3.2.2 Setting up the Environment in Plain TEX
3.2.3 Setting up the Environment in ConTEXt
3.3 Imtroduction to Nodes e
3.4 Placing Nodes Using the At Syntax
3.5 Using Styles o e
3.6 Node Size e e e
3.7 Naming Nodes e
3.8 Placing Nodes Using Relative Placement
3.9 Adding Labels Next to Nodes e
3.10 Connecting Nodes e
3.11 Adding Labels Next to Lines
3.12 Adding the Snaked Line and Multi-Line Text
3.13 Using Layers: The Background Rectangles
3.14 The Complete Code o
4 Tutorial: Euclid’s Amber Version of the Elements
4.1 Book I, Proposition I e
4.1.1 Setting up the Environment L oL oL
4.1.2 The Line AB e e e e
4.1.3 The Circle Around A e
4.1.4 The Intersection of the Circles
4.1.5 The Complete Code o o
4.2 Book I, Proposition IT e
4.2.1 Using Partway Calculations for the Construction of D
4.2.2 Intersecting a Lineand a Circle 0.
4.2.3 The Complete Code e
5 Tutorial: Putting a Diagram in Chains
5.1 Styling the Nodes
5.2 Aligning the Nodes Using Positioning Options
5.3 Aligning the Nodes Using Matrices i i ittt e e
54 Using Chains L e
5.4.1 Creating a Simple Chain
5.4.2 Branching and Joining a Chain oL
5.4.3 Chaining Together Already Positioned Nodes
5.4.4 Combined Use of Matrices and Chains
6 Tutorial: A Lecture Map for Johannes
6.1 Problem Statement
6.2 Introduction to Trees e e e
6.3 Creating the Lecture Map e
6.4 Adding the Lecture Annotations
6.5 Adding the Background
6.6 Adding the Calendar e
6.7 The Complete Code e
7 Guidelines on Graphics
7.1 Planning the Time Needed for the Creation of Graphics
7.2 Workflow for Creating a Graphic
7.3 Linking Graphics With the Main Text
7.4 Consistency Between Graphics and Text,
7.5 Labels in Graphics e
7.6 Plots and Charts e
7.7 Attention and Distraction L

II Installation and Configuration

8 Installation

8.1 Package and Driver Versions L e
8.2 Installing Prebundled Packages
8.2.1 Debian e
8.2.2 MiKTeX e
8.3 Imstallation in a texmf Tree e
8.3.1 Installation that Keeps Everything Together
8.3.2 Imnstallation that is TDS-Compliant
8.4 Updating the Installation
9 Licenses and Copyright
9.1 Which License Applies?
9.2 The GNU Public License, Version 2 ittt
9.2.1 Preamble e e
9.2.2 Terms and Conditions For Copying, Distribution and Modification
9.2.3 No Warranty
9.3 The I’TEX Project Public License, Version 1.3c 2006-05-20
9.3.1 Preamble e
9.3.2 Definitions e e
9.3.3 Conditions on Distribution and Modification
9.3.4 No Warranty L
9.3.5 Maintenance of The Work o
9.3.6 Whether and How to Distribute Works under This License
9.3.7 Choosing This License or Another License
9.3.8 A Recommendation on Modification Without Distribution
9.3.9 How to Use This License
9.3.10 Derived Works That Are Not Replacements
9.3.11 Important Recommendations L Lo o
9.4 GNU Free Documentation License, Version 1.2, November 2002
9.4.1 Preamble e
9.4.2 Applicability and definitions
9.4.3 Verbatim Copying e
9.4.4 Copying in Quantity L
9.4.5 Modifications L
9.4.6 Combining Documents
9.4.7 Collection of Documents
9.4.8 Aggregating with independent Works L.
9.4.9 Translation
9.4.10 Termination L e e
9.4.11 Future Revisions of this License L.
9.4.12 Addendum: How to use this License for your documents

10 Input and Output Formats
10.1 Supported Input Formats
10.1.1 Using the WTEX Format
10.1.2 Using the Plain TEX Format
10.1.3 Using the ConTEXt Format
10.2 Supported Output Formats
10.2.1 Selecting the Backend Driver
10.2.2 Producing PDF Output
10.2.3 Producing PostScript Output
10.2.4 Producing HTML / SVG Output
10.2.5 Producing Perfectly Portable DVI Output

IIT TikZ ist kein Zeichenprogramm

91

92
92
92
92
93
93
93
93
93

94
94
94
94
95
97
97
97
97
98
99
100
100
100
101
101
101
101
102
102
102
103
103
103
105
105
105
105
105
106
106

107
107
107
107
107
108
108
108
109
110
111

112

11 Design Principles

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8

Special Syntax For Specifying Points L oo
Special Syntax For Path Specifications
Actions on Paths
Key-Value Syntax for Graphic Parameters
Special Syntax for Specifying Nodes o oo
Special Syntax for Specifying Trees o
Grouping of Graphic Parameters
Coordinate Transformation System L L

12 Hierarchical Structures: Package, Environments, Scopes, and Styles

12.1 Loading the Package and the Libraries
12.2 Creating a Picture L e
12.2.1 Creating a Picture Using an Environment
12.2.2 Creating a Picture Using a Command
12.2.3 Adding a Background oL
12.3 Using Scopes to Structure a Picture
12.3.1 The Scope Environment
12.3.2 Shorthand for Scope Environments L.
12.3.3 Using Scopes Inside Paths L
12.4 Using Graphic Options e
12.4.1 How Graphic Options Are Processed
12.4.2 Using Styles to Manage How Pictures Look
13 Specifying Coordinates
13,1 OVerview o oo e
13.2 Coordinate Systems L e
13.2.1 Canvas, XYZ, and Polar Coordinate Systems
13.2.2 Barycentric Systemso
13.2.3 Node Coordinate System
13.2.4 Tangent Coordinate Systems
13.2.5 Defining New Coordinate Systems o
13.3 Coordinates at Intersections
13.3.1 Intersections of Perpendicular Lines
13.3.2 Intersections of Arbitrary Paths o o
13.4 Relative and Incremental Coordinates oo
13.4.1 Specifying Relative Coordinates L o
13.4.2 Relative Coordinates and Scopes
13.5 Coordinate Calculations L
13.5.1 The General Syntax o o e
13.5.2 The Syntax of Factors
13.5.3 The Syntax of Partway Modifiers
13.5.4 The Syntax of Distance Modifiers
13.5.5 The Syntax of Projection Modifiers
14 Syntax for Path Specifications
14.1 The Move-To Operation ittt i e e
14.2 The Line-To Operation o it
14.2.1 Straight Lines oL
14.2.2 Horizontal and Vertical Lines oo
14.3 The Curve-To Operation i it et e e e e e e
14.4 The Cycle Operation
14.5 The Rectangle Operation 0
14.6 Rounding Corners
14.7 The Circle and Ellipse Operations it
14.8 The Arc Operation
14.9 The Grid Operation e
14.10 The Parabola Operation e
14.11 The Sine and Cosine Operation

113
113
113
113
114
114
114
115
115

116
116
116
116
118
118
119
119
119
120
120
120
121

123
123
123
123
126
127
129
130
130
130
131
133
133
133
134
134
135
135
136
137

14.12 The SVG Operation o 0 e 147
14.13 The Plot Operation e e 148
14.14 The To Path Operation 0 e 148
14.15 The Let Operation o 150
14.16 The Scoping Operation e 152
14.17 The Node and Edge Operations v 152
14.18 The PGF-Extra Operation 0 it 152
15 Actions on Paths 154
15,1 Overview oL e e e 154
15.2 Specifying a Color L 155
15.3 Drawing a Path 155
15.3.1 Graphic Parameters: Line Width, Line Cap, and Line Join 156
15.3.2 Graphic Parameters: Dash Pattern 157
15.3.3 Graphic Parameters: Draw Opacity 159
15.3.4 Graphic Parameters: Arrow Tips 159
15.3.5 Graphic Parameters: Double Lines and Bordered Lines 160

15.4 Filling a Path 0. o 161
15.4.1 Graphic Parameters: Fill Pattern 162
15.4.2 Graphic Parameters: Interior Ruleso 0L 163
15.4.3 Graphic Parameters: Fill Opacity 164

15.5 Generalized Filling: Using Arbitrary Pictures to Filla Path 164
15.6 Shading a Path L 165
15.7 Establishing a Bounding Box o 166
15.8 Clipping and Fading (Soft Clipping) 168
15.9 Doing Multiple Actionson a Path L o 169
15.10 Decorating and Morphing a Path L oo o 171
16 Nodes and Edges 173
16.1 OVerview o ot e 173
16.2 Nodes and Their Shapes 0 e 173
16.2.1 Predefined Shapes L 175
16.2.2 Common Options: Separations, Margins, Padding and Border Rotation 175

16.3 Multi-Part Nodes o 178
16.4 The Node Text L o e 179
16.4.1 Text Parameters: Color and Opacity 179
16.4.2 Text Parameters: Font 179
16.4.3 Text Parameters: Alignment and Width for Multi-Line Text 179
16.4.4 Text Parameters: Height and Depth of Text 183

16.5 Positioning Nodes 183
16.5.1 Positioning Nodes Using Anchors 183
16.5.2 Basic Placement Options 184
16.5.3 Advanced Placement Options 185
16.5.4 Arranging Nodes Using a Chains and Matrices 189

16.6 Fitting Nodes to a Set of Coordinates 189
16.7 Transformations L 190
16.8 Placing Nodes on a Line or Curve Explicitly 190
16.9 Placing Nodes on a Line or Curve Implicitly 193
16.10 The Label and Pin Options 194
16.11 Connecting Nodes: Using Nodes as Coordinates 197
16.12 Connecting Nodes: Using the Edge Operation 197
16.13 Referencing Nodes Outside the Current Pictures 199
16.13.1 Referencing a Node in a Different Picture 199
16.13.2 Referencing the Current Page Node — Absolute Positioning 200

16.14 Late Code and Late Options 200

17 Matrices and Alignment
171 OVErvIeW o o o o e e
17.2 Matrices are Nodes o
17.3 Cell Pictures e e e e e e
17.3.1 Alignment of Cell Pictures
17.3.2 Setting and Adjusting Column and Row Spacing
17.3.3 Cell Styles and Options o o
17.4 Anchoring a Matrix e
17.5 Considerations Concerning Active Characters
17.6 Examples L e
18 Making Trees Grow
18.1 Imtroduction to the Child Operation
18.2 Child Paths and the Child Nodes
18.3 Naming Child Nodes e
18.4 Specifying Options for Trees and Children
18.5 Placing Child Nodes e
18.5.1 BasicIdea e e
18.5.2 Default Growth Function
18.5.3 Missing Children o L
18.5.4 Custom Growth Functions
18.6 Edges From the Parent Node
19 Plots of Functions
19.1 When Should One Use TikZ for Generating Plots?
19.2 The Plot Path Operation e
19.3 Plotting Points Given Inline Lo
19.4 Plotting Points Read From an External File
19.5 Plotting a Function L
19.6 Plotting a Function Using Gnuplot
19.7 Placing Marks on the Plot oo L
19.8 Smooth Plots, Sharp Plots, Jump Plots, Comb Plots and Bar Plots
20 Transparency
20.1 OVEIrVIEW . . . o v e e e
20.2 Specifying a Uniform Opacity
20.3 Fadings e e
20.3.1 Creating Fadings e
20.3.2 Fadinga Path
20.3.3 Fading a Scope
20.4 Transparency Groups v v v v v it e e e e e e
21 Decorated Paths
21,1 OVErVIEW . . o v oo e e e e
21.2 Decorating a Subpath Using the Decorate Path Command
21.3 Decorating a Complete Path oo
21.4 Adjusting Decorations L
21.4.1 Positioning Decorations Relative to the To-Be-Decorate Path
21.4.2 Starting and Ending Decorations Early or Late
22 Transformations
22.1 The Different Coordinate Systems L
22.2 The XY- and XYZ-Coordinate Systems
22.3 Coordinate Transformations

22.4 Canvas Transformations

IV Libraries

202
202
202
203
203
204
206
208
209
209

213
213
214
214
215
216
216
217
219
220
221

223
223
223
224
224
224
226
228
229

234
234
234
236
236
238
240
240

242
242
244
245
246
246
247

249
249
249
250
253

255

23 Arrow Tip Library
23.1 Mathematical Arrow Tips e
23.2 Triangular Arrow Tips o L
23.3 Barbed Arrow Tips e
23.4 Bracket-Like Arrow Tips e
23.5 Circle, Diamond and Square Arrow Tips L
23.6 Serif-Like Arrow Tips o o
23.7 Partial Arrow Tips L e
23.8 Line Caps
23.9 Spacing Tips o e
24 Automata Drawing Library
24.1 Drawing Automata e
24.2 States With and Without Output
24.3 Initial and Accepting States
24.4 Examples. e e e
25 Background Library
26 Calc Library
27 Calendar Library
27.1 Calendar Command L e
27.1.1 Creating a Simple List of Days
27.1.2 Adding a Month Label
27.1.3 Creating a Week List Arrangement oo
27.1.4 Creating a Month List Arrangement
27.2 Arrangements i e e e e e e e
27.3 Month Labels o e
274 Examples e
28 Chains
28. 1 OVErVIEW e e
28.2 Starting and Continuing a Chain L L
283 Nodesona Chain 0 e
28.4 Joining Nodes on a Chain
28.5 Branches
29 Circuit Libraries
29.1 Introduction e
29.1.1 A First Example e
29.1.2 Symbols e
29.1.3 Symbol Graphics e
29.1.4 Annotations e
29.2 The Base Circuit Library
29.2.1 Symbol Size
29.2.2 Declaring New Symbols.
29.2.3 Pointing Symbols in the Right Direction
29.2.4 Info Labels o
29.2.5 Declaring and Using Annotations oL
29.2.6 Theming Symbols L
29.3 Logical Circuits« . . e e
29.3.1 OVErview o e e
29.3.2 Symbols: The Gates e
29.3.3 Implementation: The Logic Gates Shape Library
29.3.4 Implementation: The US-Style Logic Gates Shape Library
29.3.5 Implementation: The IEC-Style Logic Gates Shape Library
29.4 Electrical Engineering Circuits L e
29.4.1 OVErvIEW o o i e e e e e

256
256
256
256
257
257
257
257
257
257

258
258
259
259
261

263

266

29.4.2 Symbols: Indicating Current Directions
29.4.3 Symbols: Basic Elements o
29.4.4 Symbols: Diodes
29.4.5 Symbols: Contacts
29.4.6 Units
29.4.7 Annotations e
29.4.8 Implementation: The EE-Symbols Shape Library
29.4.9 Implementation: The IEC-Style EE-Symbols Shape Library
30 Decoration Library
30.1 Overview and Common Options vt
30.2 Path Morphing Decorations
30.2.1 Decorations Producing Straight Line Paths
30.2.2 Decorations Producing Curved Line Paths
30.3 Path Replacing Decorations
30.4 Marking Decorations
30.4.1 OVErview o o i e e
30.5 Arbitrary Markings
30.5.1 Arrow Tip Markings
30.5.2 Footprint Markings
30.5.3 Shape Background Markings
30.6 Text Decorations e
30.7 Fractal Decorations L e
31 Entity-Relationship Diagram Drawing Library
31.1 Emtities o
31.2 Relationships o e
31.3 Attributes e
32 Externalization Library
321 OVErvIEW e e
32.2 Requirements e e
32.3 A Word About ConTEXt And Plain TEX oo o
32.4 Externalizing Graphics e
32.4.1 Support for Labels and References In External Files
32.4.2 Customizing the Generated File Names
32.4.3 Remaking Figures or Skipping Figures
32.4.4 Customizing the Externalization L oL
32.4.5 Details About The Process
32.5 Using External Graphics Without PGF Installed
32.6 eps Graphics Export
32.7 Bitmap Graphics Export
32.8 Compatibility Issues e
32.8.1 References In External Pictures oo
32.8.2 Compatibility With Other Libraries or Packages
32.8.3 Compatibility With Bounding Box Restrictions
32.8.4 Interoperability With The Basic Layer Externalization
33 Fading Library
34 Fitting Library
35 Fixed Point Arithmetic Library
35.1 OVerview e e e
35.2 Using Fixed Point Arithmetic in PGF and TikZ

10

36 Floating Point Unit Library 362

36.1 OVErvVIEW o e e e 362
36.2 Usage e e 362
36.3 Comparison to the fixed point arithmetics library 363
36.4 Command Reference and Programmer’s Manual 363
36.4.1 Creating and Converting Floats 363

36.4.2 Symbolic Rounding Operations 366

36.4.3 Math Operations Commands i 367

36.4.4 Accessing the Original Math Routines for Programmers 369

37 Lindenmayer System Drawing Library 370
371 OVEIVIEW . . . o v o o e e e e e e e e e e e 370
37.1.1 Declaring L-systems 370

37.2 Using Lindenmayer Systems L 372
37.2.1 Using L-Systems in PGF 372

37.2.2 Using L-Systems in TikZ 373

38 Matrix Library 375
38.1 Matrices of Nodes e 375
38.2 End-of-Lines and End-of-Row Characters in Matrices of Nodes 376
38.3 Delimiters e e 377

39 Mindmap Drawing Library 379
39.1 OVErvIEW o e e 379
39.2 The Mindmap Style L e 379
39.3 Concepts Nodes o e 380
39.3.1 Isolated Concepts e 380

39.3.2 Conceptsin Trees« . . L L 381

39.4 Connecting Concepts L e e 383
39.4.1 Simple Connections o 383

39.4.2 The Circle Connection Bar Decoration 384

39.4.3 The Circle Connection Bar To-Path 385

39.4.4 Tree Edges e 386

39.5 Adding Annotations e 387

40 Paper Folding Diagrams Library 389
41 Pattern Library 393
41.1 Form-Only Patterns e 393
41.2 Inherently Colored Patterns L 393

42 Petri-Net Drawing Library 394
42.1 Places e e 394
422 Transitions oL L e e e e 394
423 Tokens . . .o e 395
424 Exampleso e e e 397

43 Plot Handler Library 399
43.1 Curve Plot Handlers e 399
43.2 Constant Plot Handlers 400
43.3 Comb Plot Handlers e 401
43.4 Bar Plot Handlers e 402
43.5 Mark Plot Handler 404

44 Plot Mark Library 407
45 Profiler Library 409
45.1 OVErVIEW o e e 409
45.2 Requirements L L e 409
45.3 Defining Profiler Entries 409

46 Shadings Library

47 Shadow Library

47.1
47.2
47.3

474

OVEIVIEW o o o e
The General Shadow Option e
Shadows for Arbitrary Paths and Shapes
47.3.1 Drop Shadows L e
47.3.2 Copy Shadows e
Shadows for Special Paths and Nodes

48 Shape Library

48.1
48.2
48.3
48.4
48.5
48.6
48.7
48.8

OVEIVIEW . . . v o o o e e e e e e e e e e e
Predefined Shapes L
Geometric Shapes e e
Symbol Shapes
Arrow Shapes e
Shapes with Multiple Text Parts
Callout Shapes e
Miscellaneous Shapes oL

49 Spy Library: Magnifying Parts of Pictures

49.1
49.2
49.3
49.4
49.5

Magnifying a Part of a Picture oo
SPY SCOPES « « o v v e e e e e
The Spy Command e e
Predefined Spy Styles oL
Examples L

50 SVG-Path Library

51 To Path Library

o1.1
51.2
51.3
51.4

Straight Lines oL
Move-ToS o e e
CUIVES . . o o
Loops . . . o o e

52 Through Library

53 Tree Library

93.1
53.2

Growth Functions e
Edges From Parent e

54 Turtle Graphics Library

V Utilities

55 Key Management

55.1

55.2
55.3

55.4

Introduction L
55.1.1 Comparison to Other Packages
55.1.2 Quick Guide to Using the Key Mechanism
The Key Tree o o o e
Setting Keys« o o e e
55.3.1 Default Arguments
55.3.2 Keys That Execute Commands
55.3.3 Keys That Store Values
55.3.4 Keys That Are Handled
55.3.5 Keys That Are Unknown
55.3.6 Search Paths And Handled Keys
Key Handlers e
55.4.1 Handlers for Path Management

12

412

415
415
415
416
416
416
417

419
419
419
420
435
441
447
453
457

462
462
463
463
465
466

468

469
469
469
469
472

474

475
475
477

478

55.4.2 Setting Defaults L
55.4.3 Defining Key Codes
55.4.4 Defining Styles oL
55.4.5 Defining Value-, Macro-, If- and Choice-Keys
55.4.6 Expanded and Multiple Values oL
55.4.7 Handlers for Testing Keys o
55.4.8 Handlers for Key Inspection L o
55.5 Error Keys o e e
55.6 Key Filtering
55.6.1 Starting With An Example. oo
55.6.2 Setting Filters L
55.6.3 Handlers For Unprocessed Keys
55.6.4 Family Support e
55.6.5 Other Key Filters o .
55.6.6 Programmer Interface. L oo
55.6.7 Defining Own Filters Or Filter Handlers
56 Repeating Things: The Foreach Statement
57 Date and Calendar Utility Macros
57.1 Handling Dates e
57.1.1 Conversions Between Date Types
57.1.2 Checking Dates e
57.1.3 Typesetting Dates
57.1.4 Localization e
57.2 Typesetting Calendars e
58 Page Management
58.1 Basic Usage e e e e
58.2 The Predefined Layouts
58.3 Defining a Layout
58.4 Creating Logical Pages
59 Extended Color Support
60 Parser Module
VI Mathematical and Object-Oriented Engines
61 Design Principles
61.1 Loading the Mathematical Engine
61.2 Layers of the Mathematical Engine o oL
61.3 Efficiency and Accuracy of the Mathematical Engine
62 Evaluating Mathematical Expressions
62.1 Commands for Parsing Expressions o
63 Syntax for mathematical expressions
63.1 Operators e e
63.2 Functions. L L e
63.2.1 Basic arithmetic functions 0L oo o
63.2.2 Rounding functions
63.2.3 Trigonometric functions L Lo
63.2.4 Comparison and logical functions oL oL
63.2.5 Pseudo-random functions Lo
63.2.6 Base conversion functions oL Lo o
63.2.7 Miscellaneous functions L Lo

13

504

509
509
509
510
511
512
512

515
515
516
518
521

522

523

524

525
525
525
525

64 Additional Mathematical Commands

64.1
64.2
64.3
64.4

Basic arithmetic functions e
Comparison and logical functions
Pseudo-Random Numbers
Base Conversion e

65 Customizing the Mathematical Engine

66 Number Printing

66.1

Changing display styles e e

67 Object-Oriented Programming

67.1
67.2
67.3
67.4
67.5
67.6
67.7
67.8
67.9

OVErvIew o o e
A Running Example: The Stamp Class o
Classes . . . o o o i e
Objects o e e
Methods e e
Attributes Lo
Identities
The Signal Class o o0
Implementation Notes L

VII The Basic Layer
68 Design Principles
68.1 Core and Modules
68.2 Communicating with the Basic Layer via Macros
68.3 Path-Centered Approach
68.4 Coordinate Versus Canvas Transformations
69 Hierarchical Structures: Package, Environments, Scopes, and Text
69.1 OVerview L e e
69.1.1 The Hierarchical Structure of the Package
69.1.2 The Hierarchical Structure of Graphics
69.2 The Hierarchical Structure of the Package
69.2.1 The Core Package e
69.2.2 The Modules e
69.2.3 The Library Packages
69.3 The Hierarchical Structure of the Graphics
69.3.1 The Main Environment e
69.3.2 Graphic Scope Environments e
69.3.3 Imserting Text and Images L
70 Specifying Coordinates
701 OVEIVIEW . . . o v v o e e e e e e e e e e e e e
70.2 Basic Coordinate Commands
70.3 Coordinates in the XY-Coordinate System
70.4 Three Dimensional Coordinates e
70.5 Building Coordinates From Other Coordinates
70.5.1 Basic Manipulations of Coordinates
70.5.2 Points Traveling along Lines and Curves
70.5.3 Points on Borders of Objects L L
70.5.4 Points on the Intersection of Lines
70.5.5 Points on the Intersection of Two Circles
70.5.6 Points on the Intersection of Two Paths
70.6 Extracting Coordinates L e
70.7 Internals of How Point Commands Work

14

539
539
539
539
540

541

543
546

551
551
551
551
552
553
554
556
557
558

71 Constructing Paths
TLL OVErvIEW oo e e
71.2 The Move-To Path Operation
71.3 The Line-To Path Operation
71.4 The Curve-To Path Operations
71.5 The Close Path Operation
71.6 Arc, Ellipse and Circle Path Operations
71.7 Rectangle Path Operations e
71.8 The Grid Path Operation. e
71.9 The Parabola Path Operation
71.10 Sine and Cosine Path Operations oo
71.11 Plot Path Operations e
71.12 Rounded Cornerso i e e e e
71.13 Internal Tracking of Bounding Boxes for Paths and Pictures
72 Decorations
T2.1 OVErVIEW o o e e
72.2 Decoration Automata
72.2.1 The Different Paths
72.2.2 Segments and States L oL
72.3 Declaring Decorations L L
72.3.1 Predefined Decorations
72.4 Using Decorations
72.5 Meta-Decorations L Lo e e e
72.5.1 Declaring Meta-Decorations L o
72.5.2 Predefined Meta-decorations L Lo
72.5.3 Using Meta-Decorations e
73 Using Paths
T3.1 OVErview o e e
73.2 Stroking a Path L
73.2.1 Graphic Parameter: Line Width
73.2.2 Graphic Parameter: Caps and Joins
73.2.3 Graphic Parameter: Dashing o oL
73.2.4 Graphic Parameter: Stroke Color o
73.2.5 Graphic Parameter: Stroke Opacity o
73.2.6 Graphic Parameter: Arrows
73.2.7 Inner Lines o Lo
73.3 Filling a Path e
73.3.1 Graphic Parameter: Interior Ruleo oo
73.3.2 Graphic Parameter: Filling Color
73.3.3 Graphic Parameter: Fill Opacity
73.4 Clipping a Path e
73.5 Using a Path as a Bounding Box L
74 Arrow Tips
T4.1 OVErview o o e e e
74.1.1 When Does PGF Draw Arrow Tips? i
74.1.2 Meta-Arrow Tips
74.2 Declaring an Arrow Tip Kind o
74.3 Declaring a Derived Arrow Tip Kind
74.4 Using an Arrow Tip Kind 0o
74.5 Predefined Arrow Tip Kinds

15

75 Nodes and Shapes
751 OVErVIEW o o e e e e
75.1.1 Creating and Referencing Nodes L.
75.1.2 Anchors e e e
75.1.3 Layers of a Shape e
75.1.4 Node Parts. o e
75.2 Creating Nodes L e
75.2.1 Creating Simple Nodes e
75.2.2 Creating Multi-Part Nodes
75.2.3 Deferred Node Positioning Lo
75.3 Using Anchors o e
75.3.1 Referencing Anchors of Nodes in the Same Picture
75.3.2 Referencing Anchors of Nodes in Different Pictures
75.4 Special Nodes
75.5 Declaring New Shapes« . . e
75.5.1 What Must Be Defined For a Shape?
75.5.2 Normal Anchors Versus Saved Anchors
75.5.3 Command for Declaring New Shapes
76 Matrices
T6.1 OVErvIEW o e
76.2 Cell Pictures and Their Alignment
76.3 The Matrix Command e e
76.4 Row and Column Spacing e
76.5 Callbacks e
77 Coordinate and Canvas Transformations
TT.1 OVEIVIEW . . . v v o o e e e e e e e e e e e e e e e e e e
77.2 Coordinate Transformations L
77.2.1 How PGF Keeps Track of the Coordinate Transformation Matrix
77.2.2 Commands for Relative Coordinate Transformations
77.2.3 Commands for Absolute Coordinate Transformations
77.2.4 Saving and Restoring the Coordinate Transformation Matrix
77.3 Canvas Transformations L
78 Patterns
781 OVEIVIEW . . . v v v e e e et e e e e e e e e e e e
78.2 Declaring a Pattern L
78.3 Setting a Pattern
79 Declaring and Using Images
T79.1 OVErview o e e e e
79.2 Declaring an Image Lo
79.3 Using an Image e
79.4 Masking an Image oL
80 Externalizing Graphics
80.1 OVErvIew o o e e e
80.2 Workflow Step 1: Naming Graphics
80.3 Workflow Step 2: Generating the External Graphics
80.4 Workflow Step 3: Including the External Graphics
80.5 A Complete Example
81 Creating Plots
811 OVerview o e e
81.2 Generating Plot Streams
81.2.1 Basic Building Blocks of Plot Streams
81.2.2 Commands That Generate Plot Streams
81.3 Plot Handlers e

16

82 Layered Graphics

82.1 Overview
82.2 Declaring Layers
82.3 Using Layers,
83 Shadings
83.1 Overview
83.2 Declaring Shadings
83.2.1 Horizontal and Vertical Shadings
83.2.2 Radial Shadings
83.2.3 General (Functional) Shadings
83.3 Using Shadings
84 Transparency
84.1 Specifying a Uniform Opacity
84.2 Specifying a Fading
84.3 Transparency Groups

85 Adding libraries to pgf: temporary registers

86 Quick Commands

86.1
86.2
86.3
86.4

Quick Coordinate Commands
Quick Path Construction Commands
Quick Path Usage Commands
Quick Text Box Commands

VIII The System Layer

87 Design of the System Layer

87.1
87.2

Driver Files
Common Definition Files

88 Commands of the System Layer

88.1
88.2
88.3
88.4
88.5
88.6
88.7
88.8
88.9

Beginning and Ending a Stream of System Commands

Path Construction System Commands
Canvas Transformation System Commands
Stroking, Filling, and Clipping System Commands . . .
Graphic State Option System Commands
Color System Commands
Pattern System Commands.
Scoping System Commands
Image System Commands
88.10 Shading System Commands
88.11 Transparency System Commands
88.12 Reusable Objects System Commands
88.13 Invisibility System Commands
88.14 Position Tracking Commands
88.15 Internal Conversion Commands

89 The Soft Path Subsystem

89.1
89.2
89.3
89.4

Path Creation Process
Starting and Ending a Soft Path
Soft Path Creation Commands
The Soft Path Data Structure

90 The Protocol Subsystem

IX References and Index

17

662
662
662
662

664
664
664
664
665
665
667

671
671
671
673

675

677
677
677
678
678

680

681
681
681

682
682
683
684
684
685
686
688
688
689
689
690
690
691
691
692

693
693
693
694
694

696

697

Index 698

18

1 Introduction

The PGF package, where “PGF” is supposed to mean “portable graphics format” (or “pretty, good, functional”
if you prefer...), is a package for creating graphics in an “inline” manner. It defines a number of TEX
commands that draw graphics. For example, the code \tikz \draw (Opt,Opt) -- (20pt,6pt); yields the
line — and the code \tikz \fill[orange] (lex,lex) circle (lex); yields

In a sense, when you use PGF you “program” your graphics, just as you “program” your document when
you use TEX. You get all the advantages of the “TEX-approach to typesetting” for your graphics: quick
creation of simple graphics, precise positioning, the use of macros, often superior typography. You also
inherit all the disadvantages: steep learning curve, no WySIwya, small changes require a long recompilation
time, and the code does not really “show” how things will look like.

1.1 Structure of the System

The PGF system consists of different layers:

System layer: This layer provides a complete abstraction of what is going on “in the driver.” The driver
is a program like dvips or dvipdfm that takes a .dvi file as input and generates a .ps or a .pdf file.
(The pdftex program also counts as a driver, even though it does not take a .dvi file as input. Never
mind.) Each driver has its own syntax for the generation of graphics, causing headaches to everyone
who wants to create graphics in a portable way. PGF’s system layer “abstracts away” these differences.
For example, the system command \pgfsys@lineto{10pt}{10pt} extends the current path to the
coordinate (10pt, 10pt) of the current {pgfpicture}. Depending on whether dvips, dvipdfm, or
pdftex is used to process the document, the system command will be converted to different \special
commands. The system layer is as “minimalistic” as possible since each additional command makes it
more work to port PGF to a new driver.

As a user, you will not use the system layer directly.

Basic layer: The basic layer provides a set of basic commands that allow you to produce complex graphics
in a much easier manner than by using the system layer directly. For example, the system layer provides
no commands for creating circles since circles can be composed from the more basic Bézier curves (well,
almost). However, as a user you will want to have a simple command to create circles (at least I do)
instead of having to write down half a page of Bézier curve support coordinates. Thus, the basic layer
provides a command \pgfpathcircle that generates the necessary curve coordinates for you.

The basic layer is consists of a core, which consists of several interdependent packages that can only be
loaded en bloc, and additional modules that extend the core by more special-purpose commands like
node management or a plotting interface. For instance, the BEAMER package uses only the core and
not, say, the shapes modules.

Frontend layer: A frontend (of which there can be several) is a set of commands or a special syntax that
makes using the basic layer easier. A problem with directly using the basic layer is that code written
for this layer is often too “verbose.” For example, to draw a simple triangle, you may need as many as
five commands when using the basic layer: One for beginning a path at the first corner of the triangle,
one for extending the path to the second corner, one for going to the third, one for closing the path,
and one for actually painting the triangle (as opposed to filling it). With the tikz frontend all this
boils down to a single simple METAFONT-like command:

\draw (0,0) -- (1,0) -- (1,1) -- cycle;

There are different frontends:

e The TikZ frontend is the “natural” frontend for PGF. It gives you access to all features of PGF,
but it is intended to be easy to use. The syntax is a mixture of METAFONT and PSTRICKS and
some ideas of myself. This frontend is neither a complete METAFONT compatibility layer nor a
PSTRICKS compatibility layer and it is not intended to become either.

e The pgfpict2e frontend reimplements the standard ETEX {picture} environment and com-
mands like \1ine or \vector using the PGF basic layer. This layer is not really “necessary” since
the pict2e.sty package does at least as good a job at reimplementing the {picture} environ-
ment. Rather, the idea behind this package is to have a simple demonstration of how a frontend
can be implemented.

19

It would be possible to implement a pgftricks frontend that maps PSTRICKS commands to PGF
commands. However, I have not done this and even if fully implemented, many things that work in
PSTRICKS will not work, namely whenever some PSTRICKS command relies too heavily on PostScript
trickery. Nevertheless, such a package might be useful in some situations.

As a user of PGF you will use the commands of a frontend plus perhaps some commands of the basic
layer. For this reason, this manual explains the frontends first, then the basic layer, and finally the system

layer.

1.2

Comparison with Other Graphics Packages

PGF is not the only graphics package for TEX. In the following, I try to give a reasonably fair comparison of
the PGF-system and other packages.

1.

1.3

The standard BTEX {picture} environment allows you to create simple graphics, but little more. This
is certainly not due to a lack of knowledge or imagination on the part of WTEX’s designer(s). Rather,
this is the price paid for the {picture} environment’s portability: It works together with all backend
drivers.

. The pstricks package is certainly powerful enough to create any conceivable kind of graphic, but it

is not portable at all. Most importantly, it does not work with pdftex nor with any other driver that
produces anything but PostScript code.

Compared to PGF, pstricks has a broader support base. There are many nice extra packages for
special purpose situations that have been contributed by users over the last decade.

The TikZ syntax is more consistent than the pstricks syntax as TikZ was developed “in a more
centralized manner” and also “with the shortcomings on pstricks in mind.”

Note that a number of neat tricks that pstricks can do are impossible in PGF. In particular, pstricks
has access to the powerful PostScript programming language, which allows trickery such as inline
function plotting.

. The xypic package is an older package for creating graphics. However, it is more difficult to use and

to learn because the syntax and the documentation are a bit cryptic.

. The dratex package is a small graphic package for creating a graphics. Compared to the other package,

including PGF, it is very small, which may or may not be an advantage.

. The metapost program is a very powerful alternative to PGF. However, it is an external program,

which entails a bunch of problems. The time needed both to create a small graphic and also to compile
it is much greater than in PGF. The main problem with metapost, however, is the inclusion of labels.
This is much easier to achieve using PGF.

. The xfig program is an important alternative to TikZ for users who do not wish to “program” their

graphics as is necessary with TikZ and the other packages above. Their is a conversion program that
will convert xfig graphics to both TikZ and for PGF, but it is still under construction.

Utility Packages

The PGF package comes along with a number of utility package that are not really about creating graphics
and which can be used independently of PGF. However, they are bundled with PGF, partly out of convenience,
partly because their functionality is closely intertwined with PGF. These utility packages are:

1.

The pgfkeys package defines a powerful key management facility. It can be used completely indepen-
dently of PGF.

. The pgffor package defines a useful \foreach statement.

The pgfcalendar package defines macros for creating calendars. Typically, these calendars will be
rendered using PGF’s graphic engine, but you can use pgfcalendar also typeset calendars using normal
text. The package also defines commands for “working” with dates.

20

4. The pgfpages package is used to assemble several pages into a single page. It provides commands for
assembling several “virtual pages” into a single “physical page.” The idea is that whenever TEX has a
page ready for “shipout,” pgfpages interrupts this shipout and instead stores the page to be shipped
out in a special box. When enough “virtual pages” have been accumulated in this way, they are scaled
down and arranged on a “physical page,” which then really shipped out. This mechanism allows you
to create “two page on one page” versions of a document directly inside KTEX without the use of any
external programs. However, pgfpages can do quite a lot more than that. You can use it to put logos
and watermark on pages, print up to 16 pages on one page, add borders to pages, and more.

1.4 How to Read This Manual

This manual describes both the design of the PGF system and its usage. The organization is very roughly
according to “user-friendliness.” The commands and subpackages that are easiest and most frequently used
are described first, more low-level and esoteric features are discussed later.

If you have not yet installed PGF, please read the installation first. Second, it might be a good idea to
read the tutorial. Finally, you might wish to skim through the description of TikZ. Typically, you will not
need to read the sections on the basic layer. You will only need to read the part on the system layer if you
intend to write your own frontend or if you wish to port PGF to a new driver.

The “public” commands and environments provided by the pgf package are described throughout the
text. In each such description, the described command, environment or option is printed in red. Text shown
in green is optional and can be left out.

1.5 Authors and Acknowledgements

The bulk of the PGF system and its documentation was written by Till Tantau. A further member of the main
team is Mark Wibrow, who is responsible, for example, for the PGF mathematical engine, many shapes, the
decoration engine, and matrices. The third member is Christian Feuersanger who contributed the floating
point library, image externalization, extended key processing, and automatic hyperlinks in the manual.

Furthermore, occasional contributions have been made by Christophe Jorssen, Jin-Hwan Cho, Olivier
Binda, Matthias Schulz, Renée Ahrens, Stephan Schuster, and Thomas Neumann.

Additionally, numerous people have contributed to the PGF system by writing emails, spotting bugs, or
sending libraries and patches. Many thanks to all these people, who are too numerous to name them all!

1.6 Getting Help
When you need help with PGF and TikZ, please do the following:

1. Read the manual, at least the part that has to do with your problem.

2. If that does not solve the problem, try having a look at the sourceforge development page for PGF and
TikZ (see the title of this document). Perhaps someone has already reported a similar problem and
someone has found a solution.

3. On the website you will find numerous forums for getting help. There, you can write to help forums,
file bug reports, join mailing lists, and so on.

4. Before you file a bug report, especially a bug report concerning the installation, make sure that this
is really a bug. In particular, have a look at the .log file that results when you TEX your files. This
.log file should show that all the right files are loaded from the right directories. Nearly all installation
problems can be resolved by looking at the .log file.

5. As a last resort you can try to email me (Till Tantau) or, if the problem concerns the mathematical
engine, Mark Wibrow. I do not mind getting emails, I simply get way too many of them. Because of
this, I cannot guarantee that your emails will be answered timely or even at all. Your chances that
your problem will be fixed are somewhat higher if you mail to the PGF mailing list (naturally, I read
this list and answer questions when I have the time).

6. Please, do not phone me in my office (unless, of course, you attend one of my lectures).

21

Part 1
Tutorials and Guidelines
by Till Tantau

To help you get started with TikZ, instead of a long installation and configuration section, this manual starts
with tutorials. They explain all the basic and some of the more advanced features of the system, without
going into all the details. This part also contains some guidelines on how you should proceed when creating
graphics using TikZ.

\tikz \draw[thick,rounded corners=8pt]
(0,0) -- (0,2) -- (1,3.25) -- (2,2) -- (2,0) -- (0,2) -- (2,2) -- (0,0) -- (2,0);

22

2 Tutorial: A Picture for Karl’s Students

This tutorial is intended for new users of PGF and TikZ. It does not give an exhaustive account of all the
features of TikZ or PGF, just of those that you are likely to use right away.

Karl is a math and chemistry high-school teacher. He used to create the graphics in his worksheets and
exams using BTEX’s {picture} environment. While the results were acceptable, creating the graphics often
turned out to be a lengthy process. Also, there tended to be problems with lines having slightly wrong angles
and circles also seemed to be hard to get right. Naturally, his students could not care less whether the lines
had the exact right angles and they find Karl’s exams too difficult no matter how nicely they were drawn.
But Karl was never entirely satisfied with the result.

Karl’s son, who was even less satisfied with the results (he did not have to take the exams, after all),
told Karl that he might wish to try out a new package for creating graphics. A bit confusingly, this package
seems to have two names: First, Karl had to download and install a package called PGF. Then it turns out
that inside this package there is another package called TikZ, which is supposed to stand for “TikZ ist kein
Zeichenprogramm.” Karl finds this all a bit strange and TikZ seems to indicate that the package does not
do what he needs. However, having used GNU software for quite some time and “GNU not being Unix,” there
seems to be hope yet. His son assures him that TikZ’s name is intended to warn people that TikZ is not a
program that you can use to draw graphics with your mouse or tablet. Rather, it is more like a “graphics
language.”

2.1 Problem Statement

Karl wants to put a graphic on the next worksheet for his students. He is currently teaching his students
about sine and cosine. What he would like to have is something that looks like this (ideally):
Y

The angle « is 30° in the example
1 (w/6 in radians). The sine of «, which
— is the height of the red line, is

sina = 1/2.

N[

sin By the Theorem of Pythagoras we

cosa have cos® o + sin® & = 1. Thus the

« length of the blue line, which is the
cos o 1 cosine of «, must be

/ cosa=+/1-1/4=1V3.

This shows that tan «, which is the
height of the orange line, is

sin o tana =

DO

- sin o
1 tan o = =1/+/3.
COS v

2.2 Setting up the Environment

In TikZ, to draw a picture, at the start of the picture you need to tell TEX or KIEX that you want to
start a picture. In KTEX this is done using the environment {tikzpicture}, in plain TEX you just use
\tikzpicture to start the picture and \endtikzpicture to end it.

2.2.1 Setting up the Environment in BKTpX
Karl, being a KTEX user, thus sets up his file as follows:

23

\documentclass{article} % say
\usepackage{tikz}
\begin{document}
We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.
\end{document}

When executed, that is, run via pdflatex or via latex followed by dvips, the resulting will contain
something that looks like this:

We are working on
\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\end{tikzpicture}.

We are working on

Admittedly, not quite the whole picture, yet, but we do have the axes established. Well, not quite, but
we have the lines that make up the axes drawn. Karl suddenly has a sinking feeling that the picture is still
some way off.

Let’s have a more detailed look at the code. First, the package tikz is loaded. This package is a so-called
“frontend” to the basic PGF system. The basic layer, which is also described in this manual, is somewhat
more, well, basic and thus harder to use. The frontend makes things easier by providing a simpler syntax.

Inside the environment there are two \draw commands. They mean: “The path, which is specified
following the command up to the semicolon, should be drawn.” The first path is specified as (-1.5,0) --
(0,1.5), which means “a straight line from the point at position (—1.5,0) to the point at position (0,1.5).”
Here, the positions are specified within a special coordinate system in which, initially, one unit is lcm.

Karl is quite pleased to note that the environment automatically reserves enough space to encompass the
picture.

2.2.2 Setting up the Environment in Plain TgX

Karl’s wife Gerda, who also happens to be a math teacher, is not a KTEX user, but uses plain TEX since
she prefers to do things “the old way.” She can also use TikZ. Instead of \usepackage{tikz} she has
to write \input tikz.tex and instead of \begin{tikzpicture} she writes \tikzpicture and instead of
\end{tikzpicture} she writes \endtikzpicture.

Thus, she would use:

% % Plain TeX file
\input tikz.tex
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
We are working on
\tikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\endtikzpicture.
\bye

Gerda can typeset this file using either pdftex or tex together with dvips. TikZ will automatically
discern which driver she is using. If she wishes to use dvipdfm together with tex, she either needs to
modify the file pgf.cfg or can write \def\pgfsysdriver{pgfsys-dvipdfm.def} somewhere before she
inputs tikz.tex or pgf.tex.

2.2.3 Setting up the Environment in ConTEXt

Karl’s uncle Hans uses ConTgXt. Like Gerda, Hans can also use TikZ. Instead of \usepackage{tikz} he
says \usemodule[tikz]. Instead of \begin{tikzpicture} he writes \starttikzpicture and instead of
\end{tikzpicture} he writes \stoptikzpicture.

24

His version of the example looks like this:

% % ConTeXt file
\usemodule [tikz]

\starttext
We are working on
\starttikzpicture
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\stoptikzpicture.
\stoptext

Hans will now typeset this file in the usual way using texexec!.

2.3 Straight Path Construction

The basic building block of all pictures in TikZ is the path. A path is a series of straight lines and curves
that are connected (that is not the whole picture, but let us ignore the complications for the moment). You
start a path by specifying the coordinates of the start position as a point in round brackets, as in (0,0).
This is followed by a series of “path extension operations.” The simplest is —--, which we used already. It
must be followed by another coordinate and it extends the path in a straight line to this new position. For
example, if we were to turn the two paths of the axes into one path, the following would result:

\tikz \draw (-1.5,0) -- (1.5,0) -- (0,-1.5) -- (0,1.5);

Karl is a bit confused by the fact that there is no {tikzpicture} environment, here. Instead, the little
command \tikz is used. This command either takes one argument (starting with an opening brace as in
\tikz{\draw (0,0) -- (1.5,0)}, which yields —) or collects everything up to the next semicolon
and puts it inside a {tikzpicture} environment. As a rule of thumb, all TikZ graphic drawing commands
must occur as an argument of \tikz or inside a {tikzpicture} environment. Fortunately, the command
\draw will only be defined inside this environment, so there is little chance that you will accidentally do
something wrong here.

2.4 Curved Path Construction

The next thing Karl wants to do is to draw the circle. For this, straight lines obviously will not do. Instead,
we need some way to draw curves. For this, TikZ provides a special syntax. One or two “control points”
are needed. The math behind them is not quite trivial, but here is the basic idea: Suppose you are at point
x and the first control point is y. Then the curve will start “going in the direction of y at x,” that is, the
tangent of the curve at x will point toward y. Next, suppose the curve should end at z and the second
support point is w. Then the curve will, indeed, end at z and the tangent of the curve at point z will go
through w.
Here is an example (the control points have been added for clarity):

® ® \begin{tikzpicture}

\filldraw [gray] (0,0) circle (2pt)
(1,1) circle (2pt)
(2,1) circle (2pt)

(2,0) circle (2pt);
\draw (0,0) .. comntrols (1,1) and (2,1) .. (2,0);

\end{tikzpicture}
The general syntax for extending a path in a “curved” way is .. controls (first control point) and
(second control point) .. (end point). You can leave out the and (second control point), which causes the

first one to be used twice.

INote that PGF/TikZ is not supported by recent ConTEXt versions (like mark TV, the LuaTgX-aware part of ConTEXt).

25

So, Karl can now add the first half circle to the picture:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (-1,0) .. controls (-1,0.555) and (-0.555,1) .. (0,1)
.. controls (0.555,1) and (1,0.555) .. (1,0);

\end{tikzpicture}

Karl is happy with the result, but finds specifying circles in this way to be extremely awkward. Fortu-
nately, there is a much simpler way.

2.5 Circle Path Construction

In order to draw a circle, the path construction operation circle can be used. This operation is followed
by a radius in round brackets as in the following example: (Note that the previous position is used as the

center of the circle.)
<:::> \tikz \draw (0,0) circle (10pt);

You can also append an ellipse to the path using the ellipse operation. Instead of a single radius you
can specify two of them, one for the z-direction and one for the y-direction, separated by and:

<::::::::> \tikz \draw (0,0) ellipse (20pt and 10pt);

To draw an ellipse whose axes are not horizontal and vertical, but point in an arbitrary direction (a
“turned ellipse” like C’) you can use transformations, which are explained later. The code for the little
ellipse is \tikz \draw[rotate=30] (0,0) ellipse (6pt and 3pt);, by the way.

So, returning to Karl’s problem, he can write \draw (0,0) circle (lcm); to draw the circle:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);
\\\\\\-_////// \end{tikzpicture}

At this point, Karl is a bit alarmed that the circle is so small when he wants the final picture to be much
bigger. He is pleased to learn that TikZ has powerful transformation options and scaling everything by a
factor of three is very easy. But let us leave the size as it is for the moment to save some space.

2.6 Rectangle Path Construction

The next things we would like to have is the grid in the background. There are several ways to produce it.
For example, one might draw lots of rectangles. Since rectangles are so common, there is a special syntax
for them: To add a rectangle to the current path, use the rectangle path construction operation. This
operation should be followed by another coordinate and will append a rectangle to the path such that the
previous coordinate and the next coordinates are corners of the rectangle. So, let us add two rectangles to
the picture:

\begin{tikzpicture}
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) —- (0,1.5);

\draw (0,0) circle (lcm);

\draw (0,0) rectangle (0.5,0.5);

\draw (-0.5,-0.5) rectangle (-1,-1);
\end{tikzpicture}

26

While this may be nice in other situations, this is not really leading anywhere with Karl’s problem: First,
we would need an awful lot of these rectangles and then there is the border that is not “closed.”

So, Karl is about to resort to simply drawing four vertical and four horizontal lines using the nice \draw
command, when he learns that there is a grid path construction operation.

2.7 Grid Path Construction

The grid path operation adds a grid to the current path. It will add lines making up a grid that fills
the rectangle whose one corner is the current point and whose other corner is the point following the grid
operation. For example, the code \tikz \draw[step=2pt] (0,0) grid (10pt,10pt); produces B Note
how the optional argument for \draw can be used to specify a grid width (there are also xstep and ystep to
define the steppings independently). As Karl will learn soon, there are lots of things that can be influenced
using such options.

For Karl, the following code could be used:

\begin{tikzpicture}

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (lcm);

\draw[step=.5cm] (-1.4,-1.4) grid (1.4,1.4);
\end{tikzpicture}

Having another look at the desired picture, Karl notices that it would be nice for the grid to be more
subdued. (His son told him that grids tend to be distracting if they are not subdued.) To subdue the grid,
Karl adds two more options to the \draw command that draws the grid. First, he uses the color gray for the
grid lines. Second, he reduces the line width to very thin. Finally, he swaps the ordering of the commands
so that the grid is drawn first and everything else on top.

\begin{tikzpicture}
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);
\end{tikzpicture}

2.8 Adding a Touch of Style

Instead of the options gray,very thin Karl could also have said help lines. Styles are predefined sets of
options that can be used to organize how a graphic is drawn. By saying help lines you say “use the style
that I (or someone else) has set for drawing help lines.” If Karl decides, at some later point, that grids should
be drawn, say, using the color blue!50 instead of gray, he could provide the following option somewhere:

help lines/.style={color=blue!50,very thin}

The effect of this “style setter” is that in the current scope or environment the help lines option has
the same effect as color=blue!50,very thin.

Using styles makes your graphics code more flexible. You can change the way things look easily in a
consistent manner. Normally, styles are defined at the beginning of a picture. However, you may sometimes
wish to define a style globally, so that all pictures of your document can use this style. Then you can easily
change the way all graphics look by changing this one style. In this situation you can use the \tikzset
command at the beginning of the document as in

\tikzset{help lines/.style=very thin}

To build a hierarchy of styles you can have one style use another. So in order to define a style Karl’s
grid that is based on the grid style Karl could say

\tikzset{Karl’s grid/.style={help lines,color=blue!50}}

\draw[Karl’s grid] (0,0) grid (5,5);

27

Styles are made even more powerful by parametrization. This means that, like other options, styles can
also be used with a parameter. For instance, Karl could parameterize his grid so that, by default, it is blue,
but he could also use another color.

\begin{tikzpicture}
[Karl’s grid/.style ={help lines,color=#1!50},
Karl’s grid/.default=blue]

\draw[Karl’s grid] (0,0) grid (1.5,2);
\draw[Karl’s grid=red] (2,0) grid (3.5,2);
\end{tikzpicture}

2.9 Drawing Options

Karl wonders what other options there are that influence how a path is drawn. He saw already that the
color=(color) option can be used to set the line’s color. The option draw=(color) does nearly the same, only
it sets the color for the lines only and a different color can be used for filling (Karl will need this when he
fills the arc for the angle).

He saw that the style very thin yields very thin lines. Karl is not really surprised by this and neither
is he surprised to learn that thin yields thin lines, thick yields thick lines, very thick yields very thick
lines, ultra thick yields really, really thick lines and ultra thin yields lines that are so thin that low-
resolution printers and displays will have trouble showing them. He wonders what gives lines of “normal”
thickness. It turns out that thin is the correct choice. This seems strange to Karl, but his son explains
him that ITEX has two commands called \thinlines and \thicklines and that \thinlines gives the line
width of “normal” lines, more precisely, of the thickness that, say, the stem of a letter like “T” or “i” has.
Nevertheless, Karl would like to know whether there is anything “in the middle” between thin and thick.
There is: semithick.

Another useful thing one can do with lines is to dash or dot them. For this, the two styles dashed and
dotted can be used, yielding -~ and ... Both options also exist in a loose and a dense version, called
loosely dashed, densely dashed, loosely dotted, and densely dotted. If he really, really needs to,
Karl can also define much more complex dashing patterns with the dash pattern option, but his son insists
that dashing is to be used with utmost care and mostly distracts. Karl’s son claims that complicated dashing
patterns are evil. Karl’s students do not care about dashing patterns.

2.10 Arc Path Construction

Our next obstacle is to draw the arc for the angle. For this, the arc path construction operation is useful,
which draws part of a circle or ellipse. This arc operation must be followed by a triple in rounded brackets,
where the components of the triple are separated by colons. The first two components are angles, the last
one is a radius. An example would be (10:80:10pt), which means “an arc from 10 degrees to 80 degrees
on a circle of radius 10pt.” Karl obviously needs an arc from 0° to 30°. The radius should be something
relatively small, perhaps around one third of the circle’s radius. This gives: (0:30:3mm).

When one uses the arc path construction operation, the specified arc will be added with its starting point
at the current position. So, we first have to “get there.”

\begin{tikzpicture}
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\ \draw (0,0) circle (icm);
\draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

Karl thinks this is really a bit small and he cannot continue unless he learns how to do scaling. For this,
he can add the [scale=3] option. He could add this option to each \draw command, but that would be
awkward. Instead, he adds it to the whole environment, which causes this option to apply to everything
within.

28

\begin{tikzpicture} [scale=3]
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);
\draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

As for circles, you can specify “two” radii in order to get an elliptical arc.

\tikz \draw (0,0) arc (0:315:1.75cm and 1cm);

2.11 Clipping a Path

In order to save space in this manual, it would be nice to clip Karl’s graphics a bit so that we can focus on
the “interesting” parts. Clipping is pretty easy in TikZ. You can use the \clip command clip all subsequent
drawing. It works like \draw, only it does not draw anything, but uses the given path to clip everything
subsequently.

\begin{tikzpicture} [scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);
\ \draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

You can also do both at the same time: Draw and clip a path. For this, use the \draw command and
add the clip option. (This is not the whole picture: You can also use the \clip command and add the
draw option. Well, that is also not the whole picture: In reality, \draw is just a shorthand for \path [draw]
and \clip is a shorthand for \path[clip] and you could also say \path[draw,clip]l.) Here is an example:

29

\begin{tikzpicture}[scale=3]

\clip[draw] (0.5,0.5) circle (.6cm);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);
\draw (3mm,Omm) arc (0:30:3mm);
\end{tikzpicture}

2.12 Parabola and Sine Path Construction

Althqugh Karl doeg/fot need them for his picture, he is pleased to learn that there are parabola and sin and
cos path operagidns for adding parabolas and sine and cosine curves to the current path. For the parabola
tio e current point will lie on the parabola as well as the point given after the parabola operation.

Consider the following example:

\tikz \draw (0,0) rectangle (1,1) (0,0) parabola (1,1);

It is also possible to place the bend somewhere else:

/\ \tikz \draw[x=1pt,y=1pt] (0,0) parabola bend (4,16) (6,12);

The operations sin and cos add a sine or cosine curve in the interval [0,7/2] such that the previous
current point is at the start of the curve and the curve ends at the given end point. Here are two examples:

A sine .~ curve. A sine \tikz \draw[x=lex,y=1lex] (0,0) sin (1.57,1); curve.

7§:>C; \tikz \draw[x=1.57ex,y=1ex] (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0)
(0,1) cos (1,0) sin (2,-1) cos (3,0) sin (4,1);

2.13 Filling and Drawing

Returning to the picture, Karl now wants the angle to be “filled” with a very light green. For this he uses
\fill instead of \draw. Here is what Karl does:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);
\fill[green!20!white] (0,0) -- (3mm,Omm) arc (0:30:3mm) -- (0,0);
\end{tikzpicture}

The color green!20!white means 20% green and 80% white mixed together. Such color expression are
possible since PGF uses Uwe Kern’s xcolor package, see the documentation of that package for details on
color expressions.

What would have happened, if Karl had not “closed” the path using --(0,0) at the end? In this case,
the path is closed automatically, so this could have been omitted. Indeed, it would even have been better to
write the following, instead:

\fill[green!20!white] (0,0) -- (3mm,Omm) arc (0:30:3mm) -- cycle;

The --cycle causes the current path to be closed (actually the current part of the current path) by
smoothly joining the first and last point. To appreciate the difference, consider the following example:

\begin{tikzpicture}[line width=5pt]
\draw (0,0) -- (1,0) -- (1,1) -- (0,0);
\draw (2,0) -- (3,0) -- (3,1) -- cycle;
\useasboundingbox (0,1.5); % make bounding box higher
\end{tikzpicture}

30

You can also fill and draw a path at the same time using the \filldraw command. This will first draw
the path, then fill it. This may not seem too useful, but you can specify different colors to be used for filling
and for stroking. These are specified as optional arguments like this:

\begin{tikzpicture}[scale=3]

\clip (-0.1,-0.2) rectangle (1.1,0.75);

\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (icm);

\filldraw[fill=green!20!white, draw=green!50!black]

(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;

\end{tikzpicture}

2.14 Shading

Karl briefly considers the possibility of making the angle “more fancy” by shading it. Instead of filling the
with a uniform color, a smooth transition between different colors is used. For this, \shade and \shadedraw,
for shading and drawing at the same time, can be used:

e 4 \tikz \shade (0,0) rectangle (2,1) (3,0.5) circle (.5cm);

The default shading is a smooth transition from gray to white. To specify different colors, you can use
options:

we B B30

\begin{tikzpicture} [rounded corners,ultra thick]
\shade [top color=yellow,bottom color=black] (0,0) rectangle +(2,1);
\shade[left color=yellow,right color=black] (3,0) rectangle +(2,1);
\shadedraw[inner color=yellow,outer color=black,draw=yellow] (6,0) rectangle +(2,1);
\shade [ball color=green] (9,.5) circle (.5cm);
\end{tikzpicture}

For Karl, the following might be appropriate:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (lcm);
ﬁA \shadedraw[left color=gray,right color=green, draw=green!50!black]
(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\end{tikzpicture}

However, he wisely decides that shadings usually only distract without adding anything to the picture.

2.15 Specifying Coordinates

Karl now wants to add the sine and cosine lines. He knows already that he can use the color= option to set
the lines’s colors. So, what is the best way to specify the coordinates?

There are different ways of specifying coordinates. The easiest way is to say something like (10pt,2cm).
This means 10pt in z-direction and 2cm in y-directions. Alternatively, you can also leave out the units as in
(1,2), which means “one times the current xz-vector plus twice the current y-vector.” These vectors default
to lem in the z-direction and lcm in the gy-direction, respectively.

In order to specify points in polar coordinates, use the notation (30:1cm), which means lcm in direction
30 degree. This is obviously quite useful to “get to the point (cos30°,sin 30°) on the circle.”

You can add a single + sign in front of a coordinate or two of them as in +(1cm,0cm) or ++(Ocm,2cm).
Such coordinates are interpreted differently: The first form means “lcm upwards from the previous specified
position” and the second means “2cm to the right of the previous specified position, making this the new
specified position.” For example, we can draw the sine line as follows:

31

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);
\filldraw[fill=green!20,draw=green!50!black]
(0,0) -- (3mm,Omm) arc (0:30:3mm) -- cycle;
\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\end{tikzpicture}

Karl used the fact sin 30° = 1/2. However, he very much doubts that his students know this, so it would
be nice to have a way of specifying “the point straight down from (30:1cm) that lies on the z-axis.” This
is, indeed, possible using a special syntax: Karl can write (30:1cm |- 0,0). In general, the meaning of
({p) 1= (q)) is “the intersection of a vertical line through p and a horizontal line through ¢.”

Next, let us draw the cosine line. One way would be to say (30:1cm |- 0,0) -- (0,0). Another way
is the following: we “continue” from where the sine ends:

\begin{tikzpicture} [scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (1cm);
,////\ \filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,O0mm) arc
(0:30:3mm) -- cycle;
\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\draw[blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);
\end{tikzpicture}

Note the there is no —-- between (30:1cm) and ++(0,-0.5). In detail, this path is interpreted as follows:
“First, the (30:1cm) tells me to move by pen to (cos30°,1/2). Next, there comes another coordinate
specification, so I move my pen there without drawing anything. This new point is half a unit down from
the last position, thus it is at (cos30°,0). Finally, I move the pen to the origin, but this time drawing
something (because of the --).”

To appreciate the difference between + and ++ consider the following example:

\begin{tikzpicture}
\def\rectanglepath{-- ++(icm,0cm) -- ++(Ocm,1cm) -- ++(-1cm,Ocm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

By comparison, when using a single +, the coordinates are different:

\begin{tikzpicture}
\def\rectanglepath{-- +(1cm,0cm) -- +(icm,1cm) -- +(Ocm,lcm) -- cycle}
\draw (0,0) \rectanglepath;
\draw (1.5,0) \rectanglepath;

\end{tikzpicture}

Naturally, all of this could have been written more clearly and more economically like this (either with
a single of a double +):

\tikz \draw (0,0) rectangle +(1,1) (1.5,0) rectangle +(1,1);

2.16 Intersecting Paths

Karl is left with the line for tan a, which seems difficult to specify using transformations and polar coordi-
nates. For this he needs another way of specifying coordinates: Karl can specify intersections of paths as
coordinates. The line for tan « starts at (1,0) and goes upward to a point that is at the intersection of a
line going “up” and a line going from the origin through (30:1cm). Such computations are made available
by the intersections library.

What Karl must do is to create two “invisible” paths that intersect at the position of interest. Creating
paths that are not otherwise seen can be done using the \path command without any options like draw or

32

£i1l. Then, Karl can add the name path option to the path for later reference. Once the paths have been
constructed, Karl can use the name intersections to assign names to the coordinate for later reference.

\path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped line] (0,0) -- (30:1.5cm); % a bit longer, so that there is an intersection

\draw [name intersections={of=upward line and sloped line, by=x}]
[very thick,orange] (1,0) -- (x);

2.17 Adding Arrow Tips

Karl now wants to add the little arrow tips at the end of the axes. He has noticed that in many plots, even
in scientific journals, these arrow tips seem to missing, presumably because the generating programs cannot
produce them. Karl thinks arrow tips belong at the end of axes. His son agrees. His students do not care
about arrow tips.

It turns out that adding arrow tips is pretty easy: Karl adds the option -=> to the drawing commands for
the axes:

\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,1.51);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw[->] (-1.5,0) -- (1.5,0);
\draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm) arc
(0:30:3mm) -- cycle;
\draw[red,very thick] (30:1cm) -- +(0,-0.5);
\draw[blue,very thick] (30:1cm) ++(0,-0.5) -- (0,0);

\path [name path=upward line] (1,0) -- (1,1);

/////\ \path [name path=sloped line] (0,0) -- (30:1.5cm);
\draw [name intersections={of=upward line and sloped line, by=x}]
A [very thick,orange]l (1,0) -- (x);
\end{tikzpicture}

If Karl had used the option <- instead of ->, arrow tips would have been put at the beginning of the
path. The option <-> puts arrow tips at both ends of the path.

There are certain restrictions to the kind of paths to which arrow tips can be added. As a rule of thumb,
you can add arrow tips only to a single open “line.” For example, you should not try to add tips to, say,
a rectangle or a circle. (You can try, but no guarantees as to what will happen now or in future versions.)
However, you can add arrow tips to curved paths and to paths that have several segments, as in the following
examples:

f/"\x Z//“\\V//” \begin{tikzpicture}

\draw [<->] (0,0) arc (180:30:10pt);
\draw [<->] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl has a more detailed look at the arrow that TikZ puts at the end. It looks like this when he zooms
it: —. The shape seems vaguely familiar and, indeed, this is exactly the end of TEX’s standard arrow used
in something like f: A — B.

Karl likes the arrow, especially since it is not “as thick” as the arrows offered by many other packages.
However, he expects that, sometimes, he might need to use some other kinds of arrow. To do so, Karl can
say >=(right arrow tip kind), where (right arrow tip kind) is a special arrow tip specification. For example,
if Karl says >=stealth, then he tells TikZ that he would like “stealth-fighter-like” arrow tips:

//"\\ ‘?(‘\\\///’ \begin{tikzpicture} [>=stealth]

\draw [->] (0,0) arc (180:30:10pt);
\draw [<<-,very thick] (1,0) -- (1.5cm,10pt) -- (2cm,Opt) -- (2.5cm,10pt);
\end{tikzpicture}

Karl wonders whether such a military name for the arrow type is really necessary. He is not really
mollified when his son tells him that Microsoft’s PowerPoint uses the same name. He decides to have his
students discuss this at some point.

In addition to stealth there are several other predefined arrow tip kinds Karl can choose from, see
Section 23. Furthermore, he can define arrows types himself, if he needs new ones.

33

2.18 Scoping

Karl saw already that there are numerous graphic options that affect how paths are rendered. Often, he
would like to apply certain options to a whole set of graphic commands. For example, Karl might wish to
draw three paths using a thick pen, but would like everything else to be drawn “normally.”

If Karl wishes to set a certain graphic option for the whole picture, he can simply pass this option to
the \tikz command or to the {tikzpicture} environment (Gerda would pass the options to \tikzpicture
and Hans passes them to \starttikzpicture). However, if Karl wants to apply graphic options to a local
group, he put these commands inside a {scope} environment (Gerda uses \scope and \endscope, Hans
uses \startscope and \stopscope). This environment takes graphic options as an optional argument and
these options apply to everything inside the scope, but not to anything outside.

Here is an example:

\begin{tikzpicture} [ultra thick]
\draw (0,0) -- (0,1);
\begin{scope} [thin]
\draw (1,0) -- (1,1);
\draw (2,0) -- (2,1);
\end{scope}
\draw (3,0) -- (3,1);
\end{tikzpicture}

Scoping has another interesting effect: Any changes to the clipping area are local to the scope. Thus,
if you say \clip somewhere inside a scope, the effect of the \clip command ends at the end of the scope.
This is useful since there is no other way of “enlarging” the clipping area.

Karl has also already seen that giving options to commands like \draw apply only to that command. In
turns out that the situation is slightly more complex. First, options to a command like \draw are not really
options to the command, but they are “path options” and can be given anywhere on the path. So, instead of
\draw[thin] (0,0) -- (1,0); one can also write \draw (0,0) [thin] -- (1,0); or \draw (0,0) --
(1,0) [thin];; all of these have the same effect. This might seem strange since in the last case, it would
appear that the thin should take effect only “after” the line from (0,0) to (1,0) has been draw. However,
most graphic options only apply to the whole path. Indeed, if you say both thin and thick on the same
path, the last option given will “win.”

When reading the above, Karl notices that only “most” graphic options apply to the whole path. Indeed,
all transformation options do not apply to the whole path, but only to “everything following them on the
path.” We will have a more detailed look at this in a moment. Nevertheless, all options given during a path
construction apply only to this path.

2.19 Transformations

When you specify a coordinate like (1cm,1cm), where is that coordinate placed on the page? To determine
the position, TikZ, TEX, and PDF or PostScript all apply certain transformations to the given coordinate in
order to determine the finally position on the page.

TikZ provides numerous options that allow you to transform coordinates in PGF’s private coordinate
system. For example, the xshift option allows you to shift all subsequent points by a certain amount:

“ \tikz \draw (0,0) -- (0,0.5) [xshift=2pt] (0,0) -- (0,0.5);

It is important to note that you can change transformation “in the middle of a path,” a feature that is
not supported by PDF or PostScript. The reason is that PGF keeps track of its own transformation matrix.
Here is a more complicated example:

\begin{tikzpicture}[even odd rule,rounded corners=2pt,x=10pt,y=10pt]
\filldraw[fill=examplefill]l (0,0) rectangle (1,1)
[xshift=bpt,yshift=bpt] (0,0) rectangle (1,1)
[rotate=30] (-1,-1) rectangle (2,2);
\end{tikzpicture}

The most useful transformations are xshift and yshift for shifting, shift for shifting to a given point
as in shift={(1,0)} or shift={+(0,0)} (the braces are necessary so that TEX does not mistake the comma
for separating options), rotate for rotating by a certain angle (there is also a rotate around for rotating
around a given point), scale for scaling by a certain factor, xscale and yscale for scaling only in the z-
or y-direction (xscale=-1is a flip), and xslant and yslant for slanting. If these transformation and those

34

that I have not mentioned are not sufficient, the cm option allows you to apply an arbitrary transformation
matrix. Karl’s students, by the way, do not know what a transformation matrix is.

2.20 Repeating Things: For-Loops

Karl’s next aim is to add little ticks on the axes at positions —1, —1/2, 1/2, and 1. For this, it would be
nice to use some kind of “loop,” especially since he wishes to do the same thing at each of these positions.
There are different packages for doing this. EXTEX has its own internal command for this, pstricks comes
along with the powerful \multido command. All of these can be used together with PGF and TikZ, so if
you are familiar with them, feel free to use them. PGF introduces yet another command, called \foreach,
which I introduced since I could never remember the syntax of the other packages. \foreach is defined in
the package pgffor and can be used independently of PGF. TikZ includes it automatically.
In its basic form, the \foreach command is easy to use:

r=1, =2 =3, \foreach \x in {1,2,3} {$x =\x$, }

The general syntax is \foreach (variable) in {(list of values)} (commands). Inside the {commands),
the (variable) will be assigned to the different values. If the (commands) do not start with a brace, everything
up to the next semicolon is used as (commands).

For Karl and the ticks on the axes, he could use the following code:

\begin{tikzpicturel}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,1.51);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm) arc
(0:30:3mm) -- cycle;
\draw[->] (-1.5,0) -- (1.5,0);
\draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (icm);

\foreach \x in {-1cm,-0.5cm,1lcm}
\draw (\x,-1pt) -- (\x,1pt);
\foreach \y in {-1cm,-0.5cm,0.5cm,1cm}
\draw (-1pt,\y) -- (1pt,\y);
\end{tikzpicture}

As a matter of fact, there are many different ways of creating the ticks. For example, Karl could have
put the \draw ...; inside curly braces. He could also have used, say,

\foreach \x in {-1,-0.5,1}
\draw [xshift=\x cm] (Opt,-1ipt) -- (Opt,1pt);

Karl is curious what would happen in a more complicated situation where there are, say, 20 ticks. It
seems bothersome to explicitly mention all these numbers in the set for \foreach. Indeed, it is possible to
use ... inside the \foreach statement to iterate over a large number of values (which must, however, be
dimensionless real numbers) as in the following example:

OOOOOOOO0OO

\tikz \foreach \x in {1,...,10}
\draw (\x,0) circle (0.4cm);

If you provide two numbers before the ..., the \foreach statement will use their difference for the
stepping:

\tikz \foreach \x in {-1,-0.5,...,1}
\draw (\x cm,-1pt) -- (\x cm,1pt);

We can also nest loops to create interesting effects:

35

15| 25| 35| 45| 55 75 | 85| 95 | 105|115] 12,5
14 | 24| 34| 44|54 74 | 84 | 94 104|114 | 124
1312333 43]53 73183193 |103|11,3]123
12122]32] 42| 52 72182192 (102]11,2] 122
11| 21|31 4151 71 | 81| 91 | 101|111 12,1
\begin{tikzpicture}

\foreach \x in {1,2,...,5,7,8,...,12}

\foreach \y in {1,...,5}

{

\draw (\x,\y) +(-.5,-.5) rectangle ++(.5,.5);
\draw (\x,\y) node{\x,\y};
}
\end{tikzpicture}

The \foreach statement can do even trickier stuff, but the above gives the idea.

2.21 Adding Text

Karl is, by now, quite satisfied with the picture. However, the most important parts, namely the labels, are
still missing!

TikZ offers an easy-to-use and powerful system for adding text and, more generally, complex shapes
to a picture at specific positions. The basic idea is the following: When TikZ is constructing a path and
encounters the keyword node in the middle of a path, it reads a node specification. The keyword node is
typically followed by some options and then some text between curly braces. This text is put inside a normal
TEX box (if the node specification directly follows a coordinate, which is usually the case, TikZ is able to
perform some magic so that it is even possible to use verbatim text inside the boxes) and then placed at the
current position, that is, at the last specified position (possibly shifted a bit, according to the given options).
However, all nodes are drawn only after the path has been completely drawn/filled /shaded/clipped/whatever.

\begin{tikzpicture}
Text at node 2 \draw (0,0) rectangle (2,2);
\draw (0.5,0.5) node [fill=examplefill]
/ {Text at \verb!node 1!}
Text at node 1 -- (1.5,1.5) node {Text at \verb!mode 2!};

\end{tikzpicture}

Obviously, Karl would not only like to place nodes on the last specified position, but also to the left
or the right of these positions. For this, every node object that you put in your picture is equipped with
several anchors. For example, the north anchor is in the middle at the upper end of the shape, the south
anchor is at the bottom and the north east anchor is in the upper right corner. When you given the option
anchor=north, the text will be placed such that this northern anchor will lie on the current position and
the text is, thus, below the current position. Karl uses this to draw the ticks as follows:

36

\begin{tikzpicture}[scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50!black]
1 (0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
| \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);

\foreach \x in {-1,-0.5,1}
\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\x1};
\foreach \y in {-1,-0.5,0.5,1}
\draw (ipt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\y};
\end{tikzpicture}

@
at

This is quite nice, already. Using these anchors, Karl can now add most of the other text elements.
However, Karl thinks that, though “correct,” it is quite counter-intuitive that in order to place something
below a given point, he has to use the north anchor. For this reason, there is an option called below, which
does the same as anchor=north. Similarly, above right does the same as anchor=south east. In addition,
below takes an optional dimension argument. If given, the shape will additionally be shifted downwards by
the given amount. So, below=1pt can be used to put a text label below some point and, additionally shift
it 1pt downwards.

Karl is not quite satisfied with the ticks. He would like to have 1/2 or % shown instead of 0.5, partly to
show off the nice capabilities of TEX and TikZ, partly because for positions like 1/3 or 7 it is certainly very
much preferable to have the “mathematical” tick there instead of just the “numeric” tick. His students, on
the other hand, prefer 0.5 over 1/2 since they are not too fond of fractions in general.

Karl now faces a problem: For the \foreach statement, the position \x should still be given as 0.5 since
TikZ will not know where \frac{1}{2} is supposed to be. On the other hand, the typeset text should really
be \frac{1}{2}. To solve this problem, \foreach offers a special syntax: Instead of having one variable \x,
Karl can specify two (or even more) variables separated by a slash as in \x / \xtext. Then, the elements
in the set over which \foreach iterates must also be of the form (first)/({second). In each iteration, \x will
be set to (first) and \xtext will be set to (second). If no (second) is given, the (first) will be used again.
So, here is the new code for the ticks:

\begin{tikzpicture} [scale=3]
\clip (-0.6,-0.2) rectangle (0.6,1.51);
\draw[step=.5cm,help lines] (-1.4,-1.4) grid (1.4,1.4);
\filldraw[fill=green!20,draw=green!50!black]
1 (0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
//////’I \draw[->] (-1.5,0) -- (1.5,0); \draw[->] (0,-1.5) -- (0,1.5);
\draw (0,0) circle (lcm);

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}
2 \draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north] {\xtext};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east] {\ytext};
\end{tikzpicture}

-

N

Karl is quite pleased with the result, but his son points out that this is still not perfectly satisfactory:
The grid and the circle interfere with the numbers and decrease their legibility. Karl is not very concerned
by this (his students do not even notice), but his son insists that there is an easy solution: Karl can add the
[fill=white] option to fill out the background of the text shape with a white color.

The next thing Karl wants to do is to add the labels like sin a. For this, he would like to place a label
“in the middle of line.” To do so, instead of specifying the label node {$\sin\alpha$} directly after one
of the endpoints of the line (which would place the label at that endpoint), Karl can give the label directly
after the ——, before the coordinate. By default, this places the label in the middle of the line, but the pos=
options can be used to modify this. Also, options like near start and near end can be used to modify this
position:

37

N|—=

sin «

S111 ¢ CcOos &

-1 —

NI

COS (v 1

\begin{tikzpicture} [scale=3]
\clip (-2,-0.2) rectangle (2,0.8);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\filldraw([fill=green!20,draw=green!50!black] (0,0) -- (3mm,Omm) arc
(0:30:3mm) -- cycle;
\draw[->] (-1.5,0) -- (1.5,0) coordinate (x axis);
\draw[->] (0,-1.5) -- (0,1.5) coordinate (y axis);
\draw (0,0) circle (icm);

\draw[very thick,red]

(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:icm |- x axis);
\draw[very thick,blue]

(30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);
\path [name path=upward line] (1,0) -- (1,1);
\path [name path=sloped line] (0,0) -- (30:1.5cm);
\draw [name intersections={of=upward line and sloped line, by=t}]

[very thick,orange]l (1,0) -- node [right=1pt,fill=white]

{$\displaystyle \tan \alpha \color{black}=

\frac{{\color{red}\sin \alpha}}{\color{blue}\cos \alpha}$} (t);

\draw (0,0) -- (t);

\foreach \x/\xtext in {-1, -0.5/-\frac{1}{2}, 1}

\draw (\x cm,1pt) -- (\x cm,-1pt) node[anchor=north,fill=white] {\xtextl};
\foreach \y/\ytext in {-1, -0.5/-\frac{1}{2}, 0.5/\frac{1}{2}, 1}
\draw (1pt,\y cm) -- (-1pt,\y cm) node[anchor=east,fill=white] {\ytext};
\end{tikzpicture}

You can also position labels on curves and, by adding the sloped option, have them rotated such that
they match the line’s slope. Here is an example:

Very
le
ar enqd

\begin{tikzpicture}
\draw (0,0) .. controls (6,1) and (9,1)
node [near start,sloped,above] {near start}
node {midway}
node [very near end,sloped,below] {very near end} (12,0);
\end{tikzpicture}

It remains to draw the explanatory text at the right of the picture. The main difficulty here lies in
limiting the width of the text “label,” which is quite long, so that line breaking is used. Fortunately, Karl
can use the option text width=6cm to get the desired effect. So, here is the full code:

38

\begin{tikzpicture}
[scale=3,line cap=round,
% Styles
axes/.style=,
important line/.style={very thick},
information text/.style={rounded corners,fill=red!10,inner sep=lex}]

% Local definitions
\def\costhirty{0.8660256}

% Colors
\colorlet{anglecolor}{green!50!black}
\colorlet{sincolor}{red}
\colorlet{tancolor}{orange!80!black}
\colorlet{coscolor}{blue}

% The graphic
\draw[help lines,step=0.5cm] (-1.4,-1.4) grid (1.4,1.4);

\draw (0,0) circle (icm);

\begin{scope} [axes]
\draw[->] (-1.5,0) -- (1.5,0) node[right] {x} coordinate(x axis);
\draw[->] (0,-1.5) -- (0,1.5) nodel[above] {y} coordinate(y axis);

\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw[xshift=\x cm] (Opt,ipt) -- (Opt,-1pt) node[below,fill=white] {\xtext};

\foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
\draw[yshift=\y cm] (1pt,Opt) -- (-1pt,Opt) nodel[left,fill=white] {\ytext};
\end{scope}

\filldraw[fill=green!20,draw=anglecolor] (0,0) -- (3mm,Opt) arc(0:30:3mm);
\draw (15:2mm) node[anglecolor] {α};

\draw [important line,sincolor]
(30:1cm) -- node[left=1pt,fill=white] {$\sin \alpha$} (30:1cm |- x axis);

\draw [important line,coscolor]
(30:1cm |- x axis) -- node[below=2pt,fill=white] {$\cos \alpha$} (0,0);

\path [name path=upward line] (1,0) -- (1,1);

\path [name path=sloped line] (0,0) -- (30:1.5cm);

\draw [name intersections={of=upward line and sloped line, by=tl}]
[very thick,orange] (1,0) -- node [right=1pt,fill=white]
{$\displaystyle \tan \alpha \color{blackl}=

\frac{{\color{red}\sin \alpha}}{\color{blue}\cos \alphal}$} (t);

\draw (0,0) -- (t);

\draw [xshift=1.85cm]

node [right,text width=6cm,information text]

{
The {\color{anglecolor} angle α} is $30"\circ$ in the
example ($\pi/6$ in radians). The {\color{sincolorl}sine of

α}, which is the height of the red line, is

\[
{\color{sincolor} \sin \alpha} = 1/2.
\]
By the Theorem of Pythagoras ...

};

\end{tikzpicture}

39

3 Tutorial: A Petri-Net for Hagen

In this second tutorial we explore the node mechanism of TikZ and PGF.

Hagen must give a talk tomorrow about his favorite formalism for distributed systems: Petri nets!
Hagen used to give his talks using a blackboard and everyone seemed to be perfectly concent with this.
Unfortunately, his audience has been spoiled recently with fancy projector-based presentations and there
seems to be a certain amount of peer pressure that this Petri nets should also be drawn using a graphic
program. One of the professors at his institutes recommends TikZ for this and Hagen decides to give it a
try.

3.1 Problem Statement

For his talk, Hagen wishes to create a graphic that demonstrates how a net with place capacities can be
simulated by a net without capacities. The graphic should look like this, ideally:

replacement of

ﬁ
the capacity
§< by two places
ANNNNNNNNNNAND

j

3.2 Setting up the Environment

For the picture Hagen will need to load the TikZ package as did Karl in the previous tutorial. However,
Hagen will also need to load some additional library packages that Karl did not need. These library packages
contain additional definitions like extra arrow tips that are typically not needed in a picture and that need
to be loaded explicitly.

Hagen will need to load several libraries: The arrows library for the special arrow tip used in the graphic,
the decoration.pathmorphing library for the “snaking line” in the middle, the background library for the
two rectangular areas that are behind the two main parts of the picture, the fit library to easily compute
the sizes of these rectangles, and the positioning library for placing nodes relative to other nodes.

3.2.1 Setting up the Environment in BKTEX
When using ITEX use:

\documentclass{article} % say

\usepackage{tikz}
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri}

\begin{document}
\begin{tikzpicture}
\draw (0,0) -- (1,1);

\end{tikzpicture}
\end{document}

3.2.2 Setting up the Environment in Plain TgX

When using plain TEX use:

40

% % Plain TeX file
\input tikz.tex
\usetikzlibrary{arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri}
\baselineskip=12pt
\hsize=6.3truein
\vsize=8.7truein
\tikzpicture
\draw (0,0) -- (1,1);
\endtikzpicture
\bye

3.2.3 Setting up the Environment in ConTEXt
When using ConTEX use?:

% % ConTeXt file
\usemodule [tikz]
\usetikzlibrary[arrows,decorations.pathmorphing,backgrounds,positioning,fit,petri]

\starttext
\starttikzpicture
\draw (0,0) —-- (1,1);
\stoptikzpicture
\stoptext

3.3 Introduction to Nodes

In principle, we already know how to create the graphics that Hagen desires (except perhaps for the snaked
line, we will come to that): We start with big light gray rectangle and then add lots of circles and small
rectangle, plus some arrows.

However, this approach has numerous disadvantages: First, it is hard to change anything at a later stage.
For example, if we decide to add more places to the Petri nets (the circles are called places in Petri net
theory), all of the coordinates change and we need to recalculate everything. Second, it is hard to read the
code for the Petri net as it just a long and complicated list of coordinates and drawing commands — the
underlying structure of the Petri net is lost.

Fortunately, TikZ offers a powerful mechanism for avoiding the above problems: nodes. We already came
across nodes in the previous tutorial, where we used them to add labels to Karl’s graphic. In the present
tutorial we will see that nodes are much more powerful.

A node is a small part of a picture. When a node is created, you provide a position where the node
should be drawn and a shape. A node of shape circle will be drawn as a circle, a node of shape rectangle
as a rectangle, and so on. A node may also contain same text, which is why Karl used nodes to show text.
Finally, a node can get a name for later reference.

In Hagen'’s picture we will use nodes for the places and for the transitions of the Petri net (the places are
the circles, the transitions are the rectangles). Let us start with the upper half of the left Petri net. In this
upper half we have three places and two transitions. Instead of drawing three circles and two rectangles, we
use three nodes of shape circle and two nodes of shape rectangle.

C) \begin{tikzpicture}
\path (0,2) node [shape=circle,draw] {}
(0,1) node [shape=circle,draw] {}
O C) O (0,0) node [shape=circle,draw] {}
(1,1) node [shape=rectangle,draw] {}
(-1,1) node [shape=rectangle,draw] {};
O \end{tikzpicture}

Hagen notes that this does not quite look like the final picture, but it seems like a good first step.

Let us have a more detailed look at the code. The whole picture consists of a single path. Ignoring the
node operations there is not much going on in this path: It is just a sequence of coordinates with nothing
“happening” between them. Indeed, even if something were to happen like a line-to or a curve-to, the \path
command would not “do” anything with the resulting path. So, all the magic must be in the node commands.

In the previous tutorial we learned that a node will add a piece of text at the last coordinate. Thus,
each of the five nodes is added at a different position. In the above code, this text is empty (because of the

2Note that par/TikZ is not supported by recent ConTEXt versions (like mark TV, the LuaTgX-aware part of ConTEXt).

41

empty {}). So, why do we see anything at all? The answer is the draw option for the node operation: It
causes the “shape around the text” to be drawn.

So, the code (0,2) node [shape=circle,draw] {} means the following: “In the main path, add a
move-to to the coordinate (0,2). Then, temporarily suspend the construction of the main path while the
node is build. This node will be a circle around an empty text. This circle is to be drawn, but not filled
or otherwise used. Once this whole node is constructed, it is saved until after the main path is finished.
Then, it is drawn.” Then following (0,1) node [shape=circle,draw] {} then has the following effect:
“Continue the main path with a move-to to (0,1). Then construct a node at this position also. This node
is also shown after the main path is finished.” And so on.

3.4 Placing Nodes Using the At Syntax

Hagen now understands how the node operation adds nodes to the path, but it seems a bit silly to create a
path using the \path operation, consisting of numerous superfluous move-to operations, only to place nodes.
He is pleased to learn that there are ways to add nodes in a more sensible manner.

First, the node operation allows one to add at ({coordinate)) in order to directly specify where the node
should be placed, sidestepping the rule that nodes are placed on the last coordinate. Hagen can then write
the following:

\begin{tikzpicture}
\path node at (0,2)

O

[shape=circle,draw] {}

O

O O

node
node
node
node

at
at
at
at

(0,1)
(0,0
(1,1)
(-1,1)

[shape=circle,draw] {}
[shape=circle,draw] {}
[shape=rectangle,draw] {}
[shape=rectangle,draw] {};

\end{tikzpicture}

O

Now Hagen is still left with a single empty path, but at least the path no longer contains strange move-
tos. It turns out that this can be improved further: The \node command is an abbreviation for \path node,
which allows Hagen to write:

O \begin{tikzpicture}
\node at (0,2) [circle,draw] {};
\node at (0,1) [circle,draw] {};
\node at (0,0) [circle,draw] {};
\node at (1,1) [rectangle,draw] {};
\node at (-1,1) [rectangle,draw] {};
\end{tikzpicture}

O

O O

O

Hagen likes this syntax much better than the previous one. Note that Hagen has also omitted the shape=
since, like color=, TikZ allows you to omit the shape= if there is no confusion.

3.5 Using Styles

Feeling adventurous, Hagen tries to make the nodes look nicer. In the final picture, the circles and rectangle
should be filled with different colors, resulting in the following code:

(:) \begin{tikzpicture} [thick]
\node at (0,2) [circle,draw=blue!50,fill=blue!20] {};
\node at (0,1) [circle,draw=blue!50,fill=blue!20] {};
\node at (0,0) [circle,draw=blue!50,fill=blue!20] {};
\node at (1,1) [rectangle,draw=black!50,fill=black!20] {};
\node at (-1,1) [rectangle,draw=black!50,fill=black!20] {};
\end{tikzpicture}

O

O o

o

While this looks nicer in the picture, the code starts to get a bit ugly. Ideally, we would like our code
to transport the message “there are three places and two transitions” and not so much which filling colors
should be used.

To solve this problem, Hagen uses styles. He defines a style for places and another style for transitions:

42

(:) \begin{tikzpicture}
[place/.style={circle,draw=blue!50,fill=blue!20,thick},
transition/.style={rectangle,draw=black!50,fill=black!20,thick}]

O (:) O \node at (0,2) [place] {};
\node at (0,1) [place] {};
\node at (0,0) [place] {};

(:) \node at (1,1) [tramnsition] {};

\node at (-1,1) [transition] {};
\end{tikzpicture}

3.6 Node Size

Before Hagen starts naming and connecting the nodes, let us first make sure that the nodes get their final
appearance. They are still too small. Indeed, Hagen wonders why they have any size at all, after all, the
text is empty. The reason is than TikZ automatically adds some space around the text. The amount is set
using the option inner sep. So, to increase the size of the nodes, Hagen could write:

\begin{tikzpicture}
<::> [inner sep=2mm,
place/.style={circle,draw=blue!50,fill=blue!20,thick},
[:] <::> [:] transition/.style={rectangle,draw=black!50,fill=black!20,thick}]
\node at (0,2) [place] {};
\node at (0,1) [place] {};
\node at (0,0) [place]l {};
<::) \node at (1,1) [transition] {};
\node at (-1,1) [transition] {};
\end{tikzpicture}

However, this is not really the best way to achieve the desired effect. It is much better to use the minimum
size option instead. This option allows Hagen to specify a minimum size that the node should have. If the
nodes actually needs to be bigger because of a longer text, it will be larger, but if the text is empty, then the
node will have minimum size. This option is also useful to ensure that several nodes containing different
amounts of text have the same size. The options minimum height and minimum width allow you to specify
the minimum height and width independently.

So, what Hagen needs to do is to provide minimum size for the nodes. To be on the safe side, he also
sets inner sep=Opt. This ensures that the nodes will really have size minimum size and not, for very small
minimum sizes, the minimal size necessary to encompass the automatically added space.

\begin{tikzpicture}
<::> [place/.style={circle,draw=blue!50,fill=blue!20,thick,
inner sep=Opt,minimum size=6mm},
transition/.style={rectangle,draw=black!50,fill=black!20,thick,
[:] <::> [:] inner sep=0pt,minimum size=4mm}]
\node at (0,2) [place] {};
\node at (0,1) [place] {};
<::> \node at (0,0) [place] {};
\node at (1,1) [transition] {};

\node at (-1,1) [transition] {};
\end{tikzpicture}

3.7 Naming Nodes

Hagen’s next aim is to connect the nodes using arrows. This seems like a tricky business since the arrows
should not start in the middle of the nodes, but somewhere on the border and Hagen would very much like
to avoid computing these positions by hand.

Fortunately, PGF will perform all the necessary calculations for him. However, he first has to assign
names to the nodes so that he can reference them later on.

There are two ways to name a node. The first is the use the name= option. The second method is to
write the desired name in parentheses after the node operation. Hagen thinks that this second method seems
strange, but he will soon change his opinion.

43

% ... setup styles
<::> \begin{tikzpicture}
\node (waiting 1) at (0,2) [place]l {};
\node (critical 1) at (0,1) [place]l {};
[:] <::> [:] \node (semaphore) at (0,0) [place] {};
\node (leave critical) at (1,1) [transition] {};
\node (enter critical) at (-1,1) [transition] {};
<::> \end{tikzpicture}

Hagen is pleased to note that the names help in understanding the code. Names for nodes can be
pretty arbitrary, but they should not contain commas, periods, parentheses, colons, and some other special
characters. However, they can contain underscores and hyphens.

The syntax for the node operation is quite liberal with respect to the order in which node names, the at
specifier, and the options must come. Indeed, you can even have multiple option blocks between the node
and the text in curly braces, they accumulate. You can rearrange them arbitrarily and perhaps the following
might be preferable:

\begin{tikzpicture}
<::> \node [place] (waiting 1) at (0,2) {};
\node [place] (critical 1) at (0,1) {Z};
\node [place] (semaphore) at (0,0) {};
[:] <::> [:] \node [transition] (leave critical) at (1,1) {};
\node [transition] (enter critical) at (-1,1) {};

<::> \end{tikzpicture}

3.8 Placing Nodes Using Relative Placement

Although Hagen still wishes to connect the nodes, he first wishes to address another problem again: The
placement of the nodes. Although he likes the at syntax, in this particular case he would prefer placing the
nodes “relative to each other.” So, Hagen would like to say that the critical 1 node should be below the
waiting 1 node, wherever the waiting 1 node might be. There are different ways of achieving this, but
the nicest one in Hagen’s case is the below option:

\begin{tikzpicture}
<::> \node [place] (waiting) g
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of criticall {};
\node [transition] (leave critical) [right=of critical] {};
[:] <::> [:] \node [transition] (enter critical) [left=of criticall {};
\end{tikzpicture}

O

With the positioning library loaded, when an option like below is followed by of, then the position
of the node is shifted in such a manner that it is placed at the distance node distance in the specified
direction of the given direction. The node distance is either the distance between the centers of the nodes
(when the on grid option is set to true) or the distance between the borders (when the on grid option is
set to false, which is the default).

Even though the above code has the same effect the earlier code, Hagen can pass it to his colleagues who
will be able to just read and understand it, perhaps without even having to see the picture.

3.9 Adding Labels Next to Nodes

Before we have a look at how Hagen can connect the nodes, let us add the capacity “s < 3” to the bottom
node. For this, two approaches are possible:

1. Hagen can just add a new node above the north anchor of the semaphore node.

44

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting]l {};

\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall {};

[:] <::> [:] \node[transition] (enter critical) [left=of critical]l {};

\node [red,above] at (semaphore.north) {$s\le 33%};

\end{tikzpicture}
s<3 P

O

This is a general approach that will “always work.”

. Hagen can use the special 1abel option. This option is given to a node and it causes another node
to be added next to the node where the option is given. Here is the idea: When we construct the
semaphore node, we wish to indicate that we want another node with the capacity above it. For this,
we use the option label=above:$s\le 3$. This option is interpreted as follows: We want a node
above the semaphore node and this node should read “s < 3.” Instead of above we could also use
things like below left before the colon or a number like 60.

\begin{tikzpicture}
(::) \node [place] (waiting) {;
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical,
label=above:$s\1e3$] {};
[:] <::> [:] \node [transition] (leave critical) [right=of criticall] {};
\node [transition] (enter critical) [left=of criticall {};
\end{tikzpicture}
s <3

O

It is also possible to give multiple label options, this causes multiple labels to be drawn.

600 \tikz
\node [circle,draw,label=60:$60"\circ$,label=below:$-90"\circ$] {my circle};

-90°

Hagen is not fully satisfied with the label option since the label is not red. To achieve this, he has
two options: First, he can redefine the every label style. Second, he can add options to the label’s
node. These options are given following the label=, so he would write label=[red]above:$s\1le3$.
However, this does not quite work since TEX thinks that the] closes the whole option list of the
semaphore node. So, Hagen has to add braces and writes label={[red]above:$s\1e3$}. Since this
looks a bit ugly, Hagen decides to redefine the every label style.

\begin{tikzpicture}[every label/.style={red}]
(::) \node [place] (waiting) {;
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical,
label=above:$s\1e3$] {};
[:] <::> [:] \node [transition] (leave critical) [right=of criticall] {};
\node [transition] (enter critical) [left=of criticall {};
\end{tikzpicture}
s<3

O

45

3.10 Connecting Nodes

It is now high time to connect the nodes. Let us start with something simple, namely with the straight line
from enter critical to critical. We want this line to start at the right side of enter critical and to
end at the left side of critical. For this, we can use the anchors of the nodes. Every node defines a whole
bunch of anchors that lie on its border or inside it. For example, the center anchor is at the center of the
node, the west anchor is on the left of the node, and so on. To access the coordinate of a node, we use a
coordinate that contains the node’s name followed by a dot, followed by the anchor’s name:

\begin{tikzpicture}
\node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall] {};
[:] [:] \node[transition] (enter critical) [left=of critical]l {};
\draw [->] (critical.west) -- (enter critical.east);
\end{tikzpicture}

Next, let us tackle the curve from waiting to enter critical. This can be specified using curves and
controls:

\begin{tikzpicture}

\node [place] (waiting) {};

\node [place] (critical) [below=of waiting]l {};

\node [place] (semaphore) [below=of critical] {};

\node [transition] (leave critical) [right=of criticall {};
[

\node[transition] (enter critical) [left=of critical]l {};
\draw [->] (enter critical.east) -- (critical.west);
\draw [->] (waiting.west) .. controls +(left:5mm) and +(up:5mm)
. (enter critical.north);
\end{tikzpicture}

Hagen sees how he can now add all his edges, but the whole process seems a but awkward and not very
flexible. Again, the code seems to obscure the structure of the graphic rather than showing it.
So, let us start improving the code for the edges. First, Hagen can leave out the anchors:

\begin{tikzpicture}

\node [place] (waiting) g
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of critical] {};

\node[transition] (enter critical) [left=of criticall {};
\draw [->] (enter critical) -- (critical);
\draw [->] (waiting) .. controls +(left:8mm) and +(up:8mm)
. (enter critical);
\end{tikzpicture}

Hagen is a bit surprised that this works. After all, how did TikZ know that the line from enter
critical to critical should actually start on the borders? Whenever TikZ encounters a whole node name
as a “coordinate,” it tries to “be smart” about the anchor that it should choose for this node. Depending
on what happens next, TikZ will choose an anchor that lies on the border of the node on a line to the next
coordinate or control point. The exact rules are a bit complex, but the chosen point will usually be correct
— and when it is not, Hagen can still specify the desired anchor by hand.

Hagen would now like to simplify the curve operation somehow. It turns out that this can be accomplished
using a special path operation: the to operation. This operation takes many options (you can even define
new ones yourself). One pair of options is useful for Hagen: The pair in and out. These options take angles
at which a curve should leave or reach the start or target coordinates. Without these options, a straight line
is drawn:

46

\begin{tikzpicture}
\node [place] (waiting) {;
\node [place] (critical) [below=of waiting] {I};
\node [place] (semaphore) [below=of critical] {};
\node [transition] (leave critical) [right=of criticall {};
[:] \node[transition] (enter critical) [left=of critical]l {};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [out=180,in=90] (enter critical);
\end{tikzpicture}

There is another option for the to operation, that is even better suited to Hagen’s problem: The bend
right option. This option also takes an angle, but this angle only specifies the angle by which the curve is
bend to the right:

\begin{tikzpicture}
\node [place] (waiting) s
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of criticall {};
\node [transition] (leave critical) [right=of criticall {};
[:] \node[transition] (enter critical) [left=of criticall {};
\draw [->] (enter critical) to (critical);
\draw [->] (waiting) to [bend right=45] (enter critical);
\draw [->] (enter critical) to [bend right=45] (semaphore);
\end{tikzpicture}

It is now time for Hagen to learn about yet another way of specifying edges: Using the edge path
operation. This operation is very similar to the to operation, but there is one important difference: Like a
node the edge generated by the edge operation is not part of the main path, but is added only later. This
may not seem very important, but it has some nice consequences. For example, every edge can have its own
arrow tips and its own color and so one and, still, all the edges can be given on the same path. This allows
Hagen to write the following:

\begin{tikzpicture}
\node [place] (waiting) {;
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of criticall {};
\node [transition] (leave critical) [right=of critical] {};
[:] \node[transition] (enter critical) [left=of critical]l {}
edge [->] (critical)

edge [<-,bend left=45] (waiting)
edge [->,bend right=45] (semaphore);
\end{tikzpicture}

Jo

Each edge caused a new path to be constructed, consisting of a to between the node enter critical
and the node following the edge command.

The finishing touch is to introduce two styles pre and post and to use the bend angle=45 option to set
the bend angle once and for all:

47

% Styles place and transition as before
\begin{tikzpicture}
[bend angle=45,
pre/.style={<-,shorten <=1pt,>=stealth’,semithick},
post/.style={->,shorten >=1pt,>=stealth’,semithick}]

\node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of criticall {};

\node [transition] (leave critical) [right=of critical] {}
edge [prel (critical)
edge [post,bend right] (waiting)
edge [pre, bend left] (semaphore);

\node [transition] (enter critical) [left=of critical]l {}
edge [post] (critical)
edge [pre, bend left] (waiting)
edge [post,bend right] (semaphore);

\end{tikzpicture}

3.11 Adding Labels Next to Lines

The next thing that Hagen needs to add is the “2” at the arcs. For this Hagen can use TikZ’s automatic
node placement: By adding the option auto, TikZ will position nodes on curves and lines in such a way that
they are not on the curve but next to it. Adding swap will mirror the label with respect to the line. Here is
a general example:

o 1’ \begin{tikzpicture}[auto,bend right]
120 \node (a) at (0:1) {$0~\circ$};

1 \node (b) at (120:1) {$120"\circ$};

2' 192 0° \node (c) at (240:1) {$240"\circ$};

’ji/// \draw (a) to node {1} node [swap] {1’} (b)
240° 3’ (b) to node {2} node [swap] {2’} (c)
(c) to node {3} node [swap]l {3’} (a);

\end{tikzpicture}

What is happening here? The nodes are given somehow inside the to operation! When this is done, the
node is placed on the middle of the curve or line created by the to operation. The auto option then causes
the node to be moved in such a way that it does not lie on the curve, but next to it. In the example we
provide even two nodes on each to operation.

For Hagen that auto option is not really necessary since the two “2” labels could also easily be placed
“by hand.” However, in a complicated plot with numerous edges automatic placement can be a blessing.

% Styles as before
2 \begin{tikzpicture}[bend angle=45]

\node [place] (waiting) {};
\node [place] (critical) [below=of waitingl {};
\node [place] (semaphore) [below=of critical] {};

\node [transition] (leave critical) [right=of critical] {}

edge [pre] (critical)

edge [post,bend right] nodel[auto,swap] {2} (waiting)

edge [pre, bend left] (semaphore) ;
\node [transition] (enter critical) [left=of criticall {}

edge [post] (critical)

edge [pre, bend left] (waiting)

edge [post,bend right] (semaphore) ;

\end{tikzpicture}

3.12 Adding the Snaked Line and Multi-Line Text

With the node mechanism Hagen can now easily create the two Petri nets. What he is unsure of is how he
can create the snaked line between the nets.

For this he can use a decoration. To draw the snake, Hagen only needs to set the two options
decoration=snake and decorate on the path. This causes all lines of the path to be replaced by snakes.
It is also possible to use snakes only in certain parts of a path, but Hagen will not need this.

48

ANANNANSS \begin{tikzpicture}
\draw [->,decorate,decoration=snake] (0,0) -- (2,0);
\end{tikzpicture}

Well, that does not look quite right, yet. The problem is that the snake happens to end exactly at the
position where the arrow begins. Fortunately, there is an option that helps here. Also, the snake should be
a bit smaller, which can be influenced by even more options.

ANNANANNNNANNANANNN—S \begin{tikzpicture}

\draw [->,decorate,
decoration={snake,amplitude=.4mm,segment length=2mm,post length=1mm}]
(0,0) -- (3,0);
\end{tikzpicture}

Now Hagen needs to add the text above the snake. This text is a bit challenging since it is a multi-line
text. Hagen has two options for this: First, he can specify an align=center and then use the \\ command
to enforce the line breaks at the desired positions.

\begin{tikzpicture}
\draw [->,decorate,
decoration={snake,amplitude=.4mm,segment length=2mm,post length=1mm}]

replacement of
the capacity

by two places (0,0) —- (3,0)
node [above,align=center,midway]
{

replacement of\\
the \textcolor{red}{capacity}\\
by \textcolor{red}{two places}
};
\end{tikzpicture}

Instead of specifying the line breaks “by hand,” Hagen can also specify a width for the text and let TEX
perform the line breaking for him:

replacement of \begin{tikzpicture}
X \draw [->,decorate,
the capacity decoration={snake,amplitude=.4mm,segment length=2mm,post length=1mm}]
by two places (0,0) -- (3,0)
ANNANANNANNNNNNAN node [above,text width=3cm,align=center,midway]
{

replacement of the \textcolor{red}{capacity} by
\textcolor{red}{two places}
};
\end{tikzpicture}

3.13 Using Layers: The Background Rectangles

Hagen still needs to add the background rectangles. These are a bit tricky: Hagen would like to draw the
rectangles after the Petri nets are finished. The reason is that only then can he conveniently refer to the
coordinates that make up the corners of the rectangle. If Hagen draws the rectangle first, then he needs to
know the exact size of the Petri net — which he does not.

The solution is to use layers. When the background library is loaded, Hagen can put parts of his picture
inside a {pgfonlayer} environment. Then this part of the picture becomes part of the layer that is given
as an argument to this environment. When the {tikzpicture} environment ends, the layers are put on top
of each other, starting with the background layer. This causes everything drawn on the background layer to
be behind the main text.

The next tricky question is, how big should the rectangle be? Naturally, Hagen can compute the size “by
hand” or using some clever observations concerning the x- and y-coordinates of the nodes, but it would be
nicer to just have TikZ compute a rectangle into which all the nodes “fit.” For this, the fit library can be
used. It defines the fit options, which, when give to a node, causes the node to be resized and shifted such
that it exactly covers all the nodes and coordinates given as parameters to the fit option.

49

% Styles as before
\begin{tikzpicturel}[bend angle=45]

\node [place] (waiting) {};
\node [place] (critical) [below=of waiting] {};
\node [place] (semaphore) [below=of critical] {};

\node[transition] (leave critical) [right=of criticall {}

edge [pre] (critical)
edge [post,bend right] node[auto,swap] {2} (waiting)
edge [pre, bend left] (semaphore) ;
\node [transition] (enter critical) [left=of criticall {}
edge [post] (critical)
edge [pre, bend left] (waiting)
edge [post,bend right] (semaphore) ;

\begin{pgfonlayer}{background}
\node [fill=black!30,fit=(waiting) (critical) (semaphore)
(leave critical) (enter critical)] {};
\end{pgfonlayer}
\end{tikzpicture}

3.14 The Complete Code

Hagen has now finally put everything together. Only then does he learn that there is already a library for
drawing Petri nets! It turns out that this library mainly provides the same definitions as Hagen did. For
example, it defines a place style in a similar way as Hagen did. Adjusting the code so that it uses the library
shortens Hagen code a bit, as shown in the following.

First, Hagen needs less style definitions, but he still needs to specify the colors of places and transitions.

\begin{tikzpicture}
[node distance=1.3cm,on grid,>=stealth’,bend angle=45,auto,
every place/.style= {minimum size=6mm,thick,draw=blue!75,fill=blue!20},
every transition/.style={thick,draw=black!75,fill=black!20},
red place/.style= {place,draw=red!75,fill=red!20},
every label/.style= {red}]

Now comes the code for the nets:

\node [place,tokens=1] (w1) {};
2 \node [placel (c1) [below=of wi] {};
\node [place] (s) [below=of c1,label=above:$s\le 3$] {};
\node [placel (c2) [below=of s] s
() \node [place,tokens=1] (w2) [below=of c2] {};
\node [transition] (el) [left=of c1] {}
5<3 edge [pre,bend left] (w1)
edge [post,bend right] (s)
edge [post] (c1);
\node [transition] (e2) [left=of c2] {}
edge [pre,bend right] (w2)
(::)4444, edge [post,bend left] (s)
edge [post] (c2);
\node [transition] (11) [right=of c1] {}
edge [prel (c1)
2 edge [pre,bend left] (s)

edge [post,bend right] nodel[swap] {2} (wi1);
\node [transition] (12) [right=of c2] {}

edge [prel (c2)
edge [pre,bend right] (s)
edge [post,bend left] mnode {2} (w2) ;

50

\begin{scope} [xshift=6cm]
2 \node [place,tokens=1] (wi?) {3
\node [place] (c1’) [below=of wi’] {};
\node [red place] (s1’) [below=of c1’,xshift=-5mm]

[label=left:s] {};
\node [red place,tokens=3] (s2’) [below=of c1’,xshift=5mm]

[label=right:$\bar s$] {3;
\node [place] (c2’) [below=of s1’,xshift=5mm] {};
\node [place,tokens=1] (w2’) [below=of c2’] {};

\node [transition] (el’) [left=of c1’] {}

edge [pre,bend left] (wil’)
edge [post] (s1?)
edge [prel (s2?)
edge [post] @il?)g
\node [transition] (e2’) [left=of c2’] {}
edge [pre,bend right] (w2?)
edge [post] (s1?)
edge [prel (s2?)
edge [post] (c2?);
\node [transition] (11’) [right=of c1’] {}
edge [prel (c1?)
edge [prel (s1)
edge [post] (s2?)

edge [post,bend right] node[swap] {2} (w1’);
\node [transition] (12’) [right=of c2’] {}

edge [prel (c2?)

edge [prel (s1’)

edge [post] (s2)

edge [post,bend left] node {2} wW2°);
\end{scope}

The code for the background and the snake is the following:

\begin{pgfonlayer}{background}

\node (r1) [fill=black!10,rounded corners,fit=(wl) (w2) (el) (e2)(11)(12)] {};

\node (r2) [fill=black!'!10,rounded corners,fit=(w1’) (w2’)(el1’)(e2’)(11°)(12°)]1 {};
\end{pgfonlayer}

\draw [shorten >=1mm,-to,thick,decorate,
decoration={snake,amplitude=.4mm,segment length=2mm,
pre=moveto,pre length=1imm,post length=2mm}]
(r1) -- (r2) node [above=1mm,midway,text width=3cm,align=center]
{replacement of the \textcolor{red}{capacity} by \textcolor{red}{two places}};
\end{tikzpicture}

51

4 Tutorial: Euclid’s Amber Version of the FElements

In this third tutorial we have a look at how TikZ can be used to draw geometric constructions.

Euclid is currently quite busy writing his new book series, whose working title is “Elements” (Euclid is
not quite sure whether this title will convey the message of the series to future generations correctly, but he
intends to change the title before it goes to the publisher). Up to know, he wrote down his text and graphics
on papyrus, but his publisher suddenly insists that he must submit in electronic form. Euclid tries to argue
with the publisher that electronics will only be discovered thousands of years later, but the publisher informs
him that the use of papyrus is no longer cutting edge technology and Euclid will just have to keep up with

modern tools.

Slightly disgruntled, Euclid starts converting his papyrus entitled “Book I, Proposition I” to an amber

version.

4.1 Book I, Proposition I

The drawing on his papyrus looks like this:?

4

D A

-

B
/

B

W

Proposition I
To construct an on a given finite straight line.

Let AB be the given finite straight line. It is required to construct an
on the straight line AB.

Describe the circle BC'D with center A and radius AB. Again describe
the circle ACE with center B and radius BA. Join the straight lines
CA and CB from the point C at which the circles cut one another to
the points A and B.

Now, since the point A is the center of the circle C' DB, therefore AC
equals AB. Again, since the point B is the center of the circle CAF,
therefore BC' equals BA. But AC was proved equal to AB, therefore
each of the straight lines AC' and BC' equals AB. And things which
equal the same thing also equal one another, therefore AC' also equals
BC. Therefore the three straight lines AC, AB, and BC equal one
another. Therefore the ABC is equilateral, and it has been
constructed on the given finite straight line AB.

Let us have a look at how Euclid can turn this into TikZ code.

4.1.1 Setting up the Environment

As in the previous tutorials, Euclid needs to load TikZ, together with some libraries. These libraries are
calc, intersections, through, and backgrounds. Depending on which format? he uses, Euclid would use

one of the following in the preamble:

% For LaTeX:
\usepackage{tikz}

\usetikzlibrary{calc,intersections,through,backgrounds}

% For plain TeX:
\input tikz.tex

\usetikzlibrary{calc,intersections,through,backgrounds}

% For ConTeXt:
\usemodule [tikz]

\usetikzlibrary[calc,intersections,through,backgrounds]

3The text is taken from the wonderful interactive version of Euclid’s Elements by David E. Joyce, to be found on his website

at Clark University.

4Note that PGF/TikZ is not supported by recent ConTEXt versions (like mark IV, the LuaTgX-aware part of ConTEXt).

52

4.1.2 The Line AB

The first part of the picture that Euclid wishes to draw is the line AB. That is easy enough, something like
\draw (0,0) -- (2,1); might do. However, Euclid does not wish to reference the two points A and B as
(0,0) and (2,1) subsequently. Rather, he wishes to just write A and B. Indeed, the whole point of his book
is that the points A and B can be arbitrary and all other points (like C') are constructed in terms of their
positions. It would not do if Euclid were to write down the coordinates of C' explicitly.

So, Euclid starts with defining two coordinates using the \coordinate command:

\begin{tikzpicture}

g P
\coordinate (A) at (0,0);
\coordinate (B) at (1.25,0.25);

\draw[blue] (&) -- (B);
\end{tikzpicture}

That was easy enough. What is missing at this point are the labels for the coordinates. Euclid does not
want them on the points, but next to them. He decides to use the label option:

B \begin{tikzpicture}
A _— \coordinate [label=left:\textcolor{blue}{A}] (A) at (0,0);
\coordinate [label=right:\textcolor{blue}{B}] (B) at (1.25,0.25);

\draw[blue]l (A) -- (B);
\end{tikzpicture}

At this point, Euclid decides that it would be even nicer if the points A and B were in some sense
“random.” Then, neither Euclid nor the reader can make the mistake of taking “anything for granted”
concerning these position of these points. Euclid is pleased to learn that there is a rand function in TikZ
that does exactly what he needs: It produces a number between —1 and 1. Since TikZ can do a bit of math,
Euclid can change the coordinates of the points as follows:

\coordinate [...] (A) at (0+0.1*rand,0+0.1*rand);
\coordinate [...] (B) at (1.25+0.1*rand,0.25+0.1*rand);

This works fine. However, Euclid is not quite satisfied since he would prefer that the “main coordinates”
(0,0) and (1.25,0.25) are “kept separate” from the perturbation 0.1(rand, rand). This means, he would like
to specify that coordinate A as “The point that is at (0,0) plus one tenth of the vector (rand, rand).”

It turns out that the calc library allows him to do exactly this kind of computation. When this library is
loaded, you can use special coordinates that start with ($ and end with $) rather than just (and). Inside
these special coordinates you can give a linear combination of coordinates. (Note that the dollar signs are
only intended to signal that a “computation” is going on; no mathematical typesetting is done.)

The new code for the coordinates is the following:

\coordinate [...] (&) at ($ (0,0) + .1*(rand,rand) $);
\coordinate [...] (B) at ($ (1.25,0.25) + .1*(rand,rand) $);

Note that if a coordinate in such a computation has a factor (like .1) you must place a * directly before
the opening parenthesis of the coordinate. You can nest such computations.

4.1.3 The Circle Around A

The first tricky construction is the circle around A. We will see later how to do this in a very simple manner,
but first let us do it the “hard” way.

The idea is the following: We draw a circle around the point A whose radius is given by the length of
the line AB. The difficulty lies in computing the length of this line.

Two ideas “nearly” solve this problem: First, we can write ($ (A) - (B) $) for the vector that is the
difference between A and B. All we need is the length of this vector. Second, given two numbers z and
y, one can write veclen(x,y) inside a mathematical expression. This gives the value y/x? + y2, which is
exactly the desired length.

The only remaining problem is to access the z- and y-coordinate of the vector AB. For this, we need
a new concept: the let operation. A let operation can be given anywhere on a path where a normal path
operation like a line-to or a move-to is expected. The effect of a let operation is to evaluate some coordinates
and to assign the results to special macros. These macros make it easy to access the z- and y-coordinates of
the coordinates.

Euclid would write the following;:

53

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (A) -- (B);

\draw (A) let
\pl = ($ (B) - () $)
in
circle ({veclen(\x1,\y1)});
\end{tikzpicture}

Each assignment in a let operation starts with \p, usually followed by a (digit). Then comes an equal
sign and a coordinate. The coordinate is evaluated and the result is stored internally. From then on you can
use the following expressions:

1. \x(digit) yields the xz-coordinate of the resulting point.
2. \y(digit) yields the y-coordinate of the resulting point.
3. \p(digit) yields the same as \x{digit), \y(digit).

You can have multiple assignments in a let operation, just separate them with commas. In later assignments
you can already use the results of earlier assignments.

Note that \p1 is not a coordinate in the usual sense. Rather, it just expands to a string like 10pt,20pt.
So, you cannot write, for instance, (\pl.center) since this would just expand to (10pt,20pt.center),
which makes no sense.

Next, we want to draw both circles at the same time. Each time the radius is veclen(\x1,\y1). It seems
natural to compute this radius only once. For this, we can also use a let operation: Instead of writing \p1
= ..., we write \n2 = Here, “n” stands for “number” (while “p” stands for “point”). The assignment
of a number should be followed by a number in curly braces.

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \p1
\n2

$ B - A 9,
{veclen(\x1,\y1)}

in
(A) circle (\n2)
(B) circle (\n2);
\end{tikzpicture}

In the above example, you may wonder, what \n1 would yield? The answer is that it would be undefined
— the \p, \x, and \y macros refer to the same logical point, while the \n macro has “its own namespace.”
We could even have replaced \n2 in the example by \n1 and it would still work. Indeed, the digits following
these macros are just normal TEX parameters. We could also use a longer name, but then we have to use
curly braces:

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\draw let \p1
\n{radius}

¢ ® - @ %,
{veclen(\x1,\y1)}

in
(A) circle (\n{radius})
(B) circle (\n{radius});
\end{tikzpicture}

At the beginning of this section it was promised that there is an easier way to create the desired circle.
The trick is to use the through library. As the name suggests, it contains code for creating shapes that go
through a given point.

The option that we are looking for is circle through. This option is given to a mode and has the
following effects: First, it causes the node’s inner and outer separations to be set to zero. Then it sets the
shape of the node to circle. Finally, it sets the radius of the node such that it goes through the parameter
given to circle through. This radius is computed in essentially the same way as above.

54

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
B \draw (&) -- (B);

\node [draw,circle through=(B),label=left:D] at (A) {};
\end{tikzpicture}

4.1.4 The Intersection of the Circles

Euclid can now draw the line and the circles. The final problem is to compute the intersection of the two
circles. This computation is a bit involved if you want to do it “by hand.” Fortunately, the intersection
library allows us to compute the intersection of arbitrary paths.

The idea is simple: First, you “name” two paths using the name path option. Then, at some later
point, you can use the option name intersections, which creates coordinates called intersection-1,
intersection-2, and so on at all intersections of the paths. Euclid assigns the names D and E to the paths
of the two circles (which happen to be the same names as the nodes themselves, but nodes and their paths
live in different “namespaces”).

C

N)

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

\node (D) [name path=D,draw,circle through=(B),label=left:D] at (A) {};
\node (E) [name path=E,draw,circle through=(A),label=right:E] at (B) {};

% Name the coordinates, but do not draw anything:
\path [name intersections={of=D and E}];

\coordinate [label=above:C] (C) at (intersection-1);
\draw [red] (A) -- (C);
\draw [red] (B) -- (C);

\end{tikzpicture}

It turns out that this can be further shortened: The name intersections takes an optional argument
by, which lets you specify names for the coordinates and options for them. This creates more compact code.
Although Euclid does not need it for the current picture, it is just a small step to computing the bisection
of the line AB:

N
(4

CI/

55

\begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw [name path=A--B] (A) -- (B);

\node (D) [name path=D,draw,circle through=(B),label=left:D] at (A) {};
\node (E) [name path=E,draw,circle through=(A),label=right:E] at (B) {};

\path [name intersections={of=D and E, by={[label=above:C]C, [label=below:$C’$]1C’}}];
\draw [name path=C--C’,red] (C) -- (C’);
\path [name intersections={of=A--B and C--C’,by=F}];

\node [fill=red,inner sep=1pt,label=-45:F] at (F) {};
\end{tikzpicture}

4.1.5 The Complete Code

Back to Euclid’s code. He introduces a few macros to make life simpler, like a \A macro for typesetting a
blue A. He also uses the background layer for drawing the triangle behind everything at the end.

Proposition 1
To construct an on a given finite straight line.

Let AB be the given finite straight line. ...

\begin{tikzpicture} [thick,help lines/.style={thin,draw=black!50}]

\def\A{\textcolor{input}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{output}{C}} \def\D{D}
\def\E{E}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\colorlet{triangle}{orange}

\coordinate [label=left:\A] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B]l (B) at ($ (1.25,0.25) + .1*(rand,rand) $);

\draw [input] (A) -- (B);

\node [name path=D,help lines,draw,label=left:\D] (D) at (A) [circle through=(B)] {};
\node [name path=E,help lines,draw,label=right:\E] (E) at (B) [circle through=(A)] {};

\path [name intersections={of=D and E,by={[label=above:\C]C}}];
\draw [output] (&) -- (C) -- (B);

\foreach \point in {A,B,C}
\fill [black,opacity=.5] (\point) circle (2pt);

\begin{pgfonlayer}{background}
\fill[triangle!80] (A) -- (C) -- (B) -- cycle;
\end{pgfonlayer}

\node [below right, text width=10cm,align=justify]l at (4,3) {
\small\textbf{Proposition I}\par
\emph{To construct an \textcolor{triangle}{equilateral triangle}
on a given \textcolor{input}{finite straight linel}.}
\par\vskiplem
Let \A\B\ be the given \textcolor{input}{finite straight line}. \dots
};
\end{tikzpicture}

56

4.2 Book I, Proposition 11

The second proposition in the Elements is the following:

Proposition II
To place a straight line equal to a given straight line with one
end at a

Let A be the given point, and BC the given straight line. It is
required to place a straight line equal to the given straight line
BC with one end at the point
Join the straight line AB from the point A to the point B, and
construct the equilateral triangle D AB on it.
Produce the straight lines AF and BF in a straight line with D
and DB. Describe the circle CGH with center B and radius BC',
and again, describe the circle GKL with center D and radius
DG.
Since the point B is the center of the circle CGH, therefore BC
equals BG. Again, since the point D is the center of the circle
GK L, therefore DL equals DG. And in these DA equals DB,
therefore the remainder AL equals the remainder BG. But BC'
was also proved equal to BG, therefore each of the straight lines
L and BC equals BG. And things which equal the same thing
also equal one another, therefore /AL also equals BC.

Therefore the straight line AL equal to the given straight line
BC has been placed with one end at the

4.2.1 Using Partway Calculations for the Construction of D

Euclid’s construction starts with “referencing” Proposition I for the construction of the point D. Now, while
we could simply repeat the construction, it seems a bit bothersome that one has to draw all these circles
and do all these complicated constructions.

For this reason, TikZ supports some simplifications. First, there is a simple syntax for computing a point
that is “partway” on a line from p to ¢: You place these two points in a coordinate calculation — remember,
they start with ($ and end with $) — and then combine them using !(part)!. A (part) of O refers to the
first coordinate, a (part) of 1 refers to the second coordinate, and a value in between refers to a point on
the line from p to q. Thus, the syntax is similar to the xcolor syntax for mixing colors.

Here is the computation of the point in the middle of the line AB:

B \begin{tikzpicture}
A — \coordinate [label=left:A] (A) at (0,0);
X \coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);
\node [fill=red,inner sep=1pt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
\end{tikzpicture}

The computation of the point D in Euclid’s second proposition is a bit more complicated. It can be
expressed as follows: Consider the line from X to B. Suppose we rotate this line around X for 90° and then
stretch it by a factor of sin(60°)/2. This yields the desired point D. We can do the stretching using the
partway modifier above, for the rotation we need a new modifier: the rotation modifier. The idea is that
the second coordinate in a partway computation can be prefixed by an angle. Then the partway point is
computed normally (as if no angle were given), but the resulting point is rotated by this angle around the
first point.

D \begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

B \node [fill=red,inner sep=1pt,label=below:X] (X) at ($ (A)!.5!(B) $) {};
A X \node [fill=red,inner sep=1pt,label=above:D] (D) at
($ (X) ! {sin(60)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

Finally, it is not necessary to explicitly name the point X. Rather, again like in the xcolor package, it
is possible to chain partway modifiers:

57

D \begin{tikzpicture}
\coordinate [label=left:A] (A) at (0,0);
\coordinate [label=right:B] (B) at (1.25,0.25);
\draw (A) -- (B);

B \node [fill=red,inner sep=1pt,label=above:D] (D) at
A ($ (A) ! .51 (B) ! {sin(B0)*2} ! 90:(B) $) {};
\draw (A) -- (D) -- (B);
\end{tikzpicture}

4.2.2 Intersecting a Line and a Circle

The next step in the construction is to draw a circle around B through C', which is easy enough to do using
the circle through option. Extending the lines DA and DB can be done using partway calculations, but
this time with a part value outside the range [0, 1]:

\begin{tikzpicture}

\coordinate [label=left:A] (A) at (0,0);

\coordinate [label=right:B] (B) at (0.75,0.25);

\coordinate [label=above:C] (C) at (1,1.5);

\draw (A) -- (B) -- (C);

\coordinate [label=above:D] (D) at

($ (A) ' .5 ! (B) ! {sin(60)*2} ! 90:(B) $) {};

\node (H) [label=135:H,draw,circle through=(C)] at (B) {};

\draw (D) -- ($ (D) ! 3.5 ! (B) $) coordinate [label=below:F] (F);

\draw (D) -- ($ (D) ! 2.5 ! (A) $) coordinate [label=below:E] (E);
E F \end{tikzpicture}

We now face the problem of finding the point G, which is the intersection of the line BF and the circle
H. One way is to use yet another variant of the partway computation: Normally, a partway computation
has the form (p)!(factor)!{q), resulting in the point (1 — (factor))(p) + (factor){q). Alternatively, instead
of (factor) you can also use a (dimension) between the points. In this case, you get the point that is
(dimension) removed from (p) on the straight line to (g).

We know that the point G is on the way from B to F'. The distance is given by the radius of the circle H.
Here is the code form computing H:

\node (H) [label=135:H,draw,circle through=(C)] at (B) {};
\path let \pi = ($ (B) - (C) $) in

coordinate [label=left:G] (G) at ($ (B) ! veclen(\x1,\y1l) ! (F) $);
\fill[red,opacity=.5] (G) circle (2pt);

However, there is a simpler way: We can simply name the path of the circle and of the line in question
and then use name intersections to compute the intersections.

\node (H) [name path=H,label=135:H,draw,circle through=(C)] at (B) {};
\path [name path=B--F] (B) —- (F);

\path [name intersections={of=H and B--F,by={[label=left:G]1G}}];
\fill[red,opacity=.5] (G) circle (2pt);

58

4.2.3 The Complete Code

\begin{tikzpicture}[thick,help lines/.style={thin,draw=black!50}]
\def\A{\textcolor{orange}{A}} \def\B{\textcolor{input}{B}}
\def\C{\textcolor{input}{C}} \def\D{D}

\def\E{E} \def\F{F}
\def\G{G} \def\H{H}
\def\K{K} \def\L{\textcolor{output}{L}}

\colorlet{input}{blue!80!black} \colorlet{output}{red!70!black}
\coordinate [label=left:\A] (A) at ($ (0,0) + .1x(rand,rand) $);
\coordinate [label=right:\B] (B) at ($ (1,0.2) + .1x(rand,rand) $);
\coordinate [label=above:\C] (C) at ($ (1,2) + .1*(rand,rand) $);

\draw [input] (B) -- (C);
\draw [help lines] (A) -- (B);

\coordinate [label=above:\D] (D) at ($ (A)!.5!(B) ! {sin(60)*2} ! 90:(B) $);

\draw [help lines] (D) -- ($ (D)!3.75!(A) $) coordinate [label=-135:\E] (E);
\draw [help lines] (D) -- ($ (D)!3.75!(B) $) coordinate [label=-45:\F] (F);

\node (H) at (B) [name path=H,help lines,circle through=(C),draw,label=135:\H] {};
\path [name path=B--F] (B) -- (F);

\path [name intersections={of=H and B--F,by={[label=right:\G]G}}];

\node (K) at (D) [name path=K,help lines,circle through=(G),draw,label=135:\K] {};
\path [name path=A--E] (A) -- (E);

\path [name intersections={of=K and A--E,by={[label=below:\L]L}}];

\draw [output] (A) -- (L);

\foreach \point in {4,B,C,D,G,L}
\fill [black,opacity=.5] (\point) circle (2pt);

% \node ...
\end{tikzpicture}

59

5 Tutorial: Putting a Diagram in Chains

In this tutorial we have a look at how chains and matrices can be used to typeset a diagram.

ITlka, who just got tenure for her professorship on Old and Lovable Programming Languages, has recently
dug up a technical report entitled The Programming Language Pascal in the dusty cellar of the library of
her university. Having been created in the good old times using pens and rules, it looks like this®:

_.{unsigned integer =[llnSigned integer

For her next lecture, Ilka decides to redo this diagram, but this time perhaps a bit cleaner and perhaps
also bit “cooler.”

—>| unsigned integer J—»@—l—ﬂ digit) l { @ [ll unsigned integer —]—>

Having read the previous tutorials, Ilka knows already how to setup the environment for her diagram,
namely using a tikzpicture environment. She wonders which libraries she will need. She decides that she
will postpone the decision and add the necessary libraries as needed as she constructs the picture.

5.1 Styling the Nodes

The bulk of this tutorial will be about arranging the nodes and connecting them using chains, but let us
start with setting up styles for the nodes.

There are two kinds of nodes in the diagram, namely what theoreticians like to call terminals and
nonterminals. For the terminals, Ilka decides to use a black color, which visually shows that “nothing needs
to be done about them.” The nonterminals, which still need to be “processed” further, get a bit of red mixed
in.

Ilka starts with the simpler nonterminals, as there are no rounded corners involved. Naturally, she sets
up a style:

\begin{tikzpicture}[
nonterminal/.style={
% The shape:
rectangle,
% The size:
minimum size=6mm,
% The border:
very thick,
draw=red!50!'black!50, % 50% red and 50% black,
% and that mixed with 50% white

unsigned integer

% The filling:

top color=white, % a shading that is white at the top...
bottom color=red!50!black!20, % and something else at the bottom
% Font
font=\itshape
H
\node [nonterminal] {unsigned integer};
\end{tikzpicture}

Ilka is pretty proud of the use of the minimum size option: As the name suggests, this option ensures
that the node is at least 6mm by 6mm, but it will expand in size as necessary to accommodate longer text.
By giving this option to all nodes, they will all have the same height of 6mm.

Styling the terminals is a bit more difficult because of the round corners. Ilka has several options how
she can achieve them. Once way is to use the rounded corners option. It gets a dimension as parameter
and causes all corners to be replaced by little arcs with the given dimension as radius. By setting the radius

5The shown diagram was not scanned, but rather typeset using TikZ. The jittering lines were created using the randomsteps
decoration.

60

to 3mm, she will get exactly what she needs: circles, when the shapes are, indeed, exactly 6mm by 6mm
and otherwise half circles on the sides:

digit \begin{tikzpicture}[node distance=5mm,
terminal/.style={

% The shape:

rectangle,minimum size=6mm,rounded corners=3mm,
% The rest

very thick,draw=black!50,

top color=white,bottom color=black!20,
font=\ttfamily}]

\node (dot) [terminal] LaJrg

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};
\end{tikzpicture}

Another possibility is to use a shape that is specially made for typesetting rectangles with arcs on the
sides (she has to use the shapes.misc library to use it). This shape gives Ilka much more control over the
appearance. For instance, she could have an arc only on the left side, but she will not need this.

. - \begin{tikzpicture}[node distance=5mm,

@ @ terminal/.style={
% The shape:
rounded rectangle,
minimum size=6mm,
% The rest
very thick,draw=black!50,
top color=white,bottom color=black!20,
font=\ttfamily}]

\node (dot) [terminal] Ao g

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};
\end{tikzpicture}

At this point, she notices a problem. The baseline of the text in the nodes is not aligned:

f'\ (37 ait) m \begin{tikzpicture}[node distance=5mm]

N \ 7 N \node (dot) [terminal] {.}
\node (digit) [terminal,right=of dot] {digit};
\node (E) [terminal,right=of digit] {E};

\draw [help lines] let \pl = (dot.base),
\p2 = (digit.base),
\p3 = (E.base)
in (-.5,\y1) -- (3.5,\y1)
(-.5,\y2) -- (3.5,\y2)
(-.5,\y3) -- (3.5,\y3);

\end{tikzpicture}

(Ilka has moved the style definition to the preamble by saying \tikzset{terminal/.style=...}, so that
she can use it in all pictures.)

For the digit and the E the difference in the baselines is almost imperceptible, but for the dot the
problem is quite severe: It looks more like a multiplication dot than a period.

Ilka toys with the idea of using the base right=of... option rather than right=of... to align the
nodes in such a way that the baselines are all on the same line (the base right option places a node right
of something so that the baseline is right of the baseline of the other object). However, this does not have
the desired effect:

— \begin{tikzpicture}[node distance=5mm]
@ @ \node (dot) [terminall Lodrg
\node (digit) [terminal,base right=of dot] {digit};
\node (E) [terminal,base right=of digit] {E};

\end{tikzpicture}

The nodes suddenly “dance around”! There is no hope of changing the position of text inside a node
using anchors. Instead, Ilka must use a trick: The problem of mismatching baselines is caused by the fact
that . and digit and E all have different heights and depth. If they all had the same, they would all be
positioned vertically in the same manner. So, all Ilka needs to do is to use the text height and text depth
options to explicitly specify a height and depth for the nodes.

61

. \begin{tikzpicture}[node distance=5mm,
text height=1.5ex,text depth=.25ex]

\node (dot) [terminall LoD8

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};
\end{tikzpicture}

5.2 Aligning the Nodes Using Positioning Options

Ilka now has the “styling” of the nodes ready. The next problem is to place them in the right places. There
are several ways to do this. The most straightforward is to simply explicitly place the nodes at certain
coordinates “calculated by hand.” For very simple graphics this is perfectly alright, but it has several
disadvantages:

1. For more difficult graphics, the calculation may become complicated.
2. Changing the text of the nodes may make it necessary to recalculate the coordinates.

3. The source code of the graphic is not very clear since the relationships between the positions of the
nodes are not made explicit.

For these reasons, Ilka decides to try out different ways of arranging the nodes on the page.

The first method is the use of positioning options. To use them, you need to load the positioning
library. This gives you access to advanced implementations of options like above or left, since you can now
say above=of some node in order to place a node above of some node, with the borders separated by node
distance.

Ilka can use this to draw the place the nodes in a long row:

unsigned integer Q @ unsigned integer

\begin{tikzpicture}[node distance=5mm and 5mm]

\node (uil) [nonterminal] {unsigned integer};
\node (dot) [terminal ,right=of uil] {.};

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal ,right=of digit] {E};

\node (plus) [terminal,above right=of E] {+};

\node (minus) [terminal,below right=of E] {-};

\node (ui2) [nonterminal ,below right=of plus] {unsigned integer};

\end{tikzpicture}

For the plus and minus nodes, Ilka is a bit startled by their placements. Shouldn’t they be more to the
right? The reason they are placed in that manner is the following: The north east anchor of the E node
lies at the “upper start of the right arc,” which, a bit unfortunately in this case, happens to be the top of the
node. Likewise, the south west anchor of the + node is actually at its bottom and, indeed, the horizontal
and vertical distances between the top of the E node and the bottom of the + node are both 5mm.

There are several ways of fixing this problem. The easiest way is to simply add a little bit of horizontal
shift by hand:

@ unsigned integer

62

\begin{tikzpicture}[node distance=5mm and 5mm]

\node (E) [terminall {E};

\node (plus) [terminal,above right=of E,xshift=5mm] {+};

\node (minus) [terminal,below right=of E,xshift=5mm] {-};

\node (ui2) [nonterminal,below right=of plus,xshift=5mm] {unsigned integer};
\end{tikzpicture}

A second way is to revert back to the idea of using a normal rectangle for the terminals, but with rounded
corners. Since corner rounding does not affect anchors, she gets the following result:

@ unsigned integer

\begin{tikzpicture}[node distance=5mm and 5mm,terminal/.append style={rectangle,rounded corners=3mm}]

\node (E) [terminal] {E};

\node (plus) [terminal,above right=of E] {+};

\node (minus) [terminal,below right=of E] {-};

\node (ui2) [nonterminal,below right=of plus] {unsigned integerl};
\end{tikzpicture}

A third way is to use matrices, which we will do later.

Now that the nodes have been placed, Ilka needs to add connections. Here, some connections are more
difficult than other. Consider for instance the “repeat” line around the digit. One way of describing this
line is to say “it starts a little to the right of digit than goes down and then goes to the left and finally
ends at a point a little to the left of digit.” Ilka can put this into code as follows:

. \begin{tikzpicture}[node distance=5mm and 5mm]
‘ ‘I e \node (dot) [terminal] {.};
\node (digit) [terminal,right=of dot] {digit};
\node (E) [terminal,right=of digit] {E};

\path (dot) edge[->] (digit) 7’ simple edges
(digit) edgel->] (E);

\draw [->]

% start right of digit.east, that is, at the point that is the
% linear combination of digit.east and the vector (2mm,Opt). We
% wuse the ($... $) notation for computing linear combinations
($ (digit.east) + (2mm,0) $)
% Now go down
-- ++(0,-.5)
% And back to the left of digit.west
-1 ($ (digit.west) - (2mm,0) $);

\end{tikzpicture}

Since Ilka needs this “go up/down then horizontally and than up/down to a target” several times, it
seems sensible to define a special to-path for this. Whenever the edge command is used, it simply adds the
current value of to path to the path. So, Ilka can setup a style that contains the correct path:

. \begin{tikzpicture}[node distance=5mm and 5mm,
‘ ‘. e skip loop/.style={to path={-- ++(0,-.5) -| (\tikztotarget)l}}]

\node (dot) [terminall] Lol

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};

\path (dot) edgel->] (digit) % simple edges
(digit) edge[->] (E)

($ (digit.east) + (2mm,0) $)
edge[->,skip loop] ($ (digit.west) - (2mm,0) $);
\end{tikzpicture}

Ilka can even go a step further and make her skip look style parameterized. For this, the skip loop’s
vertical offset is passed as parameter #1. Also, in the following code Ilka specifies the start and targets
differently, namely as the positions that are “in the middle between the nodes.”

63

. \begin{tikzpicture}[node distance=bmm and 5mm,
‘ I. e skip loop/.style={to path={-- ++(0,#1) -| (\tikztotarget)}}]

\node (dot) [terminall] Lol

\node (digit) [terminal,right=of dot] {digit};

\node (E) [terminal,right=of digit] {E};

\path (dot) edgel->] (digit) % simple edges
(digit) edge[->] (E)

($ (digit.east)!.5!(E.west) $)
edge[->,skip loop=-5mm] ($ (digit.west)!.5!(dot.east) $);
\end{tikzpicture}

5.3 Aligning the Nodes Using Matrices

Ilka is still bothered a bit by the placement of the plus and minus nodes. Somehow, having to add an explicit
xshift seems too much like cheating.

A perhaps better way of positioning the nodes is to use a matriz. In TikZ matrices can be used to align
quite arbitrary graphical objects in rows and columns. The syntax is very similar to the use of arrays and
tables in TEX (indeed, internally TEX tables are used, but a lot of stuff is going on additionally).

In Tlka’s graphic, there will be three rows: One row containing only the plus node, one row containing
the main nodes and one row containing only the minus node.

unsigned integer @ @ unsigned integer

\begin{tikzpicture}
\matrix[row sep=1imm,column sep=5mm] {
% First row:
& & & & \node [terminall {+}; & \\
% Second row:
\node [nonterminal] {unsigned integer}; &
\node [terminal] {.} &
\node [terminal] {digit}; &
\node [terminal] SENE &
&
\node [nonterminal] {unsigned integer}; \\
% Third row:
& & & & \node [terminall {-}; & \\
};
\end{tikzpicture}

That was easy! By toying around with the row and columns separations, Ilka can achieve all sorts of
pleasing arrangements of the nodes.

Ilka now faces the same connecting problem as before. This time, she has an idea: She adds small
nodes (they will be turned into coordinates later on and be invisible) at all the places where she would like
connections to start and end.

— — | —
+ | unsigned integer J~ @] .@ TR @ . | unsigned integer| -
©

64

\begin{tikzpicture}[point/.style={circle,inner sep=0Opt,minimum size=2pt,fill=red},
skip loop/.style={to path={-- ++(0,#1) -| (\tikztotarget)}}]
\matrix[row sep=imm,column sep=2mm] {
% First row:
& & & & & & & & & & & \node [terminall {+};\\
% Second row:

\node
\node
\node
\node
\node
\node
\node
\node

(p1)
(p2)
(p3)
(p4)
(p6)
(p7)
(p8)
(p9)

[point]
[point]
[point]
[point]
[point]
[point]
[point]
[point]

% Third row:
& & & & & 8 & & & & & \node [terminal] {-};\\

};

{x;
{;
{};
{3};
{;
{3;
arg
{};

& \node [nonterminall] {unsigned integerl};
& \node [terminal] {.};

& \node [terminall {digit};

& \node (p5) [point] {3};

& \node [terminal] {E};

&

& \node [nonterminal] {unsigned integer};
A\

\path (p4) edge [->,skip loop=-5mm] (p3)
(p2) edge [->,skip loop=5mm] (p6);
\end{tikzpicture}

Now, its only a small step to add all the missing edges.

5.4 Using Chains

Matrices allow Ilka to align the nodes nicely, but the connections are not quite perfect. The problem is that

the code does not really reflect the paths that underlie the diagram.

For this reason, Ilka decides to try out chains by including the chain library. Basically, a chain is just
a sequence of (usually) connected nodes. The nodes can already have been constructed or they can be

constructed as the chain is constructed (or these processes can be mixed).

5.4.1 Creating a Simple Chain

Ilka starts with creating a chain from scratch. For this, she starts a chain using the start chain option in
a scope. Then, inside the scope, she uses the on chain option on nodes to add them to the chain.

unsigned integer @ @ unsigned integer

\begin{tikzpicture} [start chain,node distance=5mm]

\node [on
\node [on
\node [on
\node [on
\node [on

\end{tikzpicture}

chain,nonterminal]
chain,terminall
chain,terminall
chain,terminall
chain,nonterminal]

{unsigned integer};
LoTg

{digit};

{E};

{unsigned integer};

(Ilka will add the plus and minus nodes later.)

As can be seen, the nodes of a chain are placed in a row. This can be changed, for instance by saying
start chain=going below we get a chain where each node is below the previous one.
The next step is to join the nodes of the chain. For this, we add the join option to each node. This

joins the node with the previous node (for the first node nothing happens).

unsigned integer

e unsigned integer

\begin{tikzpicture}[start chain,node distance=5mm]

\node [on
\node [on
\node [on
\node [on
\node [on

\end{tikzpicture}

In order to get a arrow tip, we redefine the every join style. Also, we move the join and on chain

chain, join,nonterminal] {unsigned integer};
chain, join,terminal]
chain, join,terminal]
chain, join,terminal]
chain, join,nonterminal] {unsigned integer};

Lolrg
{digit};
{E};

options to the every node style so that we do not have to repeat them so often.

unsigned integer

e unsigned integer

65

&
&
&
&
&
&
&

\begin{tikzpicture}[start chain,node distance=b5mm, every node/.style={on chain,join}, every join/.style={->}]
\node [nonterminal] {unsigned integer};

\node [terminall {.};

\node [terminall {digit};

\node [terminall =g

\node [nonterminal] {unsigned integer};
\end{tikzpicture}

5.4.2 Branching and Joining a Chain

It is now time to add the plus and minus signs. They obviously branch off the main chain. For this reason,
we start a branch for them using the start branch option.

unsigned integer unsigned integer

\begin{tikzpicture} [start chain,node distance=5mm, every node/.style={on chain,join}, every join/.style={->}]
\node [nonterminal] {unsigned integer};

\node [terminall {.};
\node [terminal] {digit};
\node [terminall {E};

\begin{scopel}[start branch=plus]
\node (plus) [terminal,on chain=going above right] {+};
\end{scope}
\begin{scope}[start branch=minus]
\node (minus) [terminal,on chain=going below right] {-};
\end{scope}
\node [nonterminal,join=with plus,join=with minus] {unsigned integer};
\end{tikzpicture}

Let us see, what is going on here. First, the start branch begins a branch, starting with the node
last created on the current chain, which is the E node in our case. This is implicitly also the first node on
this branch. A branch is nothing different from a chain, which is why the plus node is put on this branch
using the on chain option. However, this time we specify the placement of the node explicitly using going
(direction). This causes the plus sign to be placed above and right of the E node. It is automatically joined
to its predecessor on the branch by the implicit join option.

When the first branch ends, only the plus node has been added and the current chain is the original
chain once more and we are back to the E node. Now we start a new branch for the minus node. After this
branch, the current chain ends at E node once more.

Finally, the rightmost unsigned integer is added to the (main) chain, which is why it is joined correctly
with the E node. The two additional join options get a special with parameter. This allows you to join a
node with a node other than the predecessor on the chain. The with should be followed by the name of a
node.

Since Ilka will need scopes more often in the following, she includes the scopes library. This allows her
to replace \begin{scope} simply by an opening brace and \end{scope} by the corresponding closing brace.
Also, in the following example we reference the nodes plus and minus using their automatic name: The ith
node on a chain is called chain-(i). For a branch (branch), the ith node is called chain/(branch)-(i). The
(4) can be replaced by begin and end to reference the first and (currently) last node on the chain.

unsigned integer unsigned integer

66

\begin{tikzpicture}[start chain,node distance=5mm, every on chain/.style={join}, every join/.style={->}]
\node [on chain,nonterminal] {unsigned integer};

\node [on chain,terminall {.};
\node [on chain,terminall {digit};
\node [on chain,terminall {E};

{ [start branch=plus]

\node (plus) [terminal,on chain=going above right] {+};
}
{ [start branch=minus]

\node (minus) [terminal,on chain=going below right] {-};
}

\node [nonterminal,on chain,join=with chain/plus-end,join=with chain/minus-end] {unsigned integer};
\end{tikzpicture}

The next step is to add intermediate coordinate nodes in the same manner as Ilka did for the matrix. For
them, we change the join style slightly, namely for these nodes we do not want an arrow tip. This can be
achieved either by (locally) changing the every join style or, which is what is done in the below example,
by giving the desired style using join=by ..., where ... is the style to be used for the join.

—| unsigned integer HG -—-fH@ / <4D\ unsigned integer |—

\begin{tikzpicture}[start chain,node distance=5mm and 2mm,
every node/.style={on chain},
nonterminal/.append style={join=by ->},
terminal/.append style={join=by ->},
point/.style={join=by -,circle,fill=red,minimum size=2pt,inner sep=Opt}]
\node [point] {}; \node [nonterminal] {unsigned integer};
\node [point] {}; \node [terminal] {.};
\node [point] {}; \node [terminall {digit};
\node [point] {}; \node [point] {};
\node [point] {}; \node [terminall {E};
\node [point] {};
{ [node distance=5mm and 1cm] % local change in horizontal distance
{ [start branch=plus]
\node (plus) [terminal,on chain=going above right] {+};
}
{ [start branch=minus]
\node (minus) [terminal,on chain=going below right] {-};
}
\node [point,below right=of plus,join=with chain/plus-end by ->,join=with chain/minus-end by ->] {};

}

\node [nonterminal] {unsigned integer};

\node [point] {3;
\end{tikzpicture}

5.4.3 Chaining Together Already Positioned Nodes

The final step is to add the missing arrows. We can also use branches for them (even though we do not have
to, but it is good practice and they exhibit the structure of the diagram in the code).

Let us start with the repeat loop around the digit. This can be thought of as a branch that starts at
the point after the digit and that ends at the point before the digit. However, we have already constructed
the point before the digit! In such cases, it is possible to “chain in” an already positioned node, using
the \chainin command. This command must be followed by a coordinate that contains a node name and
optionally some options. The effect is that the named node is made part of the current chain.

. . \begin{tikzpicture}[start chain]) plus some styles that are not shown
'7°_> i \node [point] {};

\node (before digit) [point] {};
\node [terminall {digit};
\node [point] {};
{ [start branch=digit loop]
\chainin (before digit) [join=by {->,skip loop=-5mm}];
}
\node [point] {};
\end{tikzpicture}

67

5.4.4 Combined Use of Matrices and Chains

Ilka’s final idea is to combine matrices and chains in the following manner: She will use a matrix to position
the nodes. However, to show the logical “flow structure” inside the diagram, she will create chains and
branches that show what is going on.

Ilka starts with the matrix we had earlier, only with slightly adapted styles. Then she writes down the

main chain and its branches:
l (=) l ; ; |
[@ l unsigned integer]—>

\begin{tikzpicture}[point/.style={coordinate},>=stealth’,thick,draw=black!50,
tip/.style={->,shorten >=1pt},every join/.style={rounded cormners},
hv path/.style={to path={-| (\tikztotarget)}},
vh path/.style={to path={|- (\tikztotarget)}}]

\matrix[column sep=4mm] {
% First row:
& & & & & & & & & & & \node (plus) [terminal] {+};\\
% Second row:

—| unsigned integer J—»O—l—ﬂ digit)

\node (p1) [point]l {3}; & \node (uil) [nonterminal] {unsigned integerl}; &
\node (p2) [point] {}; & \node (dot) [terminal] {.}; &
\node (p3) [point] {}; & \node (digit) [terminal] {digit}; &
\node (p4) [point] {}; & \node (p5) [point] {}; &
\node (p6) [point] {}; & \node (e) [terminal] {E}; &
\node (p7) [point]l {3}; & &
\node (p8) [point] {}; & \node (ui2) [nonterminal] {unsigned integer}; &
\node (p9) [point] {}; & \node (p10) [point] {3\

% Third row:
& & & & & & & & & & & \node (minus) [terminall {-};\\
T

{ [start chain]
\chainin (p1);
\chainin (uil) [join=by tip];
\chainin (p2) [join];
\chainin (dot) [join=by tipl;
\chainin (p3) [join];
\chainin (digit) [join=by tip];
\chainin (p4) [join];
{ [start branch=digit loopl]
\chainin (p3) [join=by {skip loop=-6mm,tip}];
}
\chainin (p5) [join, join=with p2 by {skip loop=6mm,tipl}];
\chainin (p6) [join];
\chainin (e) [join=by tipl;
\chainin (p7) [join];
{ [start branch=plus]
\chainin (plus) [join=by {vh path,tip}];
\chainin (p8) [join=by {hv path,tipl}];
}
{ [start branch=minus]
\chainin (minus) [join=by {vh path,tip}];
\chainin (p8) [join=by {hv path,tipl}];
}
\chainin (p8) [join];
\chainin (ui2) [join=by tip];
\chainin (p9) [join, join=with p6 by {skip loop=-1imm,tip}];
\chainin (p10) [join=by tip];
}
\end{tikzpicture}

68

6 Tutorial: A Lecture Map for Johannes

In this tutorial we explore the tree and mind map mechanisms of TikZ.

Johannes is quite excited: For the first time he will be teaching a course all by himself during the
upcoming semester! Unfortunately, the course is not on his favorite subject, which is of course Theoretical
Immunology, but on Complexity Theory, but as a young academic Johannes is not likely to complain too
loudly. In order to help the students get a general overview of what is going to happen during the course
as a whole, he intends to draw some kind of tree or graph containing the basic concepts. He got this idea
from his old professor who seems to be using these “lecture maps” with some success. Independently of the
success of these maps, Johannes thinks they look quite neat.

6.1 Problem Statement

Johannes wishes to create a lecture map with the following features:
1. It should contain a tree or graph depicting the main concepts.

2. It should somehow visualize the different lectures that will be taught. Note that the lectures are not
necessarily the same as the concepts since the graph may contain more concepts than will be addressed
in lectures and some concepts may be addressed during more than one lecture.

3. The map should also contain a calendar showing when the individual lectures will be given.
4. The aesthetical reasons, the whole map should have a visually nice and information-rich background.

As always, Johannes will have to include the right libraries and setup the environment. Since Johannes
is going to use the mindmap library and since he wishes to show a calendar, he will need the mindmap and
the calendar libraries. In order to put something on a background layer, it seems like a good idea to also
include the background library.

6.2 Introduction to Trees

The first choice Johannes must make is whether he will organize the concepts are a tree, with root concepts
and concept branches and leaf concepts, or as a general graph. The tree implicitly organizes the concepts,
while a graph is more flexible. Johannes decides to compromise: Basically, the concepts will be organized
as a tree. However, he will selectively add connections between concepts that are related, but which appear
on different levels or branches of the tree.

Johannes starts with a tree-like list of concepts that he feels are important in Computational Complexity:

e Computational Problems

— Problem Measures
Problem Aspects
— Problem Domains
Key Problems

e Computational Models

— Turing Machines

— Random-Access Machines
— Circuits

— Binary Decision Diagrams
Oracle Machines

— Programming in Logic

e Measuring Complexity

— Complexity Measures

— Classifying Complexity
— Comparing Complexity
— Describing Complexity

e Solving Problems

69

— Exact Algorithms

Randomization
Fixed-Parameter Algorithms

— Parallel Computation

Partial Solutions

— Approximation

Johannes will surely need to modify this list later on, but it looks good as a first approximation. He
will also need to add a number of subtopics (like lots of complexity classes under the topic “classifying

complexity”), but he will do this as he constructs the map.

Turning the list of topics into a TikZ-tree is easy, in principle. The basic idea is that a node can have
children, which in turn can have children of their own, and so on. To add a child to a node, Johannes can
simply write child {(node)} right after a node. The (node) should, in turn, be the code for creating a
node. To add another node, Johannes can use child once more, and so on. Johannes is eager to try out

this construct and writes down the following;:

\tikz

Computational Complexity

NN

ComputatitieahhrodiidaaturingelSolyilegiBroblems

plAppneximation

\node {Computational Complexityl} % root

child {
child
child
child
child

+

child {
child
child
child
child
child
child

}

child {
child
child
child
child

}

child {
child
child
child
child
child
child

I

Well, that did not quite work out as expected (although, what, exactly, did one expect?). There are two

problems:

1. The overlap of the nodes is due to the fact that TikZ is not particularly smart when it comes to placing
child nodes. Even though it is possible to configure TikZ to use rather clever placement methods, TikZ
has no way of taking the actual size of the child nodes into account. This may seem strange but the
reason is that the child nodes are rendered and placed one at a time, so the size of the last node is not
known when the first node is being processed. In essence, you have to specify appropriate level and

node {Computational Problems}
{ node {Problem Measures} }

{ node {Problem Aspects} }

{ node {Problem Domains} }

{ node {Key Problems} }

node {Computational Models}

{ node {Turing Machines} }

{ node {Random-Access Machines} }
{ node {Circuits} }

{ node {Binary Decision Diagrams} }
{ node {Oracle Machines} }

{ node {Programming in Logic} }
node {Measuring Complexity}

{ node {Complexity Measures} }

{ node {Classifying Complexity} }

{ node {Comparing Complexity} }

{ node {Describing Complexity} }

node {Solving Problems}

{ node {Exact Algorithms} }

{ node {Randomization} }

{ node {Fixed-Parameter Algorithms} }
{ node {Parallel Computation} }
{ node {Partial Solutions} }
{ node {Approximation} }

sibling node spacings “by hand.”

70

2. The standard computer-science-top-down rendering of a tree is rather ill-suited to visualizing the
concepts. It would be better to either rotate the map by ninety degrees or, even better, to use some
sort of circular arrangement.

Johannes redraws the tree, but this time with some more appropriate options set, which he found more
or less by trial-and-error:

Approximation

/Partial Solutions
—_——— p i

Vol Prolblems ——— = —— arallel Computation

Fixed-Parameter Algorithms

T
\ Randomization

Exact Algorithms

Describing Complexity
. . Comparing Complexity
Measuring Complexity Classifying Complexity

\
/ Complexity Measures

Computational Complexity P i Lo

\ / Oracle Machines

———— Binary D Di
Computational Models \mary ecision Diagrams
Circuits

\
\B@dom—Access Machines

Turing Machines

Key Problems
Problem Domains

—_— Problem Aspects
Problem Measures

Computational Problems

\tikz [font=\footnotesize,
grow=right, level 1/.style={sibling distance=6em},
level 2/.style={sibling distance=lem}, level distance=5cm]
\node {Computational Complexityl} % root
child { node {Computational Problems}
child { node {Problem Measures} }
child { node {Problem Aspects} }
. % as before

Still not quite what Johannes had in mind, but he is getting somewhere.

For configuring the tree, two parameters are of particular importance: The level distance tells TikZ
the distance between (the centers of) the nodes on adjacent levels or layers of a tree. The sibling distance
is, as the name suggests, the distance between (the centers of) siblings of the tree.

You can globally set these parameters for a tree by simply setting them somewhere before the tree starts,
but you will typically wish them to be different for different levels of the tree. In this case, you should set
styles like level 1 or level 2. For the first level of the tree, the level 1 style is used, for the second
level the 1level 2 style, and so on. You can also set the sibling and level distances only for certain nodes
by passing these options to the child command as options. (Note that the options of a node command are
local to the node and have no effect on the children. Also note that it is possible to specify options that do
have an effect on the children. Finally note that specifying options for children “at the right place” is an
arcane art and you should peruse Section 18.4 on a rainy Sunday afternoon, if you are really interested.)

The grow key is used to configure the direction in which a tree grows. You can change growth direction
“in the middle of a tree” simply by changing this key for a single child or a whole level. By including the
tree library you also get access to additional growth strategies such as a “circular” growth:

71

D ibi
Fixed- Randomization escribing

Exact Complexity Comparing
LTS Algorithms Complexit;
Algorithms & ® v
Parallel Classifying
Computation Complexity
i \ Measurin, :
Partial —__ g;1ving Problems s Chulely
Solutions / \ Complexlty Measures
Approximation Computatlonal
Complexity Programming
/ \ in Logic
Problem _ Computational Computational Oracle
Measures Problems Models Machines
Problem Blr{a.r Y
Aspects Decision
P Diagrams
Problem Turing Circuit
Domains Machines Random- curts
Key Problems Access

Machines

\tikz [text width=2.7cm, align=flush center,
grow cyclic,
level 1/.style={level distance=2.5cm,sibling angle=90},
level 2/.style={text width=2cm, font=\footnotesize, level distance=3cm,sibling angle=30}]
\node [font=\bfseries] {Computational Complexity} % root
child { node {Computational Problems}
child { node {Problem Measures} }
child { node {Problem Aspects} }
. % as before

Johannes is pleased to learn that he can access and manipulate the nodes of tree like any normal node. In
particular, he can name them using the name= option or the ({(name)) notation and he can use any available
shape or style for the trees nodes. He can connect trees later on using the normal \draw (some node) --
(another node); syntax. In essence, the child command just computes an appropriate position for a node
and adds a line from the child to the parent node.

6.3 Creating the Lecture Map

Johannes now has a first possible layout for his lecture map. The next step is to make it “look nicer.” For
this, the mindmap library is helpful since it makes a number of styles available that will make a tree look like
a nice “mind map” or “concept map.”

The first step is to include the mindmap library, which Johannes already did. Next, he must add one
of the following options to a scope that will contain the lecture map: mindmap or large mindmap or huge
mindmap. These options all have the same effect, except that for a large mindmap the predefined font size
and node sizes are somewhat larger than for a standard mindmap and for a huge mindmap they are even
larger. So, a large mindmap does not necessarily need to have a lot of concepts, but it will need a lot of
paper.

The second step is to add the concept option to every node that will, indeed, be a concept of the mindmap.
The idea is that some nodes of a tree will be real concepts, while other nodes might just be “simple children.”
Typically, this is not the case, so you might consider saying every node/.style=concept.

The third step is to setup the sibling angle (rather than a sibling distance) to specify the angle between
sibling concepts.

72

Fixed- Describing Comparing

Parameter Randomization Com- Com-
Algorithms plexity plexity
Parallel Exact Classifying
Corr}pu- Algorithms COIT]_
tation plexity
Solving Measuring
Problems Complexity
Partial Complexity
Solutions Measures
A imati .
S e Computational
Complexity Programming
in Logic
Problem Oracle
Measures Machines
Computational Computational
Problems Models
Problem Turing Blr{a?y
. Decision
Aspects Machines .
Diagrams
Random-
Problgm Key Access Circuits
Domains Problems Machines

\tikz [mindmap, every node/.style=concept, concept color=black!20,
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90},
level 2/.append style={level distance=3cm,sibling angle=45}]
\node [root concept] {Computational Complexity} % root
child { node {Computational Problems}
child { node {Problem Measures} }
child { node {Problem Aspects} }
. % as before

When Johannes typesets the above map, TEX (rightfully) starts complaining about several overfull boxes
and, indeed, words like “Randomization” stretch out beyond the circle of the concept. This seems a bit
mysterious at first sight: Why does TEX not hyphenate the word? The reason is that TEX will never
hyphenate the first word of a paragraph because it starts looking for “hyphenatable” letters only after a
so-called glue. In order to have TEX hyphenate these single words, Johannes must use a bit of evil trickery:
He inserts a \hskipOpt before the word. This has no effect except for inserting an (invisible) glue before
the word and, thereby, allowing TEX to hyphenate the first word also. Since Johannes does not want to add
\hskipOpt inside each node, he uses the execute at begin node option to make TikZ insert this text with

every node.

73

\begin{tikzpicture}
. [mindmap,
Fixed- Bemcleine every node/.style={concept, execute at begin node=\hskipOpt},
Parameter P concept color=black!20,
Algorithms grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90},
level 2/.append style={level distance=3cm,sibling angle=45}]
\clip (-1,2) rectangle ++ (-4,5);
A \node [root concept] {Computational Complexity} % root
child { node {Computational Problems}
child { node {Problem Measures} }

Solving child { node {Problem Aspects} }
Problems .. % as before

\end{tikzpicture}

In the above example a clipping was used to show only part of the lecture map, in order to save space.
The same will be done in the following examples, we return to the complete lecture map at the end of this
tutorial.

Johannes is now eager to colorize the map. The idea is to use different colors for different parts of the
map. He can then, during his lectures, talk about the “green” or the “red” topics. This will make it easier for
his students to locate the topic he is talking about on the map. Since “computational problems” somehow
sounds “problematic,” Johannes chooses red for them, while he picks green for the “solving problems.” The
topics “measuring complexity” and “computational models” get more neutral colors; Johannes picks orange
and blue.

To set the colors, Johannes must use the concept color option, rather than just, say, node [fill=red].
Setting just the fill color to red would, indeed, make the node red, but it would just make the node red
and not the bar connecting the concept to its parent and also not its children. By comparison, the special
concept color option will not only set the color of the node and its children, but it will also (magically)
create appropriate shadings so that the color of a parent concept smoothly changes to the color of a child
concept.

For the root concept Johannes decides to do something special: He sets the concept color to black, sets
the line width to a large value, and sets the fill color to white. The effect of this is that the root concept
will encircled with a thick black line and the children are connected to the central concept via bars.

' \begin{tikzpicture}
[mindmap,

every node/.style={concept, execute at begin node=\hskipOptl},
root concept/.append style={

concept color=black, fill=white, line width=1lex, text=black},
text=white,
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90},
level 2/.append style={level distance=3cm,sibling angle=45}]
\clip (0,-1) rectangle ++(4,5);
\node [root concept] {Computational Complexity} % root

child [concept color=red] { node {Computational Problems}

child { node {Problem Measuresl} }
. % as before

tational
lexity

}
child [concept color=blue] { node {Computational Models}
child { node {Turing Machines} }
. % as before
}
child [concept color=orange] { node {Measuring Complexityl}
child { node {Complexity Measures} }
... % as before
}
child [concept color=green!50!black] { node {Solving Problems}
child { node {Exact Algorithms} }
... % as before
};
\end{tikzpicture}

Johannes adds three finishing touches: First, he changes the font of the main concepts to small caps.
Second, he decides that some concepts should be “faded,” namely those that are important in principle
and belong on the map, but which he will not talk about in his lecture. To achieve this, Johannes defines
four styles, one for each of the four main branches. These styles (a) setup the correct concept color for the

74

whole branch and (b) define the faded style appropriately for this branch. Third, he adds a circular drop
shadow, defined in the shadows library, to the concepts, just to make things look a bit more fancy.

tion Comparin,
Param Random . .

Algorithms ization / Complexity

Parallel
Compu-
tation

Exact Classifying
Algorithms Complexity
MEASURING
CoM-
PLEXITY

SOLVING
PROBLEMS

Partial Complexity
Solutions Measures

imation COMPUTATIONAL
COMPLEXITY

Problem
Measures
COMPU- COMPU-
TATIONAL TATIONAL
PROBLEMS MODELS

Binary
Decision
Diagrams

Problem Turing
Aspects Machines

Key Random-
y Access Circuits

Problems Machines

\begin{tikzpicture} [mindmap]
\begin{scope}[
every node/.style={concept, circular drop shadow,execute at begin node=\hskipOpt},
root concept/.append style={
concept color=black, fill=white, line width=lex, text=black, font=\large\scshapel,
text=white,
computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshape},
level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]
\node [root concept] {Computational Complexity} % root
child [computational problems] { node {Computational Problems}

child { node {Problem Measures} }
child { node {Problem Aspects} }
child [faded] { node {Problem Domains} }
child { node {Key Problems} }
}
child [computational models] { node {Computational Models}
child { node {Turing Machines} }

child [faded] { node {Random-Access Machines} }

\end{scope}
\end{tikzpicture}

(0]

6.4 Adding the Lecture Annotations

Johannes will give about a dozen lectures during the course “computational complexity.” For each lecture
he has compiled a (short) list of learning targets that state what knowledge and qualifications his students
should acquire during this particular lecture (note that learning targets are not the same as the contents of
a lecture). For each lecture he intends to put a little rectangle on the map containing these learning targets
and the name of the lecture, each time somewhere near to the topic of the lecture. Such “little rectangles”
are called “annotations” by the mindmap library.

In order to place the annotations next to the concepts, Johannes must assign names to the nodes of the
concepts. He could rely on TikZ’s automatic naming of the nodes in a tree, where the children of a node
named root are named root-1, root-2, root-3, and so on. However, since Johannes is not sure about
the final order of the concepts in the tree, it seems better to explicitly name all concepts of the tree in the
following manner:

\node [root concept] (Computational Complexity) {Computational Complexity}
child [computational problems] { node (Computational Problems) {Computational Problems}

child { node (Problem Measures) {Problem Measures} }
child { node (Problem Aspects) {Problem Aspects} }
child [faded] { node (Problem Domains) {Problem Domains} }
child { node (Key Problems) {Key Problems} }

The annotation style of the mind map library mainly sets up a rectangular shape of appropriate size.
Johannes configures the style by defining every annotation appropriately.

\begin{tikzpicture} [mindmap]
\clip (-5,-5) rectangle ++ (4,5);

\begin{scopel}[
- every node/.style={concept, circular drop shadow, ...}] % as before
e 1 G | \node [root concept] (Computational Complexity) ... % as before
{ \end{scope}

e Knowledge of several
key problems
\begin{scope}[every annotation/.style={fill=black!40}]

e Knowledge of problem \node [annotation, above] at (Computational Problems.north) {
encodings .
Lecture 1: Computational Problems
e Being able to formalize \begin{itemize}
problems l

\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems
\end{itemize}
};
\end{scope}
\end{tikzpicture}

Well, that does not yet look quite perfect. The spacing or the {itemize} is not really appropriate and
the node is too large. Johannes can configure these things “by hand,” but it seems like a good idea to define
a macro that will take care of these things for him. The “right” way to do this is to define a \1lecture macro
that takes a list of key-value pairs as argument and produces the desired annotation. However, to keep
things simple, Johannes’ \lecture macro simply takes a fixed number of arguments having the following
meaning: The first argument is the number of the lecture, the second is the name of the lecture, the third
are positioning options like above, the fourth is the position where the node is placed, the fifth is the list of
items to be shown, and the sixth is a date when the lecture will be held (this parameter is not yet needed,
we will, however, need it later on).

\def\lecture#1#2#3#4#5#6{

\node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm] at (#4) {
Lecture #1: \textcolor{orange}{\textbf{#2}}
\1list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt

\parskip=0pt\labelwidth=8pt\leftmargin=8pt
\itemindent=0pt\labelsep=2pt}
#5
\endlist
};
}

76

\begin{tikzpicture}[mindmap,every annotation/.style={fill=white}]
\clip (-5,-5) rectangle ++ (4,5);

\begin{scopel}[
every node/.style={concept, circular drop shadow, ... % as before
\node [root concept] (Computational Complexity) ... % as before

C \end{scope}

\lecture{1}{Computational Problems}{above,xshift=-3mm}
{Computational Problems.north}{
\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems
}{2009-04-08}
\end{tikzpicture}

]

In the same fashion Johannes can now add the other lecture annotations. Obviously, Johannes will
have some trouble fitting everything on a single A4-sized page, but by adjusting the spacing and some
experimentation he can quickly arrange all the annotations as needed.

6.5 Adding the Background

Johannes has already used colors to organize his lecture map into four regions, each having a different color.
In order to emphasize these regions even more strongly, he wishes to add a background coloring to each of
these regions.

Adding these background colors turns out to be more tricky than Johannes would have thought. At first
sight, what he needs is some sort of “color wheel” that is blue in the lower right direction and then changes
smoothly to orange in the upper right direction and then to green in the upper left direction and so on.
Unfortunately, there is no easy way of creating a true such a color wheel shading (although it can be done,
in principle, but only at a very high cost, see page 413 for an example).

Johannes decides to do something a bit more basic: He creates four large rectangles, one for each of the
four quadrants around the central concept, each colored with a light version of the quadrant. Then, in order
to “smooth” the change between adjacent rectangles, he puts four shadings on top of them.

Since these background rectangles should go “behind” everything else, Johannes puts all his background
stuff on the background layer.

In the following code, only the central concept is shown to save some space:

7

\begin{tikzpicture}[

mindmap,

concept color=black,

root concept/.append style={
concept,
circular drop shadow,
fill=white, line width=lex,
text=black, font=\large\scshape}

]

\clip (-1.5,-5) rectangle ++(4,10);
\node [root concept] (Computational Complexity) {Computational Complexityl};

COMPUTATIONAL \begin{pgfonlayer}{background}
\clip (-1.5,-5) rectangle ++(4,10);

COMPLEXITY

\colorlet{upperleft}{green!50!black!25}
\colorlet{upperright}{orange!25}
\colorlet{lowerleft}{red!25}
\colorlet{lowerright}{blue!25}

% The large rectangles:

\fill [upperleft] (Computational Complexity) rectangle ++(-20,20);
\fill [upperright] (Computational Complexity) rectangle ++(20,20);
\fill [lowerleft] (Computational Complexity) rectangle ++(-20,-20);
\fill [lowerright] (Computational Complexity) rectangle ++(20,-20);

% The shadings:
\shade [left color=upperleft,right color=upperright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,20);
\shade [left color=lowerleft,right color=lowerright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,-20);
\shade [top color=upperleft,bottom color=lowerleft]
([yshift=-1cm]Computational Complexity) rectangle ++(-20,2);
\shade [top color=upperright,bottom color=lowerright]
([yshift=-1cm] Computational Complexity) rectangle ++(20,2);
\end{pgfonlayer}
\end{tikzpicture}

6.6 Adding the Calendar

Johannes intends to plan his lecture rather carefully. In particular, he already knows when each of his
lectures will be held during the course. Naturally, this does not mean that Johannes will slavishly follow
the plan and he might need longer for some subjects than he anticipated, but nevertheless he has a detailed
plan of when which subject will be addressed.

Johannes intends to share this plan with his students by adding a calendar to the lecture map. In addition
to serving as a reference on which particular day a certain topic will be addressed, the calendar is also useful
so show the overall chronological order of the course.

In order to add a calendar to a TikZ graphic, the calendar library is most useful. The library provides
the \calendar command, which takes a large number of options and which can be configured in many
ways to produce just about any kind of calendar imaginable. For Johannes’ purposes, a simple day list
downward will be a nice option since it produces a list of days that go “downward”.

1 \tiny
\begin{tikzpicture}
\calendar [day list downward,
name=cal,
dates=2009-04-01 to 2009-04-14]
if (weekend)
[black!25];
\end{tikzpicture}

2
8!

[STCR0UEN e

o

14

Using the name option, we gave a name to the calendar, which will allow us to reference the nodes that
make up the individual days of the calendar later on. For instance, the rectangular node containing the 1
that represents April 1st, 2009, can be referenced as (cal-2009-04-01). The dates option is used to specify

78

an interval for which the calendar should be drawn. Johannes will need several months in his calendar, but
the above example only shows two weeks to save some space.

Note the if (weekend) construct. The \calendar command is followed by options and then by if-
statements. These if-statements are checked for each day of the calendar and when a date passes this test,
the options or the code following the if-statement is executed. In the above example, we make weekend
days (Saturdays and Sundays, to be precise) lighter than normal days. (Use your favorite calendar to check
that, indeed, April 5th, 2009, is a Sunday.)

As mentioned above, Johannes can reference the nodes that are used to typeset days. Recall that his
\lecture macro already got passed a date, which we did not use, yet. We can now use it to place the
lecture’s title next to the date when the lecture will be held:

\def\lecture#1#2#3#4#5#6{
% As before:
\node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm] at (#4) {
Lecture #1: \textcolor{orange}{\textbf{#2}}
\list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
\parskip=0pt\labelwidth=8pt\leftmargin=8pt
\itemindent=0pt\labelsep=2pt}

#5

\endlist

Irg

% New:

\node [anchor=base west] at (cal-#6.base east) {\textcolor{orange}{\textbf{#2}}};

}

Johannes can now use this new \lecture command as follows (in the example, only the new part of the
definition is used):

1 \tiny
2 \begin{tikzpicture}
\calendar [day list downward,
G name=cal,
7 dates=2009-04-01 to 2009-04-14]
: if (weekend)
10 [black!25];
13 % As before:
14 \lecture{1}{Computational Problems}{above,xshift=-3mm}

{Computational Problems.north}{
\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems
}{2009-04-08}
\end{tikzpicture}

As a final step, Johannes needs to add a few more options to the calendar command: He uses the month
text option to configure how the text of a month is rendered (see Section 27 for details) and then typesets
the month text at a special position at the beginning of each month.

79

April 2009 \tiny
\begin{tikzpicture}

\calendar [day list downward,
3 month text=\%mt\ \%yO,
month yshift=3.5em,

g name=cal,
8 dates=2009-04-01 to 2009-05-01]
g if (weekend)

[black!25]

if (day of month=1) {

a4 \node at (Opt,1.5em) [anchor=base west] {\small\tikzmonthtext};
15 13

\lecture{1}{Computational Problems}{above,xshift=-3mm}
{Computational Problems.north}{
21 \item Knowledge of several key problems
\item Knowledge of problem encodings
24 \item Being able to formalize problems
}{2009-04-08}

2 \lecture{2}{Computational Models}{above,xshift=-3mm}
30 {Computational Models.north}{
\item Knowledge of Turing machines
May 2009 \item Being able to compare the computational power of different
models
}{2009-04-15}
\end{tikzpicture}

6.7 The Complete Code

Putting it all together, Johannes gets the following code:
First comes the definition of the \lecture command:

\def\lecture#1#2#3#4#5#6{
% As before:
\node [annotation, #3, scale=0.65, text width=4cm, inner sep=2mm, fill=white] at (#4) {
Lecture #1: \textcolor{orange}{\textbf{#2}}
\list{--}{\topsep=2pt\itemsep=0pt\parsep=0pt
\parskip=0pt\labelwidth=8pt\leftmargin=8pt
\itemindent=0pt\labelsep=2pt}

#5

\endlist

g

% New:

\node [anchor=base west] at (cal-#6.base east) {\textcolor{orange}{\textbf{#2}}};

This is followed by the main mindmap setup. ..

\noindent
\begin{tikzpicture}
\begin{scope}[
mindmap,
every node/.style={concept, circular drop shadow,execute at begin node=\hskipOpt},
root concept/.append style={
concept color=black,
fill=white, line width=1lex,
text=black, font=\large\scshapel,
text=white,
computational problems/.style={concept color=red,faded/.style={concept color=red!50}},
computational models/.style={concept color=blue,faded/.style={concept color=blue!50}},
measuring complexity/.style={concept color=orange,faded/.style={concept color=orange!50}},
solving problems/.style={concept color=green!50!black,faded/.style={concept color=green!50!black!50}},
grow cyclic,
level 1/.append style={level distance=4.5cm,sibling angle=90,font=\scshapel},
level 2/.append style={level distance=3cm,sibling angle=45,font=\scriptsize}]

...and contents:

80

\node [root concept] (Computational Complexity) {Computational Complexity} % root
child [computational problems] { node [yshift=-1cm] (Computational Problems) {Computational Problems}

child { node (Problem Measures) {Problem Measuresl} }
child { node (Problem Aspects) {Problem Aspects} }
child [faded] { node (problem Domains) {Problem Domains} }
child { node (Key Problems) {Key Problems} }
}
child [computational models] { node [yshift=-1cm] (Computational Models) {Computational Models}
child { node (Turing Machines) {Turing Machines} }
child [faded] { node (Random-Access Machines) {Random-Access Machines} }
child { node (Circuits) {Circuits} }
child [faded] { node (Binary Decision Diagrams) {Binary Decision Diagrams} }
child { node (Oracle Machines) {Oracle Machines} }
child { node (Programming in Logic) {Programming in Logic} }
}

child [measuring complexity] { node [yshift=icm] (Measuring Complexity) {Measuring Complexity}
child { node (Complexity Measures) {Complexity Measures} }

child { node (Classifying Complexity) {Classifying Complexity} }

child { node (Comparing Complexity) {Comparing Complexity} }

child [faded] { node (Describing Complexity) {Describing Complexityl} }

}

child [solving problems] { node [yshift=1cm] (Solving Problems) {Solving Problems}
child { node (Exact Algorithms) {Exact Algorithms} }
child { node (Randomization) {Randomization} }
child { node (Fixed-Parameter Algorithms) {Fixed-Parameter Algorithms} }
child { node (Parallel Computation) {Parallel Computation} }
child { node (Partial Solutions) {Partial Solutions} }
child { node (Approximation) {Approximation} }

};

\end{scope}

Now comes the calendar code:

\tiny
\calendar [day list downward,
month text=\% mt\ \%yo0,
month yshift=3.5em,
name=cal,
at={(-.5\textwidth-5mm, .5\textheight-1cm)},
dates=2009-04-01 to 2009-06-last]
if (weekend)
[black!25]
if (day of month=1) {
\node at (Opt,1.5em) [anchor=base west] {\small\tikzmonthtext};
I

The lecture annotations:

\lecture{1}{Computational Problems}{above,xshift=-5mm,yshift=5mm}{Computational Problems.north}{
\item Knowledge of several key problems
\item Knowledge of problem encodings
\item Being able to formalize problems

}{2009-04-08}

\lecture{2}{Computational Models}{above left}
{Computational Models.west}{
\item Knowledge of Turing machines
\item Being able to compare the computational power of different
models
}{2009-04-15}

Finally, the background:

81

\begin{pgfonlayer}{background}
\clip[xshift=-1cm] (-.5\textwidth,-.5\textheight) rectangle ++(\textwidth,\textheight);

\colorlet{upperleft}{green!50!black!25}
\colorlet{upperright}{orange!25}
\colorlet{lowerleft}{red!25}
\colorlet{lowerright}{blue!25}

% The large rectangles:

\fill [upperleft] (Computational Complexity) rectangle ++(-20,20);
\fill [upperright] (Computational Complexity) rectangle ++(20,20);
\fill [lowerleft] (Computational Complexity) rectangle ++(-20,-20);
\fill [lowerright] (Computational Complexity) rectangle ++(20,-20);

% The shadings:
\shade [left color=upperleft,right color=upperright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,20);
\shade [left color=lowerleft,right color=lowerright]
([xshift=-1cm]Computational Complexity) rectangle ++(2,-20);
\shade [top color=upperleft,bottom color=lowerleft]
([yshift=-1cm]Computational Complexity) rectangle ++(-20,2);
\shade [top color=upperright,bottom color=lowerright]
([yshift=-1cm]Computational Complexity) rectangle ++(20,2);
\end{pgfonlayer}
\end{tikzpicture}

The next page shows the resulting lecture map in all its glory (it would be somewhat more glorious, if
there were more lecture annotations, but you should get the idea).

82

[N

(S ST I

April 2009

May 2009

June 2009

Fixed-
Parameter
Algorithms

Random-
ization

Parallel
Compu-
tation

Exact
Algorithms

SOLVING

PROBLEMS

Partial
Solutions

Approx-
imation

COMPLEXITY

Lecture 1
~ Knowledge of several key problems

Knowledge of problem encodings
~ Being able to formalize problems

Problem
Measures

Lecture 2:

Knowledge of Turing machines
\ Being able to compare the
CoOMPU- computational power of differe

models

TATIONAL
PROBLEMS

Problem
Aspects

Key
Problems

83

COMPUTATIONAL

COMPU-

ming in
Logic

TATIONAL

MODELS

Access
Machines

Circuits

Machines

Binary
Decision
Diagrams

7 Guidelines on Graphics

The present section is not about PGF or TikZ, but about general guidelines and principles concerning the
creation of graphics for scientific presentations, papers, and books.

The guidelines in this section come from different sources. Many of them are just what I would like to
claim is “common sense,” some reflect my personal experience (though, hopefully, not my personal prefer-
ences), some come from books (the bibliography is still missing, sorry) on graphic design and typography.
The most influential source are the brilliant books by Edward Tufte. While I do not agree with everything
written in these books, many of Tufte’s arguments are so convincing that I decided to repeat them in the
following guidelines.

The first thing you should ask yourself when someone presents a bunch of guidelines is: Should I really
follow these guidelines? This is an important questions, because there are good reasons not to follow general
guidelines. The person who setup the guidelines may have had other objectives than you do. For example,
a guideline might say “use the color red for emphasis.” While this guideline makes perfect sense for, say,
a presentation using a projector, red “color” has the opposite effect of “emphasis” when printed using a
black-and-white printer. Guidelines were almost always setup to address a specific situation. If you are not
in this situation, following a guideline can do more harm than good.

The second thing you should be aware of is the basic rule of typography is: “Every rule can be broken, as
long as you are aware that you are breaking a rule.” This rule also applies to graphics. Phrased differently,
the basic rule states: “The only mistakes in typography are things done is ignorance.” When you are aware
of a rule and when you decide that breaking the rule has a desirable effect, break the rule.

7.1 Planning the Time Needed for the Creation of Graphics

When you create a paper with numerous graphics, the time needed to create these graphics becomes an
important factor. How much time should you calculate for the creation of graphics?

As a general rule, assume that a graphic will need as much time to create as would a text of the same
length. For example, when I write a paper, I need about one hour per page for the first draft. Later, I
need between two and four hours per page for revisions. Thus, I expect to need about half an hour for the
creation of a first draft of a half page graphic. Later on, I expect another one to two hours before the final
graphic is finished.

In many publications, even in good journals, the authors and editors have obviously invested a lot of time
on the text, but seem to have spend about five minutes to create all of the graphics. Graphics often seem to
have been added as an “afterthought” or look like a screen shot of whatever the authors’s statistical software
shows them. As will be argued later on, the graphics that programs like GNUPLOT produce by default are
of poor quality.

Creating informative graphics that help the reader and that fit together with the main text is a difficult,
lengthy process.

e Treat graphics as first-class citizens of your papers. They deserve as much time and energy as the text
does. Indeed, the creation of graphics might deserve even more time than the writing of the main text
since more attention will be paid to the graphics and they will be looked at first.

e Plan as much time for the creation and revision of a graphic as you would plan for text of the same
size.

e Difficult graphics with a high information density may require even more time.

e Very simple graphics will require less time, but most likely you do not want to have “very simple
graphics” in your paper, anyway; just as you would not like to have a “very simple text” of the same
size.

7.2 Workflow for Creating a Graphic

When you write a (scientific) paper, you will most likely follow the following pattern: You have some
results/ideas that you would like to report about. The creation of the paper will typically start with
compiling a rough outline. Then, the different sections are filled with text to create a first draft. This draft
is then revised repeatedly until, often after substantial revision, a final paper results. In a good journal
paper there is typically not be a single sentence that has survived unmodified from the first draft.

Creating a graphics follows the same pattern:

84

e Decide on what the graphic should communicate. Make this a conscious decision, that is, determine
“What is the graphic supposed to tell the reader?”

e Create an “outline,” that is, the rough overall “shape” of the graphic, containing the most crucial
elements. Often, it is useful to do this using pencil and paper.

e Fill out the finer details of the graphic to create a first draft.

e Revise the graphic repeatedly along with the rest of the paper.

7.3 Linking Graphics With the Main Text

Graphics can be placed at different places in a text. Either, they can be inlined, meaning they are somewhere
“in the middle of the text” or they can be placed in stand-alone “figures.” Since printers (the people) like
to have their pages “filled,” (both for aesthetic and economic reasons) stand-alone figures may traditionally
be placed on pages in the document far removed from the main text that refers to them. IBTEX and TEX
tend to encourage this “drifting away” of graphics for technical reasons.

When a graphic is inlined, it will more or less automatically be linked with the main text in the sense
that the labels of the graphic will be implicitly explained by the surrounding text. Also, the main text will
typically make it clear what the graphic is about and what is shown.

Quite differently, a stand-alone figure will often be viewed at a time when the main text that this graphic
belongs to either has not yet been read or has been read some time ago. For this reason, you should follow
the following guidelines when creating stand-alone figures:

e Stand-alone figures should have a caption than should make them “understandable by themselves.”

For example, suppose a graphic shows an example of the different stages of a quicksort algorithm. Then
the figure’s caption should, at the very least, inform the reader that “The figure shows the different
stages of the quicksort algorithm introduced on page xyz.” and not just “Quicksort algorithm.”

e A good caption adds as much context information as possible. For example, you could say: “The
figure shows the different stages of the quicksort algorithm introduced on page xyz. In the first line,
the pivot element 5 is chosen. This causes...” While this information can also be given in the main
text, putting it in the caption will ensure that the context is kept. Do not feel afraid of a 5-line caption.
(Your editor may hate you for this. Consider hating them back.)

e Reference the graphic in your main text as in “For an example of quicksort ‘in action,” see Figure 2.1
on page xyz.”

e Most books on style and typography recommend that you do not use abbreviations as in “Fig. 2.1”
but write “Figure 2.1.”

The main argument against abbreviations is that “a period is too valuable to waste it on an abbrevi-
ation.” The idea is that a period will make the reader assume that the sentence ends after “Fig” and
it takes a “conscious backtracking” to realize that the sentence did not end after all.

The argument in favor of abbreviations is that they save space.

Personally, I am not really convinced by either argument. On the one hand, I have not yet seen any
hard evidence that abbreviations slow readers down. On the other hand, abbreviating all “Figure” by
“Fig.” is most unlikely to save even a single line in most documents. I avoid abbreviations.

7.4 Consistency Between Graphics and Text

Perhaps the most common “mistake” people do when creating graphics (remember that a “mistake” in
design is always just “ignorance”) is to have a mismatch between the way their graphics look and the way
their text looks.

It is quite common that authors use several different programs for creating the graphics of a paper. An
author might produce some plots using GNUPLOT, a diagram using XFIG, and include an .eps graphic a
coauthor contributed using some unknown program. All these graphics will, most likely, use different line
widths, different fonts, and have different sizes. In addition, authors often use options like [height=5cm]
when including graphics to scale them to some “nice size.”

If the same approach were taken to writing the main text, every section would be written in a different
font at a different size. In some sections all theorems would be underlined, in another they would be printed

85

all in uppercase letters, and in another in red. In addition, the margins would be different on each page.
Readers and editors would not tolerate a text if it were written in this fashion, but with graphics they often
have to.

To create consistency between graphics and text, stick to the following guidelines:

e Do not scale graphics.

This means that when generating graphics using an external program, create them “at the right size.”
e Use the same font(s) both in graphics and the body text.

e Use the same line width in text and graphics.

The “line width” for normal text is the width of the stem of letters like T. For TgX, this is usually
0.4 pt. However, some journals will not accept graphics with a normal line width below 0.5 pt.

e When using colors, use a consistent color coding in the text and in graphics. For example, if red is
supposed to alert the reader to something in the main text, use red also in graphics for important parts
of the graphic. If blue is used for structural elements like headlines and section titles, use blue also for
structural elements of your graphic.

However, graphics may also use a logical intrinsic color coding. For example, no matter what colors
you normally use, readers will generally assume, say, that the color green as “positive, go, ok” and red
as “alert, warning, action.”

Creating consistency when using different graphic programs is almost impossible. For this reason, you
should consider sticking to a single graphics program.

7.5 Labels in Graphics

Almost all graphics will contain labels, that is, pieces of text that explain parts of the graphics. When
placing labels, stick to the following guidelines:

e Follow the rule of consistency when placing labels. You should do so in two ways: First, be consistent
with the main text, that is, use the same font as the main text also for labels. Second, be consistent
between labels, that is, if you format some labels in some particular way, format all labels in this way.

e In addition to using the same fonts in text and graphics, you should also use the same notation. For
example, if you write 1/2 in your main text, also use “1/2” as labels in graphics, not “0.5”. A 7 is a
“m” and not “3.141”. Finally, e7'" is “e™"”, not “—1”, let alone “-1”.

e Labels should be legible. They should not only have a reasonably large size, they also should not be
obscured by lines or other text. This also applies to of lines and text behind the labels.

e Labels should be “in place.” Whenever there is enough space, labels should be placed next to the
thing they label. Ouly if necessary, add a (subdued) line from the label to the labeled object. Try to
avoid labels that only reference explanations in external legends. Reader have to jump back and forth
between the explanation and the object that is described.

e Consider subduing “unimportant” labels using, for example, a gray color. This will keep the focus on
the actual graphic.

7.6 Plots and Charts

One of the most frequent kind of graphics, especially in scientific papers, are plots. They come in a large
variety, including simple line plots, parametric plots, three dimensional plots, pie charts, and many more.

Unfortunately, plots are notoriously hard to get right. Partly, the default settings of programs like
GNUPLOT or Excel are to blame for this since these programs make it very convenient to create bad plots.

The first question you should ask yourself when creating a plot is, Are there enough data points to merit
a plot? If the answer is “not really,” use a table.

A typical situation where a plot is unnecessary is when people present a few numbers in a bar diagram.
Here is a real-life example: At the end of a seminar a lecturer asked the participants for feedback. Of the 50
participants, 30 returned the feedback form. According to the feedback, three participants considered the

86

seminar “very good,” nine considered it “good,” ten “ok,” eight “bad,” and no one thought that the seminar

was “very bad.”
A simple way of summing up this information is the following table:

Rating given Participants (out of 50) Percentage
who gave this rating

“very good” 3 6%
“good” 9 18%
“ok” 10 20%
“bad” 8 16%
“very bad” 0 0%
none 20 40%

What the lecturer did was to visualize the data using a 3D bar diagram. It looked like this (except
that in reality the numbers where typeset using some extremely low-resolution bitmap font and were near-
unreadable):

s

100
80
60
40
20

0

good

ok

bad

very bad

o)
Q
o
o0
>
[
o
>

Both the table and the “plot” have about the same size. If your first thought is “the graphic looks nicer
than the table,” try to answer the following questions based on the information in the table or in the graphic:

1. How many participants where there?

How many participants returned the feedback form?

What percentage of the participants returned the feedback form?
How many participants checked “very good”?

What percentage out of all participants checked “very good”?

Did more than a quarter of the participants check “bad” or “very bad”?

Noe o e

What percentage of the participants that returned the form checked “very good”?

Sadly, the graphic does not allow us to answer a single one of these questions. The table answers all of
them directly, except for the last one. In essence, the information density of the graphic is very nearly zero.
The table has a much higher information density; despite the fact that it uses quite a lot of white space to
present a few numbers. Here is the list of things that went wrong with the 3D-bar diagram:

e The whole graphic is dominated by irritating background lines.

e It is not clear what the numbers at the left mean; presumably percentages, but it might also be the
absolute number of participants.

e The labels at the bottom are rotated, making them hard to read.

(In the real presentation that I saw, the text was rendered at a very low resolution with about 10 by
6 pixels per letter with wrong kerning, making the rotated text almost impossible to read.)

e The third dimension adds complexity to the graphic without adding information.

87

e The three dimensional setup makes it much harder to gauge the height of the bars correctly. Consider
the “bad” bar. It the number this bar stands for more than 20 or less? While the front of the bar is
below the 20 line, the back of the bar (which counts) is above.

e [t is impossible to tell which numbers are represented by the bars. Thus, the bars needlessly hide the
information these bars are all about.

e What do the bar heights add up to? Is it 100% or 60%?
e Does the bar for “very bad” represent 0 or 17
e Why are the bars blue?

You might argue that in the example the exact numbers are not important for the graphic. The important
things is the “message,” which is that there are more “very good” and “good” ratings than “bad” and “very
bad.” However, to convey this message either use a sentence that says so or use a graphic that conveys this
message more clearly:

none: 20 (40%)

“very good”: 3 (6%)
Ratings given by “very bad”: 0 (0%)

50 participants

“good”: 9 (18%) “bad”: 8 (16%)

“ok”: 10 (20%)

The above graphic has about the same information density as the table (about the same size and the
same numbers are shown). In addition, one can directly “see” that there are more good or very good ratings
than bad ones. One can also “see” that the number of people who gave no rating at all is not negligible,
which is quite common for feedback forms.

Charts are not always a good idea. Let us look at an example that I redrew from a pie chart in Die Zeit,
June 4th, 2005:

Kohle ist am wichtigsten
Energiemix bei der deutschen Stromerzeugung 2004

Gesamte Netto-Stromerzeugung in Prozent, in Milliarden Kilowattstunden (Mrd. kWh)

Sonstige (16,5 kWh) 2,9% Regenerative (53,7 kWh)/davon Wind 4,4% (25,0 kWh)

Mineraldlprodukte (9,2 kwh) 1,6%
Erdgas (59,2 kWh) /10 4%

Kernenergie
(158,4 kWh)

Steinkohle (127,1 kWh) Braunkohle (146,0 kWh)

This graphic has been redrawn in TikZ, but the original looks almost exactly the same.
At first sight, the graphic looks “nice and informative,” but there are a lot of things that went wrong;:

e The chart is three dimensional. However, the shadings add nothing “information-wise,” at best, they
distract.

88

e In a 3D-pie-chart the relative sizes are very strongly distorted. For example, the area taken up by the
gray color of “Braunkohle” is larger than the area taken up by the green color of “Kernenergie” despite
the fact that the percentage of Braunkohle is less than the percentage of Kernenergie.

e The 3D-distortion gets worse for small areas. The area of “Regenerative” somewhat larger than the
area of “Erdgas.” The area of “Wind” is slightly smaller than the area of “Mineraldlprodukte” although
the percentage of Wind is nearly three times larger than the percentage of Mineralélprodukte.

In the last case, the different sizes are only partly due to distortion. The designer(s) of the original
graphic have also made the “Wind” slice too small, even taking distortion into account. (Just compare
the size of “Wind” to “Regenerative” in general.)

e According to its caption, this chart is supposed to inform us that coal was the most important energy
source in Germany in 2004. Ignoring the strong distortions caused by the superfluous and misleading
3D-setup, it takes quite a while for this message to get across.

Coal as an energy source is split up into two slices: one for “Steinkohle” and one for “Braunkohle”
(two different kinds of coal). When you add them up, you see that the whole lower half of the pie chart
is taken up by coal.

The two areas for the different kinds of coal are not visually linked at all. Rather, two different colors
are used, the labels are on different sides of the graphic. By comparison, “Regenerative” and “Wind”
are very closely linked.

e The color coding of the graphic follows no logical pattern at all. Why is nuclear energy green? Re-
generative energy is light blue, “other sources” are blue. It seems more like a joke that the area for
“Braunkohle” (which literally translates to “brown coal”) is stone gray, while the area for “Steinkohle”
(which literally translates to “stone coal”) is brown.

e The area with the lightest color is used for “Erdgas.” This area stands out most because of the brighter
color. However, for this chart “Erdgas” is not really important at all.

Edward Tufte calls graphics like the above “chart junk.” (I am happy to announce, however, that Die Zeit
has stopped using 3D pie charts and their information graphics have got somewhat better.)
Here are a few recommendations that may help you avoid producing chart junk:

e Do not use 3D pie charts. They are ewvil.
e Consider using a table instead of a pie chart.
e Do not apply colors randomly; use them to direct the readers’s focus and to group things.

e Do not use background patterns, like a crosshatch or diagonal lines, instead of colors. They distract.
Background patterns in information graphics are ewvil.

7.7 Attention and Distraction

Pick up your favorite fiction novel and have a look at a typical page. You will notice that the page is very
uniform. Nothing is there to distract the reader while reading; no large headlines, no bold text, no large
white areas. Indeed, even when the author does wish to emphasize something, this is done using italic
letters. Such letters blend nicely with the main text—at a distance you will not be able to tell whether a
page contains italic letters, but you would notice a single bold word immediately. The reason novels are
typeset this way is the following paradigm: Avoid distractions.

Good typography (like good organization) is something you do not notice. The job of typography is to
make reading the text, that is, “absorbing” its information content, as effortless as possible. For a novel,
readers absorb the content by reading the text line-by-line, as if they were listening to someone telling the
story. In this situation anything on the page that distracts the eye from going quickly and evenly from line
to line will make the text harder to read.

Now, pick up your favorite weekly magazine or newspaper and have a look at a typical page. You will
notice that there is quite a lot “going on” on the page. Fonts are used at different sizes and in different
arrangements, the text is organized in narrow columns, typically interleaved with pictures. The reason
magazines are typeset in this way is another paradigm: Steer attention.

Readers will not read a magazine like a novel. Instead of reading a magazine line-by-line, we use headlines
and short abstracts to check whether we want to read a certain article or not. The job of typography is to

89

steer our attention to these abstracts and headlines, first. Once we have decided that we want to read an
article, however, we no longer tolerate distractions, which is why the main text of articles is typeset exactly
the same way as a novel.

The two principles “avoid distractions” and “steer attention” also apply to graphics. When you design a
graphic, you should eliminate everything that will “distract the eye.” At the same time, you should try to
actively help the reader “through the graphic” by using fonts/colors/line widths to highlight different parts.

Here is a non-exhaustive list of things that can distract readers:

e Strong contrasts will always be registered first by the eye. For example, consider the following two
grids:

Even though the left grid comes first in English reading order, the right one is much more likely to
be seen first: The white-to-black contrast is higher than the gray-to-white contrast. In addition, there
are more “places” adding to the overall contrast in the right grid.

Things like grids and, more generally, help lines usually should not grab the attention of the readers
and, hence, should be typeset with a low contrast to the background. Also, a loosely-spaced grid is
less distracting than a very closely-spaced grid.

e Dashed lines create many points at which there is black-to-white contrast. Dashed or dotted lines can
be very distracting and, hence, should be avoided in general.

Do not use different dashing patterns to differentiate curves in plots. You loose data points this way
and the eye is not particularly good at “grouping things according to a dashing pattern.” The eye is
much better at grouping things according to colors.

e Background patterns filling an area using diagonal lines or horizontal and vertical lines or just dots are
almost always distracting and, usually, serve no real purpose.

e Background images and shadings distract and only seldom add anything of importance to a graphic.

e Cute little clip arts can easily draw attention away from the data.

90

Part 11

Installation and Configuration

by Till Tantau

This part explains how the system is installed. Typically, someone has already done so for your system, so
this part can be skipped; but if this is not the case and you are the poor fellow who has to do the installation,

read the present part.

start —

1,0,R

LLR

1,0,R

The current candidate for the busy beaver for five
states. It is presumed that this Turing machine
writes a maximum number of 1’s before halting
among all Turing machines with five states and the
tape alphabet {0,1}. Proving this conjecture is an
open research problem.

\begin{tikzpicture}[->,>=stealth’,shorten >=1pt,auto,node distance=2.8cm,on grid,semithick,
every state/.style={fill=red,draw=none,circular drop shadow,text=whitel}]

\node[initial,state] (A)

\node [state] (B) [above right=of

\node [state] (D) [below right=of

\node [state] (C) [below right=of
\node [state] (E) [below=of D]

\path (A) edge node {0,1,L}

edge node {1,1,R}

(B) edge [loop above] node {1,1,L}

edge node {0,1,L}

(C) edge node {0,1,L}

edge [bend left] mnode {1,0,R}
(D) edge [loop below] node {1,1,R}
edge node {0,1,R}
(E) edge [bend left] mnode {1,0,R}

\node [right=1cm,text width=8cm] at (C)
{

{q_a};

Al {q_b};
Al {q_ds};
B] {q_c};

(B)
©)
(B)
©
(D)
(E)
(D)
(A)

{q_e3;

(A);

The current candidate for the busy beaver for five states. It is
presumed that this Turing machine writes a maximum number of

1’s before halting among all Turing machines with five states
and the tape alphabet $\{0, 1\}$. Proving this conjecture is an

open research problem.
I
\end{tikzpicture}

91

8 Installation

There are different ways of installing PGF, depending on your system and needs, and you may need to install
other packages as well as, see below. Before installing, you may wish to review the licenses under which the
package is distributed, see Section 9.

Typically, the package will already be installed on your system. Naturally, in this case you do not need
to worry about the installation process at all and you can skip the rest of this section.

8.1 Package and Driver Versions

This documentation is part of version 2.10 of the PGF package. In order to run PGF, you need a reasonably
recent TEX installation. When using IXTEX, you need the following packages installed (newer versions should
also work):

e xcolor version 2.00.

With plain TEX, xcolor is not needed, but you obviously do not get its (full) functionality.
Currently, PGF supports the following backend drivers:

e pdftex version 0.14 or higher. Earlier versions do not work.

e dvips version 5.94a or higher. Earlier versions may also work.

For inter-picture connections, you need process pictures using pdftex version 1.40 or higher running
in DVI mode.

e dvipdfm version 0.13.2c or higher. Earlier versions may also work.

For inter-picture connections, you need process pictures using pdftex version 1.40 or higher running
in DVI mode.

e tex4ht version 2003-05-05 or higher. Earlier versions may also work.

e vtex version 8.46a or higher. Earlier versions may also work.

e textures version 2.1 or higher. Earlier versions may also work.

e xetex version 0.996 or higher. Earlier versions may also work.

Currently, PGF supports the following formats:

e latex with complete functionality.

e plain with complete functionality, except for graphics inclusion, which works only for pdfTEX.

e context with complete functionality®, except for graphics inclusion, which works only for pdfTEX.

For more details, see Section 10.

8.2 Installing Prebundled Packages

I do not create or manage prebundled packages of PGF, but, fortunately, nice other people do. I cannot give
detailed instructions on how to install these packages, since I do not manage them, but I can tell you were
to find them. If you have a problem with installing, you might wish to have a look at the Debian page or
the MiKTEX page first.

8.2.1 Debian

The command “aptitude install pgf” should do the trick. Sit back and relax. In detail, the following
packages are installed:

http://packages.debian.org/pgf
http://packages.debian.org/latex-xcolor

6Note that Par/TikZ is not supported by recent ConTXt versions (like mark IV, the LuaTgX-aware part of ConTEXt).

92

8.2.2 MiKTeX
For MiKTEX, use the update wizard to install the (latest versions of the) packages called pgf and xcolor.

8.3 Installation in a texmf Tree

For a permanent installation, you place the files of the PGF package in an appropriate texmf tree.

When you ask TEX to use a certain class or package, it usually looks for the necessary files in so-called
texmf trees. These trees are simply huge directories that contain these files. By default, TEX looks for files
in three different texmf trees:

e The root texmf tree, which is usually located at /usr/share/texmf/ or c:\texmf\ or somewhere
similar.

e The local texmf tree, which is usually located at /usr/local/share/texmf/ or c:\localtexmf\ or
somewhere similar.

e Your personal texmf tree, which is usually located in your home directory at ~/texmf/ or
“/Library/texmf/.

You should install the packages either in the local tree or in your personal tree, depending on whether
you have write access to the local tree. Installation in the root tree can cause problems, since an update of
the whole TEX installation will replace this whole tree.

8.3.1 Installation that Keeps Everything Together

Once you have located the right texmf tree, you must decide whether you want to install PGF in such a way
that “all its files are kept in one place” or whether you want to be “TDS-compliant,” where TDS means “TEX
directory structure.”

If you want to keep “everything in one place,” inside the texmf tree that you have chosen create a
sub-sub-directory called texmf/tex/generic/pgf or texmf/tex/generic/pgf-2.10, if you prefer. Then
place all files of the pgf package in this directory. Finally, rebuild TEX’s filename database. This is done by
running the command texhash or mktexlsr (they are the same). In MiKTEX, there is a menu option to do
this.

8.3.2 Installation that is TDS-Compliant

While the above installation process is the most “natural” one and although I would like to recommend it
since it makes updating and managing the PGF package easy, it is not TDS-compliant. If you want to be
TDS-compliant, proceed as follows: (If you do not know what TDs-compliant means, you probably do not
want to be TDS-compliant.)

The .tar file of the pgf package contains the following files and directories at its root: README, doc,
generic, plain, and latex. You should “merge” each of the four directories with the following directories
texmf/doc, texmf/tex/generic, texmf/tex/plain, and texmf/tex/latex. For example, in the .tar file
the doc directory contains just the directory pgf, and this directory has to be moved to texmf/doc/pgf.
The root README file can be ignored since it is reproduced in doc/pgf/README.

You may also consider keeping everything in one place and using symbolic links to point from the TDs-
compliant directories to the central installation.

For a more detailed explanation of the standard installation process of packages, you might wish to
consult http://www.ctan.org/installationadvice/. However, note that the PGF package does not come
with a .ins file (simply skip that part).

8.4 Updating the Installation

To update your installation from a previous version, all you need to do is to replace everything in the
directory texmf/tex/generic/pgf with the files of the new version (or in all the directories where pgf
was installed, if you chose a TDS-compliant installation). The easiest way to do this is to first delete the
old version and then proceed as described above. Sometimes, there are changes in the syntax of certain
command from version to version. If things no longer work that used to work, you may wish to have a look
at the release notes and at the change log.

93

http://www.ctan.org/installationadvice/

9 Licenses and Copyright
9.1 Which License Applies?

Different parts of the PGF package are distributed under different licenses:

1. The code of the package is dual-license. This means that you can decide which license you wish to use
when using the PGF package. The two options are:

(a) You can use the GNU Public License, version 2.
(b) You can use the WTEX Project Public License, version 1.3c.

2. The documentation of the package is also dual-license. Again, you can choose between two options:

(a) You can use the GNU Free Documentation License, version 1.2.
(b) You can use the IXTEX Project Public License, version 1.3c.

The “documentation of the package” refers to all files in the subdirectory doc of the pgf package. A
detailed listing can be found in the file doc/generic/pgf/licenses/manifest-documentation.txt. All
files in other directories are part of the “code of the package.” A detailed listing can be found in the file
doc/generic/pgf/licenses/manifest-code.txt.

In the rest of this section, the licenses are presented. The following text is copyrighted, see the plain text
versions of these licenses in the directory doc/generic/pgf/licenses for details.

The example picture used in this manual, the Brave GNU World logo, is taken from the Brave GNU World
homepage, where it is copyrighted as follows: “Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004 Georg
C. F. Greve. Permission is granted to make and distribute verbatim copies of this transcript as long as the
copyright and this permission notice appear.”

9.2 The GNU Public License, Version 2
9.2.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that
there is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger
that redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use
or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

94

9.2.2 Terms and Conditions For Copying, Distribution and Modification

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,
below, refers to any such program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(¢) If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

(a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

95

(b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete machine-
readable copy of the corresponding source code, to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer, in accord with Subsubsection
b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of
the source code, even though third parties are not compelled to copy the source along with the object
code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions
are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

. Each time you redistribute the Program (or any work based on the Program), the recipient automati-
cally receives a license from the original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to this
License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the Program
at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

96

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

9.2.3 No Warranty

10. Because the program is licensed free of charge, there is no warranty for the program, to the extent
permitted by applicable law. Except when otherwise stated in writing the copyright holders and/or
other parties provide the program “as is” without warranty of any kind, either expressed or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. The entire risk as to the quality and performance of the program is with you. Should the
program prove defective, you assume the cost of all necessary servicing, repair or correction.

11. In no event unless required by applicable law or agreed to in writing will any copyright holder, or
any other party who may modify and/or redistribute the program as permitted above, be liable to
you for damages, including any general, special, incidental or consequential damages arising out of the
use or inability to use the program (including but not limited to loss of data or data being rendered
inaccurate or losses sustained by you or third parties or a failure of the program to operate with any
other programs), even if such holder or other party has been advised of the possibility of such damages.

9.3 The ETEX Project Public License, Version 1.3c 2006-05-20
9.3.1 Preamble

The BTEX Project Public License (LPPL) is the primary license under which the ITEX kernel and the base
ETEX packages are distributed.

You may use this license for any work of which you hold the copyright and which you wish to distribute.
This license may be particularly suitable if your work is TEX-related (such as a BTEX package), but it is
written in such a way that you can use it even if your work is unrelated to TEX.

The section ‘WHETHER AND HOW TO DISTRIBUTE WORKS UNDER THIS LICENSE’, below, gives instruc-
tions, examples, and recommendations for authors who are considering distributing their works under this
license.

This license gives conditions under which a work may be distributed and modified, as well as conditions
under which modified versions of that work may be distributed.

We, the XTEX3 Project, believe that the conditions below give you the freedom to make and distribute
modified versions of your work that conform with whatever technical specifications you wish while maintain-
ing the availability, integrity, and reliability of that work. If you do not see how to achieve your goal while
meeting these conditions, then read the document ‘cfgguide.tex’ and ‘modguide.tex’ in the base IXTEX
distribution for suggestions.

9.3.2 Definitions

In this license document the following terms are used:

97

Work Any work being distributed under this License.
Derived Work Any work that under any applicable law is derived from the Work.

Modification Any procedure that produces a Derived Work under any applicable law — for example, the
production of a file containing an original file associated with the Work or a significant portion of such
a file, either verbatim or with modifications and/or translated into another language.

Modify To apply any procedure that produces a Derived Work under any applicable law.

Distribution Making copies of the Work available from one person to another, in whole or in part. Distri-
bution includes (but is not limited to) making any electronic components of the Work accessible by file
transfer protocols such as FTP or HTTP or by shared file systems such as Sun’s Network File System
(NFS).

Compiled Work A version of the Work that has been processed into a form where it is directly usable on
a computer system. This processing may include using installation facilities provided by the Work,
transformations of the Work, copying of components of the Work, or other activities. Note that
modification of any installation facilities provided by the Work constitutes modification of the Work.

Current Maintainer A person or persons nominated as such within the Work. If there is no such explicit
nomination then it is the ‘Copyright Holder’ under any applicable law.

Base Interpreter A program or process that is normally needed for running or interpreting a part or the
whole of the Work.

A Base Interpreter may depend on external components but these are not considered part of the
Base Interpreter provided that each external component clearly identifies itself whenever it is used
interactively. Unless explicitly specified when applying the license to the Work, the only applicable
Base Interpreter is a ‘IXTEX-Format’ or in the case of files belonging to the ‘KXIEX-format’ a program
implementing the ‘TEX language’.

9.3.3 Conditions on Distribution and Modification

1. Activities other than distribution and/or modification of the Work are not covered by this license; they
are outside its scope. In particular, the act of running the Work is not restricted and no requirements
are made concerning any offers of support for the Work.

2. You may distribute a complete, unmodified copy of the Work as you received it. Distribution of only
part of the Work is considered modification of the Work, and no right to distribute such a Derived
Work may be assumed under the terms of this clause.

3. You may distribute a Compiled Work that has been generated from a complete, unmodified copy of
the Work as distributed under Clause 2 above, as long as that Compiled Work is distributed in such a
way that the recipients may install the Compiled Work on their system exactly as it would have been
installed if they generated a Compiled Work directly from the Work.

4. If you are the Current Maintainer of the Work, you may, without restriction, modify the Work, thus
creating a Derived Work. You may also distribute the Derived Work without restriction, including
Compiled Works generated from the Derived Work. Derived Works distributed in this manner by the
Current Maintainer are considered to be updated versions of the Work.

5. If you are not the Current Maintainer of the Work, you may modify your copy of the Work, thus
creating a Derived Work based on the Work, and compile this Derived Work, thus creating a Compiled
Work based on the Derived Work.

6. If you are not the Current Maintainer of the Work, you may distribute a Derived Work provided the
following conditions are met for every component of the Work unless that component clearly states in
the copyright notice that it is exempt from that condition. Only the Current Maintainer is allowed to
add such statements of exemption to a component of the Work.

98

(a) If a component of this Derived Work can be a direct replacement for a component of the Work when
that component is used with the Base Interpreter, then, wherever this component of the Work
identifies itself to the user when used interactively with that Base Interpreter, the replacement
component of this Derived Work clearly and unambiguously identifies itself as a modified version
of this component to the user when used interactively with that Base Interpreter.

(b) Every component of the Derived Work contains prominent notices detailing the nature of the
changes to that component, or a prominent reference to another file that is distributed as part of
the Derived Work and that contains a complete and accurate log of the changes.

(¢) No information in the Derived Work implies that any persons, including (but not limited to) the
authors of the original version of the Work, provide any support, including (but not limited to)
the reporting and handling of errors, to recipients of the Derived Work unless those persons have
stated explicitly that they do provide such support for the Derived Work.

(d) You distribute at least one of the following with the Derived Work:

i. A complete, unmodified copy of the Work; if your distribution of a modified component
is made by offering access to copy the modified component from a designated place, then
offering equivalent access to copy the Work from the same or some similar place meets this
condition, even though third parties are not compelled to copy the Work along with the
modified component;

ii. Information that is sufficient to obtain a complete, unmodified copy of the Work.

7. If you are not the Current Maintainer of the Work, you may distribute a Compiled Work generated
from a Derived Work, as long as the Derived Work is distributed to all recipients of the Compiled
Work, and as long as the conditions of Clause 6, above, are met with regard to the Derived Work.

8. The conditions above are not intended to prohibit, and hence do not apply to, the modification, by
any method, of any component so that it becomes identical to an updated version of that component
of the Work as it is distributed by the Current Maintainer under Clause 4, above.

9. Distribution of the Work or any Derived Work in an alternative format, where the Work or that Derived
Work (in whole or in part) is then produced by applying some process to that format, does not relax
or nullify any sections of this license as they pertain to the results of applying that process.

10. (a) A Derived Work may be distributed under a different license provided that license itself honors
the conditions listed in Clause 6 above, in regard to the Work, though it does not have to honor
the rest of the conditions in this license.

(b) If a Derived Work is distributed under a different license, that Derived Work must provide suf-
ficient documentation as part of itself to allow each recipient of that Derived Work to honor the
restrictions in Clause 6 above, concerning changes from the Work.

11. This license places no restrictions on works that are unrelated to the Work, nor does this license place
any restrictions on aggregating such works with the Work by any means.

12. Nothing in this license is intended to, or may be used to, prevent complete compliance by all parties
with all applicable laws.

9.3.4 No Warranty

There is no warranty for the Work. Except when otherwise stated in writing, the Copyright Holder provides
the Work ‘as is’, without warranty of any kind, either expressed or implied, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. The entire risk as to the
quality and performance of the Work is with you. Should the Work prove defective, you assume the cost of
all necessary servicing, repair, or correction.

In no event unless required by applicable law or agreed to in writing will The Copyright Holder, or
any author named in the components of the Work, or any other party who may distribute and/or modify
the Work as permitted above, be liable to you for damages, including any general, special, incidental or
consequential damages arising out of any use of the Work or out of inability to use the Work (including, but
not limited to, loss of data, data being rendered inaccurate, or losses sustained by anyone as a result of any
failure of the Work to operate with any other programs), even if the Copyright Holder or said author or said
other party has been advised of the possibility of such damages.

99

9.3.5 Maintenance of The Work

The Work has the status ‘author-maintained’ if the Copyright Holder explicitly and prominently states near
the primary copyright notice in the Work that the Work can only be maintained by the Copyright Holder
or simply that it is ‘author-maintained’.

The Work has the status ‘maintained’ if there is a Current Maintainer who has indicated in the Work
that they are willing to receive error reports for the Work (for example, by supplying a valid e-mail address).
It is not required for the Current Maintainer to acknowledge or act upon these error reports.

The Work changes from status ‘maintained’ to ‘unmaintained’ if there is no Current Maintainer, or the
person stated to be Current Maintainer of the work cannot be reached through the indicated means of
communication for a period of six months, and there are no other significant signs of active maintenance.

You can become the Current Maintainer of the Work by agreement with any existing Current Maintainer
to take over this role.

If the Work is unmaintained, you can become the Current Maintainer of the Work through the following
steps:

1. Make a reasonable attempt to trace the Current Maintainer (and the Copyright Holder, if the two
differ) through the means of an Internet or similar search.

2. If this search is successful, then enquire whether the Work is still maintained.

(a) If it is being maintained, then ask the Current Maintainer to update their communication data
within one month.

(b) If the search is unsuccessful or no action to resume active maintenance is taken by the Cur-
rent Maintainer, then announce within the pertinent community your intention to take over
maintenance. (If the Work is a BTEX work, this could be done, for example, by posting to
comp.text.tex.)

3. (a) If the Current Maintainer is reachable and agrees to pass maintenance of the Work to you, then
this takes effect immediately upon announcement.

(b) If the Current Maintainer is not reachable and the Copyright Holder agrees that maintenance of
the Work be passed to you, then this takes effect immediately upon announcement.

4. If you make an ‘intention announcement’ as described in 2b above and after three months your intention
is challenged neither by the Current Maintainer nor by the Copyright Holder nor by other people, then
you may arrange for the Work to be changed so as to name you as the (new) Current Maintainer.

5. If the previously unreachable Current Maintainer becomes reachable once more within three months of
a change completed under the terms of 3b or 4, then that Current Maintainer must become or remain
the Current Maintainer upon request provided they then update their communication data within one
month.

A change in the Current Maintainer does not, of itself, alter the fact that the Work is distributed under the
LPPL license.

If you become the Current Maintainer of the Work, you should immediately provide, within the Work,
a prominent and unambiguous statement of your status as Current Maintainer. You should also announce
your new status to the same pertinent community as in 2b above.

9.3.6 Whether and How to Distribute Works under This License

This section contains important instructions, examples, and recommendations for authors who are consid-
ering distributing their works under this license. These authors are addressed as ‘you’ in this section.

9.3.7 Choosing This License or Another License

If for any part of your work you want or need to use distribution conditions that differ significantly from
those in this license, then do not refer to this license anywhere in your work but, instead, distribute your
work under a different license. You may use the text of this license as a model for your own license, but your
license should not refer to the LPPL or otherwise give the impression that your work is distributed under the
LPPL.

The document ‘modguide.tex’ in the base ITEX distribution explains the motivation behind the con-
ditions of this license. It explains, for example, why distributing I¥TEX under the GNU General Public

100

License (GPL) was considered inappropriate. Even if your work is unrelated to IATEX, the discussion in
‘modguide.tex’ may still be relevant, and authors intending to distribute their works under any license are
encouraged to read it.

9.3.8 A Recommendation on Modification Without Distribution

It is wise never to modify a component of the Work, even for your own personal use, without also meeting the
above conditions for distributing the modified component. While you might intend that such modifications
will never be distributed, often this will happen by accident — you may forget that you have modified that
component; or it may not occur to you when allowing others to access the modified version that you are
thus distributing it and violating the conditions of this license in ways that could have legal implications
and, worse, cause problems for the community. It is therefore usually in your best interest to keep your copy
of the Work identical with the public one. Many works provide ways to control the behavior of that work
without altering any of its licensed components.

9.3.9 How to Use This License

To use this license, place in each of the components of your work both an explicit copyright notice including

your name and the year the work was authored and/or last substantially modified. Include also a statement

that the distribution and/or modification of that component is constrained by the conditions in this license.
Here is an example of such a notice and statement:

%h pig.dtx

%% Copyright 2005 M. Y. Name

%

% This work may be distributed and/or modified under the

% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.

% The latest version of this license is in

% http://www.latex-project.org/lppl.txt

% and version 1.3 or later is part of all distributions of LaTeX

% version 2005/12/01 or later.

% This work has the LPPL maintenance status ‘maintained’.
% The Current Maintainer of this work is M. Y. Name.

% This work consists of the files pig.dtx and pig.ins
% and the derived file pig.sty.

Given such a notice and statement in a file, the conditions given in this license document would apply,
with the ‘Work’ referring to the three files ‘pig.dtx’, ‘pig.ins’, and ‘pig.sty’ (the last being generated
from ‘pig.dtx’ using ‘pig.ins’), the ‘Base Interpreter’ referring to any ‘WTEX-Format’, and both ‘Copyright
Holder’ and ‘Current Maintainer’ referring to the person ‘M. Y. Name’.

If you do not want the Maintenance section of LPPL to apply to your Work, change ‘maintained’ above
into ‘author-maintained’. However, we recommend that you use ‘maintained’ as the Maintenance section
was added in order to ensure that your Work remains useful to the community even when you can no longer
maintain and support it yourself.

9.3.10 Derived Works That Are Not Replacements

Several clauses of the LPPL specify means to provide reliability and stability for the user community. They
therefore concern themselves with the case that a Derived Work is intended to be used as a (compatible or
incompatible) replacement of the original Work. If this is not the case (e.g., if a few lines of code are reused
for a completely different task), then clauses 6b and 6d shall not apply.

9.3.11 Important Recommendations

Defining What Constitutes the Work The LPPL requires that distributions of the Work contain all
the files of the Work. It is therefore important that you provide a way for the licensee to determine which

101

files constitute the Work. This could, for example, be achieved by explicitly listing all the files of the Work
near the copyright notice of each file or by using a line such as:

% This work consists of all files listed in manifest.txt.

in that place. In the absence of an unequivocal list it might be impossible for the licensee to determine
what is considered by you to comprise the Work and, in such a case, the licensee would be entitled to make
reasonable conjectures as to which files comprise the Work.

9.4 GNU Free Documentation License, Version 1.2, November 2002
9.4.1 Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document “free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

9.4.2 Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text
may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

102

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the
Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have
is void and has no effect on the meaning of this License.

9.4.3 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

9.4.4 Copying in Quantity

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

9.4.5 Modifications

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified

103

Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A.

CENCERCES

@

N.

0.

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

. Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

. Preserve the network location, if any, given in the Document for public access to a Transparent copy

of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and

preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section

numbers or the equivalent are not considered part of the section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified
Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any

104

one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

9.4.6 Combining Documents

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents,
forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

9.4.7 Collection of Documents

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

9.4.8 Aggregating with independent Works

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers
that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

9.4.9 Translation

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the require-
ment (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9.4.10 Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will

105

automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

9.4.11 Future Revisions of this License

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that
a particular numbered version of this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

9.4.12 Addendum: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright ©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with ... Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples
in parallel under your choice of free software license, such as the GNU General Public License, to permit
their use in free software.

106

10 Input and Output Formats

TEX was designed to be a flexible system. This is true both for the input for TEX as well as for the output.
The present section explains which input formats there are and how they are supported by PGF. It also
explains which different output formats can be produced.

10.1 Supported Input Formats

TEX does not prescribe exactly how your input should be formatted. While it is customary that, say,
an opening brace starts a scope in TEX, this is by no means necessary. Likewise, it is customary that
environments start with \begin, but TEX could not really care less about the exact command name.

Even though TEX can be reconfigured, users can not. For this reason, certain input formats specify a set
of commands and conventions how input for TEX should be formatted. There are currently three “major”
formats: Donald Knuth’s original plain TEX format, Leslie Lamport’s popular ITEX format, and Hans
Hangen’s ConTEXt format.

10.1.1 Using the BTEX Format

Using PGF and TikZ with the INTEX format is easy: You say \usepackage{pgf} or \usepackage{tikz}.
Usually, that is all you need to do, all configuration will be done automatically and (hopefully) correctly.

The style files used for the XTEX format reside in the subdirectory latex/pgf/ of the PGF-system.
Mainly, what these files do is to include files in the directory generic/pgf. For example, here is the content
of the file latex/pgf/frontends/tikz.sty:

% Copyright 2006 by Till Tantau
% This file may be distributed and/or modified

% 1. under the LaTeX Project Public License and/or
% 2. under the GNU Public License.

% See the file doc/generic/pgf/licenses/LICENSE for more details.

\RequirePackage{pgf ,pgffor}
\input{tikz.code.tex}
\endinput

The files in the generic/pgf directory do the actual work.

10.1.2 Using the Plain TEX Format

When using the plain TEX format, you say \input{pgf.tex} or \input{tikz.tex}. Then, instead of
\begin{pgfpicture} and \end{pgfpicturel} you use \pgfpicture and \endpgfpicture.

Unlike for the XTEX format, PGF is not as good at discerning the appropriate configuration for the plain
TEX format. In particular, it can only automatically determine the correct output format if you use pdftex
or tex plus dvips. For all other output formats you need to set the macro \pgfsysdriver to the correct
value. See the description of using output formats later on.

PGF was originally written for use with IXTEX and this shows in a number of places. Nevertheless, the
plain TEX support is reasonably good.

Like the ITEX style files, the plain TEX files like tikz.tex also just include the correct tikz.code.tex
file.

10.1.3 Using the ConTEXt Format

When using the ConTEXt format”, you say \usemodule[pgf] or \usemodule[tikz]. As for the plain
TEX format you also have to replace the start- and end-of-environment tags as follows: Instead of
\begin{pgfpicture} and \end{pgfpicture} you use \startpgfpicture and \stoppgfpicture; similarly,
instead of \begin{tikzpicture} and \end{tikzpicture} you use must now use \starttikzpicture and
\stoptikzpicture; and so on for other environments.

"Note that Par/TikZ is not supported by recent ConTEXt versions (like mark IV, the LuaTgX-aware part of ConTEXt).

107

The ConTEXt support is very similar to the plain TEX support, so the same restrictions apply: You may
have to set the output format directly and graphics inclusion may be a problem.

In addition to pgf and tikz there also exist modules like pgfcore or pgfmodulematrix. To use them,
you may need to include the module pgfmod first (the modules pgf and tikz both include pgfmod for you, so
typically you can skip this). This special module is necessary since ConTEXt satanically restricts the length
of module names to 6 characters and PGF’s long names are mapped to cryptic 6-letter-names for you by the
module pgfmod.

10.2 Supported Output Formats

An output format is a format in which TEX outputs the text it has typeset. Producing the output is
(conceptually) a two-stage process:

1. TEX typesets your text and graphics. The result of this typesetting is mainly a long list of letter—
coordinate pairs, plus (possibly) some “special” commands. This long list of pairs is written to some-
thing called a .dvi-file.

2. Some other program reads this .dvi-file and translates the letter—coordinate pairs into, say, PostScript
commands for placing the given letter at the given coordinate.

The classical example of this process is the combination of latex and dvips. The latex program (which
is just the tex program called with the KTEX-macros preinstalled) produces a .dvi-file as its output. The
dvips program takes this output and produces a .ps-file (a PostScript) file. Possibly, this file is further
converted using, say, ps2pdf, whose name is supposed to mean “PostScript to PDF.” Another example of
programs using this process is the combination of tex and dvipdfm. The dvipdfm program takes a .dvi-
file as input and translates the letter—coordinate pairs therein into PDF-commands, resulting in a .pdf file
directly. Finally, the tex4ht is also a program that takes a .dvi-file and produces an output, this time it
is a .html file. The programs pdftex and pdflatex are special: They directly produce a .pdf-file without
the intermediate .dvi-stage. However, from the programmer’s point of view they behave exactly as if there
where an intermediate stage.

Normally, TEX only produces letter—coordinate pairs as its “output.” This obviously makes is difficult
to draw, say, a curve. For this, “special” commands can be used. Unfortunately, these special commands
are not the same for the different programs that process the .dvi-file. Indeed, every program that takes a
.dvi-file as input has a totally different syntax for the special commands.

One of the main jobs of PGF is to “abstract way” the difference in the syntax of the different programs.
However, this means that support for each program has to be “programmed,” which is a time-consuming
and complicated process.

10.2.1 Selecting the Backend Driver

When TEX typesets your document, it does not know which program you are going to use to transform the
.dvi-file. If your .dvi-file does not contain any special commands, this would be fine; but these days almost
all .dvi-files contain lots of special commands. It is thus necessary to tell TEX which program you are going
to use later on.

Unfortunately, there is no “standard” way of telling this to TEX. For the IRTEX format a sophisticated
mechanism exists inside the graphics package and PGF plugs into this mechanism. For other formats and
when this plugging does not work as expected, it is necessary to tell PGF directly which program you are
going to use. This is done by redefining the macro \pgfsysdriver to an appropriate value before you load
pgf. If you are going to use the dvips program, you set this macro to the value pgfsys-dvips.def; if
you use pdftex or pdflatex, you set it to pgfsys-pdftex.def; and so on. In the following, details of the
support of the different programs are discussed.

10.2.2 Producing PDF Output

PGF supports three programs that produce PDF output (PDF means “portable document format” and was
invented by the Adobe company): dvipdfm, pdftex, and vtex. The pdflatex program is the same as the
pdftex program: it uses a different input format, but the output is exactly the same.

File pgfsys-pdftex.def

This is the driver file for use with pdfTEX, that is, with the pdftex or pdflatex command. It includes
pgfsys-common-pdf.def.

108

This driver has the “complete” functionality. This means, everything PGF “can do at all” is implemented
in this driver.

File pgfsys-dvipdfm.def

This is a driver file for use with (1a)tex followed by dvipdfm. It includes pgfsys-common-pdf .def.

This driver supports most of PGF’s features, but there are some restrictions:

1. In B¥TEX mode it uses graphicx for the graphics inclusion and does not support masking.

2. In plain TEX mode it does not support image inclusion.

For remembering of pictures (inter-picture connections) you need to use a recent version of pdftex
running in DVI-mode.

4. Patterns are not (cannot) be supported.

5. Functional shadings are not (cannot) be supported.

File pgfsys-xetex.def

This is a driver file for use with xe(la)tex followed by xdvipdfmx. This driver supports the same
operations as the dvipdfm driver, except that remembering of pictures (inter-picture connections) always
works.

File pgfsys-vtex.def

This is the driver file for use with the commercial VTEX program. Even though it produces PDF output,
it includes pgfsys-common-postscript.def. Note that the VTEX program can produce both Postscript
and PDF output, depending on the command line parameters. However, whether you produce Postscript
or PDF output does not change anything with respect to the driver.

This driver supports most of PGF’s features, except for the following restrictions:

G LN

In BTEX mode it uses graphicx for the graphics inclusion and does not support masking.
In plain TEX mode it does not support image inclusion.

Shading is fully implemented, but yields the same quality as the implementation for dvips.
Opacity is not supported.

Remembering of pictures (inter-picture connections) is not supported.

It is also possible to produce a .pdf-file by first producing a PostScript file (see below) and then using a
PostScript-to-PDF conversion program like ps2pdf or the Acrobat Distiller.

10.2.3

Producing PostScript Output

File pgfsys-dvips.def

This is a driver file for use with (1a)tex followed by dvips. It includes pgfsys-common-postscript.def.

This driver also supports most of PGF’s features, except for the following restrictions:

1.
2.

In ETEX mode it uses graphicx for the graphics inclusion and does not support masking.

In plain TEX mode it does not support image inclusion.

3. Shading is fully implemented, but the results will not be as good as with a driver producing .pdf

as output.

Opacity works only in conjunction with newer versions of Ghostscript.

5. For remembering of pictures (inter-picture connections) you need to use a recent version of pdftex

running in DVI-mode.

File pgfsys-textures.def

This is a driver file for use with the TEXTURES program. It includes pgfsys-common-postscript.def.

This driver has exactly the same restrictions as the driver for dvips.

You can also use the vtex program together with pgfsys-vtex.def to produce Postscript output.

109

10.2.4

Producing HTML / SVG Output

The tex4dht program converts .dvi-files to .html-files. While the HTML-format cannot be used to draw
graphics, the svG-format can. Using the following driver, you can ask PGF to produce an SVG-picture for
each PGF graphic in your text.

File pgfsys-tex4ht.def

This is a driver file for use with the tex4ht program. It includes pgfsys-common-svg.def.

When using this driver you should be aware of the following restrictions:

5.
6.
7.

1. In I¥TEX mode it uses graphicx for the graphics inclusion.
2. In plain TEX mode it does not support image inclusion.

3.
4

. Text inside pgfpictures is not supported very well. The reason is that the SvG specification

Remembering of pictures (inter-picture connections) is not supported.

currently does not support text very well and, although it is possible to “escape back” to HTML,
Tikz has then to guess what size the text rendered by the browser would have.

Unlike for other output formats, the bounding box of a picture “really crops” the picture.
Matrices do not work.

Functional shadings are not supported.

The driver basically works as follows: When a {pgfpicture} is started, appropriate \special com-
mands are used to directed the output of tex4ht to a new file called \jobname-xxx.svg, where xxx
is a number that is increased for each graphic. Then, till the end of the picture, each (system layer)
graphic command creates a special that inserts appropriate svG literal text into the output file. The
exact details are a bit complicated since the imaging model and the processing model of PostScript/PDF
and SVG are not quite the same; but they are “close enough” for PGF’s purposes.

Because text is not supported very well in the SVG standard, you may wish to use the following options
to modify the way text is handled:

/tikz/tex4ht node/escape=(boolean) (default false)

Selects the rendering method for a text node with the tex4ht driver.

When this key is set to false, text is translated into svG text, which is somewhat limited: simple
characters (letters, numerals, punctuation, Y, [, ...), subscripts and superscripts (but not sub-
subscripts) will display but everything else will be filtered out, ignored or will produce invalid HTML
code (in the worst case). This means that two kind of texts render reasonably well:

1. First, plain text without math mode, special characters or anything else special.

2. Second, wvery simple mathematical text that contains subscripts or superscripts. Even then,
variables are not correctly set in italics and, in general, text simple does not look very nice.

If you use text that contains anything special, even something as simple as α, this may
corrupt the graphic.

\tikz \node[draw,tex4ht node/escape=false] {Example : $(atb) 2=a"2+2ab+b"2$1};

When you write node [tex4ht node/escape=true] {(text)}, TikZ escapes back to HTML to render
the (text). This method produces valid HTML code in most cases and the support for complicated
text nodes is much better since code that renders well outside a {tikzpicture}, should also render
well inside a text node. Another advantage is that inside text nodes with fixed width, HTML will
produce line breaks for long lines. On the other hand, you need a browser with good SVG support
to display the picture. Also, the text will display differently, depending on your browsers, the fonts
you have on your system and your settings. Finally, TikZ has to guess the size of the text rendered
by the browser to scale it and prevent it from sticking from the node. When it fails, the text will
be either cropped or too small.

\tikz \node[draw,tex4ht node/escape=true]
{Example : $\int_O~\infty\frac{i}{1+t"2}dt=\frac{\pi}{2}$};

110

/tikz/tex4ht node/css={filename) (default \jobname)

This option allows you to tell the browser what css file it should use to style the display of the
node (only with tex4ht node/escape=true).

/tikz/tex4ht node/class=(class name) (default foreignobject)

This option allows you to give a class name to the node, allowing it to be styled by a css file (only
with tex4ht node/escape=true).

/tikz/tex4ht node/id=(id name) (default \jobname picturenumber-nodenumber)

This option allows you to give a unique id to the node, allowing it to be styled by a css file (only
with tex4ht mnode/escape=true).

10.2.5 Producing Perfectly Portable DVI Output
File pgfsys-dvi.def
This is a driver file that can be used with any output driver, except for tex4ht.

The driver will produce perfectly portable .dvi files by composing all pictures entirely of black rectan-
gles, the basic and only graphic shape supported by the TEX core. Even straight, but slanted lines are
tricky to get right in this model (they need to be composed of lots of little squares).

Naturally, very little is possible with this driver. In fact, so little is possible that it is easier to list what
is possible:

e Text boxes can be placed in the normal way.

Lines and curves can be drawn (stroked). If they are not horizontal or vertical, they are composed
of hundred of small rectangles.

Lines of different width are supported.

Transformations are supported.

Note that, say, even filling is not supported! (Let alone color or anything fancy.)

This driver has only one real application: It might be useful when you only need horizontal or vertical
lines in a picture. Then, the results are quite satisfactory.

111

Part 111
TikZ ist kein Zeichenprogramm

by Till Tantau

F
c AN—
/s When we assume that AB and C'D
are parallel, i.e., AB || CD, then o = 6
@ and 8 = 7.
A /// b B
E
\begin{tikzpicture}

\draw[fill=yellow] (0,0) -- (60:.75cm) arc (60:180:.75cm);
\draw(120:0.4cm) node {α};

\draw[fill=green!30] (0,0) -- (right:.75cm) arc (0:60:.75cm);
\draw(30:0.5cm) node {β};

\begin{scopel} [shift={(60:2cm)}]
\draw[fill=green!30] (0,0) -- (180:.75cm) arc (180:240:.75cm);
\draw (30:-0.5cm) node {γ};

\draw[fill=yellow] (0,0) -- (240:.75cm) arc (240:360:.75cm);
\draw (-60:0.4cm) node {δ};

\end{scope}

\begin{scopel} [thick]
\draw (60:-1cm) node[fill=white] {E} -- (60:3cm) node[fill=white] {F};
\draw [red] (-2,0) node[left] {A} -- (3,0) node[right]{B};

\draw[blue,shift={(60:2cm)}] (-3,0) node[left] {C} -- (2,0) nodel[right]{D};

\draw[shift={(60:1cm)},xshift=4cm]

node [right,text width=6cm,rounded corners,fill=red!20,inner sep=1lex]

{
When we assume that $\color{red}AB$ and $\color{blue}CD$ are
parallel, i.\,e., ${\color{red}AB} \mathbin{\|} \color{blue}CD$,
then $\alpha = \delta$ and $\beta = \gamma$.

g

\end{scope}

\end{tikzpicture}

112

11 Design Principles

This section describes the design principles behind the TikZ frontend, where TikZ means “TikZ ist kein
Zeichenprogramm.” To use TikZ, as a KTEX user say \usepackage{tikz} somewhere in the preamble, as
a plain TEX user say \input tikz.tex. TikZ’s job is to make your life easier by providing an easy-to-learn
and easy-to-use syntax for describing graphics.

The commands and syntax of TikZ were influenced by several sources. The basic command names and
the notion of path operations is taken from METAFONT, the option mechanism comes from PSTRICKS, the
notion of styles is reminiscent of svG. To make it all work together, some compromises were necessary. 1
also added some ideas of my own, like coordinate transformations.

The following basic design principles underlie TikZ:

[

. Special syntax for specifying points.

2. Special syntax for path specifications.

3. Actions on paths.

4. Key-value syntax for graphic parameters.
5. Special syntax for nodes.

6. Special syntax for trees.

7. Grouping of graphic parameters.

8. Coordinate transformation system.

11.1 Special Syntax For Specifying Points

TikZ provides a special syntax for specifying points and coordinates. In the simplest case, you provide two
TEX dimensions, separated by commas, in round brackets as in (1cm,2pt).

You can also specify a point in polar coordinates by using a colon instead of a comma as in (30:1cm),
which means “lcm in a 30 degrees direction.”

If you do not provide a unit, as in (2,1), you specify a point in PGF’s zy-coordinate system. By default,
the unit z-vector goes lem to the right and the unit y-vector goes lecm upward.

By specifying three numbers as in (1,1,1) you specify a point in PGF’s xyz-coordinate system.

It is also possible to use an anchor of a previously defined shape as in (first node.south).

You can add two plus signs before a coordinate as in ++(1cm,Opt). This means “lcm to the right of
the last point used.” This allows you to easily specify relative movements. For example, (1,0) ++(1,0)
++(0,1) specifies the three coordinates (1,0), then (2,0), and (2,1).

Finally, instead of two plus signs, you can also add a single one. This also specifies a point in a relative
manner, but it does not “change” the current point used in subsequent relative commands. For example,
(1,0) +(1,0) +(0,1) specifies the three coordinates (1,0), then (2,0), and (1,1).

11.2 Special Syntax For Path Specifications

When creating a picture using TikZ, your main job is the specification of paths. A path is a series of straight
or curved lines, which need not be connected. TikZ makes it easy to specify paths, partly using the syntax
of METAPOST. For example, to specify a triangular path you use

(6pt,0pt) -- (Opt,Opt) -- (Opt,5pt) -- cycle

and you get b when you draw this path.

11.3 Actions on Paths

A path is just a series of straight and curved lines, but it is not yet specified what should happen with it.
Omne can draw a path, fill a path, shade it, clip it, or do any combination of these. Drawing (also known
as stroking) can be thought of as taking a pen of a certain thickness and moving it along the path, thereby
drawing on the canvas. Filling means that the interior of the path is filled with a uniform color. Obviously,
filling makes sense only for closed paths and a path is automatically closed prior to filling, if necessary.

113

Given a path asin \path (0,0) rectangle (2ex,lex);,you can draw it by adding the draw option as in
\path[draw] (0,0) rectangle (2ex,lex);, which yields @. The \draw command is just an abbreviation
for \path[draw]. To fill a path, use the £i1l option or the \fill command, which is an abbreviation for
\path[£fill]. The \filldraw command is an abbreviation for \path[fill,draw]. Shading is caused by
the shade option (there are \shade and \shadedraw abbreviations) and clipping by the clip option. There
is also a \clip command, which does the same as \path[clip], but not commands like \drawclip. Use,
say, \draw[clip] or \path[draw,clip] instead.

All of these commands can only be used inside {tikzpicture} environments.

TikZ allows you to use different colors for filling and stroking.

11.4 Key-Value Syntax for Graphic Parameters

Whenever TikZ draws or fills a path, a large number of graphic parameters influenced the rendering. Ex-
amples include the colors used, the dashing pattern, the clipping area, the line width, and many others. In
TikZ, all these options are specified as lists of so called key-value pairs, as in color=red, that are passed
as optional parameters to the path drawing and filling commands. This usage is similar to PSTRICKS. For
example, the following will draw a thick, red triangle;

\ \tikz \draw[line width=2pt,color=red] (1,0) -- (0,0) -- (0,1) -- cycle;

11.5 Special Syntax for Specifying Nodes

TikZ introduces a special syntax for adding text or, more generally, nodes to a graphic. When you specify
a path, add nodes as in the following example:

/ \tikz \draw (1,1) node {text} -- (2,2);
text

Nodes are inserted at the current position of the path, but only after the path has been rendered. When
special options are given, as in \draw (1,1) nodel[circle,draw] {text};, the text is not just put at the
current position. Rather, it is surrounded by a circle and this circle is “drawn.”

You can add a name to a node for later reference either by using the option name=(node name) or by
stating the node name in parentheses outside the text as in node [circle] (name){text}.

Predefined shapes include rectangle, circle, and ellipse, but it is possible (though a bit challenging)
to define new shapes.

11.6 Special Syntax for Specifying Trees

In addition to the “node syntax,” TikZ also introduces a special syntax for drawing trees. The syntax is
intergraded with the special node syntax and only few new commands need to be remembered. In essence,
a node can be followed by any number of children, each introduced by the keyword child. The children are
nodes themselves, each of which may have children in turn.

ROGE: \begin{tikzpicture}
\node {root}
child {node {left}}
child {node {right}
) child {node {child}}
left right child {node {child}}

};
/ \ \end{tikzpicture}

child child

Since trees are made up from nodes, it is possible to use options to modify the way trees are drawn. Here
are two examples of the above tree, redrawn with different options:

114

\begin{tikzpicture}

root
[edge from parent fork down,
every node/.style={fill=red!30,rounded corners},
edge from parent/.style={red,-o,thick,draw}]
\node {root}
left right child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}
child child ¥
\end{tikzpicture}

\begin{tikzpicture}
[parent anchor=east,child anchor=west,grow=east,

,'@ every node/.style={ball color=red,circle,text=white},
4 edge from parent/.style={draw,dashed,thick,red}]
K N \node {root}
’ N child {node {leftl}}
. @ child {node {right}

D

child {node {child}}
child {node {child}}

QO

e
\end{tikzpicture}

11.7 Grouping of Graphic Parameters

Graphic parameters should often apply to several path drawing or filling commands. For example, we
may wish to draw numerous lines all with the same line width of 1pt. For this, we put these commands
in a {scope} environment that takes the desired graphic options as an optional parameter. Naturally,
the specified graphic parameters apply only to the drawing and filling commands inside the environment.
Furthermore, nested {scope} environments or individual drawing commands can override the graphic pa-
rameters of outer {scope} environments. In the following example, three red lines, two green lines, and one
blue line are drawn:

\begin{tikzpicture}
\begin{scope} [color=red]
\draw (Omm,10mm) -- (10mm,10mm) ;
\draw (Omm, 8mm) -- (10mm, 8mm);
\draw (Omm, 6mm) -- (10mm, 6mm);

\end{scope}
\begin{scope} [color=green]
\draw (Omm, 4mm) -- (10mm, 4mm);
\draw (Omm, 2mm) -- (10mm, 2mm);
\draw[color=blue] (Omm, Omm) -- (10mm, Omm) ;
\end{scope}
\end{tikzpicture}

The {tikzpicture} environment itself also behaves like a {scope} environment, that is, you can specify
graphic parameters using an optional argument. These optional apply to all commands in the picture.

11.8 Coordinate Transformation System

TikZ supports both PGF’s coordinate transformation system to perform transformations as well as canvas
transformations, a more low-level transformation system. (For details on the difference between coordinate
transformations and canvas transformations see Section 68.4.)

The syntax is setup in such a way that is harder to use canvas transformations than coordinate trans-
formations. There are two reasons for this: First, the canvas transformation must be used with great care
and often results in “bad” graphics with changing line width and text in wrong sizes. Second, PGF looses
track of where nodes and shapes are positioned when canvas transformations are used. So, in almost all
circumstances, you should use coordinate transformations rather than canvas transformations.

115

12 Hierarchical Structures:
Package, Environments, Scopes, and Styles

The present section explains how your files should be structured when you use TikZ. On the top level,
you need to include the tikz package. In the main text, each graphic needs to be put in a {tikzpicture}
environment. Inside these environments, you can use {scope} environments to create internal groups. Inside
the scopes you use \path commands to actually draw something. On all levels (except for the package level),
graphic options can be given that apply to everything within the environment.

12.1 Loading the Package and the Libraries

\usepackage{tikz} 7 EX
\input tikz.tex % plain TX
\usemodule[tikz] % ConTEXt
This package does not have any options.
This will automatically load the PGF and the pgffor package.

PGF needs to know what TEX driver you are intending to use. In most cases PGF is clever enough to
determine the correct driver for you; this is true in particular if you use BKTEX. Currently, the only
situation where PGF cannot know the driver “by itself” is when you use plain TEX or ConTEXt together
with dvipdfm. In this case, you have to write \def\pgfsysdriver{pgfsys-dvipdfm.def} before you
input tikz.tex.

\usetikzlibrary{(list of libraries)}

Once TikZ has been loaded, you can use this command to load further libraries. The list of libraries
should contain the names of libraries separated by commas. Instead of curly braces, you can also use
square brackets, which is something ConTEXt users will like. If you try to load a library a second time,
nothing will happen.

Example: \usetikzlibrary{arrows}
The above command will load a whole bunch of extra arrow tip definitions.

What this command does is to load the file tikzlibrary(library).code.tex for each (library) in the
(list of libraries). Thus, to write your own library file, all you need to do is to place a file of the
appropriate name somewhere where TEX can find it. BTEX, plain TEX, and ConTEXt users can then
use your library.

12.2 Creating a Picture
12.2.1 Creating a Picture Using an Environment

The “outermost” scope of TikZ is the {tikzpicture} environment. You may give drawing commands only
inside this environment, giving them outside (as is possible in many other packages) will result in chaos.

In TikZ, the way graphics are rendered is strongly influenced by graphic options. For example, there
is an option for setting the color used for drawing, another for setting the color used for filling, and also
more obscure ones like the option for setting the prefix used in the filenames of temporary files written while
plotting functions using an external program. The graphic options are specified in key lists, see Section 12.4
below for details. All graphic options are local to the {tikzpicture} to which they apply.

\begin{tikzpicture} [{options)]
(environment contents)
\end{tikzpicture}

All TikZ commands should be given inside this environment, except for the \tikzset command. Unlike
other packages, it is not possible to use, say, \pgfpathmoveto outside this environment and doing so
will result in chaos. For TikZ, commands like \path are only defined inside this environment, so there
is little chance that you will do something wrong here.

When this environment is encountered, the (options) are parsed, see Section 12.4. All options given
here will apply to the whole picture.

Next, the contents of the environment is processed and the graphic commands therein are put into a
box. Non-graphic text is suppressed as well as possible, but non-PGF commands inside a {tikzpicture}

116

environment should not produce any “output” since this may totally scramble the positioning system
of the backend drivers. The suppressing of normal text, by the way, is done by temporarily switching
the font to \nullfont. You can, however, “escape back” to normal TEX typesetting. This happens, for
example, when you specify a node.

At the end of the environment, PGF tries to make a good guess at the size of a bounding box of the
graphic and then resizes the picture box such that the box has this size. To “make its guess,” everytime
PGF encounters a coordinate, it updates the bounding box’s size such that it encompasses all these
coordinates. This will usually give a good approximation of the bounding box, but will not always be
accurate. First, the line thickness of diagonal lines is not taken into account correctly. Second, controls
points of a curve often lie far “outside” the curve and make the bounding box too large. In this case,
you should use the [use as bounding box] option.

The following key influences the baseline of the resulting picture:

/tikz/baseline=(dimension or coordinate or default) (default Opt)

Normally, the lower end of the picture is put on the baseline of the surrounding text. For example,
when you give the code \tikz\draw(0,0)circle(.5ex);, PGF will find out that the lower end of
the picture is at —.5ex and that the upper end is at .5ex. Then, the lower end will be put on the
baseline, resulting in the following: o.

Using this option, you can specify that the picture should be raised or lowered such that the height

(dimension) is on the baseline. For example, \tikz[baseline=0pt]\draw(0,0)circle(.5ex);
yields 4 since, now, the baseline is on the height of the z-axis.

This options is often useful for “inlined” graphics as in

A—» B $A \mathbin{\tikz[baseline] \draw[->>] (Opt,.5ex) -- (3ex,.5ex);} B$

Instead of a (dimension) you can also provide a coordinate in parentheses. Then the effect is to
put the baseline on the y-coordinate that the give {coordinate) has at the end of the picture. This
means that, at the end of the picture, the (coordinate) is evaluated and then the baseline is set to
the y-coordinate of the resulting point. This makes it easy to reference the y-coordinate of, say,
the base line of nodes.

Hello
I{elki}i@fﬁi: \tikz[baseline=(X.base)]

\node [cross out,draw] (X) {world.};

Top align: Top align:
L—— \tikz[baseline=(current bounding box.north)]
\draw (0,0) rectangle (lcm,lex);

Use baseline=default to reset the baseline option to its initial configuration.

/tikz/execute at begin picture=(code) (no default)

This option causes (code) to be executed at the beginning of the picture. This option must be given
in the argument of the {tikzpicture} environment itself since this option will not have an effect
otherwise. After all, the picture has already “started” later on. The effect of multiply setting this
option accumulates.

This option is mainly used in styles like the every picture style to execute certain code at the
start of a picture.

/tikz/execute at end picture=(code) (no default)

This option installs (code) that will be executed at the end of the picture. Using this option multiple
times will cause the code to accumulate. This option must also be given in the optional argument
of the {tikzpicture} environment.

117

Y \begin{tikzpicture}[execute at end picture=j,
{

\begin{pgfonlayer}{background}
X \path[fill=yellow,rounded corners]
(current bounding box.south west) rectangle
(current bounding box.north east);
\end{pgfonlayer}
H
\node at (0,0) {X};
\node at (2,1) {Y};
\end{tikzpicture}

All options “end” at the end of the picture. To set an option “globally” change the following style:

/tikz/every picture (style, initially empty)
This style is installed at the beginning of each picture.

\tikzset{every picture/.style=semithick}

Note that you should not use \tikzset to set options directly. For instance, if you want to use a
line width of 1pt by default, do not try to say \tikzset{line width=1pt} at the beginning of your
document. This will not work since the line width is changed in many places. Instead, say

\tikzset{every picture/.style={line width=1ptl}}
This will have the desired effect.
In other TEX format, you should use instead the following commands:

\tikzpicture [{options)]
(environment contents)
\endtikzpicture

This is the plain TEX version of the environment.

\starttikzpicture [{options)]
(environment contents)
\stoptikzpicture

This is the ConTEXt version of the environment.

12.2.2 Creating a Picture Using a Command

The following command is an alternative to {tikzpicture} that is particular useful for graphics consisting
of a single or few commands.

\tikz [(options)]{(path commands)}

This command places the {path commands) inside a {tikzpicture} environment. The (path commands)
may contain paragraphs and fragile material (like verbatim text).

If there is only one path command, it need not be surrounded by curly braces, if there are several,
you need to add them (this is similar to the \foreach statement and also to the rules in programming
languages like Java or C concerning the placement of curly braces).

Ezample: \tikz{\draw (0,0) rectangle (2ex,lex);} yields @

Example: \tikz \draw (0,0) rectangle (2ex,lex); yields O

12.2.3 Adding a Background

By default, pictures do not have any background, that is, they are “transparent” on all parts on which you
do not draw anything. You may instead wish to have a colored background behind your picture or a black
frame around it or lines above and below it or some other kind of decoration.

Since backgrounds are often not needed at all, the definition of styles for adding backgrounds has been
put in the library package backgrounds. This package is documented in Section 25.

118

12.3 Using Scopes to Structure a Picture

Inside a {tikzpicture} environment you can create scopes using the {scope} environment. This environ-
ment is available only inside the {tikzpicture} environment, so once more, there is little chance of doing

anything wrong.

12.3.1 The Scope Environment

\begin{scope} [(options)]
(environment contents)
\end{scope}

All (options) are local to the (environment contents). Furthermore, the clipping path is also local to
the environment, that is, any clipping done inside the environment “ends” at its end.

\begin{tikzpicture} [ultra thick]
\begin{scope} [red]
\draw (Omm,10mm) -- (10mm,10mm) ;
\draw (Omm,8mm) -- (10mm,Smm);

\end{scope}
\draw (Omm,6mm) -- (10mm,6mm) ;
\begin{scope} [green]

\draw (Omm,4mm) -- (10mm,4mm) ;
\draw (Omm,2mm) -- (10mm,2mm) ;
\draw[blue] (Omm,Omm) -- (10mm,Omm);
\end{scope}
\end{tikzpicture}

The following style influences scopes:

/tikz/every scope (style, initially empty)
This style is installed at the beginning of every scope.

The following options are useful for scopes:

/tikz/execute at begin scope=(code) (no default)

This option install some code that will be executed at the beginning of the scope. This option must
be given in the argument of the {scope} environment.

The effect applies only to the current scope, not to subscopes.

/tikz/execute at end scope=(code) (no default)

This option installs some code that will be executed at the end of the current scope. Using this
option multiple times will cause the code to accumulate. This option must also be given in the
optional argument of the {scope} environment.

Again, the effect applies only to the current scope, not to subscopes.

\scope [(options)]
(environment contents)
\endscope

Plain TgX version of the environment.

\startscope [{options)]
(environment contents)
\stopscope

ConTEXt version of the environment.

12.3.2 Shorthand for Scope Environments

There is a small library that makes using scopes a bit easier:

\usetikzlibrary{scopes} % EFX and plain TX
\usetikzlibrary[scopes] 7% ConTgKt

This library defines a shorthand for starting and ending {scope} environments.

119

When this library is loaded, the following happens: At certain places inside a TikZ picture, it is allowed to
start a scope just using a single brace, provided the single brace is followed by options in square brackets:

\begin{tikzpicture}
{ [ultra thick]
{ [red]
\draw (Omm,10mm) -- (10mm,10mm);
\draw (Omm,8mm) -- (10mm,8mm) ;
}
\draw (Omm,6mm) -- (10mm,6mm) ;
}
{ [green]
\draw (Omm,4mm) -- (10mm,4mm) ;
\draw (Omm,2mm) -- (10mm,2mm);
\draw[blue] (Omm,Omm) -- (10mm,Omm) ;
}
\end{tikzpicture}

In the above example, { [thick] actually causes a \begin{scopel}[thick] to be inserted, and the
corresponding closing } causes an \end{scope} to be inserted.

The “certain places” where an opening brace has this special meaning are the following: First, right after
the semicolon that ends a path. Second, right after the end of a scope. Third, right at the beginning of a
scope, which includes the beginning of a picture. Also note that some square bracket must follow, otherwise
the brace is treated as a normal TEX scope.

12.3.3 Using Scopes Inside Paths

The \path command, which is described in much more detail in later sections, also takes graphic options.
These options are local to the path. Furthermore, it is possible to create local scopes within a path simply
by using curly braces as in

\tikz \draw (0,0) -- (1,1)
{[rounded corners] -- (2,0) -- (3,1)}
— (3,00 — (2,1);

Note that many options apply only to the path as a whole and cannot be scoped in this way. For example,
it is not possible to scope the color of the path. See the explanations in the section on paths for more details.

Finally, certain elements that you specify in the argument to the \path command also take local options.
For example, a node specification takes options. In this case, the options apply only to the node, not to the
surrounding path.

12.4 Using Graphic Options
12.4.1 How Graphic Options Are Processed

Many commands and environments of TikZ accept options. These options are so-called key lists. To process
the options, the following command is used, which you can also call yourself. Note that it is usually better
not to call this command directly, since this will ensure that the effect of options are local to a well-defined
scope.

\tikzset{({options)}

This command will process the (options) using the \pgfkeys command, documented in detail in Sec-
tion 55, with the default path set to /tikz. Under normal circumstances, the (options) will be lists of
comma-separated pairs of the form (key)=(value), but more fancy things can happen when you use the
power of the pgfkeys mechanism, see Section 55 once more.

When a pair (key)=(value) is processed, the following happens:

1. If the (key) is a full key (starts with a slash) it is handled directly as described in Section 55.

2. Otherwise (which is usually the case), it is checked whether /tikz/(key) is a key and, if so, it is
executed.

3. Otherwise, it is checked whether /pgf/({key) is a key and, if so, it is executed.
4. Otherwise, it is checked whether (key) is a color and, if so, color=(key) is executed.

5. Otherwise, it is checked whether (key) contains a dash and, if so, arrows=(key) is executed.

120

6. Otherwise, it is checked whether (key) is the name of a shape and, if so, shape=(key) is executed.

7. Otherwise, an error message is printed.

Note that by the above description, all keys starting with /tikz and also all keys starting with /pgf
can be used as (key)s in an (options) list.

12.4.2 Using Styles to Manage How Pictures Look

There is a way of organizing sets of graphic options “orthogonally” to the normal scoping mechanism. For
example, you might wish all your “help lines” to be drawn in a certain way like, say, gray and thin (do not
dash them, that distracts). For this, you can use styles.

A style is a key that, when used, causes a set of graphic options to be processed. Once a style has been
defined, it can be used like any other key. For example, the predefined help lines style, which you should
use for lines in the background like grid lines or construction lines.

\begin{tikzpicture}
\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);
\end{tikzpicture}

Defining styles is also done using options. Suppose we wish to define a style called my style and when
this style is used, we want the draw color to be set to red and the fill color be set to red!20. To achieve
this, we use the following option:

my style/.style={draw=red,fill=red!20}

The meaning of the curious /.style is the following: “The key my style should not be used here but,
rather, be defined. So, setup things such that using the key my style will, in the following, have the same
effect as if we had written draw=red,fill=red!20 instead.”

Returning to the help lines example, suppose we prefer blue help lines. This could be achieved as follows:

\begin{tikzpicture} [help lines/.style={blue!50,very thin}]
\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);

\end{tikzpicture}

Naturally, one of the main ideas behind styles is that they can be used in different pictures. In this case,
we have to use the \tikzset command somewhere at the beginning.

B oo
\begin{tikzpicture}

\tikzset{help lines/.style={blue!50,very thin}}
\draw (0,0) grid +(2,2);

\draw[help lines] (2,0) grid +(2,2);
\end{tikzpicture}

Since styles are just special cases of pgfkeys’s general style facility, you can actually do quite a bit more.
Let us start with adding options to an already existing style. This is done using /.append style instead of
/.style:

\begin{tikzpicture}[help lines/.append style=blue!50]

\draw (0,0) grid +(2,2);
\draw[help lines] (2,0) grid +(2,2);

\end{tikzpicture}

In the above example, the option blue!50 is appended to the style help lines, which now has the same
effect as black!50,very thin,blue!50. Note that two colors are set, so the last one will “win.” There also
exists a handler called /.prefix style that adds something at the beginning of the style.

Just as normal keys, styles can be parameterized. This means that you write (style)=(value) when you
use the style instead of just (style). In this case, all occurrences of #1 in (style) are replaced by (value).
Here is an example that shows how this can be used.

121

red \begin{tikzpicturel}[outline/.style={draw=#1,thick,fill=#1!50}]
\node [outline=red] at (0,1) {red};
\node [outline=blue] at (0,0) {blue};

- \end{tikzpicture}
For parameterized styles you can also set a default value using the /.default handler:

- \begin{tikzpicture} [outline/.style={draw=#1,thick,fill=#1!50},
outline/.default=black]

\node [outline] at (0,1) {default};
- \node [outline=blue] at (0,0) {blue};
\end{tikzpicture}

For more details on using and setting styles, see also Section 55.

122

13 Specifying Coordinates

13.1 Overview

A coordinate is a position on the canvas on which your picture is drawn. TikZ uses a special syntax for specify-
ing coordinates. Coordinates are always put in round brackets. The general syntax is ([(options)] (coordinate
specification)).

The (coordinate specification) specified coordinates using one of many different possible coordinate sys-
tems. Examples are the Cartesian coordinate system or polar coordinates or spherical coordinates. No
matter which coordinate system is used, in the end, a specific point on the canvas is represented by the
coordinate.

There are two ways of specifying which coordinate system should be used:

Explicitly You can specify the coordinate system explicitly. To do so, you give the name of the coordi-
nate system at the beginning, followed by cs:, which stands for “coordinate system,” followed by a
specification of the coordinate using the key-value syntax. Thus, the general syntax for (coordinate
specification) in the explicit case is ((coordinate system) cs:{list of key-value pairs specific to the
coordinate system)).

Implicitly The explicit specification is often too verbose when numerous coordinates should be given.
Because of this, for the coordinate systems that you are likely to use often a special syntax is provided.
TikZ will notice when you use a coordinate specified in a special syntax and will choose the correct
coordinate system automatically.

Here is an example in which explicit the coordinate systems are specified explicitly:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (canvas cs:x=0cm,y=2mm)
-- (canvas polar cs:radius=2cm,angle=30);

\end{tikzpicture}

In the next example, the coordinate systems are implicit:

\draw[help lines] (0,0) grid (3,2);
\draw (Ocm,2mm) -- (30:2cm);

\begin{tikzpicture}
\end{tikzpicture}

It is possible to give options that apply only to a single coordinate, although this makes sense for
transformation options only. To give transformation options for a single coordinate, give these options at
the beginning in brackets:

\begin{tikzpicture}

\draw[help lines] (0,0) grid (3,2);

\draw (0,0) -- (1,1);

\draw[red] (0,0) -- ([xshift=3pt] 1,1);

\draw (1,0) -- +(30:2cm);

\draw[red] (1,0) -- +([shift=(135:5pt)] 30:2cm);
\end{tikzpicture}

13.2 Coordinate Systems
13.2.1 Canvas, XYZ, and Polar Coordinate Systems
Let us start with the basic coordinate systems.

Coordinate system canvas

The simplest way of specifying a coordinate is to use the canvas coordinate system. You provide a
dimension d, using the x= option and another dimension d, using the y= option. The position on the
canvas is located at the position that is d; to the right and d,, above the origin.

123

/tikz/cs/x=(dimension) (no default, initially Opt)

Distance by which the coordinate is to the right of the origin. You can also write things like 1cm+2pt
since the mathematical engine is used to evaluate the (dimension).

/tikz/cs/y=(dimension) (no default, initially Opt)

Distance by which the coordinate is above the origin.

\begin{tikzpicture}
° \draw[help lines] (0,0) grid (3,2);

\fill (canvas cs:x=1cm,y=1.5cm) circle (2pt);
\fill (canvas cs:x=2cm,y=-5mm+2pt) circle (2pt);
\end{tikzpicture}

To specify a coordinate in the coordinate system implicitly, you use two dimensions that are separated
by a comma as in (Ocm,3pt) or (2cm,\textheight).

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

[]

\fill (2cm,-5mm+2pt) circle (2pt);

\fill (icm,1.5cm) circle (2pt);
\end{tikzpicture}

Coordinate system xyz
The xyz coordinate system allows you to specify a point as a multiple of three vectors called the
x-, y-, and z-vectors. By default, the z-vector points lcm to the right, the y-vector points lcm up-
wards, but this can be changed arbitrarily as explained in Section 22.2. The default z-vector points to
(—3.85mm, —3.85mm).
To specify the factors by which the vectors should be multiplied before being added, you use the following
three options:

/tikz/cs/x=(factor) (no default, initially 0)

Factor by which the z-vector is multiplied.

/tikz/cs/y=(factor) (no default, initially 0)
Works like x.

/tikz/cs/z=(factor) (no default, initially 0)
Works like x.

\begin{tikzpicture}[->]
\draw (0,0) -- (xyz cs:x=1);
\draw (0,0) -- (xyz cs:y=1);
\draw (0,0) -- (xyz cs:z=1);
\end{tikzpicture}

This coordinate system can also be selected implicitly. To do so, you just provide two or three comma-
separated factors (not dimensions).

\begin{tikzpicture}[->]
\draw (0,0) -- (1,0);
\draw (0,0) -- (0,1,0);
\draw (0,0) -- (0,0,1);

\end{tikzpicture}

Note: Tt is possible to use coordinates like (1,2cm), which are neither canvas coordinates nor xyz
coordinates. The rule is the following: If a coordinate is of the implicit form ({z),(y)), then (z) and (y)

124

are checked, independently, whether they have a dimension or whether they are dimensionless. If both have
a dimension, the canvas coordinate system is used. If both lack a dimension, the xyz coordinate system
is used. If (z) has a dimension and (y) has not, then the sum of two coordinate ({(z),0pt) and (0,(y)) is
used. If (y) has a dimension and (z) has not, then the sum of two coordinate ({z),0) and (Opt,(y)) is
used.

Note furthermore: An expression like (2+3cm,0) does not mean the same as (2cm+3cm,0). Instead, if
(z) or (y) internally uses a mixture of dimensions and dimensionless values, then all dimensionless values
are “upgraded” to dimensions by interpreting them as pt. So, 2+3cm is the same dimension as 2pt+3cm.

Coordinate system canvas polar

The canvas polar coordinate system allows you to specify polar coordinates. You provide an angle
using the angle= option and a radius using the radius= option. This yields the point on the canvas
that is at the given radius distance from the origin at the given degree. A degree of zero points to the
right, a degree of 90 upward.

/tikz/cs/angle=(degrees) (no default)
The angle of the coordinate. The angle must always be given in degrees and should be between
—360 and 720.

/tikz/cs/radius=(dimension) (no default)

The distance from the origin.

/tikz/cs/x radius=(dimension) (no default)

A polar coordinate is, after all, just a point on a circle of the given (radius). When you provide an
z-radius and also a y-radius, you specify an ellipse instead of a circle. The radius option has the
same effect as specifying identical x radius and y radius options.

/tikz/cs/y radius=(dimension) (no default)

Works like x radius.

/ \tikz \draw (0,0) -- (canvas polar cs:angle=30,radius=1cm);

The implicit form for canvas polar coordinates is the following: you specify the angle and the distance,
separated by a colon as in (30:1cm).

\tikz \draw (0cm,0cm) -- (30:1cm) -- (60:1cm) -- (90:1cm)
f> -- (120:1cm) -- (150:1cm) -- (180:1cm);

Two different radii are specified by writing (30:1cm and 2cm).

For the implicit form, instead of an angle given as a number you can also use certain words. For example,
up is the same as 90, so that you can write \tikz \draw (0,0) -- (2ex,0pt) -- +(up:lex); and
get _1. Apart from up you can use down, left, right, north, south, west, east, north east, north
west, south east, south west, all of which have their natural meaning.

Coordinate system xyz polar
This coordinate system work similarly to the canvas polar system. However, the radius and the angle
are interpreted in the xy-coordinate system, not in the canvas system. More detailed, consider the circle
or ellipse whose half axes are given by the current z-vector and the current y-vector. Then, consider the
point that lies at a given angle on this ellipse, where an angle of zero is the same as the z-vector and
an angle of 90 is the y-vector. Finally, multiply the resulting vector by the given radius factor. Voila.
/tikz/cs/angle=(degrees) (no default)

The angle of the coordinate interpreted in the ellipse whose axes are the x-vector and the y-vector.

/tikz/cs/radius={factor) (no default)

A factor by which the z-vector and y-vector are multiplied prior to forming the ellipse.

125

/tikz/cs/x radius=(dimension)

(no default)

A specific factor by which only the z-vector is multiplied.

/tikz/cs/y radius=(dimension)

Works like x radius.

\draw
\draw
\draw
\draw

\draw

(0,0)
(0,0)
(0,0)
(0,0)

(xyz
(xyz
(xyz
(xyz

-- (xyz
- (xyz
-- (xyz
-- (xyz

polar cs:
polar cs:
polar cs:
polar cs:

\end{tikzpicture}

polar
polar
polar
polar

Ccs

(no default)

\begin{tikzpicture}[x=1.5cm,y=1cm]
~\\\\\\ \draw[help lines] (Ocm,Ocm) grid (3cm,2cm);

:angle=0,radius=1) ;
cs:
cs:
cs:

angle=30,radius=1) ;
angle=60,radius=1);
angle=90,radius=1) ;

angle=0,radius=2)

angle=30,radius=2)
angle=60,radius=2)
angle=90,radius=2) ;

The implicit version of this option is the same as the implicit version of canvas polar, only you do not

provide a unit.

\tikz [x={(0cm,1cm)},y={(-1cm,Ocm)}]
(0,0) -- (30:1) -- (60:1) -- (90:1)
-- (120:1) -- (150:1) -- (180:1);

\draw

Coordinate system xy polar

This is just an alias for xyz polar, which some people might prefer as there is no z-coordinate involved

in the xyz polar coordinates.

13.2.2 Barycentric Systems

In the barycentric coordinate system a point is expressed as the linear combination of multiple vectors. The

idea is that you specify vectors vy, v, ..

specified by these vectors and numbers is

., U, and numbers aq, aa, ..., a,. Then the barycentric coordinate

Q101 + QU2 + - + QpUp

art+azt-- o

The barycentric cs allows you to specify such coordinates easily.

Coordinate system barycentric

For this coordinate system, the (coordinate specification) should be a comma-separated list of expressions
of the form (node name)=(number). Note that (currently) the list should not contain any spaces before
or after the (node name) (unlike normal key-value pairs).

The specified coordinate is now computed as follows: Each pair provides one vector and a number. The
vector is the center anchor of the (node name). The number is the (number). Note that (currently)
you cannot specify a different anchor, so that in order to use, say, the north anchor of a node you first
have to create a new coordinate at this north anchor. (Using for instance \coordinate (mynorth) at

(mynode.north) ;.)

126

content oriented

ETEX
L Word PostScript
PDF

HTML

yalalal
\olele)
structure oriented form oriented
\begin{tikzpicture}
\coordinate (content) at (90:3cm);
\coordinate (structure) at (210:3cm);
\coordinate (form) at (-30:3cm);
\node [above] at (content) {content oriented};
\node [below left] at (structure) {structure oriented};
\node [below right] at (form) {form oriented};
\draw [thick,gray] (content.south) -- (structure.north east) -- (form.north west) -- cycle;
\small
\node at (barycentric cs:content=0.5,structure=0.1 ,form=1) {PostScript};
\node at (barycentric cs:content=1 ,structure=0 ,form=0.4) {DVI};
\node at (barycentric cs:content=0.5,structure=0.5 ,form=1) {PDF};
\node at (barycentric cs:content=0 ,structure=0.25,form=1) {CSs};
\node at (barycentric cs:content=0.5,structure=1 ,form=0) {XML};

\node at (barycentric cs:content=0.5,structure=1 ,form=0.4) {HTML};

\node at (barycentric cs:content=1 ,structure=0.2 ,form=0.8) {\TeX};

\node at (barycentric cs:content=1 ,structure=0.6 ,form=0.8) {\LaTeX};

\node at (barycentric cs:content=0.8,structure=0.8 ,form=1) {Word};

\node at (barycentric cs:content=1 ,structure=0.05,form=0.05) {ASCII};
\end{tikzpicture}

13.2.3 Node Coordinate System

In PGF and in TikZ it is quite easy to define a node that you wish to reference at a later point. Once
you have defined a node, there are different ways of referencing points of the node. To do so, you use the
following coordinate system:

Coordinate system node

This coordinate system is used to reference a specific point inside or on the border of a previously
defined node. It can be used in different ways, so let us go over them one by one.

You can use three options to specify which coordinate you mean:

/tikz/cs/name=({node name) (no default)
Specifies the node in which you which to specify a coordinate. The (node name) is the name that
was previously used to name the node using the name=(node name) option or the special node name
syntax.

/tikz/anchor=(anchor) (no default)

Specifies an anchor of the node. Here is an example:

class Shape

AN

class Rectangle‘ class Circle ’class Ellipse

127

\begin{tikzpicture}
\node (shape) at (0,2) [draw] {lclass Shapel};
\node (rect) at (-2,0) [draw] {lclass Rectanglel|};
\node (circle) at (2,0) [draw] {lclass Circlel};
\node (ellipse) at (6,0) [draw] {lclass Ellipsel};

\draw (node cs:name=circle,anchor=north) |- (0,1);
\draw (node cs:name=ellipse,anchor=north) |- (0,1);
\draw[-open triangle 90] (node cs:name=rect,anchor=north)
|- (0,1) -| (node cs:name=shape,anchor=south) ;
\end{tikzpicture}
/tikz/cs/angle=(degrees) (no default)

It is also possible to provide an angle instead of an anchor. This coordinate refers to a point of
the node’s border where a ray shot from the center in the given angle hits the border. Here is an

example:
\begin{tikzpicture}
\node (start) [draw,shape=ellipse] {start};
\foreach \angle in {-90, -80, ..., 90}

\draw (node cs:name=start,angle=\angle)
. controls +(\angle:1lcm) and +(-1,0) .. (2.5,0);
\end{tikzpicture}

It is possible to provide neither the anchor= option nor the angle= option. In this case, TikZ will
calculate an appropriate border position for you. Here is an example:

An elipse

\begin{tikzpicture}
\path (0,0) node(a) [ellipse,rotate=10,draw] {An ellipse}
(3,-1) node(b) [circle,draw] {A circle};
\draw[thick] (node cs:name=a) -- (node cs:name=b);
\end{tikzpicture}

TikZ will be reasonably clever at determining the border points that you “mean,” but, naturally, this
may fail in some situations. If TikZ fails to determine an appropriate border point, the center will be
used instead.

Automatic computation of anchors works only with the line-to operations --, the vertical/horizontal
versions |- and -1, and with the curve-to operation ... For other path commands, such as parabola or
plot, the center will be used. If this is not desired, you should give a named anchor or an angle anchor.

Note that if you use an automatic coordinate for both the start and the end of a line-to, as in --(node
cs:name=b)--, then two border coordinates are computed with a move-to between them. This is usually
exactly what you want.

If you use relative coordinates together with automatic anchor coordinates, the relative coordinates are
computed relative to the node’s center, not relative to the border point. Here is an example:

\tikz \draw (0,0) node(x) [draw] {Text}
rectangle (1,1)
T‘ATT (node cs:name=x) -- +(1,1);
xt

Similarly, in the following examples both control points are (1, 1):

\tikz \draw (0,0) node(x) [draw] {X}
(2,0) node(y) {Y}
(node cs:name=x) .. controls +(1,1) and +(-1,1) ..
Y (node cs:name=y);

128

The implicit way of specifying the node coordinate system is to simply use the name of the node in
parentheses as in (a) or to specify a name together with an anchor or an angle separated by a dot as
in (a.north) or (a.10).

Here is a more complete example:

ﬁaﬁ)g}e

P&tec ;;;;<<:
\,/////Xi/// éng%

<ﬁmpse P, \

A circle

\begin{tikzpicturel}[fill=blue!20]
\draw[help lines] (-1,-2) grid (6,3);
\path (0,0) node(a) [ellipse,rotate=10,draw,fill] {An ellipse}
(3,-1) node(b) [circle,draw,fill] {A circle}
(2,2) node(c) [rectangle,rotate=20,draw,fill] {A rectangle}
(5,2) node(d) [rectangle,rotate=-30,draw,fill] {Another rectanglel};
\draw[thick] (a.south) -- (b) -- (c) -- (d);
\draw[thick,red,->] (a) |- +(1,3) -| (c) |- (b);
\draw[thick,blue,<->] (b) .. controls +(right:2cm) and +(down:lcm) .. (d);
\end{tikzpicture}

13.2.4 Tangent Coordinate Systems

Coordinate system tangent

This coordinate system, which is available only when the TikZ library calc is loaded, allows you to
compute the point that lies tangent to a shape. In detail, consider a (node) and a (point). Now, draw a
straight line from the (point) so that it “touches” the (node) (more formally, so that it is tangent to this
(node)). The point where the line touches the shape is the point referred to by the tangent coordinate
system.

The following options may be given:

/tikz/cs/node=(node) (no default)
This key specifies the node on whose border the tangent should lie.

/tikz/cs/point=(point) (no default)
This key specifies the point through which the tangent should go.

/tikz/cs/solution=(number) (no default)

Specifies which solution should be used if there are more than one.

A special algorithm is needed in order to compute the tangent for a given shape. Currently, tangents
can be computed for nodes whose shape is one of the following:

e coordinate

e circle

129

\begin{tikzpicture}
<<(<;/7 \draw[help lines] (0,0) grid (3,2);

_ \coordinate (a) at (3,2);

\node [circle,draw] (c) at (1,1) [minimum size=40pt] {cl};

\draw[red] (a) -- (tangent cs:node=c,point={(a)},solution=1) --
(c.center) -- (tangent cs:node=c,point={(a)},solution=2) -- cycle;
\end{tikzpicture}

There is no implicit syntax for this coordinate system.

13.2.5 Defining New Coordinate Systems

While the set of coordinate systems that TikZ can parse via their special syntax is fixed, it is possible and
quite easy to define new explicitly named coordinate systems. For this, the following commands are used:

\tikzdeclarecoordinatesystem{(name)}{{code)}

This command declares a new coordinate system named (name) that can later on be used by writing
({name) cs:{arguments)). When TikZ encounters a coordinate specified in this way, the (arguments)
are passed to (code) as argument #1.

It is now the job of (code) to make sense of the (arguments). At the end of (code), the two TEX
dimensions \pgf@x and \pgf@y should be have the z- and y-canvas coordinate of the coordinate.

It is not necessary, but customary, to parse (arguments) using the key-value syntax. However, you can
also parse it in any way you like.

In the following example, a coordinate system cylindrical is defined.

. \makeatletter
* \define@key{cylindricalkeys}{angle}{\def\myangle{#1}}
5 \define@key{cylindricalkeys}{radius}{\def\myradius{#1}}
: \define@key{cylindricalkeys}{z}{\def\myz{#1}}
\tikzdeclarecoordinatesystem{cylindricall},
{4
\setkeys{cylindricalkeys}{#1}%
\pgfpointadd{\pgfpointxyz{0}{0}{\myz}}{\pgfpointpolarxy{\myangle}{\myradius}}

\begin{tikzpicture} [z=0.2pt]
\draw [->] (0,0,0) -- (0,0,350);

\foreach \num in {0,10,...,350}
\fill (cylindrical cs:angle=\num,radius=1,z=\num) circle (1pt);
\end{tikzpicture}

\tikzaliascoordinatesystem{({new name)}{{old name)}

Creates an alias of (old name).

13.3 Coordinates at Intersections

You will wish to compute the intersection of two paths. For the special and frequent case of two perpen-
dicular lines, a special coordinate system called perpendicular is available. For more general cases, the
intersection library can be used.

13.3.1 Intersections of Perpendicular Lines

A frequent special case of path intersections is the intersection of a vertical line going through a point p and
a horizontal line going through some other point ¢. For this situation there is a useful coordinate system.

Coordinate system perpendicular

You can specify the two lines using the following keys:

/tikz/cs/horizontal line through={({coordinate))} (no default)
Specifies that one line is a horizontal line that goes through the given coordinate.

130

/tikz/cs/vertical line through={({coordinate))} (no default)

Specifies that the other line is vertical and goes through the given coordinate.

However, in almost all cases you should, instead, use the implicit syntax. Here, you write ({p) |- (g))
or ({g) -1 (p)).

For example, (2,1 |- 3,4) and (3,4 -| 2,1) both yield the same as (2,4) (provided the zy-
coordinate system has not been modified).

The most useful application of the syntax is to draw a line up to some point on a vertical or horizontal
line. Here is an example:

q2 \begin{tikzpicture}

I \path (30:1cm) node(p1l) {p_1} (75:1cm) node(p2) {$p_2%3};
2

1 \draw (-0.2,0) -- (1.2,0) node(xline) [right] {q_1};
¢ \draw (2,-0.2) -- (2,1.2) node(yline) [above]l {q_2};

\draw[->] (p1) -- (p1 |- xline);
\draw[->] (p2) -- (p2 |- xline);
\draw[->] (p1) -- (p1 -| yline);
\draw[->] (p2) -- (p2 -| yline);
\end{tikzpicture}

13.3.2 Intersections of Arbitrary Paths

\usetikzlibrary{intersections} % ELX and plain T
\usetikzlibrary[intersections] % ConTgXt

This library enables the calculation of intersections of two arbitrary paths. However, due to the low
accuracy of TEX, the paths should not be “too complicated”. In particular, you should not try to
intersect paths consisting lots of very small segments such as plots or decorated paths.

To find the intersections of two paths in TikZ, they must be “named”. A “named path” is, quite simply,
a path that has been named using the following key:

/tikz/name path=(name) (no default)
/tikz/name path global=(name) (no default)

The effect of this key is that, after the path has been constructed, just before it is used, it is associated
with (name). For name path, this association survives beyond the final semi-colon of the path but not
the end of the surrounding scope. For name path global, the association will survive beyond any scope
as well. Handle with care.

Any paths created by nodes on the (main) path are ignored, unless this key is explicitly used. If the
same (name) is used for the main path and the node path(s), then the paths will be added together
and then associated with (name).

To find the intersection of named paths, the following key is used:

/tikz/name intersections={(options)} (no default)

This key changes the key path to /tikz/intersection and processes (options). These options de-
termine, among other things, which paths to use for the intersection. Having processed the options,
any intersections are then found. A coordinate is created at each intersection, which by default, will
be named intersection-1, intersection-2, and so on. Optionally, the prefix intersection can be
changed, and the total number of intersections stored in a TEX-macro.

Y””- \draw [name path=ellipse] (2,0.5) ellipse (0.75cm and 1lcm);

P
\———’%Tf”””l > \draw [name path=rectangle, rotate=10] (0.5,0.5) rectangle +(2,1);

\begin{tikzpicture}[every node/.style={opacity=1, black, above left}]
i}&\\ \draw [help lines] grid (3,2);

\fill [red, opacity=0.5, name intersections={of=ellipse and rectanglel}]
(intersection-1) circle (2pt) node {1}
(intersection-2) circle (2pt) node {2};
\end{tikzpicture}

The following keys can be used in (options):

131

/tikz/intersection/of=(name path 1)and(name path 2) (no default)

This key is used to specify the names of the paths to use for the intersection.

/tikz/intersection/name=(prefic) (no default, initially intersection)

This key specifies the prefix name for the coordinate nodes placed at each intersection.

/tikz/intersection/total=(macro) (no default)

This key will mean than the total number of intersections found will be stored in (macro).

\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);

afd 9
q \draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);
* \fill [name intersections={of=curve 1 and curve 2, name=i, total=\t}]
[red, opacity=0.5, every node/.style={above left, black, opacity=1}]
. \foreach \s in {1,...,\t}{(i-\s) circle (2pt) node {\footnotesize\sl}};
1 \end{tikzpicture}

/tikz/intersection/by=(comma-separated list) (no default)

This key allows you to specify a list of names for the intersection coordinates. The intersec-
tion coordinates will still be named (prefiz)-(number), but additionally the first coordinate will
also be named by the first element of the (comma-separated list). What happens is that the

(comma-separated list) is passed to the \foreach statement and for (list member) a coordinate is
created at the already-named intersection.

\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
\draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);

\fill [name intersections={of=curve 1 and curve 2, by={a,b}}]
(a) circle (2pt)
(b) circle (2pt);
\end{tikzpicture}

You can also use the ... notation of the \foreach statement inside the (comma-separated list).

In case an element of the (comma-separated list) starts with options in square brackets, these
options are used when the coordinate is created. A coordinate name can still, but need not, follow
the options. This makes it easy to add labels to intersections:

\begin{tikzpicture}
\clip (-2,-2) rectangle (2,2);
\draw [name path=curve 1] (-2,-1) .. controls (8,-1) and (-8,1) .. (2,1);
\draw [name path=curve 2] (-1,-2) .. controls (-1,8) and (1,-8) .. (1,2);

\fill [name intersections={
of=curve 1 and curve 2,

by={[label=center:a], [label=center:...], [label=center:i]}}];
\end{tikzpicture}

/tikz/intersection/sort by=(path name) (no default)

By default, the intersections are simply returned in the order that the intersection algorithm finds
them. Unfortunately, this is not necessarily a “helpful” ordering. This key can be used to sort the

132

intersections along the path specified by (path name), which should be one of the paths mentioned
in the /tikz/intersection/of key.

\begin{tikzpicture}
\clip (-0.5,-0.75) rectangle (3.25,2.25);
3 1 \foreach \pathname/\shift in {line/Ocm, curve/2cm}{
\tikzset{xshift=\shift}
2 2 \draw [->, name path=curve] (1,1.5) .. controls (-1,1) and (2,0.5) .. (0,0);
\draw [->, name path=line] (0,-.5) -- (1,2) ;
1 3 \fill [name intersections={of=line and curve,sort by=\pathname, name=i}]

[red, opacity=0.5, every node/.style={left=.25cm, black, opacity=1}]
\foreach \s in {1,2,3}{(i-\s) circle (2pt) node {\footnotesize\s}};
}
\end{tikzpicture}

13.4 Relative and Incremental Coordinates
13.4.1 Specifying Relative Coordinates

You can prefix coordinates by ++ to make them “relative.” A coordinate such as ++(1cm,Opt) means “lcm
to the right of the previous position.” Relative coordinates are often useful in “local” contexts:

\begin{tikzpicture}
\draw (0,0) -= ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (2,0) -— ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\draw (1.5,1.5) -- ++(1,0) -- ++(0,1) -- ++(-1,0) -- cycle;
\end{tikzpicture}

Instead of ++ you can also use a single +. This also specifies a relative coordinate, but it does not
“update” the current point for subsequent usages of relative coordinates. Thus, you can use this notation
to specify numerous points, all relative to the same “initial” point:

\begin{tikzpicture}
\draw (0,0) -- +(1,0) -- +(1,1) -- +(0,1) -- cycle;
\draw (2,0) -- +(1,0) —- +(1,1) -- +(0,1) -- cycle;
\draw (1.5,1.5) -- +(1,0) —- +(1,1) -- +(0,1) -- cycle;
\end{tikzpicture}

There is a special situation, where relative coordinates are interpreted differently. If you use a relative
coordinate as a control point of a Bézier curve, the following rule applies: First, a relative first control point
is taken relative to the beginning of the curve. Second, a relative second control point is taken relative to
the end of the curve. Third, a relative end point of a curve is taken relative to the start of the curve.

This special behavior makes it easy to specify that a curve should “leave or arrives from a certain
direction” at the start or end. In the following example, the curve “leaves” at 30° and “arrives” at 60°:

\begin{tikzpicture}
\draw (1,0) .. controls +(30:1cm) and +(60:1cm) .. (3,-1);
\draw [gray,->] (1,0) -- +(30:1cm);
\draw [gray,<-] (3,-1) -- +(60:1cm);

\end{tikzpicture}

13.4.2 Relative Coordinates and Scopes

An interesting question is, how do relative coordinates behave in the presence of scopes? That is, suppose
we use curly braces in a path to make part of it “local,” how does that affect the current position? On the
one hand, the current position certainly changes since the scope only affects options, not the path itself. On
the other hand, it may be useful to “temporarily escape” from the updating of the current point.

Since both interpretations of how the current point and scopes should “interact” are useful, there is a
(local!) option that allows you to decide which you need.

133

/tikz/current point is local=(boolean) (no default, initially false)

Normally, the scope path operation has no effect on the current point. That is, curly braces on a path
have no effect on the current position:

\begin{tikzpicture}
\draw (0,0) -= ++(1,0) -- ++(0,1) -- ++(-1,0);
\draw[red] (2,0) —-- ++(1,0) { -- ++(0,1) } —-- ++(-1,0);
\end{tikzpicture}

If you set this key to true, this behaviour changes. In this case, at the end of a group created on a path,
the last current position reverts to whatever value it had at the beginning of the scope. More precisely,
when TikZ encounters } on a path, it checks whether at this particular moment the key is set to true.
If so, the current position reverts to the value is had when the matching { was read.
\begin{tikzpicture}

\draw (0,0) -= ++(1,0) -- ++(0,1) -- ++(-1,0);

\draw[red] (2,0) -- ++(1,0)

{ [current point is local]l -- ++(0,1) } -- ++(-1,0);

\end{tikzpicture}

In the above example, we could also have given the option outside the scope, for instance as a parameter
to the whole scope.

13.5 Coordinate Calculations

\usetikzlibrary{calc} % EGX and plain TX
\usetikzlibrary[calc] % ConTt

You need to load this library in order to use the coordinate calculation functions described in the present
section.

It is possible to do some basic calculations that involve coordinates. In essence, you can add and subtract
coordinates, scale them, compute midpoints, and do projections. For instance, ($(a) + 1/3*(1cm,0)$) is
the coordinate that is 1/3cm to the right of the point a:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

BE \node (a) at (1,1) {A};
\fill [red] ($(a) + 1/3*(1cm,0)$) circle (2pt);
\end{tikzpicture}

13.5.1 The General Syntax

The general syntax is the following:
([{options)1${coordinate computation)$).

As you can see, the syntax uses the TEX math symbol $ to indicate that a “mathematical computation”
is involved. However, the $ has no other effect, in particular, no mathematical text is typeset.
The (coordinate computation) has the following structure:

1. It starts with
(factor)*(coordinate) (modifiers)
2. This is optionally followed by + or - and then another
(factor)*(coordinate) (modifiers)
3. This is once more followed by + or - and another of the above modified coordinate; and so on.

In the following, the syntax of factors and of the different modifiers is explained in detail.

134

13.5.2 The Syntax of Factors

The (factor)s are optional and detected by checking whether the (coordinate computation) starts with a (.
Also, after each & a (factor) is present if, and only if, the + or - sign is not directly followed by (.

If a (factor) is present, it is evaluated using the \pgfmathparse macro. This means that you can use
pretty complicated computations inside a factor. A (factor) may even contain opening parentheses, which
creates a complication: How does TikZ know where a (factor) ends and where a coordinate starts? For
instance, if the beginning of a (coordinate computation) is 2* (3+4. .., it is not clear whether 3+4 is part of a
(coordinate) or part of a (factor). Because of this, the following rule is used: Once it has been determined,
that a (factor) is present, in principle, the (factor) contains everything up to the next occurrence of *(.
Note that there is no space between the asterisk and the parenthesis.

It is permissible to put the (factor) is curly braces. This can be used whenever it is unclear where the
(factor) would end.

Here are some examples of coordinate specifications that consist of exactly one (factor) and one
(coordinate):

\begin{tikzpicture}
[\draw [help lines] (0,0) grid (3,2);

\fill [green] (${1+1}*(1,.5)$) circle (2pt);

\fill [blue] ($cos(0)*sin(90)*(1,1)$) circle (2pt);

\fill [black] (${3*(4-3)}*(1,0.5)$) circle (2pt);
\end{tikzpicture}

S \£fill [red] ($2*(1,1)$) circle (2pt);

13.5.3 The Syntax of Partway Modifiers

A (coordinate) can be followed by different (modifiers). The first kind of modifier is the partway modifier.
The syntax (which is loosely inspired by Uwe Kern’s xcolor package) is the following:

(coordinate) ! (number)! (angle) : (second coordinate)

One could write for instance
(1,2)!.751(3,4)

The meaning of this is: “Use the coordinate that is three quarters on the way from (1,2) to (3,4).”
In general, (coordinate)!{number)!{coordinate y) yields the coordinate (1 — (number)){coordinate) +
(number){coordinate y). Note that this is a bit different from the way the (number) is interpreted in the
xcolor package: First, you use a factor between 0 and 1, not a percentage, and, second, as the (number)
approaches 1, we approach the second coordinate, not the first. It is permissible to use (numbers) that are
smaller than 0 or larger than 1. The (number) is evaluated using the \pgfmathparse command and, thus,
it can involve complicated computations.

\begin{tikzpicture}
{ \draw [help lines] (0,0) grid (3,2);

n \draw (1,0) -- (3,2);

\foreach \i in {0,0.2,0.5,0.9,1}
\node at ($(1,0)!\i!(3,2)$) {\i};
\end{tikzpicture}

The (second coordinate) may be prefixed by an (angle), separated with a colon, asin (1,1)!.5!60:(2,2).
The general meaning of (a)!(factor)!(angle):(b) is “First, consider the line from (a) to (b). Then rotate
this line by (angle) around the point (a). Then the two endpoints of this line will be (a) and some point {(c).
Use this point (c¢) for the subsequent computation, namely the partway computation.”

Here are two examples:

135

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,3);
/] \coordinate (a) at (1,0);
’/ \coordinate (b) at (3,2);
\draw[->] (a) -- (b);
\coordinate (c) at ($ (a)!1! 10:(b) $);
\draw[->,red] (a) -- (c);
\fill ($ (a)!.5! 10:(b) $) circle (2pt);
\end{tikzpicture}
\begin{tikzpicture}
\draw [help lines] (0,0) grid (4,4);
\foreach \i in {0,0.1,...,2}
0®% \fill ($(2,2) !'\i! \i*180:(3,2)$) circle (2pt);
n‘ \end{tikzpicture}
o
> °
® ®
® e o °

You can repeatedly apply modifiers. That is, after any modifier you can add another (possibly different)
modifier.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

\draw (0,0) —-- (3,2);

\draw[red] ($(0,0)!.3!(3,2)$) -- (3,0);
T \filllred] ($(0,0)!.3!(3,2)!.7!(3,0)$) circle (2pt);
\end{tikzpicture}

13.5.4 The Syntax of Distance Modifiers

A distance modifier has nearly the same syntax as a partway modifier, only you use a (dimension) (something
like 1cm) instead of a (factor) (something like 0.5):

(coordinate) ! (dimension) ! (angle): (second coordinate)

When you write (a)!{dimension)!(b), this means the following: Use the point that is distanced
(dimension) from (a) on the straight line from (a) to (b). Here is an example:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
1” m \draw (1,0) -- (3,2);
. \foreach \i in {Ocm,1cm,15mm}
\Dreiaat \node at ($(1,0)!\i!(3,2)$) {\i};

\end{tikzpicture}

As before, if you use a (angle), the (second coordinate) is rotated by this much around the {coordinate)
before it is used.

The combination of an {angle) of 90 degrees with a distance can be used to “offset” a point relative to
a line. Suppose, for instance, that you have computed a point (c) that lies somewhere on a line from (a)
to (b) and you now wish to offset this point by 1cm so that the distance from this offset point to the line is
1cm. This can be achieved as follows:

136

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

= \coordinate (b) at (3,1);

3 \coordinate (a) at (1,0);

\draw (a) -- (b);

\coordinate (c) at ($ (a)!.25!(b) $);
\coordinate (d) at ($ (c)!1cm!90:(b) $);

\draw [<->] (c) -- (d) node [sloped,midway,above] {lcm};
\end{tikzpicture}

13.5.5 The Syntax of Projection Modifiers

The projection modifier is also similar to the above modifiers: It also gives a point on a line from the
(coordinate) to the (second coordinate). However, the (number) or (dimension) is replaced by a (projection
coordinate):

(coordinate) ! (projection coordinate)! (angle): (second coordinate)
Here is an example:
(1,2)!1(0,5)!(3,4)

The effect is the following: We project the (projection coordinate) orthogonally onto to the line from
(coordinate) to (second coordinate). This makes it easy to compute projected points:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

/
\coordinate (a) at (0,1);
::::::::Eﬁg/ \coordinate (b) at (3,2);

\coordinate (c) at (2.5,0);

\draw (a) -- (b) -- (c) -- cycle;

\draw [red] (a) = ($M ' @' E)$;

\draw[orange] (b) -- ($(a)!(b)!(c)$);

\draw [blue] (c) —— (3!)'M;
\end{tikzpicture}

137

14 Syntax for Path Specifications

A path is a series of straight and curved line segments. It is specified following a \path command and the
specification must follow a special syntax, which is described in the subsections of the present section.

\path(specification) ;
This command is available only inside a {tikzpicture} environment.
The (specification) is a long stream of path operations. Most of these path operations tell TikZ how the
path is build. For example, when you write --(0,0), you use a line-to operation and it means “continue
the path from wherever you are to the origin.”

At any point where TikZ expects a path operation, you can also give some graphic options, which is a
list of options in brackets, such as [rounded corners]. These options can have different effects:

1. Some options take “immediate” effect and apply to all subsequent path operations on the path. For
example, the rounded corners option will round all following corners, but not the corners “before”
and if the sharp corners is given later on the path (in a new set of brackets), the rounding effect
will end.

\tikz \draw (0,0) -- (1,1)
[rounded corners] -- (2,0) -- (3,1)
[sharp corners] -- (3,0) -- (2,1);

Another example are the transformation options, which also apply only to subsequent coordinates.

2. The options that have immediate effect can be “scoped” by putting part of a path in curly braces.
For example, the above example could also be written as follows:

\tikz \draw (0,0) -- (1,1)
{[rounded corners] -- (2,0) -- (3,1)}
== (3,0) == (2,1);

3. Some options only apply to the path as a whole. For example, the color= option for determining
the color used for, say, drawing the path always applies to all parts of the path. If several different
colors are given for different parts of the path, only the last one (on the outermost scope) “wins”:

\tikz \draw (0,0) -- (1,1)
[color=red] -- (2,0) -- (3,1)
[color=blue] -- (3,0) -- (2,1);

Most options are of this type. In the above example, we would have had to “split up” the path
into several \path commands:

\tikz{\draw (0,0) -- (1,1);
\draw [color=red] (2,0) -- (3,1);
\draw [color=blue] (3,0) -- (2,1);}

By default, the \path command does “nothing” with the path, it just “throws it away.” Thus, if you
write \path(0,0)--(1,1);, nothing is drawn in your picture. The only effect is that the area occupied
by the picture is (possibly) enlarged so that the path fits inside the area. To actually “do” something
with the path, an option like draw or £ill must be given somewhere on the path. Commands like
\draw do this implicitly.

Finally, it is also possible to give node specifications on a path. Such specifications can come at different
locations, but they are always allowed when a normal path operation could follow. A node specification
starts with node. Basically, the effect is to typeset the node’s text as normal TEX text and to place it
at the “current location” on the path. The details are explained in Section 16.

Note, however, that the nodes are not part of the path in any way. Rather, after everything has been
done with the path what is specified by the path options (like filling and drawing the path due to a £i1l
and a draw option somewhere in the (specification)), the nodes are added in a post-processing step.

The following style influences scopes:

138

/tikz/every path (style, initially empty)

This style is installed at the beginning of every path. This can be useful for (temporarily) adding,
say, the draw option to everything in a scope.

\begin{tikzpicture}
[fill=examplefill, % only sets the color

every path/.style={draw}] 7 all paths are drawn
\fill (0,0) rectangle +(1,1);
\shade (2,0) rectangle +(1,1);

\end{tikzpicture}

/tikz/insert path=(path) (no default)

This key can be used inside an option to add something to the current path. This is mostly useful for
defining styles that create graphic contents. This option should be used with care, for instance it should
not be used as an argument of, say, a node. In the following example, we use a style to add little circles

to a path.
\tikz [c/.style={insert path={circle[radius=2pt]}}]
\draw (0,0) -- (1,1) [c] -- (3,2) [cl;
The effect is the same as of (0,0) -- (1,1) circle[radius=2pt] -- (3,2) circle[radius=2pt].

The following options are for experts only:

/tikz/append after command=(path) (no default)

Some of the path commands described in the following sections take optional arguments. For these
commands, when you use this key inside these options, the (path) will be inserted after the path
command is done. For instance, when you give this command in the option list of a node, the (path)
will be added after the node. This is used by, for instance, the 1label option to allow you to specify a
label in the option list of a node, but have this label cause a node to be added after another node.

\tikz \draw node [append after command={(foo)--(1,1)},draw] (foo){fool};

If this key is called multiple times, the effects accumulate, that is, all of the paths are added in the order
to keys were found.
/tikz/prefix after command=(path) (no default)

Works like append after command, only the accumulation order is inverse: The (path) is added before
any earlier paths added using either append after command or prefix after command.

14.1 The Move-To Operation

The perhaps simplest operation is the move-to operation, which is specified by just giving a coordinate where
a path operation is expected.

\path ... (coordinate) ...;

The move-to operation normally starts a path at a certain point. This does not cause a line segment to
be created, but it specifies the starting point of the next segment. If a path is already under construction,
that is, if several segments have already been created, a move-to operation will start a new part of the
path that is not connected to any of the previous segments.

\begin{tikzpicture}

\draw (0,0) --(2,0) (0,1) --(2,1);
\end{tikzpicture}

In the specification (0,0) --(2,0) (0,1) --(2,1) two move-to operations are specified: (0,0) and
(0,1). The other two operations, namely --(2,0) and --(2,1) are line-to operations, described next.

139

14.2 The Line-To Operation
14.2.1 Straight Lines

\path ... -—(coordinate) ...;
The line-to operation extends the current path from the current point in a straight line to the given
coordinate. The “current point” is the endpoint of the previous drawing operation or the point specified
by a prior move-to operation.
You use two minus signs followed by a coordinate in round brackets. You can add spaces before and
after the —-.
When a line-to operation is used and some path segment has just been constructed, for example by
another line-to operation, the two line segments become joined. This means that if they are drawn, the
point where they meet is “joined” smoothly. To appreciate the difference, consider the following two
examples: In the left example, the path consists of two path segments that are not joined, but that
happen to share a point, while in the right example a smooth join is shown.

\begin{tikzpicture}[line width=10pt]

\draw (0,0) --(1,1) (1,1) --(2,0);

\draw (3,0) -- (4,1) -- (5,0);

\useasboundingbox (0,1.5); % make bounding box higher
\end{tikzpicture}

14.2.2 Horizontal and Vertical Lines

Sometimes you want to connect two points via straight lines that are only horizontal and vertical. For this,
you can use two path construction operations.

\path ... -I|{coordinate) ... ;

This operation means “first horizontal, then vertical.”

\begin{tikzpicture}
E \draw (0,0) node(a) [draw] {A} (1,1) node(b) [draw] {B};
\draw (a.north) |- (b.west);
\draw[color=red] (a.east) -| (2,1.5) -| (b.north);
\end{tikzpicture}

\path ... |-(coordinate) ...;

This operations means “first vertical, then horizontal.”

14.3 The Curve-To Operation
The curve-to operation allows you to extend a path using a Bézier curve.

\pathcontrols(c)and(d)..(y) ...;
This operation extends the current path from the current point, let us call it z, via a curve to a the
current point y. The curve is a cubic Bézier curve. For such a curve, apart from y, you also specify
two control points ¢ and d. The idea is that the curve starts at x, “heading” in the direction of c.
Mathematically spoken, the tangent of the curve at x goes through c¢. Similarly, the curve ends at y,
“coming from” the other control point, d. The larger the distance between x and ¢ and between d and v,
the larger the curve will be.

If the “and(d)” part is not given, d is assumed to be equal to c.

140

\begin{tikzpicture}
\draw[line width=10pt] (0,0) .. controls (1,1) .. (4,0)
. controls (5,0) and (5,1) .. (4,1);
\draw[color=gray] (0,0) -- (1,1) -- (4,0) —- (5,0) -- (5,1) -- (4,1);
\end{tikzpicture}

As with the line-to operation, it makes a difference whether two curves are joined because they resulted
from consecutive curve-to or line-to operations, or whether they just happen to have the same ending:

\begin{tikzpicture}[line width=10pt]
\draw (0,0) -- (1,1) (1,1) .. comtrols (1,0) and (2,0) .. (2,0);
\draw (3,0) -- (4,1) .. controls (4,0) and (5,0) .. (5,0);
\useasboundingbox (0,1.5); % make bounding box higher
\end{tikzpicture}

14.4 The Cycle Operation

\path ... --cycle ...;

This operation adds a straight line from the current point to the last point specified by a move-to
operation. Note that this need not be the beginning of the path. Furthermore, a smooth join is created
between the first segment created after the last move-to operation and the straight line appended by
the cycle operation.

Consider the following example. In the left example, two triangles are created using three straight lines,
but they are not joined at the ends. In the second example cycle operations are used.

4d4 44

\begin{tikzpicture}[line width=10pt]
\draw (0,0) -- (1,1) -- (1,0) -- (0,0) (2,0) —- (3,1) -- (3,0) -- (2,0);
\draw (5,0) -- (6,1) -- (6,0) -- cycle (7,0) -- (8,1) —- (8,0) -- cycle;
\useasboundingbox (0,1.5); % make bounding box higher
\end{tikzpicture}

14.5 The Rectangle Operation

A rectangle can obviously be created using four straight lines and a cycle operation. However, since rectangles
are needed so often, a special syntax is available for them.

\path ... rectangle(corner) ...;

When this operation is used, one corner will be the current point, another corner is given by (corner),
which becomes the new current point.

\begin{tikzpicture}

\draw (0,0) rectangle (1,1);

\draw (.5,1) rectangle (2,0.5) (3,0) rectangle (3.5,1.5) -- (2,0);
\end{tikzpicture}

14.6 Rounding Corners

All of the path construction operations mentioned up to now are influenced by the following option:

141

/tikz/rounded corners={inset) (default 4pt)

When this option is in force, all corners (places where a line is continued either via line-to or a curve-to
operation) are replaced by little arcs so that the corner becomes smooth.

\tikz \draw [rounded cormers] (0,0) -- (1,1)
/V\ -~ (2,0) .. controls (3,1) .. (4,0);

The (inset) describes how big the corner is. Note that the (inset) is not scaled along if you use a scaling
option like scale=2.

N \begin{tikzpicture}
<« / \draw[color=gray,very thin] (10pt,15pt) circle[radius=10pt];

\draw [rounded corners=10pt] (0,0) -- (Opt,25pt) -- (40pt,25pt);
\end{tikzpicture}

You can switch the rounded corners on and off “in the middle of path” and different corners in the same
path can have different corner radii:

\begin{tikzpicture}
\draw (0,0) [rounded corners=10pt] -- (1,1) -- (2,1)
[sharp corners] -- (2,0)
[rounded corners=bpt] -- cycle;
\end{tikzpicture}

Here is a rectangle with rounded corners:

() \tikz \draw[rounded corners=lex] (0,0) rectangle (20pt,2ex);

You should be aware, that there are several pitfalls when using this option. First, the rounded corner
will only be an arc (part of a circle) if the angle is 90°. In other cases, the rounded corner will still be
round, but “not as nice.”

Second, if there are very short line segments in a path, the “rounding” may cause inadvertent effects.
In such case it may be necessary to temporarily switch off the rounding using sharp corners.

/tikz/sharp corners (no value)

This options switches off any rounding on subsequent corners of the path.

14.7 The Circle and Ellipse Operations

Circles and ellipses are common path elements for which there is a special path operation.

\path ... circle([(options)] ...;

This command adds a circle to the current path where the center of the circle is the current point
by default, but you can use the at option to change this. The new current point of the path will be
(typically just remain) the center of the circle.

The radius of the circle is specified using the following options:

/tikz/x radius=(value) (no default)

Sets the horizontal radius of the circle (which, when this value is different form the vertical radius,
is actually an ellipse). The (value) may either be a dimension or a dimensionless number. In the
latter case, the number is interpreted in the xy-coordinate system (if the z-unit is set to, say, 2cm,
then x radius=3 will have the same effect as x radius=6cm).

/tikz/y radius=(value) (no default)
Works like the x radius.

/tikz/radius=(value) (no default)

Sets the x radius and y radius simultaneously.

142

/tikz/at=(coordinate) (no default)

If this option is explicitly set inside the (options) (or indirectly via the every circle style), the
(coordinate) is used as the center of the circle instead of the current point. Setting at to some value
in an enclosing scope has no effect.

The (options) may also contain additional options like, say, a rotate or scale, that will only have an
effect on the circle.

\begin{tikzpicture}

\draw (1,0) circle [radius=1.5];

\fill (1,0) circle [x radius=1cm, y radius=5mm, rotate=30];
\end{tikzpicture}

It is possible to set the radius also in some enclosing scope, in this case the options can be left out (but
see the note below on what may follow:

\begin{tikzpicture} [radius=2pt]
\draw (0,0) circle -- (1,1) circle -- ++(0,1) circle;
\end{tikzpicture}

The following style is used with every circle:

/tikz/every circle (style, no value)

You can use this key to setup, say, a default radius for every circle. The key will also be used with
the ellipse operation.

In case you feel that the names radius and x radius are too long for your taste, you can easily created
shorter aliases:

\tikzset{r/.style={radius=#1},rx/.style={x radius=#1},ry/.style={y radius=#1}}

You can then say circle [r=1cm] or circle [rx=1,ry=1.5]. The reason TikZ uses the longer names
by default is that it encourages people to write more readable code.

Note: There also exists an older syntax for circles, where the radius of the circle is given in parentheses
right after the circle command as in circle (1pt). Although this syntax is a bit more succinct, it
is harder to understand for readers of the code and the use of parentheses for something other than a
coordinate is ill-chosen.

TikZ will use the following rule to determine whether the old or the normal syntax is used: If circle
is directly followed by something that (expands to) an opening parenthesis, then the old syntax is used
and inside these following parentheses there must be a single number or dimension representing a radius.
In all other cases the new syntax is used.

\path ... ellipsel{options)] ...;

This command has exactly the same effect as circle. The older syntax for this command is ellipse
({z radius) and (y radius)). As for the circle command, this syntax is not as good as the standard
syntax.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

\draw (1,1) ellipse [x radius=lcm,y radius=.5cm];

%:::: \end{tikzpicture}

143

14.8 The Arc Operation

The arc operation allows you to add an arc to the current path.

\path ... arc[{options)] ...;

The arc operation adds a part of an ellipse to the current path. The radii of the ellipse are given by
the values of x radius and y radius, which should be set in the (options). The arc will start at the
current point and will end at the end of the arc. The arc will start and end at angles computed from the
three keys start angle, end angle, and delta angle. Normally, the first two keys specify the start
and end angle. However, in case one of them is empty, it is computed from the other key plus or minus
the delta angle. In detail, if end angle is empty, it is set to the start angle plus the delta angle. If
the start angle is missing, it is set to the end angle minus the delta angle. If all three keys are set, the
delta angle is ignored.

/tikz/start angle=(degrees) (no default)
Sets the start angle.

/tikz/end angle={degrees) (no default)
Sets the end angle.

/tikz/delta angle=(degrees) (no default)
Sets the delta angle.

N 2 O

\begin{tikzpicture} [radius=1cm]
\draw (0,0) arc[start angle=180, end angle=90]
-- (2,.5) arc[start angle=90, delta angle=-90];
\draw (4,0) -- +(30:1cm)
arc [start angle=30, delta angle=30] -- cycle;
\draw (8,0) arc [start angle=0, end angle=270,

x radius=1lcm, y radius=bmm] -- cycle;
\end{tikzpicture}
\begin{tikzpicturel}[radius=1cm,delta angle=30]
\draw (-1,0) -- +(3.5,0);
o \draw (1,0) ++(210:2cm) -- +(30:4cm);
ﬂ \draw (1,0) +(0:1cm) arc [start angle=0];
\draw (1,0) +(180:1cm) arc [start angle=180];
/////E////// \path (1,0) ++(15:.75cm) node{α};
\path (1,0) ++(15:-.75cm) node{βl};
\end{tikzpicture}

There also exists a shorter syntax for the arc operation, namely arc begin directly followed by ({start
angley: (end angle): (radius)). However, this syntax is harder to read, so the normal syntax should be
preferred in general.

14.9 The Grid Operation
You can add a grid to the current path using the grid path operation.

\path ... grid[(options)]{corner) ...;
This operations adds a grid filling a rectangle whose two corners are given by (corner) and by the previous
coordinate. Thus, the typical way in which a grid is drawn is \draw (1,1) grid (3,3);, which yields
a grid filling the rectangle whose corners are at (1,1) and (3,3). All coordinate transformations apply
to the grid.

144

\tikz[rotate=30] \draw[step=imm] (0,0) grid (2,2);

The (options), which are local to the grid operation, can be used to influence the appearance of the
grid. The stepping of the grid is governed by the following options:

/tikz/step=(number or dimension or coordinate) (no default, initially 1cm)

Sets the stepping in both the x and y-direction. If a dimension is provided, this is used directly. If
a number is provided, this number is interpreted in the zy-coordinate system. For example, if you
provide the number 2, then the z-step is twice the z-vector and the y-step is twice the y-vector set
by the x= and y= options. Finally, if you provide a coordinate, then the z-part of this coordinate
will be used as the z-step and the y-part will be used as the y-coordinate.

_/

\begin{tikzpicture} [x=.5cm]
\draw[thick] (0,0) grid [step=1] (3,2);
\draw[red] (0,0) grid [step=.75cm] (3,2);
\end{tikzpicture}
\begin{tikzpicture}
\draw (0,0) circle [radius=1];
\draw[blue]l (0,0) grid [step=(45:1)]1 (3,2);
\end{tikzpicture}

A complication arises when the z- and/or y-vector do not point along the axes. Because
of this, the actual rule for computing the xz-step and the y-step is the following: As the
- and y-steps we use the x- and y-components or the following two vectors: The first vec-
tor is either ((z-grid-step-number),0) or ({z-grid-step-dimension),0pt), the second vector is
(0, (y-grid-step-number)) or (Opt, (z-grid-step-dimension)).

/tikz/xstep=(dimension or number) (no default, initially 1cm)

Sets the stepping in the z-direction.

\tikz \draw (0,0) grid [xstep=.5,ystep=.75] (3,2);

/tikz/ystep=(dimension or number) (no default, initially 1cm)

Sets the stepping in the y-direction.

It is important to note that the grid is always “phased” such that it contains the point (0, 0) if that point
happens to be inside the rectangle. Thus, the grid does not always have an intersection at the corner
points; this occurs only if the corner points are multiples of the stepping. Note that due to rounding
errors, the “last” lines of a grid may be omitted. In this case, you have to add an epsilon to the corner
points.

The following style is useful for drawing grids:

145

/tikz/help lines (style, initially 1ine width=0.2pt,gray)
This style makes lines “subdued” by using thin gray lines for them. However, this style is not
installed automatically and you have to say for example:

\tikz \draw[help lines] (0,0) grid (3,3);

14.10 The Parabola Operation

The parabola path operation continues the current path with a parabola. A parabola is a (shifted and
scaled) curve defined by the equation f(z) = 22 and looks like this: \/.

\path ... parabolal(options)lbend(bend coordinate){coordinate) ... ;

This operation adds a parabola through the current point and the given (coordinate). If the bend is
given, it specifies where the bend should go; the (options) can also be used to specify where the bend
is. By default, the bend is at the old current point.

\begin{tikzpicture}
\draw (0,0) rectangle (1,1.5)
(0,0) parabola (1,1.5);
\draw[xshift=1.5cm] (0,0) rectangle (1,1.5)
(0,0) parabola[bend at end] (1,1.5);
\draw [xshift=3cm] (0,0) rectangle (1,1.5)
(0,0) parabola bend (.75,1.75) (1,1.5);
\end{tikzpicture}

The following options influence parabolas:

/tikz/bend={coordinate) (no default)

Has the same effect as saying bend(coordinate) outside the (options). The option specifies that
the bend of the parabola should be at the given (coordinate). You have to take care yourself
that the bend position is a “valid” position; which means that if there is no parabola of the form
f(x) = ax? + bx + ¢ that goes through the old current point, the given bend, and the new current
point, the result will not be a parabola.

There is one special property of the (coordinate): When a relative coordinate is given like +(0,0),
the position relative to which this coordinate is “flexible.” More precisely, this position lies some-
where on a line from the old current point to the new current point. The exact position depends
on the next option.

/tikz/bend pos=(fraction) (no default)
Specifies where the “previous” point is relative to which the bend is calculated. The previous point
will be at the (fraction)th part of the line from the old current point to the new current point.
The idea is the following: If you say bend pos=0 and bend +(0,0), the bend will be at the old
current point. If you say bend pos=1 and bend +(0,0), the bend will be at the new current point.
If you say bend pos=0.5 and bend +(0,2cm) the bend will be 2cm above the middle of the line
between the start and end point. This is most useful in situations such as the following:

\draw[help lines] (0,0) grid (3,2);
\draw (-1,0) parabola[bend pos=0.5] bend +(0,2) +(3,0);

\begin{tikzpicture}
\end{tikzpicture}

In the above example, the bend +(0,2) essentially means “a parabola that is 2cm high” and +(3,0)
means “and 3cm wide.” Since this situation arises often, there is a special shortcut option:

146

/tikz/parabola height=(dimension) (no default)
This option has the same effect as [bend pos=0.5,bend={+(0pt, (dimension))}].

\draw[help lines] (0,0) grid (3,2);
\draw (-1,0) parabola[parabola height=2cm] +(3,0);

\begin{tikzpicture}
\end{tikzpicture}

The following styles are useful shortcuts:

/tikz/bend at start (style, no value)

This places the bend at the start of a parabola. It is a shortcut for the following options: bend
pos=0,bend={+(0,0)}.

/tikz/bend at end (style, no value)
This places the bend at the end of a parabola.

14.11 The Sine and Cosine Operation

The sin and cos operations are similar to the parabola operation. They, too, can be used to draw (parts
of) a sine or cosine curve.

\path ... sin{coordinate) ...;

The effect of sin is to draw a scaled and shifted version of a sine curve in the interval [0,7/2]. The
scaling and shifting is done in such a way that the start of the sine curve in the interval is at the old
current point and that the end of the curve in the interval is at (coordinate). Here is an example that
should clarify this:

\tikz \draw (0,0) rectangle (1,1) (0,0) sin (1,1)
(2,0) rectangle +(1.57,1) (2,0) sin +(1.57,1);

\path ... cos{coordinate) ...;

This operation works similarly, only a cosine in the interval [0, /2] is drawn. By correctly alternating
sin and cos operations, you can create a complete sine or cosine curve:

\begin{tikzpicture}[xscale=1.57]

\draw (0,0) sin (1,1) cos (2,0) sin (3,-1) cos (4,0) sin (5,1);

\draw[color=red] (0,1.5) cos (1,0) sin (2,-1.5) cos (3,0) sin (4,1.5) cos (5,0);
\end{tikzpicture}

Note that there is no way to (conveniently) draw an interval on a sine or cosine curve whose end points
are not multiples of 7/2.

14.12 The SVG Operation

The svg operation can be used to extend the current path by a path given in the SvG path data syntax.
This syntax is described in detail in Section 8.3 of the SVG 1.1 specification, please consult this specification
for details.

147

\path ... svgl[(options)]"(path data)" ...;
This operation adds the path specified in the (path data) in SVG 1.1 PATH DATA syntax to the current
path. Unlike the SvG-specification, it ¢s permissible that the path data does not start with a moveto
command (m or M), in which case the last point of the current path is used as start point. The op-
tional (options) apply locally to this path operation, typically you will use them to setup, say, some
transformations.

\begin{tikzpicture}
\filldraw [fill=red!20] (0,1) svglscale=2] "h 10 v 10 h -10"
node [above left] {upper left} -- cycle;

/ \draw svg "M 0 O L 20 20 h 10 a 10 10 0 0 0 -20 0";
\end{tikzpicture}

An sva coordinate like 10 20 is always interpreted as (10pt,20pt), so the basic unit is always points
(pt). The zy-coordinate system is not used. However, you can use scaling to (locally) change the basic
unit. For instance, svgl[scale=1cm] (yes, this works, although some rather evil magic is involved) will
cause lcm to be the basic unit.

upper left

Warning: The arc operations (a and A) are not numerically stable. This means that they will be quite
imprecise, except when the angle is a multiple of 90° (as is, fortunately, most often the case).

14.13 The Plot Operation

The plot operation can be used to append a line or curve to the path that goes through a large number of
coordinates. These coordinates are either given in a simple list of coordinates, read from some file, or they
are computed on the fly.

Since the syntax and the behaviour of this command are a bit complex, they are described in the separated
Section 19.

14.14 The To Path Operation

The to operation is used to add a user-defined path from the previous coordinate to the following coordinate.
When you write (a) to (b), a straight line is added from a to b, exactly as if you had written (a) -- (b).
However, if you write (a) to [out=135,in=45] (b) a curve is added to the path, which leaves at an angle
of 135° at a and arrives at an angle of 45° at b. This is because the options in and out trigger a special
path to be used instead of the straight line.

\path ... to[{options)] (nodes) ({coordinate)) ...;

This path operation inserts the path current set via the to path option at the current position. The
(options) can be used to modify (perhaps implicitly) the to path and to setup how the path will be
rendered.

Before the to path is inserted, a number of macros are setup that can “help” the to path. These are
\tikztostart, \tikztotarget, and \tikztonodes; they are explained in the following.

Start and Target Coordinates. The to operation is always followed by a (coordinate), called the
target coordinate. The macro \tikztotarget is set to this coordinate (without the parentheses).
There is also a start coordinate, which is the coordinate preceding the to operation. This coordinate
can be accessed via the macro \tikztostart. In the following example, for the first to, the macro
\tikztostart is Opt,Opt and the \tikztotarget is 0,2. For the second to, the macro \tikztostart
is 10pt, 10pt and \tikztotarget is a.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw (0,0) to (0,2);

\node (a) at (2,2) {a};

\draw[red] (10pt,10pt) to (a);
\end{tikzpicture}

Nodes on tos. It is possible to add nodes to the paths constructed by a to operation. To do so, you
specify the nodes between the to keyword and the coordinate (if there are options to the to operation,

148

these come first). The effect of (a) to node {x} (b) (typically) is the same as if you had written (a)
-- node {x} (b), namely that the node is placed on the to. This can be used to add labels to tos:

\begin{tikzpicture}

* \draw (0,0) to node [sloped,above]l {x} (3,2);

\draw (0,0) to[out=90,in=180] node [sloped,above]l {x} (3,2);
\end{tikzpicture}

Styles for to-paths. In addition to the (options) given after the to operation, the following style is

also set at the beginning of the to path:

/tikz/every to (style, initially empty)
This style is installed at the beginning of every to.

\tikz[every to/.style={bend left}]
\draw (0,0) to (3,2);

Options. The (options) given with the to allow you to influence the appearance of the to path.
Mostly, these options are used to change the to path. This can be used to change the path from a
straight line to, say, a curve.

The path used is set using the following option:

/tikz/to path=(path) (no default)

Whenever an to operation is used, the (path) is inserted. More precisely, the following path is
added:

{[every to,{options)] (path) }

The (options) are the options given to the to operation, the (path) is the path set by this option
to path.

Inside the (path), different macros are used to reference the from- and to-coordinates. In detail,
these are:

e \tikztostart will expand to the from-coordinate (without the parentheses).
e \tikztotarget will expand to the to-coordinate.

e \tikztonodes will expand to the nodes between the to operation and the coordinate. Fur-
thermore, these nodes will have the pos option set implicitly.

Let us have a look at a simple example. The standard straight line for an to is achieved by the
following (path):

-- (\tikztotarget) \tikztonodes

Indeed, this is the default setting for the path. When we write (a) to (b), the (path) will expand
to (a) -- (b), when we write

(a) tolred] node {x} (b)
the (path) will expand to
(a) -- (b) nodelpos] {x}
It is not possible to specify the path
-- \tikztonodes (\tikztotarget)

since TikZ does not allow one to have a macro after -- that expands to a node.

Now let us have a look at how we can modify the (path) sensibly. The simplest way is to use a
curve.

149

c \begin{tikzpicture}[to path={
. controls +(1,0) and +(1,0) .. (\tikztotarget) \tikztonodes}]

b \node (a) at (0,0) {a};
\node (b) at (2,1) {b};
\node (c) at (1,2) {c};

a
\draw (a) to node {x} (b)
(a) to @F
\end{tikzpicture}
Here is another example:
\tikzset{
my loop/.style={to path={
. controls +(80:1) and +(100:1) .. (\tikztotarget) \tikztonodes}},

@ my state/.style={circle,draw}}
1

\begin{tikzpicture} [shorten >=2pt]
\node [my state] (a) at (210:1) {q_al};
\node [my state] (b) at (330:1) {q_b};

\draw[->] (a) to node [below] {1} (®)
to [my loop] nodel[above right] {0} (b);
\end{tikzpicture}
/tikz/execute at begin to=(code) (no default)

The (code) is executed prior to the to. This can be used to draw one or more additional paths
or to do additional computations.
/tikz/execute at end to=(code) (no default)
Works like the previous option, only this code is executed after the to path has been added.
/tikz/every to (style, initially empty)
This style is installed at the beginning of every to.

There are a number of predefined to paths, see Section 51 for a reference.

14.15 The Let Operation

The let operation is the first of a number of path operations that do not actually extend that path, but have
different, mostly local, effects.

\path ... let{assignment) ,(assignment),(assignment)...in ... ;

When this path operation is encountered, the (assignment)s are evaluated, one by one. This will store
coordinate and number in special registers (which are local to TikZ, they have nothing to do with TEX
registers). Subsequently, one can access the contents of these registers using the macros \p, \x, \y, and

\n.

The first kind of permissible (assignment)s have the following form:
\n{number register)={(formula)}

When an assignment has this form, the (formula) is evaluated using the \pgfmathparse operation. The
result stored in the (number register). If the (formula) involves a dimension anywhere (as in 2*¥3cm/2),
then the (number register) stores the resulting dimension with a trailing pt. A (number register) can be
named arbitrarily and is a normal TEX parameter to the \n macro. Possible names are {left corner},
but also just a single digit like 5.

Let us call the path that follows a let operation its body. Inside the body, the \n macro can be used to
access the register.
\n{(number register)}

When this macro is used on the left-hand side of an =-sign in a let operation, it has no effect and
is just there for readability. When the macro is used on the right-hand side of an =-sign or in the
body of the let operation, then it expands to the value stored in the (number register). This will
either be a dimensionless number like 2.0 or a dimension like 5.6pt.

150

For instance, if we say let \nl={1pt+2pt}, \n2={1+2} in ..., then inside the ... part the
macro \nl will expand to 3pt and \n2 expands to 3.

The second kind of (assignments) have the following form:
\p{point register)={{formula)}

Point position registers store a single point, consisting of an z-part and a y-part measured in TEX points
(pt). In particular, point registers do not stored nodes or node names. Here is an example:

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

(0,0) -- (\p2) —- (\p{fool});
\end{tikzpicture}

\draw let \p{foo} = (1,1), \p2 = (2,0) in

\p{(point register)}
When this macro is used on the left-hand side of an =-sign in a let operation, it has no effect and
is just there for readability. When the macro is used on the right-hand side of an =-sign or in the
body of the let operation, then it expands to the z-part (measured in TEX points) of the coordinate
stored in the (register), followed, by a comma, followed by the y-part.

For instance, if we say let \pl=(1pt,1ipt+2pt) in ..., then inside the ... part the macro \p1l
will expand to exactly the seven characters “1pt,3pt”. This means that you when you write (\p1),
this expands to (1pt,3pt), which is presumably exactly what you intended.

\x{(point register)}

This macro expand just to the z-part of the point register. If we say as above, as we did above,
let \pl=(1pt,1pt+2pt) in ..., then inside the ... part the macro \x1 expands to 1pt.

\y{(point register)}
Works like \x, only for the y-part.

Note that the above macros are available only inside a let operation.

Here is an example where let clauses are used to assemble a coordinate from the z-coordinate of a first
point and the y-coordinate of a second point. Naturally, using the |- notation, this could be written
much more compactly.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

-- (3,2) coordinate (second point) ;

\draw (1,0) coordinate (first point)

\fill[red] let \pl = (first point),
\p2 = (second point) in
(\x1,\y2) circle [radius=2pt];
\end{tikzpicture}

Note that the effect of a let operation is local to the body of the let operation. If you wish to access a
computed coordinate outside the body, you must use a coordinate path operation:

151

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

\path % let’s define some points:
let
\p1 = (1,0),
\p2 = (3,2),
\p{center} = ($ (\p1) !.5! (\p2) $) % center

in
coordinate (p1l) at (\pl)
coordinate (p2) at (\p2)
coordinate (center) at (\p{centerl});
\draw (p1) -- (p2);

\fill[red] (center) circle [radius=2pt];
\end{tikzpicture}

For a more useful application of the let operation, let use draw a circle that touches a given line:

\begin{tikzpicture}
/////-—\\\\\ \draw [help lines] (0,0) grid (3,3);
\coordinate (a) at (rnd,rnd);
\coordinate (b) at (3-rnd,3-rnd);
\draw (a) -- (b);

\node (c) at (1,2) {x};

\draw let \pl = ($ (a)!'(c)!(b) - (c) $),
\n1 = {veclen(\x1,\y1)}
in circle [at=(c), radius=\ni];
\end{tikzpicture}

14.16 The Scoping Operation

When TikZ encounters and opening or a closing brace ({ or }) at some point where a path operation should
come, it will open or close a scope. All options that can be applied “locally” will be scoped inside the
scope. For example, if you apply a transformation like [xshift=1cm] inside the scoped area, the shifting
only applies to the scope. On the other hand, an option like color=red does not have any effect inside a
scope since it can only be applied to the path as a whole.

Concerning the effect of scopes on relative coordinates, please see Section 13.4.2.

14.17 The Node and Edge Operations

There are two more operations that can be found in paths: node and edge. The first is used to add a
so-called node to a path. This operation is special in the following sense: It does not change the current
path in any way. In other words, this operation is not really a path operation, but has an effect that is
“external” to the path. The edge operation has similar effect in that it adds something after the main path
has been drawn. However, it works like the to operation, that is, it adds a to path to the picture after the
main path has been drawn.

Since these operations are quite complex, they are described in the separate Section 16.

14.18 The PGF-Extra Operation

In some cases you may need to “do some calculations or some other stuff” while a path is constructed. For
this, you would like to suspend the construction of the path and suspend TikZ’s parsing of the path, you
would then like to have some TEX code executed, and would then like to resume the parsing of the path.
This effect can be achieved using the following path operation \pgfextra. Note that this operation should
only be used by real experts and should only be used deep inside clever macros, not on normal paths.

\pgfextra{({code)}

This command may only be used inside a TikZ path. There it is used like a normal path operation.
The construction of the path is temporarily suspended and the (code) is executed. Then, the path
construction is resumed.

152

\newdimen\mydim
\begin{tikzpicture}

\mydim=1cm

\draw (Opt,\mydim) \pgfextra{\mydim=2cm} -- (Opt,\mydim);
\end{tikzpicture}

\pgfextra(code) \endpgfextra

This is an alternative syntax for the \pgfextra command. If the code following \pgfextra does not
start with a brace, the (code) is executed until \endpgfextra is encountered. What actually happens is
that \pgfextra that is not followed by a brace completely shuts down the TikZ parse and \endpgfextra
is a normal macro that restarts the parser.

\newdimen\mydim
\begin{tikzpicture}
\mydim=1cm
\draw (Opt,\mydim)
\pgfextra \mydim=2cm \endpgfextra -- (Opt,\mydim);
\end{tikzpicture}

153

15 Actions on Paths

15.1 Overview

Once a path has been constructed, different things can be done with it. It can be drawn (or stroked) with
a “pen,” it can be filled with a color or shading, it can be used for clipping subsequent drawing, it can be
used to specify the extend of the picture—or any combination of these actions at the same time.

To decide what is to be done with a path, two methods can be used. First, you can use a special-purpose
command like \draw to indicate that the path should be drawn. However, commands like \draw and \fill
are just abbreviations for special cases of the more general method: Here, the \path command is used to
specify the path. Then, options encountered on the path indicate what should be done with the path.

For example, \path (0,0) circle (lcm); means “This is a path consisting of a circle around the origin.
Do not do anything with it (throw it away).” However, if the option draw is encountered anywhere on the
path, the circle will be drawn. “Anywhere” is any point on the path where an option can be given, which is
everywhere where a path command like circle (lcm) or rectangle (1,1) or even just (0,0) would also
be allowed. Thus, the following commands all draw the same circle:

\path [draw] (0,0) circle (lcm);
\path (0,0) [draw] circle (icm);
\path (0,0) circle (lcm) [draw];

Finally, \draw (0,0) circle (1cm); also draws a path, because \draw is an abbreviation for \path
[draw] and thus the command expands to the first line of the above example.

Similarly, \fill is an abbreviation for \path[£fi11l] and \filldraw is an abbreviation for the command
\path[fill,draw]. Since options accumulate, the following commands all have the same effect:

\path [draw,fill] (0,0) circle (icm);
\path [draw] [£ill] (0,0) circle (icm);
\path [£fill] (0,0) circle (lcm) [draw];
\draw [£fill] (0,0) circle (icm);

\fill (0,0) [draw] circle (icm);
\filldraw (0,0) circle (lcm);

In the following subsection the different actions are explained that can be performed on a path. The
following commands are abbreviations for certain sets of actions, but for many useful combinations there are
no abbreviations:

\draw
Inside {tikzpicture} this is an abbreviation for \path[draw].

\fill
Inside {tikzpicture} this is an abbreviation for \path[fill].

\filldraw
Inside {tikzpicture} this is an abbreviation for \path[fill,draw].

\pattern
Inside {tikzpicture} this is an abbreviation for \path[pattern].

\shade
Inside {tikzpicture} this is an abbreviation for \path[shade].

\shadedraw
Inside {tikzpicture} this is an abbreviation for \path[shade,draw].

\clip
Inside {tikzpicture} this is an abbreviation for \path[clip].

\useasboundingbox

Inside {tikzpicture} this is an abbreviation for \path[use as bounding box].

154

15.2 Specifying a Color

The most unspecific option for setting colors is the following:

/tikz/color=(color name) (no default)

This option sets the color that is used for fill, drawing, and text inside the current scope. Any special
settings for filling colors or drawing colors are immediately “overruled” by this option.

The (color name) is the name of a previously defined color. For TEX users, this is just a normal
“IATEX-color” and the xcolor extensions are allowed. Here is an example:

\tikz \fill[color=red!20] (0,0) circle (lex);

It is possible to “leave out” the color= part and you can also write:

\tikz \fill[red!20] (0,0) circle (lex);

What happens is that every option that TikZ does not know, like red!20, gets a “second chance” as a
color name.

For plain TEX users, it is not so easy to specify colors since plain TEX has no “standardized” color naming
mechanism. Because of this, PGF emulates the xcolor package, though the emulation is eztremely basic
(more precisely, what I could hack together in two hours or so). The emulation allows you to do the
following:

e Specify a new color using \definecolor. Only the two color models gray and rgb are supported®.
Example: \definecolor{orange}{rgb}{1,0.5,0%}

e Use \colorlet to define a new color based on an old one. Here, the ! mechanism is supported,
though only “once” (use multiple \colorlet for more fancy colors).
Ezxample: \colorlet{lightgray}{black!25}

e Use \color{{color name)} to set the color in the current TEX group. \aftergroup-hackery is used
to restore the color after the group.

As pointed out above, the color= option applies to “everything” (except to shadings), which is not
always what you want. Because of this, there are several more specialized color options. For example, the
draw= option sets the color used for drawing, but does not modify the color used for filling. These color
options are documented where the path action they influence is described.

15.3 Drawing a Path

You can draw a path using the following option:

/tikz/draw=(color) (default is scope’s color setting)

Causes the path to be drawn. “Drawing” (also known as “stroking”) can be thought of as picking up a
pen and moving it along the path, thereby leaving “ink” on the canvas.

There are numerous parameters that influence how a line is drawn, like the thickness or the dash pattern.
These options are explained below.

If the optional {color) argument is given, drawing is done using the given (color). This color can be
different from the current filling color, which allows you to draw and fill a path with different colors. If
no (color) argument is given, the last usage of the color= option is used.

If the special color name none is given, this option causes drawing to be “switched off.” This is useful
if a style has previously switched on drawing and you locally wish to undo this effect.

Although this option is normally used on paths to indicate that the path should be drawn, it also makes
sense to use the option with a {scope} or {tikzpicture} environment. However, this will not cause all
path to drawn. Instead, this just sets the (color) to be used for drawing paths inside the environment.

8ConTEXt users should be aware that \definecolor has a different meaning in ConTEXt. There is a low-level equivalent
named \pgfutil@definecolor which can be used instead.

155

\begin{tikzpicture}

\path[draw=red] (0,0) -- (1,1) -- (2,1) circle (10pt);

\end{tikzpicture}

The following subsections list the different options that influence how a path is drawn. All of these

options only have an effect if the draw options is given (directly or indirectly).

15.3.1 Graphic Parameters: Line Width, Line Cap, and Line Join

/tikz/line width=(dimension)
Specifies the line width. Note the space.

’ \tikz \draw[line width=5pt] (0,0) -- (lcm,1.5ex);

(no default, initially 0.4pt)

There are a number of predefined styles that provide more “natural” ways of setting the line width. You

can also redefine these styles.

/tikz/ultra thin
Sets the line width to 0.1pt.

_— \tikz \draw[ultra thin] (0,0) -- (lcm,1.5ex);

/tikz/very thin
Sets the line width to 0.2pt.

_— \tikz \draw[very thin] (0,0) -- (icm,1.5ex);

/tikz/thin
Sets the line width to 0.4pt.

_— \tikz \draw[thin] (0,0) -- (lcm,1.5ex);

/tikz/semithick
Sets the line width to 0.6pt.

_— \tikz \draw[semithick] (0,0) -- (icm,1.5ex);

/tikz/thick
Sets the line width to 0.8pt.

_— \tikz \draw[thick] (0,0) -- (icm,1.5ex);

/tikz/very thick
Sets the line width to 1.2pt.

— \tikz \draw[very thick] (0,0) -- (lcm,1.5ex);

/tikz/ultra thick
Sets the line width to 1.6pt.

/ \tikz \draw[ultra thick] (0,0) -- (icm,1.5ex);

156

(style,

(style,

(style,

(style,

(style,

(style,

(style,

no value)

no value)

no value)

no value)

no value)

no value)

no value)

/tikz/line cap=(type) (no default, initially butt)

Specifies how lines “end.” Permissible (type) are round, rect, and butt. They have the following
effects:

= \begin{tikzpicture}

\begin{scope}[line width=10pt]

I \draw[line cap=rect] (0,0) -- (1,0);
e \draw[line cap=butt] (0,.5) -- (1,.5);
\draw[line cap=round] (0,1) -- (1,1);

\end{scope}

\draw[white,line width=1pt]

(0,0) -- (1,0) (0,.5) -- (1,.5) (0,1) —-- (1,1);
\end{tikzpicture}

/tikz/line join=(type) (no default, initially miter)

Specifies how lines “join.” Permissible (type) are round, bevel, and miter. They have the following
effects:

\begin{tikzpicture}[line width=10pt]
\draw[line join=round] (0,0) -- ++(.5,1) -- ++(.5,-1);
\draw[line join=bevel] (1.25,0) -- ++(.5,1) -- ++(.5,-1);
\draw[line join=miter] (2.5,0) -- ++(.5,1) -- ++(.5,-1);
\useasboundingbox (0,1.5); % make bounding box bigger
\end{tikzpicture}

/tikz/miter limit=(factor) (no default, initially 10)

When you use the miter join and there is a very sharp corner (a small angle), the miter join may
protrude very far over the actual joining point. In this case, if it were to protrude by more than
(factor) times the line width, the miter join is replaced by a bevel join.

\begin{tikzpicture}[line width=5pt]
\draw (0,0) -- ++(5,.5) —- ++(-5,.5);
\draw[miter 1imit=25] (6,0) -- ++(5,.5) -- ++(-5,.5);
\useasboundingbox (14,0); % make bounding box bigger
\end{tikzpicture}

15.3.2 Graphic Parameters: Dash Pattern

/tikz/dash pattern=({dash pattern) (no default)

Sets the dashing pattern. The syntax is the same as in METAFONT. For example following pattern on

2pt off 3pt on 4pt off 4pt means “draw 2pt, then leave out 3pt, then draw 4pt once more, then
leave out 4pt again, repeat”.

\begin{tikzpicture}[dash pattern=on 2pt off 3pt on 4pt off 4pt]
\draw (Opt,Opt) -- (3.5cm,Opt);
\end{tikzpicture}

/tikz/dash phase=(dash phase)
Shifts the start of the dash pattern by (phase).

(no default, initially Opt)

\begin{tikzpicture}[dash pattern=on 20pt off 10pt]
\draw[dash phase=0pt] (Opt,3pt) -- (3.5cm,3pt);
\draw[dash phase=10pt] (Opt,Opt) -- (3.5cm,Opt);

\end{tikzpicture}

As for the line thickness, some predefined styles allow you to set the dashing conveniently.

157

/tikz/solid

Shorthand for setting a solid line as “dash pattern.” This is the default.

\tikz \draw[solid] (Opt,Opt) -- (50pt,Opt);

/tikz/dotted
Shorthand for setting a dotted dash pattern.

\tikz \draw[dotted] (Opt,Opt) -- (50pt,Opt);

/tikz/densely dotted
Shorthand for setting a densely dotted dash pattern.

\tikz \draw[densely dotted] (Opt,Opt) -- (50pt,Opt);

/tikz/loosely dotted
Shorthand for setting a loosely dotted dash pattern.

\tikz \draw[loosely dotted] (Opt,Opt) -- (50pt,Opt);

/tikz/dashed
Shorthand for setting a dashed dash pattern.

/tikz/densely dashed
Shorthand for setting a densely dashed dash pattern.

/tikz/loosely dashed
Shorthand for setting a loosely dashed dash pattern.

/tikz/dashdotted
Shorthand for setting a dashed and dotted dash pattern.

/tikz/densely dashdotted

Shorthand for setting a densely dashed and dotted dash pattern.

/tikz/loosely dashdotted

Shorthand for setting a loosely dashed and dotted dash pattern.

/tikz/dashdotdotted

Shorthand for setting a dashed and dotted dash pattern with more dots.

158

\tikz \draw[dashed] (Opt,Opt) -- (50pt,Opt);

\tikz \draw[densely dashed] (Opt,Opt) -- (50pt,Opt);

\tikz \draw[loosely dashed] (Opt,Opt) -- (50pt,Opt);

\tikz \draw[dashdotted] (Opt,Opt) -- (50pt,Opt);

\tikz \draw[densely dashdotted] (Opt,Opt) -- (50pt,Opt);

\tikz \draw[loosely dashdotted] (Opt,Opt) -- (50pt,Opt);

\tikz \draw[dashdotdotted] (Opt,Opt) -- (50pt,Opt);

(style,

(style,

(style,

(style,

(style,

(style,

(style,

(style,

(style,

(style,

(style,

no value)

no value)

no value)

no value)

no value)

no value)

no value)

no value)

no value)

no value)

no value)

/tikz/densely dashdotdotted (style, no value)
Shorthand for setting a densely dashed and dotted dash pattern with more dots.

\tikz \draw[densely dashdotdotted] (Opt,Opt) -- (50pt,Opt);

/tikz/loosely dashdotdotted (style, no value)
Shorthand for setting a loosely dashed and dotted dash pattern with more dots.

\tikz \draw[loosely dashdotdotted] (Opt,Opt) -- (50pt,Opt);

15.3.3 Graphic Parameters: Draw Opacity

When a line is drawn, it will normally “obscure” everything behind it as if you has used perfectly opaque
ink. It is also possible to ask TikZ to use an ink that is a little bit (or a big bit) transparent using the draw
opacity option. This is explained in Section 20 on transparency in more detail.

15.3.4 Graphic Parameters: Arrow Tips

When you draw a line, you can add arrow tips at the ends. It is only possible to add one arrow tip at the
start and one at the end. If the path consists of several segments, only the last segment gets arrow tips. The
behavior for paths that are closed is not specified and may change in the future.

/tikz/arrows=(start arrow kind)-{end arrow kind) (no default)

This option sets the start and end arrow tips (an empty value as in => indicates that no arrow tip should
be drawn at the start).

Note: Since the arrow option is so often used, you can leave out the texrt arrows=. What happens is
that every option that contains a - is interpreted as an arrow specification.

oO—>

\begin{tikzpicture}
\draw[->] (0,0) - (1,0);
\draw[o-stealth] (0,0.3) -- (1,0.3);
\end{tikzpicture}

The permissible values are all predefined arrow tips, though you can also define new arrow tip kinds as
explained in Section 74. This is often necessary to obtain “double” arrow tips and arrow tips that have
a fixed size. You need to load the arrows library if you need arrow tips other than the default ones, see
Section 23.

One arrow tip kind is special: > (and all arrow tip kinds containing the arrow tip kind such as << or
>|). This arrow tip type is not fixed. Rather, you can redefine it using the >= option, see below.

Ezxample: You can also combine arrow tip types as in

\begin{tikzpicture} [thick]
\draw[to reversed-to] (0,0) .. controls +(.5,0) and +(-.5,-.5) .. +(1.5,1);
\draw[[-latex reversed] (1,0) .. controls +(.5,0) and +(-.5,-.5) .. +(1.5,1);
\draw[latex-)] (2,0) .. controls +(.5,0) and +(-.5,-.5) .. +(1.5,1);

\useasboundingbox (-.1,-.1) rectangle (3.1,1.1); % make bounding box bigger
\end{tikzpicture}

/tikz/>=(end arrow kind) (no default)

This option can be used to redefine the “standard” arrow tip >. The idea is that different people
have different ideas what arrow tip kind should normally be used. I prefer the arrow tip of TEX’s \to
command (which is used in things like f: A — B). Other people will prefer IXTEX’s standard arrow tip,
which looks like this: . Since the arrow tip kind > is certainly the most “natural” one to use, it is
kept free of any predefined meaning. Instead, you can change it by saying >=to to set the “standard”
arrow tip kind to TEX’s arrow tip, whereas >=1atex will set it to BTEX’s arrow tip and >=stealth will
use a PSTRICKS-like arrow tip.

Apart from redefining the arrow tip kind > (and < for the start), this option also redefines the following
arrow tip kinds: > and < as the swapped version of (end arrow kind), << and >> as doubled versions,
>> and << as swapped doubled versions, and |< and >| as arrow tips ending with a vertical bar.

159

\begin{tikzpicture}[scale=2]

| \begin{scope} [>=1latex]
\draw[->] (Opt,6ex) -- (lcm,6ex);
® \draw[>->>] (Opt,b5ex) -- (lcm,5ex);
DU \draw[|<->|] (Opt,4ex) -- (lcm,4ex);

lo————@f \end{scope}
\begin{scopel} [>=diamond]
\draw[->] (Opt,2ex) -- (lcm,2ex);
\draw[>->>] (Opt,lex) -- (lcm,lex);
\draw[|<->|] (Opt,0ex) -- (lcm,Oex);
\end{scope}
\end{tikzpicture}

/tikz/shorten >=(dimension) (no default, initially Opt)

This option will shorten the end of lines by the given (dimension). If you specify an arrow tip, lines are
already shortened a bit such that the arrow tip touches the specified endpoint and does not “protrude
over” this point. Here is an example:

\begin{tikzpicture}[line width=20pt]
\useasboundingbox (0,-1.5) rectangle (3.5,1.5);

\draw[red] (0,0) -- (3,0);
\draw [gray,->] (0,0) -- (3,0);
\end{tikzpicture}

The shorten > option allows you to shorten the end on the line additionally by the given distance.
This option can also be useful if you have not specified an arrow tip at all.

\begin{tikzpicture}[line width=20pt]
\useasboundingbox (0,-1.5) rectangle (3.5,1.5);

\draw [red] (0,0) -- (3,0);
\draw[-to,shorten >=10pt,gray] (0,0) -- (3,0);
\end{tikzpicture}
/tikz/shorten <=(dimension) (no default)

Works like shorten >, but for the start.

15.3.5 Graphic Parameters: Double Lines and Bordered Lines

/tikz/double=(core color) (default white)

This option causes “two” lines to be drawn instead of a single one. However, this is not what really
happens. In reality, the path is drawn twice. First, with the normal drawing color, secondly with the
(core color), which is normally white. Upon the second drawing, the line width is reduced. The net
effect is that it appears as if two lines had been drawn and this works well even with complicated, curved

paths:
\tikz \draw[double]
plot [smooth cycle] coordinates{(0,0) (1,1) (1,0) (0,1)};

You can also use the doubling option to create an effect in which a line seems to have a certain “border”:

/ \begin{tikzpicture}
\draw (0,0) -- (1,1);
/ \draw [draw=white,double=red,very thick] (0,1) -- (1,0);

\end{tikzpicture}

160

/tikz/double distance=({dimension) (no default, initially 0.6pt)

Sets the distance the “two” lines are spaced apart. In reality, this is the thickness of the line that is
used to draw the path for the second time. The thickness of the first time the path is drawn is twice the
normal line width plus the given (dimension). As a side-effect, this option “selects” the double option.

\begin{tikzpicture}
\draw [very thick,double] (0,0) arc (180:90:1cm);
\draw[very thick,double distance=2pt] (1,0) arc (180:90:1cm);
\draw[thin,double distance=2pt] (2,0) arc (180:90:1cm);
\end{tikzpicture}

/tikz/double distance between line centers=(dimension) (no default)

This option works like double distance, only the distance is not the distance between (inner) borders
of the two main lines, ut between their centers. Thus, the thickness the first time the path is drawn is
the normal line width plus the given (dimension), while the line width of the second line that is drawn
is {(dimension) minus the normal line width. As a side-effect, this option “selects” the double option.

e —] \begin{tikzpicture}[double distance between line centers=3pt]
\foreach \1lw in {0.5,1,1.5,2,2.5}
\draw[line width=\1lw pt,double] (\1lw,0) -- ++(4mm,0);
\end{tikzpicture}

\begin{tikzpicture}[double distance=3pt]
\foreach \1lw in {0.5,1,1.5,2,2.5}
\draw[line width=\1lw pt,double] (\1lw,0) -- ++(4mm,0);
\end{tikzpicture}

/tikz/double equal sign distance (style, no value)

This style selects a double line distance such that it corresponds to the distance of the two lines in an
equal sign.

p— > > \Huge $=\implies$\tikz[baseline,double equal sign distance]
—7 7
\draw [double,thick,-implies] (0,0.55ex) --++(3ex,0);

= == = \normalsize $=\implies$\tikz[baseline,double equal sign distance]
\draw [double,-implies] (0,0.6ex) --++(3ex,0);

== 7 \tiny $=\implies$\tikz[baseline,double equal sign distance]

\draw [double,very thin,-implies](0,0.5ex) -- ++(3ex,0);

15.4 Filling a Path
To fill a path, use the following option:

/tikz/£i11=(color) (default is scope’s color setting)
This option causes the path to be filled. All unclosed parts of the path are first closed, if necessary.
Then, the area enclosed by the path is filled with the current filling color, which is either the last color
set using the general color= option or the optional color (color). For self-intersection paths and for
paths consisting of several closed areas, the “enclosed area” is somewhat complicated to define and
two different definitions exist, namely the nonzero winding number rule and the even odd rule, see the
explanation of these options, below.

Just as for the draw option, setting (color) to none disables filling locally.

7 @O A

161

\begin{tikzpicture}
\fill (0,0) -- (1,1) -- (2,1);
\fill (4,0) circle (.5cm) (4.5,0) circle (.5cm);
\fill[even odd rule] (6,0) circle (.5cm) (6.5,0) circle (.5cm);
\fill (8,0) -- (9,1) -- (10,0) circle (.5cm);
\end{tikzpicture}

If the £i11 option is used together with the draw option (either because both are given as options or
because a \filldraw command is used), the path is filled first, then the path is drawn second. This
is especially useful if different colors are selected for drawing and for filling. Even if the same color is
used, there is a difference between this command and a plain £i11l: A “filldrawn” area will be slightly
larger than a filled area because of the thickness of the “pen.”

T o® o

\begin{tikzpicture}[fill=examplefill,line width=5pt]
\filldraw (0,0) -- (1,1) -- (2,1);
\filldraw (4,0) circle (.5cm) (4.5,0) circle (.5cm);
\filldraw[even odd rule] (6,0) circle (.5cm) (6.5,0) circle (.5cm);
\filldraw (8,0) -- (9,1) -- (10,0) circle (.5cm);
\end{tikzpicture}

15.4.1 Graphic Parameters: Fill Pattern

Instead of filling a path with a single solid color, it is also possible to fill it with a tiling pattern. Imagine a
small tile that contains a simple picture like a star. Then these tiles are (conceptually) repeated infinitely
in all directions, but clipped against the path.

Tiling patterns come in two variants: inherently colored patterns and form-only patterns. An inherently
colored pattern is, say, a red star with a black border and will always look like this. A form-only pattern
may have a different color each time it is used, only the form of the pattern will stay the same. As such,
form-only patterns do not have any colors of their own, but when it is used the current pattern color is used
as its color.

Patterns are not overly flexible. In particular, it is not possible to change the size or orientation of a
pattern without declaring a new pattern. For complicated case, it may be easier to use two nested \foreach
statements to simulate a pattern, but patterns are rendered much more quickly than simulated ones.

/tikz/pattern=(name) (default is scope’s pattern)
This option causes the path to be filled with a pattern. If the (name) is given, this pattern is used,
otherwise the pattern set in the enclosing scope is used. As for the draw and fill options, setting
(name) to none disables filling locally.

The pattern works like a fill color. In particular, setting a new fill color will fill the path with a solid
color once more.

Strangely, no (name)s are permissible by default. You need to load for instance the patterns library,
see Section 41, to install predefined patterns.

T” : ;'; ;'; ; ;" \begin{tikzpicture}
3 A \draw[pattern=dots] (0,0) circle (lcm);
Wk ok kKKK I \draw [pattern=fivepointed stars] (0,0) rectangle (3,1);
= \end{tikzpicture}
/tikz/pattern color=(color) (no default)

This option is used to set the color to be used for form-only patterns. This option has no effect on
inherently colored patterns.

162

* ok kW ok ok ok ok ok ok ok
* Kk ok ok ok ok ok ok k k&
ke k k k ko Rk ok ok ok ok k)
kK ok ok ok Kk
* Kk ok Kk Xk
* Kk Kk

\begin{tikzpicture}

\draw [pattern color=red,pattern=fivepointed stars] (0,0) circle (lcm);
\draw [pattern color=blue,pattern=fivepointed stars] (0,0) rectangle (3,1);

\end{tikzpicture}

\begin{tikzpicture}
\def\mypath{(0,0) -- +(0,1) arc (180:0:1.5cm) -- +(0,-1)}
\fill [red] \mypath;

\pattern[pattern color=white,pattern=bricks] \mypath;
\end{tikzpicture}

15.4.2 Graphic Parameters: Interior Rules

The following two options can be used to decide how interior points should be determined:

/tikz/nonzero rule

(no value)

If this rule is used (which is the default), the following method is used to determine whether a given
point is “inside” the path: From the point, shoot a ray in some direction towards infinity (the direction
is chosen such that no strange borderline cases occur). Then the ray may hit the path. Whenever it
hits the path, we increase or decrease a counter, which is initially zero. If the ray hits the path as the
path goes “from left to right” (relative to the ray), the counter is increased, otherwise it is decreased.
Then, at the end, we check whether the counter is nonzero (hence the name). If so, the point is deemed

to lie “inside,”

crossings: —14+1=20

i

crossings: 1 +1=2

w
il

/tikz/even odd rule

otherwise it is “outside.” Sounds complicated? It is.

\begin{tikzpicture}
\filldraw[fill=examplefill]
% Clockwise rectangle
(0,0) -- (0,1) -- (1,1) -- (1,0) -- cycle
% Counter-clockwise rectangle

(0.25,0.25) -- (0.75,0.25) -- (0.75,0.75) -- (0.25,0.75) -- cycle;

\draw[->] (0,1) -- (.4,1);
\draw[->] (0.75,0.75) -- (0.3,.75);

\draw[->] (0.5,0.5) -- +(0,1) node[above] {crossings: $-1+1 = 0$};

\begin{scope} [yshift=-3cm]
\filldraw[fill=examplefill]
% Clockwise rectangle
(0,0) -- (0,1) -- (1,1) -- (1,0) -- cycle
% Clockwise rectangle

(0.25,0.25) -- (0.25,0.75) -- (0.75,0.75) -- (0.75,0.25) -- cycle;

\draw[->] (0,1) -- (.4,1);
\draw[->] (0.25,0.75) -- (0.4,.75);

\draw[->] (0.5,0.5) -- +(0,1) node[above] {crossings: $1+1 = 28§};

\end{scope}
\end{tikzpicture}

(no value)

This option causes a different method to be used for determining the inside and outside of paths. While
it is less flexible, it turns out to be more intuitive.

With this method, we also shoot rays from the point for which we wish to determine whether it is inside
or outside the filling area. However, this time we only count how often we “hit” the path and declare
the point to be “inside” if the number of hits is odd.

Using the even-odd rule, it is easy to “drill holes” into a path.

163

\begin{tikzpicture}

crossings: 14+ 1=2
g + \filldraw[fill=examplefill,even odd rule]

T (0,0) rectangle (1,1) (0.5,0.5) circle (0.4cm);
\draw[->] (0.5,0.5) -- +(0,1) [above] node{crossings: $1+1 = 28§};
<:T:> \end{tikzpicture}

15.4.3 Graphic Parameters: Fill Opacity

Analogously to the draw opacity, you can also set the filling opacity. Please see Section 20 for more details.

15.5 Generalized Filling: Using Arbitrary Pictures to Fill a Path

Sometimes you wish to “fill” a path with something even more complicated than a pattern, let alone a single
color. For instance, you might wish to use an image to fill the path or some other, complicated drawing. In
principle, this effect can be achieved by first using the path for clipping and then, subsequently, drawing the
desired image or picture. However, there is an option that makes this process much easier:

/tikz/path picture=(code) (no default)

When this option is given on a path and when the (code) is not empty, the following happens: After
all other “filling” operations are done with the path, which are caused by the options fill, pattern
and shade, a local scope is opened and the path is temporarily installed as a clipping path. Then, the
(code) is executed, which can now draw something. Then, the local scope ends and, possibly, the path
is stroked, provided the draw option has been given.

As with other keys like £111 or draw this option needs to be given on a path, setting the path picture
outside a path has not effect (the path picture is cleared at the beginning of each path).

The (code) can be any normal TikZ code like \draw ... or \node As always, when you include
an external graphic you need to put it inside a \node.

Note that no special actions are taken to transform the origin in any way. This means that the coordinate
(0,0) is still where is was when the path was being constructed and not — as one might expect — at the
lower left corner of the path. However, you can use the following special node to access the size of the
path:

Predefined node path picture bounding box

This node is of shape rectangle. Its size and position are those of current path bounding box
just before the (code) of the path picture started to be executed. The (code) can construct its own
paths, so accessing the current path bounding box inside the (code) yields the bounding box of
any path that is currently being constructed inside the (code).

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);
. \filldraw [fill=blue!10,draw=blue,thick] (1.5,1) circle (1)
s is a long t [path picture={
\node at (path picture bounding box.center) {
This is a long text.

}r
].

\end{tikzpicture}

\begin{tikzpicture} [cross/.style={path picture={
\draw [black]
(path picture bounding box.south east) --
(path picture bounding box.north west)
(path picture bounding box.south west) --
(path picture bounding box.north east);

3]
\draw [help lines] (0,0) grid (3,2);
\filldraw [cross,fill=blue!10,draw=blue,thick] (1,1) circle (1);
\path [cross,top color=red,draw=red,thick] (2,0) -- (3,2) -- (3,0);
\end{tikzpicture}

164

\begin{tikzpicture}[path image/.style={
path picture={
\node at (path picture bounding box.center) {
\includegraphics [height=3cm] {#1}
};33H]
\draw [help lines] (0,0) grid (3,2);

\draw [path image=brave-gnu-world-logo,draw=blue,thick]
(0,1) circle (1);

\draw [path image=brave-gnu-world-logo,draw=red,very thick,->]
(1,0) parabolal[parabola height=2cm] (3,0);

\end{tikzpicture}

15.6 Shading a Path

You can shade a path using the shade option. A shading is like a filling, only the shading changes its color
smoothly from one color to another.

/tikz/shade (no value)

Causes the path to be shaded using the currently selected shading (more on this later). If this option
is used together with the draw option, then the path is first shaded, then drawn.

It is not an error to use this option together with the £i11l option, but it makes no sense.

- \tikz \shade (0,0) circle (lex);
Cj \tikz \shadedraw (0,0) circle (lex);

For some shadings it is not really clear how they can “fill” the path. For example, the ball shading
normally looks like this: @. How is this supposed to shade a rectangle? Or a triangle?

To solve this problem, the predefined shadings like ball or axis fill a large rectangle completely in a
sensible way. Then, when the shading is used to “shade” a path, what actually happens is that the path
is temporarily used for clipping and then the rectangular shading is drawn, scaled and shifted such that all
parts of the path are filled.

The default shading is a smooth transition from gray to white and from above to bottom. However,
other shadings are also possible, for example a shading that will sweep a color from the center to the corners
outward. To choose the shading, you can use the shading= option, which will also automatically invoke the
shade option. Note that this does not change the shading color, only the way the colors sweep. For changing
the colors, other options are needed, which are explained below.

/tikz/shading=(name) (no default)

This selects a shading named (name). The following shadings are predefined: axis, radial, and ball.

\tikz \shadedraw [shading=axis] (0,0) rectangle (1,1);
\tikz \shadedraw [shading=radial] (0,0) rectangle (1,1);
\tikz \shadedraw [shading=ball] (0,0) circle (.5cm);

The shadings as well as additional shadings are described in more detail in Section 46.

To change the color of a shading, special options are needed like 1left color, which sets the color of
an axis shading from left to right. These options implicitly also select the right shading type, see the
following example

\tikz \shadedraw [left color=red,right color=bluel
(0,0) rectangle (1,1);

For a complete list of the possible options see Section 46 once more.

165

/tikz/shading angle=(degrees) (no default, initially 0)

This option rotates the shading (not the path!) by the given angle. For example, we can turn a
top-to-bottom axis shading into a left-to-right shading by rotating it by 90°.

I \tikz \shadedraw [shading=axis,shading angle=90] (0,0) rectangle (1,1);

You can also define new shading types yourself. However, for this, you need to use the basic layer directly,
which is, well, more basic and harder to use. Details on how to create a shading appropriate for filling paths
are given in Section 83.3.

15.7 Establishing a Bounding Box

PGF is reasonably good at keeping track of the size of your picture and reserving just the right amount of
space for it in the main document. However, in some cases you may want to say things like “do not count
this for the picture size” or “the picture is actually a little large.” For this you can use the option use as
bounding box or the command \useasboundingbox, which is just a shorthand for \path[use as bounding
box].

/tikz/use as bounding box (no value)

Normally, when this option is given on a path, the bounding box of the present path is used to determine
the size of the picture and the size of all subsequent paths are ignored. However, if there were previous
path operations that have already established a larger bounding box, it will not be made smaller by
this operation (consider the \pgfresetboundingbox command to reset the previous bounding box).

In a sense, use as bounding box has the same effect as clipping all subsequent drawing against the
current path—without actually doing the clipping, only making PGF treat everything as if it were
clipped.

The first application of this option is to have a {tikzpicture} overlap with the main text:

/
. / . .
Left of pieturel right of picture.

Left of picture\begin{tikzpicturel}
\draw[use as bounding box] (2,0) rectangle (3,1);
\draw (1,0) -- (4,.75);

\end{tikzpicture}right of picture.

In a second application this option can be used to get better control over the white space around the
picture:

Left of picture ‘ right of picture.

Left of picture
\begin{tikzpicture}
\useasboundingbox (0,0) rectangle (3,1);
\fill (.75,.25) circle (.5cm);
\end{tikzpicture}
right of picture.

Note: If this option is used on a path inside a TEX group (scope), the effect “lasts” only till the end of
the scope. Again, this behavior is the same as for clipping.

Consider using \useasboundingbox together with \pgfresetboundingbox in order to replace the
bounding box with a new one.

There is a node that allows you to get the size of the current bounding box. The current bounding
box node has the rectangle shape and its size is always the size of the current bounding box.

Similarly, the current path bounding box node has the rectangle shape and the size of the bounding
box of the current path.

166

d \begin{tikzpicture}
\draw[red] (0,0) circle (2pt);
\draw[red] (2,1) circle (3pt);

\draw (current bounding box.south west) rectangle
(current bounding box.north east);

\draw[red] (3,-1) circle (4pt);

\draw[thick] (current bounding box.south west) rectangle
(current bounding box.north east);
\end{tikzpicture}

Occasionally, you may want to align multiple tikzpicture environments horizontally and/or vertically
at some prescribed position. The vertical alignment can be realized by means of the baseline option since
TEX supports the concept of box depth natively. For horizontal alignment, things are slightly more involved.
The following approach is realized by means of negative \hspaces before and/or after the picture, thereby
removing parts of the picture. However, the actual amount of negative horizontal space is provided by means
of image coordinates using the trim left and trim right keys:

/tikz/trim left=(dimension or coordinate or default) (default Opt)

The trim left key tells PGF to discard everything which is left of the provided (dimension or
coordinate). Here, (dimension) is a single x coordinate of the picture and (coordinate) is a point
with z and y coordinates (but only its & coordinate will be used). The effect is the same as if you issue
\hspace{-s} where s is the difference of the picture’s bounding box lower left x coordinate and the x
coordinate specified as (dimension or coordinate):

Text before image Text after image.

Text before image.%
\begin{tikzpicture} [trim left]
\draw (-1,-1) grid (3,2);
\fill (0,0) circle (5pt);
\end{tikzpicture}’%

Text after image.

Since trim left uses the default trim left=0pt, everything left of x = 0 is removed from the bounding
box.

The following example has once the relative long label —1 and once the shorter label 1. Horizontal
alignment is established with trim left:

167

\begin{tikzpicture}
\draw (0,1) -- (0,0) -- (1,1) -- cycle;
1 \fill (0,0) circle (2pt);

\node[left] at (0,0) {-1};

\end{tikzpicture}
\par
\begin{tikzpicture}
1 \draw (0,1) -- (0,0) —- (1,1) -- cycle;

\fill (0,0) circle (2pt);
\node[left] at (0,0) {$1%$};
\end{tikzpicture}

\par

\begin{tikzpicture} [trim left]

IJ
\draw (0,1) -- (0,0) -- (1,1) -- cycle;
\fill (0,0) circle (2pt);
\node[left] at (0,0) {-1};
\end{tikzpicture}
\par
\begin{tikzpicture} [trim left]
\draw (0,1) -- (0,0) -- (1,1) -- cycle;
\fill (0,0) circle (2pt);
\node[left] at (0,0) {1};
\end{tikzpicture}

1

Use trim left=default to reset the value.

/tikz/trim right=(dimension or coordinate or default) (no default)

This key is similar to trim left: it discards everything which is right of the provided (dimension or
coordinate). As for trim left, (dimension) denotes a single = coordinate of the picture and (coordinate)
a coordinate with 2 and y value (although only its x component will be used).

We use the same example from above and add trim right:

Text before mag% Text after image.

Text before image.%

\begin{tikzpicture} [trim left, trim right=2cm, baseline]
\draw (-1,-1) grid (3,2);

\fill (0,0) circle (5pt);

\end{tikzpicture}’

Text after image.

In addition to trim left=0pt, we also discard everything which is right of z=2cm. Furthermore, the
baseline key supports vertical alignment as well (using the y=0cm baseline).

Use trim right=default to reset the value.

Note that baseline, trim left and trim right are currently the only supported way of truncated
bounding boxes which are compatible with image externalization (see the external library for details).

/pgf/trim lowlevel=true|false (no default, initially false)

This affects only the basic level image externalization: the initial configuration trim lowlevel=false
stores the normal image, without trimming, and the trimming into a separate file. This allows reduced
bounding boxes without clipping the rest away. The trim lowlevel=true information causes the image
externalization to store the trimmed image, possibly resulting in clipping.

15.8 Clipping and Fading (Soft Clipping)

Clipping path means that all painting on the page is restricted to a certain area. This area need not be
rectangular, rather an arbitrary path can be used to specify this area. The clip option, explained below, is
used to specify the region that is to be used for clipping.

168

A fading (a term that I propose, fadings are commonly known as soft masks, transparency masks,
opacity masks or soft clips) is similar to clipping, but a fading allows parts of the picture to be only “half
clipped.” This means that a fading can specify that newly painted pixels should be partly transparent. The
specification and handling of fadings is a bit complex and it is detailed in Section 20, which is devoted to
transparency in general.

/tikz/clip (no value)

This option causes all subsequent drawings to be clipped against the current path and the size of
subsequent paths will not be important for the picture size. If you clip against a self-intersecting path,
the even-odd rule or the nonzero winding number rule is used to determine whether a point is inside or
outside the clipping region.

The clipping path is a graphic state parameter, so it will be reset at the end of the current scope.
Multiple clippings accumulate, that is, clipping is always done against the intersection of all clipping
areas that have been specified inside the current scopes. The only way of enlarging the clipping area is
to end a {scope}.

\begin{tikzpicture}
\draw[clip] (0,0) circle (icm);
\fill[red] (1,0) circle (icm);
\end{tikzpicture}

It is usually a very good idea to apply the clip option only to the first path command in a scope.

If you “only wish to clip” and do not wish to draw anything, you can use the \clip command, which
is a shorthand for \path[clip].

\begin{tikzpicture}
\clip (0,0) circle (icm);
\fill[red] (1,0) circle (icm);
\end{tikzpicture}

To keep clipping local, use {scope} environments as in the following example:

\begin{tikzpicture}
\draw (0,0) -- (O:lcm);
\draw (0,0) -- (10:1cm);

\draw (0,0) -- (20:1cm);
\draw (0,0) -- (30:1cm);
\begin{scope} [fill=red]
\fill[clip] (0.2,0.2) rectangle (0.5,0.5);

\draw (0,0) -- (40:1cm);
\draw (0,0) -- (50:1cm);
\draw (0,0) -- (60:1cm);
\end{scope}
\draw (0,0) -- (70:1cm);
\draw (0,0) -- (80:1cm);
\draw (0,0) -- (90:1cm);
\end{tikzpicture}

There is a slightly annoying catch: You cannot specify certain graphic options for the command used
for clipping. For example, in the above code we could not have moved the fill=red to the \fill
command. The reasons for this have to do with the internals of the PDF specification. You do not want
to know the details. It is best simply not to specify any options for these commands.

15.9 Doing Multiple Actions on a Path

If more than one of the basic actions like drawing, clipping and filling are requested, they are automatically
applied in a sensible order: First, a path is filled, then drawn, and then clipped (although it took Apple two
mayor revisions of their operating system to get this right...). Sometimes, however, you need finer control
over what is done with a path. For instance, you might wish to first fill a path with a color, then repaint the

169

path with a pattern and then repaint it with yet another pattern. In such cases you can use the following
two options:

/tikz/preactions=(options) (no default)

This option can be given to a \path command (or to derived commands like \draw which internally
call \path). Similarly to options like draw, this option only has an effect when given to a \path or as
part of the options of a node; as an option to a {scope} it has no effect.

When this option is used on a \path, the effect is the following: When the path has been completely
constructed and is about to be used, a scope is created. Inside this scope, the path is used but not with
the original path options, but with (options) instead. Then, the path is used in the usual manner. In
other words, the path is used twice: Once with (options) in force and then again with the normal path
options in force.

Here is an example in which the path consists of a rectangle. The main action is to draw this path in
red (which is why we see a red rectangle). However, the preaction is to draw the path in blue, which is
why we see a blue rectangle behind the red rectangle.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw
[preaction={draw,line width=4mm,blue}]
[line width=2mm,red] (0,0) rectangle (2,2);
\end{tikzpicture}

Note that when the preactions are preformed, then the path is already “finished.” In particular, applying
a coordinate transformation to the path has no effect. By comparison, applying a canvas transformation
does have an effect. Let us use this to add a “shadow” to a path. For this, we use the preaction to fill
the path in gray, shifted a bit to the right and down:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw
[preaction={fill=black,opacity=.5,
transform canvas={xshift=1mm,yshift=-1mm}}]
[fill=red] (0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

Naturally, you would normally create a style shadow that contains the above code. The shadow library,
see Section 47, contains predefined shadows of this kind.

It is possible to use the preaction option multiple times. In this case, for each use of the preaction
option, the path is used again (thus, the (options) do not accumulate in a single usage of the path).
The path is used in the order of preaction options given.

In the following example, we use one preaction to add a shadow and another to provide a shading,
while the main action is to use a pattern.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw [pattern=fivepointed stars]
[preaction={fill=black,opacity=.5,
transform canvas={xshift=1mm,yshift=-1mm}}]
[preaction={top color=blue,bottom color=whitel}]
(0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

A complicated application is shown in the following example, where the path is used several times with
different fadings and shadings to create a special visual effect:

170

‘ \begin{tikzpicture}

% Define an interesting style
button/.style={
% First preaction: Fuzzy shadow
preaction={fill=black,path fading=circle with fuzzy edge 20 percent,
[:lég opacity=.5,transform canvas={xshift=1mm,yshift=-1mm}},
% Second preaction: Background pattern
- preaction={pattern=#1,
path fading=circle with fuzzy edge 15 percent},
% Third preaction: Make background shiny
preaction={top color=white,
bottom color=black!50,
shading angle=45,
path fading=circle with fuzzy edge 15 percent,
opacity=0.2},
% Fourth preaction: Make edge especially shiny
preaction={path fading=fuzzy ring 15 percent,
top color=black!5,
bottom color=black!80,
shading angle=45},
inner sep=2ex
1,
button/.default=horizontal lines light blue,
circle

]

\draw [help lines] (0,0) grid (4,3);

\node [button] at (2.2,1) {\Huge Big};
\node [button=crosshatch dots light steel blue,
text=white] at (1,1.5) {Small};
\end{tikzpicture}

/tikz/postaction=(options) (no default)

The postactions work in the same way as the preactions, only they are applied after the main action
has been taken. Like preactions, multiple postaction options may be given to a \path command, in
which case the path is reused several times, each time with a different set of options in force.

If both pre- and postactions are specified, then the preactions are taken first, then the main action, and
then the post actions.

In the first example, we use a postaction to draw the path, after it has already been drawn:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);

\draw
[postaction={draw,line width=2mm,bluel}]
[line width=4mm,red,fill=white] (0,0) rectangle (2,2);
\end{tikzpicture}

In another example, we use a postaction to “colorize” a path:

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw
[postaction={path fading=south,fill=white}]
[postaction={path fading=south,fading angle=45,fill=blue,opacity=.5}]
[left color=black,right color=red,draw=white,line width=2mm]
(0,0) rectangle (1,2)
(1,2) circle (5mm);
\end{tikzpicture}

15.10 Decorating and Morphing a Path

Before a path is used, it is possible to first “decorate” and/or “morph” it. Morphing means that the path
is replaced by another path that slightly varied. Such morphings are a special case of the more general

171

“decorations” described in detail in Section 21. For instance, in the following example the path is drawn
twice: Once normally and then in a morphed (=decorated) manner.

\begin{tikzpicture}
\draw (0,0) rectangle (3,2);
\draw [red, decorate, decoration=zigzag]
(0,0) rectangle (3,2);
\end{tikzpicture}

~

Naturally, we could have combined this into a single command using pre- or postaction. It is also possible
to deform shapes:

\begin{tikzpicture}
\node [circular drop shadow={shadow scale=1.05},minimum size=3.13cm,
decorate, decoration=zigzag,
fill=blue!20,draw,thick,circle] {Hello!};
\end{tikzpicture}

172

16 Nodes and Edges

16.1 Overview

In the present section, the usage of nodes in TikZ is explained. A node is typically a rectangle or circle or
another simple shape with some text on it.

Nodes are added to paths using the special path operation node. Nodes are not part of the path itself.
Rather, they are added to the picture after the path has been drawn.

In Section 16.2 the basic syntax of the node operation is explained, followed in Section 16.3 by the syntax
for multi-part nodes, which are nodes that contain several different text parts. After this, the different
options for the text in nodes are explained. In Section 16.5 the concept of anchors is introduced along
with their usage. In Section 16.7 the different ways transformations affect nodes are studied. Sections 16.8
and 16.9 are about placing nodes on or next to straight lines and curves. In Section 16.11 it is explained
how a node can be used as a “pseudo-coordinate.” Section 16.12 introduces the edge operation, which works
similar to the to operation and also similar to the node operation.

16.2 Nodes and Their Shapes

In the simplest case, a node is just some text that is placed at some coordinate. However, a node can also
have a border drawn around it or have a more complex background and foreground. Indeed, some nodes do
not have a text at all, but consist solely of the background. You can name nodes so that you can reference
their coordinates later in the same picture or, if certain precautions are taken as explained in Section 16.13,
also in different pictures.

There are no special TEX commands for adding a node to a picture; rather, there is path operation called
node for this. Nodes are created whenever TikZ encounters node or coordinate at a point on a path where
it would expect a normal path operation (like == (1,1) or sin (1,1)). It is also possible to give node
specifications inside certain path operations as explained later.

The node operation is typically followed by some options, which apply only to the node. Then, you can
optionally name the node by providing a name in round braces. Lastly, for the node operation you must
provide some label text for the node in curly braces, while for the coordinate operation you may not. The
node is placed at the current position of the path after the path has been drawn. Thus, all nodes are drawn
“on top” of the path and retained until the path is complete. If there are several nodes on a path, they are
drawn on top of the path in the order they are encountered.

\tikz \fill[fill=examplefill]
(0,0) node {first node}

-- (1,1) node {second node}
-- (0,2) node {third node};

third node
second node

first node

The syntax for specifying nodes is the following;:

\path ... nodel[(options)] ({name))at ({coordinate)){(text)} ... ;
The effect of at is to place the node at the coordinate given after at and not, as would normally be the
case, at the last position. The at syntax is not available when a node is given inside a path operation
(it would not make any sense, there).
The ((name)) is a name for later reference and it is optional. You may also add the option name=(name)
to the (option) list; it has the same effect.

/tikz/name=(node name) (no default)

Assigns a name to the node for later reference. Since this is a “high-level” name (drivers never
know of it), you can use spaces, number, letters, or whatever you like when naming a node. Thus,
you can name a node just 1 or perhaps start of chart or even y_1. Your node name should not
contain any punctuation like a dot, a comma, or a colon since these are used to detect what kind
of coordinate you mean when you reference a node.

/tikz/alias=(another node name) (no default)

173

This option allows you to provide another name for the node. Giving this option multiple times
will allow you to access the node via several aliases. Using the late options options, you can also
assign an alias name to a node at a later point.

/tikz/at=(coordinate) (no default)

This is another way of specifying the at coordinate. Note that, typically, you will have to enclose
the (coordinate) in curly braces so that a comma inside the (coordinate) does not confuse TEX.

The (options) is an optional list of options that apply only to the node and have no effect outside. The
other way round, most “outside” options also apply to the node, but not all. For example, the “outside”
rotation does not apply to nodes (unless some special options are used, sigh). Also, the outside path
action, like draw or £i11, never applies to the node and must be given in the node (unless some special
other options are used, deep sigh).

As mentioned before, we can add a border and even a background to a node:
third nod \tikz \fill[fill=examplefill]
11 noce (0,0) node {first node}
-- (1,1) node[draw] {second node}

-- (0,2) node[fill=red!20,draw,double,rounded corners] {third node};
second node

first node

The “border” is actually just a special case of a much more general mechanism. Each node has a certain
shape which, by default, is a rectangle. However, we can also ask TikZ to use a circle shape instead or
an ellipse shape (you have to include one of the shapes.geometric library for the latter shape):

\tikz \fill[fill=examplefill]
(0,0) node{first node}
-- (1,1) nodel[ellipse,draw] {second node}

third node -- (0,2) nodelcircle,fill=red!20] {third node};

first node

In the future, there might be much more complicated shapes available such as, say, a shape for a resistor
or a shape for a UML class. Unfortunately, creating new shapes is a bit tricky and makes it necessary
to use the basic layer directly. Life is hard.

To select the shape of a node, the following option is used:

/tikz/shape=(shape name) (no default, initially rectangle)

Select the shape either of the current node or, when this option is not given inside a node but
somewhere outside, the shape of all nodes in the current scope.

Since this option is used often, you can leave out the shape=. When TikZ encounters an option like
circle that it does not know, it will, after everything else has failed, check whether this option is
the name of some shape. If so, that shape is selected as if you had said shape=(shape name).

By default, the following shapes are available: rectangle, circle, coordinate, and, when the
package pgflibraryshapes is loaded, also ellipse. Details of these shapes, like their anchors and
size options, are discussed in Section 16.2.1.

The following styles influences how nodes are rendered:
/tikz/every node (style, initially empty)
This style is installed at the beginning of every node.

\begin{tikzpicture}[every node/.style={draw}]
\draw (0,0) node {A} -- (1,1) node {B};
\end{tikzpicture}

174

/tikz/every (shape) node (style, initially empty)
These styles are installed at the beginning of a node of a given (shape). For example, every
rectangle node is used for rectangle nodes, and so on.

\begin{tikzpicture}
[every rectangle node/.style={draw},

every circle node/.style={draw,double}]
\draw (0,0) node[rectangle] {A} -- (1,1) nodelcircle] {B};
m \end{tikzpicture}

There is a special syntax for specifying “light-weighed” nodes:

\path ... coordinate [(options)] ({name))at ({coordinate)) ...;
This has the same effect as
node [shape=coordinatel] [1{options)] ({name))at ({coordinate)){},
where the at part might be missing.

Since nodes are often the only path operation on paths, there are two special commands for creating
paths containing only a node:

\node

Inside {tikzpicture} this is an abbreviation for \path node.

\coordinate

Inside {tikzpicture} this is an abbreviation for \path coordinate.

16.2.1 Predefined Shapes
PGF and TikZ define three shapes, by default:

e rectangle,
e circle, and
e coordinate.

By loading library packages, you can define more shapes like ellipses or diamonds; see Section 48 for the
complete list of shapes.

The coordinate shape is handled in a special way by TikZ. When a node x whose shape is coordinate
is used as a coordinate (x), this has the same effect as if you had said (x.center). None of the special “line
shortening rules” apply in this case. This can be useful since, normally, the line shortening causes paths to
be segmented and they cannot be used for filling. Here is an example that demonstrates the difference:

[(—-11 \begin{tikzpicture}[every node/.style={draw}]
\path[yshift=1.5cm,shape=rectangle]

(0,0) node(a1){} (1,0) node(a2){}
—-1 (1,1) node(a3){} (0,1) node(ad){};
\filldraw[fill=examplefill] (al) -- (a2) -- (a3) -- (a4);

\path [shape=coordinate]
(0,0) coordinate(bl) (1,0) coordinate(b2)
(1,1) coordinate(b3) (0,1) coordinate(b4);
\filldraw[fill=examplefill] (b1) -- (b2) -- (b3) -- (b4);
\end{tikzpicture}

16.2.2 Common Options: Separations, Margins, Padding and Border Rotation

The exact behaviour of shapes differs, shapes defined for more special purposes (like a, say, transistor shape)
will have even more custom behaviors. However, there are some options that apply to most shapes:

/pgf/inner sep=(dimension) (no default, initially .3333em)

175

alias /tikz/inner sep
An additional (invisible) separation space of (dimension) will be added inside the shape, between the
text and the shape’s background path. The effect is as if you had added appropriate horizontal and
vertical skips at the beginning and end of the text to make it a bit “larger.”

For those familiar with ¢SS, this is the same as padding.

default \pegin{tikzpicture}

\draw (0,0) node [inner sep=Opt,draw] {tight}
(Ocm,2em) node[inner sep=5pt,draw] {loose}
OEEE (Ocm,4em) node[fill=examplefill] {default};
\end{tikzpicture}
[tight
/pgf/inner xsep=(dimension) (no default, initially .3333em)

alias /tikz/inner xsep
Specifies the inner separation in the z-direction, only.

/pgf/inner ysep=(dimension) (no default, initially .3333em)
alias /tikz/inner ysep
Specifies the inner separation in the y-direction, only.

/pgf/outer sep=(dimension) (no default, initially .5\pgflinewidth)
alias /tikz/outer sep
This option adds an additional (invisible) separation space of {dimension) outside the background path.
The main effect of this option is that all anchors will move a little “to the outside.”
For those familiar with €SS, this is same as margin.

The default for this option is half the line width. When the default is used and when the background
path is draw, the anchors will lie exactly on the “outside border” of the path (not on the path itself).
When the shape is filled, but not drawn, this may not be desirable. In this case, the outer sep should
be set to zero point.

\begin{tikzpicture}
filled drawn \draw[line width=5pt]
7 (0,0) nodel[outer sep=Opt,fill=examplefill] (£) {filled}
(2,0) nodelinner sep=.5\pgflinewidth+2pt,draw] (d) {drawn};

\draw[->] (1,-1) -- (£);
\draw[->] (1,-1) -- (d);
\end{tikzpicture}

/pgf/outer xsep=(dimension) (no default, initially .5\pgflinewidth)
alias /tikz/outer xsep

Specifies the outer separation in the z-direction, only.

/pgf/outer ysep=(dimension) (no default, initially .5\pgflinewidth)
alias /tikz/outer ysep

Specifies the outer separation in the y-direction, only.

/pgf/minimum height=(dimension) (no default, initially Opt)
alias /tikz/minimum height
This option ensures that the height of the shape (including the inner, but ignoring the outer separation)
will be at least (dimension). Thus, if the text plus the inner separation is not at least as large as
(dimension), the shape will be enlarged appropriately. However, if the text is already larger than
(dimension), the shape will not be shrunk.

\begin{tikzpicture}
lcm Ocm \draw (0,0) node[minimum height=1cm,draw] {1lcm}
(2,0) node[minimum height=0cm,draw] {Ocm};
\end{tikzpicture}
/pgf/minimum width=({dimension) (no default, initially Opt)

176

alias /tikz/minimum width
Same as minimum height, only for the width.

\begin{tikzpicture}
\draw (0,0) node[minimum height=2cm,minimum width=3cm,draw] {3×2};
\end{tikzpicture}
3 X2
/pgf/minimum size=(dimension) (no default)

alias /tikz/minimum size
Sets both the minimum height and width at the same time.

\begin{tikzpicture}
\draw (0,0) node[minimum size=2cm,draw] {square};
\draw (0,-2) node[minimum size=2cm,draw,circle] {circle};

ECUEIC \end{tikzpicture}

circle

/pgf/shape aspect=(aspect ratio) (no default)
alias /tikz/shape aspect
Sets a desired aspect ratio for the shape. For the diamond shape, this option sets the ratio between
width and height of the shape.

\begin{tikzpicture}
\draw (0,0) nodel[shape aspect=1,diamond,draw] {aspect 1};
\draw (0,-2) node[shape aspect=2,diamond,draw] {aspect 2};
\end{tikzpicture}

Some shapes (but not all), support a special kind of rotation. This rotation affects only the border of a
shape and is independent of the node contents, but in addition to any other transformations.

\tikzstyle{every node}=[dart, shape border uses incircle,
inner sep=1pt, draw]
\begin{tikzpicture}

\foreach \a/\b/\c in {A/0/0, B/45/0, C/0/45, D/45/45}
\node [shape border rotate=\b, rotate=\c] at (\b/36,-\c/36) {\a};
\end{tikzpicture}

There are two types of rotation: restricted and unrestricted. Which type of rotation is applied is de-
termined by on how the shape border is constructed. If the shape border is constructed using an incircle,
that is, a circle that tightly fits the node contents (including the inner sep), then the rotation can be
unrestricted. If, however, the border is constructed using the natural dimensions of the node contents, the
rotation is restricted to integer multiples of 90 degrees.

Why should there be two kinds of rotation and border construction? Borders constructed using the
natural dimensions of the node contents provide a much tighter fit to the node contents, but to maintain
this tight fit, the border rotation must be restricted to integer multiples of 90 degrees. By using an incircle,
unrestricted rotation is possible, but the border will not make a very tight fit to the node contents.

177

\tikzstyle{every node}=[isosceles triangle, draw]

\begin{tikzpicture}
\node {abc};
\node [shape border uses incircle] at (2,0) {abcl};

\end{tikzpicture}

There are PGF keys determine how a shape border is constructed, and to specify its rotation. It should
be noted that not all shapes support these keys, so reference should be made to the documentation for
individual shapes.

/pgf/shape border uses incircle=(boolean) (default true)
alias /tikz/shape border uses incircle
Determines if the border of a shape is constructed using the incircle. If no value is given (boolean) will
take the default value true.

/pgf/shape border rotate=(angle) (no default, initially 0)
alias /tikz/shape border rotate
Rotates the border of a shape independently of the node contents, but in addition to any other trans-
formations. If the shape border is not constructed using the incircle, the rotation will be rounded to
the nearest integer multiple of 90 degrees when the shape is drawn.

Note that if the border of the shape is rotated, the compass point anchors, and ‘text box’ anchors
(including mid east, base west, and so on), do not rotate, but the other anchors do:

\tikzstyle{every node}=[shape=trapezium, draw, shape border uses incircle]
\begin{tikzpicture}
\node at (0,0) (A) {A};

\node [shape border rotate=30] at (1.5,0) (B) {B};
\foreach \s/\t in
{left side/base east, bottom side/north, bottom left corner/basel}{
\fill[red] (A.\s) circle(1.5pt) (B.\s) circle(1.5pt);
\fill[blue] (A.\t) circle(1.5pt) (B.\t) circle(l.5pt);
}
\end{tikzpicture}

Finally, a somewhat unfortunate side-effect of rotating shape borders is that the supporting shapes do
not distinguish between outer xsep and outer ysep, and typically, the larger of the two values will be
used.

16.3 Multi-Part Nodes

Most nodes just have a single simple text label. However, nodes of a more complicated shapes might be
made up from several node parts. For example, in automata theory a so-called Moore state has a state name,
drawn in the upper part of the state circle, and an output text, drawn in the lower part of the state circle.
These two parts are quite independent. Similarly, a UML class shape would have a name part, a method
part, and an attributes part. Different molecule shape might use parts for the different atoms to be drawn
at the different positions, and so on.

Both pcrF and TikZ support such multipart nodes. On the lower level, PGF provides a system for
specifying that a shape consists of several parts. On the TikZ level, you specify the different node parts by
using the following command:

\nodepart [{options)]1{{part name)?}
This command can only be used inside the (text) argument of a node path operation. It works a little
bit like a \part command in BTEX. It will stop the typesetting of whatever node part was typeset until
now and then start putting all following text into the node part named (part name)—until another
\partname is encountered or until the node (text) ends. The (options) will be local to this part.

\begin{tikzpicture}
ﬂ \node [circle split,draw,double,fill=red!20]
0o <
%

No \nodepart has been used, yet. So, the following is put in the
% ‘‘text’’ node part by default.

q_18
\nodepart{lower} % Ok, end ‘‘text’’ part, start ‘‘output’’ part
00
}; % output part ended.
\end{tikzpicture}

178

You will have to lookup which parts are defined by a shape.

The following styles influences node parts:

/tikz/every (part name) node part (style, initially empty)

This style is installed at the beginning of every node part named (part name).

a \tikz [every lower node part/.style={red}]
\node [circle split,draw] {q_1 \nodepart{lower} 00};

16.4 The Node Text
16.4.1 Text Parameters: Color and Opacity

The simplest option for the text in nodes is its color. Normally, this color is just the last color installed using
color=, possibly inherited from another scope. However, it is possible to specifically set the color used for
text using the following option:

/tikz/text={color) (no default)

Sets the color to be used for text labels. A color= option will immediately override this option.

. . \begin{tikzpicture}
x5l xed wEd \draw [red] (0,0) -- +(1,1) node[above] {red};

\draw[text=red] (1,0) -- +(1,1) node[above] {red};
\draw (2,0) -- +(1,1) node[above,red] {red};
\end{tikzpicture}

Just like the color itself, you may also wish to set the opacity of the text only. For this, use the option
text opacity option, which is detailed in Section 20.
16.4.2 Text Parameters: Font

Next, you may wish to adjust the font used for the text. Use the following option for this:

/tikz/font=(font commands) (no default)
Sets the font used for text labels.

i \begin{tikzpicture}
\draw [font=\itshape] (1,0) -- +(1,1) node[above] {italic};

/ \end{tikzpicture}

A perhaps more useful example is the following:
\tikz [every text node part/.style={font=\itshapel},
every lower node part/.style={font=\footnotesizel}]

w \node [circle split,draw] {state \nodepart{lower} output};

16.4.3 Text Parameters: Alignment and Width for Multi-Line Text

Normally, when a node is typeset, all the text you give in the braces is put in one long line (in an \hbox, to
be precise) and the node will become as wide as necessary.

From time to time you may wish to create nodes that contain multiple lines of text. There are three
different ways of achieving this:

1. Inside the node, you can put some standard environment that produces multi-line, aligned text. For
instance, you can use a {tabular} inside a node:

179

upper left upper right
lower left lower right

\tikz \node [draw] {
\begin{tabular}{cc}
upper left & upper right\\
lower left & lower right
\end{tabular}
s

This approach offers the most flexibility in the sense that it allows you to use all of the alignment
commands offered by your format of choice.

2. You use \\ inside your node to mark the end of lines and then request TikZ to arrange these lines in
some manner. This will only be done, however, if the align option has been given.

Tois o5) \tikz[align=left] \node[draw] {This is a\\demonstration.};
demonstration.

This is a \tikz[align=center] \node[draw] {This is a\\demonstration.};
demonstration.

The \\ command takes an optional extra space as an argument in square brackets.

e Te o \tikz \node[fill=examplefill,align=right]

demonstration text for {This is a\\[-2pt] demonstration text for\\[lex] alignments.};

alignments.

3. You can request that TikZ does an automatic line-breaking for you inside the node by specifying a fixed
text width for the node. In this case, you can still use \\ to enforce a line-break. Note that when
you specify a text width, the node will have this width, independently of whether the text actually
“reaches the end” of the node.

Let us now first have a look at the text width command.

/tikz/text width=(dimension) (no default)

This option will put the text of a node in a box of the given width (something akin to a {minipage}
of this width, only portable across formats). If the node text is not as wide as (dimension), it will
nevertheless be put in a box of this width. If it is larger, line breaking will be done.

By default, when this option is given, a ragged right border will be used (align=1left). This is sensible
since, typically, these boxes are narrow and justifying the text looks ugly. You can, however, change
the alignment using align or directly using commands line \centering.

\tikz \draw (0,0) node[fill=examplefill,text width=3cm]

This is a demon-
{This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

Setting (dimension) to an empty string causes the automatic line breaking to be disabled.

/tikz/align=(how) (no default)

This key is used to setup an alignment for multi-line text inside a node. If text width is set to some
width (let us call this alignment with line breaking), the align key will setup the \leftskip and the
\rightskip in such a way that the text is broken and aligned according to (how). If text width is not
set (that is, set to the empty string; let us call this alignment without line breaking), then a different
mechanism is used internally, namely the key node halign header, is set to an appropriate value.

180

While this key, which is documented below, is not to be used by beginners, the net effect is simple:
When text width is not set, you can use \\ to break lines and align them according to (how) and the
resulting node’s width will be minimal to encompass the resulting lines.

In detail, you can set (how) to one of the following values:

align=left For alignment without line breaking, the different lines are simply aligned such that their
left borders are below one another.

05 B) \tikz \node[fill=examplefill,align=left]
d trati text f {This is a\\ demonstration text for\\ alignments.};
emonstration text ror

alignments.

For alignment with line breaking, the same will happen only the lines will now, additionally, be
broken automatically:

\tikz \node[fill=examplefill,text width=3cm,align=left]

This i mon-
s is a demo {This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

align=flushleft For alignment without line breaking this option has exactly the same effect as left.
However, for alignment with line breaking, there is a difference: While left uses the original plain
TEX definition of a ragged right border, in which TEX will try to balance the right border as well as
possible, flush left causes the right border to be ragged in the IXTEX-style, in which no balancing
occurs. This looks ugly, but it may be useful for very narrow boxes and when you wish to avoid
hyphenations.

This is a \tikz \node[fill=examplefill,text width=3cm,align=flush left]
d trati text {This is a demonstration text for showing how line breaking works.l};
emonstration tex

for showing how
line breaking
works.

align=right Works like left, only for right alignment.

.. \tikz \node[fill=examplefill,align=right]
This is a P & &
d trati tost § {This is a\\ demonstration text for\\ alignments.};
emonstration text ror

alignments.

\tikz \node[fill=examplefill,text width=3cm,align=right]

This i _
his is a demon {This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

align=flushright Works like flush left, only for right alignment.

E— \tikz \node[fill=examplefill,text width=3cm,align=flush right]
This is a s . . ; X
. {This is a demonstration text for showing how line breaking works.};
demonstration text

for showing how
line breaking
works.

align=center Works like left or right, only for centered alignment.
T A5 & \tikz \node[fill=examplefill,align=center]

. {This is a\\ demonstration text for\\ alignments.};
demonstration text for

alignments.

181

\tikz \node[fill=examplefill,text width=3cm,align=center]

This is a demon-
{This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

align=flushcenter Works like flush left or flush right, only for center alignment.

TS s) \tikz \node[fill=examplefill,text width=3cm,align=flush center]

i {This is a demonstration text for showing how line breaking works.l};
demonstration text

for showing how
line breaking
works.

align=justify For alignment without line breaking, this has the same effect as left. For alignment
with line breaking, this causes the text to be “justified.” Use this only with pretty broad nodes.

\tikz \node[fill=examplefill,text width=3cm,align=justify]

This i mon-
s is a demo {This is a demonstration text for showing how line breaking works.l};

stration text for
showing how line
breaking works.

In the above example, TEX complains (rightfully) about three very badly typeset lines. (For this
manual I asked TEX to stop complaining by using \hbadness=10000, but this is a foul deed,
indeed.)

align=none Disables all alignments and \\ will not be redefined.

/tikz/node halign header=(macro storing a header) (no default, initially empty)

This is the key that is used by align internally for alignment without line breaking. Read the following
only if you are familiar with the \halign command.

This key only has an effect if text width is empty, otherwise it is ignored. Furthermore, if (header) is
empty, then this key also has no effect. So, suppose text width is empty, but (header) is not. In this
case the following happens:

When the node text is parsed, the command \\ is redefined internally. This redefinition is done in such
a way that the text from the start of the node to the first occurrence of \\ is put in an \hbox. Then
the text following \\ up to the next \\ is put in another \hbox. This goes on until the text between
the last \\ and the closing } is also put in an \hbox.

The (macro storing a header) should be a macro that contains some text suitable for use as a header
for the \halign command. For instance, you might define

\def\myheader{\hfil\hfil##\hfil\cr}
\tikz [node halign header=\myheader] ...

You cannot just say node halign header=\hfil\hfil#\hfillcr because this confuses TEX inside
matrices, so this detour via a macro is needed.

Next, conceptually, all these boxes are recursively put inside an \halign command. Assuming that
(first) is the first of the above boxes, the command \halign{(header) \box(first) \cr} is used to create
a new box, which we will call the (previous box). Then, the following box is created, where (second)
is the second input box: \halign{({header) \box(previous bozx) \cr \box(second)\cr}. Let us call the
resulting box the (previous box) once more. Then the next box that is created is \halign{(header)
\box(previous box) \cr \box(third)\cr}.

All of this means that if (header) is an \halign header like \hfil#\hfil\cr, then all boxes will be
centered relative to one another. Similarly, a (header) of \hfil#\cr causes the text to be flushed right.

Note that this mechanism is not flexible enough to all multiple columns inside (header). You will have
to use a tabular or a matrix in such cases.

One further note: Since the text of each line is placed in a box, settings will be local to each “line.”
This is very similar to the way a cell in a tabular or a matrix behaves.

182

16.4.4 Text Parameters: Height and Depth of Text

In addition to changing the width of nodes, you can also change the height of nodes. This can be done in
two ways: First, you can use the option minimum height, which ensures that the height of the whole node
is at least the given height (this option is described in more detail later). Second, you can use the option
text height, which sets the height of the text itself, more precisely, of the TEX text box of the text. Note
that the text height typically is not the height of the shape’s box: In addition to the text height, an
internal inner sep is added as extra space and the text depth is also taken into account.

I recommend using minimum size instead of text height except for special situations.

/tikz/text height=(dimension) (no default)

Sets the height of the text boxes in shapes. Thus, when you write something like node {text}, the
text is first typeset, resulting in some box of a certain height. This height is then replaced by the height
text height. The resulting box is then used to determine the size of the shape, which will typically be
larger. When you write text height= without specifying anything, the “natural” size of the text box
remains unchanged.

\tikz \node [draw] {y};
y \tikz \node[draw,text height=10pt] {y};

/tikz/text depth=(dimension) (no default)

This option works like text height, only for the depth of the text box. This option is mostly useful
when you need to ensure a uniform depth of text boxes that need to be aligned.

16.5 Positioning Nodes

When you place a node at some coordinate, the node is centered on this coordinate by default. This is often
undesirable and it would be better to have the node to the right or above the actual coordinate.

16.5.1 Positioning Nodes Using Anchors

PGF uses a so-called anchoring mechanism to give you a very fine control over the placement. The idea is
simple: Imaging a node of rectangular shape of a certain size. PGF defines numerous anchor positions in
the shape. For example to upper right corner is called, well, not “upper right anchor,” but the north east
anchor of the shape. The center of the shape has an anchor called center on top of it, and so on. Here are
some examples (a complete list is given in Section 16.2.1).

north west north north east
° ° °
weste Big gode ecast
base

Now, when you place a node at a certain coordinate, you can ask TikZ to place the node shifted around
in such a way that a certain anchor is at the coordinate. In the following example, we ask TikZ to shift the
first node such that its north east anchor is at coordinate (0,0) and that the west anchor of the second
node is at coordinate (1,1).

second node

first node

\tikz \draw (0,0) nodel[anchor=north east] {first node}
rectangle (1,1) node[anchor=west] {second node};

Since the default anchor is center, the default behaviour is to shift the node in such a way that it is
centered on the current position.

183

/tikz/anchor={anchor name) (no default)
Causes the node to be shifted such that it’s anchor (anchor name) lies on the current coordinate.

The only anchor that is present in all shapes is center. However, most shapes will at least define
anchors in all “compass directions.” Furthermore, the standard shapes also define a base anchor, as
well as base west and base east, for placing things on the baseline of the text.

The standard shapes also define a mid anchor (and mid west and mid east). This anchor is half the

[}

height of the character “x” above the base line. This anchor is useful for vertically centering multiple
nodes that have different heights and depth. Here is an example:

X—Y—+t
X vy ¢t
X—y—4

\begin{tikzpicture} [scale=3,transform shape]
% First, center alignment -> wobbles
\draw[anchor=center] (0,1) mnode{x} -- (0.5,1) mnode{y} -- (1,1) node{t};
% Second, base alignment -> no wobble, but too high
\draw [anchor=base] (0,.5) node{x} -- (0.5,.5) node{y} -- (1,.5) node{t};
% Third, mid alignment
\draw[anchor=mid] (0,0) node{x} -- (0.5,0) mnode{y} -- (1,0) mnode{t};
\end{tikzpicture}

16.5.2 Basic Placement Options

Unfortunately, while perfectly logical, it is often rather counter-intuitive that in order to place a node above
a given point, you need to specify the south anchor. For this reason, there are some useful options that
allow you to select the standard anchors more intuitively:

/tikz/above=(offset) (default Opt)

Does the same as anchor=south. If the (offset) is specified, the node is additionally shifted upwards by
the given (offset).

abgve \tikz \fill (0,0) circle (2pt) nodel[above] {above};

aTheRE \tikz \fill (0,0) circle (2pt) node[above=2pt] {abovel};

/tikz/below=(offset) (default Opt)

Similar to above.

/tikz/left=(offset) (default Opt)

Similar to above.

/tikz/right=(offset) (default Opt)

Similar to above.

/tikz/above left (no value)

Does the same as anchor=south east. Note that giving both above and left options does not have
the same effect as above left, rather only the last left “wins.” Actually, this option also takes an

184

(offset) parameter, but using this parameter without using the positioning library is deprecated. (The
positioning library changes the meaning of this parameter to something more sensible.)

AlaE left. \tikz \fill (0,0) circle (2pt) node[above left] {above left};

/tikz/above right (no value)

Similar to above left.

above right \tikz \fill (0,0) circle (2pt) nodel[above right] {above right};
°

/tikz/below left (no value)

Similar to above left.

/tikz/below right (no value)

Similar to above left.

16.5.3 Advanced Placement Options

While the standard placement options suffice for simple cases, the positioning library offers more convenient
placement options.

\usetikzlibrary{positioning} % KX and plain TX

\usetikzlibrary[positioning] % ConTXt
The library defines additional options for placing nodes conveniently. It also redefines the standard
options like above so that they give you better control of node placement.

When this library is loaded, the options like above or above left behave differently.

/tikz/above=(specification) (default Opt)

With the positioning library loaded, the above option does not take a simple (dimension) as its
parameter. Rather, it can (also) take a more elaborate (specification) as parameter. This (specification)
has the following general form: It starts with an optional (shifting part) and is followed by an optional
(of-part). Let us start with the (shifting part), which can have three forms:

1. It can simply be a (dimension) (or a mathematical expression that evaluates to a dimension) like
2cm or 3cm/2+4cm. In this case, the following happens: the node’s anchor is set to south and the
node is vertically shifted upwards by (dimension).

\begin{tikzpicture}
[éii)ve \draw[help lines] (0,0) grid (2,2);
\node at (1,1) [above=2pt+3pt,draw] {abovel};
\end{tikzpicture}

This use of the above option is the same as if the positioning library were not loaded.

2. It can be a (number) (that is, any mathematical expression that does not include a unit like pt or
cm). Examples are 2 or 3+sin(60). In this case, the anchor is also set to south and the node is
vertically shifted by the vertical component of the coordinate (0, (number)).

\begin{tikzpicture}
T \draw[help lines] (0,0) grid (2,2);
\node at (1,1) [above=.2,draw] {above};

% south border of the node is now 2mm above (1,1)
\end{tikzpicture}

185

3. It can be of the form (number or dimension 1) and (number or dimension 2). This specification

does not make particular sense for the above option, it is much more useful for options like above
left. The reason it is allowed for the above option is that it is sometimes automatically used, as
explained later.
The effect of this option is the following. First, the point ({number of dimension 2),{number or
dimension 1)) is computed (note the inversed order), using the normal rules for evaluating such
a coordinate, yielding some position. Then, the node is shifted by the vertical component of this
point. The anchor is set to south.

\begin{tikzpicture}
above \draw[help lines] (0,0) grid (2,2);
\node at (1,1) [above=.2 and 3mm,draw] {above};

% south border of the node is also 2mm above (1,1)
\end{tikzpicture}

The (shifting part) can optionally be followed by a (of-part), which has one of the following forms:

1. The (of-part) can be declareof (coordinate), where(coordinate) is not in parentheses and it is not
just a node name. An example would be of somenode.north or of 2,3. In this case, the following
happens: First, the node’s at parameter is set to the (coordinate). Second, the node is shifted
according to the (shift-part). Third, the anchor is set to south.

Here is a basic example:

\begin{tikzpicture} [every node/.style=draw]
\draw[help lines] (0,0) grid (2,2);

l lcm of somenode.north l

5“”“°Ism““‘d&“°”hea“] \node (somenode) at (1,1) {some node};
E \node [above=bmm of somenode.north east] {\tiny 5mm of somenode.north east};
I e | \node [above=1cm of somenode.north] {\tiny lcm of somenode.north};
\end{tikzpicture}

As can be seen the above=bmm of somenode.north east option does, indeed, place the node
5mm above the north east anchor of somenode. The same effect could have been achieved writing
above=5mm followed by at=(somenode.north east).
If the (shift-part) is missing, the shift is not zero, but rather the value of the node distance key
is used, see below.

2. The (of-part) can have be of (node name). An example would be of somenode. In this case, the
following usually happens:

e The anchor is set to south.

e The node is shifted according to the (shifting part) or, if it is missing, according to the value
of node distance.

e The node’s at parameter is set to (node name).north.

The net effect of all this is that the new node will be placed in such a way that the distance between
is south border and (node name)’s north border is exactly the given distance.

\begin{tikzpicture}[every node/.style=draw]
\draw[help lines] (0,0) grid (2,2);
\node (some node) at (1,1) {some node};

l above=1lcm of some node l

lem

\node (other node) [above=1cm of some node] {\tiny above=icm of some node};

\draw [<->] (some node.north) -- (other node.south)
node [midway,right,draw=none] {lcm};

\end{tikzpicture}

It is possible to change the behaviour of this (specification) rather drastically, using the following
key:
/tikz/on grid=(boolean) (no default, initially false)

When this key is set to true, an {of-part) of the current form behaves differently: The anchors
set for the current node as well as the anchor used for other (node name) are set the center.

186

This has the following effect: When you say above=1cm of somenode with on grid set to
true, the new node will be placed in such a way that its center is lcm above the center of
somenode. Repeatedly placing nodes in this way will result in nodes that are centered on “grid
coordinate,” hence the name of the option.

[57 \begin{tikzpicturel}[every node/.style=draw]
= \draw[help lines] (0,0) grid (2,3);
FZ] % Not gridded
L \node (al) at (0,0) {not gridded};
[ﬁigi} \node (b1l) [above=lcm of all] {fooyl};
F;7::] \node (c1) [above=icm of bl] {a};
oy
% gridded
’not oridded L= ded‘ \node (a2) at (2,0) {gridded};
2 \node (b2) [on grid,above=icm of a2] {fooy};
\node (c2) [on grid,above=icm of b2] {a};
\end{tikzpicture}
/tikz/node distance=(shifting part) (no default, initially 1cm and 1lcm)

The value of this key is used as (shifting part) is used if and only if a (of-part) is present, but no
(shifting part).

\begin{tikzpicture}[every node/.style=draw,node distance=bmm]
\draw[help lines] (0,0) grid (2,3);

—
L]

% Not gridded

\node (al) at (0,0) {not gridded};
\node (b1l) [above=of all {fooy};

:} \node (c1) [above=of b1l] {a};

fooy |

o
j'k;:WFuT

Q.

3 % ridded
’ not ar idde ‘ &

\begin{scope}[on grid]
\node (a2) at (2,0) {gridded};
\node (b2) [above=of a2] {fooy};
\node (c2) [above=of b2] {a};
\end{scope}
\end{tikzpicture}

/tikz/below=(specification) (no default)

This key is redefined in the same manner as above.

/tikz/left=(specification) (no default)
This key is redefined in the same manner as above, only all vertical shifts are replaced by horizontal
shifts.

/tikz/right=(specification) (no default)

This key is redefined in the same manner as left.

/tikz/above left=(specification) (no default)
This key is also redefined in a manner similar to the above, but behaviour of the (shifting part) is more
complicated:

1. When the (shifting part) is of the form (number or dimension) and (number or dimension), it has
(essentially) the effect of shifting the node vertically upwards by the first (number or dimension) and
to the left by the second. To be more precise, the coordinate ({second number or dimension), (first
number or dimension)) is computed and then the node is shifted vertically by the y-part of the
resulting coordinate and horizontally be the negated z-part of the result. (This is exactly what
you expect, except possibly when you have used the x and y options to modify the xy-coordinate
system so that the unit vectors no longer point in the expected directions.)

2. When the (shifting part) is of the form (number or dimension), the node is shifted by this (number
or dimension) in the direction of 135°. This means that there is a difference between a (shifting
part) of 1cm and of 1cm and lcm: In the second case, the node is shifted by lem upward and lem

187

to the left; in the first case it is shifted by %\@cm upward and by the same amount to the left. A
more mathematical way of phrasing this is the following: A plain (dimension) is measured in the
lo-norm, while a (dimension) and (dimension) is measured in the [;-norm.

The following example should help to illustrate the difference:

\begin{tikzpicturel}[every node/.style={draw,circle}]

y 3 @ \draw[help lines] (0,0) grid (2,5);
\begin{scope} [node distance=5mm]
/\ \node (a) at (1,1) {a};
(1: \j :2) \node [left=of a] {1}; \node [right=of a] {2};
\node [above=of a] {3}; \node [below=of a] {4};
\ r \node [above left=of a] {5}; \node [above right=of a] {6};
(D 4 G) \node [below left=of al {7}; \node [below right=of a] {8};
&) \end{scope}
(\ \begin{scope} [node distance=5mm and 5mm]
B \node (b) at (1,4) {b};
\5) QS/ \node' [Mleft=of bl {10 \node [right=of bl {2};
\node [above=of b] {3}; \node [below=of b] {4};

(=)
D
&
&)

\node [above left=of b] {5}; \node [above right=of b] {6};
\node [below left=of b] {7}; \node [below right=of b] {8};
\end{scope}
\end{tikzpicture}

&)
o)

(=

\begin{tikzpicture}[every node/.style={draw,rectangle}]

:

\draw[help lines] (0,0) grid (2,5);
\begin{scope} [node distance=5mm]
[ﬁ 4] Cj \node (a) at (1,1) {a};
il N A R \node [left=of a] {1}; \node [right=of al {2};
\node [above=of a] {3}; \node [below=of a] {4};
[ﬁ (4] f] \node [above left=of al {5}; \node [above right=of a] {6};
- (Bl = \node [below left=of a] {7}; \node [below right=of a] {8};
\end{scope}
5 \begin{scope} [node distance=5mm and 5mm]
50 21 |6 \node (b) at (1,4) {b};
\node [left=of bl {1}; \node [right=of bl {2};
[F A C] \node [above=of b] {3}; \node [below=of b] {4};
il R B R \node [above left=of b] {5}; \node [above right=of b] {61};
\node [below left=of b] {7}; \node [below right=of b] {8};
E \end{scope}
\end{tikzpicture}
\begin{tikzpicture}[every node/.style={draw,rectangle},on grid]
2] @ \draw[help lines] (0,0) grid (4,4);
\begin{scope}[node distance=1]
EH| | &1 \node (a) at (2,3) {a};
L L= L= \node [left=of a] {1}; \node [right=of a] {2};
\node [above=of a] {3}; \node [below=of a] {4};
Al \node [above left=of al] {5}; \node [above right=of a] {6};
L2 \node [below left=of a] {7}; \node [below right=of a] {8};
\end{scope}
[£] [] [£] \begin{scope}[node distance=1 and 1]
L] L] 2] \node (b) at (2,0) {b};
\node [left=of b] {1}; \node [right=of b] {2};
T]LT [G] [&] \node [above=of b] {3}; \node [below=of b] {4};
2] =] \node [above left=of b] {5}; \node [above right=of b] {6};
\node [below left=of b] {7}; \node [below right=of b] {8};
\end{scope}
\end{tikzpicture}
/tikz/below left=(specification) (no default)

Works similar to above left.

/tikz/above left=(specification) (no default)

Works similar to above left.

/tikz/above right=(specification) (no default)

Works similar to above left.

188

The positioning package also introduces the following new placement keys:

/tikz/base left=(specification) (no default)
This key works like the 1left key, only instead of the east anchor, the base east anchor is used and,
when the second form of an (of-part) is used, the corresponding base west anchor.

This key is useful for chaining together nodes so that their base lines are aligned.

\begin{tikzpicture}[node distance=1ex]

}{ o }/ \draw[help lines] (0,0) grid (3,1);
\huge
- \node (X) at (0,1) {X};
A a 3[tnode (a) [r}ghtjof X] {a}f
node (y) [right=of al {y};
\node (X) at (0,0) {X};
\node (a) [base right=of X] {a};
\node (y) [base right=of al {y};
\end{tikzpicture}
/tikz/base right=(specification) (no default)
Works like base left.
/tikz/mid left=(specification) (no default)

Works like base left, but with mid east and mid west anchors instead of base east and base west.

/tikz/mid right=(specification) (no default)
Works like mid left.

16.5.4 Arranging Nodes Using a Chains and Matrices

The simple above and right options may not always suffice for arranging a large number of nodes. For such
situations TikZ offers two libraries that make positioning easier: The chains library and the matrix library.
The first is mostly useful for creating “chains of nodes” and, more generally, “flows.” The second allows you
to arrange multiple nodes in rows and columns. These methods for positioning nodes are described in two
separate Sections 17 and 28.

16.6 Fitting Nodes to a Set of Coordinates

It is sometimes desirable that the size and position of a node is not given using anchors and size parameters,
rather one would sometimes have a box be placed and be sized such that it “is just large enough to contain
this, that, and that point.” This situation typically arises when a picture has been drawn an, afterwards,
parts of the picture are supposed to be encircled or highlighted.

In this situation the fit option from the fit library is useful, see Section 34 for a the details. The idea is
that you may give the £it option to a node. The £it option expects a list of coordinates (one after the other
without commas) as its parameter. The effect will be that the node’s text area has exactly the necessary
size so that it contains all the given coordinates. Here is an example:

\begin{tikzpicture}[level distance=8mm]
\node (root) {root}
child { node (a) {a} }
child { node (b) {b}
a child { node (d) {d} }
child { node (e) {e} } }
child { node (c) {c} };

\node [draw=red,inner sep=0Opt,thick,ellipse,fit=(root) (b) (d) (e)] {};
\node [draw=blue,inner sep=Opt,thick,ellipse,fit=(b) (c) (e)] {};
\end{tikzpicture}

If you want to fill the fitted node you will usually have to place it on a background layer.

189

\begin{tikzpicture}[level distance=8mm]
\node (root) {root}

root child { node (a) {a} }
/ | \ child { node (b) {b}
a b ¢ child { node (d) {d} }
// \\\ child { node (e) {e} } }

child { node (c) {c} };

\begin{pgfonlayer}{background}
\node [fill=red!20, inner sep=0pt,ellipse,fit=(root) (b) (d) (e)] {};
\node [fill=blue!20,inner sep=Opt,ellipse,fit=(b) (c) (e)] {};
\end{pgfonlayer}
\end{tikzpicture}

16.7 Transformations

It is possible to transform nodes, but, by default, transformations do not apply to nodes. The reason is that
you usually do not want your text to be scaled or rotated even if the main graphic is transformed. Scaling
text is evil, rotating slightly less so.

However, sometimes you do wish to transform a node, for example, it certainly sometimes makes sense
to rotate a node by 90 degrees. There are two ways in which you can achieve this:

1. You can use the following option:

/tikz/transform shape (no value)
Causes the current “external” transformation matrix to be applied to the shape. For example, if
you said \tikz[scale=3] and then say node[transform shape] {X}, you will get a “huge” X in
your graphic.

2. You can give transformation option inside the option list of the node. These transformations always
apply to the node.

\begin{tikzpicture} [every node/.style={draw}]
é;% \draw[help lines](0,0) grid (3,2);

\draw (1,0) node{A}
(2,0) nodel[rotate=90,scale=1.5] {B};

[a'a)
X == \draw[rotate=30] (1,0) node{A}
}\} (2,0) nodel[rotate=90,scale=1.5] {B};
F;:T A \draw [rotate=60] (1,0) node[transform shape] {A}
[(2,0) node[transform shape,rotate=90,scale=1.5] {B};

\end{tikzpicture}

16.8 Placing Nodes on a Line or Curve Explicitly

Until now, we always placed node on a coordinate that is mentioned in the path. Often, however, we wish
to place nodes on “the middle” of a line and we do not wish to compute these coordinates “by hand.” To
facilitate such placements, TikZ allows you to specify that a certain node should be somewhere “on” a line.
There are two ways of specifying this: Either explicitly by using the pos option or implicitly by placing the
node “inside” a path operation. These two ways are described in the following.

/tikz/pos={fraction) (no default)
When this option is given, the node is not anchored on the last coordinate. Rather, it is anchored on
some point on the line from the previous coordinate to the current point. The (fraction) dictates how
“far” on the line the point should be. A (fraction) or 0 is the previous coordinate, 1 is the current one,
everything else is in between. In particular, 0.5 is the middle.

Now, what is “the previous line”? This depends on the previous path construction operation.
In the simplest case, the previous path operation was a “line-to” operation, that is, a —=(coordinate)
operation:

\tikz \draw (0,0) -- (3,1)
node [pos=0]{0} node[pos=0.5]1{1/2} node[pos=0.91{9/10};

190

The next case is the curve-to operation (the .. operation). In this case, the “middle” of the curve, that
is, the position 0.5 is not necessarily the point at the exact half distance on the line. Rather, it is some
point at “time” 0.5 of a point traveling from the start of the curve, where it is at time 0, to the end of
the curve, which it reaches at time 0.5. The “speed” of the point depends on the length of the support
vectors (the vectors that connect the start and end points to the control points). The exact math is a
bit complicated (depending on your point of view, of course); you may wish to consult a good book on
computer graphics and Bézier curves if you are intrigued.

\tikz \draw (0,0) .. controls +(right:3.5cm) and +(right:3.5cm) .. (0,3)
\foreach \p in {0,0.125,...,1} {node[pos=\pl{\p}};

Another interesting case are the horizontal /vertical line-to operations |- and -|. For them, the position
(or time) 0.5 is exactly the corner point.

\tikz \draw (0,0) |- (3,1)

1 node [pos=0]1{0} node[pos=0.5]1{1/2} node[pos=0.91{9/10};
9/10 \tikz \draw (0,0) -| (3,1)
node [pos=0]1{0} node[pos=0.5]{1/2} node[pos=0.9]1{9/10};
0 12

For all other path construction operations, the position placement does not work, currently. This will
hopefully change in the future (especially for the arc operation).

/tikz/auto=(left or right) (default is scope’s setting)

This option causes an anchor positions to be calculated automatically according to the following rule.
Consider a line between to points. If the (direction) is left, then the anchor is chosen such that the
node is to the left of this line. If the (direction) is right, then the node is to the right of this line.
Leaving out (direction) causes automatic placement to be enabled with the last value of left or right
used. A (direction) of false disables automatic placement. This happens also whenever an anchor is
given explicitly by the anchor option or by one of the above, below, etc. options.

This option only has an effect for nodes that are placed on lines or curves.

\begin{tikzpicture}
[scale=.8,auto=1left,every node/.style={circle,fill=blue!20}]

Lo lef a0\ \node (a) at (-1,-2) {a};
f-g de g \node (b) at (1,-2) {b};
\node (c) at (2,-1) {c};
L \node (d) at (2, 1) {d};
& b cd \node (e) at (1, 2) {e};
\node (f) at (-1, 2) {f};
h 14 b—c © \node (g) at (-2, 1) {g};
a—b ya \node (h) at (-2,-1) {h};

\foreach \from/\to in {a/b,b/c,c/d,d/e,e/f,f/g,g/h,h/a}
\draw [->] (\from) -- (\to)
node [midway,fill=red!20] {\from--\to};
\end{tikzpicture}

/tikz/swap (no value)

This option exchanges the roles of left and right in automatic placement. That is, if left is the
current auto placement, right is set instead and the other way round.

191

\begin{tikzpicture} [auto]

[
0.5 . : .
0.6 0.4 \draw[help lines,use as bounding box] (0,-.5) grid (4,5);
e o
0.7 /0 S 0.3 \draw (0.5,0) .. controls (9,6) and (-5,6) .. (3.5,0)
\foreach \pos in {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1}
0.8 0.2 {node [pos=\pos,swap,fill=red!20] {\pos}}
- - \foreach \pos in {0.025,0.2,0.4,0.6,0.8,0.975}
0.8 0.2 {node [pos=\pos,fill=blue!20] {\posl}};
\end{tikzpicture}
0.9 0.1
| |
0.025 0.975
0 1

\begin{tikzpicture} [shorten >=1pt,node distance=2cm,auto]
\draw[help lines] (0,0) grid (3,2);

o<

\node[state] (q_1) [above right of=q_0] {$q_1$3};
\node [state] (g_2) [below right of=q_0] {$q_2%$};
\node [state] (q_3) [below right of=q_1] {q_3};

\node [state] (q_0) {$q_083;

4

q q3 \path[->] (q_0) edge node {0} (q_1)
edge node [swap] {1} (q_2)
(q_1) edge node {1} (q_3)

1 0 edge [loop abovel node {0} O
(q_2) edge node [swap] {0} (q_3)
edge [loop below] node {1} O;

\end{tikzpicture}

/tikz/sloped (no value)

This option causes the node to be rotated such that a horizontal line becomes a tangent to the curve.
The rotation is normally done in such a way that text is never “upside down.” To get upside-down text,
use can use [rotate=180] or [allow upside down], see below.

1 \tikz \draw (0,0) .. controls +(up:2cm) and +(left:2cm) .. (1,3)

cha \foreach \p in {0,0.25,...,1} {node[sloped,above,pos=\pl{\p}};
e
o
o
(%)
ot
(en]
T \begin{tikzpicture}[->]
\draw (0,0) -- (2,0.5) node[midway,sloped,above] {x};
\draw (2,-.5) -- (0,0) node[midway,sloped,below] {y};
v \end{tikzpicture}
/tikz/allow upside down=(boolean) (default true, initially false)

If set to true, TikZ will not “righten” upside down text.

192

\tikz [allow upside down]

1
Qf\(o \draw (0,0) .. controls +(up:2cm) and +(left:2cm) .. (1,3)
\foreach \p in {0,0.25,...,1} {node[sloped,above,pos=\pl{\p}};

Yol
o

el

[

o

o

T \begin{tikzpicture}[->,allow upside down]
\draw (0,0) -- (2,0.5) node[midway,sloped,above] {x};
< \draw (2,-.5) -- (0,0) node[midway,sloped,below] {y};
\end{tikzpicture}

There exist styles for specifying positions a bit less “technically”:

/tikz/midway (style, no value)
This has the same effect as pos=0.5.

el \tikz \draw (0,0) .. controls +(up:2cm) and +(left:3cm) .. (1,5)
very: node[at end] {lat end|}
near’end node[very near end] {|very near end|}
node [near end] {Inear end|}
node [midway] {Imidway |}
. node [near start] {|near start|}
mi node [very near start] {|very near start|}
node[at start] {lat startl|};
nearsgtart
verynearstart
atstart
/tikz/near start (style, no value)
Set to pos=0.25.
/tikz/near end (style, no value)
Set to pos=0.75.
/tikz/very near start (style, no value)
Set to pos=0.125.
/tikz/very near end (style, no value)
Set to pos=0.875.
/tikz/at start (style, no value)
Set to pos=0.
/tikz/at end (style, no value)
Set to pos=1.

16.9 Placing Nodes on a Line or Curve Implicitly

When you wish to place a node on the line (0,0) -- (1,1), it is natural to specify the node not following
the (1,1), but “somewhere in the middle.” This is, indeed, possible and you can write (0,0) -- node{a}
(1,1) to place a node midway between (0,0) and (1,1).

193

What happens is the following: The syntax of the line-to path operation is actually -- node(node
specification){coordinate). (It is even possible to give multiple nodes in this way.) When the optional node
is encountered, that is, when the -- is directly followed by node, then the specification(s) are read and
“stored away.” Then, after the (coordinate) has finally been reached, they are inserted again, but with the
pos option set.

There are two things to note about this: When a node specification is “stored,” its catcodes become
fixed. This means that you cannot use overly complicated verbatim text in them. If you really need, say, a
verbatim text, you will have to put it in a normal node following the coordinate and add the pos option.

Second, which pos is chosen for the node? The position is inherited from the surrounding scope. However,
this holds only for nodes specified in this implicit way. Thus, if you add the option [near end] to a scope,
this does not mean that all nodes given in this scope will be put on near the end of lines. Only the nodes
for which an implicit pos is added will be placed near the end. Typically, this is what you want. Here are
some examples that should make this clearer:

A \begin{tikzpicture}[near end]
o o \draw (Ocm,4em) -- (3cm,4em) node{A};
& fd \draw (Ocm,3em) -- node{B} (3cm,3em) ;
1\5\ \draw (Ocm,2em) -- node [midway] {C} (3cm,2em);
> \draw (Ocm,lem) -- (3cm,lem) node[midway] {D} ;
\end{tikzpicture}
Like the line-to operation, the curve-to operation .. also allows you to specify nodes “inside” the
operation. After both the first .. and also after the second .. you can place node specifications. Like for

the —- operation, these will be collected and then reinserted after the operation with the pos option set.

16.10 The Label and Pin Options

In addition to the node path operation, nodes can also be added using the label and the pin option. This
is mostly useful for simple nodes.

/tikz/label=[{options)] (angle): (text) (no default)
When this option is given to a node operation, it causes another node to be added to the path after
the current node has been finished. This extra node will have the text (text). It is placed, in principle,
in the direction (angle) relative to the main node, but the exact rules are a bit complex. Suppose the
node currently under construction is called main node and let us call the label node 1label node. Then
the following happens:

1. The (angle) is used to determine a position on the border of the main node. If the (angle) is
missing, the value of the following key is used instead:
/tikz/label position=(angle) (no default, initially above)

Sets the default position for labels.

The (angle) determines the position on the border of the shape in two different ways. Normally, the
border position is given by main node.(angle). This means that the (angle) can either be a number
like 0 or =340, but it can also be an anchor like north. Additionally, the special angles above,
below, left, right, above left, and so on are automatically replaced by the corresponding angles
90, 270, 180, 0, 135, and so on.
A special case arises when the following key is set:

/tikz/absolute=(true or false) (default true)

When this key is set, the (angle) is interpreted differently: We still use a point on the border
of the main node, but the angle is measured “absolutely,” that is, an angle of 0 refers to
the point on the border that lies on a straight line from the main node’s center to the right
(relative to the paper, not relative to the local coordinate system or either the node or the
scope).

The difference can be seen in the following example:

194

\tikz [rotate=-80,every label/.style={draw,red}]
\node [transform shape,rectangle,draw,label=right:label] {main nodel};

et
epoﬂ ut

\tikz [rotate=-80,every label/.style={draw,red},absolute]
\node [transform shape,rectangle,draw,label=right:label] {main node};

2. Then, an anchor point for the label node. It is determined in such a way that the labe node
will “face away” from the border of the main node. The anchor that is chosen depends on the
position of the border point that is chosen and its position relative to the center of the main node
and on whether the transform shape option is set. In general, the choice should be what you
would expect, but you may have to set the anchor yourself in difficult situations.

\tikz
defaultGOo \node [circle,draw,
label=default,
label=60:$60"\circ$,
label=below:$-90"\circ$] {my circle};
—90°

3. One (angle) is special: If you set the (angle) to center, then the label will be placed on the center
of the main node. This is mainly useful for adding a label text to an existing node, especially if it
has been rotated.

\tikz \node [transform shape,rotate=90,
rectangle,draw,label={[red] center:R}] {main node};

mairrhode

You can pass (options) to the node label node. For this, you provide the options in square brackets
before the (angle). If you do so, you need to add braces around the whole argument of the label option
and this is also the case if you have brackets or commas or semicolons or anything special in the (text).

X \tikz \node [circle,draw,label={[red]above:X}] {my circle};

\begin{tikzpicture}
///// \node [circle,draw,label={[name=label node]above left:a,b}] {};
\draw (label node) -- +(1,1);
a,b \end{tikzpicture}

If you provide multiple 1abel options, then multiple extra label nodes are added in the order they are
given.
The following styles influence how labels are drawn:

195

/tikz/label distance=(distance) (no default, initially Opt)
The (distance) is additionally inserted between the main node and the label node.

7 \tikz[label distance=5mm]
\node [circle,draw,label=right:X,
Y label=above right:Y,
label=above:Z] {my circle};

/tikz/every label (style, initially empty)
This style is used in every node created by the label option. The default is draw=none,fill=none.
/tikz/pin=[(options)] {angle): (text) (no default)

This is option is quite similar to the label option, but there is one difference: In addition to adding a
extra node to the picture, it also adds an edge from this node to the main node. This causes the node
to look like a pin that has been added to the main node:

qo \tikz \node [circle,fill=blue!50,minimum size=1cm,pin=60:q_0] {};

The meaning of the (options) and the (angle) and the (text) is exactly the same as for the node option.
Only, the options and styles the influence the way pins look are different:
/tikz/pin distance=(distance) (no default, initially 3ex)

This (distance) is used instead of the label distance for the distance between the main node and
the label node.

7 \tikz[pin distance=1cm]
\node [circle,draw,pin=right:X,
Y pin=above right:Y,
y4 pin=above:Z] {my circle};
X
/tikz/every pin (style, initially draw=none,fill=none)

This style is used in every node created by the pin option.

/tikz/pin position=(angle) (no default, initially above)
The default pin position. Works like 1abel position.
/tikz/every pin edge (style, initially help lines)
This style is used in every edge created by the pin options.
7 \tikz [pin distance=15mm,
every pin edge/.style={<-,shorten <=1pt,decorate,
Y decoration={snake,pre length=4pt}}]
\node [circle,draw,pin=right:X,
pin=above right:Y,
pin=above:Z] {my circle};
ANNNAN- X

196

/tikz/pin edge=(options) (no default, initially empty)
This option can be used to set the options that are to be used in the edge created by the pin option.

7 \tikz[pin distance=10mm]
\node [circle,draw,pin={[pin edge={blue,thick}]right:X},
pin=above:Z] {my circle};
X

\tikz [every pin edge/.style={},
initial/.style={pin={[pin distance=5mm,
pin edge={<-,shorten <=iptl}]left:startl}}]

start —
\node [circle,draw,initial]l {my circle};

16.11 Connecting Nodes: Using Nodes as Coordinates

Once you have defined a node and given it a name, you can use this name to reference it. This can be
done in two ways, see also Section 13.2.3. Suppose you have said \path(0,0) node(x) {Hello World!'};
in order to define a node named x.

1. Once the node x has been defined, you can use (x.{anchor)) wherever you would normally use a
normal coordinate. This will yield the position at which the given (anchor) is in the picture. Note
that transformations do not apply to this coordinate, that is, (x.north) will be the northern anchor
of x even if you have said scale=3 or xshift=4cm. This is usually what you would expect.

2. You can also just use (x) as a coordinate. In most cases, this gives the same coordinate as (x.center).
Indeed, if the shape of x is coordinate, then (x) and (x.center) have exactly the same effect.

However, for most other shapes, some path construction operations like —= try to be “clever” when
this they are asked to draw a line from such a coordinate or to such a coordinate. When you say
(x)--(1,1), the -- path operation will not draw a line from the center of x, but from the border of x
in the direction going towards (1,1). Likewise, (1,1)--(x) will also have the line end on the border
in the direction coming from (1,1).

In addition to --, the curve-to path operation .. and the path operations -| and |- will also handle
nodes without anchors correctly. Here is an example, see also Section 13.2.3:

Hello World ————1

label

\begin{tikzpicture}
\path (0,0) node (x) {Hello World!'}
(3,1) nodel[circle,draw] (y) {$\int_1"2 x \mathrm d x$};

\draw[->,blue]) — y);

\draw[->,red] (x) -| nodel[near start,below] {label} (y);

\draw[->,orange] (x) .. controls +(up:1cm) and +(left:1cm) .. node[above,sloped] {labell} (y);
\end{tikzpicture}

16.12 Connecting Nodes: Using the Edge Operation

The edge operation works like a to operation that is added after the main path has been drawn, much like
a node is added after the main path has been drawn. This allows you to have each edge to have a different
appearance. As the node operation, an edge temporarily suspends the construction of the current path and

197

a new path p is constructed. This new path p will be drawn after the main path has been drawn. Note that
p can be totally different from the main path with respect to its options. Also note that if there are several
to and/or node operations in the main path, each creates its own path(s) and they are drawn in the order
that they are encountered on the path.

\path ... edgel[{options)] (nodes) ({coordinate)) ...;
The effect of the edge operation is that after the main path the following path is added to the picture:

\path[every edge,(options)] (\tikztostart) (path);

Here, (path) is the to path. Note that, unlike the path added by the to operation, the (\tikztostart)
is added before the (path) (which is unnecessary for the to operation, since this coordinate is already
part of the main path).

The \tikztostart is the last coordinate on the path just before the edge operation, just as for the node
or to operations. However, there is one exception to this rule: If the edge operation is directly preceded
by a node operation, then this just-declared node is the start coordinate (and not, as would normally
be the case, the coordinate where this just-declared node is placed — a small, but subtle difference). In
this regard, edge differs from both node and to.

If there are several edge operations in a row, the start coordinate is the same for all of them as their
target coordinates are not, after all, part of the main path. The start coordinate is, thus, the coordinate
preceding the first edge operation. This is similar to nodes insofar as the edge operation does not
modify the current path at all. In particular, it does not change the last coordinate visited, see the
following example:

\begin{tikzpicture}
\node (a) at (0:1) {a};
/ \ \node (b) at (90:1) {b} edge [->] (a);
\node (c) at (180:1) {c} edge [->] (a)
edge [<-] (®);
\ / \node (d) at (270:1) {d} edge [->] (a)
edge [dotted] (b)
edge [<-] (c);
\end{tikzpicture}

A different way of specifying the above graph using the edge operation is the following:

b \begin{tikzpicture}
\foreach \name/\angle in {a/0,b/90,c/180,d/270}
/ \ \node (\name) at (\angle:1) {\namel};

C—— a

\path[->] (b) edge (a)
\ / edge (c)
d edge [-,dotted] (d)

(c) edge (a)

edge (d)

(d) edge (a);

\end{tikzpicture}

As can be seen, the path of the edge operation inherits the options from the main path, but you can
locally overrule them.

\begin{tikzpicture}
\foreach \name/\angle in {a/0,b/90,c/180,d/270}
/ \ \node (\name) at (\angle:1.5) {\name};
E \path[->] (b) edge node [above right] {$5%} (a)
o edge (c)
0% {x edge [-,dotted] node[below,sloped] {missing} (d)
AQ (c) edge (a)
edge (d)
(d) edge [red] node [above,sloped] {very}
node [below,sloped] {bad} (a);
\end{tikzpicture}

Instead of every to, the style every edge is installed at the beginning of the main path.

/tikz/every edge (inititially draw) (style, no value)

198

Executed for each edge.

\begin{tikzpicture}[every to/.style={draw,dashed}]
\path (0,0) to (3,2);
\end{tikzpicture}

16.13 Referencing Nodes Outside the Current Pictures
16.13.1 Referencing a Node in a Different Picture

It is possible (but not quite trivial) to reference nodes in pictures other than the current one. This means
that you can create a picture and a node therein and, later, you can draw a line from some other position
to this node.

To reference nodes in different pictures, proceed as follows:

1. You need to add the remember picture option to all pictures that contain nodes that you wish to
reference and also to all pictures from which you wish to reference a node in another picture.

2. You need to add the overlay option to paths or to whole pictures that contain references to nodes in
different pictures. (This option switches the computation of the bounding box off.)

3. You need to use a driver that supports picture remembering and you need to run TEX twice.

(For more details on what is going on behind the scenes, see Section 75.3.2.)
Let us have a look at the effect of these options.

/tikz/remember picture=(boolean) (no default, initially false)

This option tells TikZ that it should attempt to remember the position of the current picture on the
page. This attempt may fail depending on which backend driver is used. Also, even if remembering
works, the position may only be available on a second run of TEX.

Provided that remembering works, you may consider saying
\tikzstyle{every picture}+=[remember picture]

to make TikZ remember all pictures. This will add one line in the .aux file for each picture in your
document — which typically is not very much. Then, you do not have to worry about remembered
pictures at all.

/tikz/overlay (no value)

This option is mainly intended for use when nodes in other pictures are referenced, but you can also use
it in other situations. The effect of this option is that everything within the current scope is not taken
into consideration when the bounding box of the current picture is computed.

You need to specify this option on all paths (or at least on all parts of paths) that contain a reference
to a node in another picture. The reason is that, otherwise, TikZ will attempt to make the current
picture large enough to encompass the node in the other picture. However, on a second run of TEX this
will create an even bigger picture, leading to larger and larger pictures. Unless you know what you
are doing, I suggest specifying the overlay option with all pictures that contain references to other
pictures.

Let us now have a look at a few examples. These examples work only if this document is processed with
a driver that supports picture remembering.

199

Inside the current text we place two pictures, containing nodes named nl and n2, using

\tikz [remember picture] \node[circle,fill=red!50] (n1) {};

which yields ¢;and
\tikz [remember p\cture] \node[fill=blue!50] (n2) {I};

yielding the node M. To connect these nodes, we create another picture using the overlay option and also
the remember picture option.

\begin{tikzpicture} [remember picture,overlay]
\draw[->,very thick] (nl) -- (n2);
\end{tikzpicture}

Note that the last picture is seemingly empty. What happens is that it has zero size and contains an arrow
that lies well outside its bounds. As a last example, we connect a node in another picture to the first two
nodes. Here,\we provide the overlay option only with the line that we do not wish to count as part of the
picture.

\begin{tikzpicturel} [remember picture]
\node (c) [circle,draw] {Big circle};

Big circle
\draw [overlay,->,very thick,red,opacity=.5]

(c) to[bend left] (n1) (n1) -| (n2);
\end{tikzpicture}

16.13.2 Referencing the Current Page Node — Absolute Positioning

There is a special node called current page that can be used to ‘access the current page. It is a node

of shape rectangle whose south west anchor is the lower left corner'of the page and whose north east

anchor is the upper right corner of the page. While this node is handled in a special way internally, you can

reference it as if it were defined in some remembered picture other than the current one. Thus, by giving the

remembered picture and the overlay options to a picture, you can position nodes absolutely on a page.
The first example places some text in the lower left corner of the current page:

\begin{tikzpicture}[remember picture,overlay]
\node [xshift=1cm,yshift=1cm] at (current page.south west)
[text width=7cm,fill=red!20,rounded corners,above right]

{
This isf%an absolutely positioned text in the

lower left corner. No shipout-hackery is used.
I = 2

\end{tikzpicture}
The next example adds a circle in the middle of the page.

\begin{tikzpicturel} [remember picture,overlay]
\draw [line width=1mm,opacity=.25]
(current page.center) circle (3cm);
\end{tikzpicture}

The final example overlays some text over the page (depending on where this example is found on the
page, the text may also be behind the page).

\begin{tikzpicturel} [remember picture,overlay]
\node [rotate=60,scale=10,text opacity=0.2]
at (current page.center) {Examplel};
\end{tikzpicture}

16.14 Late Code and Late Options

All options given to a node only locally affect this one node. While this is a blessing in most cases, you may
sometimes want to cause options to have effects “later” on. The other way round, you may sometimes note
“only later” that some options should be added to the options of a node.

As explained in Section 14, you can use the options append after command and prefix after command
to add a path after a node. The following macro may be useful there:

This is an absolutely positioned text in the
lower left corner. No shipout-hackery is 200

used.

\tikzlastnode
Expands to the last node on the path.

A late option for a node is an option that is given a long time after the node has already been constructed.

/tikz/late options={options) (no default)

This option can be given on a path (but not as an argument to a node path command). It has the
following effect: An already (ewxisting node) is determined (in a way to be described in a moment) and,
then, the (options) are executed in a local scope. Most of these options will have no effect since you
cannot change the appearance of the node, that is, you cannot change a red node into a green node using
late options. However, giving the append after command and prefix after command options inside
the (options) (directly or indirectly) does have the desired effect: The given path gets executed with
the \tikzlastnode set to the determined node.

The net effect of all this is that you can provide, say, the label option inside the (options) to a add a
label to a node that has already been constructed. Likewise, you can use the on chain option to make
an already (ezisting node) part of a chain.

The (existing node) is determined as follows: If the name=(existing node) option is used inside the
(options), then this name is used. Otherwise, if the last coordinate on the current path was of the form
({existing node)), then this (existing node) name is used. Otherwise, an error results.

\begin{tikzpicture}
world \node (a) [draw,circle] {Hello};

\path (a) [late options={label=above:world}];
\end{tikzpicture}

201

17 Matrices and Alignment

17.1 Overview

When creating pictures, one often faces the problem of correctly aligning parts of the picture. For example,
you might wish that the base lines of certain nodes should be on the same line and some further nodes should
be below these nodes with, say, their centers on a vertical lines. There are different ways of solving such
problems. For example, by making clever use of anchors, nearly all such alignment problems can be solved.
However, this often leads to complicated code. An often simpler way is to use matrices, the use of which is
explained in the current section.

A TikZ matrix is similar to BTEX’s {tabular} or {array} environment, only instead of text each cell
contains a little picture or a node. The sizes of the cells are automatically adjusted such that they are large
enough to contain all the cell contents.

Matrices are a powerful tool and they need to handled with some care. For impatient readers who skip
the rest of this section: you must end every row with \\. In particular, the last row must be ended with \\.

Many of the ideas implemented in TikZ’s matrix support are due to Mark Wibrow — many thanks to
Mark at this point!

17.2 Matrices are Nodes

Matrices are special in many ways, but for most purposes matrices are treated like nodes. This means, that
you use the node path command to create a matrix and you only use a special option, namely the matrix
option, to signal that the node will contain a matrix. Instead of the usual TEX-box that makes up the text
part of the node’s shape, the matrix is used. Thus, in particular, a matrix can have a shape, this shape
can be drawn or filled, it can be used in a tree, and so on. Also, you can refer to the different anchors of a
matrix.

/tikz/matrix=(true or false) (default true)

This option can be passed to a node path command. It signals that the node will contain a matrix.

‘ ‘ ‘ \begin{tikzpicture}
\draw[help lines] (0,0) grid (4,2);
X{éﬂo \node [matrix,fill=red!20,draw=blue,very thick] (my matrix) at (2,1)

hd

{
\draw (0,0) circle (4mm); & \nodel[rotate=10] {Hello}; A\
\draw (0.2,0) circle (2mm); & \fill[red] (0,0) circle (3mm); \\
};

\draw [very thick,->] (0,0) |- (my matrix.west);
\end{tikzpicture}

The exact syntax of the matrix is explained in the course of this section.

/tikz/every matrix (style, initially empty)

This style is used in every matrix.

Even more so than nodes, matrices will often be the only object on a path. Because of this, there is a
special abbreviation for creating matrices:

\matrix

Inside {tikzpicture} this is an abbreviation for \path node [matrix].

Even though matrices are nodes, some options do not have the same effect as for normal nodes:

1. Rotations and scaling have no effect on a matrix as a whole (however, you can still transform the
contents of the cells normally). Before the matrix is typeset, the rotational and scaling part of the
transformation matrix is reset.

2. For multi-part shapes you can only set the text part of the node.

3. All options starting with text such as text width have no effect.

202

17.3 Cell Pictures

A matrix consists of rows of cells. Each row (including the last one!) is ended by the command \\. The
character & is used to separate cells. Inside each cell, you must place commands for drawing a picture,
called the cell picture in the following. (However, cell pictures are not enclosed in a complete {pgfpicture}
environment, they are a bit more light-weight. The main difference is that cell pictures cannot have layers.)
It is not necessary to specify beforehand how many rows or columns there are going to be and if a row
contains less cell pictures than another line, empty cells are automatically added as needed.

17.3.1 Alignment of Cell Pictures

For each cell picture a bounding box is computed. These bounding boxes and the origins of the cell pictures
determine how the cells are aligned. Let us start with the rows: Consider the cell pictures on the first row.
Each has a bounding box and somewhere inside this bounding box the origin of the cell picture can be found
(the origin might even lie outside the bounding box, but let us ignore this problem for the moment). The
cell pictures are then shifted around such that all origins lie on the same horizontal line. This may make it
necessary to shift some cell pictures upwards and other downwards, but it can be done and this yields the
vertical alignment of the cell pictures this row. The top of the row is then given by the top of the “highest”
cell picture in the row, the bottom of the row is given by the bottom of the lowest cell picture. (To be more
precise, the height of the row is the maximum y-value of any of the bounding boxes and the depth of the
row is the negated minimum y-value of the bounding boxes).

\begin{tikzpicture}
a X g [every node/.style={draw=black,anchor=base,font=\huge}]
0

\matrix [draw=red]

{
\node {a}; \fill[blue] (0,0) circle (2pt); &
\node {X}; \fill[blue] (0,0) circle (2pt); &
\node {g}; \fill[blue] (0,0) circle (2pt); \\

I8

\end{tikzpicture}

Each row is aligned in this fashion: For each row the cell pictures are vertically aligned such that the
origins lie on the same line. Then the second row is placed below the first row such that the bottom of the
first row touches the top of the second row (unless a row sep is used to add a bit of space). Then the bottom
of the second row touches the top of the third row, and so on. Typically, each row will have an individual
height and depth.

\begin{tikzpicture}
EE [every node/.style={draw=black,anchor=base}]
EE \matrix [draw=red]
{
\node {a}; & \node {X}; & \node {g}; \\
EE \node {a}; & \node {X}; & \node {g}; \\
};
EE \matrix [row sep=3mm,draw=red] at (0,-2)
{

\node {a}; & \node {X}; & \node {g}; \\
\node {a}; & \node {X}; & \node {g}; \\
I8
\end{tikzpicture}

Let us now have a look at the columns. The rules for how the pictures on any given column are aligned are
very similar to the row alignment: Consider all cell pictures in the first column. Each is shifted horizontally
such that the origins lie on the same vertical line. Then, the left end of the column is at the left end of the
bounding box that protrudes furthest to the left. The right end of the column is at the right end of the
bounding box that protrudes furthest to the left. This fixes the horizontal alignment of the cell pictures in
the first column and the same happens the cell pictures in the other columns. Then, the right end of the
first column touches the left end of the second column (unless column sep is used). The right end of the
second column touches the left end of the third column, and so on. (Internally, two columns are actually
used to achieve the desired horizontal alignment, but that is only and implementation detail.)

203

\begin{tikzpicture}[every node/.style={draw}]
\matrix [draw=red]
¢
\node[left] {Hallo}; \fill[blue] (0,0) circle (2pt); \\
\node {X}; \fill[blue] (0,0) circle (2pt); \\
\node [right] {g}; \fill[blue] (0,0) circle (2pt); \\
};
\end{tikzpicture}

\begin{tikzpicture} [every node/.style={draw}]
E \matrix [draw=red,column sep=1cm]

3 5 7 {
. . . \node {8}; & \node{1}; & \node {6}; \\
ﬂ \node {3}; & \node{5}; & \node {73}; \\
\node {4}; & \node{9}; & \node {2}; \\
Irg
\end{tikzpicture}

17.3.2 Setting and Adjusting Column and Row Spacing

There are different ways of setting and adjusting the spacing between columns and rows. First, you can use
the options column sep and row sep to set a default spacing for all rows and all columns. Second, you can
add options to the & character and the \\ command to adjust the spacing between two specific columns or
rows. Additionally, you can specify whether the space between two columns or rows should be considered
between the origins of cells in the column or row or between their borders.

/tikz/column sep=(spacing list) (no default)

This option sets a default space that is added between every two columns. This space can be positive
or negative and is zero by default. The (spacing list) normally contains a single dimension like 2pt.

123 Tcm
123

\begin{tikzpicture}
\matrix [draw,column sep=1cm,nodes=draw]
{
\node(a) {123}; & \node (b) {1}; & \node {1}; \\
\node {12}; & \node {12}; & \node {1}; \\
\node(c) {1}; & \node (d) {123}; & \node {1}; \\
g
\draw [red,thick] (a.east) -- (a.east |- c)
(d.west) -- (d.west |- b);
\draw [<->,red,thick] (a.east) -- (d.west |- b)
node [above,midway] {lcm};
\end{tikzpicture}

More generally, the (spacing list) may contain a whole list of numbers, separated by commas, and
occurrences of the two key words between origins and between borders. The effect of specifying
such a list is the following: First, all numbers occurring in the list are simply added to compute the final
spacing. Second, concerning the two keywords, the last occurrence of one of the keywords is important.
If the last occurrence is between borders or if neither occurs, then the space is inserted between the
two columns normally. However, if the last occurs is between origins, then the following happens:
The distance between the columns is adjusted such that the difference between the origins of all the
cells in the first column (remember that they all lie on straight line) and the origins of all the cells in
the second column is exactly the given distance.

The betweenorigins option can only be used for columns mentioned in the first row, that is, you cannot
specify this option for columns introduced only in later rows.

204

\begin{tikzpicture}

\matrix [draw,column sep={lcm,between origins},nodes=draw]
{
\node(a) {123}; & \node (b) {1}; & \node {1}; \\
\node {12}; & \node {12}; & \node {1}; \\
\node {1}; & \node {123}; & \node {1}; \\
15
\draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {lcm};
\end{tikzpicture}
/tikz/row sep=(spacing list) (no default)

This option works like column sep, only for rows. Here, too, you can specify whether the space is added
between the lower end of the first row and the upper end of the second row, or whether the space is
computed between the origins of the two rows.

\begin{tikzpicture}

\matrix [draw,row sep=1lcm,nodes=draw]
{
lem \node (a) {123}; & \node {1}; & \node {1}; \\
\node (b) {12}; & \node {12}; & \node {1}; \\

121112111 \node {1}; & \node {123}; & \node {1}; \\
o]

\draw [<->,red,thick] (a.south) -- (b.north) node [right,midway] {lcm};
\end{tikzpicture}

\begin{tikzpicture}
\matrix [draw,row sep={lcm,between origins},nodes=draw]
le t
e \node (a) {123}; & \node {1}; & \node {1}; \\
m \node (b) {12}; & \node {12}; & \node {1}; \\
\node {1}; & \node {123}; & \node {1}; \\

};
\draw [<->,red,thick] (a.center) -- (b.center) node [right,midway] {lcm};

\end{tikzpicture}

The row-end command \\ allows you to provide an optional argument, which must be a dimension.
This dimension will be added to the list in row sep. This means that, firstly, any numbers you list in
this argument will be added as an extra row separation between the line being ended and the next line
and, secondly, you can use the keywords between origins and between borders to locally overrule the
standard setting for this line pair.

\begin{tikzpicture}
O() \matrix [row sep=1mm]
{
\draw (0,0) circle (2mm); & \draw (0,0) circle (2mm); \\
\draw (0,0) circle (2mm); & \draw (0,0) circle (2mm); \\[-1mm]
lem \draw (0,0) coordinate (a) circle (2mm); &
\draw (0,0) circle (2mm); \\[lcm,between origins]
\draw (0,0) coordinate (b) circle (2mm); &
\draw (0,0) circle (2mm); \\
Irg
\draw [<->,red,thick] (a.center) -- (b.center) node [right,midway] {lcm};
\end{tikzpicture}

The cell separation character & also takes an optional argument, which must also be a spacing list. This
spacing list is added to the column sep having a similar effect as the option for the \\ command for rows.

This optional spacing list can only be given the first time a new column is started (usually in the first
row), subsequent usages of this option in later rows have no effect.

\begin{tikzpicture}
116 \matrix [draw,nodes=draw,column sep=1mm]

8]
13| [5]7 <

\node {8}; &[2mm] \node{1}; &[-1mm] \node {6}; \\

912 \node {3}; & \node{5}; & \node {77}; \\
\node {4}; & \node{9}; & \node {2}; \\
g
\end{tikzpicture}

205

\begin{tikzpicture}

\matrix [draw,nodes=draw,column sep=1mm]
{
\node {8}; &[2mm] \node(a){1}; &[1lcm,between origins] \node(b){6}; \\
\node {3}; & \node {5}; & \node {7}; \\
\node {4}; & \node {9}; & \node {2}; \\
15
\draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {11imm};
\end{tikzpicture}
\begin{tikzpicture}
\matrix [draw,nodes=draw,column sep={lcm,between origins}]
{
\node (a) {8}; & \node (b) {1}; &[between borders] \node (c) {6}; \\
\node {3}; & \node {5}; & \node {7} \\
\node {4}; & \node {9}; & \node {2}; \\
I8
\draw [<->,red,thick] (a.center) -- (b.center) node [above,midway] {10mm};
\draw [<->,red,thick] (b.east) -- (c.west) node [above,midway] {10mm};
\end{tikzpicture}

17.3.3 Cell Styles and Options

For following style and option are useful for changing the appearance of the all cell pictures:

/tikz/every cell={(row)}{{column)} (style, no default, initially empty)

This style is installed at the beginning of each cell picture with the two parameters being the current
(row) and (column) of the cell. Note that setting this style to draw will not cause all nodes to be drawn
since the draw option has to be passed to each node individually.

Inside this style (and inside all cells), the current (row) and (column) number are also accessible via the
counters \pgfmatrixcurrentrow and \pgfmatrixcurrentcolumn.

/tikz/cells=(options) (no default)

This key adds the (options) to the style every cell. It mainly just a shorthand for the code every
cell/.append style=(options).

/tikz/nodes=(options) (no default)

This key adds the (options) to the style every node. It mainly just a shorthand for the code every
node/.append style=(options).

The main use of this option is the install some options for the nodes inside the matrix that should not
apply to the matrix itself.

\begin{tikzpicture}
8 1 6 \matrix [nodes={fill=blue!20,minimum size=5mm}]
35 7 t
\node {8}; & \node{1}; & \node {6}; \\
4 9 2 \node {3}; & \node{5}; & \node {73}; \\
\node {4}; & \node{9}; & \node {2}; \\
g
\end{tikzpicture}

The next set of styles can be used to change the appearance of certain rows, columns, or cells. If more
than one of these styles is defined, they are executed in the below order (the every cell style is executed
before all of the below).

/tikz/column (number) (style, no value)

This style is used for every cell in column (number).

/tikz/every odd column (style, no value)

This style is used for every cell in an odd column.

/tikz/every even column (style, no value)

This style is used for every cell in an even column.

206

/tikz/row (number)

This style is used for every cell in row (number).

/tikz/every odd row

This style is used for every cell in an odd row.

/tikz/every even row

This style is used for every cell in an even row.

/tikz/row (row number) column (column number)

This style is used for the cell in row (row number) and column (column number).

> W 0o
© ot
N g D

\begin{tikzpicture}

[row 1/.style={red},

column 2/.style={green!50!black},

row 3 column 3/.style={blue}]

\matrix

{

\node
\node
\node

{8}; & \node{1}; & \node {6};
{3}; & \node{5}; & \node {7};
{4}; & \node{9}; & \node {2};

Irg

\end{tikzpicture}

\\

\\

(style,

(style,

(style,

(style,

You can use the column (number) option to change the alignment for different columns.

123 456 789
12 45 78
1 4 7

\begin{tikzpicture}
[column 1/.style={anchor=base west},
column 2/.style={anchor=base east},

column 3/.style={anchor=base}]
\matrix

{

\node {123}; & \node{456}; & \node {789}; \\
\node {12}; & \node{45}; & \node {78}; \\
\node {1}; & \node{4}; & \node {7}; \\

Irg

\end{tikzpicture}

no value)

no value)

no value)

no value)

In many matrices all cell pictures have nearly the same code. For example, cells typically start with

\nodeq{ and end };. The following options allow you to execute such code in all cells:

/tikz/execute at begin cell={code)

The code will be executed at the beginning of each nonempty cell.

/tikz/execute at end cell=(code)

The code will be executed at the end of each nonempty cell.

/tikz/execute at empty cell={code)

The code will be executed inside each empty cell.

=~ W o
© Ot =
[NCIEEN B

\begin{tikzpicture}

[matrix of nodes/.style={

execute at begin cell=\node\bgroup,

execute at end cell=\egroup;%
H
\matrix [matrix of nodes]

{

8 & 1 &6 \\

3&5&7\\

4% 9 & 2 \\
};
\end{tikzpicture}

207

(no default)

(no default)

(no default)

\begin{tikzpicture}
81— [matrix of nodes/.style={

3 -7 execute at begin cell=\node\bgroup,
9 execute at end cell=\egroup;,%
execute at empty cell=\node{--};%

}H
\matrix [matrix of nodes]

{

1 \\

& &
& & 7 \\
& & 2 \\
1
\end{tikzpicture}

The matrix library defines a number of styles that make use of the above options.

17.4 Anchoring a Matrix

Since matrices are nodes, they can be anchored in the usual fashion using the anchor option. However, there
are two ways to influence this placement further. First, the following option is often useful:

/tikz/matrix anchor=(anchor) (no default)

This option has the same effect as anchor, but the option applies only to the matrix itself, not to the
cells inside. If you just say anchor=north as an option to the matrix node, all nodes inside matrix
will also have this anchor, unless it is explicitly set differently for each node. By comparison, matrix
anchor sets the anchor for the matrix, but for the nodes inside the value of anchor remain unchanged.

\begin{tikzpicture}

123 \matrix [matrix anchor=west] at (0,0)
12 {
1 \node {123}; \\ % still center anchor
\node {12}; \\
\node {1}; \\
g
123 \matrix [anchor=west] at (0,-2)
12 {
1 \node {123}; \\ % inherited west anchor

\node {12}; \\
\node {1}; \\
s
\end{tikzpicture}

The second way to anchor a matrix is to use an anchor of a node inside the matriz. For this, the anchor
option has a special effect when given as an argument to a matrix:

/tikz/anchor={anchor or node.anchor) (no default)

Normally, the argument of this option refers to anchor of the matrix node, which is the node than includes
all of the stuff of the matrix. However, you can also provide an argument of the form (node) . (anchor)
where (node) must be node defined inside the matrix and (anchor) is an anchor of this node. In this
case, the whole matrix is shifted around in such a way that this particular anchor of this particular node
lies at the at position of the matrix. The same is true for matrix anchor.

\begin{tikzpicture}
abecd \draw[help lines] (0,0) grid (3,2);
\matrix[matrix anchor=inner node.south,anchor=base,row sep=3mm] at (1,1)
abcd {
\node {a}; & \node {b}; & \node {c}; & \node {d}; \\
abcd \node {a}; & \node(inner node) {b}; & \node {c}; & \node {d}; \\
\node {a}; & \node {b}; & \node {c}; & \node {d}; \\
I8
\draw (inner node.south) circle (1pt);
\end{tikzpicture}

208

17.5 Considerations Concerning Active Characters

Even though TikZ seems to use & to separate cells, PGF actually uses a different command to separate cells,
namely the command \pgfmatrixnextcell and using a normal & character will normally fail. What happens
is that, TikZ makes & an active character and then defines this character to be equal to \pgfmatrixnextcell.
In most situations this will work nicely, but sometimes & cannot be made active; for instance because the
matrix is used in an argument of some macro or the matrix contains nodes that contain normal {tabular}
environments. In this case you can use the following option to avoid having to type \pgfmatrixnextcell
each time:

/tikz/ampersand replacement=(macro name or empty) (no default)

If a macro name is provided, this macro will be defined to be equal to \pgfmatrixnextcell inside
matrices and & will not be made active. For instance, you could say ampersand replacement=\& and
then use & to separate columns as in the following example:

\tikz
<:::> &{éﬂo }matrix [ampersand replacement=\&]

O ‘ \draw (0,0) circle (4mm); \& \node[rotate=10] {Hello}; \\
\draw (0.2,0) circle (2mm); \& \fill[red] (0,0) circle (3mm); \\
g

17.6 Examples

The following examples are adapted from code by Mark Wibrow. The first two redraw pictures from Timothy
van Zandt’s PStricks documentation:

\begin{tikzpicture}
U S \matrix [matrix of math nodes,row sep=1icm]
§§§ {
N o, ()| U &[2nm] glemm] \\
e & | (XZY) | X \times_Z Y & [X)] X \\
Xx,Y p\"X) & ol Y & 1(2)] Z \\
a f \begin{scope} [every node/.style={midway,auto,font=\scriptsize}]
\draw [double, dashed] (U) -- node {x} (X);
\draw X) -- node {p} (X -| XZY.east)
Y —/— 2 (X) -- node {$£$} (2)
-- node {g} (Y)
-- node {q} (XZY)
-- node {y} (U);
\end{scope}
\end{tikzpicture}

209

\begin{tikzpicture} [>=stealth,->,shorten >=2pt,looseness=.5,auto]
\matrix [matrix of math nodes,
column sep={2cm,between origins},
row sep={3cm,between origins},
nodes={circle, draw, minimum size=7.5mm}]

{
& (D] Ak \\
I(B)I B& I(E)I E& I(C)] C\\
& | (D)| D \\

};

\begin{scopel}[every node/.style={font=\small\itshapel}]
\draw (A) to [bend left] node [midway] {g} (B);
\draw (B) to [bend left] node [midway] {£f} (4);

\draw (D) -- node [midway]l {c} (B);
\draw (E) -- node [midway] {p} (B);
\draw (E) -- node [near end] {a} (C);

\draw [-,line width=8pt,draw=graphicbackground]
(D) to [bend right, looseness=1] (A);
\draw (D) to [bend right, looseness=1]
node [near start] {b} node [near end] {e} (A);
\end{scope}
\end{tikzpicture}

\begin{tikzpicture}
\matrix (network)
[matrix of nodes,%
nodes in empty cells,
nodes={outer sep=0pt,circle,minimum size=4pt,draw},
column sep={lcm,between origins},
row sep={lcm,between origins}]

{
& & & \\
& & & \\
| [draw=none] | & |[xshift=1mm]| & | [xshift=-1mm] | A\
Ig
\foreach \a in {1,...,4}{
\draw (network-3-2) -- (network-2-\a);
\draw (network-3-3) -- (network-2-\a);
\draw [-stealth] ([yshift=5mm]network-1-\a.north) -- (network-1-\a);
\foreach \b in {1,...,4}
\draw (network-1-\a) -- (nmetwork-2-\b);
}
\draw [stealth-] ([yshift=-5mm]network-3-2.south) -- (network-3-2);
\draw [stealth-] ([yshift=-bmm]network-3-3.south) -- (network-3-3);
\end{tikzpicture}

The following example is adapted from code written by Kjell Magne Fauske, which is based on the fol-
lowing paper: K. Bossley, M. Brown, and C. Harris, Neurofuzzy identification of an autonomous underwater
vehicle, International Journal of Systems Science, 1999, 30, 901-913.

210

—
initialize
model

1

identify
candidate
model

update
model

s)
evaluate

candidate
models

!

is best
candidate

stop

211

212

18 Making Trees Grow
18.1 Introduction to the Child Operation

Trees are a common way of visualizing hierarchical structures. A simple tree looks like this:

root \begin{tikzpicture}
\node {root}
child {node {left}}
child {node {right}
) child {node {child}}
left right child {node {child}}

};
/// \\\ \end{tikzpicture}

child child

Admittedly, in reality trees are more likely to grow upward and not downward as above. You can tell
whether the author of a paper is a mathematician or a computer scientist by looking at the direction their
trees grow. A computer scientist’s trees will grow downward while a mathematician’s tree will grow upward.
Naturally, the correct way is the mathematician’s way, which can be specify as follows:

. o \begin{tikzpicture}
clbill itk \node {root} [grow’=upl]
child {node {leftl}}
child {node {right}
\ child {node {child}}
left right child {node {child}}
I8
\\\\ //// \end{tikzpicture}
root

In TikZ, trees are specified by adding children to a node on a path using the child operation:

\path ... child[{options)]foreach(variables)in{(values)}{(child path)} ...;

This operation should directly follow a completed node operation or another child operation, although
it is permissible that the first child operation is preceded by options (we will come to that).

When a node operation like node {X} is followed by child, TikZ starts counting the number of child
nodes that follow the original node {X}. For this, it scans the input and stores away each child and
its arguments until it reaches a path operation that is not a child. Note that this will fix the character
codes of all text inside the child arguments, which means, in essence, that you cannot use verbatim text
inside the nodes inside a child. Sorry.

Once the children have been collected and counted, TikZ starts generating the child nodes. For each
child of a parent node TikZ computes an appropriate position where the child is placed. For each child,
the coordinate system is transformed so that the origin is at this position. Then the (child path) is
drawn. Typically, the child path just consists of a node specification, which results in a node being
drawn at the child’s position. Finally, an edge is drawn from the first node in the (child path) to the
parent node.

The optional foreach part (note that there is no backslash before foreach) allows you to specify
multiple children in a single child command. The idea is the following: A \foreach statement is
(internally) used to iterate over the list of (values). For each value in this list, a new child is added to
the node. The syntax for (variables) and for (values) is the same as for the \foreach statement, see
Section 56. For example, when you say

node {root} child [red] foreach \name in {1,2} {node {\name}}
the effect will be the same as if you had said

node {root} child[red] {node {1}} child[ref] {node {2}}
When you write

node {root} child[\pos] foreach \name/\pos in {1/left,2/right} {node[\pos] {\namel}}

213

the effect will be the same as for
node {root} child[left] {node[left] {1}} child[right] {nodel[right] {2}}
You can nest things as in the following example:

\begin{tikzpicture}
[level distance=4mm,level/.style={sibling distance=8mm/#1}]
\coordinate
child foreach \x in {0,1}
{child foreach \y in {0,1}
{child foreach \z in {0,1}}};
\end{tikzpicture}

The details and options for this operation are described in the rest of this present section.

18.2 Child Paths and the Child Nodes

For each child of a root node, its (child path) is inserted at a specific location in the picture (the placement
rules are discussed in Section 18.5). The first node in the (child path), if it exists, is special and called
the child node. If there is no first node in the (child path), that is, if the {child path) is missing (including
the curly braces) or if it does not start with node or with coordinate, then an empty child node of shape
coordinate is automatically added.

Consider the example \node {x} child {node {y}} child;. For the first child, the (child path) has
the child node node {y}. For the second child, no child node is specified and, thus, it is just coordinate.

As for any normal node, you can give the child node a name, shift it around, or use options to influence
how it is rendered.

- \begin{tikzpicture}
root
\node [rectangle,draw] {root}

child {node([circle,draw] (left node) {left}}
child {nodel[ellipse,draw] (right node) {rightl}};

\draw[dashed,->] (left node) -- (right node);
B \end{tikzpicture}

In many cases, the (child path) will just consist of a specification of a child node and, possibly, children
of this child node. However, the node specification may be followed by arbitrary other material that will be
added to the picture, transformed to the child’s coordinate system. For your convenience, a move-to (0,0)
operation is inserted automatically at the beginning of the path. Here is an example:

root \begin{tikzpicture}

\node {root}
child {[£fill] circle (2pt)}
child {[£ill] circle (2pt)};
\end{tikzpicture}

At the end of the (child path) you may add a special path operation called edge from parent. If this
operation is not given by yourself somewhere on the path, it will be automatically added at the end. This
option causes a connecting edge from the parent node to the child node to be added to the path. By giving
options to this operation you can influence how the edge is rendered. Also, nodes following the edge from
parent operation will be placed on this edge, see Section 18.6 for details.

To sum up:

1. The child path starts with a node specification. If it is not there, it is added automatically.

2. The child path ends with a edge from parent operation, possibly followed by nodes to be put on this
edge. If the operation is not given at the end, it is added automatically.

18.3 Naming Child Nodes

Child nodes can be named like any other node using either the name option or the special syntax in which
the name of the node is placed in round parentheses between the node operation and the node’s text.

If you do not assign a name to a child node, TikZ will automatically assign a name as follows: Assume
that the name of the parent node is, say, parent. (If you did not assign a name to the parent, TikZ will do

214

so itself, but that name will not be user-accessible.) The first child of parent will be named parent-1, the
second child is named parent-2, and so on.

This naming convention works recursively. If the second child parent-2 has children, then the first of
these children will be called parent-2-1 and the second parent-2-2 and so on.

If you assign a name to a child node yourself, no name is generated automatically (the node does not have
two names). However, “counting continues,” which means that the third child of parent is called parent-3
independently of whether you have assigned names to the first and/or second child of parent.

Here is an example:

oG \begin{tikzpicture}

\node (root) {root}

child

child {

child {coordinate (special)}
root-1 rog¢-2 child

13
\node at (root-1) {root-1};
\node at (root-2) {root-2};

spetial root-2-2 \node at (special) {special};

\node at (root-2-2) {root-2-2};
\end{tikzpicture}

18.4 Specifying Options for Trees and Children

Each child may have its own (options), which apply to “the whole child,” including all of its grandchildren.
Here is an example:

\begin{tikzpicture}
[thick,level 2/.style={sibling distance=10mm}]
\coordinate
child[red] {child child}
child[green] {child child[bluel};
\ \end{tikzpicture}

The options of the root node have no effect on the children since the options of a node are always “local”
to that node. Because of this, the edges in the following tree are black, not red.

root \begin{tikzpicture} [thick]

\node [red] {root}
child
child;
\end{tikzpicture}

This raises the problem of how to set options for all children. Naturally, you could always set options for
the whole path as in \path [red] node {root} child child; but this is bothersome in some situations.
Instead, it is easier to give the options before the first child as follows:

\begin{tikzpicturel} [thick]
\node [red] {root}
[green] ¥ option applies to all children
child
child;
\end{tikzpicture}

root

Here is the set of rules:

1. Options for the whole tree are given before the root node.

2. Options for the root node are given directly to the node operation of the root.
Options for all children can be given between the root node and the first child.

Options applying to a specific child path are given as options to the child operation.

ek @

Options applying to the node of a child, but not to the whole child path, are given as options to the
node command inside the (child path).

215

\begin{tikzpicture}

\path

[...] % Options apply to the whole tree

node[...] {root} 7 Options apply to the root node only
[% Options apply to all children
child[...] % Options apply to this child and all its children
{

node[...] {} 7 Options apply to the child node only
}
childl...] % Options apply to this child and all its children
\end{tikzpicture}

There are additional styles that influence how children are rendered:

/tikz/every child (style, initially empty)
This style is used at the beginning of each child, as if you had given the style’s contents as options to
the child operation.

/tikz/every child node (style, initially empty)
This style is used at the beginning of each child node in addition to the every node style.

/tikz/level=(number) (style, no default, initially empty)

This style is executed at the beginning of each set of children, where (number) is the current level in
the current tree. For example, when you say \node {x} child child;, then level=1 is used before
the first child. The style or code of this key will be passed (number) as its first parameter. If this first
child has children itself, then 1level=2 would be used for them.

root \begin{tikzpicture}[level/.style={sibling distance=20mm/#1}]

\node {root}
child { child child }
child { child child child };
\end{tikzpicture}

/tikz/level (number) (style, initially empty)
This style is used in addition to the level style. So, when you say \node {x} child child;, then the
following key list is executed: level=1,level 1.

T \begin{tikzpicture}

[level 1/.style={sibling distance=20mm},
level 2/.style={sibling distance=5mm}]
\node {root}
child { child child }
child { child child child };
\end{tikzpicture}

18.5 Placing Child Nodes
18.5.1 Basic Idea

Perhaps the most difficult part in drawing a tree is the correct layout of the children. Typically, the children
have different sizes and it is not easy to arrange them in such a manner that not too much space is wasted, the
children do not overlap, and they are either evenly spaced or their centers are evenly distributed. Calculating
good positions is especially difficult since a good position for the first child may depend on the size of the
last child.

216

In TikZ, a comparatively simple approach is taken to placing the children. In order to compute a child’s
position, all that is taken into account is the number of the current child in the list of children and the
number of children in this list. Thus, if a node has five children, then there is a fixed position for the first
child, a position for the second child, and so on. These positions do not depend on the size of the children
and, hence, children can easily overlap. However, since you can use options to shift individual children a bit,
this is not as great a problem as it may seem.

Although the placement of the children only depends on their number in the list of children and the
total number of children, everything else about the placement is highly configurable. You can change the
distance between children (appropriately called the sibling distance) and the distance between levels of
the tree. These distances may change from level to level. The direction in which the tree grows can be
changed globally and for parts of the tree. You can even specify your own “growth function” to arrange

children on a circle or along special lines or curves.

18.5.2 Default Growth Function

The default growth function works as follows: Assume that we are given a node and five children. These
children will be placed on a line with their centers (or, more generally, with their anchors) spaced apart by
the current sibling distance. The line is orthogonal to the current direction of growth, which is set with
the grow and grow’ option (the latter option reverses the ordering of the children). The distance from the

line to the parent node is given by the level distance.

4 \begin{tikzpicture}
\path [help lines]
/ node (root) {root}
[grow=-10]
/ child {node {1}}
/ 3 child {node {2}}

1‘0104%1’% child {node {3}}
child {node {4}};
\draw[|<->|,thick] (root-1.center)
-- node[above,sloped] {sibling distance} (root-2.center);

\draw[|<->|,thick] (root.center)
-- node[above,sloped] {level distance} +(-10:\tikzleveldistance);

\end{tikzpicture}

/tikz/level distance=(distance) (no default, initially 15mm)

This key determines the distance between different levels of the tree, more precisely, between the parent
and the line on which its children are arranged. When given to a single child, this will set the distance

for this child only.

\begin{tikzpicture}

\node {root}
\\\\\\\\ [level distance=20mm]

child

child {
[level distance=5mm]
child
child
child

}

child[level distance=10mm];

\end{tikzpicture}

T00t

217

T00t

\begin{tikzpicture}
[level 1/.style={level distance=10mm},
level 2/.style={level distance=5mm}]
\node {root}
child
child {
child
child[level distance=10mm]
child
}
child;
\end{tikzpicture}

/tikz/sibling distance=(distance)

(no default, initially 15mm)

This key specifies the distance between the anchors of the children of a parent node.

31

20

ANA

20 10 19 18

ANAN

54911

/tikz/grow=(direction)

\begin{tikzpicture}
[level distance=4mm,
level 1/.style={sibling distance=8mm},
level 2/.style={sibling distance=4mm},
level 3/.style={sibling distance=2mm}]
\coordinate
child {
child {child child}
child {child child}
}
child {
child {child child}
child {child child}
};
\end{tikzpicture}

\begin{tikzpicture}
[level distance=10mm,

every node/.style={fill=red!60,circle,inner sep=1ipt},

level 1/.style={sibling distance=20mm,nodes={fill=red!45}},
level 2/.style={sibling distance=10mm,nodes={fill=red!30}},
level 3/.style={sibling distance=5mm,nodes={fill=red!25}}]

\node {31}
child {node {30}
child {node {20}
child {node {5}}
child {node {4}}
}
child {node {10}
child {node {9}}
child {node {1}}
}
}
child {node {20}
child {node {19}
child {node {1}}
child[missing]
}
child {node {18}}
g
\end{tikzpicture}

(no default)

This key is used to define the (direction) in which the tree will grow. The (direction) can either be
an angle in degrees or one of the following special text strings: down, up, left, right, north, south,
east, west, north east, north west, south east, and south west. All of these have “their obvious
meaning,” so, say, south west is the same as the angle —135°.

As a side effect, this option installs the default growth function.

In addition to setting the direction, this option also has a seemingly strange effect: It sets the sibling
distance for the current level to Opt, but leaves the sibling distance for later levels unchanged.

218

This somewhat strange behaviour has a highly desirable effect: If you give this option before the list
of children of a node starts, the “current level” is still the parent level. Each child will be on a later
level and, hence, the sibling distance will be as specified originally. This will cause the children to be
neatly aligned in a line orthogonal to the given (direction). However, if you give this option locally to a
single child, then “current level” will be the same as the child’s level. The zero sibling distance will then
cause the child to be placed exactly at a point at distance level distance in the direction (direction).
However, the children of the child will be placed “normally” on a line orthogonal to the (direction).

These placement effects are best demonstrated by some examples:

/////// \tikz \node {root} [grow=right] child child;

root

N

root \tikz \node {root} [grow=south west] child child;

i

\begin{tikzpicture}[level distance=10mm,sibling distance=5mm]
root \node {root}
/ ‘ [grow=down]

child

child

child[grow=right] {
child child child

}
\end{tikzpicture}
H O \begin{tikzpicture}[level distance=2em]
‘ ‘ \node {C}
A A child [grow=up] {node {H}}
H (‘j N (‘j H child[grow=left] {node {H}}
child[grow=down] {node {H}}
H H child[grow=right] {node {C}
o child [grow=up] {node {H}}
This is wrong! child[grow=right] {node {H}}

child[grow=down] {node {H}}
edge from parent[double]
coordinate (wrong)
};
\draw[<-,red] ([yshift=-2mm]wrong) -- +(0,-1)
node [below]{This is wrong!};
\end{tikzpicture}

. . \begin{tikzpicture}
the middle is here \node [rectangle,draw] (a) at (0,0) {start node};

\node [rectangle,draw] (b) at (2,1) {end};

\draw (a) -- (b)
node [coordinate,midway] {}
child[grow=100,<-] {node[above] {the middle is herel}};
\end{tikzpicture}

/tikz/grow’=(direction) (no default)
This key has the same effect as grow, only the children are arranged in the opposite order.

18.5.3 Missing Children

Sometimes one or more of the children of a node are “missing.” Such a missing child will count as a child
with respect to the total number of children and also with respect to the current child count, but it will not
be rendered.

219

/tikz/missing=(true or false) (default true)
If this option is given to a child, the current child counter is increased, but the child is otherwise ignored.
In particular, the normal contents of the child is completely ignored.

Gk \begin{tikzpicture}[level distance=10mm,sibling distance=5mm]

\node {root} [grow=down]

/// \\ child { node {1} }
child { node {2} }

LA DG child { node {3} }
child[missing] { node {4} }

child { node {5} }

child { node {6} };

\end{tikzpicture}

18.5.4 Custom Growth Functions

/tikz/growth parent anchor=(anchor) (no default, initially center)

This key allows you to specify which anchor of the parent node is to be used for computing the children’s
position. For example, when there is only one child and the level distance is 2cm, then the child
node will be placed two centimeters below the (anchor) of the parent node. “Being placed” means that
the child node’s anchor (which is the anchor specified using the anchor= option in the node command
of the child) is two centimeters below the parent node’s (anchor).

In the following example, the two red lines both have length 1cm.

\begin{tikzpicture}[level distance=1cm]
root o0t
- - \node [rectangle,draw] (a) at (0,0) {root}

! [growth parent anchor=south] child;
\node [rectangle,draw] (b) at (2,0) {root}
[growth parent anchor=north east] child;

\draw [red,thick,dashed] (a.south) -- (a-1);
\draw [red,thick,dashed] (b.north east) -- (b-1);
\end{tikzpicture}

In the next example, the top and bottom nodes are aligned at the top and the bottom.

\begin{tikzpicture}
[level distance=2cm,growth parent anchor=north,
every node/.style={anchor=north,rectangle,draw}
every child node/.style={anchor=south}]

root big root

. \node at (0,0) {root} child {node {small}};
small big

\node at (2,0) {big root} child {node {\large big}};
\end{tikzpicture}

/tikz/growth function=(macro name) (no default, initially an internal function)

This rather low-level option allows you to set a new growth function. The (macro name) must be the
name of a macro without parameters. This macro will be called for each child of a node. The initial
function is an internal function that corresponds to downward growth.

The effect of executing the macro should be the following: It should transform the coordinate system
in such a way that the origin becomes the place where the current child should be anchored. When the
macro is called, the current coordinate system will be setup such that the anchor of the parent node
is in the origin. Thus, in each call, the (macro name) must essentially do a shift to the child’s origin.
When the macro is called, the TEX counter \tikznumberofchildren will be set to the total number of
children of the parent node and the counter \tikznumberofcurrentchild will be set to the number of
the current child.

The macro may, in addition to shifting the coordinate system, also transform the coordinate system
further. For example, it could be rotated or scaled.

Additional growth functions are defined in the library, see Section 53.

220

18.6 Edges From the Parent Node

Every child node is connected to its parent node via a special kind of edge called the edge from parent.
This edge is added to the (child path) when the following path operation is encountered:

\path ... edge from parent [(options)] ...;
This path operation can only be used inside (child paths) and should be given at the end, possibly
followed by node specifications (we will come to that). If a {child path) does not contain this operation,
it will be added at the end of the (child path) automatically.
This operation has several effects. The most important is that it inserts the current “edge from parent
path” into the child path. The edge from parent path can be set using the following key:

/tikz/edge from parent path=(path) (no default, initially code shown below)
This options allows you to set the edge from parent path to a new path. Initially, this path is the
following:

(\tikzparentnode\tikzparentanchor) -- (\tikzchildnode\tikzchildanchor)

The \tikzparentnode is a macro that will expand to the name of the parent node. This works
even when you have not assigned a name to the parent node, in this case an internal name is
automatically generated. The \tikzchildnode is a macro that expands to the name of the child
node. The two ...anchor macros are empty by default. So, what is essentially inserted is just
the path segment (\tikzparentnode) -- (\tikzchildnode); which is exactly an edge from the
parent to the child.

You can modify this edge from parent path to achieve all sorts of effects. For example, we could
replace the straight line by a curve as follows:

TG \begin{tikzpicture}[edge from parent path=

{(\tikzparentnode.south) .. controls +(0,-1) and +(0,1)
.. (\tikzchildnode.north)}]
\node {root}
child {node {leftl}}

left right child {node {right}

child {node {child}}
[_JH child {node {child}}
I8

child child \end{tikzpicture}

Further useful edge from parent paths are defined in the tree library, see Section 53.
As said before, the anchors in the default edge from parent path are empty. However, you can set them
using the following keys:
/tikz/child anchor=(anchor) (no default, initially border)

Specifies the anchor where the edge from parent meets the child node by setting the macro
\tikzchildanchor to .{anchor).
If you specify border as the (anchor), then the macro \tikzchildanchor is set to the empty
string. The effect of this is that the edge from the parent will meet the child on the border at an
automatically calculated position.

root \begin{tikzpicture}
/ \node {root}
,/ [child anchor=north]
)/ child {node {left} edge from parent[dashed]}
g . child {node {right}
left right child {node {child}}
child {node {child} edge from parent[draw=none]}
};
\end{tikzpicture}
child child
/tikz/parent anchor=(anchor) (no default, initially border)

This option works the same way as the child anchor, only for the parent.

221

Besides inserting the edge from parent path, the edge from parent operation has another effect: The
(options) are inserted directly before the edge from parent path and the following style is also installed
prior to inserting the path:

/tikz/edge from parent (style, initially draw)
This style is inserted right before the edge from parent path and before the (options) are inserted.

root \begin{tikzpicture}
’ [edge from parent/.style={draw,red,thickl}]
) \node {root}
) child {node {left} edge from parent[dashed]}
’ child {node {right}
left right child {node {child}}
child {node {child} edge from parent[draw=none]}
};
/ \end{tikzpicture}

child child

Note: The (options) inserted before the edge from parent path is added apply to the whole child path.
Thus, it is not possible to, say, draw a circle in red as part of the child path and then have an edge to
parent in blue. However, as always, the child node is a node and can be drawn in a totally different
way.

Finally, the edge from parent operation has one more effect: It causes all nodes following the operation
to be placed on the edge. This is the same effect as if you had added the pos option to all these nodes,
see also Section 16.8.

As an example, consider the following code:
\node (root) {} child {node (child) {} edge to parent node {label}};

The edge to parent operation and the following node operation will, together, have the same effect
as if we had said:

(root) -- (child) node [pos=0.5] {label}
Here is a more complicated example:

root \begin{tikzpicture}

\node {root}
child {
3//g \\Bg node {left}

edge from parent

left right node[left] {a}
node[right] {b}
C/ \)
child {
child child mode {right}
child {

node {child}
edge from parent
node[left] {c}
}
child {node {child}}
edge from parent
node [near end] {x}
};
\end{tikzpicture}

222

19 Plots of Functions
19.1 When Should One Use TikZ for Generating Plots?

There exist many powerful programs that produce plots, examples are GNUPLOT or MATHEMATICA. These
programs can produce two different kinds of output: First, they can output a complete plot picture in
a certain format (like PDF) that includes all low-level commands necessary for drawing the complete plot
(including axes and labels). Second, they can usually also produce “just plain data” in the form of a long
list of coordinates. Most of the powerful programs consider it a to be “a bit boring” to just output tabled
data and very much prefer to produce fancy pictures. Nevertheless, when coaxed, they can also provide the
plain data.

Note that is often not necessary to use TikZ for plots. Programs like GNUPLOT can produce very so-
phisticated plots and it is usually much easier to simply include these plots as a finished PDF or PostScript
graphics.

However, there are a number of reasons why you may wish to invest time and energy into mastering the
PGF commands for creating plots:

e Virtually all plots produced by “external programs” use different fonts from the one used in your
document.

e Even worse, formulas will look totally different, if they can be rendered at all.

e Line width will usually be too large or too small.

e Scaling effects upon inclusion can create a mismatch between sizes in the plot and sizes in the text.
e The automatic grid generated by most programs is mostly distracting.

e The automatic ticks generated by most programs are cryptic numerics. (Try adding a tick reading “7”
at the right point.)

e Most programs make it very easy to create “chart junk” in a most convenient fashion. All show, no
content.

e Arrows and plot marks will almost never match the arrows used in the rest of the document.

The above list is not exhaustive, unfortunately.

19.2 The Plot Path Operation

The plot path operation can be used to append a line or curve to the path that goes through a large number
of coordinates. These coordinates are either given in a simple list of coordinates, read from some file, or
they are computed on the fly.

The syntax of the plot comes in different versions.
\path ... --plot(further arguments) ...;

This operation plots the curve through the coordinates specified in the (further arguments). The current
(sub)path is simply continued, that is, a line-to operation to the first point of the curve is implicitly
added. The details of the (further arguments) will be explained in a moment.

\path ... plot(further arguments) ... ;

This operation plots the curve through the coordinates specified in the (further arguments) by first
“moving” to the first coordinate of the curve.

The (further arguments) are used in three different ways to specifying the coordinates of the points to
be plotted:

1. ==plot [{local options)]coordinates{(coordinate 1){coordinate 2)...{coordinate n)}

(
2. —-plot[(local options)]file{(filename)’
3. —-plot [{local options)](coordinate expression)
(

)
)
)
4. --plot [{local options)] function{(gnuplot formula)}

These different ways are explained in the following.

223

19.3 Plotting Points Given Inline

In the first two cases, the points are given directly in the TEX-file as in the following example:

/\7 \tikz \draw plot coordinates {(0,0) (1,1) (2,0) (3,1) (2,1) (10:2cm)};

Here is an example showing the difference between plot and --plot:

S N

\begin{tikzpicture}
\draw (0,0) -- (1,1) plot coordinates {(2,0) (4,0)};
\draw[color=red,xshift=5cm]
(0,0) -- (1,1) -- plot coordinates {(2,0) (4,0)};
\end{tikzpicture}

19.4 Plotting Points Read From an External File

The second way of specifying points is to put them in an external file named (filename). Currently, the only
file format that TikZ allows is the following: Each line of the (filename) should contain one line starting
with two numbers, separated by a space. Anything following the two numbers on the line is ignored. Also,
lines starting with a % or a # are ignored as well as empty lines. (This is exactly the format that GNUPLOT
produces when you say set terminal table.) If necessary, more formats will be supported in the future,
but it is usually easy to produce a file containing data in this form.

\tikz \draw plot[mark=x,smooth] file {plots/pgfmanual-sine.table};
The file plots/pgfmanual-sine.table reads:

#Curve 0, 20 points
#x y type

0.00000 0.00000
0.52632 0.50235
1.05263 0.86873
1.57895 0.99997

He He e R

9.47368 -0.04889 i
10.00000 -0.54402 i

It was produced from the following source, using gnuplot:

set table "../plots/pgfmanual-sine.table"
set format " .5f"

set samples 20

plot [x=0:10] sin(x)

The (local options) of the plot operation are local to each plot and do not affect other plots “on the same
path.” For example, plot [yshift=1cm] will locally shift the plot lcm upward. Remember, however, that
most options can only be applied to paths as a whole. For example, plot [red] does not have the effect of
making the plot red. After all, you are trying to “locally” make part of the path red, which is not possible.

19.5 Plotting a Function

When you plot a function, the coordinates of the plot data can be computed by evaluating a mathematical
expression. Since PGF comes with a mathematical engine, you can specify this expression and then have
TikZ produce the desired coordinates for you, automatically.

224

Since this case is quite common when plotting a function, the syntax is easy: Following the plot command
and its local options, you directly provide a (coordinate expression). It looks like a normal coordinate, but
inside you may use a special macro, which is \x by default, but this can be changed using the variable
option. The (coordinate expression) is then evaluated for different values for \x and the resulting coordinates
are plotted.

Note that you will often have to put the x- or y-coordinate inside braces, namely whenever you use an
expression involving a parenthesis.

The following options influence how the (coordinate expression) is evaluated:

/tikz/variable=(macro) (no default, initially x)

Sets the macro whose value is set to the different values when (coordinate expression) is evaluated.

/tikz/samples=(number) (no default, initially 25)

Sets the number of samples used in the plot.

/tikz/domain=(start): (end) (no default, initially -5:5)

Sets the domain between which the samples are taken.

/tikz/samples at=(sample list) (no default)

This option specifies a list of positions for which the variable should be evaluated. For instance, you
can say samples at={1,2,8,9,103} to have the variable evaluated exactly for values 1, 2, 8, 9, and 10.
You can use the \foreach syntax, so you can use ... inside the (sample list).

When this option is used, the samples and domain option are overruled. The other ways round, setting
either samples or domain will overrule this option.

f(z)
fla)=a
f(z) =sinx

\begin{tikzpicture} [domain=0:4]
\draw[very thin,color=gray] (-0.1,-1.1) grid (3.9,3.9);

\draw[->] (-0.2,0) -- (4.2,0) nodel[right] {x};
\draw[->] (0,-1.2) -- (0,4.2) nodel[above] {$f(x)$};

\draw[color=red] plot (\x,\x) node[right] {$f(x) =x$};

\draw[color=blue] plot (\x,{sin(\x r)}) node[right] {$f(x) = \sin x$};

\draw[color=orange] plot (\x,{0.05%exp(\x)}) nodel[right] {$f(x) \frac{1}{20} \mathrm e ~x$};
\end{tikzpicture}

\tikz \draw[scale=0.5,domain=-3.141:3.141,smooth,variable=\t]
plot ({\t*sin(\t r)},{\t*cos(\t r)});

225

\tikz \draw[domain=0:360,smooth,variable=\t]
plot ({sin(\t)},\t/360,{cos(\t)});

19.6 Plotting a Function Using Gnuplot

Often, you will want to plot points that are given via a function like f(x) = zsinz. Unfortunately, TEX
does not really have enough computational power to generate the points on such a function efficiently (it is
a text processing program, after all). However, if you allow it, TEX can try to call external programs that
can easily produce the necessary points. Currently, TikZ knows how to call GNUPLOT.

When TikZ encounters your operation plot[id=(id)] function{x*sin(x)} for the first time, it will
create a file called (prefiz)(id).gnuplot, where (prefiz) is \jobname. by default, that is, the name of you
main .tex file. If no (id) is given, it will be empty, which is alright, but it is better when each plot has
a unique (id) for reasons explained in a moment. Next, TikZ writes some initialization code into this
file followed by plot x*sin(x). The initialization code sets up things such that the plot operation will
write the coordinates into another file called (prefiz)(id).table. Finally, this table file is read as if you
had said plot file{(prefiz)(id).table}. However, there is just one difference: gnuplot supports a “type”
field following the coordinates. If this type field contains ‘u’ which means unbounded, TikZ will ignore the
complete coordinate”.

For the plotting mechanism to work, two conditions must be met:

1. You must have allowed TEX to call external programs. This is often switched off by default since this
is a security risk (you might, without knowing, run a TEX file that calls all sorts of “bad” commands).
To enable this “calling external programs” a command line option must be given to the TEX program.
Usually, it is called something like shell-escape or enable-writel8. For example, for my pdflatex
the option --shell-escape can be given.

2. You must have installed the gnuplot program and TEX must find it when compiling your file.

Unfortunately, these conditions will not always be met. Especially if you pass some source to a coauthor
and the coauthor does not have GNUPLOT installed, he or she will have trouble compiling your files.

For this reason, TikZ behaves differently when you compile your graphic for the second time:
If upon reaching plot[id=(id)] function{...} the file (prefiz)(id).table already exists and if the
(prefiz)(id) .gnuplot file contains what TikZ thinks that it “should” contain, the .table file is immedi-
ately read without trying to call a gnuplot program. This approach has the following advantages:

1. If you pass a bundle of your .tex file and all .gnuplot and .table files to someone else, that person
can TEX the .tex file without having to have gnuplot installed.

2. If the \writel8 feature is switched off for security reasons (a good idea), then, upon the first com-
pilation of the .tex file, the .gnuplot will still be generated, but not the .table file. You can then
simply call gnuplot “by hand” for each .gnuplot file, which will produce all necessary .table files.

3. If you change the function that you wish to plot or its domain, TikZ will automatically try to regenerate
the .table file.

4. If, out of laziness, you do not provide an id, the same .gnuplot will be used for different plots, but
this is not a problem since the .table will automatically be regenerated for each plot on-the-fly. Note:
If you intend to share your files with someone else, always use an id, so that the file can by typeset
without having GNUPLOT installed. Also, having unique ids for each plot will improve compilation
speed since no external programs need to be called, unless it is really necessary.

When you use plot function{({gnuplot formula)}, the (gnuplot formula) must be given in the gnuplot
syntax, whose details are beyond the scope of this manual. Here is the ultra-condensed essence: Use x as
the variable and use the C-syntax for normal plots, use t as the variable for parametric plots. Here are some
examples:

9Thanks to Andy Schlaikjer for this patch.

226

f@) =z
f(z) =sinzx

\begin{tikzpicture} [domain=0:4]
\draw[very thin,color=gray] (-0.1,-1.1) grid (3.9,3.9);

\draw[->] (-0.2,0) -- (4.2,0) nodel[right] {x};
\draw[->] (0,-1.2) -- (0,4.2) nodel[above] {$f(x)$};

\draw[color=red] plot[id=x] function{x} node [right] {$f(x) =x$};

\draw[color=blue] plot[id=sin] function{sin(x)} node [right] {$f(x) = \sin x$};

\draw[color=orange] plot[id=exp] function{0.05*exp(x)} nodel[right] {$f(x) = \frac{1}{20} \mathrm e"x$};
\end{tikzpicture}

The plot in influenced by the following options: First, the options samples and domain explained earlier.
Second, there are some more specialized options.

/tikz/parametric=(boolean) (default true)

Sets whether the plot is a parametric plot. If true, then t must be used instead of x as the parameter and
two comma-separated functions must be given in the (gnuplot formula). An example is the following:

\tikz \draw[scale=0.5,domain=-3.141:3.141,smooth]
plot [parametric,id=parametric-example] function{t*sin(t),t*cos(t)};

/tikz/id=(id) (no default)

Sets the identifier of the current plot. This should be a unique identifier for each plot (though things will
also work if it is not, but not as well, see the explanations above). The (id) will be part of a filename,
so it should not contain anything fancy like * or $.

/tikz/prefix=(prefir) (no default)

The (prefix) is put before each plot file name. The default is \jobname., but if you have many plots,
it might be better to use, say plots/ and have all plots placed in a directory. You have to create the
directory yourself.

/tikz/raw gnuplot (no value)

This key causes the (gnuplot formula) to be passed on to GNUPLOT without setting up the samples or
the plot operation. Thus, you could write

plot[raw gnuplot,id=raw-example] function{set samples 25; plot sin(x)}

This can be useful for complicated things that need to be passed to GNUPLOT. However, for really
complicated situations you should create a special external generating GNUPLOT file and use the file-
syntax to include the table “by hand.”

227

The following styles influence the plot:

/tikz/every plot (style, initially empty)
This style is installed in each plot, that is, as if you always said

plot[every plot,...]
This is most useful for globally setting a prefix for all plots by saying:

\tikzset{every plot/.style={prefix=plots/}}

19.7 Placing Marks on the Plot

As we saw already, it is possible to add marks to a plot using the mark option. When this option is used, a
copy of the plot mark is placed on each point of the plot. Note that the marks are placed after the whole
path has been drawn/filled/shaded. In this respect, they are handled like text nodes.

In detail, the following options govern how marks are drawn:

/tikz/mark=(mark mnemonic) (no default)

Sets the mark to a mnemonic that has previously been defined using the \pgfdeclareplotmark. By
default, *, +, and x are available, which draw a filled circle, a plus, and a cross as marks. Many more
marks become available when the library plotmarks is loaded. Section 43.5 lists the available plot
marks.

One plot mark is special: the ball plot mark is available only it TikZ. The ball color determines the
balls’s color. Do not use this option with a large number of marks since it will take very long to render
in PostScript.

Option Effect
mark=ball o ° o °
/tikz/mark repeat=(r) (no default)

This option tells TikZ that only every rth mark should be drawn.

\tikz \draw plot[mark=x,mark repeat=3,smooth] file {plots/pgfmanual-sine.table};

/tikz/mark phase=(p) (no default)

This option tells TikZ that the first mark to be draw should be the pth, followed by the (p + r)th, then
the (p + 2r)th, and so on.

\tikz \draw plot[mark=x,mark repeat=3,mark phase=6,smooth] file {plots/pgfmanual-sine.table};

/tikz/mark indices=(list) (no default)
This option allows you to specify explicitly the indices at which a mark should be placed. Counting
starts with 1. You can use the \foreach syntax, that is, ... can be used.

228

\tikz \draw plot[mark=x,mark indices={1,4,...,10,11,12,...,16,20},smooth]
file {plots/pgfmanual-sine.tablel};

/tikz/mark size=(dimension) (no default)

Sets the size of the plot marks. For circular plot marks, (dimension) is the radius, for other plot marks
(dimension) should be about half the width and height.

This option is not really necessary, since you achieve the same effect by specifying scale={factor) as a
local option, where (factor) is the quotient of the desired size and the default size. However, using mark
size is a bit faster and more natural.

/tikz/every mark (style, no value)
This style is installed before drawing plot marks. For example, you can scale (or otherwise transform)
the plot mark or set its color.

/tikz/mark options={options) (no default)
Redefines every mark such that it sets {(options)}.

\tikz \fill[fill=blue!20]
plot [mark=triangle*,mark options={color=blue,rotate=180}]
file{plots/pgfmanual-sine.table} |- (0,0);

/tikz/no marks (style, no value)

Disables markers (the same as mark=none).

/tikz/no markers (style, no value)

Disables markers (the same as mark=none).

19.8 Smooth Plots, Sharp Plots, Jump Plots, Comb Plots and Bar Plots

There are different things the plot operation can do with the points it reads from a file or from the inlined
list of points. By default, it will connect these points by straight lines. However, you can also use options
to change the behavior of plot.

/tikz/sharp plot (no value)

This is the default and causes the points to be connected by straight lines. This option is included only
so that you can “switch back” if you “globally” install, say, smooth.

/tikz/smooth (no value)

This option causes the points on the path to be connected using a smooth curve:

229

\tikz\draw plot[smooth] file{plots/pgfmanual-sine.table};

Note that the smoothing algorithm is not very intelligent. You will get the best results if the bending
angles are small, that is, less than about 30° and, even more importantly, if the distances between points

are about the same all over the plotting path.

/tikz/tension=(value)

(no default)

This option influences how “tight” the smoothing is. A lower value will result in sharper corners, a
higher value in more “round” curves. A value of 1 results in a circle if four points at quarter-positions

on a circle are given. The default is 0.55. The “correct” value depends on the details of plot.

\begin{tikzpicture} [smooth cycle]
\draw plot [tension=0.2]
coordinates{(0,0) (1,1) (2,0) (1,-1)};
\draw [yshift=-2.25cm] plot[tension=0.5]
coordinates{(0,0) (1,1) (2,0) (1,-1)};
\draw[yshift=-4.5cm] plot[tension=1]
coordinates{(0,0) (1,1) (2,0) (1,-1)};
\end{tikzpicture}

OO

/tikz/smooth cycle (no value)
This option causes the points on the path to be connected using a closed smooth curve.
\tikz[scale=0.5]
\draw plot[smooth cycle] coordinates{(0,0) (1,0) (2,1) (1,2)}
plot coordinates{(0,0) (1,0) (2,1) (1,2)} -- cycle;
/tikz/const plot (no value)

This option causes the points on the path to be connected using piecewise constant series of lines:

\tikz\draw plot[const plot] file{plots/pgfmanual-sine.table};

/tikz/const plot mark left

Just an alias for /tikz/const plot.

\tikz\draw plot[const plot mark left,mark=+] file{plots/pgfmanual-sine.table};

230

(no value)

/tikz/const plot mark right

(no value)
A variant of /tikz/const plot which places its mark on the right ends:
\tikz\draw plot[const plot mark right,mark=+] file{plots/pgfmanual-sine.table};
/tikz/jump mark left (no value)

This option causes the points on the path to be drawn using piecewise constant, non-connected series
of lines. If there are any marks, they will be placed on left open ends:

— o —

\tikz\draw plot[jump mark left, mark=x] file{plots/pgfmanual-sine.table};

/tikz/jump mark right (no value)
This option causes the points on the path to be drawn using piecewise constant, non-connected series
of lines. If there are any marks, they will be placed on right open ends:

\tikz\draw plot[jump mark right, mark=+] file{plots/pgfmanual-sine.table};

/tikz/ycomb

(no value)
This option causes the plot operation to interpret the plotting points differently. Instead of connecting

them, for each point of the plot a straight line is added to the path from the x-axis to the point, resulting
in a sort of “comb” or “bar diagram.”

.r”h,ll ll.T”Tr,l

\tikz\draw[ultra thick] plot[ycomb,thin,mark=+] file{plots/pgfmanual-sine.table};

\begin{tikzpicture} [ycomb]
\draw[color=red,line width=6pt]
plot coordinates{(0,1) (.5,1.2) (1,.6) (1.5,.7) (2,.9)3};
I ' \draw[color=red!50,line width=4pt,xshift=3pt]

plot coordinates{(0,1.2) (.5,1.3) (1,.5) (1.5,.2) (2,.5)};
\end{tikzpicture}

/tikz/xcomb

(no value)
This option works like ycomb except that the bars are horizontal.

231

= \tikz \draw plot[xcomb,mark=x] coordinates{(1,0) (0.8,0.2) (0.6,0.4) (0.2,1)};

/tikz/polar comb (no value)
This option causes a line from the origin to the point to be added to the path for each plot point.
\tikz \draw plot[polar comb,

mark=pentagon*,mark options={fill=white,draw=red},mark size=4pt]
coordinates {(0:1cm) (30:1.5cm) (160:.5cm) (250:2cm) (-60:.8cm)};

/tikz/ybar (no value)

This option produces fillable bar plots. It is thus very similar to ycomb, but it employs rectangular
shapes instead of line-to operations. It thus allows to use any fill- or pattern style.

\tikz\draw[draw=blue,fill=blue!60!black] plot[ybar] file{plots/pgfmanual-sine.table};

\begin{tikzpicture} [ybar]
\draw[color=red,fill=red!80,bar width=6pt]
plot coordinates{(0,1) (.5,1.2) (1,.6) (1.5,.7) (2,.93};
II \draw[color=red!50,fill=red!20,bar width=4pt,bar shift=3pt]

plot coordinates{(0,1.2) (.5,1.3) (1,.5) (1.5,.2) (2,.5)};
\end{tikzpicture}

The use of bar width and bar shift is explained in the plot handler library documentation, sec-
tion 43.4. Please refer to page 402.

/tikz/xbar (no value)

This option works like ybar except that the bars are horizontal.

\tikz \draw[pattern=north west lines] plot [xbar]
coordinates{(1,0) (0.4,1) (1.7,2) (1.6,3)};

/tikz/ybar interval (no value)

As /tikz/ybar, this options produces vertical bars. However, bars are centered at coordinate intervals
instead of interval edges, and the bar’s width is also determined relatively to the interval’s length:

\begin{tikzpicture}[ybar interval,x=10pt]
\draw[color=red,fill=red!80]
plot coordinates{(0,2) (2,1.2) (3,.3) (5,1.7) (8,.9) (9,.9)};
\end{tikzpicture}

232

Since there are N intervals [x;, z;11] for given N + 1 coordinates, you will always have one coordinate
more than bars. The last y value will be ignored.

You can configure relative shifts and relative bar width, which is explained in the plot handler library
documentation, section 43.4. Please refer to page 403.

/tikz/xbar interval (no value)
Works like ybar interval, but for horizontal bar plots.
\begin{tikzpicturel}[xbar interval,x=0.5cm,y=0.5cm]
\draw[color=red,fill=red!80]
plot coordinates {(3,0) (2,1) (4,1.5) (1,4) (2,6) (2,7)};
\end{tikzpicture}
/tikz/only marks (no value)

This option causes only marks to be shown; no path segments are added to the actual path. This can
be useful for quickly adding some marks to a path.

\tikz \draw (0,0) sin (1,1) cos (2,0)
plot[only marks,mark=x] coordinates{(0,0) (1,1) (2,0) (3,-1)};

233

20 Transparency

20.1 Overview

Normally, when you paint something using any of TikZ’s commands (this includes stroking, filling, shading,
patterns, and images), the newly painted objects totally obscure whatever was painted earlier in the same
area.

You can change this behaviour by using something that can be thought of as “(semi)transparent colors.”
Such colors do not completely obscure the background, rather they blend the background with the new color.
At first sight, using such semitransparent colors might seem quite straightforward, but the math going on
in the background is quite involved and the correct handling of transparency fills some 64 pages in the PDF
specification.

In the present section, we start with the different ways of specifying “how transparent” newly drawn
objects should be. The simplest way is to just specify a percentage like “60% transparent.” A much more
general way is to use something that I call a fading, also known as a soft mask or a mask.

At the end of the section we address the problem of creating so-called transparency groups. This problem
arises when you paint over a position several times with a semitransparent color. Sometimes you want the
effect to accumulate, sometimes you do not.

Note: Transparency is best supported by the pdfTEX driver. The SvG driver also has some support. For
PostScript output, opacity is rendered correctly only with the most recent versions of Ghostscript. Printers
and other programs will typically ignore the opacity setting.

20.2 Specifying a Uniform Opacity
Specifying a stroke and/or fill opacity is quite easy using the following options.

/tikz/draw opacity=(value) (no default)

This option sets “how transparent” lines should be. A value of 1 means “fully opaque” or “not trans-
parent at all,” a value of 0 means “fully transparent” or “invisible.” A value of 0.5 yields lines that
are semitransparent.

Note that when you use PostScript as your output format, this option works only with recent versions
of Ghostscript.

\begin{tikzpicture}[line width=1ex]

\draw (0,0) -- (3,1);

\filldraw [fill=examplefill,draw opacity=0.5] (1,0) rectangle (2,1);
\end{tikzpicture}

Note that the draw opacity options only sets the opacity of drawn lines. The opacity of fillings is set
using the option £ill opacity (documented in Section 15.4.3. The option opacity sets both at the same
time.

/tikz/opacity=(value) (no default)
Sets both the drawing and filling opacity to (value).

The following predefined styles make it easier to use this option:

/tikz/transparent (style, no value)

Makes everything totally transparent and, hence, invisible.

- \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill [transparent,red] (0.5,0) rectangle (1.5,0.25); }

/tikz/ultra nearly transparent (style, no value)

Makes everything, well, ultra nearly transparent.

- \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill[ultra nearly transparent] (0.5,0) rectangle (1.5,0.25); }

234

/tikz/very nearly transparent (style, no value)

- \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill[very nearly transparent] (0.5,0) rectangle (1.5,0.25); }
/tikz/nearly transparent (style, no value)
- \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill [nearly transparent] (0.5,0) rectangle (1.5,0.25); }
/tikz/semitransparent (style, no value)
‘ \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill [semitransparent] (0.5,0) rectangle (1.5,0.25); }
/tikz/nearly opaque (style, no value)
‘ \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill [nearly opaque] (0.5,0) rectangle (1.5,0.25); }
/tikz/very nearly opaque (style, no value)
‘ \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill[very nearly opaquel] (0.5,0) rectangle (1.5,0.25); }
/tikz/ultra nearly opaque (style, no value)
‘ \tikz{\fill[red] (0,0) rectangle (1,0.5);
\fill[ultra nearly opaque] (0.5,0) rectangle (1.5,0.25); }
/tikz/opaque (style, no value)

This yields completely opaque drawings, which is the default.
‘ \tikz{\fill [red] (0,0) rectangle (1,0.5);
\fill[opaque] (0.5,0) rectangle (1.5,0.25); }

/tikz/£ill opacity=(value) (no default)

This option sets the opacity of fillings. In addition to filling operations, this opacity also applies to text
and images.

Note, again, that when you use PostScript as your output format, this option works only with recent
versions of Ghostscript.

\begin{tikzpicturel}[thick,fill opacity=0.5]
\filldraw[fill=red] (0:1cm) circle (12mm);
\filldraw[fill=green] (120:1cm) circle (12mm);
\filldraw[fill=blue] (-120:1cm) circle (12mm);

\end{tikzpicture}

\begin{tikzpicture}
\fill[red] (0,0) rectangle (3,2);

\node at (0,0) {\huge A};
\node [fill opacity=0.5] at (3,2) {\huge B};
\end{tikzpicture}

235

/tikz/text opacity=(value) (no default)
Sets the opacity of text labels, overriding the £i11 opacity setting.

\begin{tikzpicture} [every node/.style={fill,draw}]
\draw[line width=2mm,blue!50,line cap=round] (0,0) grid (3,2);

\node [opacity=0.5] at (1.5,2) {Upper node};
\node [draw opacity=0.8,fill opacity=0.2,text opacity=1]
at (1.5,0) {Lower node};
\end{tikzpicture}

Note the following effect: If you setup a certain opacity for stroking or filling and you stroke or fill the
same area twice, the effect accumulates:

\begin{tikzpicture}[fill opacity=0.5]
\filll[red] (0,0) circle (1);
\fill[red] (1,0) circle (1);

\end{tikzpicture}

Often, this is exactly what you intend, but not always. You can use transparency groups, see the end of
this section, to change this.

20.3 Fadings

For complicated graphics, uniform transparency settings are not always sufficient. Suppose, for instance,
that while you paint a picture, you want the transparency to vary smoothly from completely opaque to
completely transparent. This is a “shading-like” transparency. For such a form of transparency I will use
the term fading (as a noun). They are also known as soft masks, opacity masks, masks, or soft clips.

20.3.1 Creating Fadings

How do we specify a fading? This is a bit of an art since the underlying mechanism is quite powerful, but a
bit difficult to use.

Let us start with a bit of terminology. A fading specifies for each point of an area to transparency of the
point. This transparency can by any number between 0 and 1. A fading picture is a normal graphic that,
in a way to be described in a moment, determines the transparency of points inside the fading. Each fading
has an underlying fading picture.

The fading picture is a normal graphic drawn using any of the normal graphic drawing commands. A
fading and its fading picture are related as follows: Given any point of the fading, the transparency of this
point is determined by the luminosity of the fading picture at the same position. The luminosity of a point
determines “how bright” the point is. The brighter the point in the fading picture, the more opaque is the
point in the fading. In particular, a white point of the fading picture is completely opaque in the fading and
a black point of the fading picture is completely transparent in the fading. (The background of the fading
picture is always transparent in the fading as if the background where black.)

It is rather counter-intuitive that a white pixel of the fading picture will be opaque in the fading and a
black pixel will be transparent. For this reason, TikZ defines a color called transparent that is the same as
black. The nice thing about this definition is that the color transparent! (percentage) in the fading picture
yields a pixel that is (percentage) per cent transparent in the fading.

Turning a fading picture into a normal picture is achieved using the following commands, which
are only defined in the library, namely the library fadings. So, to use them, you have to say
\usetikzlibrary{fadings} first.

\begin{tikzfadingfrompicture} [{options)]
(environment contents)
\end{tikzfadingfrompicture}

This command works like a {tikzpicture}, only the picture is not shown, but instead a fading is
defined based on this picture. To set the name of the picture, use the name option (which is normally
used to set the name of a node).

236

/tikz/name={({name)} (no default)

Use this option with the {tikzfadingfrompicture} environment to set the name of the fading.
You must provide this option.

The following shading is 2cm by 2cm and changes gets more and more transparent from left to right,
but is 50% transparent for a large circle in the middle.

\begin{tikzfadingfrompicture} [name=fade right]
\shade[left color=transparent!O,
right color=transparent!100] (0,0) rectangle (2,2);
\fill[transparent!50] (1,1) circle (0.7);
\end{tikzfadingfrompicture}

% Now we use the fading in another picture:
\begin{tikzpicture}
% Background
\fill [black!20] (-1.2,-1.2) rectangle (1.2,1.2);
\pattern [pattern=checkerboard,pattern color=black!30]
(-1.2,-1.2) rectangle (1.2,1.2);

\fill [path fading=fade right,red] (-1,-1) rectangle (1,1);
\end{tikzpicture}

In the next example we create a fading picture that contains some text. When the fading is used, we
only see the shading “through it.”

| o | o | \begin{tikzfadingfrompicture} [name=tikz]
- \node [text=transparent!20]

i
%, i L | {\fontfamily{ptm}\fontsize{45}{45}\bfseries\selectfont Ti\emph{k}Z};
\ . . .
‘ | end{tikzfadingfrompicture}

I

\ \ % Now we use the fading in another picture:
\begin{tikzpicture}
\fill [black!20] (-2,-1) rectangle (2,1);
\pattern [pattern=checkerboard,pattern color=black!30]
(-2,-1) rectangle (2,1);

\shade [path fading=tikz,fit fading=false,
left color=blue,right color=black]
(-2,-1) rectangle (2,1);
\end{tikzpicture}

\tikzfadingfrompicture [{options)]
(environment contents)
\endtikzfadingfrompicture

The plainTEX version of the environment.

\starttikzfadingfrompicture [{options)]
(environment contents)
\stoptikzfadingfrompicture

The ConTEXt version of the environment.

\tikzfading[({options)]
This command is used to define a fading similarly to that way a shading is defined. In the (options)
you should
1. use the name=(name) option to set a name for the fading,
2. use the shading option to set the name of the shading that you wish to use,
3. extra options for setting the colors of the shading (typically you will set them to the color

transparent! (percentage)).

Then, a new fading named (name) will be created based on the shading.

237

\tikzfading[name=fade right,
left color=transparent!0,
right color=transparent!100]

% Now we use the fading in another picture:
\begin{tikzpicture}
% Background
\fill [black!20] (-1.2,-1.2) rectangle (1.2,1.2);
\path [pattern=checkerboard,pattern color=black!30]
(-1.2,-1.2) rectangle (1.2,1.2);

\fill [red,path fading=fade right] (-1,-1) rectangle (1,1);
\end{tikzpicture}

\tikzfading[name=fade out,
inner color=transparent!O,
outer color=transparent!100]

% Now we use the fading in another picture:
\begin{tikzpicture}
% Background
\fill [black!20] (-1.2,-1.2) rectangle (1.2,1.2);
\path [pattern=checkerboard,pattern color=black!30]
(-1.2,-1.2) rectangle (1.2,1.2);

\fill [blue,path fading=fade out] (-1,-1) rectangle (1,1);
\end{tikzpicture}

20.3.2 Fading a Path

Aa fading specifies for each pixel of a certain area how transparent this pixel will be. The following options
are used to install such a fading for the current scope or path.

/tikz/path fading=(name) (default scope’s setting)

This option tells TikZ that the current path should be faded with the fading (name). If no (name) is
given, the (name) set for the whole scope is used. Similarly to options like draw or £ill, this option
is reset for each path, so you have to add it to each path that should be faded. You can also specify
none as (name), in which case fading for the path will be switched off in case it has been switched on
by previous options or styles.

W | \begin{tikzpicturel}[path fading=south]

‘ ‘ % Checker board

\fill [black!20] (0,0) rectangle (4,3);

\pattern [pattern=checkerboard,pattern color=black!30]
(0,0) rectangle (4,3);

\fill [color=blue] (0.5,1.5) rectangle +(1,1);
\fill [color=blue,path fading=north] (2.5,1.5) rectangle +(1,1);

\fill [color=red,path fading] (1,0.75) ellipse (.75 and .5);
\fill [color=red] (3,0.75) ellipse (.75 and .5);
\end{tikzpicture}
/tikz/fit fading=(boolean) (default true, initially true)

When set to true, the fading is shifted and resized (in exactly the same way as a shading) so that
is covers the current path. When set to false, the fading is only shifted so that it is centered on
the path’s center, but it is not resized. This can be useful for special-purpose fadings, for instance
when you use a fading to “punsh out” something.

/tikz/fading transform=(transformation options) (no default)

The (transformation options) are applied to the fading before it is used. For instance, if
(transformation options) is set to rotate=90, the fading is rotated by 90 degrees.

238

| H H | B W | H \begin{tikzpicturel}[path fading=fade down]
u_u % Checker board

\fill [black!20] (0,0) rectangle (4,1.5);

‘ r‘ \path [pattern=checkerboard,pattern color=black!30] (0,0) rectangle (4,1.5);

\fill [red,path fading,fading transform={rotate=90}]
(1,0.75) ellipse (.75 and .5);
\fill [red,path fading,fading transform={rotate=30}]
(3,0.75) ellipse (.75 and .5);
\end{tikzpicture}

/tikz/fading angle=(degree) (no default)
A shortcut for fading transform={rotate=(degree)}.

Note that you can “fade just about anything.” In particular, you can fade a shading.

] ~ \begin{tikzpicture}

% Checker board

\fill [black!20] (0,0) rectangle (4,4);

\path [pattern=checkerboard,pattern color=black!30] (0,0) rectangle (4,4);

\shade [ball color=blue,path fading=south] (2,2) circle (1.8);
\end{tikzpicture}

The fade inside of the following example more transparent in the middle than on the outside.

\tikzfading[name=fade inside,
inner color=transparent!80,
outer color=transparent!30]
\begin{tikzpicture}
% Checker board
\fill [black!20] (0,0) rectangle (4,4);
\path [pattern=checkerboard,pattern color=black!30] (0,0) rectangle (4,4);

\shade [ball color=red] (3,3) circle (0.8);
\shade [ball color=white,path fading=fade inside] (2,2) circle (1.8);
\end{tikzpicture}

Note that adding the path fading option to a node fades the (background) path, not the text itself.
To fade the text, you need to use a scope fading (see below).

Note that using fadings in conjunction with patterns can create visually rather pleasing effects:

\tikzfading[name=middle,
top color=transparent!50,
bottom color=transparent!50,
middle color=transparent!20]
\begin{tikzpicture}

\node [circle,circular drop shadow,
pattern=horizontal lines dark blue,
path fading=south,
minimum size=3.6cm] {};

\pattern [path fading=north,
pattern=horizontal lines dark gray]

(0,0) circle (1.8cm);

\pattern [path fading=middle,

pattern=crosshatch dots light steel bluel
(0,0) circle (1.8cm);
\end{tikzpicture}

239

20.3.3 Fading a Scope

In addition to fading individual paths, you may also wish to “fade a scope,” that is, you may wish to install
a fading that is used globally to specify the transparency for all objects drawn inside a scope. This effect
can also be thought of as a “soft clip” and it works in a similar way: You add the scope fading option to
a path in a scope — typically the first one — and then all subsequent drawings in the scope are faded. You
will use a transparency group in conjunction, see the end of this section.

/tikz/scope fading=(fading) (no default)

In principle, this key works in exactly the same way as the path fading key. The only difference is, that
the effect of the fading will persist after the current path till the end of the scope. Thus, the (fading)
is applied to all subsequent drawings in the current scope, not just to the current path. In this regard,
the option works very much like the clip option. (Note, however, that, unlike the clip option, fadings
to not accumulate unless a transparency group is used.)

The keys fit fading and fading transform have the same effect as for path fading. Also that,
just as for path fading, providing the scope fading option with a {scope} only sets the name of the
fading to be used. You have to explicitly provide the scope fading with a path to actually install a
fading.

\begin{tikzpicture}
\fill [black!20] (-2,-2) rectangle (2,2);
\pattern [pattern=checkerboard,pattern color=black!30]
(-2,-2) rectangle (2,2);

% The bounding box of the shading:
\draw [red] (-50bp,-50bp) rectangle (50bp,50bp) ;

\path [scope fading=south,fit fading=false] (0,0);
% fading is centered at its natural size

\fill[red] (90:1) circle (1);

\fill[green] (210:1) circle (1);

\fill[blue] (330:1) circle (1);
\end{tikzpicture}

In the following example we resize the fading to the size of the whole picture:

\begin{tikzpicture}
\fill [black!20] (-2,-2) rectangle (2,2);
\pattern [pattern=checkerboard,pattern color=black!30]
(-2,-2) rectangle (2,2);

\path [scope fading=south] (-2,-2) rectangle (2,2);

\fill[red] (90:1) circle (1);

\fill[green] (210:1) circle (1);

\fill[blue] (330:1) circle (1);
\end{tikzpicture}

Scope fadings are also needed if you wish to fade a node.

i \tikz \node [scope fading=south,fading angle=45,text width=3.5cm]
ysteny

will fade out as we go ¢ This is some text that will fade out as we go right
right and down. It and down. It is pretty hard to achieve this effect in
pretty hard to other ways.

this effect i b

ways.

20.4 Transparency Groups

Consider the following cross and sign. They “look wrong” because we can see how they were constructed,
while this is not really part of the desired effect.

240

\begin{tikzpicture} [opacity=.5]
\draw [line width=5mm] (0,0) -- (2,2);
\draw [line width=5mm] (2,0) -- (0,2);
\end{tikzpicture}

\begin{tikzpicture}

\node at (0,0) [forbidden sign,line width=2ex,draw=red,fill=white] {Smoking};
i ﬂ \node [opacity=.5]

at (2,0) [forbidden sign,line width=2ex,draw=red,fill=white] {Smoking};
\end{tikzpicture}

Transparency groups are used to render them correctly:

\begin{tikzpicturel} [opacity=.5]
\begin{scope} [transparency group]
\draw [line width=5mm] (0,0) -- (2,2);
\draw [line width=5mm] (2,0) -- (0,2);

\end{scope}
\end{tikzpicture}
\begin{tikzpicture}
\node at (0,0) [forbidden sign,line width=2ex,draw=red,fill=white] {Smoking};
g \begin{scope} [opacity=.5,transparency group]
\node at (2,0) [forbidden sign,line width=2ex,draw=red,fill=white]
{Smoking};
\end{scope}
\end{tikzpicture}
/tikz/transparency group (no value)

This option can be given to a scope. It will have the following effect: The scope’s contents is stroked /-
filled “ignoring any outside transparency.” This means, all previous transparency settings are ignored
(you can still set transparency inside the group, but never mind). For instance, in the forbidden sign
example, the whole sign is first painted (conceptually) like the image on the left hand side. Note that
some pixels of the sign are painted multiple times (up to three times), but only the last color “wins.”

Then, when the scope is finished, it is painted as a whole. The fill transparency settings are now applied
to the resulting picture. For instance, the pixel that has been painted three times is just red at the end,
so this red color will be blended with whatever is “behind” the group on the page.

Note that, depending on the driver, it is possible to directly put objects in a transparency group that
lie outside the picture. This has to do with internal bounding box computations. Section 84 explains
how to sidestep this problem.

241

21 Decorated Paths

21.1 Overview

Decorations are a general concept to make (sub)paths “more interesting.” Before we have

details, let us have a look at some examples:

|

> > > > > B> B> > >

%

Bumpy

.

Saved from trash

\begin{tikzpicture} [thick]

\draw (0,3) -- (3,3);
\draw[decorate,decoration=zigzag] (0,2.5) -- (3,2.5);
\draw[decorate,decoration=brace] 0,2) -- (3,2);
\draw[decorate,decoration=triangles] (0,1.5) -- (3,1.5);
\draw [decorate,decoration={coil,segment length=4pt}] (0,1) -- (3,1);
\draw[decorate,decoration={coil,aspect=0}] (0,.5) -- (8,.5);
\draw [decorate,decoration={expanding waves,angle=7}] (0,0) -- (3,0);

\end{tikzpicture}

\begin{tikzpicture}

\node [fill=red!20,draw,decorate,decoration={bumps,mirror},
minimum height=1cm]
{Bumpy};
\end{tikzpicture}

\begin{tikzpicture}
\filldraw[fill=blue!20] (0,3)
decorate [decoration=saw] {--(,3) }
decorate [decoration={coil,aspect=0}] { -- (2,1) }
decorate [decoration=bumps] { -1 (0,3) };
\end{tikzpicture}

\begin{tikzpicture}
\node [fill=yellow!50,draw,thick, minimum height=2cm, minimum width=3cm,

a look at

the

decorate, decoration={random steps,segment length=3pt,amplitude=1pt}]

{Saved from trash};
\end{tikzpicture}

The general idea of decorations is the following: First, you construct a path using the usual path construc-
tion commands. The resulting path is, in essence, a series of straight and curved lines. Instead of directly
using this path for filling or drawing, you can then specify that it should form the basis for a decoration. In
this case, depending on which decoration you use, a new path is constructed “along” the path you specified.
For instance, with the zigzag decoration, the new path is a zigzagging line that goes along the old path.

Let us have a look at an example: In the first picture, we see a path that consists of a line, an arc, and
a line. In the second picture, this path has been used as the basis of a decoration.

)

\tikz \fill
[fill=blue!20,draw=blue,thick] (0,0) -- (2,1) arc (90:-90:.5) -- cycle;

\tikz \fill [decorate,decoration={zigzag}]
[£ill=blue!20,draw=blue,thick] (0,0) -- (2,1) arc (90:-90:.5) -- cycle;

It is also possible to decorate only a subpath (the exact syntax will be explained later in this section).

\tikz \fill [decoration={zigzag}]
[fill=blue!20,draw=blue,thick] (0,0) -- (2,1)
decorate { arc (90:-90:.5) } -- cycle;

The zigzag decoration will be called a path morphing decoration because it morphs a path into a different,
but topologically equivalent path. Not all decorations are path morphing; rather there are three kinds of

decorations.

242

1. The just-mentioned path morphing decorations morph the path in the sense that what used to be a
straight line might afterwards be a squiggly line or might have bumps. However, a line is still and a
line and path deforming decorations do not change the number of subpaths.

Examples of such decorations are the snake or the zigzag decoration. Many such decorations are
defined in the library decorations.pathmorphing.

2. Path replacing decorations completely replace the path by a different path that is only “loosely based”
on the original path. For instance, the crosses decoration replaces a path by a path consisting of a
sequence of crosses. Note how in the following example filling the path has no effect since the path
consist only of (numerous) unconnected straight line subpaths:

+ X \tikz \fill [decorate,decoration={crosses}]
+ * [fill=blue!20,draw=blue,thick] (0,0) -- (2,1) arc (90:-90:.5) -- cycle;
x

Examples of path replacing decorations are crosses or ticks or shape backgrounds. Such decorations
are defined in the library decorations.pathreplacing, but also in decorations.shapes.

3. Path removing decorations completely remove the to-be-decorated path. Thus, they have no effect
on the main path that is being constructed. Instead, they typically have numerous side effects. For
instance, they might “write some text” along the (removed) path or they might place nodes along this
path. Note that for such decorations the path usage command for the main path have no influence on
how the decoration looks like.

aly

’&?ﬁ& ‘%> \tikz \fill [decorate,decoration={text along path,
. '\’5‘5‘ oe text=This is a text along a path. Note how the path is lost.}]
@X\\% 6QJ [£fill=blue!20,draw=blue,thick] (0,0) -- (2,1) arc (90:-90:.5) -- cycle;

MOT[9J0N "T[I°

Decorations are defined in different decoration libraries, see Section 30 for details. It is also possible to
define your own decorations, see Section 72, but you need to use the PCGF basic layer and a bit of theory is
involved.

Decorations can be used to decorate already decorated paths. In the following three graphics, we start
with a simple path, then decorate it once, and then decorate the decorated path once more.

\tikz \fill [fill=blue!20,draw=blue,thick]
(0,0) rectangle (3,2);

\tikz \fill [fill=blue!20,draw=blue,thick]
decorate[decoration={zigzag,segment length=10mm,amplitude=2.5mm}]
{ (0,0) rectangle (3,2) };

Y + + + \tikz \fill [fill=blue!20,draw=blue,thick]
L A U U ol
+ Fat i ++";“ decorate[decoration={crosses,segment length=2mm}] {
a2 & decorate[decoration={zigzag,segment length=10mm,amplitude=2.5mm}] {
T +, (0,0) rectangle (3,2)
*y * }
+
+ +
o W };
+ o+ + +y +
+ .+ + + + + ¥xl4
+
++++ ++++ ’r_\,+*

One final word of warning: Decorations can be pretty slow to typeset and they can be inaccurate. The
reason is that PGF has to a lot of rather difficult computations in the background and TEX is not very good
at doing math. Decorations are fastest when applied to straight line segments, but even then they are much

243

slower than other alternative. For instance, the ticks decoration can be simulated by clever use of a dashing
pattern and the dashing pattern will literally be thousands of times faster to typeset. However, for most
decorations there are no real alternatives.

\usetikzlibrary{decorations} 7% KX and plain TX
\usetikzlibrary[decorations] % ConTXt

In order to use decorations, you first have to load a decoration library. This decoration library defines
the basic options described in the following, but it does not define any new decorations. This is done by
libraries like decorations.text. Since these more specialized libraries include the decoration library
automatically, you usually do not have to bother about it.

21.2 Decorating a Subpath Using the Decorate Path Command

The most general way to decorate a (sub)path is the following path command.

\path ... decoratel[(options)]{(subpath)} ...;

This path operation causes the (subpath) to be decorated using the current decoration. Depending on
the decoration, this may or may not extend the current path.

\begin{tikzpicture}
\draw [help lines] grid (3,2);
\draw decorate [decoration={name=zigzag}]

/X_[\/ % { (0,0) .. controls (0,2) and (3,0) .. (3,2) |- (0,0) };

\end{tikzpicture}

The path can include straight lines, curves, rectangles, arcs, circles, ellipses, and even already decorated
paths (that is, you can nest applications of the decorate path command, see below).

Due to the limits on the precision in TEX, some inaccuracies in positioning when crossing input segment
boundaries may occasionally be found.

You can use nodes normally inside the (subpath).

T \begin{tikzpicture}
ane \draw [help lines] grid (3,2);
s \draw decorate [decoration={name=zigzag}]
i { (0,0) -- (2,2) node (hi) [left,draw=red] {Hi!} arc(90:0:1)};
+
*Jgjgrg * \draw [blue] decorate [decoration={crosses}] {(3,0) -- (hi)};
* \end{tikzpicture}

The following key is used to select the decoration and also to select further “rendering options” for the
decoration.

/pgf/decoration=(decoration options) (no default)
alias /tikz/decoration

This option is used to specify which decoration is used and how it will look like. Note that his key
will not cause any decorations to be applied, immediately. It takes the decorate path command
or the decorate option to actually decorate a path. The decoration option is only used to specify
which decoration should be used, in principle. You can also use this option at the beginning of a
picture or a scope to specify the decoration to be used with each invocation of the decorate path
command. Naturally, any local options of the decorate path command override these “global”
options.

\begin{tikzpicture}[decoration=zigzag]

\draw decorate {€0,0) - (3,2)};
\draw [red] decorate [decoration=crosses] {(0,2) -- (3,0)};
\end{tikzpicture}

The (decoration options) are special options (which have the path prefix /pgf/decoration/) that
determine the properties of the decoration. Which options are appropriate for a decoration depend

244

strongly on the decoration, you will have to look up the appropriate options in the documentation
of the decoration, see Section 30.

There is one option (available only in TikZ) that is special:

/pgf/decoration/name=(name) (no default, initially none)

Use this key to set which decoration is to be used. The (name) can both be a decoration or a
meta-decoration (you need to worry about the difference only if you wish to define your own
decorations).

If you set (name) to none, no decorations are added.

\begin{tikzpicture}
\draw [help lines] grid (3,2);
/\/\J’ \draw decorate [decoration={name=zigzag}]
/rJ\J { (0,0) .. controls (0,2) and (3,0) .. (3,2) };
\end{tikzpicture}

Since this option is used so often, you can also leave out the name= part. Thus, the above
example can be rewritten more succinctly:

\begin{tikzpicture}
\draw [help lines] grid (3,2);
/\/\J/ \draw decorate [decoration=zigzag]

/Y_f\/ { (0,0) .. controls (0,2) and (3,0) .. (3,2) };
\end{tikzpicture}

In general, when (decoration options) are parsed, for each unknown key it is checked whether
that key happens to be a (meta-)decoration and, if so, the name option is executed for this key.

Further options allow you to adjust the position of decorations relative to the to-be-decorated path.
See Section 21.4 below for details.

Recall that some decorations actually completely remove the to-be-decorated path. In such cases, the
construction of the main path is resumed after the decorate path command ends.

around

\begin{tikzpicture} [decoration={text along path,text=
around and around and around and around we gol}]

\draw (0,0) -- (1,1) decorate { -- (2,1) } -- (3,0);
\end{tikzpicture}

It is permissible to nest decorate commands. In this case, the path resulting from the first decoration
process is used as the to-be-decorated path for the second decoration process. This is especially useful
for drawing fractals. The Koch snowflake decoration replaces a straight line like by _/__.
Repeatedly applying this transformation to a triangle yields a fractal that looks a bit like a snowflake,
hence the name.

\filldraw (0,0) -- ++(60:1) -- ++(-60:1) -- cycle ;

\filldraw decorate{ (0,-1) -- ++(60:1) -- ++(-60:1) -- cycle };

\filldraw decorate{ decorate{ (0,-2.5) -- ++(60:1) -- ++(-60:1) -- cycle }};
\end{tikzpicture}

i \begin{tikzpicture}[decoration=Koch snowflake,draw=blue,fill=blue!20,thick]

21.3 Decorating a Complete Path

You may sometimes wish to decorate a path over whose construction you have no control. For instance,
the path of the background of a node is created without your having a chance to issue a decorate path

245

command. In such cases you can use the following option, which allows you to decorate a path “after the
fact.”

/tikz/decorate=(boolean) (default true)

When this key is set, the whole path is decorated after it has been finished. The decoration used for
decorating the path is set via the decoration way, in exactly the same way as for the decorate path
command. Indeed, the following two commands have the same effect:

1. \path decorate[(options)] {(path)};

2. \path [decorate, {options)] (path);
The main use or the decorate option is the you can also use it with the nodes. It then causes the
background path of the node to be decorated. Note that you decorate a background path only once in

this manner. That is, in contrast to the decorate path command you cannot apply this option twice
(this would just set it to true, once more).

\begin{tikzpicturel} [decoration=zigzag]
\draw [help lines] (0,0) grid (3,5);

\draw [fill=blue!20,decorate] (1.5,4) circle (1icm);

\node at (1.5,2.5) [fill=red!20,decorate,ellipse] {Ellipse};

Ellipse \node at (1.5,1) [inner sep=6mm,fill=red!20,decorate,ellipse,decoration=
{text along path,text={This is getting silly}}] {Ellipse};
S\ 3ty 105 \end{tikzpicture}
: R,
Zs,
EFllipa é“
l_JJ.JJlJDL/

In the last example, the text along path decoration removes the path. In such cases it is useful to use
a pre- or postaction to cause the decoration to be applied only before or after the main path has been
used. Incidentally, this is another application of the decorate option that you cannot achieve with the
decorate path command.

\node at (1.5,1) [inner sep=6mm,fill=red!20,ellipse,
@ postaction={decorate,decoration=
{text along path,text={This is getting silly}}}] {Ellipsel};
\end{tikzpicture}

LS %U.quag& \begin{tikzpicture} [decoration=zigzag]
2
R

Ellipse

Here is more useful example, where a postaction is used to add the path after the main path has been
drawn.

\catcode‘\ |12

> \begin{tikzpicture}

o \draw [help lines] grid (3,2);
g \fill [draw=red,fill=red!20,

. postaction={decorate,decoration={raise=2pt,text along path,
‘A text=around and around and around and around we go}l}]
Piimore PV (0,1) arc (180:-180:1.5cm and lcm);

\end{tikzpicture}

21.4 Adjusting Decorations
21.4.1 Positioning Decorations Relative to the To-Be-Decorate Path

The following option, which are only available with TikZ, allow you to modify the positioning of decorations
relative to the to-be-decorated path.

/pgf/decoration/raise={dimension) (no default, initially Opt)

246

The segments of the decoration are raised by (dimension) relative to the to-be-decorated path. More
precisely, the segments of the path are offset by this much “to the left” of the path as we travel along
the path. This raising is done after and in addition to any transformations set using the transform
option (see below).

A negative (dimension) will offset the decoration “to the right” of the to-be-decorated path.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

+ T Y \draw (0,0) -- (1,1) arc (90:0:2 and 1);
\draw decorate [decoration=crosses]
o { (0,0) -- (1,1) arc (90:0:2 and 1) };
\draw[red] decorate [decoration={crosses,raise=5pt}]
{ (0,0) -- (1,1) arc (90:0:2 and 1) };
\end{tikzpicture}

/pgf/decoration/mirror=(boolean) (no default)

Causes the segments of the decoration to be mirrored along the to-be-decorated path. This is done after
and in addition to any transformations set using the transform and/or raise options.

B \begin{tikzpicture}

\node (a) {A};
/ \node (b) at (2,1) {B};
\draw (a) - (b);

A
\draw [decorate,decoration=brace] (a) - (b);
\draw[decorate,decoration={brace,mirror},red] (a) —— ()
\draw [decorate,decoration={brace,mirror,raise=5pt},blue] (a) -- (b);
\end{tikzpicture}
/pgf/decoration/transform=(transformations) (no default)

This key allows you to specify general (transformations) to be applied to the segments of a decoration.
These transformations are applied before and independently of raise and mirror transformations. The
(transformations) should be normal TikZ transformations like shift or rotate.

In the following example the shift only transformation is used to make sure that the crosses are not
sloped along the path.

\begin{tikzpicture}
\draw [help lines] (0,0) grid (3,2);

R \draw (0,0) -- (1,1) arc (90:0:2 and 1);
\draw[red,very thick] decorate [decoration={
crosses,transform={shift only},shape size=1.5mm}]
{ (0,0) -- (1,1) arc (90:0:2 and 1) };
\end{tikzpicture}

21.4.2 Starting and Ending Decorations Early or Late

You sometimes may wish to “end” a decoration a bit early on the path. For instance, you might wish a
snake decoration to stop bmm before the end of the path and to continue in a straight line. There are
different ways of achieving this effect, but the easiest may be the pre and post options, which only have an
effect in TikZ. Note, however, that they can only be used with decorations, not with meta-decorations.

/pgf/decoration/pre=(decoration) (no default, initially lineto)

This key sets a decoration that should be used before the main decoration starts. The (decoration) will
be used for a length of pre length, which Opt by default. Thus, for the pre option to have any effect,
you also need to set the pre length option.

\begin{tikzpicture}
\tikz [decoration={zigzag,pre=lineto,pre length=1cm}]
\draw [decorate] (0,0) -- (2,1) arc (90:0:1);

\end{tikzpicture}

247

\begin{tikzpicture}

\tikz [decoration={zigzag,pre=moveto,pre length=1cm}]
\draw [decorate] (0,0) -- (2,1) arc (90:0:1);

\end{tikzpicture}

\begin{tikzpicture}

\tikz [decoration={zigzag,pre=crosses,pre length=1cm}]
\draw [decorate] (0,0) -- (2,1) arc (90:0:1);

\end{tikzpicture}

J

+

Note that the default pre option is 1ineto, not curveto. This means that the default pre decoration
will not follow curves (for efficiency reasons). Change the pre key to curveto if you have a curved path.

\begin{tikzpicture}

\tikz [decoration={zigzag,pre length=3cm}]
\draw [decorate] (0,0) -- (2,1) arc (90:0:1);

\end{tikzpicture}

\begin{tikzpicture}

\tikz [decoration={zigzag,pre=curveto,pre length=3cm}]
\draw [decorate] (0,0) -- (2,1) arc (90:0:1);

\end{tikzpicture}

P

/pgf/decoration/pre length=(dimension) (no default, initially Opt)

This key sets the distance along which the pre-decoration should be used. If you do not need/wish a
pre-decoration, set this key to Opt (exactly this string, not just to something that evaluated to the same
things such as Ocm).

/pgf/decorations/post=(decoration) (no default, initially lineto)
Works like pre, only for the end of the decoration.

/pgf/decorations/post length=(dimension) (no default, initially Opt)
Works like pre length, only for the end of the decoration.
Here is a typical example that shows how these keys can be used:

ANANNANNNN~ \begin{tikzpicture}
[decoration=snake,

“NN\NNNANN—
line around/.style={decoration={pre length=#1,post length=#1}1}]
\draw[->,decorate] (0,0) -- ++(3,0);
\draw[->,decorate,line around=5pt] (0,-5mm) -- ++(3,0);
\draw[->,decorate,line around=1cm] (0,-1cm) -- ++(3,0);
\end{tikzpicture}

248

22 Transformations

PGF has a powerful transformation mechanism that is similar to the transformation capabilities of METAFONT.
The present section explains how you can access it in TikZ.

22.1 The Different Coordinate Systems

It is a long process from a coordinate like, say, (1,2) or (1cm, 5pt), to the position a point is finally placed on
the display or paper. In order to find out where the point should go, it is constantly “transformed,” which
means that it is mostly shifted around and possibly rotated, slanted, scaled, and otherwise mutilated.

In detail, (at least) the following transformations are applied to a coordinate like (1,2) before a point on
the screen is chosen:

1. PGF interprets a coordinate like (1,2) in its xy-coordinate system as “add the current z-vector once
and the current y-vector twice to obtain the new point.”

2. PGF applies its coordinate transformation matrix to the resulting coordinate. This yields the final
position of the point inside the picture.

3. The backend driver (like dvips or pdftex) adds transformation commands such the coordinate is
shifted to the correct position in TEX’s page coordinate system.

4. PDF (or PostScript) apply the canvas transformation matrix to the point, which can once more change
the position on the page.

5. The viewer application or the printer applies the device transformation matrix to transform the coor-
dinate to its final pixel coordinate on the screen or paper.

In reality, the process is even more involved, but the above should give the idea: A point is constantly
transformed by changes of the coordinate system.

In TikZ, you only have access to the first two coordinate systems: The zy-coordinate system and the
coordinate transformation matrix (these will be explained later). PGF also allows you to change the canvas
transformation matrix, but you have to use commands of the core layer directly to do so and you “better
know what you are doing” when you do this. The moment you start modifying the canvas matrix, PGF
immediately looses track of all coordinates and shapes, anchors, and bounding box computations will no
longer work.

22.2 The XY- and XYZ-Coordinate Systems

The first and easiest coordinate systems are PGF’s xy- and xyz-coordinate systems. The idea is very simple:
Whenever you specify a coordinate like (2,3) this means 2v, + 3v,, where v, is the current z-vector and
vy is the current y-vector. Similarly, the coordinate (1,2,3) means v, + 2v, + 3v,.

Unlike other packages, PGF does not insist that v, actually has a y-component of 0, that is, that it is a
horizontal vector. Instead, the z-vector can point anywhere you want. Naturally, normally you will want
the z-vector to point horizontally.

One undesirable effect of this flexibility is that it is not possible to provide mixed coordinates as in
(1,2pt). Life is hard.

To change the z-, y-, and z-vectors, you can use the following options:

/tikz/x=(value) (no default, initially 1cm)

If (value) is a dimension, the z-vector of PGF’s xyz-coordinate system is setup to point (value) to the
right, that is, to ((value), Opt).

———— \begin{tikzpicture}
\draw (0,0) -- +(1,0);
\draw[x=2cm,color=red] (0,0.1) -- +(1,0);
\end{tikzpicture}

\tikz \draw[x=1.5cm] (0,0) grid (2,2);

249

The last example shows that the size of steppings in grids, just like all other dimensions, are not affected
by the z-vector. After all, the z-vector is only used to determine the coordinate of the upper right corner
of the grid.

If (value) is a coordinate, the z-vector of PGF’s xyz-coordinate system to the specified coordinate. If
(value) contains a comma, it must be put in braces.

‘::::::,,//”’ \begin{tikzpicture}
\draw (0,0) -- (1,0);

\draw [x={(2cm,0.5cm)},color=red] (0,0) -- (1,0);
\end{tikzpicture}

You can use this, for example, to exchange the meaning of the x- and y-coordinate.

\begin{tikzpicture} [smooth]
\draw plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
\draw [x={(0cm,1cm)},y={(1cm,0cm)},color=red]
plot coordinates{(1,0) (2,0.5) (3,0) (3,1)};
\end{tikzpicture}

Y

/tikz/y=(value) (no default, initially 1cm)

Works like the x= option, only if (value) is a dimension, the resulting vector points to (0, (value)).

/tikz/z=(value) (no default, initially —3.85mm)

Works like the y= option, but now a dimension is means the point ((value), (value)).

\begin{tikzpicture}[z=-1cm,->,thick]
\draw[color=red] (0,0,0) -- (1,0,0);
\draw[color=blue] (0,0,0) -- (0,1,0);

\draw [color=orange] (0,0,0) -- (0,0,1);
\end{tikzpicture}

22.3 Coordinate Transformations

PGF and TikZ allow you to specify coordinate transformations. Whenever you specify a coordinate as in
(1,0) or (1cm,1pt) or (30:2cm), this coordinate is first “reduced” to a position of the form “z points to
the right and y points upwards.” For example, (1in,5pt) is reduced to “72% points to the right and 5
points upwards” and (90:100pt) means “Opt to the right and 100 points upwards.”

The next step is to apply the current coordinate transformation matriz to the coordinate. For example,
the coordinate transformation matrix might currently be set such that it adds a certain constant to the x
value. Also, it might be setup such that it, say, exchanges the x and y value. In general, any “standard”
transformation like translation, rotation, slanting, or scaling or any combination thereof is possible. (Inter-
nally, PGF keeps track of a coordinate transformation matrix very much like the concatenation matrix used
by PDF or PostScript.)

\draw[help lines] (0,0) grid (3,2);

\draw (0,0) rectangle (1,0.5);

\begin{scope} [xshift=1cm]
\draw [red] (0,0) rectangle (1,0.5);
\draw[yshift=1cm] [bluel (0,0) rectangle (1,0.5);
\draw[rotate=30] [orange] (0,0) rectangle (1,0.5);

\end{scope}

\end{tikzpicture}

\begin{tikzpicture}

The most important aspect of the coordinate transformation matrix is that it applies to coordinates only!
In particular, the coordinate transformation has no effect on things like the line width or the dash pattern or
the shading angle. In certain cases, it is not immediately clear whether the coordinate transformation matrix
should apply to a certain dimension. For example, should the coordinate transformation matrix apply to

250

grids? (It does.) And what about the size of arced corners? (It does not.) The general rule is “If there is
no ‘coordinate’ involved, even ‘indirectly,” the matrix is not applied.” However, sometimes, you simply have
to try or look it up in the documentation whether the matrix will be applied.

Setting the matrix cannot be done directly. Rather, all you can do is to “add” another transformation
to the current matrix. However, all transformations are local to the current TEX-group. All transformations
are added using graphic options, which are described below.

Transformations apply immediately when they are encountered “in the middle of a path” and they apply
only to the coordinates on the path following the transformation option.

’ ‘ ’ ‘ \tikz \draw (0,0) rectangle (1,0.5) [xshift=2cm] (0,0) rectangle (1,0.5);

A final word of warning: You should refrain from using “aggressive” transformations like a scaling of a
factor of 10000. The reason is that all transformations are done using TEX, which has a fairly low accuracy.
Furthermore, in certain situations it is necessary that TikZ inverts the current transformation matrix and
this will fail if the transformation matrix is badly conditioned or even singular (if you do not know what
singular matrices are, you are blessed).

/tikz/shift={({coordinate)} (no default)
Adds the (coordinate) to all coordinates.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
| \draw 0,00 - (1,1) -- (1,0);

\draw[shift={(30:1cm)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}

‘ \draw[shift={(1,1)},blue] (0,0) -- (1,1) -- (1,0);

/tikz/shift only (no value)

This option does not take any parameter. Its effect is to cancel all current transformations except for
the shifting. This means that the origin will remain where it is, but any rotation around the origin or
scaling relative to the origin or skewing will no longer have an effect.

This option is useful in situations where a complicated transformation is used to “get to a position,”
but you then wish to draw something “normal” at this position.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,00 —- (1,1) —- (1,0);
\draw[rotate=30,xshift=2cm,blue] (0,0) -- (1,1) -- (1,0);
\draw [rotate=30,xshift=2cm,shift only,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
/tikz/xshift=(dimension) (no default)

Adds (dimension) to the x value of all coordinates.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,00 -- (1,1) —- (1,0);

\draw[xshift=2cm,blue] (0,0) -- (1,1) —- (1,0);
\draw [xshift=-10pt,red] (0,0) -- (1,1) —- (1,0);
\end{tikzpicture}

/tikz/yshift=(dimension) (no default)

Adds (dimension) to the y value of all coordinates.

/tikz/scale=(factor) (no default)

Multiplies all coordinates by the given (factor). The (factor) should not be excessively large in absolute
terms or very near to zero.

251

\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);

\begin{tikzpicture}
\draw[scale=2,blue] (0,0) -- (1,1) -- (1,0);

\draw[scale=-1,red] (0,0) —- (1,1) —- (1,0);
\end{tikzpicture}

/tikz/scale around={(factor):{coordinate)} (no default)

Scales the coordinate system by (factor), put with the “origin of scaling” centered on (coordinate) rather
than the origin.

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[scale=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[scale around={2:(1,1)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}
/tikz/xscale={factor) (no default)

Multiplies only the xz-value of all coordinates by the given (factor).

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,00 —- (1,1) -- (1,0);

\draw[xscale=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}

\draw[xscale=2,blue] (0,0) -- (1,1) -- (1,0);

/tikz/yscale=(factor) (no default)
Multiplies only the y-value of all coordinates by (factor).

/tikz/xslant={factor) (no default)
Slants the coordinate horizontally by the given (factor):

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) = (1,1) -- (1,0);

\draw [xslant=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}

\draw[xslant=2,blue] (0,0) -- (1,1) -- (1,0);

/tikz/yslant={factor) (no default)
Slants the coordinate vertically by the given (factor):

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);

\draw[yslant=2,blue] (0,0) -- (1,1) -- (1,0);
\draw[yslant=-1,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}

252

/tikz/rotate={degree) (no default)
Rotates the coordinate system by (degree):

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
f\\ \draw (0,0) -- (1,1) —- (1,0);

\draw [rotate=-20,red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}

\draw[rotate=40,blue] (0,0) -- (1,1) -- (1,0);

/tikz/rotate around={(degree): (coordinate)} (no default)

Rotates the coordinate system by (degree) around the point (coordinate).

\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);
\draw[rotate around={40:(1,1)},blue] (0,0) -- (1,1) -- (1,0);
\draw[rotate around={-20:(1,1)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}

/tikz/cm={{a),(b),{c),(d), {coordinate)} (no default)
applies the following transformation to all coordinates: Let (x,y) be the coordinate to be transformed
and let (coordinate) specify the point (t,t,). Then the new coordinate is given by (25) () + (i’/).
Usually, you do not use this option directly.

\draw[help lines] (0,0) grid (3,2);
\draw (0,0) -- (1,1) -- (1,0);

\begin{tikzpicture}
\draw[cm={1,1,0,1,(0,0)},blue] 0,00 - (1,1) -- (1,0);

\draw[cm={0,1,1,0, (1cm,1cm)},red] (0,0) -- (1,1) -- (1,0);
\end{tikzpicture}

/tikz/reset cm (no value)

Completely resets the coordinate transformation matrix to the identity matrix. This will destroy not only
the transformations applied in the current scope, but also all transformations inherited from surrounding
scopes. Do not use this option, unless you really, really know what you are doing.

22.4 Canvas Transformations

A canvas transformation, see Section 68.4 for details, is best thought of as a transformation in which the
drawing canvas is stretched or rotated. Imaging writing something on a balloon (the canvas) and then
blowing air into the balloon: Not only does the text become larger, the thin lines also become larger. In
particular, if you scale the canvas by a factor of two, all lines are twice as thick.

Canvas transformations should be used with great care. In most circumstances you do not want line
widths to change in a picture as this creates visual inconsistency.

Just as important, when you use canvas transformations PGF looses track of positions of nodes and of
picture sizes since it does not take the effect of canvas transformations into account when it computes
coordinates of nodes (you not, however, rely on this; it may change in the future).

Finally, not that a canvas transformation always applies to a path as a whole, it is not possible (as for
coordinate transformations) to use different transformations in different parts of a path.

In short, you should not use canvas transformations unless you really know what you are doing.

/tikz/transform canvas=(options) (no default)

The {options) should contain coordinate transformations options like scale or xshift. Multiple options
can be given, their effects accumulate in the usual manner. The effect of these (options) (immediately)
changes the current canvas transformation matrix. The coordinate transformation matrix is not changed.
Tracking of the picture size is (locally) switched off and the node coordinate will no longer be correct.

253

254

Part 1V
Libraries
by Till Tantau

In this part the library packages are documented. They provide additional predefined graphic objects like
new arrow heads or new plot marks, but also sometimes extensions of the basic PGF or TikZ system. The
libraries are not loaded by default since many users will not need them.

Y

THEORETICAL
COMPUTER
SCIENCE

v

\tikzset{
1d/.style={level distance=#1},1lw/.style={line width=#1},
level 1/.style={1d=4.5mm, trunk, lw=lex ,sibling angle=60},

level 2/.style={1d=3.5mm, trunk!80!leaf a,lw=.8ex,sibling angle=56},
level 3/.style={1d=2.75mm,trunk!60!leaf a,lw=.6ex,sibling angle=52},
level 4/.style={1d=2mm, trunk!40!leaf a,lw=.4ex,sibling angle=48},
level 5/.style={1d=1mm, trunk!20!leaf a,lw=.3ex,sibling angle=44},
level 6/.style={1d=1.75mm,leaf a, lw=.2ex,sibling angle=40},

}
\pgfarrowsdeclare{leaf}{leaf}
{\pgfarrowsleftextend{-2pt} \pgfarrowsrightextend{iptl}}

\pgfpathmoveto{\pgfpoint{-2pt}{Opt}}
\pgfpatharc{150}{30}{1.8pt}
\pgfpatharc{-30}{-150}{1.8pt}

THEORETICAL \pgfusepathqfill
(YQMPUTER }
SCIENCE
\newcommand{\logo} [5]
{
\colorlet{border}{#1}
\colorlet{trunk}{#2}
\colorlet{leaf a}{#3}
\colorlet{leaf b}{#4}
THEORETICAL \begin{tikzpicture}
COMPUTER \scriptsize\scshape
SCIENCE \draw[border,line width=lex,yshift=.3cm,
yscale=1.45,xscale=1.05,lo0oseness=1.42]
o, (1,0) to [out=90, in=0] (0,1) to [out=180,in=90] (-1,0)
l>l 2 to [out=-90,in=-180] (0,-1) to [out=0, in=-90] (1,0) -- cycle;
~
\coordinate (root) [grow cyclic,rotate=90]
child {
I'HEORETICAL child [1ine cap=round] foreach \a in {0,1} {
COMPUTER child foreach \b in {0,1} {
SCIENCE child foreach \c in {0,1} {
child foreach \d in {0,1} {
child foreach \leafcolor in {leaf a,leaf b}
{ edge from parent [color=\leafcolor,-#5] }
Fr 3
} edge from parent [shorten >=-1pt,serif cm-,line cap=butt]
¥8
\node [align=center,below] at (Opt,-.5ex)
{ \textcolor{border}{T}theoretical \\ \textcolor{border}{C}omputer \\
\textcolor{border}{S}cience };
\end{tikzpicture}
¥

\begin{minipage}{3cm}
\logo{green!80!black}{green!25!black}{green}{green!80}{leaf}\\
\logo{green!50!black}{black}{green!80!black}{red!80!green}{leaf}\\
\logo{red!75!black}{red!25!black}{red!75!black}{orange}{leaf}\\
\logo{black!50}{black}{black!50}{black!25}{}

\end{minipage}

255

23 Arrow Tip Library

\usepgflibrary{arrows} J EFX and plain TX and pure pgf
\usepgflibrary[arrows] % ConTgXt and pure pgf
\usetikzlibrary{arrows} % EGX and plain TX when using TikZ
\usetikzlibrary[arrows] % ConTXt when using TikZ

The package defines additional arrow tips, which are described below. Note that neither the standard
packages nor this package defines an arrow name containing > or <. These are left for the user to defined
as he or she sees fit.

The arrow tips to, stealth, latex, space, their reversed forms, and | are predefined, but listed below
for completeness, nevertheless.

23.1 Mathematical Arrow Tips

to yields thick «—— and thin «—
to reversed yields thick < and thin —
implies yields thick and thin , double &——= and —

23.2 Triangular Arrow Tips

latex yields thick «— and thin «——, double «—=—=- and «<——
latex reversed yields thick m—— and thin »——, double e—=t and =—=
latex’ yields thick «<—— and thin «~——
latex’ reversed yields thick »—— and thin —
stealth yields thick «—— and thin «———, double and < >
stealth reversed yields thick >—— and thin >——, double > and =—=
stealth’ yields thick «—— and thin «——
stealth’ reversed yields thick »—— and thin >——
triangle 90 yields thick ¢— and thin ¢—
triangle 90 reversed yields thick p——¢ and thin p——+
triangle 60 yields thick ¢«— and thin «—»
triangle 60 reversed yields thick p—— and thin p——«
triangle 45 yields thick «¢— and thin «—»
triangle 45 reversed yields thick p——q and thin »—
open triangle 90 yields thick ¢—J> and thin ¢—
open triangle 90 reversed yields thick p—] and thin p——
open triangle 60 yields thick <+——> and thin <+—>
open triangle 60 reversed yields thick p—<]and thin p—-x
open triangle 45 yields thick <+——> and thin <+—>

open triangle 45 reversed yields thick >—<7 and thin >—x

23.3 Barbed Arrow Tips

angle 90 yields thick ¢«— and thin «——
angle 90 reversed yields thick >—< and thin >——
angle 60 yields thick «——> and thin «——
angle 60 reversed yields thick >—< and thin >——<
angle 45 yields thick «——> and thin «<——
angle 45 reversed yields thick >—< and thin >——<
hooks yields thick &—3 and thin &—
hooks reversed yields thick 3——¢ and thin 3——¢

256

23.4 Bracket-Like Arrow Tips

1 yields thick ——— and thin —
[yields thick —— and thin +——-
-) yields thick &—— and thin «——
(yields thick)—— and thin >——
|- yields thick ——— and thin ——

23.5 Circle, Diamond and Square Arrow Tips

) yields thick 0—o0 and thin o—o
* yields thick @&—e and thin e——e
diamond yields thick @—e and thin e—e
open diamond yields thick &—> and thin o—<
square yields thick m—m and thin =—ma

open square yields thick b— and thin o—=o

23.6 Serif-Like Arrow Tips

serif cm yields thick ——— and thin ———

23.7 Partial Arrow Tips

left to yields thick «~——— and thin ———
left to reversed yields thick —— and thin ———
right to yields thick «—— and thin ——
right to reversed yields thick —— and thin ———
left hook yields thick ——— and thin ———
left hook reversed yields thick ¥——< and thin ——-¢
right hook yields thick «——— and thin «———

right hook reversed yields thick >—— and thin >——

23.8 Line Caps

round cap yields for line width lex co—
butt cap yields for line width lex n—
triangle 90 cap yields for line width lex c—
triangle 90 cap reversed yields for line width lex ——m—
fast cap yields for line width lex <>
fast cap reversed yields for line width lex > —<

23.9 Spacing Tips

The spacing arrow tips are useful for combining them with other arrows to get arrows that do not touch the
end of the line.

space yields thick and thin

257

24 Automata Drawing Library

\usetikzlibrary{automatal} ¥, EX and plain TX
\usetikzlibrary[automata] % ConTEXt

This packages provides shapes and styles for drawing finite state automata and Turing machines.

24.1 Drawing Automata

The automata drawing library is intended to make it easy to draw finite automata and Turing machines.
It does not cover every situation imaginable, but most finite automata and Turing machines found in text
books can be drawn in a nice and convenient fashion using this library.

To draw an automaton, proceed as follows:

1. For each state of the automaton, there should be one node with the option state.

2. To place the states, you can either use absolute positions or relative positions, using options like above
or right.

3. Give a unique name to each state node.

4. Accepting and initial states are indicated by adding the options accepting and initial, respectively,
to the state nodes.

5. Once the states are fixed, the edges can be added. For this, the edge operation is most useful. It is,
however, also possible to add edges after each node has been placed.

6. For loops, use the edge [loop] operation.

Let us now see how this works for a real example. Let us consider a nondeterministic four state automaton
that checks whether an contains the sequence 0*1 or the sequence 1*0.

0

()

¥

q1

0 \1\
start —(¢ @
"‘%I' :

1
\begin{tikzpicture} [shorten >=1pt,node distance=2cm,on grid,auto]
\draw[help lines] (0,0) grid (3,2);

\node[state,initial]l (q_0) {$q_0%1};
\node [state] (q_1) [above right=of q_0] {$q_1%$};
\node[state] (q_2) [below right=of q_0] {q_2};
\node [state,accepting] (q_3) [below right=of q_1] {q_3};
\path[->] (q_0) edge node {0} (q_1)
edge node [swap] {1} (q_2)
(g_1) edge node {1} (q-3)
edge [loop above] node {0r O
(q_2) edge node [swap] {0} (q_3)
edge [loop below] node {1} O;
\end{tikzpicture}

258

24.2 States With and Without Output

The state style actually just “selects” a default underlying style. Thus, you can define multiple new
complicated state style and then simply set the state style to your given style to get the desired kind of
styles.

By default, the following state styles are defined:

/tikz/state without output (style, no value)
This node style causes nodes to be drawn circles. Also, this style calls every state.

/tikz/state with output (style, no value)
This node style causes nodes to be drawn as split circles, that is, using the circle split shape. In
the upper part of the shape you have the name of the style, in the lower part the output is placed. To
specify the output, use the command \nodepart{lower} inside the node. This style also calls every

state.
\begin{tikzpicture}
\draw[help lines] (0,0) grid (3,2);
\node [state without output] {$q_0%$};
\ ﬂm \node[state with output] at (2,0) {gq_1 \nodepart{lower} $00%$};
4o W \end{tikzpicture}
/tikz/state (style, initially state without output)

You should redefine it to something else, if you wish to use states of a different nature.

\begin{tikzpicture}[state/.style=state with output]
/q—()\ m \node [state] {q_0 \nodepart{lower} 11};
W W \node[state] at (2,0) {q_1 \nodepart{lower} $00%$3};
\end{tikzpicture}
/tikz/every state (style, initially empty)

This style is used by state with output and also by state without output. By default, it does
nothing, but you can use it to make your state look more fancy:

0 \begin{tikzpicture} [shorten >=1pt,node distance=2cm,on grid,>=stealth’,
every state/.style={draw=blue!50,very thick,fill=blue!20}]

\node [state,initial]l (q_0) {$9_0%};
e \node [state] (g_1) [above right=of q_0] {q_1};
\node [state] (q_2) [below right=of q_0] {$q_2%};

0
\path[->] (q_0) edge node [above left] {0} (q_1)
start — edge node [below left] {1} (q_2)
(q_1) edge [loop above] node {0} O
(q_2) edge [loop below] node {1} O;
1 \end{tikzpicture}

24.3 Initial and Accepting States

The styles initial and accepting are similar to the state style as they also just select an “underlying”
style, which installs the actual settings for initial and accepting states.
Let us start with the initial states.

/tikz/initial (style, initially initial by arrow)

This style is used to draw initial states.

259

/tikz/initial by arrow (style, no value)
This style causes an arrow and, possibly, some text to be added to the node. The arrow points from the
text to the node. The node text and the direction and the distance can be set using the following key:
/tikz/initial text=(text) (no default, initially start)

This key sets the text to be used. Use an empty text to suppress all text.

/tikz/initial where=(direction) (no default, initially left)

Set the place where the text should be shown. Allowed values are above, below, left, and right.

/tikz/intial distance=(distance) (no default, initially 3ex)
Sets the length of the arrow leading from the text to the state node.

/tikz/every initial by arrow (style, initially empty)

This style is executed at the beginning of every path that contains the arrow and the text. You
can use it to, say, make the text red or whatever.

\node [state,initial,initial distance=2cm] {q_0};
\end{tikzpicture}

\begin{tikzpicture}[every initial by arrow/.style={text=red,->>}]
start ———|
/tikz/initial above (style, no value)

This is a shorthand for initial by arrow,initial where=above.

/tikz/initial below (style, no value)

Works similarly to the previous option.

/tikz/initial left (style, no value)

Works similarly to the previous option.

/tikz/initial right (style, no value)

Works similarly to the previous option.

/tikz/initial by diamond (style, no value)

This style uses a diamond to indicate an initial node.

For the accepting states, the situation is similar: There is also an accepting style that selects the way
accepting states are rendered. There are now two options: First, accepting by arrow, which works the
same way as initial by arrow, only with the direction of arrow reversed, and accepting by double,
where accepting states get a double line around them.

/tikz/accepting (style, initially accepting by double)
This style is used to draw accepting states. You can replace this by the style accepting by arrow to
get accepting states with an arrow leaving them.

/tikz/accepting by double (style, no value)

This style causes a double line to be drawn around a state.

/tikz/accepting by arrow (style, no value)

This style causes an arrow and, possibly, some text to be added to the node. The arrow points to the
text from the node.

The same options as for initial states can be used, only with initial replaced by accepting:

/tikz/accepting text=(lext) (no default, initially empty)
This key sets the text to be used.

/tikz/accepting where=(direction) (no default, initially right)

Set the place where the text should be shown. Allowed values are above, below, left, and right.

260

/tikz/intial distance=(distance)

Sets the length of the arrow leading from the text to the state node.

/tikz/every accepting by arrow

(no default, initially 3ex)

(style, initially empty)

Executed at the beginning of every path that contains the arrow and the text.

0
RO

1

\begin{tikzpicture}

[shorten >=1pt,node distance=2cm,on grid,>=stealth’,initial text=,

every state/.style={draw=blue!50,very thick,fill=blue!20},
accepting/.style=accepting by arrow]

\node [state,initiall
\node[state]
\node [state]

\path[->] (q_0) edge
edge

(q_1) edge

edge

(q_2) edge

(q_0)

[loop above]

node
node
node
node
node

edge [loop below] node

\end{tikzpicture}

/tikz/accepting above

This is a shorthand for accepting by arrow,accepting where=above.

/tikz/accepting below

Works similarly to the previous option.

/tikz/accepting left

Works similarly to the previous option.

/tikz/accepting right

Works similarly to the previous option.

24.4 Examples

{$q_0$1};
(q_1) [above right=of q_0] {$q_1%$};
(q_2) [below right=of q_0] {$q_2%$};
\node [state,accepting] (9_3) [below right=of q_1] {q_3};

[above left]
[below left]
[above right]

[below right]

{0} (q_1)
{1} (q_2)
{1} (q_3)
{0} O
{0} (q_3)
{1} O;

(style,

(style,

(style,

(style,

no value)

no value)

no value)

no value)

In the following example, we once more typeset the automaton presented in the previous sections. This
time, we use the following rule for accepting/initial state: Initial states are red, accepting states are green,
and normal states are orange. Then, we must find a path from a red state to a green state.

261

\begin{tikzpicture}[shorten >=1pt,node distance=2cm,on grid,>=stealth’,thick,
every state/.style={fill,draw=none,orange,text=white,circular drop shadow},
accepting/.style ={green!50!black,text=white},
initial/.style ={red, text=white}]

:Do

\node [statel (q_1) [above right=of q_0] {q_1};

\node [state] (q_2) [below right=of q_0] {q_2};

e \node [state,accepting] (q_3) [below right=of q_1] {$q_3%$};
\path[->] (q_0) edge node [above left] {0} (q_1)
edge node [below left] {1} (q_2)

1 0
(q_1) edge node [above right] {1} (q_3)
CH edge [loop above] node {0r O
1

ji//’ 1 \node [state,initial] (q_0) {$q_0%};

(q_2) edge node [below right] {0} (q_3)
edge [loop below] node {1} O;
\end{tikzpicture}

The next example is the current candidate for the five-state busiest beaver:

1,1,L

0,1,L H 0,1,L
1,1,R
start —> e

0,1,L

1,0,R

\begin{tikzpicture} [->,>=stealth’,shorten >=1pt,%
auto,node distance=2cm,on grid,semithick,
inner sep=2pt,bend angle=45]

\node [initial,state] (A) {q_as};
\node [state] (B) [above right=of Al {q_b};
\node [state] (D) [below right=of A] {q_d};
\node [state] (C) [below right=of B] {q_c};
\node[state] (E) [below=of D] {q_e};
\path [every node/.style={font=\footnotesize}]
(A) edge node {0,1,L} (B)
edge node {1,1,R} (C)
(B) edge [loop above] node {1,1,L} (B)
edge node {0,1,L} (C)
(C) edge node {0,1,L} (D)

edge [bend left] mnode {1,0,R} (E)
(D) edge [loop below] node {1,1,R} (D)

edge node {0,1,R} (A)
(E) edge [bend left] node {1,0,R} (A);
\end{tikzpicture}

262

25 Background Library

\usetikzlibrary{backgrounds} 7% KX and plain TX
\usetikzlibrary[backgrounds] % ConTEXt

This library defines “backgrounds” for pictures. This does not refer to background pictures, but rather
to frames drawn around and behind pictures. For example, this package allows you to just add the
framed option to a picture to get a rectangular box around your picture or gridded to put a grid
behind your picture.

The first use of this library is to make the following key available:

/tikz/on background layer (no value)

This key can be used with a {scope}. It will cause everything inside the scope to be typeset on a
background layer. Note that the scope should not be “deeply nested” inside the picture since changes
to the graphic state (like the color or the transformation matrix) “do not survive a layer switch.” For
more details on layers see Section 82.

\begin{tikzpicture}
% On main layer:
\fill[blue] (0,0) circle (icm);

\begin{scope} [on background layer]
\fill[yellow] (-1,-1) rectangle (1,1);
\end{scope}

\begin{scope} [on background layer]
\fill[black] (-.8,-.8) rectangle (.8,.8);
\end{scope}

% On main layer again:
\fill[blue!50] (-.5,-1) rectangle (.5,1);
\end{tikzpicture}

When this package is loaded, the following styles become available:

/tikz/show background rectangle (style, no value)

This style causes a rectangle to be drawn behind your graphic. This style option must be given to the
{tikzpicture} environment or to the \tikz command.

\begin{tikzpicture}[show background rectangle]
\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}

The size of the background rectangle is determined as follows: We start with the bounding box of the
picture. Then, a certain separator distance is added on the sides. This distance can be different for the
z- and y-directions and can be set using the following options:

/tikz/inner frame xsep=(dimension) (no default, initially lex)

Sets the additional horizontal separator distance for the background rectangle.

/tikz/inner frame ysep=(dimension) (no default, initially lex)

Same for the vertical separator distance.

/tikz/inner frame sep=(dimension) (no default)

Sets the horizontal and vertical separator distances simultaneously.

The following two styles make setting the inner separator a bit easier to remember:

/tikz/tight background (style, no value)

Sets the inner frame separator to Opt. The background rectangle will have the size of the bounding
box.

263

/tikz/loose background (style, no value)

Sets the inner frame separator to 2ex.

You can influence how the background rectangle is rendered by setting the following style:

/tikz/background rectangle (style, initially draw)

This style dictates how the background rectangle is drawn or filled. The default setting causes
the path of the background rectangle to be drawn in the usual way. Setting this style to, say,
fill=blue!20 causes a light blue background to be added to the picture. You can also use more
fancy settings as shown in the following example:

\begin{tikzpicture}
[background rectangle/.style=
{double,ultra thick,draw=red,top color=blue,rounded corners},
show background rectanglel
\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}

—

Naturally, no one in their right mind would use the above, but here is a nice background:

(__——) \begin{tikzpicture}
[background rectangle/.style=
{draw=blue!50,fill=blue!20,rounded corners=1ex},
L) show background rectanglel

\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}

/tikz/framed (style, no value)

This is a shorthand for show background rectangle.

/tikz/show background grid (style, no value)

This style behaves similarly to the show background rectangle style, but it will not use a rectangle

path, but a grid. The lower left and upper right corner of the grid is computed in the same way as for
the background rectangle:

\begin{tikzpicture} [show background grid]
\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}

You can influence the background grid by setting the following style:

/tikz/background grid (style, initially draw,help lines)
This style dictates how the background grid path is drawn.

\begin{tikzpicture}

/// \\\ [background grid/.style={thick,draw=red,step=.5cm},
\\\ /// show background grid]
\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}

This option can be combined with the framed option (use the framed option first):

\tikzset{background grid/.style={thick,draw=red,step=.5cm},

/// \\\ background rectangle/.style={rounded corners,fill=yellow}}
\\\ /// \begin{tikzpicture} [framed,gridded]
\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}
/tikz/gridded (style, no value)

This is a shorthand for show background grid.

264

/tikz/show background top (style, no value)

This style causes a single line to be drawn at the top of the background rectangle. Normally, the line
coincides exactly with the top line of the background rectangle:

T \begin{tikzpicture}[
background rectangle/.style={fill=yellow},
framed, show background top]
\draw (0,0) ellipse (10mm and 5mm) ;

\end{tikzpicture}

The following option allows you to lengthen (or shorten) the line:

/tikz/outer frame xsep=(dimension) (no default, initially Opt)
The (dimension) is added at the left and right side of the line.

\begin{tikzpicture}
[background rectangle/.style={fill=yellow},
framed,
show background top,

outer frame xsep=lex]
\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}

/tikz/outer frame ysep=(dimension) (no default, initially Opt)
This option does not apply to the top line, but to the left and right lines, see below.

/tikz/outer frame sep=(dimension) (no default)

Sets both the z- and y-separation.

\begin{tikzpicture}

[background rectangle={fill=blue!20},
outer frame sep=lex,%
show background top,%

show background bottom,%

show background left,%

show background right]

\draw (0,0) ellipse (10mm and 5mm) ;
\end{tikzpicture}

You can influence how the line is drawn grid by setting the following style:

/tikz/background top (style, initially draw)
= \tikzset{background rectangle/.style={fill=blue!20},

background top/.style={draw=blue!50,line width=1lex}}
\begin{tikzpicturel} [framed, show background top]
\draw (0,0) ellipse (10mm and 5mm) ;

\end{tikzpicture}
/tikz/show background bottom (style, no value)
Works like the style for the top line.

/tikz/show background left (style, no value)
Works similarly.

/tikz/show background right (style, no value)
Works similarly.

265

26 Calc Library

\usetikzlibrary{calc} % EGX and plain TX
\usetikzlibrary[calc] % ConTt

The library allows advanced Coordinate Calculations. It is documented in all detail in Section 13.5 on
page 134.

266

27 Calendar Library

\usetikzlibrary{calendar} ¥, EX and plain TX
\usetikzlibrary[calendar] % ConTXt

The library defines the \calendar command, which can be used to typeset calendars. The command
relies on the \pgfcalendar command from the pgfcalendar package, which is loaded automatically.

The \calendar command is quite configurable, allowing you to produce all kinds of different calendars.

27.1 Calendar Command

The core command for creating calendars in TikZ is the \calendar command. It is available only inside
{tikzpicture} environments (similar to, say, the \draw command).

\calendar(calendar specification) ;

The syntax for this command is similar to commands like \node or \matrix. However, it has its
complete own parser and only those commands described in the following will be recognized, nothing
else. Note, furthermore, that a (calendar specification) is not a path specification, indeed, no path is
created for the calendar.

The specification syntax. The (calendar specification) must be a sequence of elements, each of which
has one of the following structures:

e [{(options)]
You provide (options) in square brackets as in [red,draw=none]. These (options) can be any
TikZ option and they apply to the whole calendar. You can provide this element multiple times,
the effect accumulates.

e ({(name))
This has the same effect as saying [name=(name)]. The effect of providing a (name) is explained
later. Note already that a calendar is not a node and the (name) is not the name of a node.

e at ({coordinate))

This has the same effect as saying [at=((coordinate))].

e if ((date condition)) (options or commands)else(else options or commands)
The effect of such an if is explained later.

At the beginning of every calendar, the following style is used:

/tikz/every calendar (style, initially empty)

This style is used with every calendar.

The date range. The overall effect of the \calendar command is to execute code for each day of a
range of dates. This range of dates is set using the following option:

/tikz/dates=(start date)to{end date) (no default)

This option specifies the date range. Both the start and end date are specified as described on
page 509. In short: You can provide ISO-format type dates like 2006-01-02, you can replace the day
of month by last to refer to the last day of a month (so 2006-02-1ast is the same as 2006-02-28),
and you can add a plus sign followed by a number to specify an offset (so 2006-01-01+-1 is the
same as 2005-12-31).

It will be useful to fix two pieces of terminology for the following descriptions: The \calendar command
iterates over the dates in the range. The current date refers to the current date the command is
processing as it iterates over the dates. For each current date code is executed, which will be called the
current date code. The current date code consists of different parts, to be detailed later.

The central part of the current date code is the execution of the code \tikzdaycode. By default, this
code simply produces a node whose text is set to the day of month. This means that unless further
action is taken, all days of a calendar will be put on top of each other! To avoid this, you must modify the
current date code to shift days around appropriately. Predefined arrangements like day list downward
or week list do this for you, but you can define arrangements yourself. Since defining an arrangement

267

is a bit tricky, it is explained only later on. For the time being, let us use a predefined arrangement to
produce our first calendar:

1 2 \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list];

34 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

Changing the spacing. In the above calendar, the spacing between the days is determined by the
numerous options. Most arrangement do not use all of these options, but only those that apply naturally.
/tikz/day xshift=(dimension) (no default, initially 3.5ex)

Specifies the horizontal shift between days. This is not the gap between days, but the shift between
the anchors of their nodes.

1 2 \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,day xshift=3ex];

3456789
101112 13 14 15 16
1718 19 20 21 22 23
24 25 26 27 28 29 30
31

/tikz/day yshift=(dimension) (no default, initially 3ex)

Specifies the vertical shift between days. Again, this is the shift between the anchors of their nodes.

\tikz \calendar [dates=2000-01-01 to 2000-01-31,week list,day yshift=2ex];

1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
/tikz/month xshift=(dimension) (no default)

Specifies an additional horizontal shift between different months.

/tikz/month yshift=({dimension) (no default)

Specifies an additional vertical shift between different months.

1 2 \tikz \calendar[dates=2000-01-01 to 2000-02-last,week list,
3 456 7 8 9 month yshift=0pt];

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
7 8 910 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29

268

\tikz \calendar[dates=2000-01-01 to 2000-02-last,week list,
1 2
3 456 7 8 9 month yshift=1cm];

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

1 2 3 4 5 6
7 8 910 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29

Changing the position of the calendar. The calendar is placed in such a way that, normally, the
anchor of the first day label is at the origin. This can be changed by using the at option. When you
say at={(1,1)}, this anchor of the first day will lie at coordinate (1,1).

In general, arrangements will not always place the anchor of the first day at the origin. Sometimes,
additional spacing rules get in the way. There are different ways of addressing this problem: First, you
can just ignore it. Since calendars are often placed in their own {tikzpicture} and since their size if
computed automatically, the exact position of the origin often does not matter at all. Second, you can
put the calendar inside a node as in ...node {\tikz \calendar...}. This allows you to position the
node in the normal ways using the node’s anchors. Third, you can be very clever and use a single-cell
matrix. The advantage is that a matrix allows you to provide any anchor of any node inside the matrix
as an anchor for the whole matrix. For example, the following calendar is placed in such a way the
center of 2000-01-20 lies on the position (2, 2):

\begin{tikzpicture}
1 2 \draw[help lines] (0,0) grid (3,2);
3 4 5 6 7 8 9 \matrix [anchor=cal-2000-01-20.center] at (2,2)
10 11 12 13 14 15 16 { \c§len§ar(ca1)[dates=2000-01-01 to 2000-01-31,week list]l; \\};
\end{tikzpicture}
1718 19 20 21 22 23
24 25 26 27 28 29 30

Unfortunately, the matrix-base positions, which is the cleanest way, isn’t as portable as the other
approaches (it currently does not work with the svG backend for instance).

Changing the appearance of days. As mentioned before, each day in the above calendar is produced
by an execution of the \tikzdaycode. Each time this code is executed, the coordinate system will have
been setup appropriately to place the day of the month correctly. You can change both the code and
its appearance using the following options.

/tikz/day code=(code) (no default, initially see below)

This option allows you to change the code that is executed for each day. The default is to create a
node with an appropriate name, but you can change this:

\tikz \calendar [dates=2000-01-01 to 2000-01-31,week list,
day code={\fill[bluel (0,0) circle (2pt);}];

The default code is the following:

269

\node [name=\pgfcalendarsuggestedname,every dayl{\tikzdaytext};

The first part causes the day nodes to be accessible via the following names: If (name) is the
name given to the calendar via a name= option or via the specification element ((name)), then
\pgfcalendarsuggestedname will expand to (name)-(date), where (date) is the date of the day
that is currently being processed in ISO format .

For example, if January 1, 2006 is being processed and the calendar has been named mycal, then
the node containing the 1 for this date will be names mycal-2006-01-01. You can later reference
this node.

1 2 \begin{tikzpicture}
\calendar (mycal) [dates=2000-01-01 to 2000-01-31,week list];
3 4 5 6 7 8 9
10 11 12 13 14 15 16 \draw[red] (mycal-2000-01-20) circle (4pt);

1
17 18 19 20 21 22 23 \end{tikzpicture}
24 25 26 27 28 29 30

31

/tikz/day text=(text) (no default)
This option changes the setting of the \tikzdaytext. By default, this macro simply yields the
current day of month, but you can change it arbitrarily. Here is a silly example:

X X \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,
day text=x];

X X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X

X
More useful examples are based on using the \% command. This command is redefined inside a
\pgfcalendar to mean the same as \pgfcalendarshorthand. (The original meaning of \% is lost
inside the calendar, you need to save if before the calendar if you really need it.)
The \% inserts the current day/month/year/day of week in a certain format into the text. The
first letter following the \% selects the type (permissible values are d, m, y, w), the second letter
specifies how the value should be displayed (- means numerically, = means numerically with leading
space, 0 means numerically with leading zeros, t means textual, and . means textual, abbrevi-
ated). For example \%d0 gives the day with a leading zero (for more details see the description of
\pgfcalendarshorthand on page 514).
Let us redefine the day text so that it yields the day with a leading zero:

01 02 \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,
day text=\%d0];

03 04 05 06 07 08 09

10 11 12 13 14 15 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

/tikz/every day (initially anchor=base east) (style, no default)

This style is executed by the default node code for each day. The every day style is useful for
changing the way days look. For example, let us make all days red:

270

\tikz[every day/.style=red]
\calendar [dates=2000-01-01 to 2000-01-31,week list];

w
g
(S}
(=]
J
co
Nolil N}

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

Changing the appearance of month and year labels. In addition to the days of a calendar, labels
for the months and even years (for really long calendars) can be added. These labels are only added
once per month or year and this is not done by default. Rather, special styles starting with month
label place these labels and make them visible:

\tikz \calendar[dates=2000-01-01 to 2000-02-last,week list,

anuar
J Y month label above centered];

1 2
345 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

February

1 2 3 4 5 6
7 8 910 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29

The following options change the appearance of the month and year label:

/tikz/month code=(code) (no default, initially see below)
This option allows you to specify what the macro \tikzmonthcode should expand to.
By default, the \tikzmonthcode it is set to

\node [every month]{\tikzmonthtext};
Note that this node is not named by default.

/tikz/month text=(lext) (no default)

This option allows you to change the macro \tikzmonthtext. By default, the month text is a long
textual presentation of the current month being typeset.

January 2000 \tikz \calendar[dates=2000-01-01 to 2000-01-31,week list,
¢ ary month label above centered,
1 2 month text=\textcolor{red}{\/mt} \%y-1;

3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

31
/tikz/every month (style, initially empty)
This style can be used to change the appearance of month labels.
/tikz/year code=(code) (no default)

Works like month code, only for years.

271

/tikz/year text=(text) (no default)
Works like month text, only for years.

/tikz/every year (no value)

Works like every month, only for years.

Date ifs. Much of the power of the \calendar command comes from the use of conditionals. There
are two equivalent way of specifying such a conditional. First, you can add the text if ({conditions))
(code or options) to your (calendar specification), possibly followed by else(else code or options). You
can have multiple such conditionals (but you cannot nest them in this simple manner). The second way
is to use the following option:

/tikz/if=({conditions)) {code or options)else(else code or options) (no default)

This option has the same effect as giving a corresponding if in the (calendar specification). The
option is mostly useful for use in the every calendar style, where you cannot provide if conditionals
otherwise.

Now, regardless of how you specify a conditional, it has the following effect (individually and indepen-
dently for each date in the calendar):

1. It is checked whether the current date is one of the possibilities listed in (conditions). An example

of such a condition is Sunday. Thus, when you write if (Saturday,Sunday) {foo}, then foo will
be executed for every day in the calendar that is a Saturday or a Sunday.
The command \ifdate and, thereby, \pgfcalendarifdate are used to evaluate the (conditions),
see page 510 for a complete list of possible tests. The most useful tests are: Tests like Monday
and so on, workday for the days Monday to Friday, weekend for Saturday and Sunday, equals for
testing whether the current date equals a given date, at least and at least for comparing the
current date with a given date.

2. If the date passes the check, the (code or options) is evaluated in a manner to be described in a
moment; if the date fails, the (else code or options) is evaluated, if present.
The (code or options) can either be some code. This is indicated by surrounding the code with
curly braces. It can also be a list of TikZ options. This is indicated by surrounding the options
with square brackets. For example in the date test if (Sunday) {\draw...} else {\fill...}
there are two pieces of code involved. By comparison, if (Sunday) [red] else [green] involves
two options.
If {code or options) is code, it is simply executed (for the current day). If it is a list of options,
these options are passed to a scope surrounding the current date.

Let us now have a look at some examples. First, we use a conditional to make all Sundays red.

1 2 \tikz
\calendar
3 4 5 6 7 8 9 [dates=2000-01-01 to 2000-01-31,week list]
10 11 12 13 14 15 16 if (Sunday) [red];

17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

Next, let us do something on a specific date:

\tikz
1 2
\calendar
3 45 6789 [dates=2000-01-01 to 2000-01-31,week list]
10 11 12 13 14 15 16 if (Sunday) [red]
17 18 19 2 29 93 if (equals=2000-01-20) {\draw (0,0) circle (8pt);};
24 25 26 2728 29 30

31

You might wonder why the circle seems to be “off” the date. Actually, it is centered on the date, it is
just that the date label uses the base east anchor, which shifts the label up and right. To overcome
this problem we can change the anchor:

272

\tikz [every day/.style={anchor=mid}]

. \calendar
3 45 6 7 8 9 [dates=2000-01-01 to 2000-01-31,week list]
10 11 12 13 14 15 16 if (Sunday) [red]
17 18 1921 29 93 if (equals=2000-01-20) {\draw (0,0) circle (8pt);};
24 25 26 27 28 29 30
31

However, the single day dates are now no longer aligned correctly. For this, we can change the day text
to \%d=, which adds a space at the beginning of single day text.

In the following, more technical information is covered. Most readers may wish to skip it.
The current date code. As mentioned earlier, for each date in the calendar the current date code is

executed. It is the job of this code to shift around date nodes, to render the date nodes, to draw the
month labels and to do all other stuff that is necessary to draw a calendar.

The current date code consists of the following parts, in this order:

The before-scope code.

A scope is opened.

The at-begin-scope code.

All date-ifs from the (calendar specification) are executed.

The at-end-scope code.

S 9k w e

The scope is closed.

7. The after-scope code.

All of the codes mentioned above can be changed using appropriate options, see below. In case you
wonder why so many are needed, the reason is that the current date code as a whole is not surrounded
by a scope or TEX group. This means that code executed in the before-scope code and in the after-scope
code has an effect on all following days. For example, if the after-scope code modifies the transformation
matrix by shifting everything downward, all following days will be shifted downward. If each day does
this, you get a list of days, one below the other.

However, you do not always want code to have an effect on everything that follows. For instance, if a
day has the date-if if (Sunday) [red], we only want this Sunday to red, not all following days also.
Similarly, sometimes it is easier to compute the position of a day relative to a fixed origin and we do
not want any modifications of the transformation matrix to have an effect outside the scope.

By cleverly adjusting the different codes, all sorts of different day arrangements are possible.

/tikz/execute before day scope=(code) (no default)

The (code) is executed before everything else for each date. Multiple calls of this option have an
accumulative effect. Thus, if you use this option twice, the code from the first use is used first for
each day, followed by the code given the second time.

/tikz/execute at begin day scope=(code) (no default)

This code is execute before everything else inside the scope of the current date. Again, the effect
is accumulative.

/tikz/execute at end day scope=(code) (no default)

This code is executed just before the day scope is closed. The effect is also accumulative, however,
in reverse order. This is useful to pair, say, \scope and \endscope commands in at-begin- and
at-end-code.

/tikz/execute after day scope={code) (no default)

This is executed at the very end of the current date, outside the scope. The accumulation is also
in reverse.

In the rest of the following subsections we have a look at how the different scope codes can be used to
create different calendar arrangements.

273

27.1.1 Creating a Simple List of Days

We start with a list the days of the calendar, one day below the other. For this, we simply shift the coordinate
system downward at the end of the code for each day. This shift must be outside the day scope as we want
day shifts to accumulate. Thus, we use the following code:

\tikz
\calendar [dates=2000-01-01 to 2000-01-08,
execute after day scope=
{\pgftransformyshift{-1em}}];

OO U W

Clearly, we can use this approach to create day lists going up, down, right, left, or even diagonally.

27.1.2 Adding a Month Label
We now want to add a month label to the left of the beginning of each month. The idea is to do two things:
1. We add code that is executed only on the first of each month.

2. The code is executed before the actual day is rendered. This ensures that options applying to the days
do not affect the month rendering.

We have two options where we should add the month code: Either we add it at the beginning of the day
scope or before. Either will work fine, but it might be safer to put the code inside the scope to ensure that
settings to not inadvertently “leak outside.”

\tikz
\calendar
[dates=2000-01-01 to 2000-01-08,
execute after day scope={\pgftransformyshift{-lem}},
execute at begin day scope=
{\ifdate{day of month=1}{\tikzmonthcode}{}},
every month/.append style={anchor=base east,xshift=-2em}];

January

00O Ut W

In the above code we used the \ifdate{(condition)}{(then code)}{(else code)} command, which is
described on page 512 in detail and which has much the same effect as if ((condition)){(then code)} else
{(else code)}, but works in normal code.

27.1.3 Creating a Week List Arrangement

Let us now address a more complicated arrangement: A week list. In this arrangement there is line for each
week. The horizontal placement of the days is thus that all Mondays lie below each other, likewise for all
Tuesdays, and so on.

In order to typeset this arrangement, we can use the following approach: The origin of the coordinate
system rests at the anchor for the Monday of each week. That means that at the end of each week the origin
is moved downward one line. On all other days, the origin at the end of the day code is the same as at
the beginning. To position each day correctly, we use code inside and at the beginning of the day scope to
horizontally shift the day according to its day of week.

\tikz
12 \calendar
34567809 r
10111213141516 [dates=2000-01-01 to 2000-01-20,

% each day is shifted right according to the day of week

execute at begin day scope=
{\pgftransformxshift{\pgfcalendarcurrentweekday em}},

% after each week, the origin is shifted downward:

execute after day scope=
{\ifdate{Sunday}{\pgftransformyshift{-1em}}{}}];

17181920

274

27.1.4 Creating a Month List Arrangement

For another example, let us create an arrangement that contains one line for each month. This is easy
enough to do as for weeks, unless we add the following requirement: Again, we want all days in a column to
have the same day of week. Since months start on different days of week, this means that each row has to
have an individual offset.

One possible way is to use the following approach: After each month (or at the beginning of each month)
we advance the vertical position of the offset by one line. For horizontal placement, inside the day scope we
locally shift the day by its day of month. Furthermore, we must additionally shift the day to ensure that
the first day of the month lies on the correct day of week column. For this, we remember this day of week
the first time we see it.

12345678 910111213141516171819202122232425262728293031
12345678 91011121314151617181920212223242526272829

\newcount\mycount
\tikz
\calendar
[dates=2000-01-01 to 2000-02-last,
execute before day scope=
{
\ifdate{day of month=1} {
% Remember the weekday of first day of month
\mycount=\pgfcalendarcurrentweekday
% Shift downward
\pgftransformyshift{-1em}
H}
}’
execute at begin day scope=
{
% each day is shifted right according to the day of month
\pgftransformxshift{\pgfcalendarcurrentday em}
% and additionally according to the weekday of the first
\pgftransformxshift{\the\mycount em}
315

27.2 Arrangements

An arrangement specifies how the days of calendar are arranged on the page. The calendar library defines
a number of predefined arrangements.
We start with arrangements in which the days are listed in a long line.

/tikz/day list downward (style, no value)

This style causes the days of a month to be typeset one below the other. The shift between days is
given by day yshift. Between month an additional shift of month yshift is added.

28 \tikz
\calendar [dates=2000-01-28 to 2000-02-03,
29 day list downward,month yshift=lem];

30
31

1

/tikz/day list upward (style, no value)

works as above, only the list grows upward instead of downward.

275

31
30
29
28

/tikz/day list right

This style also works as before, but the list of days grows to the right.

\tikz
\calendar [dates=2000-01-28 to 2000-02-03,
day list upward,month yshift=lem];

month yshift, the values of day xshift and month xshift are used.

28 29 30 31 1

\tikz
\calendar [dates=2000-01-28 to 2000-02-03,
day list right,month xshift=1lem];

/tikz/day list left

2 3

As above, but the list grows left.

The next arrangement lists days by the week.

/tikz/week list

(style, no value)

Instead of day yshift and

(style, no value)

(style, no value)

This style creates one row for each week in the range. The value of day xshift is used for the distance
between days in each week row, the value of day yshift is used for the distance between rows. In both
cases, “distance” refers to the distance between the anchors of the nodes of the days (or, more generally,
the distance between the origins of the little pictures created for each day).

The days inside each week are shifted such that Monday is always at the first position (to change this,
you need to copy and then modify the code appropriately). If the date range does not start on a Monday,
the first line will not start in the first column, but rather in the column appropriate for the first date in
the range.

At the beginning of each month (except for the first month in the range) an additional vertical space of
month yshift is added. If this is set to Opt you get a continuous list of days.

1 2

34 5 6 7 8 9

10
17
24
31

14
21
28

11 12
18 19
25 26

1 2
8 9
15 16
22 23
29

13 14 15 16
20 21 22 23
27 28 29 30

3 4 5 6
10 11 12 13
17 18 19 20
24 25 26 27

\tikz
\calendar [dates=2000-01-01 to 2000-02-last,week list];

276

1 2 \tikz
\calendar [dates=2000-01-01 to 2000-02-last,week list,
3 4 5 6 7 8 9 month yshift=0pt];

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
7 8 910 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29

The following arrangement gives a very compact view of a whole year.

/tikz/month list (style, no value)

In this arrangement there is a row for each month. As for the week list, the day xshift is used for
the horizontal distance. For the vertical shift, month yshift is used.

In each row, all days of the month are listed alongside each other. However, it is once more ensured that
days in each column lie on the same day of week. Thus, the very first column contains only Mondays.
If a month does not start with a Monday, its days are shifted to the right such that the days lie on the
correct columns.

January 1 2 3 45 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
February 1 2 3 45 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
March 1 2 3 4 5 6 7 8 9101112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
April 1 2 3 45 6 7 8 910111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
May 1 2 3 4 5 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31
June 1 2 3 4 5 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
July 1 2 3 45 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
August 1 2 3 45 6 7 8 9101112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
September 1 2 3 45 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30
October 123 45 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
November 1 2 3 4 5 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
December 1 2 3 45 6 7 8 9101112 13 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
\sffamily\scriptsize
\tikz

\calendar [dates=2000-01-01 to 2000-12-31,
month list,month label left,month yshift=1.25em]
if (Sunday) [black!50];

27.3 Month Labels

For many calendars you may wish to add a labels to each month. We have already covered how month nodes
are created and rendered in the description of the \calendar command: use month text, every month, and
also month code (if necessary) to change the appearance of the month labels.

What we have not yet covered is where these labels are placed. By default, they are not placed at all as
there is no good “default position” for them. Instead, you can use one of the following options to specify a
position for the labels:

/tikz/month label left (style, no value)

Places the month label to the left of the first day of the month. (For week list and month list where
a month does not start on a Monday, the position is chosen “as if” the month had started on a Monday
— which is usually exactly what you want.)

277

February

28 \tikz

\calendar [dates=2000-01-28 to 2000-02-03,
29 day list downward,month yshift=lem,
30 month label left];

31

1
2
3

/tikz/month label left vertical (style, no value)
This style works like the above style, only the label is rotated counterclockwise by 90 degrees.

28 \tikz
\calendar [dates=2000-01-28 to 2000-02-03,
29 day list downward,month yshift=lem,
30 month label left verticall;
31
% 1
= 2
£ 3
)
=
/tikz/month label right (style, no value)

This style places the month label to the right of the row in which the first day of the month lies. This
means that for a day list the label is to the right of the first day, for a week list it is to the right of the
first week, and for a month list it is to the right of the whole month.

28 \tikz
\calendar [dates=2000-01-28 to 2000-02-03,

29 day list downward,month yshift=lem,
30 month label right];

31

1 February

2

3

/tikz/month label right vertical (style, no value)

Works as above, only the label is rotated clockwise by 90 degrees.

28 \tikz
\calendar [dates=2000-01-28 to 2000-02-03,

29 day list downward,month yshift=lem,
30 month label right verticall;
31
,
2 =

ot
3 Z

<

/tikz/month label above left (style, no value)

This style places the month label above of the row of the first day, flushed left to the leftmost column.
The amount by which the label is raised is fixed to 1.25em; use the yshift option with the month node

to modify this.

278

February
28 29 30 31 1 2 3

\tikz
\calendar [dates=2000-01-28 to 2000-02-03,
day list right,month xshift=1em,
month label above left];

20 21 22 23 | \tikz
\calendar [dates=2000-01-20 to 2000-02-10,

24 25 26 27 28 29 30 week list,month label above left];
31
February
1 2 3 4 5 6
7 8 910
/tikz/month label above centered (style, no value)

works as above, only the label is centered above the row containing the first day.

February
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

\tikz
\calendar [dates=2000-02-01 to 2000-02-last,
day list right,month label above centered];

\tikz
20 21 22 23 \calendar [dates=2000-01-20 to 2000-02-10,

24 25 26 27 28 29 30 week list,month label above centered];
31

February

1 2 3 4 5 6
7 8 910

/tikz/month label above right (style, no value)
works as above, but flushed right

20 21 22 23 \tikz
0 3 \calendar [dates=2000-01-20 to 2000-02-10,

24 25 26 27 28 29 30 week list,month label above right];
31

February

1 2 3 4 5 6
7 8 910

/tikz/month label below left (style, no value)

Works like month label above left, only the label is placed below the row. This placement is not
really useful with the week list arrangement, but rather with the day list right or month list
arrangement.

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
February

279

\tikz
\calendar [dates=2000-02-01 to 2000-02-last,
day list right,month label below left];

/tikz/month label below centered (style, no value)

Works like month label above centered, only below.

1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
February

\tikz
\calendar [dates=2000-02-01 to 2000-02-last,
day list right,month label below centered];

27.4 Examples

In the following, some example calendars are shown that come either from real applications or are just nice
to look at.

Let us start with a year-2100-countdown, in which we cross out dates as we approach the big celebration.
For this, we set the shape to strike out for these dates.

December 2099 \begin{tikzpicture}
\calendar

X2ZF A5 6 1
78 9 12 13 dates=2099-12-01 to 2100-01-last,

"y week list,inner sep=2pt,month label above centered,
/14115{/L61}5//L8/l) 20 month text=\/mt \%yO
2 27 28 24 25 26 27]
;28/;%1/3() 31 if (at most=2099-12-29) [nodes={strike out,draw}]
if (weekend) [black!50,nodes={draw=none}]
January 2100 \end{tikzpicture}
1 2 3

4 5 6 7 8 91
11 12 13 14 15 16 1
18 19 20 21 22 23 24
25 26 27 28 29 30 31

C

EN |

The next calendar shows a deadline, which is 10 days in the future from the current date. The last three
days before the deadline are in red, because we really should be done by then. All days on which we can no
longer work on the project are crossed out.

;%{ \begin{tikzpicture}
\calendar

[
October 2010 dates=\year-\month-\day+-25 to \year-\month-\day+25,
/Y/){ 3 week list,inner sep=2pt,month label above centered,

month text=\textit{\/mt \%yO}
A XL 7L H10 g
Al
/1/8/%%/%%%/ 24 if (at most=\year—\month-{day+7)
25 26 27 28 29 30 31 [green!50!black]

if (between=\year-\month-\day+8 and \year-\month-\day+10)
[red]

if (Sunday)
[gray,nodes={draw=none}]

November 2010

1 2 3 4 5 6 7
8 910 11 12 13 14
15 16 17 18 19

\end{tikzpicture}

The following example is a futuristic calendar that is all about circles:

280

31 4
30 5 .
29 .
28 7 2 X i
12g 27 -
> ! 9 29 6
2" O 2 July S .
! 11 27 s
28 24 ; 0
5 5 A 1312 25 June o
25 August S 2) s i
2254 11 019151716 i 1312 -
22 \
3 14 31
23 3 5
22 13 " . N 6
e = 191817 29
3 21 . 7
4 20 19181716 2
930 5 6 2 89
2 { 26 May
28 :
: 25
27 A . 11
%6 September ’ 3)
25 111 . y
24)
- 1312 20 19181716
22
21 14 .
20 oS 4
191817) 5
- 29 57
3 28
4
3031 5 F | 2
i 6 2o April
28 7 ; 3
5 8 2010 3 x
: 12
2
22 October g 3 13
: : 2y 1514
k 3 19181716
22 1413 |
21 -
15
20 19181716 3031 4 5
6
. 29
3 4 28 7
2930 5 6 2 z
] 7 26 March
: 25
27 11
¢ 24
% November ! ;
25 10) .
24 11 18087 o 2 14
:] e 5 19181716
22 13 3,
21 303]_ 5 7
o 67 12, 2?8 8
28) \ 9
5 8 »’ s 2 February
9 29
2 December 2 , = i
25 2 - P
24 11 : s ;
4 M & January o 3 ;
“a : 2254 1 2019151716
2019 0071615 - L
13
2, ;
2014 10171615

281

Next, lets us have a whole year in a tight column:

282

01

02

03

04

05

06

07

08

09

10

11

12

11
18
25

15
22

15
22
29

12
19
26

10
17
24
31

14
21
28

12
19
26

16
23
30

13
20
27

11
18
25

15
22
29

13
20
27

12
19
26

16
23

16
23
30

13
20
27

11
18
25

15
22
29

13
20
27

10
17
24
31

14
21
28

12
19
26

16
23
30

14
21
28

13
20
27

10
17
24

10
17
24
31

14
21
28

12
19
26

16
23
30

14
21
28

11
18
25

15
22
29

13
20
27

10
17
24

15
22
29

14
21
28

11
18
25

11
18
25

15
22
29

13
20
27

10
17
24

15
22
29

12
19
26

16
23
30

14
21
28

11
18
25

16
23
30

1 2 3
4 5 6 7 8 9

22
29

12
19
26

12
19
26

16
23
30

14
21
28

11
18
25

16
23
30

13
20
27

10
17
24

22
29

12
19
26

10
17
24
31

10
17
24
31

14
21
28

14
21
28

11
18
25

16
23
30

13
20
27

11
18
25

15
22
29

12
19
26

10
17
24
31

14
21
28

12
19
26

\begin{tikzpicture}
\small\sffamily
\colorlet{darkgreen}{green!50!black}
\calendar [dates=\year-01-01 to \year-12-31,week list,
month label left,month yshift=0pt,
month text=\textcolor{darkgreen}{\%m0}]
if (Sunday) [black!50];
\end{tikzpicture}

283

28 Chains

\usetikzlibrary{chains} 7 EFX and plain TX
\usetikzlibrary[chains] % ConTgXt

This library defines options for creating chains.

28.1 Overview

Chains are sequences of nodes that are — typically — arranged in an o row or a column and that are —
typically — connected by edges. More generally, they can be used to position nodes of a branching network
in a systematic manner. For the positioning of nodes in rows and columns you can also use matrices, see
Section 17, but chains can also be used to describe the connections between nodes that have already been
connected using, say, matrices. Thus, it often makes sense to use matrices for the positioning of elements
and chains to describe the connections.

28.2 Starting and Continuing a Chain

Typically, you construct one chain at a time, but it is permissible to have construct multiple chains simulta-
neously. In this case, the chains must be named differently and you must specify for each node which chain
it belongs to.

The first step toward creating a chain is to use the start chain option.

/tikz/start chain=(chain name){direction) (no default)

This key should, but need not, be given as an option to a scope enclosing all nodes of the chain.
Typically, this will be a scope or the whole tikzpicture, but it might just be a path on which all
nodes of the chain are found. If no (chain name) is given, the default value chain will be used instead.

The key starts a chain named (chain name) and makes it active, which means that is currently being
constructed. The start chain can be issued only once to activate a chain, inside a scope in which a
chain is active you cannot use this option once more (for the same chain name). The chain stops being
active at the end of the scope in which the start chain command was given.

Although chains are only locally active (that is, active inside the scope the start chain command
was issued), the information concerning the chains is stored globally and it is possible to continue a
chain after a scope has ended. For this, the continue chain option can be used, which allows you to
reactivate an existing chain in another scope.

The (direction) is used to determine the placement rule for nodes on the chain. If it is omitted, the
current value of the following key is used:

/tikz/chain default direction=(direction) (no default, initially going right)

This (direction) is used in a chain option, if no other {direction) is specified.

The (direction) can have two different forms: going (options) or placed (options). The effect of these
rules will be explained in the description of the on chain option. Right now, just remember that the
(direction) you provide with the chain option applies to the whole chain.

Other than this, this key has no further effect. In particular, to place nodes on the chain, you must use
the on chain option, described next.

A B C \begin{tikzpicture}[start chain]
% The chain is called just "chain"
\node [on chain] {A};
\node [on chain] {B};
\node [on chain] {C};
\end{tikzpicture}

A B C \begin{tikzpicture}

% Same as above, using the scope shorthand

{ [start chain]
\node [on chain] {A};
\node [on chain] {B};
\node [on chain] {C};

}

\end{tikzpicture}

284

@ \begin{tikzpicture}[start chain=1 going right,
start chain=2 going below,
@ node distance=5mm,

every node/.style=draw]
chain=1] {A};

\node [on
\node [on chain=1] {B};
\node [on chain=1] {C};

\node [on chain=2] at (0.5,-.5) {0};
\node [on chain=2] {1};
\node [on chain=2] {2};

\node [on chain=1] {D};
\end{tikzpicture}

/tikz/continue chain=(chain name)(direction) (no default)

This option allows you to (re)activate an existing chain and to possibly change the default direction. If
the chain name is missing, the name of the innermost activated chain is used. If no chain is activated,
chain is used.

Let us have a look at the two different applications of this option. The first is to change the direction
of a chain as it is begin constructed. For this, just give this option somewhere inside the scope of the
chain.

\begin{tikzpicturel}[start chain=going right,node distance=5mm]
’ Hello ‘ ’ World ‘ \node [draw,on chain] {Hello};
\node [draw,on chain] {World};
\node [draw,continue chain=going below,on chain] {,};
\node [draw,on chain] {this};
\node [draw,on chain] {is};

\end{tikzpicture}
The second application is to reactivate a chain after it “has already been closed down.’

\begin{tikzpicture}[node distance=5mm,
@ @ every node/.style=draw]

{ [start chain=1]
\node [on chain] {A};
\node [on chain] {B};

\node [on chain] {C};

}

)

{ [start chain=2 going below]
\node [on chain=2] at (0.5,-.5) {0};
\node [on chain=2] {1};
\node [on chain=2] {2};
}

{ [continue chain=1]
\node [on chain] {D};
}
\end{tikzpicture}

28.3 Nodes on a Chain

/tikz/on chain=(chain name){direction) (no default)

This key should be given as an option to a node. When the option is used, the (chain name) must be
the name of a chain that has been started using the start chain option. If (chain name) is the empty
string, the current value of the innermost activated chain is used. If this option is used several times for
a node, only the last invocation “wins.” (To place a node on several chains, use the \chainin command
repeatedly.)

The (direction) part is optional. If present it sets the direction used for this node, otherwise the
(direction) that was given to the original start chain option is used (or of the last continue chain
option, which allows you to change this default).

285

The effects of this option are the following:

1. An internal counter (there is one, local, counter for each chain) is increased. This counter reflects
the current number of the node in the chain, where the first node is node 1, the second is node 2,
and so on.

This value of this internal counter is globally stored in the macro \tikzchaincount.

2. If the node does not yet have a name, (having been given using the name option or the name-
syntax), the name of the node is set to (chain name)-(value of the internal chain counter). For
instance, if the chain is called nums, the first node would be named nums-1, the second nums-2, and
so on. For the default chain name chain, the first node is named chain-1, the second chain-2,
and so on.

3. Independently of whether the name has been provided automatically or via the name option, the
name of the node is globally stored in the macro \tikzchaincurrent.

4. Except for the first node, the macro \tikzchainprevious is now globally set to the name of the
node of the previous node on the chain. For the first node of the chain, this macro is globally set
to the empty string.

5. Except possibly for the first node of the chain, the placement rule is now executed. The placement
rule is just a TikZ option that is applied automatically to each node on the chain. Depending on
the form of the (direction) parameter (either the locally given one or the one given to the start
chain option), different things happen.

First, it makes a difference whether the (direction) starts with going or with placed. The difference

is that in the first case, the placement rule is not applied to the first node of the chain, while in the

second case the placement rule is applied also to this first node. The idea is that a going-direction

indicates that we are “going somewhere relative to the previous node” whereas a placed indicates

that we are “placing nodes according to their number.”

Independently of which form is used, the (text) inside (direction) that follows going or placed

(separated by a compulsory space) can have two different effects:

(a) If it contains an equal sign, then this (text) is used as the placement rule, that is, it is simply
executed.

(b) If it does not contain an equal sign, then (text)=of \tikzchainprevious is used as the place-
ment rule.

Note that in the first case, inside the (texrt) you have access to \tikzchainprevious and
\tikzchaincount for doing your positioning calculations.

A 3) \biii):::iiz;\niczzr?]l- F?T:a.ujoihain=circle placed {at=(\tikzchaincount#*30:1.5)}]
5 1 \node [on chain] {\i};
\draw (circle-1) -- (circle-10);
6 \end{tikzpicture}
7
8 9 10

6. The following style is executed:
/tikz/every on chain (style, no value)
This key is executed for every node of a chain, including the first one.
Recall that the standard replacement rule has a form like right=of (\tikzchainprevious). This

means that each new node is placed to the right of the previous one, spaced by the current value of
node distance.

\begin{tikzpicture}[start chain,node distance=5mm]
N \node [draw,on chain] {};

\node [draw,on chain] {Hallo};
\node [draw,on chain] {Welt};
\end{tikzpicture}

The optional {direction) allows us to temporarily change the direction in the middle of a chain:

286

[Hello| | World |

\begin{tikzpicture}[start chain,node distance=5mm]
\node [draw,on chain] {Hello};
\node [draw,on chain] {World};
\node [draw,on chain=going below] {,};
\node [draw,on chain] {this};
\node [draw,on chain] {is};
\end{tikzpicture}

You can also use more complicated computations in the (direction):

\begin{tikzpicture}[start chain=going {at=(\tikzchainprevious),shift=(30:1)}]

] \draw [help lines] (0,0) grid (3,2);
TR \node [draw,on chain] {1};

I{elkzj \node [draw,on chain] {World};
{7 \node [draw,on chain] {.};

- \end{tikzpicture}

1
[vvorid | \node [draw,on chain] {Hello};

For each chain, two special “pseudo nodes” are created.

Predefined node (chain name)-begin

This node is the same as the first node on the chain. It is only defined after a first node has been
defined.

Predefined node (chain name)-end
This node is the same as the (currently) last node on the chain. As the chain is extended, this node
changes.

The on chain option can also be used, in conjunction with late options, to add an already existing
node to a chain. The following command, which is only defined inside scopes where a start chain option
is present, simplifies this process.

\chainin({ezisting name)) [(options)]
This command makes it easy to add a node to chain that has already been constructed. This node may
even be part of a another chain.

When you say \chainin (some node) ;, the node some node must already exist. It will then be made
part of the current chain. This does not mean that the node can be changed (it is already constructed,
after all), but the join option can be used to join some node to the previous last node on the chain
and subsequent nodes will be placed relative to some node.

It is permissible to give the on chain option inside the {(options) in order to specify on which chain the
node should be put.

This command is just a shortcut for
\path ((existing name)) [late options={on chain,every chain in, (options)}]

In particular, it is possible to continue to path after a \chainin command, though that does not seem
very useful.

\begin{tikzpicture}[node distance=5mm,

existing i .
every node/.style=draw,every join/.style=->]
\draw [help lines] (0,0) grid (3,2);

\node[red] (existing) at (0,2) {existing};

]
(5

{ [start chain]
\node [draw,on chain,join] {Hellol};
\node [draw,on chain,join] {World};
\chainin (existing) [join];
\node [draw,on chain,join] {this};
\node [draw,on chain,join] {is};

}

\end{tikzpicture}

287

Here is an example where nodes are positioned using a matrix and then connected using a chain

\begin{tikzpicture}[every node/.style=draw]
\matrix [matrix of nodes,column sep=bmm,row sep=5mm]

{
| (a) | World & | (b) [circle]l peace \\
| ()l be & |(d) [isosceles triangle]| would \\
| (e) [ellipse]| great & |(£)| 1A\

1

{ [start chain,every on chain/.style={join=by ->}]
\chainin (a);
\chainin (b);
\chainin (d);
\chainin (c);
\chainin (e);
\chainin (f);
}
\end{tikzpicture}

28.4 Joining Nodes on a Chain
/tikz/join=with{with) by(options) (no default)

When this key is given to any node on a chain (except possibly for the first node), an edge command is
added after the node. The with part specifies which node should be used for the start point of the edge;
if the with part is omitted, the \tikzchainprevious is used. This edge command gets the (options)
as parameter and the current node as its target. If there is no previous node and no with is given, no
edge command gets executed.

/tikz/every join (style, no value)

This style is executed each time this command is used.

Note that is makes sense to call this option several times for a node, in order to connect it to several
nodes. This is especially useful for joining in branches, see the next section.

\begin{tikzpicture}[start chain,node distance=5mm,
every join/.style={->,red}]

\node [draw,on chain,join] {};

\node [draw,on chain,join] {Hallo};

\node [draw,on chain,join] {Welt};

\node [draw,on chain=going below,

join, join=with chain-1 by {blue,<-}] {foo};

\end{tikzpicture}

28.5 Branches

A branch is a chain that (typically only temporarily) extends an existing chain. The idea is the following:
Suppose we are constructing a chain and at some node x there is a fork. In this case, one (or even more)
branches starts at this fork. For each branch a chain is created, but the first node on this chain should be x.
For this, it is useful to use \chainin on the node x to make it part of the different branch chains and to
name the branch chains in some way that reflects the name of the main chain.

The start branch option provides a shorthand for doing exactly what was just described.

/tikz/start branch=(branch name){direction) (no default)

This key is used in the same manner as the start chain command, however, the effect is slightly
different:

e This option may only be used if some chain is already active and there is a (last) node on this
chain. Let us call this node the (fork node).

e The chain is not just called (branch name), but {current chain)/(branch name). For instance, if
the (fork node) is part of the chain called trunk and the (branch name) is set to left, the complete
chain name of the branch is trunk/left. The (branch name) must be given, there is no default
value.

288

e The (fork node) is automatically “chained into” the branch chain as its first node. Thus, for the
first node on the branch that you provide, the join option will cause it to be connected to the fork

node

WEN R0 - =2

SO0 %<0

\begin{tikzpicture}[every on chain/.style=join,every join/.style=->,

{

}

node distance=2mm and 1cm]
[start chain=trunk]
\node [on chain] {A};
\node [on chain] {B};

{ [start branch=numbers going below]
\node [on chain] {1};
\node [on chain] {2};
\node [on chain] {3};

-~

[start branch=greek going abovel
\node [on chain] {α};
\node [on chain] {βl};
\node [on chain] {γ};

}

\node [on chain,join=with trunk/numbers-end,join=with trunk/greek-end] {C};
{ [start branch=symbols going below]

\node [on chain] {\star};

\node [on chain] {\circ};

\node [on chain] {\int};
}

\end{tikzpicture}

/tikz/continue branch=(branch name){direction) (no default)

This option works like the continue chain option, only (current chain)/{(branch name) is used as the
chain name, rather than just (branch name).

T

N0

i

\begin{tikzpicture}[every on chain/.style=join,every join/.style=->,

{

}

node distance=2mm and 1lcm]
[start chain=trunk]
\node [on chain] {A};
\node [on chain] {B};
{ [start branch=numbers going below] } % just a declaration,
{ [start branch=greek going abovel] } /), we will come back later
\node [on chain] {C};

% Now come the branches...

{ [continue branch=numbers]
\node [on chain] {1};

\node [on chain] {2};

}

{ [continue branch=greek]
\node [on chain] {α};
\node [on chain] {β};

}

\end{tikzpicture}

289

29 Circuit Libraries

Written and documented by Till Tantau, and Mark Wibrow. Inspired by the work of Massimo Redaelli.

29.1 Introduction

The circuit libraries can be used to draw different kinds of electrical or logical circuits. There is not a single
library for this, but a whole hierarchy of libraries that work in concert. The main design goal was to create
a balance between ease-of-use and ease-of-extending, while creating high-quality graphical representations
of circuits.

29.1.1 A First Example

3V \begin{tikzpicture}[circuit ee IEC,x=3cm,y=2cm,semithick,
— 3Q every info/.style={font=\footnotesizel},
small circuit symbols,
set resistor graphic=var resistor IEC graphic,
set diode graphic=var diode IEC graphic,
set make contact graphic= var make contact IEC graphic]
% Let us start with some contacts:
\foreach \contact/\y in {1/1,2/2,3/3.5,4/4.5,5/5.5}
{
\node [contact] (left contact \contact) at (0,\y) {};
\node [contact] (right contact \contact) at (1,\y) {};
}
\draw (right contact 1) -- (right contact 2) -- (right contact 3)
-- (right contact 4) -- (right contact 5);

\draw (left contact 1) to [diode] ++(down:1)
to [voltage source={near start,
direction info={volt=3}},
resistor={near end,ohm=3}] ++(right:1)
to (right contact 1);
\draw (left contact 1) to [resistor={ohm=4}] (right contact 1);
\draw (left contact 1) to [resistor={ohm=3}] (left contact 2);
\draw (left contact 2) to [voltage source={near start,
direction info={<-,volt=8}},
resistor={ohm=2,near end}] (right contact 2);
\draw (left contact 2) to [resistor={near start,ohm=1},
make contact={near end,info’={[red]$S_1$3}}]
(left contact 3);
\draw (left contact 3) to [current direction’={near start,info=ι},
resistor={near end,info={$R=4\0mega$}}]
(right contact 3);
\draw (left contact 4) to [voltage source={near start,
direction info={<-,volt=8}},
resistor={ohm=2,near end}] (right contact 4);
\draw (left contact 3) to [resistor={ohm=1}] (left contact 4);
\draw (left contact 4) to [resistor={ohm=3}] (left contact 5);
\draw (left contact 5) to [resistor={ohm=4}] (right contact 5);
\draw (left contact 5) to [diode] ++(up:1)
to [voltage source={near start,
direction info={volt=3}},
resistor={near end,ohm=3}] ++(right:1)
to (right contact 5);

\end{tikzpicture}

An important feature of the circuit library is that the appearance of a circuit can be configured in general
ways and that the labels are placed automatically by default. Here is the graphic once more, generated
from exactly the same source code, with only the options of the {tikzpicturel} environment replaced by
[rotate=-90,circuit ee IEC,x=3.25cm,y=2.25cm]:

290

29.1.2 Symbols

A circuit typically consists of numerous electronic elements like logical gates or resistors or diodes that are
connected by wires. In PGF/TikZ, we use nodes for the electronic elements and normal lines for the wires.
TikZ offers a large number of different ways of positioning and connecting nodes in general, all of which can
be used here. Additionally, the circuits library defines an additional useful to-path that is particularly
useful for elements like a resistor on a line.

There are many different names that are used to refer to electrical “elements,” so a bit of terminology
standardization is useful: We will call such elements symbols. A symbol shape is a PGF shape declared using
the \pgfdeclareshape command. A symbol node is a node whose shape is a symbol shape.

29.1.3 Symbol Graphics

Symbols can be created by \node [shape=some symbol shape]. However, in order to represent some symbols
correctly, just using standard PGF shapes is not sufficient. For instance, most symbols have a visually
appealing “default size,” but the size of a symbol shape depends only on the current values of parameters
like minimum height or inner xsep.

For these reasons, the circuit libraries introduce the concept of a symbol graphic. This is a style that
causes a \node to not only have the correct shape, but also the correct size and the correct path usage. More
generally, this style may setup things in any way so that the “symbol looks correct”. When you write, for
instance, \node [diode], then the style called diode graphic is used, which in turn is set to something like
shape=diode IEC,draw,minimum height=....

Here is an overview of the different kinds of circuit libraries:

e The TikZ-library circuits defines general keys for creating circuits. Mostly, these keys are useful for
defining more specialized libraries.

You normally do not use this library directly since it does not define any symbol graphics.

e The TikZ-library circuits.logic defines keys for creating logical gates like and-gates or xor-gates.
However, this library also does not actually define any symbol graphics; this is done by two sublibraries:

— The library circuits.logic.US defines symbol graphics that cause the logical gates to be ren-
dered in the “US-style.” It includes all of the above libraries and you can use this library directly.

— The library circuits.logic.IEC also defines symbol graphics for logical gates, but it uses rect-
angular gates rather that the round US-gates. This library can coexist peacefully with the above
library, you can change which symbol graphics are used “on the fly.”

e The TikZ-library cirucits.ee defines keys for symbols from electrical engineering like resistors or
capacitors. Again, sublibraries define the actual symbol graphics.

— The library circuits.ee.IEC defines symbol shapes that follow the IEC norm.

e The PGF-libraries shapes.gates.* define (circuit) symbol shapes. However, you normally do not use
these shapes directly, rather you use a style that uses an appropriate symbol graphic, which in turn
uses one of these shapes.

Let us have a look at a simple example. Suppose we wish to create a logical circuit. Then we first have
to decide which symbol graphics we would like to use. Suppose we wish to use the US-style, then we would
include the library circuits.logic.US. If you wish to use IEC-style symbols, use circuits.logic.IEC. If
you cannot decide, include both:

291

\usetikzlibrary{circuits.logic.US,circuits.logic.IEC}

To create a picture that contains a US-style circuit you can now use the option circuit logic US. This
will setup keys like and gate to create use an appropriate symbol graphic for rendering an and gate. Using
the circuit logic IEC instead will setup and gate to use another symbol graphic.

\begin{tikzpicture}[circuit logic US]

0 \matrix[column sep=7mm]
{
\node (i0) {0}; & & \\
0 & \node [and gate] (a1) {}; & \\
\node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate]l (a2) {}; & \\
\node (i2) {1}; & & \\
1 };
\draw (i0.east) -- ++(right:3mm) |- (al.input 1);
\draw (il.east) -- ++(right:3mm) |- (al.input 2);
\draw (il.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (al.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm);
\end{tikzpicture}
\begin{tikzpicture}[circuit logic IEC]
0 \matrix[column sep=7mm]
{
\node (i0) {0}; & & \\
& \node [and gate] (al) {}; & \\
\node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate] (a2) {}; & \\
\node (i2) {1}; & & \\
1
\draw (i0.east) -- ++(right:3mm) |- (al.input 1);
\draw (il.east) -- ++(right:3mm) |- (al.input 2);
\draw (il.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (al.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm) ;
\end{tikzpicture}

29.1.4 Annotations

An annotation is a little extra drawing that can be added to a symbol. For instance, when you add two
little parallel arrows pointing away from some electrical element, this usually means that the element is light
emitting.

Instead of having one symbol for “diode” and another for “light emitting diode,” there is just one diode
symbol, but you can add the 1ight emitting annotation to it. This is done by passing the annotation as
a parameter to the symbol as in the following example:

\tikz [circuit ee IEC]
\draw (0,0) to [diode={light emitting}] (3,0)
to [resistor={adjustable}] (3,2);

YV

29.2 The Base Circuit Library

\usetikzlibrary{circuits} ¥ ERX and plain TX
\usetikzlibrary[circuits] % ConTXt

This library is a base library that is included by other circuit libraries. You do not include it directly,
but you will typically use some of the general keys, described below.

292

/tikz/circuits (no value)

This key should be passed as an option to a picture or a scope that contains a circuit. It will do some
internal setups. This key is normally called by more specialized keys like circuit ee IEC.

29.2.1 Symbol Size

/tikz/circuit symbol unit=(dimension) (no default, initially 7pt)

This dimension is a “unit” for the size of symbols. The libraries generally define the sizes of symbols
relative to this dimension. For instance, the longer side of an inductor is, by default, in the IEC library
equal to five times this (dimension). When you change this (dimension), the size of all symbols will
automatically change accordingly.

Note, that it is still possible to overwrite the size of any particular symbol. These settings apply only
to the default sizes.

—— [}+——— \begin{tikzpicturel}[circuit ee IEC]
\draw (0,1) to [resistor] (3.5,1);
\draw[circuit symbol unit=14pt]

AgggﬁE::::::::::::%4447 (0,0) to [resistor] (3.5,0);

\end{tikzpicture}

/tikz/huge circuit symbols (style, no value)

This style sets the default circuit symbol unit to 10pt.

/tikz/large circuit symbols (style, no value)

This style sets the default circuit symbol unit to 8pt.

/tikz/medium circuit symbols (style, no value)

This style sets the default circuit symbol unit to 7pt.

/tikz/small circuit symbols (style, no value)

This style sets the default circuit symbol unit to 6pt.

/tikz/tiny circuit symbols (style, no value)

This style sets the default circuit symbol unit to 5pt.

/tikz/circuit symbol size=width (width) height (height) (no default)

This key sets minimum height to (height) times the current value of the circuit symbol unit and the
minimum width to (width) times this value. Thus, this option can be used with a node command to set
the size of the node as a multiple of the circuit symbol unit.

—{ Y ¥ ¥ \begin{tikzpicturel}[circuit ee IEC]
\draw (0,1) to [resistor] (2,1) tol[inductor] (4,1);

—] "y \begin{scope}
[every resistor/.style={circuit symbol size=width 3 height 1}]
\draw (0,0) to [resistor] (2,0) to[inductor] (4,0);
\end{scope}
\end{tikzpicture}

29.2.2 Declaring New Symbols

/tikz/circuit declare symbol=(name) (no default)

This key is used to declare a symbol. It does not cause this symbol to be shown nor does it set a graphic
to be used for the symbol, it simply “prepares” several keys that can later be used to draw a symbol
and to configure it.

In detail, the first key that is defined is just called (name). This key should be given as an option to
a node or on a to path, as explained below. The key will take options, which can be used to influence
the way the symbol graphic is rendered.

Let us have a look at an example. Suppose we want to define a symbol called foo, which just looks like
a simple rectangle. We could then say

293

\tikzset{circuit declare symbol=foo}

The symbol could now be used like this:

\node [fool at (1,1) {};
\node [foo={red}] at (2,1) {};

However, in the above example we would not actually see anything since we have not yet setup the
graphic to be used by foo. For this, we must use a key called set foo graphic or, generally, set
(name) graphic. This key gets graphic options as parameter that will be set when a symbol foo should
be shown:

[::] [::] \begin{tikzpicture}
[circuit declare symbol=foo,

set foo graphic={draw,shape=rectangle,minimum size=5mm}]

\node [foo] at (1,1) {};
\node [foo={red}] at (2,1) {};
\end{tikzpicture}

In detail, when you use the key (name)=(options) with a node, the following happens:

3.
4.
o.

. The inner sep is set to 0.5pt.

The following style is executed:

/tikz/every circuit symbol (style, no value)
Use this style to setup things in general.

The graphic options that have been set using set (name) graphic are set.

The style every (name) is executed. You can use it to configure the symbol further.

The (options) are executed.

The key (name) will have a different effect when it is used on a to path command inside a circuit
environment (the circuit environment sets up to paths in such a way that the use of a key declared
using circuit declare symbol is automatically detected). When (name) is used on a to path, the
above actions also happen (setting the inner separation, using the symbol graphic, and so on), but they
are passed to the key circuit handle symbol, which is explained next.

/tikz/circuit handle symbol=(options) (no default)

This key is mostly used internally. Its purpose is to render a symbol. The effect of this key differs,
depending on whether it is used as the optional argument of a to path command or elsewhere.

If the key is not used as an argument of a to path command, the {(options) are simply executed.

The more interesting case happens when the key is given on a to path command. In this case, several
things happen:

1.

The to path is locally changed and set to an internal path (which you should not try to change)
that consists mostly of a single straight line.

. The (options) are tentatively executed with filtering switched on. Everything is filtered out, except

for the key pos and also the styles at start, very near start, near start, midway, near end,
very near end, and at end. If none of them is found, midway is used.

The filtered option is used to determine a position for the symbol on the path. At the given position
(with pos=0 representing the start and pos=1 representing the end), a node will be added to the
path (in a manner to be described presently).

This node gets (options) as its option list.

5. The node is added by virtue of a special markings decoration. This means that a mark command

is executed that causes the node to placed as a mark on the path.

The marking decoration will automatically subdivide the path and cause a line to be drawn to
from the start of the path to the node’s border (at the position that lies on a line from the node’s
center to the start of the path) and then from the node’s border (at a position on the other side of
the node) to the end of the path.

294

7. The marking decoration will also take care of the case that multiple marks are present on a path,
in this case the lines from and to the borders of the nodes are only between consecutive nodes.

8. The marking decoration will also rotate the coordinate system in such a way that the z-axis points
along the path. Thus, if you use the transform shape option, the node will “point along” the
path.

9. In case a node is at pos=0 or at pos=1 some special code will suppress the superfluous lines to the
start or end of the path.

The net effect of all of the above is that a node will be placed “on the path” and the path will have a
“gap” just large enough to encompass the node. Another effect is that you can use this key multiple
times on a path to add several node to a path, provided they do not overlap.

\begin{tikzpicture} [circuit]
\draw (0,0) to [circuit handle symbol={draw,shape=rectangle,near start},
circuit handle symbol={draw,shape=circle,near end}] (3,2);
\end{tikzpicture}

\begin{tikzpicture} [transform shape,circuit]
\draw (0,0) to [circuit handle symbol={draw,shape=rectangle,at start},
circuit handle symbol={draw,shape=circle,near end}] (3,2);
\end{tikzpicture}

29.2.3 Pointing Symbols in the Right Direction

Unlike normal nodes, which generally should not be rotated since this will make their text hard to read,
symbols often need to be rotated. There are two ways of achieving such rotations:

1. When you place a symbol on a to path, the graphic symbol is automatically rotated such that it “points
along the path.” Here is an examples that show how the inductor shape (which looks, unrotated, like
this: ~~~~) is automatically rotated around:

\tikz [circuit ee IEC]
\draw (3,0) tol[inductor] (1,0) to[inductor] (0,2);

2. Many shapes cannot be placed “on” a path in this way, namely whenever there are more than two
possible inputs. Also, you may wish to place the nodes first, possibly using a matrix, and connect
them afterwards. In this case, you can simply add rotations like rotate=90 to the shapes to rotate
them. The following four keys make this slightly more convenient:

/tikz/point up (no value)

This is the same as rotate=90.

/N \tikz [circuit ee IEC] \node [diode,point up] {};
/tikz/point down (no value)

This is the same as rotate=-90.

EZ \tikz [circuit ee IEC] \node [diode,point down] {};

295

/tikz/point left (no value)
This is the same as rotate=-180.

Kﬂ \tikz [circuit ee IEC] \node [diode,point left] {};

/tikz/point right (no value)
This key has no effect.

B> \tikz [circuit ee IEC] \node [diode,point right] {};

29.2.4 1Info Labels

Info labels are used to add text to a circuit symbol. Unlike normal nodes like a rectangle, circuit symbols
typically do not have text “on” them, but the text is placed next to them (like the text “3)” next to a
resistor).

TikZ already provides the label option for this purpose. The info option is build on top of this option,
but it comes in some predefined variants that are especially useful in conjunction with circuits.

/tikz/info=[(options)] (angle) : (text) (no default)
This key has nearly the same effect as the label key, only the following style is used additionally
automatically:

/tikz/every info (style, no value)

Set this style to configure the styling of info labels. Since this key is not used with normal labels,
it provides an easy way of changing the way info labels look without changing other labels.

The (options) and (angle) are passed directly to the label command.

30 \begin{tikzpicture}[circuit ee IEC,every info/.style=red]
—— \node [resistor,info=$3\0mega$] {};
\end{tikzpicture}

You will find a detailed discussion of the 1label option on page 194.

Hint: To place some text on the main node, use center as the (angle):

\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
[30] [? \node [resistor,info=center:3Ω] {};
\node [resistor,point up,info=center:R_1] at (2,0) {};
\end{tikzpicture}
/tikz/info’=[{options)] (angle): (text) (no default)

This key works exactly like the info key, only in case the (angle) is missing, it defaults to below instead
of the current value of label position, which is usually above. This means that when you use info,
you get a label above the node, while when you use the info’ key you get a label below the node. In
case the node has been rotated, the positions of the info nodes are rotated accordingly.

\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\draw (0,0) to[resistor={info={$3\0Omega$},info’={R_1}}]1 (3,0)
to[resistor={info={$4\0mega$l},info’={R_2}}] (3,2);
4Q | | Ry \end{tikzpicture}
3Q

|
| I

Ry

/tikz/info sloped=[(options)]{angle): (text) (no default)

This key works like info, only the transform shape option is set when the label is drawn, causing it
to follow the sloping of the main node.

296

\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\draw (0,0) tol[resistor={info sloped={3Ω}}] (3,0)
o to[resistor={info sloped={4Ω}}] (3,2);
< \end{tikzpicture}

30

/tikz/info’ sloped= (no default)

This is a combination of info’ and info sloped.

\begin{tikzpicture}[circuit ee IEC,every info/.style=red]
\draw (0,0) to[resistor={info’ sloped={3Ω}}] (3,0)
o to[resistor={info’ sloped={4Ω}}] (3,2);
<f \end{tikzpicture}

1
L T

30

/tikz/circuit declare unit={(name)}{(unit)} (no default)

This key is used to declare keys that make it easy to attach physical units to nodes. The idea is that
instead of info=$3\0Omega$ you can write ohm=3 or instead of info’=$5\mathrm{S}$ you can write
siemens’=b.

In detail, four keys are defined, namely /tikz/(name), /tikz/(name)’, /tikz/(name) sloped, and
/tikz/(name)’ sloped. The arguments of all of these keys are of the form [{(options)](angle): (value)
and it is passed (slightly modified) to the corresponding key info, info’, info sloped, or info’
sloped. The “slight modification” is the following: The text that is passed to the, say, info key is not
(value), but rather $\mathrm{(value)({unit)}$

This means that after you said circuit declare unit={ohm}{\Omega}, then ohm=5k will have the
same effect as info={[every ohm]$\mathrm{5k\Omega}$}. Here, every ohm is a style that allows you
to configure the appearance of this unit. Since the info key is used internally, by changing the every
info style, you can change the appearance of all units infos.

\begin{tikzpicture}[circuit ee IEC,circuit declare unit={my ohm}{0}]
\draw (0,0) tol[resistor={my ohm’ sloped=3}] (3,2);
\end{tikzpicture}

2O

29.2.5 Declaring and Using Annotations

Annotations are quite similar to info labels. The main difference is that they generally cause something to
be drawn by default rather than some text to be added (although an annotation might also add some text).
Annotations can be declared using the following key:

/tikz/circuit declare annotation={(name)}{(distance)(path)} (no default)

This key is used to declare an annotation named (name). Once declared, it can be used as an argument
of a symbol and will add the drawing in (path) to the symbol. In detail, the following happens:

The Main Keys. Two keys called (name) and (name)’ are defined. The second causes the annotation
to be “mirrored and placed on the other side” of the symbol. Both of these keys may also take further
keys as parameter like info keys. Whenever the (name) key is used, a local scope is opened and in this
scope the following things are done:

1. The style every (name) is executed.
2. The following style is executed and then arrows=->:
/tikz/annotation arrow (style, no value)

This style should set the > key to some desirable arrow tip.

297

3. The coordinate system is shifted such that the origin is at the north anchor of the symbol. (For
the (name)’ key the coordinate system is flipped and shifted such that the origin is at the south
anchor of the symbol.)

4. The label distance is locally set to (distance).

5. The parameter options given to the (name) key are executed.

6. The (path) is executed.

Usage. What all of the above amounts to is best explained by an example. Suppose we wish to create
an annotation that looks like a little circular arrow (like O) We could then say:

\tikzset{circuit declare annotation=
{circular annotation}
{9pt}
{(0pt,8pt) arc (-270:80:3.5pt)}

}

We can then use it like this:

\tikz[circuit ee IEC]
\draw (0,0) to [resistor={circular annotation}] (3,0);

Well, not very impressive since we do not see anything. This is due to the fact that the (path) becomes
part of a path that contains the symbol node an nothing else. This path is not drawn or filled, so we
do not see anything. What we must do is to use an edge path operation:

\tikzset{circuit declare annotation={circular annotation}{9pt}
{(Opt,8pt) edgelto path={arc(-270:80:3.5pt)}] O}
T
C \tikz[circuit ee IEC]
\draw (0,0) to [resistor={circular annotation}] (3,0)
a to [capacitor={circular annotation’}] (3,2);
—
L

The (distance) is important for the correct placement of additional info labels. When an annotation
is present, the info labels may need to be moved further away from the symbol, but not always. For
this reason, an annotation defines an additional (distance) that is applied to all info labels given as
parameters to the annotation. Here is an example, that shows the difference:

50 \tikz[circuit ee IEC]
ng 3 \draw (0,0) to [resistor={circular annotation,ohm=5}] (2,0)
to [resistor={circular annotation={ohm=5}}] (4,0);

29.2.6 Theming Symbols

For each symbol, a certain graphical representation is chosen to actually show the symbol. You can modify
this graphical representation in several ways:

e You can select a different library and use a different circuit ... key. This will change all graphics
used for the symbols.

e You can generally change the size of graphic symbols by setting circuit size unit to a different
value or using a key like small circuit symbols.

e You can add options to the graphics used by symbols either globally by setting the every circuit
symbol style or locally by setting the every (name) style, where (name) is the name of a symbol. For
instance, in the following picture the symbols are ridiculously thick and resistors are red.

\begin{tikzpicture}
[circuit ee IEC,
every circuit symbol/.style={ultra thick},
every resistor/.style={red}]

\draw (0,0) to [inductor] ++(right:3) to [resistor] ++(up:2);
\end{tikzpicture}

298

e You can selectively change the graphic used for a symbol by saying set resistor graphic=.
e You can change one or more of the following styles:

/tikz/circuit symbol open (style, initially draw)

This style is used with symbols that consist of lines that surround some area. For instance, the
IEC version of a resistor is an open symbol.

\tikz [circuit ee IEC,
circuit symbol open/.style={thick,draw,fill=yellowl}]
\draw (0,0) to [inductor] ++(right:3) to [resistor] ++(up:2);

/tikz/circuit symbol filled (style, initially draw,fill=black)

This style is used with symbols that are completely filled. For instance, the variant IEC version
of an inductor is a filled, black rectangle.

/tikz/circuit symbol lines (style, initially draw)

This style is used with symbols that consist only of lines the do not surround anything. Examples
are a capacitor.

\tikz [circuit ee IEC,
circuit symbol lines/.style={thick,draw=red}]
\draw (0,0) to [capacitor] ++(right:3) to [resistor] ++(up:2);

/tikz/circuit symbol wires (style, initially draw)

This style is used for symbols that consist only of “wires.” The difference to the previous style
is that a symbol consisting of wires will look strange when the lines are thicker than the lines of
normal wires, while for symbols consisting of lines (but not wires) it may look nice to make them
thicker. An example is the make contact symbol.

Compare
|| ~ \tikz [circuit ee IEC,circuit symbol lines/.style={draw,very thickl}]
\draw (0,0) to [capacitor={near start},
make contact={near end}] (3,0);
to
S~ \tikz [circuit ee IEC,circuit symbol wires/.style={draw,very thick}]
\draw (0,0) to [capacitor={near start},

make contact={near end}] (3,0);

All circuit environments like circuit logic IEC mainly use options like set and gate graphic=...
to setup the graphics used for a certain symbol. It turns out that graphic hidden in the “...” part is also
always available as a separate style, whose name contains the library’s initials. For instance, the circuit
logic IEC option actually contains the following command:

set and gate graphic = and gate IEC graphic,
The and gate IEC graphic style, in turn, is defined as follows:

\tikzset{and gate IEC graphic/.style=
{
circuit symbol open,
circuit symbol size=width 2.5 height 4,
shape=and gate IEC,
inner sep=.5ex

299

Normally, you do not need to worry about this, since you will not need to access a style like and gate
IEC graphic directly; you will only use the and gate key. However, sometimes libraries define variants of a
graphic; for instance, there are two variants for the resistor graphic in the IEC library. In this case you can
set the graphic for the resistor to this variant (or back to the original) by saying set resistor graphic
yourself:

\begin{tikzpicture}[circuit ee IEC]
% Standard resistor
\draw (0,2) to [resistor] (3,2);

— NN/
% Var resistor
\begin{scope}[set resistor graphic=var resistor IEC graphic]
\draw (0,1) to [resistor] (3,1);

% Back to original
\draw [set resistor graphic=resistor IEC graphic]
(0,0) to [resistor] (3,0);
\end{scope}
\end{tikzpicture}

29.3 Logical Circuits
29.3.1 Overview

A logical circuit is a circuit that contains what we call logical gates like an and-gate or an xor-gate. The
logical libraries are intended to make it easy to draw such circuits.

In the following, we first have a look at the different libraries that can be used in principle and how the
symbols look like. Then we have a more detailed look at how the symbols are used. Finally, we discuss the
implementation details.

There are different ways of depicting logical gates, which is why there are different (sub-)libraries for
drawing them. They provide the necessary graphical representations of the symbols declared in the following
library:

\usetikzlibrary{circuits.logic} % ElX and plain TX
\usetikzlibrary[circuits.logic] % ConTgXt
This library declares the logical gate symbols, but does not provide the symbol graphics. The library
also defines the following key which, however, is also only used indirectly, namely by other libraries:
/tikz/circuit logic (no value)
This style calls the keys circuit (which internally calls every circuit, then it defines the inputs
key and it calls the every circuit logic key.
/tikz/inputs=(inputs) (no default)
This key is defined only inside the scope of a circuit logic. There, it has the same effect as
logic gate inputs, described on page 303.
/tikz/every circuit logic (style, no value)

Use this key to configure the appearance of logical circuits.

Since the circuit.logic library does not define any actual graphics, you need to use one of the following
libraries, instead:

\usepgflibrary{circuits.logic.IEC} Y ERX and plain T and pure pgf
\usepgflibrary[circuits.logic.IEC] % ConTXt and pure pgf
\usetikzlibrary{circuits.logic.IEC} % KX and plain TX when using TikZ
\usetikzlibrary[circuits.logic.IEC] % ConTXt when using TikZ

This library provides graphics based on gates recommended by the International Electrotechnical Com-
mission. When you include this library, you can use the following key to setup a scope that contains a
logical circuit where the gates are shown in this style.

/tikz/circuit logic IEC (no value)

This key calls circuit logic and installs the IEC-like graphics for the logical symbols like and
gate.

300

As explained in Section 29.2.6, for each graphic symbol of the library there is also a style that stores
this particular appearance. These keys are called and gate IEC graphic, or gate IEC graphic,

and so on.
\begin{tikzpicture}[circuit logic IEC,
0 every circuit symbol/.style={
& logic gate IEC symbol color=black,
£ill=blue!20,draw=blue,very thick}]
\matrix[column sep=7mm]
>1 {
0 — \node (i0) {0}; & & \\
& \node [and gatel (al) {}; & \\
& \node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate] (a2) {}; & \\
\node (i2) {1}; & & \\
1 };
\draw (i0.east) -- ++(right:3mm) |- (al.input 1);
\draw (il.east) -- ++(right:3mm) |- (al.input 2);
\draw (il.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (al.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm);
\end{tikzpicture}

\usepgflibrary{circuits.logic.US} ¥ KX and plain T and pure pgf
\usepgflibrary[circuits.logic.US] % ConTgXt and pure pgf
\usetikzlibrary{circuits.logic.US} % ELX and plain TX when using TikZ
\usetikzlibrary[circuits.logic.US] % ConTiXt when using TikZ

This library provides graphics showing “American” logic gates. It defines the following key:

/tikz/circuit logic US (no value)
This style calls circuit logic and installs US-like graphics for the logical symbols like and gate.
For instance, it says

set and gate graphic = and gate US graphic

Here is an example:

\begin{tikzpicture}[circuit logic CDH,
0 tiny circuit symbols,
every circuit symbol/.style={
fill=white,draw}]

0 \matrix[column sep=7mm]
{
1 \node (i0) {0}; & & \\
& \node [and gatel (al) {}; & \\
\node (i1) {0}; & & \node [or gate] (o) {};\\
& \node [nand gate] (a2) {}; & \\
\node (i2) {1}; & & \\
1
\draw (i0.east) -- ++(right:3mm) |- (al.input 1);
\draw (il.east) -- ++(right:3mm) |- (al.input 2);
\draw (il.east) -- ++(right:3mm) |- (a2.input 1);
\draw (i2.east) -- ++(right:3mm) |- (a2.input 2);
\draw (al.output) -- ++(right:3mm) |- (o.input 1);
\draw (a2.output) -- ++(right:3mm) |- (o.input 2);
\draw (o.output) -- ++(right:3mm);
\end{tikzpicture}

\usepgflibrary{circuits.logic.CDH} % HKGX and plain TX and pure pgf
\usepgflibrary[circuits.logic.CDH] % ConTgXt and pure pgf
\usetikzlibrary{circuits.logic.CDH} % EX and plain TgX when using TikZ
\usetikzlibrary[circuits.logic.CDH] % ConTgXt when using TikZ

This library provides graphics based on the logic symbols used in A. Croft, R. Davidson, and M.
Hargreaves (1992), Engineering Mathematics, Addison-Wesley, 82-95. They are identical to the US-
style symbols, except for the and- and nand-gates.

301

/tikz/circuit logic CDH (no value)

This key calls circuit logic US and installs the two special and- and nand-gates, that is, it uses
set and gate graphic with and gate CDH graphic and likewise for nand-gates.

Inside circuit logic XYZ scopes, you can now use the keys shown in Section 29.3.2. We have a more
detailed look at one of them, all the other work the same way:

/tikz/and gate (no value)

This key should be passed to a node command. It will cause the node to “look like” an and-gate,
where the exact appearance of the gate is dictated by the which circuit environment is used. To further
configure the appearance of the and gate, see Section 29.2.6.

\tikz [circuit logic IEC] \node [and gate] {A};
A

\tikz [circuit logic US]
B Al ¢
\node [and gate,point down] {A};

\node [and gate,point down,info=center:A] at (1,0) {};
}

Inputs. Multiple inputs can be specified for a logic gate (provided they support multiple inputs: a not
gate—also known as an inverter—does not). However, there is an upper limit for the number of inputs
which has been set at 1024, which should be way more than would ever be needed.

The following key is used to configure the inputs. It is available only inside a circuit logic environ-
ment.

/tikz/inputs=(input list) (no default, initially {normal,normall})

If a gate has n inputs, the (input list) should consists of n letters, each being i for “inverted” or
n for “normal.” Inverted gates will be indicated by a little circle. In any case the anchors for the
inputs will be set up appropriately, numbered from top to bottom input 1, input 2, ...and so
on. If the gate only supports one input the anchor is simply called input with no numerical index.

— d& \begin{tikzpicture}[circuit logic IEC]
— \node[and gate,inputs={inini}] (A) {};

— 4 \foreach \a in {1,...,5}
\draw (A.input \a -| -1,0) -- (A.input \a);
\draw (A.output) -- ++(right:5mm);
\end{tikzpicture}

(This key is just a shorthand for logic gate inputs, described in detail on page 303. There you will
also find descriptions of how to configure the size of the inverted circles and the way the symbol size
increases when there are too many inputs.)

Output. Every logic gate has one anchor called output.

29.3.2 Symbols: The Gates

The following table shows which symbols are declared by the main circuits.logic library and their ap-
pearance in the different sublibraries.

302

Key Appearance inside Appearance inside Appearance inside
circuit logic IEC «circuit logic US circuit logic CDH

&
/tikz/and gate
&
/tikz/nand gate l.
>1
/tikz/or gate
>1
/tikz/nor gate l.

/tikz/xor gate

/tikz/xnor gate b

1
/tikz/not gate l,

1
/tikz/buffer gate

29.3.3 Implementation: The Logic Gates Shape Library

YAVAVEVAVAVAURY
VAVAVAVEVEVEVEY

The previous sections described the TikZ interface for creating logical circuits. In this section we take a
closer look at the underlying PGF libraries.

Just as there are several TikZ circuit libraries, there are two underlying PGF shape libraries, one for
creating US-style gates and one for IEC-style gates. These libraries define shapes only. It is the job of the
circuit libraries to “theme” them so that they “look nice.” However, in principle, you can also use these
shapes directly.

Let us begin with the base library that defines the handling of inputs.

\usepgflibrary{shapes.gates.logic} Y ERX and plain T and pure pgf
\usepgflibrary[shapes.gates.logic] Y ConTXt and pure pgf
\usetikzlibrary{shapes.gates.logic} % ERX and plain TgX when using TikZ
\usetikzlibrary[shapes.gates.logic] % ConTXt when using TikZ

This library defines common keys used by all logical gate shapes.

/pgf/logic gate inputs=(input list) (no default, initially {normal,normal})
Specify the inputs for the logic gate. The keyword inverted indicates an inverted input which will
mean PGF will draw a circle attached to the main shape of the logic gate. Any keyword that is
not inverted will be treated as a “normal” or “non-inverted” input (however, for readability, you
may wish to use normal or non-inverted), and PGF will not draw the circle. In both cases the
anchors for the inputs will be set up appropriately, numbered from top to bottom input 1, input
2, ...and so on. If the gate only supports one input the anchor is simply called input with no
numerical index.

. \begin{tikzpicture} [minimum height=0.75cm]
a \node [and gate IEC, draw, logic gate inputs={inverted, normal, inverted}]
) {3;
\foreach \a in {1,...,3}
\draw (A.input \a -| -1,0) -- (A.input \a);
\draw (A.output) -- ([xshift=0.5cm]A.output);
\end{tikzpicture}

For multiple inputs it may be somewhat unwieldy to specify a long list, thus, the following “short-
hand” is permitted (this is an extension of ideas due to Juergen Werber and Christoph Bartoschek):

303

Using i for inverted and n for normal inputs, (input list) can be specified without the commas. So,
for example, ini is equivalent to inverted, normal, inverted.

\begin{tikzpicture} [minimum height=0.75cm]
\node [or gate US, draw,logic gate inputs=inini] (A) {};
\foreach \a in {1,...,5}

\draw (A.input \a -| -1,0) -- (A.input \a);
\draw (A.output) -- ([xshift=0.5cm]A.output);
\end{tikzpicture}

The height of the gate may be increased to accommodate the number of inputs. In fact, it depends on
three variables: n, the number of inputs, r, the radius of the circle used to indicate an inverted input
and s, the distance between the centers of the inputs. The default height is then calculated according
to the expression (n + 1) x max(2r, s). This then may be increased to accommodate the node contents
or any minimum size specifications.

The radius of the inverted input circle and the distance between the centers of the inputs can be
customized using the following keys:

/pgf/logic gate inverted radius=(length) (no default, initially 2pt)

Set the radius of the circle that is used to indicate inverted inputs. This is also the radius of the
circle used for the inverted output of the nand, nor, xnor and not gates.

J \begin{tikzpicture} [minimum height=0.75cm]
o O \tikzset{every node/.style={shape=nand gate CDH, draw, logic gate inputs=ii}}

\node[logic gate inverted radius=2pt] {A};

O \node[logic gate inverted radius=4pt] at (0,-1) {B};
O O \end{tikzpicture}

/pgf/logic gate input sep=(length) (no default, initially .125cm)

Set the distance between the centers of the inputs to the logic gate.

& \begin{tikzpicture} [minimum size=0.75cm]
L_@ & - \draw [help lines] grid (3,2);
\tikzset{every node/.style={shape=and gate IEC, draw, logic gate inputs=ini}}
IS 1 \node[logic gate input sep=0.33333cm] at (1,1)(A) {A};
9 \node[logic gate input sep=0.5cm] at (3,1) (B) {B};
\foreach \a in {1,...,3}

\draw (A.input \a -| 0,0) -- (A.input \a)
(B.input \a -| 2,0) -- (B.input \a);
\end{tikzpicture}

PGF will increase the size of the logic gate to accommodate the number of inputs, and the size of the
inverted radius and the separation between the inputs. However with all shapes in this library, any
increase in size (including any minimum size requirements) will be applied so that the default aspect
ratio is unaltered. This means that changing the height will change the width and vice versa.

29.3.4 Implementation: The US-Style Logic Gates Shape Library

\usepgflibrary{shapes.gates.logic.US} ¥ EFX and plain TX and pure pgf
\usepgflibrary[shapes.gates.logic.US] ¥ ConTEXt and pure pgf
\usetikzlibrary{shapes.gates.logic.US} % EFRX and plain TX when using TikZ
\usetikzlibrary[shapes.gates.logic.US] % ConTgXt when using TikZ

This library provides “American” logic gate shapes whose names are suffixed with the identifier US.
Additionally, alternative and and nand gates are provided which are based on the logic symbols used in
A. Croft, R. Davidson, and M. Hargreaves (1992), Engineering Mathematics, Addison-Wesley, 82-95.
These two shapes are suffixed with CDH.

The “compass point” anchors apply to the main part of the shape and do not include any inverted
inputs or outputs. This library provides an additional feature to facilitate the relative positioning of
logic gates:

304

/pgf/logic gate anchors use bounding box=(boolean) (no default, initially false)

The

When set to true this key will ensure that the compass point anchors use the bounding rectangle
of the main shape, which, ignore any inverted inputs or outputs, but includes any outer sep. This
only affects the compass point anchors and is not set on a shape by shape basis: whether the
bounding box is used is determined by value of this key when the anchor is accessed.

Q @ ¢ \begin{tikzpicture} [minimum height=1.5cm]
) \node [xnor gate US, draw, gray!50,line width=2pt] (4) {};
0o © \foreach \x/\y/\z in {false/blue/1pt, true/red/2pt}
\foreach \a in {north, south, east, west, north east,
d — ° - south east, north west, south west}

\draw[logic gate anchors use bounding box=\x, color=\y]
(A.\a) circle(\z);
\end{tikzpicture}

library defines a number of shapes. For each shape the allowed number of inputs is also shown:

and gate US, two or more inputs
and gate CDH, two or more inputs
nand gate US, two or more inputs
nand gate CDH, two or more inputs
or gate US, two or more inputs
nor gate US, two or more Inputs
xor gate US, two inputs

xnor gate US, two inputs

not gate US, one input

buffer gate US, one input

In the following, we only have a detailed look at the anchors defined by one of them. We choose the
nand gate US because it shows all the “interesting” anchors.

Shape nand gate US

This shape is a nand gate, which supports two or more inputs. If less than two inputs are specified
an error will result. The anchors for this gate with two non-inverted inputs (using the normal
compass point anchors) are shown below. Anchor 30 is an example of a border anchor.

(s.north west) (s.north)
X X
(s.north east)
% (s.30)
X
(s.input 1)
X
(s.west) (s.center) (s.east)
X x x x (s.output)
(s.mid west)
(s.text)
X x (s:mid) (s.mid east) X
(s.base west) X x x x
(s.input 2) (s.base) (s.base east)
X
(s.south east)
x x
(s.south west) (s.south)

305

\Huge
\begin{tikzpicture}
\node [name=s, shape=nand gate US,shape example, inner sep=Ocm,
logic gate inputs={in},
logic gate inverted radius=.5cm] {Nand Gate\vrule widthipt height2cm};
\foreach \anchor/\placement in
{center/above, text/above, 30/above right,
mid/right, mid east/left, mid west/above,
base/below, base east/below, base west/left,
north/above, south/below, east/above, west/above,
north east/above, south east/below, south west/below, north west/above,
output/right, input 1/above, input 2/below}
\draw [shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node [\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}

29.3.5 Implementation: The IEC-Style Logic Gates Shape Library

\usepgflibrary{shapes.gates.logic.IEC} % EGX and plain TX and pure pgf
\usepgflibrary[shapes.gates.logic.IEC] % ConTXt and pure pgf
\usetikzlibrary{shapes.gates.logic.IEC} % EX and plain TgX when using TikZ
\usetikzlibrary[shapes.gates.logic.IEC] % ConTgXt when using TikZ

This library provides rectangular logic gate shapes. These shapes are suffixed with IEC as they are
based on gates recommended by the International Electrotechnical Commission.

By default each gate is drawn with a symbol, & for and and nand gates, > 1 for or and nor gates, 1
for not and buffer gates, and = 1 for xor and xnor gates. These symbols are drawn automatically
(internally they are drawn using the “foreground” path), and are not strictly speaking part of the node
contents. However, the gate is enlarged to make sure the symbols are within the border of the node. It
is possible to change the symbols and their position within the node using the following keys:

/pgf/and gate IEC symbol=(text) (no default, initially \char ‘\&)

Set the symbol for the and gate. Note that if the node is filled, this color will be used for the symbol,
making it invisible, so it will be necessary set (text) to something like \color{black}\char ‘\&.
Alternatively, the logic gate IEC symbol color key can be used to set the color of all symbols
simultaneously.

In TikZ, when the use IEC style logic gates key has been used, this key can be replaced by
and gate symbol.

/pgf/nand gate IEC symbol=(text) (no default, initially \char‘\&)

Set the symbol for the nand gate. In TikZ, when the use IEC style logic gates key has been
used, this key can be replaced by nand gate symbol.

/pgf/or gate IEC symbol=(text) (no default, initially ≥1)
Set the symbol for the or gate. In TikZ, when the use IEC style logic gates key has been
used, this key can be replaced by or gate symbol.

/pgf/nor gate IEC symbol=(text) (no default, initially ≥1)
Set the symbol for the nor gate. In TikZ, when the use IEC style logic gates key has been
used, this key can be replaced by nor gate symbol.

/pgf/xor gate IEC symbol=(text) (no default, initially {$=1$})

Set the symbol for the xor gate. Note the necessity for braces, as the symbol contains =. In TikZ,
when the use IEC style logic gates key has been used, this key can be replaced by or gate
symbol.

/pgf/xnor gate IEC symbol=(text) (no default, initially {$=1$})

Set the symbol for the xnor gate. In TikZ, when the use IEC style logic gates key has been
used, this key can be replaced by xnor gate symbol.

/pgf/not gate IEC symbol=(text) (no default, initially 1)

306

Set the symbol for the not gate. In TikZ, when the use IEC style logic gates key has been
used, this key can be replaced by not gate symbol.

/pgf/buffer gate IEC symbol=(text) (no default, initially 1)

Set the symbol for the buffer gate. In TikZ, when the use IEC style logic gates key has
been used, this key can be replaced by buffer gate symbol.

/pgf/logic gate IEC symbol align=(align) (no default, initially top)

Set the alignment of the logic gate symbol (in TikZ, when the use IEC style logic gates key
has been used, IEC can be omitted. The specification in (align) is a comma separated list from
top, bottom, left or right. The distance between the border of the node and the outer edge of
the symbol is determined by the values of the inner xsep and inner ysep.

>1 \begin{tikzpicture}[minimum size=1cm, use IEC style logic gates]
— 7 b—— \tikzset{every node/.style={nor gate, draw}}
\node (A) at (0,1.5) {};
\node [logic gate symbol align={bottom, right}] (B) at (0,0) {};
\foreach \g in {A, B}{
— \foreach \i in {1,2}

— > \draw ([xshift=-0.5cm]\g.input \i) -- (\g.input \i);
= \draw (\g.output) -- ([xshift=0.5cm]\g.output);
}
\end{tikzpicture}
/pgf/logic gate IEC symbol color={color) (no default)

This key sets the color for all symbols simultaneously. This color can be overridden on a case by
case basis by specifying a color when setting the symbol text.

The library defines the following shapes:

e and gate IEC, two or more inputs
e nand gate IEC, two or more inputs
e or gate IEC, two or more inputs

e nor gate IEC, two or more inputs
e xor gate IEC, two inputs

e xnor gate IEC, two inputs

e not gate IEC, one input

e buffer gate IEC, one input

Again, we only have a look at the nand-gate in more detail:

Shape nand gate IEC

This shape is a nand gate. It supports two or more inputs. If less than two inputs are specified an
error will result. The anchors for this gate with two non-inverted inputs are shown below. Anchor
30 is an example of a border anchor.

307

(s.north west) (s.north) (s.north east)

X X x
(s.30)
x
(s.input 1)
X
(s.west) (s.center) (s.east)
X x X x (s.output)
(s.mid west)
(s.text)
x (s.mid) (s.mid east) X
(s.base west) X x x x
(s.input 2) (s.base) (s.base east)
X x X
(s.south west) (s.south) (s.south east)

\Huge
\begin{tikzpicture}
\node [name=s,shape=nand gate IEC ,shape example, inner xsep=1lcm, inner ysep=1lcm,
minimum height=6cm, nand gate IEC symbol=\color{black!30}\char‘\&,
logic gate inputs={in},
logic gate inverted radius=0.65cm]
{Nand Gate\vrule widthlpt height2cm};
\foreach \anchor/\placement in
{center/above, text/above, 30/above right,
mid/right, mid east/left, mid west/above,
base/below, base east/below, base west/left,
north/above, south/below, east/above, west/above,
north east/above, south east/below, south west/below, north west/above,
output/right, input 1/above, input 2/below}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node [\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}

29.4 Electrical Engineering Circuits
29.4.1 Overview

An electrical engineering circuit contains symbols like resistors or capacitors or voltage sources and anno-
tations like the two arrows pointing toward an element whose behaviour is light dependent. The electrical
engineering libraries, abbreviated ee-libraries, provide such symbols and annotations.

Just as for logical gates, there are different ways of drawing ee-symbols. Currently, there is one main
library for drawing circuits, which uses the graphics from the International Electrotechnical Commission,
but you can add your own libs. This is why, just as for logical gates, there are a base library and more
specific libraries.

\usetikzlibrary{circuits.ee} ¥ KX and plain TX
\usetikzlibrary[circuits.ee] 7 ConTXt
This library declares the ee symbols, but (mostly) does not provide the symbol graphics, which is left to
the sublibraries. Just like the logical gates library, a key is defined that is normally only used internally:
/tikz/circuit ee (no value)
This style calls the keys circuit (which internally calls every circuit and the following style:
/tikz/every circuit ee (style, no value)

Use this key to configure the appearance of logical circuits.

The library also declares some standard annotations and units.

As for logical circuits, to draw a circuit the first step is to include a library containing the symbols
graphics. Currently, you have to include circuits.ee.IEC.

308

\usetikzlibrary{circuit.ee.IEC} % EGX and plain TX
\usetikzlibrary[circuit.ee.IEC] 7% ConTt

When this library is loaded, you can use the following style:

/tikz/circuit ee IEC (no value)
This style calls circuit ee and installs the IEC-like graphics for the logical symbols like resistor.

Inside the circuit ee IEC scope, you can now use the keys for symbols, units, and annotations listed

in the later sections. We have a more detailed look at one of each of them, all the other work the same way.

Let us start with an example of a symbol: the resistor symbol. The other predefined symbols are listed
in Section 29.4.2 and later sections.

/tikz/resistor=(options) (no default)
This key should be used with a node path command or with the to path command.

Using the Key with Normal Nodes. When used with a node, it will cause this node to “look like”
a resistor (by default, in the IEC library, this is just a simple rectangle).

[1 \tikz [circuit ee IEC]

\node [resistor] {};

Unlike normal nodes, a resistor node generally should not take any text (as in node [resistor] {foo}).
Instead, the labeling of resistors should be done using the label, info and ohm options.

50 \tikz [circuit ee IEC]
— \node [resistor,ohm=5] {};

The (options) make no real sense when the resistor option is used with a normal node, you can just
as well given them to the node itself. Thus, the following has the same effect as the above example:

50 \tikz [circuit ee IEC]
— \node [resistor={ohm=5}] {};

In a circuit, you will often wish to rotate elements. For this, the options point up, point down, point
left or point right may be especially useful. They are just shorthands for appropriate rotations like

rotate=90.
\tikz [circuit ee IEC] {
50 \node (R1) [resistor,point up,ohm=5] at (3,1) {};
\node (R2) [resistor,ohm=10k] at (0,0) {};
10k \draw (R2) -| (R1);
}

Using the Key on a To Path. When the resistor key is used on a to path inside a circuit ee
IEC, the circuit handle symbol key is called internally. This has a whole bunch of effects:
1. The path currently being constructed is cut up to make place for a node.
2. This node will be a resistor node that is rotated so that it points “along” the path (unless an
option like shift only or an extra rotation is used to change this).
3. The (options) passed to the resistor key are passed on to the node.

4. The (options) are pre-parsed to identify a pos key or a key like at start or midway. These keys
are used to determine where on the to path the node will lie.

Since the (options) of the resistor key are passed on to the resistor node on the path, you can use it
to add labels to the node. Here is a simple example:

\tikz [circuit ee IEC]
\draw (0,0) to [resistor=red] (3,0)

2ﬂ52 to [resistor={ohm=2\mu}] (3,2);

309

You can add multiple labels to a resistor and you can have multiple resistors (or other elements) on a
single path.

Inputs, Outputs, and Anchors. Like the logical gates, all ee-symbols have an input and an output
anchor. Special purpose nodes may have even more anchors of this type. Furthermore, the ee-symbols
nodes also for standard compass direction anchors.

Changing the Appearance. To configure the appearance of all resistors, see Section 29.2.6. You
can use the (options) to locally change the appearance of a single resistor.

Let us now have a look at an example of a unit: the Ohm unit. The other predefined units are listed in
Section 29.4.6.

/tikz/ohm={value) (no default)

This key is used to add an info label to a node with a special text: $\mathrm{(value)\Omega}$. In
other words, the ohm key can only be used with the options of a node and, when used, it will cause
the (value) to be placed next to the node, followed by 2. Since the (value) is typeset inside a \mathrm
command, when you write ohm=5k you get 5k}, ohm=5p yields 5p{2, and ohm=5.6\cdot 10~{2}\mu
yields 5.6 - 102 uf2.

\tikz [circuit ee IEC] \draw (0,0) to [resistor={ohm=5M}] (0,2);

5MSQ

Instead of ohm you can also use ohm’, which places the label on the other side.

\tikz [circuit ee IEC] \draw (0,0) to [resistor={ohm’=5M}] (0,2);

5MQ

Finally, there are also keys ohm sloped and ohm’ sloped for having the info label rotate together with
the main node.

\tikz [circuit ee IEC]
\draw (0,0) to [resistor={ohm sloped=5M}] (0,2)
(2,0) to [resistor={ohm’ sloped=6f}] (2,2);

5MS
612

You can configure the appearance of an Ohm info label using the key every ohm.

Finally, let us have a look at an annotation: the 1ight emitting annotation. The other predefined units
are listed in Section 29.4.7.

/tikz/light emitting=(options) (no default)

Like a unit, an annotation should be given as an additional option to a node. It causes some drawings
(in this case, two parallel lines) to be placed next to the node.

S \tikz [circuit ee IEC] \draw (0,0) to [diode=light emitting]l (2,0);
—
The (options) can be used for three different things:

1. You can use keys like red to change the appearance of this annotation, locally.

2. You can use keys like <- or -latex to change the direction and kinds of arrows used in the
annotation.

310

3. You can use info labels like ohm=5 or info=foo inside the (options). These info labels will be added
to the main node (not to the annotation itself), but the label distance will have been changed to
accommodate for the space taken up by the annotation.

\tikz [circuit ee IEC]

not g}aod c

P> \draw (0,2) to [diode={light emitting,info=not good}] (2,2);
\draw (0,0) to [diode={light emitting={info=better},
info’=also good}] (2,0);

better }

S
+

also good

In addition to 1light emitting there is also a key called 1ight emitting’, which simply places the
annotation on the other side of the node.

You can configure the appearance of annotations in three ways:
e You can set the every circuit annotation style.
e You can set the every light emitting style.
e You can set the following key:

/tikz/annotation arrow (style, no value)

This style should set the default > arrow to some nice value.

29.4.2 Symbols: Indicating Current Directions

There are two symbols for indicating current directions. These symbols are defined directly inside circuit
ee.

Key Appearance
/tikz/current direction >
/tikz/current direction’ <

The examples have been produced by (in essence) \draw (0,0) to[(symbol name)] (3,0);.

29.4.3 Symbols: Basic Elements

The following table show basic symbols as they are depicted inside the circuit ee IEC environment. To
install one of alternate graphics, you have to say set (symbol name) graphic=var (symbol name) IEC
graphic.

Key Appearance Alternate appearance

/tikz/resistor

/tikz/inductor

I
/tikz/capacitor

/tikz/battery
/tikz/bulb

/tikz/current source

/tikz/voltage source

L)@@ =1

/tikz/ground

29.4.4 Symbols: Diodes

The following table shows diodes as they are depicted inside the circuit ee IEC environment.

311

Key Appearance Alternate appearance

/tikz/diode B |V
/tikz/Zener diode B |V
/tikz/Schottky diode > |
/tikz/tunnel diode ~J | SENE—
/tikz/backward diode T pr
/tikz/breakdown diode gt >«

29.4.5 Symbols: Contacts

The following table shows contacts as they are depicted inside the circuit ee IEC environment.

Key Appearance Alternate appearance
/tikz/contact .

/tikz/make contact o
/tikz/break contact L

29.4.6 Units

The circuit.ee library predefines the following unit keys:

Key Appearance of 1 unit
/tikz/ampere 1A
/tikz/volt 1V
/tikz/ohm 10
/tikz/siemens 1S
/tikz/henry 1H
/tikz/farad 1F
/tikz/coulomb 1C
/tikz/voltampere 1VA
/tikz/watt 1W
/tikz/hertz 1Hz

29.4.7 Annotations

The circuit.ee.IEC library defines the following annotations:

Key Appearance
S
/tikz/light emitting — P
N
N
/tikz/light dependent — b
. 24
/tikz/direction info — P

/tikz/adjustable —(i}—\&b

The lines have been produced using, in essence,
\draw (0,0) to [resistor=light emitting] (2,0) to [diode=light emitting’] (4,0);

and similarly for the other annotations.

29.4.8 Implementation: The EE-Symbols Shape Library

The TikZ libraries depend on two shape libraries, which are included automatically. Usually, you will not
need to use these shapes directly.

\usepgflibrary{shapes.gates.ee} ¥ KX and plain TX and pure pgf
\usepgflibrary[shapes.gates.ee] Y ConTgXt and pure pgf
\usetikzlibrary{shapes.gates.ee} J ERX and plain TX when using TikZ

312

\usetikzlibrary[shapes.gates.ee] Y ConTgXt when using TikZ

This library defines basic shapes that can be used by all ee-circuit libraries. Currently, it defines the
following shapes:

e rectangle ee
e circle ee

e direction ee

Additionally, the library defines the following arrow tip: The direction ee arrow tip is basically the
same as a triangle 45 arrow tip with rounded joins.

direction ee yields thick «—— and thin «——

However, unlike normal arrow tips, its size does not depend on the current line width. Rather, it
depends on the value of its arrow options, which should be set to the desired size. Thus, you should say
something like \pgfsetarrowoptions{direction ee}{5pt} to set the size of the arrow.

Shape rectangle ee

This shape is completely identical to a normal rectangle, only there are two additional anchors: The
input anchor is an alias for the west anchor, while the output anchor is an alias for the east anchor.

Shape circle ee

Like the rectangle ee shape, only for circles.

Shape direction ee

This shape is rather special. It is intended to be used to “turn an arrow tip into a shape.” First, you
should set the following key to the name of an arrow tip:

/pgf/direction ee arrow=(right arrow tip name) (no default)

The value of this key will be used for the arrow tip depicted in an direction ee shape.
When a node of shape direction ee is created, several things happen:

1. The size of the shape is computed according to the following rules: The width of the shape is setup
so that the left border of the shape is at the left end of the arrow tip and the right border is at the
right end of the arrow tip. These left and right “ends” of the arrow are the left and right extends
specified by the arrow itself (see the documentation of the \pgfarrowsdeclare for details). You
usually need not worry about this width setting.

By comparison, the height of the arrow is given my the current setting of minimum height. Thus,
this key must have been setup correctly to reflect the “real” height of the arrow tip. The reason
is that the height of an arrow is not specified when arrows are declared and is, thus, not available,
here.

Possibly, the height computation will change in the future to reflect the real height of the arrow,
so you should generally setup the minimum height to be the same as the real height.

2. A straight line from left to right inside the shape’s boundaries is added to the background path.
3. The arrow tip, pointing right, is drawn before the background path.

The anchors of this shape are just the compass anchors, which lie on a rectangle whose width and height
are the above-computed height and width.

313

(s.north west) (s.north) (s.north east)
X X X

(s.30)
x
(s.center)
(s.input) X (s.west) X (s.east) x (s.output)
X X x
(s.south west) (s.south) (s.south east)

\begin{tikzpicture}

\pgfsetarrowoptions{direction ee}{6cm}
\node [name=s, shape=direction ee,shape example,minimum height=0.7654*6cm] {};
\foreach \anchor/\placement in

{center/above, 30/above right,

north/above, south/below, east/left, west/right,

north east/above, south east/below, south west/below, north west/above,

input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node [\placement] {\scriptsize\texttt{(s.\anchor)l}};

\end{tikzpicture}
(s.north)
x
(s.input) x x (s.output)
X
(s.south)

\begin{tikzpicture}[direction ee arrow=angle 45]
\node [name=s, shape=direction ee,shape example,minimum height=1.75cm] {};
\foreach \anchor/\placement in {north/above, south/below,
output/right, input/left}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)l}};
\end{tikzpicture}

29.4.9 Implementation: The TEC-Style EE-Symbols Shape Library

\usepgflibrary{shapes.gates.ee.IEC} ¥ EEX and plain TgX and pure pgf
\usepgflibrary[shapes.gates.ee.IEC] ¥ ConTEXt and pure pgf
\usetikzlibrary{shapes.gates.ee.IEC} % EX and plain TgX when using TikZ
\usetikzlibrary[shapes.gates.ee.IEC] % ConTgXt when using TikZ
This library defines shapes for depicting ee symbols according to the IEC recommendations. These
shapes will typically be used in conjunction with the graphic mechanism detailed earlier, but you can
also used them directly.

Shape generic circle IEC
This shape inherits from circle ee, which in turn is just a normal circle with additional input and
output anchors at the left and right ends. However, additionally, this shapes allows you to specify a
path that should be added before the background path using the following key:

/pgf/generic circle IEC/before background=(code) (no default)

When a node of shape generic circle IEC is created, the current setting of this key is used as
the “before background path.” This means that after the circle’s background has been drawn/-
filled /whatever, the (code) is executed.

When the (code) is executed, the coordinate system will have been transformed in such a way that

314

the point (1pt,Opt) lies at the right end of the circle and (Opt, 1pt) lies at the top of the circle.
(More precisely, these points will lie exactly on the middle of the radial line.)

Here is an examples of how to use this shape:

\tikz \node [generic circle IEC,

/pgf/generic circle IEC/before background={
\pgfpathmoveto{\pgfpointorigin}
\pgfpathlineto{\pgfpoint{1pt}{Opt}}
\pgfpathlineto{\pgfpoint{Opt}{ipt}}
\pgfpathlineto{\pgfpoint{-0.5pt}{-0.5pt}}
\pgfusepathgstroke

draw] {Hello world};

Shape generic diode IEC

This shape is used to depict diodes. The main shape is taken up by a “right pointing” triangle. The
anchors are positioned on border of a rectangle around the diode, see the below example. The diode’s
size is based on the current settings of minimum width and minimum height.

(s.north west) (s.north) (s.north east)
X X X

(s.30)
X

(s.center)
x

(s.input) X (s.west) (s.east) x (s.output)

X x x
(s.south west) (s.south) (s.south east)

\begin{tikzpicture}
\node [name=s, shape=generic diode IEC,shape example,minimum size=6cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node [\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}

This shape, like the generic circle IEC shape, is generic in the sense that there is a special key that
is used for the before background drawings:

/pgf/generic diode IEC/before background=(code) (no default)

Similarly to the generic circle IEC shape, when a node of shape generic diode IEC is created,
the current setting of this key is used as the “before background path.” When the (code) is executed,
the coordinate system will have been transformed in such a way that the origin is at the “tip” of
the diode’s triangle, the point (Opt, 1pt) is exactly half the diode’s height above this origin, and the
point (1pt,Opt) is half the diode’s height to the right of the origin.

The idea is that you use this key to draw different kinds of diode endings.

315

\tikz \node [minimum size=1cm,generic diode IEC,

/pgf/generic diode IEC/before background={
\pgfpathmoveto{\pgfgpoint{-.5pt}{-1pt}}
\pgfpathlineto{\pgfqpoint{.5pt}{-1pt}}
\pgfpathmoveto{\pgfqpoint{Opt}{-1pt}}
\pgfpathlineto{\pgfqpoint{Opt}{ipt}}
\pgfpathmoveto{\pgfqpoint{-.5pt}{1ipt}}
\pgfpathlineto{\pgfqpoint{.5pt}{1ipt}}
\pgfusepathgstroke

I

draw] {};

Shape breakdown diode IEC

This shape is used to depict a bidirectional breakdown diode. The diode’s size is based on the current
settings of minimum width and minimum height.

(s.north west) (s.north) (s.north east)
% X X
(s.30)
X

(s.center)

(s.input) x (s.west) x (s.east) x (s.output)
X X X
(s.south west) (s.south) (s.south east)
\begin{tikzpicture}

\node [name=s, shape=breakdown diode IEC,shape example,minimum width=6cm,minimum height=4cm] {3};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}

Shape var resistor IEC

This shape is used to depict a variant version of a resistor. Its size is computed as for a rectangle (thus,
its size depends things like the minimum height). Then, inside this rectangle, a background path is
setup according to the following rule: Starting from the left end, zigzag segments are added to the path.
Each segment consists of a line at a 45 degree angle going up to the top of the rectangle, then going
down to the bottom, then going up to mid height of the node. As many segments as possible are put
inside as possible. The last segment is then connected to the output anchor via a straight line.

All of this means that, in general, the shape should be much wider than high.

(s.north west) (s.north) (s.30) (s.north east)
X X X X

(s.center)
X

(s.input) x (s.west) (s.east) x (s.output)

X x X
(s.south west) (s.south) (s.south east)

316

\begin{tikzpicture}
\node [name=s, shape=var resistor IEC,shape example,minimum width=7cm,minimum height=1cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)l}};
\end{tikzpicture}

Shape inductor IEC

This shape is used to depict an inductor, using a bumpy line. Its size is computed as follows: Any
text and inner sep are ignored (and should normally not be given). The minimum height plus (twice)
the outer ysep specify the distance between the north and south anchors, similarly for the minimum
width plus the outer xsep for the east and west. The bumpy line is drawn starting from the lower
left corner to the lower right corner with bumps being half-circles whose height is exactly the minimum
height. The center of the shape is just above the south anchor, at a distance of the outer ysep.

(s.north west) (s.north) (s.3@».north east)
x X x x

(s.input) x/(s.west) (s.east) x (s.output)
(s.center)
x

X X X
(s.south west) (s.south) (s.south east)

\begin{tikzpicture}
\node [name=s, shape=inductor IEC,shape example,minimum width=7cm,minimum height=1cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node [\placement] {\scriptsize\texttt{(s.\anchor)l}};
\end{tikzpicture}

Just as for a var resistor IEC, as many bumps as possible are added and the last bump is connected
to the output anchor via a straight line.

Shape capacitor IEC

This shape is based on a rectangle ee. However, instead of a rectangle as the background path, only
the “left and right lines” that make up the rectangle are drawn.

(s.north west}.nort¥}.north east)
X X X

(s.30)
X

(s.center)
(s.input) x (s.west) x(s.east) x (s.output)

x x X
(s.south wes€}.soutf}.south east)

317

\begin{tikzpicture}
\node [name=s, shape=capacitor IEC,shape example,
minimum width=2cm,minimum height=3cm,inner sep=0pt] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,

input/left,output/right}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}
Shape battery IEC

This shape is similar to a capacitor IEC, only the right line is only half the height of the left line.

\tikz \node[shape=battery IEC,shape example,minimum size=2cm,
inner sep=Opt] {};

Shape ground IEC

This shape is similar to a batter IEC, only three lines of different heights are drawn.

\tikz \node[shape=ground IEC,shape example,minimum size=2cm,
inner sep=Opt] {};

Shape make contact IEC

This shape consists of a line going from the lower left corner to the upper right corner. The size and
anchors of this shape are computed in the same way as for an inductor IEC.

(s.north west) (s.north) (s.north east)
x

X X (s.30)
X
(s.input) x (s.west) (s.east) x (s.output)
(s.center)
X
X X X

(s.south west) (s.south) (s.south east)

\begin{tikzpicture}
\node [name=s, shape=make contact IEC,shape example,minimum width=3cm,minimum height=1cm] {};
\foreach \anchor/\placement in
{center/above, 30/above right,
north/above, south/below, east/left, west/right,
north east/above, south east/below, south west/below, north west/above,
input/left,output/right}
\draw [shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}

Shape var make contact IEC

This shape works like make contact IEC, only a little circle is added to the path at the lower left
corner. The radius of this circle is one twelfth of the width of the node.

\tikz \node[shape=var make contact IEC,shape example,
minimum height=1cm,minimum width=3cm,inner sep=0Opt] {};

318

Shape break contact IEC
This shape depicts a contact that can be broken. It works like make contact IEC.

\tikz \node[shape=break contact IEC,shape example,
minimum height=1cm,minimum width=3cm,inner sep=0pt] {};

319

30 Decoration Library

30.1 Overview and Common Options

The decoration libraries define a number of (more or less useful) decorations that can be applied to paths.
The usage of decorations is not covered in the present section, please consult Sections 21, which explains
how decorations are used in TikZ, and 72, which explains how new decorations can be defined.

The decorations are influenced by a number of parameters that can be set using the decoration option.
These parameters are typically shared between different decorations. In the following, the general options
are documented (they are defined directly in the decoration module), special-purpose keys are documented
with the decoration that uses it.

Since you are encouraged to use these keys to make your own decorations configurable, it is indicated
for each key where the value is stored (so that you can access it). Note that some values are stored in TEX
dimension registers while others are stored in macros.

/pgf/decoration/amplitude=(dimension) (no default, initially 2.5pt)

This key determines the “desired height” (or amplitude) of decorations for which this makes sense. For
instance, the initial value of 2.5pt means that deforming decorations should deform a path by up to
2.5pt away from the original path.

This key set the TEX-dimension \pgfdecorationsegmentamplitude.

/pgf/decoration/meta-amplitude={dimension) (no default, initially 2.5pt)
This key determines the amplitude for a meta-decoration.

The key set the TgX-macro (!) \pgfmetadecorationsegmentamplitude.

/pgf/decoration/segment length=(dimension) (no default, initially 10pt)

Many decorations are made up of small segments. This key determines the desired length of such
segments.

This key set the TEX-dimension \pgfdecorationsegmentlength.

/pgf/decoration/meta-segment length=(dimension) (no default, initially 1cm)
This determined the length of the meta-segments from which a meta-decoration is made up.

This key set the TEX-macro (!) \pgfmetadecorationsegmentlength.

/pgf/decoration/angle=(degree) (no default, initially 45)

The way some decorations look like depends on a configurable angle. For instance, a wave decoration
consists of arcs and the opening angle of these arcs is given by the angle.

This key set the TEX-macro \pgfdecorationsegmentangle.

/pgf/decoration/aspect=(factor) (no default, initially 0.5)

For some decorations there is a natural aspect ratio. For instance, for a brace decoration the aspect
ratio determines where the brace point will be.

This key set the TEX-macro \pgfdecorationsegmentaspect.

/pgf/decoration/start radius=(dimension) (no default, initially 2.5pt)
For some decorations there is a natural start radius (of some circle, presumably).

This key stores the value directly inside the key.

/pgf/decoration/end radius=(dimension) (no default, initially 2.5pt)
For some decorations there is a natural radius (of some circle, presumably).

This key stores the value directly inside the key.

/pgf/decoration/radius=(dimension) (style, no default)

Sets the start and end radius simultaneously.

/pgf/decoration/path has corners=(boolean) (no default, initially false)

320

This is a hint to the decoration code as to whether the path has corners or not. If a path has a sharp
corner, setting this option to true may result in better rendering of the decoration because the joins
of input segments are approached “more carefully” than when this key is set to false. However, if the
path is, say, a smooth circle, setting this key to true will usually look worse. Most decorations ignore
this key, anyway. Internally, it sets the TEX-if \ifpgfdecoratepathhascorners.

30.2 Path Morphing Decorations

\usepgflibrary{decorations.pathmorphing} Y E}RX and plain TX and pure pgf
\usepgflibrary[decorations.pathmorphing] Y ConTgXt and pure pgf
\usetikzlibrary{decorations.pathmorphing} % BEX and plain TgX when using TikZ
\usetikzlibrary[decorations.pathmorphing] % ConTiXt when using TikZ

A path morphing decorations “morphs” or “deforms” the to-be-decorated path. This means that what
used to be a straight line might afterwards be a snaking curve and have bumps. However, a line is
still and a line and path deforming decorations do not change the number of subpaths. For instance, if
the path used to consist of two circles and an open arc, the path will after the decoration process still
consist of two closed subpath and one open subpath.

30.2.1 Decorations Producing Straight Line Paths

The following deformations use only straight lines in order to morph the paths.

Decoration lineto

This decoration replaces the path by straight lines. For each curve, the path simply goes directly from
the start point to the end point. In the following example, the arc actually consist of two subcurves.

This decoration is actually always defined when the decoration module is loaded, but it is documented
here for consistency.

\begin{tikzpicture}[decoration=lineto]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

Decoration straight zigzag
This (meta-)decoration decorates the path by alternating between curveto and zigzag decorations. It
always finishes with the curveto decoration. The following parameters influence the decoration:
e amplitude determines how much the zigzag lines raises above and falls below a straight line to the
target point.
e segment length determines the length of a complete “up-down” cycle.

e meta-segment length determines the length of the curveto and the zigzag decorations.

\begin{tikzpicture}[decoration={straight zigzag,meta-segment length=1.1cm}]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

Decoration random steps
This decoration consists of straight line segments. The line segments head towards the target, but each
step is randomly shifted a little bit. The following parameters influence the decorations:
e segment length determines the basic length of each step.

e amplitude The end of each step is perturbed both in z- and in y-direction by two values drawn
uniformly from the interval [—d, d], where d is the value of amplitude.

321

\begin{tikzpicture}
[decoration={random steps,segment length=2mm}]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

Decoration saw

This decoration looks like the blade of a saw. The following parameters influence the decoration:

e amplitude determines how much each spike raises above the straight line.

e segment length determines the length each spike.

\begin{tikzpicture} [decoration=saw]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

Decoration zigzag

This decoration looks like a zigzag line. The following parameters influence the decoration:

e amplitude determines how much the zigzag lines raises above and falls below a straight line to the
target point.

e segment length determines the length of a complete “up-down” cycle.

\begin{tikzpicture}[decoration=zigzag]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

30.2.2 Decorations Producing Curved Line Paths

Decoration bent

This decoration adds a slightly bent line from the start to the target. The amplitude of the bent is
given amplitude (an amplitude of zero gives a straight line).

e amplitude determines the amplitude of the bent.

e aspect determines how tight the bent is. A good value is around 0. 3.

Note that this decoration makes only little sense for curves. You should apply it only to straight lines.

\begin{tikzpicture}[decoration=bent]

\draw [help lines] grid (3,2);

\draw [decorate] (0,0) -- (3,1) -- (1.5,2) -- (0,1);
\end{tikzpicture}

\begin{tikzpicture} [decoration={bent,aspect=.3}]
e \draw [decorate,fill=examplefill] (0,0) rectangle (3.5,2);

\node[circle,draw] (A) at (.5,.5) {A};

/ \node[circle,draw] (B) at (3,1.5) {B};
° \draw[->,decorate] (A) -- (B);
\draw[->,decorate] (B) -- (A);

\end{tikzpicture}

322

Decoration bumps

This decoration replaces the path by little half ellipses. The following parameters influence it.

e amplitude determines the height of the half ellipse.
e segment length determines the width of the half ellipse.

\begin{tikzpicture} [decoration=bumps]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

Decoration coil

This decoration replaces the path by a coiled line. To understand how this works, imagine a three-
dimensional spring. The spring’s axis points along the path toward the target. Then, we “view” the
spring from a certain angle. If we look “straight from the side” we will see a perfect sine curve, if we
look “more from the front” we will see a coil. The following parameters influence the decoration:

e amplitude determines how much the coil rises above the path and falls below it. Thus, this is the
radius of the coil.

e segment length determines the distance between two consecutive “curls.” Thus, when the spring
is see “from the side” this will be the wave length of the sine curve.

e aspect determines the “viewing direction.” A value of 0 means “looking from the side” and a
value of 0.5, which is the default, means “look more from the front.”

AN \begin{tikzpicture}[decoration=coil]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

\begin{tikzpicture}
[decoration={coil,aspect=0.3,segment length=3mm,amplitude=3mm}]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

Decoration curveto

This decoration simply yields a line following the original path. This means that (ideally) it does not
change the path and follows any curves in the path (hence the name). In reality, due to the internals of
how decorations are implemented, this decoration actually replaces the path by numerous small straight
lines.

This decoration is mostly useful in conjunction with meta-decorations. It is also actually defined in the
decoration module and is always available.

\begin{tikzpicture}[decoration=curveto]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

Decoration snake

This decoration replaces the path by a line that looks like a snake seen from above. More precisely, the
snake is a sine wave with a “softened” start and ending. The following parameters influence the snake:

323

e amplitude determines the sine wave’s amplitude.

e segment length determines the sine wave’s wave length.

\begin{tikzpicture} [decoration=snake]
\draw [help lines] grid (3,2);
\draw [decorate,fill=examplefill]
(0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

30.3 Path Replacing Decorations

\usepgflibrary{decorations.pathreplacing} % E}FX and plain TX and pure pgf
\usepgflibrary[decorations.pathreplacing] % ConTgXt and pure pgf
\usetikzlibrary{decorations.pathreplacing} % KX and plain TX when using TikZ
\usetikzlibrary[decorations.pathreplacing] % ConTgXt when using TikZ

This library defines decorations that replace the to-be-decorated path by another path. Unlike morphing
decorations, the replaced path might be quite different, for instance a straight line might be replaced
by a set of circles. Note that filling a path that has been replaced using one of the decorations in this
library typically does not fill the original area but, rather, the smaller area of the newly-created path
segments.

Decoration border
This decoration adds straight lines the path that are at a specific angle to the line toward the target.
The idea is to add these little lines to indicate the “border” or an area. The following parameters
influence the decoration:
e segment length determines the distance between consecutive ticks.
e amplitude determines the length of the ticks.
e angle determines the angle between the ticks and the line of the path.

\begin{tikzpicture} [decoration=border]
\draw [help lines] grid (3,2);

\draw [postaction={decorate,draw,red}]
(0,0) -- (3,1) arc (0:180:1.5 and 1);

\end{tikzpicture}

//////

Decoration brace
This decoration replaces a straight line path by a long brace. The left and right end of the brace will be
exactly on the start and endpoint of the decoration. The decoration really only makes sense for paths
that are a straight line.

e amplitude determines how much the brace rises above the path.

e aspect determines the fraction of the total length where the “middle part” of the brace will be.

\draw [help lines] grid (3,2);
\draw [decorate] (0,0) -- (3,1);

\begin{tikzpicture} [decoration=brace]
\end{tikzpicture}

/_/

Decoration expanding waves

This decoration adds arcs to the path that get bigger along the line towards the target. The following
parameters influence the decoration:

e segment length determines the distance between consecutive arcs.

324

e angle determines the opening angle below and above the path. Thus, the total opening angle is
twice this angle.

\ ‘ / \begin{tikzpicture}[decoration={expanding waves,angle=5}]
/ \draw [help lines] grid (3,2);

\ , /// \draw [decorate] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

\ \
o)

Decoration moveto
This decoration simply jumps to the end of the path using a move-to path operation. It is mainly useful
as pre=moveto or post=moveto decorations.
This decoration is actually always defined when the decoration module is loaded, but it is documented
here for consistency.

Decoration ticks
This decoration replaces the path by straight lines that are orthogonal to the path. The following
parameters influence the decoration:

e segment length determines the distance between consecutive ticks.

e amplitude determines half the length of the ticks.

\draw [help lines] grid (3,2);
\draw [decorate] (0,0) -- (3,1) arc (0:180:1.5 and 1);

7 y \begin{tikzpicture}[decoration=ticks]
/4
\end{tikzpicture}

v

Decoration waves
This decoration replaces the path by arcs that have a constant size. The following parameters influence
the decoration:
e segment length determines the distance between consecutive arcs.
e angle determines the opening angle below and above the path. Thus, the total opening angle is
twice this angle.

e radius determines the radius of each arc.

{ 7 \begin{tikzpicture} [decoration={waves,radius=4mm}]
\ ///— \draw [help lines] grid (3,2);
\ + \draw [decorate] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\ y \end{tikzpicture}
)
v)

Decoration show path construction

This decoration allows “something different” to be done for each type of input segment (i.e., moveto,
lineto, curveto or closepath). Typically, each segment will be replaced with another path, but this need

not necessarily be the case.

325

R \begin{tikzpicture}[>=stealth, every node/.style={midway, sloped, font=\tiny},
& oy decoration={show path construction,
I moveto code={
\fill [red] (\tikzinputsegmentfirst) circle (2pt)

e /,////’ node [fill=none, below] {moveto};},
,)§>/// lineto code={
= \draw [blue,->] (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast)
moveto node [above] {lineto};
Fo
curveto code={
\draw [green!75!black,->] (\tikzinputsegmentfirst) .. controls

(\tikzinputsegmentsupporta) and (\tikzinputsegmentsupportb)
.. (\tikzinputsegmentlast) node [above] {curveto};
o
closepath code={
\draw [orange,->] (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast)
node [above] {closepath};}
}
\draw [help lines] grid (3,2);
\path [decorate] (0,0) -- (3,1) arc (0:180:1.5 and 1) -- cycle;
\end{tikzpicture}

The following keys can be used to specify the code to execute for each type of input segment.

/pgf/decoration/moveto code={code) (no default, initially {3})

Set the code to be executed for every moveto input segment. It is important to remember that the
transformations applied by the decoration automaton are turned off when (code) is executed.

/pgf/decoration/lineto code=(code) (no default, initially {3)

Set the code to be executed for every lineto input segment.

/pgf/decoration/curveto code=(code) (no default, initially {})

Set the code to be executed for every curveto input segment.

/pgf/decoration/closepath code=(code) (no default, initially {3})

Set the code to be executed for every closepath input segment.

Within (code) the first and last points on the current input segment can be accessed using
\pgfpointdecoratedinputsegmentfirst and \pgfpointdecoratedinputsegmentlast. For curves,
the control (support) points can be accessed using \pgfpointdecoratedinputsegmentsupporta and
\pgfpointdecoratedinputsegmentsupportb.

In TikZ, you can use the following macros inside a TikZ coordinate.

\tikzinputsegmentfirst

The first point on the current input segment path.

\tikzinputsegmentlast
The last point on the current input segment path.

\tikzinputsegmentsupporta

The first support on the curveto input segment path.

\tikzinputsegmentsupportb

The second support on the curveto input segment path.

326

\tikzset{
show curve controls/.style={
decoration={

show path construction,

curveto code={

\draw [blue, dashed]
(\tikzinputsegmentfirst) -- (\tikzinputsegmentsupporta)
node [at end, cross out, draw, solid, red, inner sep=2pt]{};

\draw [blue, dashed]

(\tikzinputsegmentsupportb) -- (\tikzinputsegmentlast)
node [at start, cross out, draw, solid, red, inner sep=2pt]{};

}
},decorate
}
}

\tikzpicture
\draw [postaction=show curve controls, thick]
(0,2) .. controls (2.5,1.5) and (0.5,0.5) .. (3,0);
\endtikzpicture

30.4 Marking Decorations
30.4.1 Overview

A marking on a path is any kind of graphic that is placed on a specific position on a path. Markings are useful
in rather diverse situations: you can use them to, say, place little “footsteps” along a path as if someone
where walking along the path; to place arrow tips on the middle of a path to indicate the “direction” in
which something is flowing; or you can use them to place informative information at certain positions of a
path.

For historical reasons there are three different libraries for placing marks on a path. They differ in what
kind of markings can be added to a path. We start with the most general and most useful of these libraries.

30.5 Arbitrary Markings

\usepgflibrary{decorations.markings} 7% BElX and plain TX and pure pgf
\usepgflibrary[decorations.markings] 7% ConTiXt and pure pgf
\usetikzlibrary{decorations.markings} % ELX and plain TgX when using TikZ
\usetikzlibrary[decorations.markings] % ConTgXt when using TikZ

Markings are arbitrary “marks” that can be put on a path. Marks can be arrow tips or nodes or even
whole pictures.

Decoration markings

A marking can be thought of a “little picture” or more precisely of “some scope contents” that is placed
“on” a path at a certain position. Suppose the marking should be a simple cross. We can produce this
with the following code:

\draw (-2pt,-2pt) -- (2pt,2pt);
\draw (2pt,-2pt) -- (-2pt,2pt);

If we use this code as a marking at position 2cm on a path, then the following happens: PGF determines
the position on the path that is 2cm along the path. Then is translates the coordinate system to this
position and rotates it such that the positive x-axis is tangent to the path. Then a protective scope is
created, inside which the above code is executed — resulting in a little cross on the path.

The markings decoration allows you to place one or more such markings on a path. The decoration
destroys the input path (except in certain cases, detailed later), which means that it uses the path for
determining positions on the path, but after the decoration is done this path is gone. You typically
need to use a postaction to add markings.

Let us start with the above example in real code:

327

\begin{tikzpicture} [decoration={
markings,% switch on markings
mark=Y, actually add a mark

at position 2cm

with
{
\draw (-2pt,-2pt) -- (2pt,2pt);
\draw (2pt,-2pt) -- (-2pt,2pt);
¥
}
]
\draw [help lines] grid (3,2);
\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

We can also add the cross repeatedly:

B \begin{tikzpicture} [decoration={
markings,% switch on markings
mark=Y, actually add a mark

with
{
\draw (-2pt,-2pt) -- (2pt,2pt);
\draw (2pt,-2pt) -- (-2pt,2pt);
¥
}
]
\draw [help lines] grid (3,2);
\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

between positions O and 1 step 5mm

The mark decoration option is used to specify a marking. It comes in two version:

/pgf/decoration/mark=atposition (pos)with(code) (no default)

The options specifies that when a marking decoration is applied, there should be a marking at
position (pos) on the path whose code is given by (code).

The (pos) can have four different forms:

1. It can be a non-negative dimension like Opt or 2cm or 5cm/2. In this case, it refers to the
position along the path that is this far removed from the start.

2. It can be a negative dimension like ~1cm-2pt or -1sp. In this case, the position is taken from
the end of the path. Thus, -1cm is the position that is —lcm removed from the end of the
path.

3. It can be a dimensionless non-negative number like 1/2 or 0.333+2+0. 1. In this case, the (pos)
is interpreted as a factor of the total path length. Thus, a (pos) or 0.5 refers to the middle of
the path, 0.1 is near the start, and so on.

4. Tt can be a dimensionless negative number like -0.1. Then, again, the fraction of the path
length counts “from the end.”

The (pos) determines a position on the path. When the marking is applied, the (high level)
coordinate system will have been transformed so that the origin lies at this position and the positive
x-axis points along the path. For this coordinate system, the (code) is executed. It can contains
all sorts of graphic drawing commands, including (even named) nodes.

If the position lies past the end of the path (for instance if (pos) is set to 1.2), the marking will
not be drawn.

It is possible to give the mark option several times, which causes several markings to be applied. In
this case, however, it is necessary that the positions on the path are in increasing order. That is,
it is not allowed (and will result in chaos) to have a marking that lies earlier on the path to follow
a marking that is later on the path.

328

\begin{tikzpicture}[decoration={
markings,% switch on markings
\\\\\\ mark=at position lcm with \node[red]{lcm};,
Q&\3 mark=at position .5 with \node[green]{mid};,
mark=at position -icm with {\node[blue,transform shape]{icm from end};}}
]
‘ﬁi///// \draw [help lines] grid (3,2);
\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

00&

Here is an example that shows how markings can be used to place text on plots:

f(z)

f(x) =sinz

\begin{tikzpicture} [domain=0:4,label/.style={postaction={
decorate,
decoration={
markings,
mark=at position .75 with \node #1;}}}]
\draw[very thin,color=gray] (-0.1,-1.1) grid (3.9,3.9);

\draw[->] (-0.2,0) -- (4.2,0) nodel[right] {x};
\draw[->] (0,-1.2) -- (0,4.2) node[above] {$f(x)$};

\draw[red,label={[above left]{$f(x)=x$}}] plot (\x,\x);

\draw [blue,label={[below left]{$f(x)=\sin x$}}] plot (\x,{sin(\x r)});

\draw [orange,label={[right]{$f(x)= \frac{1}{20} \mathrm e"x$}}] plot (\x,{0.05*xexp(\x)});
\end{tikzpicture}

When the (code) is begin executed, two special keys will have been setup, whose value may be of
interest:

/pgf/decoration/mark info/sequence number (no value)

This key can only be read. Its value (which can be obtained using the \pgfkeysvalueof
command) is a “sequence number” of the mark. The first mark that is added to a path has
number 1, the second number 2, and so on. This key is mainly useful in conjunction with
repeated markings (see below).

/pgf/decoration/mark info/distance from start (no value)

This key can only be read. Its value is the distance of the marking from the start of the path
in points. For instance, if the path length is 100pt and the marking is in the middle of the
path, the value of this key would be 50.0pt.

A second way to use the mark key is the following:

/pgf/decoration/mark=betweenpositions (start pos) and (end pos) step (stepping) with (code) (no
default)

This works similarly to the at position version of this option, only multiple marks are placed,
starting at (start pos) and then spaced apart by (stepping). The (start pos), the (end pos), and
also the (stepping) may all be specified in the same way as for the at position version, that is,
either using units or no units and also using positive or negative values.

329

Let us start with a simple example in which we place ten crosses along a path starting with the
beginning of the path ((start pos) = 0) and ending at the end ((end pos) = 1).

\begin{tikzpicture}[decoration={markings,
mark=between positions O and 1 step 0.1
with { \draw (-2pt,-2pt) -- (2pt,2pt);
\draw (2pt,-2pt) -- (-2pt,2pt); }}]
/)*//// \draw [help lines] grid (3,2);
\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

In the next example we place arrow shapes on the path instead of crosses. Note the use of the
transform shape option to ensure that the nodes are actually rotated.

‘I \begin{tikzpicture}[decoration={markings,
mark=between positions 0 and 1 step lcm
with { \node [single arrow,fill=red,
single arrow head extend=3pt,transform shape] {};}}]
\draw [help lines] grid (3,2);

\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

Using the key sequence number we can also “number” the nodes and even refer to them later on.

Al \begin{tikzpicture} [decoration={markings,
A mark=between positions O and 1 step lcm with {
\node [draw,
[a

©/ - name=mark-\pgfkeysvalueof{/pgf/decoration/mark info/sequence number},
transform shapel
}y/;ig§ {\pgfkeysvalueof{/pgf/decoration/mark info/sequence numberl}};}}]
K:/} \draw [help lines] grid (3,2);
\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\draw [red,->] (mark-3) -- (mark-7);
\end{tikzpicture}

In the following example we use the distance info to place “length information” on a path:

20.0pt

165,070t
50.0pt

200.0pt

0.0plt /" 225|24788pt

\begin{tikzpicture} [decoration={markings,
% Main marks
mark=between positions O and 1 step 40pt with
{ \draw [help lines] (0,0) -- (0,0.5)
node [above, font=\tiny]{

\pgfkeysvalueof{/pgf/decoration/mark info/distance from start}}; },
mark=at position -0.1pt with
{ \draw [help lines] (0,0) -- (0,0.5)
node [above, font=\tiny]{

\pgfkeysvalueof{/pgf/decoration/mark info/distance from start}}; }}]
\draw [help lines] grid (5,3);

\draw [postaction={decorate}] (0,0) .. controls (8,3) and (0,3) .. (5,0)
\end{tikzpicture}

s

/pgf/decoration/reset marks (no value)

Since mark options accumulate, there needs to be a way to “reset” things, so that any mark options
set in an enclosing scope do not interfere. This option does exactly this. Note that when the (code)

of a marking is executed, the markings are automatically reset.
As mentioned earlier, the decoration usually destroys the path. However, this is no longer the case when
the following key is set:

330

/pgf/decoration/mark connection node=(node name) (no default, initially empty)

When this key is set to a nonempty (node name) while the decoration is being processed, the
following happens: The marking code should, among possibly other things, define node named
(node name). Then, the output path of this decoration will contain a line-to to “one end” of this
node, followed by a moveto to the “other end” of the node. More precisely, the first end is given
by the position on the border of (node name) that lies in the direction “from which the path heads
toward the node” while the other end lies on the border “where the path heads away from the
node.” Furthermore, this option causes the decoration to end with a line-to to the end instead of
a move-to.

The net effect of all this is that when you decorate a straight line with one or more markings that
contain just a node, the line will effectively connect these nodes.

Here are two examples that show how this works:

\begin{tikzpicture} [decoration={markings,
mark connection node=my node,
0& mark=at position .5 with
{\node [draw,blue,transform shape] (my node) {my nodel};}}]
\draw [help lines] grid (3,2);
\draw decorate { (0,0) -- (3,2) };
\end{tikzpicture}

\begin{tikzpicture}[decoration={markings,
mark connection node=my node,
mark=at position .25 with
{\node [draw,red] (my node) {my nodel};}}]
‘ my node ‘ \draw [help lines] grid (3,2);
\draw decorate { (0,0) -- (3,2) };
\end{tikzpicture}

30.5.1 Arrow Tip Markings

Frequent markings that are hard to create correctly are arrow tips. For them, two special commands are
available when the (code) of a mark option is execute. (They are only defined in this code):

\arrow [(options)]{{arrow end tip)}

This command simply draws the (arrow end tip) at the origin, pointing right. This is exactly what you
need when you want to draw an arrow tip as a marking.

The (options) can only be given when TikZ is used. In this case, they are executed in a scope that
contains the arrow tip.

markings,% switch on markings
mark=at position lcm with {\node[red]{icm};},
mark=at position .75 with {\arrow[blue,line width=2mm]{>}},
m/ mark=at position -lcm with {\arrowreversed[black]{stealth};}}
2]

\draw [help lines] grid (3,2);

\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

/‘<\\ \begin{tikzpicture} [decoration={

Here is a more useful example:

Y \begin{tikzpicture} [decoration={
markings,’, switch on markings

mark=between positions O and .75 step 4mm with {\arrow{stealthl}},

mark=between positions .75 and 1 step 4mm with {\arrowreversed{stealth}}}
]
/ \draw [help lines] grid (3,2);

\draw [postaction={decorate}] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

\arrowreversed [(options)]{{arrow end tip)}

As above, only the arrow end tip is flipped and points in the other direction.

331

30.5.2 Footprint Markings

\usepgflibrary{decorations.footprints} ¥ E}X and plain TgX and pure pgf
\usepgflibrary[decorations.footprints] % ConTXt and pure pgf
\usetikzlibrary{decorations.footprints} % KX and plain TgX when using TikZ
\usetikzlibrary[decorations.footprints] % ConTgXt when using TikZ

The decorations of this library can be used to decorate a path with little footprints, as if someone had
“walked” along the path.

Decoration footprints
The footprint decoration adds little footprints around the path. They start with the left foot.

-~ "'_‘”‘ ~ o \begin{tikzpicture} [decoration={footprints,foot length=5pt,stride length=10pt}]
~ - |
2T Ml \ \draw [help lines] grid (3,3);
¢ d i'.‘ \fill [decorate] (0,0) -- (3,2) arc (0:180:1.5 and 1);
] £ \end{tikzpicture}
< o
< o
< o
I
~ . o
e
Ve
< o
< o
"J

You can influence the way this decoration looks using the following options:

/pgf/decoration/foot length (initially 10pt)

The length or size of the footprint itself. A larger value makes the footprint larger, but does not
change the stride length.

6’5.. 6"&. 6"*-_ \begin{tikzpicture}[decoration={footprints,foot length=20ptl}]
\fill [decorate] (0,0) -- (3,0);
W @ \end{tikzpicture}

/pgf/decoration/stride length (initially 30pt)
The length of strides. This is the distance between the beginnings of left footprints along the path.

-~ -~ \begin{tikzpicture}[decoration={footprints,stride length=50pt}]
- \fill [decorate] (0,0) -- (3,0);
\end{tikzpicture}
/pgf/decoration/foot sep (initially 4pt)

The separation in the middle between the footprints. The footprints are moved away from the path
by half this amount.

-~ -~ -~ \begin{tikzpicturel} [decoration={footprints,foot sep=10ptl}]
< \fill [decorate] (0,0) -- (3,0);
i \end{tikzpicture}
/pgf/decoration/foot angle (initially 10)

Footprints are rotate by this much.

I'd I'd I'd \begin{tikzpicture}[decoration={footprints,foot angle=60}]
v v \fill [decorate] (0,0) -- (3,0);
a3 = \end{tikzpicture}
/pgf/decoration/foot of (initially human)

The species whose footprints are shown. Possible values are:

332

Species Result

gnome & «: a: & 3 o
“ ¢ o« e

human -~ -~ -~ -~ -~ Lol
: L [~ ~

bird €« « <« <« <« <«

<« < < < <

O N VRN R TR
N S A

felis silvestris

30.5.3 Shape Background Markings

The third library for adding markings uses the background paths of certain shapes. This library is included
mostly for historical reasons, using the markings library is usually preferable.

\usepgflibrary{decorations.shapes} Y ERX and plain T and pure pgf
\usepgflibrary[decorations.shapes] Y ConTXt and pure pgf
\usetikzlibrary{decorations.shapes} % E}FX and plain TgX when using TikZ
\usetikzlibrary[decorations.shapes] % ConTgXt when using TikZ

This library defines decorations that use shapes or shape-like drawings to decorate a path. The following

options are common options used by the decorations in this library:

/pgf/decoration/shape width=(dimension) (no default, initially 2.5pt)
The desired width of the shapes. For decorations that support varying shape sizes, this key sets
both the start and end width (which can be overwritten using options like shape start width).

/pgf/decoration/shape height=(dimension) (no default, initially 2.5pt)
Works like the previous key, only for the height.

/pgf/decoration/shape size=(dimension) (no default)
Sets the desired width and height simultaneously.

For the exact places and macros where these keys store the values, please consult the beginning of the
code of the library.

Decoration crosses

This decoration replaces the path by (diagonal) crosses. The following parameters influence the deco-
ration:

e segment length determines the distance between (the centers of) consecutive crosses.
e shape height determines the height of each cross.

e shape width determines the width of each cross.

\begin{tikzpicturel} [decoration=crosses]

\draw [help lines] grid (3,2);

\draw [decorate] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

333

Decoration triangles
This decoration replaces the path by triangles that point along the path. The following parameters
influence the decoration:
e segment length determines the distance between consecutive triangles.
e shape height determines height of the triangle side that is orthogonal to the path.
e shape width determines the width of the triangle.

2 T YT \begin{tikzpicturel}[decoration=triangles]
o v \draw [help lines] grid (3,2);

\draw [decorate,fill=examplefill] (0,0) -- (3,1) arc (0:180:1.5 and 1);
\end{tikzpicture}

Decoration shape backgrounds

This is a general decoration that replaces the to-be-decorated path by repeated copies of the background
path of an arbitrary shape that has previously defined using the \pgfdeclareshape command (that is,
you can use any shape in the shape libraries).

Please note that the background path of the shapes is used, but no nodes are created. This means that
you cannot have text inside the shapes of this path, you cannot name them, or refer to them. Finally,
this decoration will not work with shapes that depend strongly of the size of the text box (like the arrow
shapes). If any of these restrictions pose a problem, use the markings library instead.

QDQHOVGO \begin{tikzpicture} [decoration={shape backgrounds,shape=star,shape size=5pt}]
Ao} a3 ; i]
o o \draw [help lines] grid (3,2);
\draw [decorate] (0,0) -- (3,1) arc (0:180:1.5 and 1);
oot \end{tikzpicture}
{
a8
&8

>0 > \tikzset{paint/.style={ draw=#1!50!black, fill=#1!50 },
decorate with/.style=

MAALAAAAA A4S {decorate,decoration={shape backgrounds,shape=#1,shape size=2mm}}}
OO PEOEEEE \begin{tikzpicture}
AOOOOOCCOOOOO \draw [decorate with=dart, paint=red] (0,1.5) -- (3,1.5);
e \draw [decorate with=diamond, paint=green] (0,1) -- (3,1);
\draw [decorate with=rectangle, paint=blue] (0,0.5) -- (3,0.5);
\draw [decorate with=circle, paint=yellow] (0,0) -- (3,0);
\end{tikzpicture}

All shapes are positioned by the anchor that is specified via the anchor decoration option:

/pgf/decoration/anchor={anchor) (no default, initially center)

The anchor used to position the shapes backgrounds.

A shape background path is added at the start point of the path and, if the distance between the shapes
is appropriate, at the end point of the path.

\begin{tikzpicture} [decoration={
shape backgrounds,shape=regular polygon,shape size=4mm}]
i \draw [help lines] grid (3,2);
\draw [thick] (0,0) -- (2,2) (1,0) -- (3,0);
\draw [red, decorate, decoration={shape sep=.5cm}] (1,0) -- (3,0);
/\\j \draw [blue, decorate, decoration={shape sep=.5cm}] (0,0) -- (2,2);
\end{tikzpicture}

C/ N

Keys for customizing specific shapes can be specified (e.g., star points, cloud puffs, kite angles,
and so on). The size of the shape is “enforced” using transformations. This means that the shape is
typeset with an empty text box and some default size values, resulting in an initial shape. This shape
is then rescaled using coordinate transformations so that it has the desired size (which may vary as we

334

travel along the to-be-decorated path). This means that settings involving angles and distances may not
appear entirely accurate. More general options such as inner sep and minimum size will be ignored,
but transformations can be applied to each segment as described below.

paint/.style={draw=#1!50!black, fill=#1!50},

my star/.style={decorate,decoration={shape backgrounds,shape=star},
star points=#1}

}

\begin{tikzpicture} [decoration={shape sep=.5cm, shape size=.5cm}]
\draw [my star=9, paint=red] (0,1.5) -- (3,1.5);
\draw [my star=5, paint=blue] (0,.75) -- (83,.75);
\draw [my star=5, paint=yellow, shape border rotate=30] (0,0) -- (3,0);

\end{tikzpicture}

There are various keys to control the drawing of the shape decoration.

/pgf/decoration/shape=(shape name) (no default, initially circle)
The shape whose background path is used.

/pgf/decoration/shape sep=(spacing) (no default, initially .25cm, between centers)

Set the spacing between the shapes on the decorations path. This can be just a distance on its own,
but the additional keywords between centers, and between borders (which must be preceded
by a comma), specify that the distance is between the center anchors of the shapes or between the
edges of the boundaries of the shape borders.

\begin{tikzpicturel}[
decoration={shape backgrounds,shape size=.5cm,shape=signal},
signal from=west, signal to=east,
paint/.style={decorate, draw=#1!50!black, fill=#1!50}]
\draw [help lines] grid (3,2);
\draw [paint=red, decoration={shape sep=.5cm}]

‘ , ‘ (0,2) -- (3,2);
\draw [paint=green, decoration={shape sep={lcm, between centerl}}]
(0,1) -- (3,1);
\draw [paint=blue, decoration={shape sep={lcm, between borders}}]
(0,0) -- (3,0);
\end{tikzpicture}

/pgf/decoration/shape evenly spread=(number) (no default)

This key overrides the shape sep key and forces the decoration to fit (number) shapes evenly across
the path. If (number) is less than 1, then no shapes will be used. If (number) equals 1, then one
shape is put in the middle of the path. The additional keywords by centers (the default, if no
keyword is specified) and by borders can be used (both preceded by a comma), to specify how
the distance between shapes is determined. These keywords will only have a noticeable effect if the
shapes sizes differ over time.

- \tikzset{
paint/.style={draw=#1!50!black, fill=#1!50},

- spreading/.style={

CEEC

O O o
H 5 =
HE N
O O
]

[:] decorate,decoration={shape backgrounds, shape=rectangle,
[:] shape start size=4mm,shape end size=1mm,shape evenly spread={#1}}}
¥
\begin{tikzpicture}
\fill [paint=green,spreading={5, by borders},
decoration={shape scaled}] 0,2) -- (38,2);
\fill [paint=blue,spreading={5, by centers},
decoration={shape scaled}] (0,1.5) -- (3,1.5);
\fill [paint=red, spreading=5] (0,1) - (3,1);
\fill [paint=orange, spreading=4] (0,.5) -- (8,.5);
\fill [paint=gray, spreading=1] 0,00 -- (3,0);
\end{tikzpicture}
/pgf/decoration/shape sloped=(boolean) (no default, initially true)

335

By default, shapes are rotated to the slope of the decorations path. If (boolean) is the value false,
then this rotation is turned off. Internally this sets the TEX-if \ifpgfshapedecorationsloped
appropriately.

\tikzsetq{
paint/.style={draw=#1!50!black, fill=#1!50}
}
\begin{tikzpicturel} [decoration={
shape width=.65cm, shape height=.45cm,
shape=isosceles triangle, shape sep=.75cm,
shape backgrounds}]
\draw [help lines] grid (3,2);
\draw [paint=red,decorate] (0,0) -- (2,2);
\draw [paint=blue,decorate,decoration={shape sloped=falsel}]
(1,0) -- (3,2);

\end{tikzpicture}

It is possible to scale the width and height of the shapes across the length of the decorations path. The
shapes are scaled between the starting size and the ending size. The following keys customize the way
the decoration shapes are scaled:

/pgf/decoration/shape scaled=(boolean) (no default, initially false)

bigger/.style={decoration={shape start size=.125cm, shape end size=.5cm}},
smaller/.style={decoration={shape start size=.5cm, shape end size=.125cm}},
decoration={shape backgrounds,

shape sep={.25cm, between borders},shape scaled}

\tikzset{

..
®)
\begin{tikzpicture}

\draw [help lines] grid (3,2);

\fill [decorate, bigger, red!50] (0,1) -- (3,2);

\fill [decorate, smaller, blue!50] (0,0) -- (3,1);
\end{tikzpicture}

If this key is set to false (which is the default), then only the start width and height are used. Note
that the keys shape width and shape height set the start and end height simultaneously.

/pgf/decoration/shape start width=(length) (no default, initially 2.5pt)
The starting width of the shape.

/pgf/decoration/shape start height=(length) (no default, initially 2.5pt)
The starting height of the shape.

/pgf/decoration/shape start size=(length) (style, no default)
Set both the start height and start width simultaneously.

/pgf/decoration/shape end width=(length) (no default, initially 2.5pt)

The recommended ending width of the shape. Note, that this is the width that a shape will take
only if it is drawn exactly at the end of the path.

\tikzset{
. . bigger/.style={decoration={shape start size=.25cm, shape end size=1lcm}},
. ‘ ‘

smaller/.style={decoration={shape start size=1cm, shape end size=.25cm}},
decoration={shape backgrounds,
shape sep={.25cm, between borders},shape scaled}

I
: | ‘ \begin{tikzpicture}
\draw [help lines] grid (3,2);
\fill [decorate,bigger,
decoration={shape sep={.25cm, between borders}}, blue!50]
(0,1.5) == (3,1.5);
\fill [decorate,smaller,

decoration={shape sep={lcm, between centers}}, red!50]
(0,.5) -- (3,.5);
\draw [gray, dotted] (0,1.625) -- (3,2) (0,1.375) —- (3,1)
0,1) -- (3,.625) (0,0) == (8, 878 3
\end{tikzpicture}

336

/pet

/pgt

/decoration/shape end height=(length) (no default)
The recommended ending height of the shape.
/decoration/shape end size=(length) (style, no default)

Set both the end height and end width simultaneously.

30.6 Text Decorations

\usepgflibrary{decorations.text} % EGX and plain TgX and pure pgf
\usepgflibrary[decorations.text] % ConTXt and pure pgf
\usetikzlibrary{decorations.text} % KX and plain TX when using TikZ
\usetikzlibrary[decorations.text] % ConTgXt when using TikZ

The

decoration in this library decorates the path with some text. This can be used to draw text that

follows a curve.

Decoration text along path

This decoration decorates the path with text. This drawing of the text is a “side effect” of the decoration.
The to-be-decorated path is only used to determine where the characters should be put and it is thrown
away after the decoration is done. This is why in the following example no line is shown.
0t A[snop,, \catcode‘\ |12
) 4@@, \begin{tikzpicture} [decoration={text along path,
oy Jf text={Some long text along a ridiculously long curve that}}]
yk)éXJ‘ \draw [help lines] grid (3,2);
\Dfﬁgxe r \draw [decorate] (0,0) -- (3,1) arc (0:180:1.5 and 1);
ome \end{tikzpicture}

PGF

The

/pgt

“does its best” to typeset the text, however you should note the following points:

Each character in the text is typeset in a separate \hbox. This means that if you want fancy things
like kerning or ligatures you will have to manually annotate the characters in the decoration text
within a group, for example, W{\kern-1ptA}TER.

Each character is positioned using the center of its baseline. To move the text vertically (relative
to the path), the additional transform key should be used.

No attempt is made to ensure characters do not overlap when the angle between segments is
considerably less than 180° (this is tricky to do in TEX without a huge processing overhead). In
general this should not be too much of a problem, but, once again, kerning can be used in most
cases to overcome any undesirable effects.

It is only possible to typeset text in math mode under considerable restrictions. Math mode is
entered and exited using any character of category code 3 (e.g., in plain TEX this is $). Math
subscripts and superscripts need to be contained within braces (e.g., {"y_1i}) as do commands like
\times or \cdot. However, even modestly complex mathematical typesetting is unlikely to be
successful along a path (or even desirable).

Some inaccuracies in positioning may be particularly apparent at input segment boundaries. This
can (unfortunately) only be solved on case by case basis by individually kerning the offending
characters within a group.

following keys are used by the text decoration:

/decoration/text=(text) (no default, initially empty)

Set the text to typeset along the curve. Consecutive spaces are ignored, so \ (or \space in KTEX)
should be used to insert multiple spaces. It is possible to format the text using normal formatting
commands, such as \it, \bf and \color, within customizable delimiters. Initially these delimiters
are both | (however, care will be needed regarding the category codes of delimiters — see below).

\catcode‘\ |12
\begin{tikzpicture}
a,§§5 \draw [help lines] grid (3,2);
\path [decorate,decoration={text along path,
text={a big |\color{green}|green|| juicy apple.}}]
(0,0) .. controls (0,2) and (3,0) .. (3,2);

\end{tikzpicture}

337

By following the first delimiter with +, the formatting commands are added to any existing format-
ting.

\begin{tikzpicture}
\draw [help lines] grid (3,2);
ap@@” \path [decorate,decoration={text along path,

ed juicy
i text={a |\large|big |+\bf\color{red}|red|| juicy apple.}}]

(0,0) .. controls (0,2) and (3,0) .. (3,2);
\end{tikzpicture}

Internally, the text is stored in the macro \pgfdecorationtext. Any characters that have not been
typeset when the end of the path has been reached will be stored in \pgfdecorationrestoftext.

/pgf/decoration/text format delimiters={(before)}{{after)} (no default, initially {1}{})

Set the characters that the text decoration will use to parse formatting commands. If (after) is
empty, then (before) will be used for both delimiters. In general you should stick to characters
whose category codes are 11 or 12. As + is used to indicate that the specified format commands
are added to any existing ones, you should avoid using + as a delimiter.

J \begin{tikzpicture}
ES \draw [help lines] grid (3,2);
A and N \path [decorate, decoration={text along path,text format delimiters={[}{]},
.qy\” text={A big [\color{red}]red[] and [\color{green}]green[] apple.}}]
(0,0) .. controls (0,2) and (3,0) .. (3,2);
\end{tikzpicture}
/pgf/decoration/text color=(color) (no default, initially black)
The color of the text.
/pgf/decoration/reverse path=(boolean) (no default, initially false)

This key reverses the path. This is especially useful for typesetting text along different sides of
curves.

\begin{tikzpicture}

X)Qﬁ%ﬁﬁ \draw [help lines] grid (3,2);
¥,

\draw [gray, ->]
B [postaction={decoration={text along path,
] o text={a big juicy applel}, text color=red}, decorate}]
[postaction={decoration={text along path,
text={a big juicy apple}, text color=blue, reverse path}, decoratel}]

(3,0) .. controls (3,2) and (0,2) .. (0,0);
\end{tikzpicture}

/pgf/decoration/text align={{alignment options)} (no default)
This changes the key path to /pgf/decoration/text align and executes (alignment options).

/pgf/decoration/text align/align=(alignment) (no default, initially left)

Aligns the text according to (alignment), which should be one of left, right, or center.

\begin{tikzpicture}
,—fji'bgij \draw [help lines] grid (3,2);
o <ng \draw [red, dashed]
/ \ [postaction={decoration={text along path, text={a big juicy applel},
/) text align={align=right}}, decoratel}]
(0,0) .. controls (0,2) and (3,2) .. (3,0);
\end{tikzpicture}
/pgf/decoration/text align/left (style, no value)

Aligns the text to the left end of the path.

/pgf/decoration/text align/right (style, no value)
Aligns the text to the right end of the path.

338

/pgf/decoration/text align/center (style, no value)
Aligns the text to the center of the path.

/pgf/decoration/text align/left indent=(length) (no default, initially Opt)

Specify a distance which the automaton should move along before it starts typesetting the text.

/pgf/decoration/text align/right indent=(length) (no default, initially Opt)
Specify a distance before the end of the path, where the automaton should stop typesetting the
text.

/pgf/decoration/text align/fit to path=(boolean) (no default, initially false)

This key makes the decoration automaton try to fit the text to the length of the path. The
automaton shifts forward by a small amount between each character in order to fit the text to the
path. If, however, the length of the text is longer than the length of the path (i.e., the automaton
would have to shift backwards between characters) this key will have no effect.

. \begin{tikzpicture}
;JA,L Cy \draw [help lines] grid (3,2);
&) \draw [red, dashed]
> © [postaction={decoration={text along path, text={a big juicy applel},
N? S text align=fit to path}, decoratel}]
o (0,0) .. controls (0,2) and (3,2) .. (3,0);
\end{tikzpicture}
/pgf/decoration/text align/fit to path stretching spaces=(boolean) (no default, initially
false)
This key works like the previous key except the automaton shifts forward only for space characters
(including \space, but excluding \).
] \begin{tikzpicture}
- Jui(y \draw [help lines] grid (3,2);
ngf N \draw [red, dashed]
/ ‘o [postaction={decoration={text along path, text={a big juicy applel},
/) o, text align={fit to path stretching spaces}}, decorate}]
| & (0,0) .. controls (0,2) and (3,2) .. (3,0);

\end{tikzpicture}

30.7 Fractal Decorations

\usepgflibrary{decorations.fractals} 7% EGX and plain TX and pure pgf
\usepgflibrary[decorations.fractals] 7% ConTiXt and pure pgf
\usetikzlibrary{decorations.fractals} % EX and plain TX when using TikZ
\usetikzlibrary[decorations.fractals] % ConTXt when using TikZ

The decorations of this library can be used to create fractal lines. To use them, you typically have to
apply the decoration repeatedly to an originally straight path.
Decoration Koch curve type 1

This decoration replaces a straight line by a “rectangular bump.” By repeatedly applying this replace-
ment, different levels of the Koch curve fractal can be created. Its Hausdorfl dimension is log 5/ log 3.

\begin{tikzpicture}[decoration=Koch curve type 1]

\draw decorate{ (0,0) -- (3,0) };

\draw decorate{ decorate{ (0,-1.5) -- (3,-1.5) }};

\draw decorate{ decorate{ decorate{ (0,-3) -- (3,-3) }}};
\end{tikzpicture}

339

Decoration Koch curve type 2

This decoration replaces a straight line by a “rectangular sine.” Its Hausdorff dimension is 3/2.

\begin{tikzpicturel}[decoration=Koch curve type 2]

\draw decorate{ (0,0) -- (3,0) };

\draw decorate{ decorate{ (0,-2) -- (3,-2) }};

\draw decorate{ decorate{ decorate{ (0,-4) -- (3,-4) }}};
\end{tikzpicture}

g

Decoration Koch snowflake

This decoration replaces a straight line by a “line with a spike.” Koch’s snowflake’s Hausdorff dimension
is log4/log 3.

\begin{tikzpicturel}[decoration=Koch snowflake]

\draw decorate{ (0,0) -- (3,0) };

\draw decorate{ decorate{ (0,-1) -- (3,-1) }};

\draw decorate{ decorate{ decorate{ (0,-2) -- (3,-2) }}};

\draw decorate{ decorate{ decorate{ decorate{ (0,-3) -- (3,-3) }}}};
\end{tikzpicture}

o

Decoration Cantor set

This decoration replaces a straight line by a “line with a whole in the middle.” The Hausdorff dimension
of the Cantor set is log 2/ log 3.

\begin{tikzpicture} [decoration=Cantor set,very thick]

\draw decorate{ (0,0) -- (3,0) };

\draw decorate{ decorate{ (0,-.5) -- (3,-.5) }};

\draw decorate{ decorate{ decorate{ (0,-1) -- (3,-1) }}};

\draw decorate{ decorate{ decorate{ decorate{ (0,-1.5) -- (3,-1.5) }}}};
\end{tikzpicture}

340

31 Entity-Relationship Diagram Drawing Library

\usetikzlibrary{er} 7, EX and plain TX
\usetikzlibrary[er] 7 ConTXt

This packages provides styles for drawing entity-relationship diagrams.

This library is intended to help you in creating E/R-diagrams. It defines only very little new styles, but
using these style entity instead of saying rectangle,draw makes the code more expressive.

31.1 Entities

The package defines a simple style for drawing entities:

/tikz/entity (style, no value)

This style is to be used with nodes that represent entity types. It causes the node’s shape to be set to
a rectangle that is drawn and whose minimum size and width are set to sensible values.

Note that this style is called entity despite the fact that it is to be used for nodes representing entity
types (the difference between an entity and an entity type is the same as the difference between an object
and a class in object-oriented programming). If this bothers you, feel free to define a style entity type
instead.

Sheep Genome

\begin{tikzpicture}
\node [entity] (sheep) {Sheep};
\node [entity] (genome) [right=of sheep] {Genome};
\end{tikzpicture}

/tikz/every entity (style, no value)

This style is evoked by the style entity. To change the appearance of entities, you can change this
style.

Sheep Genome

\begin{tikzpicture}
[every entity/.style={draw=blue!50,fill=blue!20,thick}]
\node [entity] (sheep) {Sheep};
\node [entity] (genome) [right=of sheep] {Genomel};
\end{tikzpicture}

31.2 Relationships

Relationships are drawn using styles that are very similar to the styles for entities.

/tikz/relationship (style, no value)

This style works like entity, only it is to be used for relationships. Again, relationships are actually
relationship types.

\begin{tikzpicture}
@ \node[entity] (sheep) at (0,0) {Sheep};

\node[entity] (genome) at (2,0) {Genome};
\node [relationship] at (1,1.5) {has}
edge (sheep)
edge (genome) ;
\end{tikzpicture}

Sheep Genome

341

/tikz/every relationship (style, no value)

Works like every entity.

\begin{tikzpicture}
has [every entity/.style={fill=blue!20,draw=blue,thick},
y v/ ¥
every relationship/.style={fill=orange!20,draw=orange,thick,aspect=1.5}]
\node[entity] (sheep) at (0,0) {Sheepl};
\node [entity] (genome) at (2,0) {Genomel};
Sheep Genome \node [relationship] at (1,1.5) {has}
edge (sheep)

edge (genome);
\end{tikzpicture}

31.3 Attributes

/tikz/attribute (style, no value)
This style is used to indicate that a node is an attribute. To connect an attribute to its entity, you can

use, for example, the child command or the pin option.

\begin{tikzpicture}
Sheep \node [entity] (sheep) {Sheepl}
child {node[attribute] {name}}

child {node[attribute] {color}};
\end{tikzpicture}

\begin{tikzpicture}[every pin edge/.style=draw]
@ \node [entity,pin={[attribute] 60:name},pin={[attribute]120:color}] {Sheep};
\end{tikzpicture}

Sheep

/tikz/key attribute (style, no value)
This style is intended for key attributes. By default, the will cause the attribute to be typeset in italics.

Typically, underlining is used instead, but that looks ugly and it is difficult to implement in TEX.

/tikz/every attribute (style, no value)

This style is used with every (key) attribute.

\begin{tikzpicture}
has [text depth=1pt,
every attribute/.style={fill=black!20,draw=black},
every entity/.style={fill=blue!20,draw=blue,thick},
every relationship/.style={fill=orange!20,draw=orange,thick,aspect=1.5}]

Sheep Genome
\node[entity] (sheep) at (0,0) {Sheep}
child {node [key attribute] {namel}};
\node[entity] (genome) at (2,0) {Genome};
\node [relationship] at (1,1.5) {has}
@ edge (sheep)
edge (genome) ;

\end{tikzpicture}

342

32 Externalization Library
by Christian Feuersdnger

\usetikzlibrary{externall} J ELX and plain TX
\usetikzlibrary[external] % ConTXt

This library provides a high-level automatic or semi-automatic export feature for TikZ pictures. Its
purpose is to convert each picture to a separate PDF without changing the document as such.

It also externalizes \label information (and other aux file related stuff) using auxiliary files.

32.1 Overview

There are several reasons why external images for at least some pictures are of interest:

1. Larger picture require a considerable amount of time, which is necessary for every compilation. How-
ever, only few images will change from run to run. It can simply save time to export finished images
and include them as final graphics.

2. It may be desirable to have final images for some graphics, for example to include them in third—party
programs or to communicate them electronically.

3. It may be necessary to typeset a file in environments where PGF and TikZ are not available. In this
case, external images are the only way to ensure compatibility.

The purpose of this library is to provide a way to export any TikZ-picture to separate PDF (or eps) images
without changing the main document. It is actually a simple user interface to the \beginpgfgraphicnamed
... \endpgfgraphicnamed framework of PGF which is discussed in section 80.

32.2 Requirements

For most users, the library does not need special attention since requirements are met anyway. It collects
all tokens between \begin{tikzpicture} and the next following \end{tikzpicture} and replaces them by
the appropriate graphics or it takes steps to generate such an image.

It can’t expand macros during this step, so the only requirement is that every picture’s end is directly
reachable from its beginning, without further macro expansion. Furthermore, the library assumes that all
ETEX pictures are ended with \end{tikzpicture}.

The library always searches for the next picture’s end, \end{tikzpicture}. As a consequence, you can’t
use nested pictures directly. You can nest pictures, but you have to avoid that the nested picture’s \end
command is found before the outer \end command (for example using bracing constructs or by writing the
nested picture into a separate macro call).

Consider using the \tikzexternaldisable method in case you’d like to skip selected pictures which do
not meet the requirements.

32.3 A Word About ConTEXt And Plain TEX

Currently, the basic layer backend \beginpgfgraphicnamed ... \endpgfgraphicnamed relies on ETEX only,
so externalization is only supported for I‘TEX yet.

32.4 Externalizing Graphics

After loading the library, a call to \tikzexternalize is necessary to activate the externalization.

343

\documentclass{article}
% main document, called main.tex
\usepackage{tikz}

\usetikzlibrary{external}
\tikzexternalize 7, activate!

\begin{document}
\begin{tikzpicture}
\node {root}
child {node {leftl}}
child {node {right}
child {node {child}}
child {node {child}}
};
\end{tikzpicture}

A simple image is \tikz \fill (0,0) circle(5pt);.
\end{document}

The method works as follows: if the document is typeset normally, the library searches for replacement
images for every picture. Filenames are generated automatically in the default configuration. In our case,
the two file names will be main-figureO and main-figurel. If they exist, those images are simply included
and the pictures as such are not processed. If graphics files do not exist, steps are taken to generate the
missing ones. Since (currently) only one output file can be set, each missing image needs to be generated by a
separate run of I#TEX in which the \ jobname is set to the desired image file name. In the default configuration
mode=convert with system call, these commands are issued automatically by using the \write18 method
to call system commands. It is also possible to output every required file name or to generate a makefile;
users will need to issue the required commands manually (or with make). The probably most comfortable
way is to use the default configuration with

pdflatex -shell-escape main

which authorizes pdflatex to call itself recursively to generate the images. When it finishes, all images are
generated and the document already includes them.

From this point on, successive runs of BTEX will use the final graphics files, the pictures won'’t be used
anymore. Section 32.5 contains details about how to submit such a file to environments where PGF is not
available.

\tikzexternalize [{optional arguments)]

This command activates the externalization. It installs commands to replace every TikZ-picture. It
needs to be called before \begin{document} because it may need to install its separate shipout routine.

The (optional arguments) can be any of the keys described below.

Note that the generation/modification of auxiliary files like .aux, .toc etc. is usually suppressed while
a single image is externalized (details for \1label support follow).

It is also possible to write \tikzexternalize{(main job name)} if the argument is delimited by curly
braces. This case is mainly for backwards compatibility and is no longer necessary. Since it might be
useful in rare circumstances, it is documented in section 32.4.5.

A detailed description about the process of externalization is provided in section 32.4.5.

\tikzexternalrealjob

After the library is loaded, this macro will always contain the correct main job’s name (in the
example above, it is main). It is to be used instead of \jobname when the externalization is in
effect.

\pgfactualjobname

Once \tikzexternalize has been called, \pgfactualjobname contains the name of the currently
generated output file (which may be main or main-figureO or main-figurel in our example above).

\jobname

The value of \jobname is one of \tikzexternalrealjob or \pgfactualjobname, depending
on the configuration. In short: if auxiliary file support (\label and \ref) is activated,
\jobname=\tikzexternalrealjob (since that’s the base file name of auxiliary files).

344

/tikz/external/system call={(template)} (no default)

A template string used to generate system calls. Inside of {(template)}, the macro \image can be used
as placeholder for the image which is about to be generated while \texsource contains the main file
name (in truth, it contains \input{({main file name)}, but that doesn’t matter).

The default is

\tikzset{external/system call={pdflatex \tikzexternalcheckshellescape -halt-on-error
-interaction=batchmode -jobname "\image" "\texsource"}

where \tikzexternalcheckshellescape inserts the value of the configuration key shell escape if
and only if the current document has been typeset with ~shell-escape'®.

For eps output, you can (and need to) use

\tikzset{external/system call={latex \tikzexternalcheckshellescape -halt-on-error
-interaction=batchmode -jobname "\image" "\texsource";
dvips -o "\image".ps "\image".dvil}

The argument {(template)} will be expanded using \edef, so any control sequences will be expanded.
During this evaluation, ‘\\’ will result in a normal backslash, ‘\’. Furthermore, double quotes ‘"’, single
quotes ‘’’, semicolons and dashes ‘-’ will be made to normal characters if any package uses them as
macros. This ensures compatibility with the german package, for example.

¢y

/tikz/external/shell escape={(command-line arg)} (no default, initially -~shell-escape)

Contains the command line option for latex which enables the \write18 feature. For TEX-Live, this is
-shell-escape. For MikTEX, you should use \tikzexternalize[shell escape=-enable-writel8].

32.4.1 Support for Labels and References In External Files

The external library comes with extra support for \label and \ref (and other commands which usually
store information in the .aux file) inside of external files.
There are, however, some points which need your attention when you try to use

a) \ref to something in the main document inside of an externalized graphics or
b) \label in the externalized graphics which is referenced in the main document.

For point a), a \ref inside of an externalized graphics works only if you issue the required system
call manually or by make. The initial configuration mode=convert with system call does not support
\ref. But you can copy—paste the system call generated by mode=convert with system call and issue
it manually. The reason is that \ref information is stored in the main .aux file — but this auxiliary file is
not completely written when mode=convert with system call is invoked (there is a race condition). Note
that \pageref is not supported (sorry). Thus: if you have \ref inside of external graphics, consider using
mode=1list and make or copy—paste the system call for the image(s) and issue it manually.

Point b) is realized automatically by the external library. In detail, a \label inside of an externalized
graphics causes the external library to generate separate auxiliary files for every external image. These
files are called (imagename).dpth. The extension .dpth indicates that the file also contains the image’s
depth (the baseline key of TikZ). Furthermore, anything which would have been written to an .aux file
will be redirected to the .dpth file — but only things which occur inside of the externalized tikzpicture
environment. When the main document loads the image, it will copy the .dpth file into the main .aux
file. Then, successive compilations of the main document contain the external \1label information. In other
words, a \label in an external graphics needs the following work flow:

1. The external graphics needs to be generated together with its .dpth (usually automatically by TikZ).

2. The main document includes the external graphics and copies the .dpth content into its main .aux
file.

3. The main document needs to be translated one further time to re-read its .aux file'!.

10Note that this is always true for the default configuration. This security consideration applies mainly for mode=list and
make which will also work without shell escapes.
HNote that it is not possible to activate the content of an auxiliary file after \begin{document} in IATEX.

345

There is just one special case: if a \label/\ref combination is realized itsself by a tikzpicture which
should be externalized, you need to proceed as for case a) since mode=convert with system call can’t
handle that stuff on its own. Thus, \label works automatically, just translate the main document often
enough.

32.4.2 Customizing the Generated File Names

The default filename for externalized graphics is ‘(real file name)-figure_(number)’ where (number) ranges
from 0 to whatever is required. However, there are a couple of ways to change the generated filenames:

e Changing the overall file name using a prefix,
e Changing the file name for a single figure using \tikzsetnextfilename,

e Changing the file name for a restricted set of figures using figure name.

/tikz/external/prefix={(file name prefiz)} (no default, initially empty)

A shortcut for \tikzsetexternalprefix{(file name prefix)}, see below.

\tikzsetexternalprefix{(file name prefiz)}

Assigns a common prefix used by all file names. For example,
\tikzsetexternalprefix{figures/}

will prepend figures/ to every external graphics file name.

Please note that \tikzsetexternalprefix is the only way to assign a prefix in case you want to prepare
your document for environments where PGF is not installed (see section 32.5).

\tikzsetnextfilename{(file name)}

Sets the file name for the next TikZ picture or \tikz short command. It will only be used for the next
picture.

Pictures for which no explicit file name has been set (or the next file name is empty) will get automatically
generated file names.

Please note that prefix will still be prepended to {{file name)}.

\documentclass{article}
% main document, called main.tex
\usepackage{tikz}

\usetikzlibrary{external}
\tikzexternalize[prefix=figures/] % activate

\begin{document}

\tikzsetnextfilename{trees}
\begin{tikzpicture} % will be written to ’figures/trees.pdf’
\node {root}
child {node {leftl}}
child {node {right}
child {node {child}}
child {node {child}}
};
\end{tikzpicture}

\tikzsetnextfilename{simple}
A simple image is \tikz \fill (0,0) circle(5pt);. % will be written to ’figures/simple.pdf’

\begin{tikzpicture} ¥, will be written to ’figures/main-figureO.pdf’
\draw[help lines] (0,0) grid (5,5);

\end{tikzpicture}
\end{document}

pdflatex -shell-escape main

346

/tikz/external/figure name={(name)} (no default)

Same as \tikzsetfigurename{(name)}.

\tikzsetfigurename{{name)}

Changes the names of all following figures. It is possible to change figure name during the document
either using \tikzset{external/figure name={(name)}} or with this command. A unique counter
will be used for each different {{name)}, and each counter will start at 0.

The value of prefix will be applied after figure name has been evaluated.

\documentclass{article}
% main document, called main.tex
\usepackage{tikz}

\usetikzlibrary{external}
\tikzexternalize J, activate

\begin{document}

\begin{tikzpicture} % will be written to ’main-figureO.pdf’
\node {root}
child {node {leftl}}
child {node {right}
child {node {child}}
child {node {child}}
};
\end{tikzpicture}

{
\tikzsetfigurename{subset_}
A simple image is \tikz \fill (0,0) circle(5pt);. % will be written to ’subset_0.pdf’

\begin{tikzpicture} % will be written to ’subset_1.pdf’
\draw[help lines] (0,0) grid (5,5);
\end{tikzpicture}
}% here, the old file name will be restored:

\begin{tikzpicture} % will be written to ’main-figurel.pdf’
\draw (0,0) —- (5,5);
\end{tikzpicture}
\end{document}
The scope of figure name ends with the next closing brace.
Remark: Use \tikzset{external/figure name/.add={prefix_}{_suffix_}} to add a prefix_ and
a _suffix_ to the actual value of figure name.
\tikzappendtofigurename{(suffiz)}
Appends (suffiz) to the actual value of figure name.

It is a shortcut for \tikzset{external/figure name/.add={}{(suffiz)}} (a shortcut which is also
supported if TikZ is not installed, see below).

32.4.3 Remaking Figures or Skipping Figures

\tikzpicturedependsonfile{(file name)}

Adds a dependency for the next picture which is about to be externalized. If the command is invoked
within a picture environment, it adds a dependency for the surrounding picture. Dependencies are
written into (target file).dep in the format

(target file) .\tikzexternalimgextension: (file name).

The effect is that if (file name) changes, the external graphics associated with the picture shall be
remade.

This command uses the contents of \tikzexternalimgextension to check for graphics. If you encounter
difficulties with image extensions, consider redefining this macro (after \tikzexternalize).

Limitations: this command is currently only supported for mode=1ist and make and the generated
makefile.

347

\tikzexternalfiledependsonfile{(external graphics)}{(file name)}

A variant of \tikzpicturedependsonfile which adds a dependency for an (external graphics). The
argument {external graphics) must be the path as it would have been generated by the external library,
i.e. without file extension but including any prefixes.

/tikz/external/force remake={(boolean)} (default true)

A boolean which is used to customize the up-to-date checks of all following figures. Every up-to-date
check will fail, resulting in automatic regeneration of every following figure.

\tikzset{external/force remake}
\begin{tikzpicture}

\draw (0,0) circle(5pt);
\end{tikzpicture}

You can also use force remake inside of a local TEX group to remake only selected pictures. The
example

\tikz \draw (0,0) -- (1,1);

{
\tikzset{external/force remake}
\begin{tikzpicture}

\draw (0,0) circle(5pt);
\end{tikzpicture}
}

\tikz \draw (0,0) -- (1,1);

will only apply force remake to the second figure.

Up-to-date checks are applied for mode=convert with system call and the makefile generated by
mode=list and make.

/tikz/external/remake next={(boolean)} (default true)

A variant of force remake which applies only to the next image.

/tikz/external/export next={(boolean)} (default true)

A boolean which can be used to disable the export mechanism for single pictures.

/tikz/external/export={(boolean)} (no default, initially true)

A boolean which can be used to disable the export mechanism for all pictures inside of the current

TEX-scope.

\begin{document}
\begin{tikzpicture} % will be exported

\end{tikzpicture}

{

\tikzset{external/export=false}
\begin{tikzpicture}), won’t be exported
\end{tikzpicture}

}

\begin{tikzpicture} % will be exported

\end{tikzpicture}
\end{document}

For IATEX, the feature lasts until the next \end{(:)} (this holds for every call to \tikzset).

\tikzexternaldisable

Allows to disable the complete externalization. While export next will still collect the contents of
picture environments, this command uninstalls the hooks for the external library completely. Thus,

348

nested picture environments or environments where \end{tikzpicture? is not directly reachable won’t
produce compilation failures — although it is not possible to externalize them automatically.

The externalization remains disabled until the end of the next TEX group (or environment) or until the
next call to \tikzexternalenable.

\tikzexternalenable

Re-enables a previously running externalization after \tikzexternaldisable.

32.4.4 Customizing the Externalization

/tikz/external/figure list={(boolean)} (no default, initially true)

A boolean which configures whether a figure list shall be generated. A figure list is an output file named
{(jobname)} . figlist which is filled with file names of each figure, one per line.

This file is not used by TEX anymore, its purpose is to issue the required conversion commands pdflatex
-jobname {(picture file name)} {(main file)} manually (or in a script). See section 32.4.5 for the details
about the expected system call (or activate mode=convert with system call and inspect you log file).

\documentclass{article}
% main document, called main.tex
\usepackage{tikz}

\usetikzlibrary{externall}

\tikzexternalize[
mode=graphics if exists,
figure list=true,
prefix=figures/]

\begin{document}

\tikzsetnextfilename{trees}
\begin{tikzpicture}
\node {root}
child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}
g
\end{tikzpicture}

\tikzsetnextfilename{simple}
A simple image is \tikz \fill (0,0) circle(5pt);.

\begin{tikzpicture}

\draw[help lines] (0,0) grid (5,5);
\end{tikzpicture}
\end{document}

pdflatex main
generates main.figlist containing

figures/trees
figures/simple
figures/main-figure0

/tikz/external/mode={(choice)} (no default, initially convert with system call)

Configures what to do with TikZ pictures (unless we are currently externalizing one particular image,
in that case, these modes are ignored).

The preconfigured mode convert with system call checks whether external graphics files are up-
to-date and includes them if that is the case. Any picture which is not up-to-date will be generated
automatically using a system call. The system call can be configured using the system call template.
The up-to-date check is simple: if the file does not exist, it is not up-to-date. Furthermore, if one of
the force remake or remake next keys is true, the figure is not up-to-date. In all other case, the file
is considered to be up-to-date. As soon as convert with system call is set, the figure list will be

349

disabled — such a file is not required. In case you still need or want it, you can enable it after setting
mode.

Please note that system calls may be disabled for security reasons. For pdflatex, they can be enabled
using

pdflatex -shell-escape

while other TEX variants may need other switches. The feature is sometimes called \write18.

The choice only graphics always tries to replace pictures with external graphics. It is an error if the
graphics file does not exist.

The choice no graphics (or, equivalently, only pictures) typesets TikZ pictures without checking for
external graphics.

A mixture is graphics if exists, it checks whether a suitable graphics file exists and includes it if
that is the case. If it does not exist, the picture is typeset using TEX.

Mode list only skips every TikZ picture; it only generates the file {(main file)}.figlist containing
file names for every picture, the contents of any picture environment is thrown away and a replacement
text is shown. This implies figure list=true. See also the list and make mode which includes
available graphics.

The mode list and make is similar to 1ist only: it generates the same file {{main file)}.figlist,
but any images which exist already are included as graphics instead of ignoring them. Furthermore,
this mode generates an additional file: {{main file)}.makefile. This allows to use a work flow like

% step 1: generate main.makefile:

pdflatex main

% step 2: generate ALL graphics on 2 processors:
make -j 2 main.makefile

% step 3: include the graphics:

pdflatex main

This last make method is, however unnecessary: 1list and make just assumes that images are gener-
ated somehow (not necessarily with the generated makefile). The generated makefile allows parallel
externalization of graphics on multi-core systems and it supports any file dependencies configured with
\tikzpicturedependsonfile. Furthermore, it respects the force remake and remake next keys.

/tikz/external/verbose I0={(boolean)} (no default, initially true)
A boolean which configures whether I/O operations shall be listed in the logfile.

/tikz/external/verbose optimize={(boolean)} (no default, initially true)

A boolean which configures whether optimization operations shall be listed in the logfile.

/tikz/external/verbose={(boolean)} (no default, initially true)
Sets all verbosity flags to (boolean).

/tikz/external/optimize={(boolean)} (no default, initially true)

Configures whether the conversion process shall be optimized. This affects only the case when \ jobname
differs from the main file name, i.e. when single pictures are converted.

In that case, the main file is compiled as usual - but everything except the selected picture is thrown
away. If optimization is enabled, all other pictures won’t be processed at all. Furthermore, expensive
commands which do not contribute to the selected picture will be thrown away as well.

The default implementation discards \includegraphics commands which are not inside of the selected
picture to reduce conversion time.

It is possible to add commands which shall be optimized away, see below.

/tikz/external/optimize command away=(\command){(required argument count)} (no default)

Installs commands to optimize (\command) away. As is described above, optimization applies to the
case when single pictures are converted: one usually doesn’t need to process (probably expensive)
commands which do not contribute to the selected picture.

The argument {(required argument count)} is either empty or a non-negativ integer between 0 and 9.
It denotes the number of arguments which should be consumed after (\command). In any case, one

350

argument in square brackets after the command will be recognized as well. To be more precise, the
following cases for arguments of (\command) are supported:

1. If {(required argument count)} is empty (the default), (\ command) may take one optional argument
in square brackets and one in curly braces (which is also optional).

2. If {(required argument count)} is not empty, {(\command)} may take one optional argument in
square brackets. Furthermore, it expects exactly {(required argument count)} following arguments.

Example:

\tikzset{external/optimize command away=\includegraphics}

\newcommand{\myExpensiveMacro} [1]{Very expensive!}

\tikzset{external/optimize command away=\myExpensiveMacro}

\newcommand{\myExpensiveMacroWithThreeArgs}[3]{Very expensive!}

\tikzset{external/optimize command away={\myExpensiveMacroWithThreeArgs}{3}}

% A command with optional argument:
\newcommand{\aFurtherExample} [3] []{Very expensive!}

% consume only two arguments: the first optional one will be processed
% anyway:
\tikzset{external/optimize command away={\myExpensiveMacroWithThreeArgs}{2}}

The argument (\ command) must be the name of a single macro. Any occurrence of this macro, together
with its arguments, will be removed.

\begin{tikzpicture}
% this picture is currently converted!
\end{tikzpicture}

This here is outside of the converted picture and contains \myExpensiveMacro. It will be discarded.

This call: \myExpensiveMacro[argument=value] {Argument} as well.
And this here: \myExpensiveMacro{Argument} also.
The default is to optimize \includegraphics away.

This key is actually a style which sets the optimize/install and optimize/restore keys.

/tikz/external/optimize/install (no value)

A command key which contains code to install optimizations. You can append code here (or clear the
macro) if you need to modify the optimization.

/tikz/external/optimize/restore (no value)

A command key which contains code to undo optimizations. You can append code here (or clear the
macro) if you need to modify the optimization.

/tikz/external/only named={({boolean)} (no default, initially false)

If enabled, only pictures for which file names have been set explicitly using \tikzsetnextfilename will
be considered, no file names will be generated automatically.

/pgf/images/include external (initially \pgfimage{#1})

This command key constitutes the public interface to exchange the \includegraphics command used
for the image inclusion. If can be overwritten using include external/.code={(TEX code)}.

Its description can be found in the corresponding basic layer documentation on page 654.

Just one example here: you can use

\pgfkeys{/pgf/images/include external/.code={\includegraphics[viewport=0 0 211.28 175.686]1{#1}}}

351

to manually change the viewport (bounding box) for included graphics.

Another example (of probably limited use) is
\pgfkeys{/pgf/images/include external/.code={\href{file:#1}{\pgfimage{#1}}}}

which will generate a clickable hyperlink around the image. Clicking on it opens the single exported
file'2.

If you want to limit the effects of this key to just one externalized figure, use

{
\pgfkeys{/pgf/images/include external/.code={\includegraphics[viewport=0 0 211.28 175.686]{#1}}}
\begin{tikzpicture}

\end{tikzpicture}
}% this brace ends the effect of ‘include external’

\tikzifexternalizing{(true code)}{(false code)}

This command can be used to check whether an image is currently written to its separate graphics file
(if the “grab” procedure is running). If so, the {(¢true code)} will be executed. If not, that means if the
main document is being typeset normally, the {(false code)} will be invoked.

This command must be used after \tikzexternalize.

\tikzifexternalizingnext{(true code)}{(false code)}

Like \tikzifexternalizing, but this variant also checks if the next following figure is the one which
is about to be written to its separate graphics file.

32.4.5 Details About The Process

The standard run pdflatex (main document) causes the external library to check every occurrence of
\begin{tikzpicture} and every \tikz shortcommand. If it finds a picture which shall be exported, it
queries the respective file name and checks whether the file exists already. If so, it includes the external graph-
ics. If not, it requires an externalization which can be done automatically (the default), semi-automatically
(with mode=1ist and make) or manually (by issuing the requires system calls somehow).

The library can detect whether it runs in “conversion mode”, i.e. if it should only process a single image.
To do so, it checks whether the internal macro \tikzexternalrealjob exists. If so, its contents is assumed
to be (main document) (without the suffix .tex). Usually, this macro is set by the conversion system call,

pdflatex -jobname "main-figureO" "\def\tikzexternalrealjob{main}\input{main}"

where main-figureO is the picture we are currently externalizing and main.tex is the main document.

As soon as “conversion mode” has been detected, PGF changes the output routine. The complete file
main.tex is processed as normal, but only the part of the desired picture will be written to the output file, in
our case main-figure0.pdf. The rest of the document is silently thrown away. Of course, such a conversion
process is quite expensive since we need to do it for every picture. Since everything except the current
picture is thrown away, the library skips all other pictures. Furthermore, any \includegraphics commands
which are outside of the converted TikZ-picture will be skipped as well. Thus, the conversion process should
be much faster than typesetting the complete document, but it still requires its time. Eventually, the call
\input{main} returns and the picture is ready. From this point on, the external graphics will be used.

There is another possibility to communicate (main document) to the subprocess performing the external-
ization: namely to write ‘\tikzexternalize{main}’ into the document. In this case, the conversion system
call will be

pdflatex -jobname "main-figureO0" "main"

and the contents of \tikzexternalrealjob is set automatically. This case is detected by \tikzexternalize,
and the system call is updated automatically (by patching its \texsource template argument). It is not
necessary to change the system call manually.

The sequence in which system calls are performed and the decision whether they are issued automatically
is governed by the mode key, consult its documentation for details.

12This requires all external graphics files in the same base directory as the main .pdf file.

352

32.5 Using External Graphics Without PGF Installed

Given that every picture has been exported correctly, one may want to compile a file without PGF and
TikZ installed. TikZ comes with a minimal package which contains just enough commands to replace every
tikzpicture environment and the \tikz short command with the appropriate external graphics. It can be
found at

latex/pgf/utilities/tikzexternal.sty

and needs to be used instead of \usepackage{tikz}. So, we uncomment \usepackage{tikz} and our
example from the beginning becomes

\documentclass{article}
% main document, called main.tex
% \usepackage{tikz}

\usepackage{graphicx}
\usepackage{tikzexternal}

% \usetikzlibrary{externall}
\tikzexternalize

\begin{document}
\begin{tikzpicture}
\node {root}
child {node {left}}
child {node {right}
child {node {child}}
child {node {child}}
};
\end{tikzpicture}

A simple image is \tikz \fill (0,0) circle(5pt);.

Furthermore, we might want to draw \tikz[baseline]\draw (0,-1) rectangle (1,1);
\end{document}

where the following files are necessary to compile the document:

tikzexternal.sty
main.tex
main-figureO.pdf
main-figurel.pdf
main-figure2.pdf
If there are any ‘.dpth’ files, for example main-figure2.dpth, these files are also required. They contain
information for the TikZ baseline option (or \labels inside of external graphics).
Just copy the .sty file into the directory of your main. tex file and use it as part of your document.
Please keep in mind, that only tikzpicture environments and \tikz short images are available within the
externalization framework. Additionally, calls to \tikzset and \pgfkeys won’t lead to compilation errors be-
cause they are simply ignored. But since pgfkeys is not available, any option supplied to \tikzexternalize
is ignored.

Attention: Since the simple replacement \usepackage{tikzexternall} doesn’t support the key—value
interface, you need to use \tikzsetexternalprefix instead of the prefix option and \tikzsetfigurename
instead of the figure name option since \tikzset is not available in such a context.

Remark: Some of the features of this library are mainly useful to improve the speed of successive document
compilations. In other words: you can’t use all features in this context, Keep it simple.

32.6 eps Graphics Export

It is also possible to use eps graphics instead of PDF files. There are different ways to produce them, for
example to use pdflatex and call pdftops -eps {(pdf file)} {(eps file)} afterwards. You could add this
command to the system call option.

Alternatively, you can use latex and dvips for image conversion as is explained for the system call
option, see page 345. See the documentation for the basic level externalization in section 80 for restrictions
of other drivers.

353

32.7 Bitmap Graphics Export

Occasionally, you may have an extremely large graphics which takes long times to render. It might be
interesting to generate a bitmap (raster) image, which displays much faster (for example in a presentation).
I have used this feature to speed-up the display of large shadings.

The external library can be customized to export bitmap images — with the help of external programs.
Due to the dependence of external programs, you may need to adjust these commands manually. For
example, on my computer, the ImageMagick Suite is installed which comes with the convert tool. Together
with pdflatex, I can define the following style:

\tikzsetq{
% Defines a custom style which generates BOTH, .pdf and .png export
% but prefers the .png on inclusion.
yA
% This style is not pre-defined, you may need to copy-paste and
% adjust it.
png export/.style={
external/system call/.add=
{3
{; convert -density 300 -transparent white "\image.pdf" "\image.png"},
%
/pgf/images/external info,
/pgf/images/include external/.code={%
\includegraphics
[width=\pgfexternalwidth,height=\pgfexternalheight]
{##1.png}’
}’

}

The example above defines a new style called ‘png export’ which, when it is set with \tikzset{png export}
somewhere in the document, modifies the configuration for both, file generation and file input. The file
generation is modified by appending the ImageMagick command to system call (separated by ‘;’ as usual
on Linux). This is, in principle, enough to generate a .png file. The include external command is
overwritten such that it uses the .png file instead of the .pdf file (which exists as well in the configuration
above). But since a .png file can have a much higher resolution than the desired image dimensions, we have
to add width and height explicitly. Usually, the external library does not provide size information (it
is unnecessary for .pdf or .eps since these formats have their bounding box information). To enable size
information, the style uses the external info key which, in turn, provides the \pgfexternalwidth and
\pgfexternalheight commands.

Now, we can use \tikzset{png export} either document-wide or just for one particular image. The
configuration remains in effect until the end of the actual environment (or until the next closing curly brace

4}7)’

/pgf/images/external info=true|false (no default, initially false)

If this key is activated, the size for any externalized image will be stored explicitly into the associated
.dpth file.

When the file is included by \pgfincludeexternalgraphics (or automatically by the external li-
brary), the width is available as \pgfexternalwidth and the height as \pgfexternalheight.

32.8 Compatibility Issues
32.8.1 References In External Pictures

It is allowed if a picture contains references, for example \tikz \node {Reference to \ref{a:labell}};.

There is just one issue: if the main job is currently compiling, its .aux file is not in its final state (even
worse: it may not be readable at all). The picture externalization, however, needs the main .aux file to
query any references.

Thus, you will need to invoke pdflatex -jobname (image) (mainfile) manually for any image which
contains references.

This problem arises only for mode=convert with system call. In this case, the external library
creates a special \ jobname.auxlock file to check whether the main .aux file is currently usable.

354

32.8.2 Compatibility With Other Libraries or Packages
The external library has the following compatibility issues:

1. The external library comes with special support for \usetikzlibrary{fadings}: the fadings library
may define local pictures which would be externalized (although they shouldn’t). There is special
handling to suppress this bug if \tikzexternalize is called after \usetikzlibrary{fadings} or if
all fadings are defined before \tikzexternalize.

2. Problems have been reported when using \tikzexternalize (or the basic layer externalization) to-
gether with \usepackage{glossary}. This problem disappears if \tikzexternalize is called before
\usepackage{glossary}.

3. Problems with \usepackage{pdfpages} and \usepackage{vmargin}: The external library replaces
the current shipout routine of TEX during its externalization. This might raise problems with other
packages which also manipulate the shipout routine (like the mentioned ones).

To fix those problems, use

\usetikzlibrary{external}

\tikzifexternalizing{/

% don’t include package XYZ here
Hi

\usepackage{pdfpages}
\usepackage{vmargin}

Yh
This uses the requested packages for the main document, but not for the single, exported graphics.

In general, the \tikzifexternalizing feature might be used to solve package conflicts and the
\tikzexternaldisable and \tikzexternalenable features can be used to solve problems with single pic-
tures.

32.8.3 Compatibility With Bounding Box Restrictions

Bounding box restrictions provide no problem when used with eps graphics. However, they pose problems
for pdflatex, so you may need to use the latex / dvips combination if you use bounding box restrictions
and externalization. Currently, the only possibility for bounding box restrictions and pdflatex is to use a
combination of trim left / trim right / baseline: these keys do not really truncate the bounding box,
they only store horizontal and vertical shifts (also see the trim lowlevel key in this context).

32.8.4 Interoperability With The Basic Layer Externalization

This library is fully compatible with \beginpgfgraphicnamed. .. \endpgfgraphicnamed environments. How-
ever, you will need to use the export next=false key to avoid conflicts:

\beginpgfgraphicnamed{pictured}
\tikzset{external/export next=false}
\begin{tikzpicture}

\draw (0,0) —-- (4,4);
\end{tikzpicture}
\endpgfgraphicnamed

Please keep in mind that file prefixes do not apply to the basic layer.

355

33 Fading Library

\usepgflibrary{fadings} ¥ EGX and plain TgX and pure pgf
\usepgflibrary[fadings] % ConTXt and pure pgf
\usetikzlibrary{fadings} % EX and plain TX when using TikZ
\usetikzlibrary[fadings] % ConTgXt when using TikZ

The package defines a number of fadings, see Section 20 for an introduction. The TikZ version defines
special TikZ commands for creating fadings. These commands are explained in Section 20.

Fading name Ezample (solid blue faded on checkerboard)

west

east

north

south

circle with fuzzy edge 10 percent
circle with fuzzy edge 15 percent
circle with fuzzy edge 20 percent

fuzzy ring 15 percent

CO00AENE

356

34 Fitting Library

\usetikzlibrary{fit} % E}X and plain TX
\usetikzlibrary[fit] % ConTgXt

The library defines (currently only two) options for fitting a node so that it contains a set of coordinates.
When you load this library, the following options become available:

/tikz/fit={coordinates or nodes) (no default)

This option must be given to a node path command. The (coordinates or nodes) should be a sequence
of TikZ coordinates or node names, one directly after the other without commas (like with the plot
coordinates path operation). Examples as (1,0) (2,2) or (a) (1,0) (b), where a and b are nodes.

For this sequence of coordinates, a minimal bounding box is computed that encompasses all the listed
(coordinates or nodes). For coordinates in the list, the bounding box is guaranteed to contain this
coordinate, for nodes it is guaranteed to contain the east, west, north and south anchors of the node.
In principle (the details will be explained in a moment), things are now setup such that the text box of
the node will be exactly this bounding box.

Here is an example: We fit several points in a rectangular node. By setting the inner sep to zero, we
see exactly the text box of the node. Then we fit these points again in circular node. Note how the
circle encompasses exactly the same bounding box.

\begin{tikzpicture}[inner sep=Opt,thick,

dot/.style={fill=blue,circle,minimum size=3pt}]
° \draw[help lines] (0,0) grid (3,2);
box \node[dot] (a) at (1,1) {};

\node[dot] (b) at (2,2) {};

\node [dot] (c) at (1,2) {};
\node [dot] (d) at (1.25,0.25) {};
\node[dot] (e) at (1.75,1.5) {};

\node [draw=red, fit=(a) (b) (c) (@) (e)] {box};
\node [draw,circle,fit=(a) (b) (c) (d) (e)] {};
\end{tikzpicture}

Every time the fit option is used, the following style is also applied to the node:

/tikz/every fit (style, initially empty)
Set this style to change the appearance of a node that uses the fit option.

The exact effects of the fit option are the following:

1. A minimal bounding box containing all coordinates is computed. Note that if a coordinate like (a)
is used that contain a node name, this has the same effect as explicitly providing the (a.north)
and (a.south) and (a.west) and (a.east). If you wish to refer only to the center of the a node,
use (a.center) instead.

The text width option is set to the width of this bounding box.
The align=center option is set.
The anchor is set to center.

The at position of the node is set to the center of the computed bounding box.

SN T o

After the node has been typeset, its height and depth are adjusted such that they add up to the
height of the computed bounding box and such that the text of the node is vertically centered
inside the box.

The above means that, generally speaking, if the node contains text like box in the above example, it
will be centered inside the box. It will be difficult to put the text elsewhere, in particular, changing the
anchor of the node will not have the desired effect. Instead, what you should do is to create a node
with the fit option that does not contain any text, give it a name, and then use normal nodes to add
text at the desired positions. Alternatively, consider using the label or pin options.

Suppose, for instance, that in the above example we want the word “box” to appear inside the box, but
at its top. This can be achieved as follows:

357

dot/.style={fill=blue,circle,minimum size=3pt}]
\draw[help lines] (0,0) grid (3,2);

box \begin{tikzpicture}[inner sep=0pt,thick,
\node [dot] (a) at (1,1) {};

\node [dot] (b) at (2,2) {};
\node [dot] (c) at (1,2) {};
\node[dot] (d) at (1.25,0.25) {};
\node[dot] (e) at (1.75,1.5) {};

\node [draw=red,fit=(a) (b) (c) (d) (e)] (£fit) {};
\node[below] at (fit.north) {box};
\end{tikzpicture}

Here is a real-life example that uses fitting:

\begin{tikzpicture}
[vertex/.style={minimum size=2pt,fill,draw,circle},
open/.style={fill=none},
sibling distance=1.5cm,level distance=.75cm,
every fit/.style={ellipse,draw,inner sep=-2pt},
leaf/.style={label={[name=#1]below:$#1$}},auto]

\node [vertex] (root) {}
child { node [vertex,open] {}
child { node [vertex,open] {}
child { node [vertex] (b’s parent) {}
child { node [vertex] {}
child { node [vertex,leaf=d] {} }
child { node [vertex,leaf=e] {} } }
child { node [vertex,leaf=b] {} } }
child { node [vertex,leaf=al {} } }
child { node [coordinate] {}
child[missing]
child { node [vertex] (f’s parent) {}
child { node [vertex,leaf=c] {} }
child { node [vertex,leaf=f] {} } } }
edge from parent node {ρ} };

\node [fit=(d) (e) (b) (b’s parent),label=above left:$F " {(b,R)}$] {};
\node [fit=(c) (f) (£’s parent),label=above right:$F~{(c,R)}$] {3;
\end{tikzpicture}

/tikz/rotate fit=(angle) (no default, initially 0)

This key fits (coordinates or nodes) inside a node that is rotated by (angle). As a side effect, it also sets
the /tikz/rotate key.

358

359

35 Fixed Point Arithmetic Library

\usepgflibrary{fixedpointarithmetic} 7% BELX and plain T and pure pgf
\usepgflibrary[fixedpointarithmetic] 7% ConTiXt and pure pgf
\usetikzlibrary{fixedpointarithmetic} % EfX and plain TX when using TikZ
\usetikzlibrary[fixedpointarithmetic] 7% ConTXt when using TikZ

This library provides an interface to the IZTEX package fp for fixed point arithmetic. In addition to
loading this library you must ensure fp is loaded otherwise errors will occur.

35.1 Overview

Whilst the mathematical engine that comes with PGF is reasonably fast and flexible when it comes to parsing,
the accuracy tends to be fairly low, particularly for expressions involving many operations chained together.
In addition the range of values that can be computed is very small: +16383.99999. Conversely, the £p package
has a reasonably high accuracy, and can perform computations over a wide range of values (approximately
+9.999 x 10'7), but is comparatively slow and not very flexible, particularly regarding parsing.

This library enables the combination of the two: the flexible parser of the PGF mathematical engine with
the evaluation accuracy of fp. There are, however, a number of important points to bear in mind:

e Whilst fp supports very large numbers, PGF and TikZ do not. It is possible to calculate the result of
2720 or 1.2e10+3.4e10, but it is not possible to use these results in pictures directly without some
“extra work”.

e The PGF mathematical engine will still be used to evaluate lengths, such as 10pt or 3em, so it is not
possible for an length to exceed the range of values supported by TEX-dimensions (£16383.99999pt),
even though the resulting expression is within the range of fp. So, for example, one can calculate
3cm*10000, but not 3*10000cm.

e Not all of the functions listed in Section 63, have been mapped onto fp equivalents. Of those that have
been, it is not guaranteed that functions will perform in the same way as they do in PGF. Reference
should be made to the documentation for fp.

e In PGF, trigonometric functions such as sin and cos assume arguments are in degrees, and functions
such as asin and acos return results in degrees. Although fp uses radians for such functions, PGF
automatically converts arguments from degrees to radians, and converts results from radians to degrees,
to ensure everything “works properly”.

e The overall speed will actually be slower than using PGF mathematical engine. The calculating power
of £p comes at the cost of an increased processing time.

35.2 Using Fixed Point Arithmetic in PGF and TikZ
The following key is provided to use fp in PGF and TikZ:

/pgf/fixed point arithmetic=(options) (no default)
alias /tikz/fixed point arithmetic
This key will set the key path to /pgf/fixed point, and execute (options). Then it will install the
necessary commands so that the PGF parser will use fp to perform calculations. The best way to use
this key is as an argument to a scope or picture. This means that fp does not always have to be used,
and PGF can use its own mathematical engine at other times, which can lead to a significant reduction
in the time for a document to compile.

Currently there are only a few keys key supported for (options):

/pgf/fixed point/scale results=(factor) (no default)

As noted above, fp can process a far greater range of numbers than PGF and TikZ. In order to use
results from fp in a {pgfpicture} or a {tikzpicture} they need to be scaled. When this key is used
PGF will scale results of any evaluation by (factor). However, as it is not desirable for every part of
every expression to be scaled, scaling will only take place if a special prefix * is used. If * is used at
the beginning of an expression the evaluation of the expression will evaluated and then multiplied by
(factor).

360

\begin{tikzpicture}[fixed point arithmetic={scale results=10"-6}]
\draw [help lines] grid (3,2);

\draw (0,0) -- (2,2);

\draw [red, line width=4pt] (*1.0e6,0) -- (*3.0e6,%*2.0e6);
\end{tikzpicture}

A special case of scaling involves plots of data containing large numbers from files. It is possible to “pre-
process” a file, typically using the application that generates the data, to either precede the relevant
column with * or to perform the scaling as part of the calculation process. However, it may be desirable
for the data in a plot to appear in a table as well, so, two files would be required, one pre-processed for
plotting, and one not. This extra work may be undesirable so the following keys are provided:

/pgf/fixed point/scale file plot x=(factor) (no default)

This key will scale the first column of data read from a file before it is plotted. It is independent
of the scale results key.

/pgf/fixed point/scale file plot y=(factor) (no default)

This key will scale the second column of data read from a file before it is plotted.

/pgf/fixed point/scale file plot z=(factor) (no default)
This key will scale the third column of data read from a file before it is plotted.

361

36 Floating Point Unit Library

by Christian Feuersdnger

\usepgflibrary{fpu} ¥ E}X and plain TgX and pure pgf

\usepgflibrary[fpul] ¥ ConTgXt and pure pgf

\usetikzlibrary{fpu} % EX and plain TX when using TikZ

\usetikzlibrary[fpu] ¥ ConTEXt when using TikZ
The floating point unit (fpu) allows the full data range of scientific computing for use in PGF. Its core
is the PGF math routines for mantissa operations, leading to a reasonable trade—of between speed and
accuracy. It does not require any third—party packages or external programs.

36.1 Overview

The fpu provides a replacement set of math commands which can be installed in isolated placed to achieve
large data ranges at reasonable accuracy. It provides at least'? the IEEE double precision data range,
—1-10%24,...,1-1032%. The absolute smallest number bigger than zero is 1- 107324, The FPU’s relative
precision is at least 1-10~% although operations like addition have a relative precision of 1 -1076.

Note that the library has not really been tested together with any drawing operations. It should be used
to work with arbitrary input data which is then transformed somehow into PGF precision. This, in turn, can
be processed by PGF.

36.2 Usage
/pgf/fpu={(boolean)} (default true)

This key installs or uninstalls the FPU. The installation exchanges any routines of the standard math
parser with those of the FPU: \pgfmathadd will be replaced with \pgfmathfloatadd and so on. Fur-
thermore, any number will be parsed with \pgfmathfloatparsenumber.

1Y2.0e0] \pefkeys{/pgf/fpu}
\pgfmathparse{1+1}\pgfmathresult

The FPU uses a lowlevel number representation consisting of flags, mantissa and exponent'*. To avoid
unnecessary format conversions, \pgfmathresult will usually contain such a cryptic number. Depending
on the context, the result may need to be converted into something which is suitable for PGF processing
(like coordinates) or may need to be typeset. The FPU provides such methods as well.

Use fpu=false to deactivate the FPU. This will restore any change. Please note that this is not
necessary if the FPU is used inside of a TEX group — it will be deactivated afterwards anyway.

It does not hurt to call fpu=true or fpu=false multiple times.

Please note that if the fixed point arithmetics library of PGF will be activated after the FPU, the
FPU will be deactivated automatically.

/pgf/fpu/output format=float|sci|fixed (no default, initially float)
This key allows to change the number format in which the FPU assigns \pgfmathresult.

The predefined choice float uses the low-level format used by the FPU. This is useful for further
processing inside of any library.

1Y2.1776541 1623] \pgfkeys{/pgf/fpu,/pgf/fpu/output format=float}
\pgfmathparse{exp(50)*42}\pgfmathresult

The choice sci returns numbers in the format (mantissa)ye(exponent). It provides almost no computa-
tional overhead.

5.6154816e14 \pgfkeys{/pgf/fpu,/pgf/fpu/output format=scil}
\pgfmathparse{4.22e-8"-2}\pgfmathresult

13To be more precise, the FPU’s exponent is currently a 32 bit integer. That means it supports a significantly larger data,
range than an IEEE double precision number — but if a future TEX version may provide lowlevel access to doubles, this may
change.

14 Users should always use high level routines to manipulate floating point numbers as the format may change in a future
release.

362

The choice fixed returns normal fixed point numbers and provides the highest compatibility with the
PGF engine. It is activated automatically in case the FPU scales results.

0.000000999985 \pgfkeys{/pgf/fpu,/pgf/fpu/output format=fixed}
\pgfmathparse{sqrt(1e-12)}\pgfmathresult

/pgf/fpu/scale results={(scale)} (no default)

A feature which allows semi—automatic result scaling. Setting this key has two effects: first, the output
format for any computation will be set to fixed (assuming results will be processed by PGF’s kernel).
Second, any expression which starts with a star, *, will be multiplied with {(scale)}.

/pgf/fpu/scale file plot x={(scale)} (no default)
/pgf/fpu/scale file plot y={(scale)} (no default)
/pgf/fpu/scale file plot z={(scale)} (no default)

These keys will patch PGF’s plot file command to automatically scale single coordinates by {(scale)}.

The initial setting does not scale plot file.

\pgflibraryfpuifactive{(true-code)}{{false-code)}

This command can be used to execute dependent on whether the FPU has been activated or not.

36.3 Comparison to the fixed point arithmetics library

There are other ways to increase the data range and/or the precision of PGF’s math parser. One of them is
the fp package, preferable combined with PGF’s fixed point arithmetic library. The differences between
the FPU and fp are:

e The FPU supports at least the complete IEEE double precision number range, while fp covers only
numbers of magnitude £1 - 1017,

e The FPU has a uniform relative precision of about 4-5 correct digits. The fixed point library has an
absolute precision which may perform good in many cases — but will fail at the ends of the data range
(as every fixed point routines does).

e The FPU has potential to be faster than fp as it has access to fast mantissa operations using PGF’s
math capabilities (which use TEX registers).

36.4 Command Reference and Programmer’s Manual
36.4.1 Creating and Converting Floats

\pgfmathfloatparsenumber{(z)}

Reads a number of arbitrary magnitude and precision and stores its result into \pgfmathresult as
floating point number m - 10¢ with mantissa and exponent base 10.

The algorithm and the storage format is purely text-based. The number is stored as a triple of flags, a
positive mantissa and an exponent, such as

1Y2.0€0] \pgfmathfloatparsenumber{2}
\pgfmathresult

Please do not rely on the low-level representation here, use \pgfmathfloattomacro (and its variants)
and \pgfmathfloatcreate if you want to work with these components.

The flags encoded in \pgfmathresult are represented as a digit where ‘0’ stands for the number +0-10°,
‘1’ stands for a positive sign, ‘2’ means a negative sign, ‘3’ stands for ‘not a number’, ‘4’ means +oco
and ‘5’ stands for —oo.

The mantissa is a normalized real number m € R, 1 < m < 10. It always contains a period and at least
one digit after the period. The exponent is an integer.

Examples:

Flags: 0; Mantissa 0.0; Exponent O.

363

\pgfmathfloatparsenumber{0}
\pgfmathfloattomacro{\pgfmathresult }{\F}{\M}{\E}
Flags: \F; Mantissa \M; Exponent \E.

Flags: 1; Mantissa 2.0; Exponent -1.

\pgfmathfloatparsenumber{0.2}
\pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
Flags: \F; Mantissa \M; Exponent \E.

Flags: 1; Mantissa 4.2; Exponent 1.

\pgfmathfloatparsenumber{42}
\pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
Flags: \F; Mantissa \M; Exponent \E.

Flags: 1; Mantissa 2.05; Exponent 3.

\pgfmathfloatparsenumber{20.5E+2}
\pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
Flags: \F; Mantissa \M; Exponent \E.

Flags: 1; Mantissa 1.0; Exponent 6.

\pgfmathfloatparsenumber{le6}
\pgfmathfloattomacro{\pgfmathresult}{\F}{\M}\E}
Flags: \F; Mantissa \M; Exponent \E.

Flags: 1; Mantissa 5.21513; Exponent -11.

\pgfmathfloatparsenumber{5.21513e-11}
\pgfmathfloattomacro{\pgfmathresult}{\F}{\M}{\E}
Flags: \F; Mantissa \M; Exponent \E.

The argument {(x)} may be given in fixed point format or the scientific ‘e’ (or ‘E’) notation. The scien-
tific notation does not necessarily need to be normalized. The supported exponent range is (currently)
only limited by the TEX-integer range (which uses 31 bit integer numbers).

/pgf/fpu/handlers/empty number={({input)}{(unreadable part)} (no default)

This command key is invoked in case an empty string is parsed inside of \pgfmathfloatparsenumber.
You can overwrite it to assign a replacement \pgfmathresult (in float!).

The initial setting is to invoke invalid number, see below.

/pgf/fpu/handlers/invalid number={(input)}{{unreadable part)} (no default)

This command key is invoked in case an invalid string is parsed inside of \pgfmathfloatparsenumber.
You can overwrite it to assign a replacement \pgfmathresult (in float!).

The initial setting is to generate an error message.

/pgf/fpu/handlers/wrong lowlevel format={(input)}{{unreadable part)} (no default)

This command key is invoked whenever \pgfmathfloattoregisters or its variants encounter something
which is no properly formatted lowlevel floating point number. As for invalid number, this key may
assign a new \pgfmathresult (in floating point) which will be used instead of the offending {{input)}.

The initial setting is to generate an error message.

\pgfmathfloatgparsenumber{(z)}

The same as \pgfmathfloatparsenumber, but does not perform sanity checking.

\pgfmathfloattofixed{(z)}

Converts a number in floating point representation to a fixed point number. It is a counterpart to
\pgfmathfloatparsenumber. The algorithm is purely text based and defines \pgfmathresult as a
string sequence which represents the floating point number {(z)} as a fixed point number (of arbitrary
precision).

Flags: 1; Mantissa 5.2; Exponent -4—0.00052

364

\pgfmathfloatparsenumber{0.00052}
\pgfmathfloattomacro{\pgfmathresult }{\F}{\M}{\E}
Flags: \F; Mantissa \M; Exponent \E

\to

\pgfmathfloattofixed{\pgfmathresult}
\pgfmathresult

Flags: 1; Mantissa 1.23456; Exponent 6—1234560.00000000

\pgfmathfloatparsenumber{123.456e4}
\pgfmathfloattomacro{\pgfmathresult{\F}{\M}{\E}
Flags: \F; Mantissa \M; Exponent \E

\to

\pgfmathfloattofixed{\pgfmathresult}
\pgfmathresult

\pgfmathfloattoint{(z)}
Converts a number from low-level floating point representation to an integer (by truncating the fractional
part).

123456 \pgfmathfloatparsenumber{123456}
\pgfmathfloattoint{\pgfmathresult}
\pgfmathresult

See also \pgfmathfloatint which returns the result as float.

\pgfmathfloattosci{({float)}
Converts a number from low-level floating point representation to scientific format, 1.234e4. The result
will be assigned to the macro \pgfmathresult.

\pgfmathfloatvalueof{(float)}
Expands a number from low-level floating point representation to scientific format, 1.234e4.

Use \pgfmathfloatvalueof in contexts where only expandable macros are allowed.

\pgfmathfloatcreate{(flags)}{ (mantissa)}{(exponent)}

Defines \pgfmathresult as the floating point number encoded by {(flags)}, {(mantissa)} and
{({exponent)?.

All arguments are characters and will be expanded using \edef.

Flags: 1; Mantissa 1.0; Exponent 327

\pgfmathfloatcreate{1}{1.0}{327}
\pgfmathfloattomacro{\pgfmathresult}{\F}{\M}\E}
Flags: \F; Mantissa \M; Exponent \E

\pgfmathfloatifflags{(floating point number)}{{flag)H (true-code)}{(false-code)}
Invokes {(true-code)} if the flag of {(floating point number)} equals {(flag)} and {(false-code)} other-
wise.

The argument {(flag)} can be one of
0 to test for zero,

1 to test for positive numbers,

+ to test for positive numbers,

2 to test for negative numbers,

- to test for negative numbers,

3 for “not-a-number”,

4 for +o0,

5 for —oo.

365

It’s not zero! It’s positive!lt’s not negative! It’s positive!lt’s not negative!

\pgfmathfloatparsenumber{42}

\pgfmathfloatifflags{\pgfmathresult}{0}{It’s zero!}{It’s not zero!}
\pgfmathfloatifflags{\pgfmathresult}{1}{It’s positive!}{It’s not positive!}
\pgfmathfloatifflags{\pgfmathresult}{2}{It’s negative!}{It’s not negative!}

% or, equivalently
\pgfmathfloatifflags{\pgfmathresult}{+}{It’s positive!}{It’s not positive!}
\pgfmathfloatifflags{\pgfmathresult}{-}{It’s negative!}{It’s not negative!}

\pgfmathfloattomacro{(z)}{(flagsmacro)}H {mantissamacro)}{{exponentmacro)}

Extracts the flags of a floating point number {(z)3} to {(flagsmacro)}, the mantissa to {{mantissamacro)}
and the exponent to {({exponentmacro)}.

\pgfmathfloattoregisters{(z)}{(flagscount)}{(mantissadimen)}{(exponentcount)}

Takes a floating point number {(z)} as input and writes flags to count register {({flagscount)}, mantissa
to dimen register {(mantissadimen)} and exponent to count register {(ezponentcount)?.

Please note that this method rounds the mantissa to TEX-precision.

\pgfmathfloattoregisterstok{(z)} (flagscount){(mantissatoks)}{{exponentcount)}

A variant of \pgfmathfloattoregisters which writes the mantissa into a token register. It maintains
the full input precision.

\pgfmathfloatgetflags{(z)}{({flagscount)}
Extracts the flags of {(z)} into the count register {(flagscount)}.

\pgfmathfloatgetflagstomacro{(z)}{{\macro)}
Extracts the flags of {(z)} into the macro (\macro).

\pgfmathfloatgetmantissa{(z)}{(mantissadimen)}

Extracts the mantissa of {(z)} into the dimen register {(mantissadimen)}.

\pgfmathfloatgetmantissatok{(x)}{(mantissatoks)}

Extracts the mantissa of {(z)} into the token register {(mantissatoks)}.

\pgfmathfloatgetexponent{(z)}{({exponentcount)}
Extracts the exponent of {(z)} into the count register {(exponentcount)}.

36.4.2 Symbolic Rounding Operations

Commands in this section constitute the basic level implementations of the rounding routines. They work
symbolically, i.e. they operate on text, not on numbers and allow arbitrarily large numbers.

\pgfmathroundto{(z)}
Rounds a fixed point number to prescribed precision and writes the result to \pgfmathresult.

The desired precision can be configured with /pgf/number format/precision, see section 66. This
section does also contain application examples.

Any trailing zeros after the period are discarded. The algorithm is purely text based and allows to deal
with precisions beyond TEX’s fixed point support.

As a side effect, the global boolean \ifpgfmathfloatroundhasperiod will be set to true if and only if
the resulting mantissa has a period. Furthermore, \ifpgfmathfloatroundmayneedrenormalize will be
set to true if and only if the rounding result’s floating point representation would have a larger exponent

than {(z)}.

1 \pgfmathroundto{1}
\pgfmathresult

4.69 \pgfmathroundto{4.685}
\pgfmathresult

366

20000

\pgfmathroundto{19999.9996}
\pgfmathresult

\pgfmathroundtozerofill{(z)}

A variant of \pgfmathroundto which always uses a fixed number of digits behind the period. It fills

missing digits with zeros.

1.00

4.69

20000.00

\pgfmathfloatround{(z)}

\pgfmathroundtozerofill{1}
\pgfmathresult

\pgfmathroundto{4.685}
\pgfmathresult

\pgfmathroundtozerofill{19999.9996}
\pgfmathresult

Rounds a normalized floating point number to a prescribed precision and writes the result to

\pgfmathresult.

The desired precision can be configured with /pgf/number format/precision, see section 66.

This method employs \pgfmathroundto to round the mantissa and applies renormalization if necessary.

As a side effect, the global boolean \ifpgfmathfloatroundhasperiod will be set to true if and only if
the resulting mantissa has a period.

5.26el

lel

\pgfmathfloatparsenumber{52.5864}
\pgfmathfloatround{\pgfmathresult}
\pgfmathfloattosci{\pgfmathresult}
\pgfmathresult

\pgfmathfloatparsenumber{9.995}
\pgfmathfloatround{\pgfmathresult}
\pgfmathfloattosci{\pgfmathresult}
\pgfmathresult

\pgfmathfloatroundzerofill{(z)}

A variant of \pgfmathfloatround produces always the same number of digits after the period (it
includes zeros if necessary).

5.26el

1.00el

\pgfmathfloatparsenumber{52.5864}
\pgfmathfloatroundzerofill{\pgfmathresult}
\pgfmathfloattosci{\pgfmathresult}
\pgfmathresult

\pgfmathfloatparsenumber{9.995}
\pgfmathfloatroundzerofill{\pgfmathresult}
\pgfmathfloattosci{\pgfmathresult}
\pgfmathresult

36.4.3 Math Operations Commands

This sections describes some of the replacement commands in more details.
Please note that these commands can be used even if the fpu as such has not been activated — it is

sufficient to load the library.

\pgfmathfloat(op)

Methods of this form constitute the replacement operations where (op) can be any of the well-known

math operations.

Thus, \pgfmathfloatadd is the counterpart for \pgfmathadd and so on. The semantics and number of
arguments is the same, but all input and output arguments are expected to be floating point numbers.

367

\pgfmathfloattoextentedprecision{{z)}
Renormalizes {(z)} to extended precision mantissa, meaning 100 < m < 1000 instead of 1 < m < 10.
The ‘extended precision’ means we have higher accuracy when we apply pgfmath operations to mantissas.

The input argument is expected to be a normalized floating point number; the output argument is a
non-normalized floating point number (well, normalized to extended precision).

The operation is supposed to be very fast.

\pgfmathfloatsetextprecision{(shift)}
Sets the precision used inside of \pgfmathfloattoextentedprecision to {{shift)}.

The different choices are
0 normalization to 0 <m<1 (disable extended precision)
1 normalization to 10 <m <100
2 normalization to 100 < m < 1000 (default of \pgfmathfloattoextentedprecision)
3 normalization to 1000 < m < 10000

\pgfmathfloatlessthan{(z)}{({y)}

Defines \pgfmathresult as 1.0 if (z) < (y), but 0.0 otherwise. It also sets the global TEX-boolean
\pgfmathfloatcomparison accordingly. The arguments {(z)} and {(y)} are expected to be numbers
which have already been processed by \pgfmathfloatparsenumber. Arithmetics is carried out using
TEX-registers for exponent- and mantissa comparison.

\pgfmathfloatmultiplyfixed{(float)}{(fized)}

Defines \pgfmathresult to be (float) - (fizred) where (float) is a floating point number and (fized) is a
fixed point number. The computation is performed in floating point arithmetics, that means we compute
m - (fized) and renormalizes the result where m is the mantissa of {float).

This operation renormalizes (float) with \pgfmathfloattoextentedprecision before the operation,
that means it is intended for relatively small arguments of (fized). The result is a floating point number.

\pgfmathfloatifapproxequalrel{(a)}{(b)}{(true-code)}{(false-code)}

Computes the relative error between (a) and (b) (assuming (b)# 0) and invokes (true-code) if the relative
error is below /pgf/fpu/rel thresh and (false-code) if that is not the case.

The input arguments will be parsed with \pgfmathfloatparsenumber.

/pgf/fpu/rel thresh={(number)} (no default, initially 1e-4)

A threshold used by \pgfmathfloatifapproxequalrel to decide whether numbers are approxi-
mately equal.

\pgfmathfloatshift{(z)}{(num)}

Defines \pgfmathresult to be (z)-10{"™). The operation is an arithmetic shift base ten and modifies
only the exponent of {(z)}. The argument {(num)} is expected to be a (positive or negative) integer.

\pgfmathfloatabserror{(z)}{(y)}

Defines \pgfmathresult to be the absolute error between two floating point numbers z and y, |z — y|
and returns the result as floating point number.

\pgfmathfloatrelerror{(z)}{(y)}

Defines \pgfmathresult to be the relative error between two floating point numbers and y, |z —y|/|y|
and returns the result as floating point number.

\pgfmathfloatint{(z)}

Returns the integer part of the floating point number {(z)}, by truncating any digits after the period.
This methods is applied to the absolute value |z|, so negative numbers are treated in the same way as
positive ones.

The result is returned as floating point number as well.

See also \pgfmathfloattoint which returns the number in integer format.

368

\pgfmathlog{(z)}
Defines \pgfmathresult to be the natural logarithm of {(x)}, In({z)). This method is logically the
same as \pgfmathln, but it applies floating point arithmetics to read number {{z)} and employs the

logarithm identity
In(m - 10°) = In(m) + e - In(10)
to get the result. The factor In(10) is a constant, so only In(m) with 1 < m < 10 needs to be computed.
This is done using standard pgf math operations.
Please note that {(z)} needs to be a number, expression parsing is not possible here.

If {(z)} is not a bounded positive real number (for example (z) < 0), \pgfmathresult will be empty,
no error message will be generated.

-15.7452 \pgfmathlog{1l.452e-7}
\pgfmathresult

20.28096 \pgfmathlog{6.426e+8}
\pgfmathresult

36.4.4 Accessing the Original Math Routines for Programmers

As soon as the library is loaded, every private math routine will be copied to a new name. This allows
library and package authors to access the TEX-register based math routines even if the FPU is activated.
And, of course, it allows the FPU as such to perform its own mantissa computations.

The private implementations of PGF math commands, which are of the form \pgfmath(name)®@, will be
available as\pgfmath@basic@({name)@ as soon as the library is loaded.

369

37 Lindenmayer System Drawing Library

37.1 Overview

Lindenmayer systems (also commonly known as “L-systems”), were originally developed by Aristid Linden-
mayer as a theory of algae growth patterns and then subsequently used to model branching patterns in
plants and produce fractal patterns. Typically, an L-system consists of a set of symbols, each of which is
associated with some graphical action (such as “turn left” or “move forward”) and a set of rules (“produc-
tion” or “rewrite” rules). Given a string of symbols, the rewrite rules are applied several times and the when
resulting string is processed the action associated with each symbol is executed.

In PGF, L-systems can be used to create simple 2-dimensional fractal patterns. ..

\begin{tikzpicture}

\pgfdeclarelindenmayersystem{Koch curve}{
\rule{F -> F-F++F-F}

¥

\shadedraw [top color=white, bottom color=blue!50, draw=blue!50!black]
[1-system={Koch curve, step=2pt, angle=60, axiom=F++F++F, order=31}]
lindenmayer system -- cycle;

\end{tikzpicture}

..and “plant like” patterns. ..

\begin{tikzpicture}

\draw [green!50!black, rotate=90]
[1-system={rule set={F -> FF-[-F+F]+[+F-F]}, axiom=F, order=4, step=2pt,
randomize step percent=25, angle=30, randomize angle percent=5}]
lindenmayer system;

\end{tikzpicture}

...but it is important to bear in mind that even moderately complex L-systems can exceed the available
memory of TEX, and can be very slow. If possible, you are advised to increase the main memory and save
stack to their maximum possible values for your particular TEX distribution. However, even by doing this
you may find you still run out of memory quite quickly.

For an excellent introduction to L-systems (containing some “really cool” pictures — many of which are
sadly not possible in PGF) see The Algorithmic Beauty of Plants by Przemyslaw Prusinkiewicz and Aristid
Lindenmayer (which is freely available via the internet).

\usepgflibrary{lindenmayersystems} Y ERX and plain T and pure pgf
\usepgflibrary[lindenmayersystems] Y ConTXt and pure pgf
\usetikzlibrary{lindenmayersystems} % E}X and plain TgX when using TikZ
\usetikzlibrary[lindenmayersystems] % ConTXt when using TikZ

This PGF-library provides basic commands for defining and using simple L-systems. The TikZ-library
provides, furthermore, a front end for using L-systems in TikZ.

37.1.1 Declaring L-systems

Before an L-system can be used, it must be declared using the following command:

\pgfdeclarelindenmayersystem{(name)}{(specification)}

This command declares a Lindenmayer system called (name). The (specification) argument contains a
description of the L-system’s symbols and rules. Two commands \symbol and \rule are only defined
when the (specification) argument is executed.

\symbol{(name)}{{code)}
This defines a symbol called (name) for a specific L-system, and associates it with (code).

A symbol should consist of a single alpha-numeric character (i.e., A-Z, a-z or 0-9). The symbols F,
f, +, -, [and] are available by default so do not need to be defined for each L-system. However, if
you are feeling adventurous, they can be redefined for specific L-systems if required. The L-system
treats the default symbols as follows (the commands they execute are described below):

370

F move forward a certain distance, drawing a line. Uses \pgflsystemdrawforward.

e f move forward a certain distance, without drawing a line. Uses \pgflsystemmoveforward.

+ turn left by some angle. Uses \pgflsystemturnleft.

- turn right by some angle. Uses \pgflsystemturnright.

[save the current state (i.e., the position and direction). Uses \pgflsystemsavestate.
e] restore the last saved state. Uses \pgflsystemrestorestate.

The symbols [and] act like a stack: [pushes the state of the L-system on to the stack, and]
pops a state off the stack.
When (code) is executed the transformation matrix is set up so that the origin is at the current
position and the positive x-axis “points forward”, so \pgfpathlineto{\pgfpoint{lcm}{Ocm}}
draws a line lecm forward.

The following keys can alter the production of an L-system. However, thy do not store values in
themselves.

/pgf/lindenmayer system/step=(length) (no default, initially 5pt)
How far the L-system moves forward if required. This key sets the TEX dimension
\pgflsystemstep.

/pgf/lindenmayer system/randomize step percent=(percentage) (no default, initially 0)

If the step is to be randomized, this key specifies by how much. The value is stored in the TEX
macro \pgflsystemrandomizesteppercent.

/pgf/lindenmayer system/left angle=(angle) (no default, initially 90)
This key sets the angle through which the L-system turns when it turns left. The value is
stored in the TEX macro \pgflsystemrleftangle.

/pgf/lindenmayer system/right angle=(angle) (no default, initially 90)
This key sets the angle through which the L-system turns when it turns right. The value is
stored in the TEX macro \pgflsystemrrightangle.

/pgf/lindenmayer system/randomize angle percent=(percentage) (no default, initially 0)
If the angles are to be randomized, this key specifies by how much. The value is stored in the
TEX macro \pgflsystemrandomizeanglepercent.

For speed and convenience, when the code for a symbol is executed the following commands are
available.
\pgflsystemcurrentstep
The current “step” of the L-system (i.e., how far the system will move forward if required).
This is initially set to the value in the TEX-dimensions \pgflsystemstep, but the actual value
may be changed if \pgflsystemrandomizestep is used (see below).
\pgflsystemcurrentleftangle
The angle the L-system will turn when it turns left. The value stored in this macro may be
changed if \pgflsystemrandomizeleftangle is used.
\pgflsystemcurrentrightangle
The angle the L-system will turn when it turns right. The value stored in this macro may be
changed if \pgflsystemrandomizerightangle is used.

The following commands may be useful if you wish to define your own symbols.

\pgflsystemrandomizestep
Randomizes the value in \pgflsystemcurrentstep according to the value of the randomize
step percent key.

\pgflsystemrandomizeleftangle

Randomizes the value in \pgflsystemcurrentleftangle according to the value of the
randomize angle percent key.

371

\pgflsystemrandomizerightangle

Randomizes the value in \pgflsystemcurrentrightangle according to the value of the
randomize angle key.

\pgflsystemdrawforward

Move forward in the current direction, by \pgflsystemcurrentstep, drawing a line in
the process. This macro calls \pgflsystemrandomizestep. Internally, PGF simply shifts
the transformation matrix in the positive direction of the current (transformed) x-axis by
\pgflsystemstep and then executes a line-to to the (newly transformed) origin.

\pgflsystemmoveforward

Move forward in the current direction, by \pgflsystemcurrentstep, without drawing a line.
This macro calls \pgflsystemrandomizestep. PGF executes a transformation as above, but
executes a move-to to the (newly transformed) origin.

\pgflsystemturnleft

Turn left by \pgflsystemcurrentleftangle. Internally, PGF simply rotates the transforma-
tion matrix. This macro calls \pgflsystemrandomizeleftangle.

\pgflsystemturnright

Turn right by \pgflsystemcurrentrightangle. Internally, PGF simply rotates the transfor-
mation matrix. This macro calls \pgflsystemrandomizerightangle.

\pgflsystemsavestate

Save the current position and orientation. Internally, PGF simply starts a new TEX-group.

\pgflsystemrestorestate

Restore the last saved position and orientation. Internally, PGF closes a TEX-group, restoring
the transformation matrix of the outer scope, and a move-to command is executed to the
(transformed) origin.

\rule{(head)->{body)}

Declare a rule. (head) should consist of a single symbol, which need not have been declared using
\symbol or exist as a default symbol (in fact, the more interesting L-systems depend on using
symbols with no corresponding code, to control the “growth” of the system). (body) consists of a
string of symbols, which again need not necessarily have any code associated with them.

As an example, the following shows an L-system that uses some of these commands. This example
illustrates the point that some symbols, in this case A and B, do not have to have code associated with
them. They simply control the growth of the system.

\pgfdeclarelindenmayersystem{Hilbert curve}{
\symbol{X}{\pgflsystemdrawforward}
\symbol{+}{\pgflsystemturnright} % Explicitly define + and - symbols.
\symbol{-}{\pgflsystemturnleft}
\rule{A -> +BX-AXA-XB+}
\rule{B -> -AX+BXB+XA-}

}

\tikz\draw[lindenmayer system={Hilbert curve, axiom=A, order=4, angle=90}]
lindenmayer system;

37.2 Using Lindenmayer Systems
37.2.1 Using L-Systems in PGF
The following command is used to run an L-system in PGF:

\pgflindenmayersystem{(name)}{{aziom)}{{order)}

Runs the L-system called (name) using the input string (aziom) for (order) iterations. In general, prior
to calling this command the transformation matrix should be set appropriately for shifting and rotating,
and a move-to to the (transformed) origin should be executed. This origin will be where the L-system
starts. In addition the relevant keys should be set appropriately.

372

g \begin{tikzpicture}
§ § \draw [help lines] grid (3,2);

\pgfset{lindenmayer system/.cd, angle=60, step=2pt}
NS gi F \foreach \x/\y in {Ocm/icm, 1.5cm/1.5cm, 2.5cm/0.5cm, 1cm/Ocm}{

\pgftransformshift{\pgfqpoint{\x}{\y}}
\pgfpathmoveto{\pgfpointorigin}

P \pgflindenmayersystem{Koch curve}{F++F++F}{2}
\pgfusepath{stroke}

\end{tikzpicture}

Note that, it is perfectly feasible for an L-system to define special symbols which perform the move-to
and use-path operations.

37.2.2 Using L-Systems in TikZ

In TikZ, an L-system is created using a path operation. However, TikZ is more flexible regarding the
positioning of the L-system and also provides keys to create L-systems “on-line”.

\path ... lindenmayer system [(keys)] ...;

This will run an L-system according to the parameters specified in (keys) (which can also contain normal
keys such as draw or thin). The syntax is flexible regarding the L-system parameters and the following
all do the same thing:

\draw lindenmayer system [lindenmayer system={Hilbert curve, axiom=4, order=3}];
\draw [lindenmayer system={Hilbert curve, axiom=4, order=3}] lindenmayer system;

\tikzset{lindenmayer system={Hilbert curve, axiom=4, order=3}}
\draw lindenmayer system;

\path ... l-system [(keys)] ...;

A more compact version of the lindenmayer system path command.

This library adds some additional keys for specifying L-systems. These keys only work in TikZ and all
have the same path, namely, /pgf/lindenmayer system, but so you do not have to keep repeating this path
the following keys are provided:

/pgf/lindenmayer system={(keys)} (style, no default)
alias /tikz/lindenmayer system

This key changes the key path to /pgf/lindenmayer systems and executes (keys).

/pgf/1l-system={({keys)} (style, no default)
alias /tikz/l-system
A more compact version of the previous key.

/pgf/lindenmayer system/name={(name)} (no default)
Set the name for the L-system.

/pgf/lindenmayer system/axiom={(string)} (no default)

Set the axiom (or input string) for the L-system.

/pgf/lindenmayer system/order={(integer)} (no default)

Set the number of iterations the L-system will perform.

/pgf/lindenmayer system/rule set={(list)} (no default)

This key allows an (anonymous) L-system to be declared “on-line”. There is, however, a restriction
that only the default symbols can be used for drawing (empty symbols can still be used to control the
growth of the system). The rules in (list) should be separated by commas.

373

\tikz[rotate=65]\draw [green!60!black] 1l-system
[1-system={rule set={F -> F[+F]F[-F]}, axiom=F, order=4, angle=25,step=3pt}];

/pgf/lindenmayer system/anchor={anchor) (no default)
Be default, when this key is not used, the L-system will start from the last specified coordinate. By
using this key, the L-system will be placed inside a special (rectangle) node which can be positioned
using (anchor).

\begin{tikzpicture} [1-system={step=1.75pt, order=5, angle=60}]
EN \pgfdeclarelindenmayersystem{Sierpinski trianglel}{
83) Lt \symbol{X}{\pgflsystemdrawforward}
%& ¥ \symbol{Y}{\pgflsystemdrawforward}
N \rule{X -> Y-X-Y}
\rule{Y -> X+Y+X}
}
\draw [help lines] grid (3,2);
\draw [red] (0,0) 1l-system
[1-system={Sierpinski triangle, axiom=+++X, anchor=south westl}];
\draw [blue] (3,2) l-system
[1-system={Sierpinski triangle, axiom=X, anchor=north eastl}];
\end{tikzpicture}

&

374

38 Matrix Library

\usetikzlibrary{matrix} % EFX and plain TX
\usetikzlibrary[matrix] % ConTgKt
This library packages defines additional styles and options for creating matrices.

38.1 Matrices of Nodes

A matriz of nodes is a TikZ matrix in which each cell contains a node. In this case it is bothersome having
to write \node{ at the beginning of each cell and }; at the end of each cell. The following key simplifies

typesetting such matrices.

/tikz/matrix of nodes (no value)

Conceptually, this key adds \node{ at the beginning and }; at the end of each cell and sets the anchor
of the node to base. Furthermore, it adds the option name option to each node, where the name is set to
(matriz name)-(row number)-{column number). For example, if the matrix has the name my matrix,
then the node in the upper left cell will get the name my matrix-1-1.

\begin{tikzpicture}
816 \matrix (magic) [matrix of nodes]
! ' \\
8&1&6
Lz 3&5&7\\
4&9 & 2\\
};

\draw[thick,red,->] (magic-1-1) |- (magic-2-3);
\end{tikzpicture}

You may wish to add options to certain nodes in the matrix. This can be achieved in three ways.
1. You can modify, say, the row 2 column 5 style to pass special options to this particular cell.

\begin{tikzpicture}[row 2 column 3/.style=red]

816 \matrix [matrix of nodes]
357 { W
8&1&6
Ll 38587\
4% 9 & 2\\
Ig
\end{tikzpicture}

2. At the beginning of a cell, you can use a special syntax. If a cell starts with a vertical bar, then
everything between this bar and the next bar is passed on to the node command.

\begin{tikzpicture}
816 \matrix [matrix of nodes]
35 7 { W
8&1& 6
L£982 385 & Ilredll 7 \\
4 & 9 & 2 \\
};
\end{tikzpicture}

You can also use an option like | [red] (seven)| to give a different name to the node.
Note that the & character also takes an optional argument, which is an extra column skip.

\begin{tikzpicture}
8 1 6 \matrix [matrix of nodes]
3 5 7 {
4 9 9 8 &[1cm] 1 &[3mm] |[red]l| 6 \\
3 & 5& | [redl| 7 \\
4 & 9 & 2 \\
};
\end{tikzpicture}

375

3. If your cell starts with a \path command or any command that expands to \path, which includes
\draw, \node, \fill and others, the \node{ startup code and the }; code are suppressed. This
means that for this particular cell you can provide a totally different contents.

\begin{tikzpicture}
81 6 \matrix [matrix of nodes]
i)
8 & 1 & 6 \\
49 2 3 & 5 & \node[red]{7}; \draw(0,0) circle(10pt);\\
489 &2\\
g
\end{tikzpicture}
/tikz/matrix of math nodes (no value)

This style is almost the same as the previous style, only $ is added at the beginning and at the end of
each node, so math mode will be switched on in all nodes.

\begin{tikzpicture}
dg a1 de \matrix [matrix of math nodes]
as as ar {
a4 ag a2 a_8 & a_1 & a_6 \\
a_3 & ab & |[red]l| a_7 \\
a4 & a9k a_2 \\
I
\end{tikzpicture}
/tikz/nodes in empty cells=(true or false) (default true)

When set to true, a node (with an empty contents) is put in empty cells. Normally, empty cells are
just, well, empty. The style can be used together with both a matrix of nodes and a matrix of math
nodes.

\begin{tikzpicture}
@ @ \matrix [matrix of math nodes,nodes={circle,draw}]
& a_6 \\

{
® @
& & a_7 \\
& a_ 9 & \\
g

\end{tikzpicture}

(O
S W oo

\begin{tikzpicture}
@ O \matrix [matrix of math nodes,nodes={circle,draw},nodes in empty cells]
o
(sX=)o |5,

\end{tikzpicture}

& & a_6 \\
& & a_7 \\
& a9k \\

PP
S W 0

38.2 End-of-Lines and End-of-Row Characters in Matrices of Nodes

Special care must be taken about the usage of the \\ command inside a matrix of nodes. The reason is that
this character is overloaded in TEX: On the one hand, it is used to denote the end of a line in normal text;
on the other hand it is used to denote the end of a row in a matrix. Now, if a matrix contains node which
in turn may have multiple lines, it is unclear which meaning of \\ should be used.

This problem arises only when you use the text width option of nodes. Suppose you write a line like

\matrix [text width=b5cm,matrix of nodes]
{
first row & upper line \\ lower line \\
second row & hmm \\
};

This leaves TEX trying to riddle out how many rows this matrix should have. Do you want two rows
with the upper right cell containing a two-line text. Or did you mean a three row matrix with the second
row having only one cell?

Since TEX is not clairvoyant, the following rules are used:

376

1. Inside a matrix, the \\ command, by default, signals the end of the row, not the end of a line in a cell.

2. However, there is an exception to this rule: If a cell starts with a TEX-group (this is, with {), then
inside this first group the \\ command retains the meaning of “end of line” character. Note that this
special rule works only for the first group in a cell and this group must be at the beginning.

The net effect of these rules is the following: Normally, \\ is an end-of-row indicator; if you want to
use it as an end-of-line indicator in a cell, just put the whole cell in curly braces. The following example
illustrates the difference:

\begin{tikzpicture}
row 1 upper line ‘ \matrix [matrix of nodes,nodes={text width=16mm,draw}]
- {
lower line row 1 & upper line \\ lower line \\
row 2 hmm ‘ row 2 & hmm \\
g
\end{tikzpicture}
\begin{tikzpicture}
row 1 upper line \matrix [matrix of nodes,nodes={text width=16mm,draw}]
lower line {
’rowr? hmm row 1 & {upper line \\ lower linel} \\
row 2 & hmm \\
};
\end{tikzpicture}

Note that this system is not fool-proof. If you write things like a&b{c\\d}\\ in a matrix of nodes, an
error will result (because the second cell did not start with a brace, so \\ retained its normal meaning and,
thus, the second cell contained the text b{c, which is not balanced with respect to the number of braces).

38.3 Delimiters

Delimiters are parentheses or braces to the left and right of a formula or a matrix. The matrix library offers
options for adding such delimiters to a matrix. However, delimiters can actually be added to any node that
has the standard anchors north, south, north west and so on. In particular, you can add delimiters to any
rectangle box. They are implemented by “measuring the height” of the node and then adding a delimiter
of the correct size to the left or right using some after node magic.

/tikz/left delimiter=(delimiter) (no default)

This option can be given to a any node that has the standard anchors north, south and so on. The
(delimiter) can be any delimiter that is acceptable to TEX’s \left command.

\begin{tikzpicture}
Oy @1 @ \matrix [matrix of math nodes,left delimiter=(,right delimiter=\}]
asz as arg {
a4 ag a2 3_8 & a_1 & a_6 \\
a_3 & ab & a7 \\
ad & a9 &a?2\\
g
\end{tikzpicture}

]

{$\displaystyle\int_0"1 x\,dx$};
\end{tikzpicture}

]

1 \begin{tikzpicture}
/ 7 @hE \node [fill=red!20,left delimiter=(,right delimiter=\}]
0

/tikz/every delimiter (style, initially empty)

This style is executed for every delimiter. You can use it to shift or color delimiters or do whatever.

/tikz/every left delimiter (style, initially empty)

This style is additionally executed for every left delimiter.

377

\begin{tikzpicture}
Uy @1 O [every left delimiter/.style={red,xshift=1ex},
every right delimiter/.style={xshift=-1lex}]

az as ar
a4 Qg9 Qg }matrix [matrix of math nodes,left delimiter=(,right delimiter=\}]
a8 & a_1l & a_6 \\
a_3 & ab & a7 \\
a4 & a_9 & a_2 \\
s
\end{tikzpicture}

]

/tikz/right delimiter=(delimiter) (no default)

Works as above.
/tikz/every right delimiter (style, initially empty)

Works as above.
(no default)

/tikz/above delimiter=(delimiter)
This option allows you to add a delimiter above the node. It is implementing by rotating a left delimiter.

———— \begin{tikzpicture}

\matrix [matrix of math nodes,’
tg @ @y left delimiter=\|,right delimiter=\rmoustache,%
above delimiter=(,below delimiter=\}]

as as ay
ays a9 G {
a8&al&asb\\
Y a3 & ab&a7\\
ad & a9 &a?2\\
};
\end{tikzpicture}

]
/tikz/every above delimiter (style, initially empty)

Works as above.

/tikz/below delimiter=(delimiter) (no default)
Works as above.
/tikz/every below delimiter (style, initially empty)

Works as above.

378

39 Mindmap Drawing Library

\usetikzlibrary{mindmap} % EGX and plain TX
\usetikzlibrary[mindmap] % ConTXt

This packages provides styles for drawing mindmap diagrams.

39.1 Overview

This library is intended to make the creation of mindmaps or concept maps easier. A mindmap is a graphical
representation of a concept together with related concepts and annotations. Mindmaps are, essentially, trees,
possibly with a few extra edges added, but they are usually drawn in a special way: The root concept is
placed in the middle of the page and is drawn as a huge circle, ellipse, or cloud. The related concepts then
“leave” this root concept via branch-like tendrils.

The mindmap library of TikZ produces mindmaps that look a bit different from the standard mindmaps:
While the big root concept is still a circle, related concepts are also depicted as (smaller) circles. The related
concepts are linked to the root concept via organic-looking connections. The overall effect is visually rather
pleasing, but readers may not immediately think of a mindmap when they see a picture created with this
library.

Although it is not strictly necessary, you will usually create mindmaps using TikZ’s tree mechanism
and some of the styles and macros of the package work best when used inside trees. However, it is still
possible and sometimes necessary to treat parts of a mindmap as a graph with arbitrary edges and this is
also possible.

39.2 The Mindmap Style

Every mindmap should be put in a scope or a picture where the mindmap style is used. This style installs
some internal settings.

/tikz/mindmap (style, no value)

Use this style with all pictures or at least scopes that contain a mindmap. It installs a whole bunch of
settings that are useful for drawing mindmaps.

Root concept Child concept

\tikz[mindmap,concept color=red!50]
\node [concept] {Root concept}
child[grow=right] {node[concept] {Child concept}};

The sizes of concepts are predefined in such a way that a medium-size mindmap will fit on an A4 page
(more or less).

/tikz/every mindmap (style, no value)

This style is included by the mindmap style. Change this style to add special settings to your
mindmaps.

379

\tikz[large mindmap,concept color=red!50]
\node [concept] {Root concept}
child[grow=right] {nodel[concept] {Child conceptl}};

Remark: Note that mindmap re-defines font sizes and sibling angle depending on the current
concept level (i.e. inside of level 1 concept, level 2 concept etc.). Thus, if you need to redefine
these variables, use

\tikzset{level 1 concept/.append style={font=\small}}

or

\tikzset{level 2 concept/.append style={sibling distance=90}}
after the mindmap style.

/tikz/small mindmap (style, no value)

This style includes the mindmap style, but additionally changes the default size of concepts, fonts and
distances so that a medium-sized mindmap will fit on an A5 page (A5 pages are half as large as A4
pages). Mindmaps with small mindmap will also fit onto a standard frame of the beamer package.

/tikz/large mindmap (style, no value)

This style includes the mindmap style, but additionally changes the default size of concepts, fonts and
distances so that a medium-sized mindmap will fit on an A3 page (A3 pages are twice as large as A4

pages).

/tikz/huge mindmap (style, no value)

This style causes concepts to be even bigger and it is best used with A2 paper and above.

39.3 Concepts Nodes

The basic entities of mindmaps are called concepts in TikZ. A concept is a node of style concept and it
must be circular for some of the connection macros to work.

39.3.1 Isolated Concepts

The following styles influence how isolated concepts are rendered:

/tikz/concept (style, no value)

This style should be used with all nodes that are concepts, although some styles like extra concept
install this style automatically.

Basically, this style makes the concept node circular and installs a uniform color called concept color,
see below. Additionally, the style every concept is called.

380

Some concept

\tikz[mindmap,concept color=red!50] \node [concept] {Some concept};

/tikz/every concept (style, no value)

In order to change the appearance of concept nodes, you should change this style. Note, however,
that the color of a concept should be uniform for some of the connection bar stuff to work, so you
should not change the color or the draw/fill state of concepts using this option. It is mostly useful
for changing the text color and font.

/tikz/concept color=(color) (no default)

This option tells TikZ which color should be used for filling and stroking concepts. The difference
between this option and just setting every concept to the desired color is that this option allows
TikZ to keep track of the colors used for concepts. This is important when you change the color
between two connected concepts. In this case, TikZ can automatically create a shading that provides
a smooth transition between the old and the new concept color; we will come back to this in the
next section.

/tikz/extra concept (style, no value)

This style is intended for concepts that are not part of the “mindmap tree,” but stand beside it.
Typically, they will have a subdued color are be smaller. In order to have these concepts appear in a
uniform way and in order to indicate in the code that these concepts are extra, you can use this style.

\begin{tikzpicture}[mindmap,concept color=blue!80]

\node [concept] {Root concept};
\node [extra concept] at (10,0) {extra conceptl};
\end{tikzpicture}
/tikz/every extra concept (style, no value)

Change this style to change the appearance of extra concepts.

39.3.2 Concepts in Trees

As pointed out earlier, TikZ assumes that your mindmap is build using the child facilities of TikZ. There
are numerous options that influence how concepts are rendered at the different levels of a tree.

/tikz/root concept (style, no value)

This style is used for the roots of mindmap trees. By adding something to this, you can change how
the root of a mindmap will be rendered.

381

\tikz
[root concept/.append style={concept color=blue!80,minimum size=3.5cm},
mindmap]
\node [concept] {Root conceptl};

Note that styles like large mindmap redefine these styles, so you should add something to this style
only inside the picture.

/tikz/level 1 concept (style, no value)

The mindmap style adds this style to the level 1 style. This means that the first level children of a
mindmap tree will use this style.

child

child

\tikz
[root concept/.append style={concept color=blue!80},
level 1 concept/.append style={concept color=red!50},
mindmap]
\node [concept] {Root concept}
child[grow=30] {node[concept] {child}}
child[grow=0] {node[concept] {child}};

/tikz/level 2 concept (style, no value)

Works like 1level 1 concept, only for second level children.

/tikz/level 3 concept (style, no value)
Works like 1level 1 concept.

/tikz/level 4 concept (style, no value)

Works like 1level 1 concept. Note that there are not fifth and higher level styles, you need to modify
level 5 directly in such cases.

/tikz/concept color={color) (no default)

We saw already that this option is used to change the color of concepts. We now have a look at its effect
when used on child nodes of a concept. Normally, this option simply changes the color of the children.
However, when the option is given as an option to the child operation (and not to the node operation
and also not as an option to all children via the level 1 style), TikZ will smoothly change the concept
color from the parent’s color to the color of the child concept.

Here is an example:

382

\tikz [mindmap, concept color=blue!80]
\node [concept] {Root concept}
child[concept color=red,grow=30] {node[concept] {Child concept}}
child[concept color=orange,grow=0] {nodel[concept] {Child concept}};

In order to have all children of a certain level have a different concept color, a tiny bit of magic is needed:

Root concept

\tikz [mindmap,text=white,
root concept/.style={concept color=blue},
level 1 concept/.append style=
{every child/.style={concept color=blue!50}}]
\node [concept] {Root concept}
child[grow=30] {nodel[concept] {child}}
child[grow=0 1 {nodel[concept] {childl}};

39.4 Connecting Concepts
39.4.1 Simple Connections

The easiest way to connect two concepts is to draw a line between them. In order to give such lines a
consistent appearance, it is recommendable to use the following style when drawing such lines:

/tikz/concept connection (style, no value)

This style can be used for lines between two concepts. Feel free to redefine this style.

A problem arises when you need to connect concepts after the main mindmap has been drawn. In this
case you will want the connection lines to lie behind the main mindmap. However, you can draw the lines
only after the coordinates of the concepts have been determined. In this case you should place the connecting
lines on a background layer as in the following example:

383

child

Root concept child

child

\begin{tikzpicture}
[root concept/.append style={concept color=blue!20,minimum size=2cm},
level 1 concept/.append style={sibling angle=45},
mindmap]
\node [concept] {Root concept}
[clockwise from=45]
child { nodel[concept] (c1) {child}}
child { nodel[concept] (c2) {child}}
child { nodel[concept] (c3) {child}};
\begin{pgfonlayer}{background}
\draw [concept connection] (cl) edge (c2)
edge (c3)
(c2) edge (c3);
\end{pgfonlayer}
\end{tikzpicture}

39.4.2 The Circle Connection Bar Decoration

Instead of a simple line between two concepts, you can also add a bar between the two nodes that has slightly
organic ends. These bars are also used by default as the edges from parents in the mindmap tree.
For the drawing of the bars a special decoration is used, which is defined in the mindmap library:

Decoration circle connection bar

This decoration can be used to connect two circles. The start of the to-be-decorated path should lie on
the border of the first circle, the end should lie on the border of the second circle. The following two
decoration keys should be initialized with the sizes of the circles:

e start radius
e end radius
Furthermore, the following two decoration keys influence the decoration:
e amplitude
e angle

The decoration turns a straight line into a path that starts on the border of the first circle at the
specified angle relative to the line connecting the centers of the circles. The path then changes into a
rectangle whose thickness is given by the amplitude. Finally, the path ends with the same angles on the
second circle.

384

Here is an example that should make this clearer:

\begin{tikzpicture}
[decoration={start radius=1cm,end radius=.5cm,amplitude=2mm,angle=30}]

\fill[blue!20] (0,0) circle (1cm);
\fill[red!20] (2.5,0) circle (.5cm);

\filldraw [draw=red,fill=black,
decorate,decoration=circle connection bar] (1,0) -- (2,0);
\end{tikzpicture}

As can be seen, the decorated path consists of three parts and is not really useful for drawing. However,
if you fill the decorated path only, and if you use the same color as for the circles, the result is better.

\begin{tikzpicture}
[blue!50,decoration={start radius=1cm,
end radius=.5cm,amplitude=2mm,angle=301}]
\fill (0,0) circle (lcm);
\fill (2.5,0) circle (.5cm);

\fill [decorate,decoration=circle comnection bar] (1,0) -- (2,0);
\end{tikzpicture}

In the above example you may notice the small white line between the circles and the decorated path.
This is due to rounding errors. Unfortunately, for larger distances, there errors can accumulate quite
strongly, especially since TikZ and TEX are not very good at computing square roots. For this reason,
it is a good idea to make the circles slightly larger to cover up such problems. When using nodes of
shape circle, you can just add the draw option with a 1ine width or one or two points (for very large
distances you may need line width up to 4pt).

\begin{tikzpicture}
[blue!50,decoration={start radius=1cm,
end radius=.5cm,amplitude=2mm,angle=301}]
\fill (0,0) circle (1cm+ipt) ;
\fill (2.4,0) circle (.5cm+1pt);

\fill [decorate,decoration=circle connection bar] (1,0) -- (1.9,0);
\end{tikzpicture}

Note the slightly strange outer sep=0Opt. This is needed so that the decorated path lies on the border
of the filled circle, not on the border of the stroked circle (which is slightly larger and this slightly larger
size is exactly what we wish to use to cover up the rounding errors).

39.4.3 The Circle Connection Bar To-Path

The circle connection bar decoration is a bit complicated to use. Especially specifying the radii is quite
bothersome (the amplitude and the angle can be set once and for all). For this reason, the mindmap library
defines a special to-path, that performs the necessary computations for you.

/tikz/circle connection bar (style, no value)

This style installs a rather involved to-path. Unlike normal to-paths, this path requires that the start
and the target of the to-path are named nodes of shape circle — if this is not the case, this path will
produce errors.

Assuming that the start and the target are circles, the to-path will first compute the radii of these circles
(by measuring the distance from the center anchor to some anchor on the border) and will set the start
circle keys accordingly. Next, the £ill option is set to the concept color while draw=none is set.
The decoration is set to circle connection bar. Finally, the following style is included:

/tikz/every circle connection bar (style, no value)

Redefine this style to change the appearance of circle connection bar to-paths.

385

\begin{tikzpicturel}[concept color=blue!50,blue!50,outer sep=0pt]
\node (n1) at (0,0) [circle,minimum size=2cm,fill,draw,thick] {};
\node (n2) at (2.5,0) [circle,minimum size=1cm,fill,draw,thick] {};

\path (n1) tol[circle connection bar] (n2);
\end{tikzpicture}

Note that it is not a good idea to have more than one to operation together this the option circle
connection bar in a single \path. Use the edge operation, instead, for creating multiple connections
and this operation creates a new scope for each edge.

In a mindmap we sometimes want colors to change from one concept color to another. Then, the
connection bar should, ideally, consist of a smooth transition between these two colors. Getting this right
using shadings is a bit tricky if you try this “by hand,” so the mindmap library provides a special option for
facilitating this procedure.

/tikz/circle connection bar switch color=from((first color))to((second color)) (no default)

This style works similarly to the circle connection bar. The only difference is that instead of filling
the path with a single color a shading is used.

\begin{tikzpicture} [outer sep=0pt]
\node (n1) at (0,0) [circle,minimum size=2cm,fill,draw,thick,red] {};
\node (n2) at (30:2.5) [circle,minimum size=1cm,fill,draw,thick,blue] {};

\path (n1) tol[circle connection bar switch color=from (red) to (blue)] (n2);
\end{tikzpicture}

39.4.4 Tree Edges

Most of the time, concepts in a mindmap are connected automatically when the mindmap is build as a tree.
The reason is that the mindmap installs a circle connection bar path as the edge from parent path. Also,
the mindmap option takes care of things like setting the correct draw and outer sep settings and some other
stuff.

In detail, the mindmap option sets the edge from parent path to a path that uses the to-path circle
connection bar to connect the parent node and the child node. The concept color option (locally)
changes this by using circle connection bar switch color instead with the from-color set to the old
(parent’s) concept color and the to-color set to the new (child’s) concept color. This means that when you
provide the concept color option to a child command, the color will change from the parent’s concept
color to the specified color.

Here is an example of a tree build in this way:

386

algorithms

data
structures

Computer Science practical

pro-
gramming
languages

software

engineering

technical applied

databases

\begin{tikzpicture}
\path[mindmap, concept color=black,text=white]
node [concept] {Computer Science}
[clockwise from=0]
% note that ‘sibling angle’ can only be defined in
% ‘level 1 concept/.append style={}’
child[concept colo