
The minifp package∗

Dan Luecking

2013/02/01

Abstract
This package provides minimal fixed point exact decimal arithmetic opera-

tions. ‘Minimal’ means numbers are limited to eight digits on either side of the
decimal point. ‘Exact’ means that when a number can be represented exactly
within those limits, it will be.

Contents

1 Introduction 2

2 User macros 3
2.1 Nonstack-based operations . 4
2.2 Commands to process numbers for printing 8
2.3 Stack-based macros . 8
2.4 Errors . 11

3 Implementation 12
3.1 Utility macros . 12
3.2 Processing numbers and the stack 14
3.3 The user-level operations . 19
3.4 The internal computations . 23
3.5 Commands to format for printing 35
3.6 Miscellaneous . 38

4 Extras 39
4.1 Additional errors . 40
4.2 Loading the extras . 40
4.3 Error messages . 41
4.4 Sine and Cosine . 42
4.5 Polar angle . 47
4.6 Logarithms . 51
4.7 Powers . 53
4.8 The square root . 59

∗This file has version number v0.92., last revised 2013/02/01. The code described here was
developed by Dan Luecking.

1

1 Introduction

In working on an application that needed to be able to automatically generate nu-
meric labels on the axes of a graph, I needed to be able to make simple calculations
with real numbers. What TEX provides is far too limited. In fact, its only native
user-level support for real numbers is as factors for dimensions. For example one
can “multiply” 3.1× 0.2 by \dimen0=0.2pt \dimen0=3.1\dimen0 .

Unfortunately TEX stores dimensions as integer multiples of the “scaled point”
(sp) with sp = 2−16pt, and therefore .2pt is approximated by 13107

65536 , which is not
exact. Then mutiplying by 3.1 produces 40631

65536 . If we ask for five digit accuracy,
this produces 0.61998pt and not the exact value 0.62. This is sufficiently accurate
for positioning elements on a page, but not for displaying automatically computed
axis labels if five digit accuracy is needed.

The minifp package was written to provide the necessary calculations with the
necessary accuracy for this application. The implementation would have been an
order of magnitude smaller and faster if only four digit accuracy were provided
(and I may eventually do that for the application under consideration), but I have
decided to clean up what I have produced and release it as is. The full minifp
package provides nearly the same operations as a subset of the fp package, but the
latter carries calculations to 18 decimal places, which is far more than necessary
for my purposes. I want something small and fast to embed in the mfpic drawing
package.

I decided on eight digits on both sides of the decimal point essentially because I
wanted at least five digits and the design I chose made multiples of four the easiest
to work with.

Minifp also provides a simple stack-based language for writing assembly
language-like programs. Originally, this was to be the native calculation method,
but it turned out to be too unwieldy for ordinary use. I left it in because it adds
only about 10% overhead to the code.

But why only eight digits? TEX only works with integers, and since the maxi-
mum integer allowed is about 2 000 000 000, the largest numbers that can be added
are limited to about 999 999 999. It is very little trouble to add numbers by adding
their fractional parts and integer parts separately as 9-digit integers. So it would
seem multiples of 9 digits would be easy to implement.

However, something we have to do repeatedly in division is multiply the integer
and fractional parts of a number by a one-digit number. For that purpose, nine
digits would be too much, but eight digits is just right. For nine digits, we would
have to inconveniently break the number into more than two parts. Limiting our
numbers to eight-digit parts drastically simplifies division.

Another simplification: multiplication has to be done by breaking the number
into parts. TEX can multiply any two 4-digit integers without overflow, but it
cannot multiply most pairs of 5-digit integers. Two 8-digit numbers conveniently
break into four 4-digit parts. To get even nine digits of accuracy would require six
parts (five, if we don’t insist on a separation occuring at the decimal point). The
complexity of the multiplication process goes up as the square of the number of
parts, so six parts would more than double the complexity.

2

A final simplification: TEX places a limit of nine on the number of arguments
a macro can have. Quite often the last argument is needed to clear out unused
text to be discarded. Thus, a string of eight digits can quite often be processed
with one execution of one nine-argument macro.

Addition and subtraction can be exact, multiplication and division can extend
numbers past the 8-digit limit so they might be rounded. However, when the exact
answer fits in the 8-digit limit, our code should produce it. Overflow (in the sense
that the integer part can exceed the allowed eight digits) is always possible, but is
much more likely with multiplication and division.

Multiplication is carried out internally to an exact 16-digit answer, which is
then rounded to an 8-digit result. Overflow (more than 8 digits in the integer part)
is discarded. Division is internally carried to nine digits after the decimal, which
is then also rounded to an 8-digit result.

We supply two kinds of operations in this package. There are stack-based op-
erations, in which the operands are popped from a stack and the results pushed
onto it, and argument-based, in which the operands (and a macro to hold the
result1) are arguments of a macro. Both types load the arguments into inter-
nal macros (think “registers”), then call internal commands (think “microcode”)
which return the results in internal macros. These results are then pushed onto
the stack (stack-based operations) or stored in a supplied macro argument (think
“variable”).

The stack is implemented as an internal macro which is redefined with each
command. The binary operations act on the last two pushed objects in the order
they were pushed. For example, the sequence “push 5, push 3, subtract” performs
5 − 3 by popping 3 and 5 into registers (thereby removing them from the stack),
subtracting them and then pushing the result (2) onto the stack.

Our implementation of the push operation first prepares the number in a stan-
dard form. Thus, stack-based operations always obtain numbers in this form. The
argument based operations will prepare the arguments in the same way. The in-
ternal commands will thus have a standard form to operate on. All results are
returned in standard form.

The standard form referred to above is an integer part (one to eight digits
with no unnecessary leading zeros nor unnecessary sign) followed by the decimal
point (always a dot, which is ASCII 46), followed by exactly eight digits, all of
this preceded by a minus sign if the number is negative. Thus, −−0.25 would be
processed and stored as “0.25000000” and −.333333 as “-0.33333300”.

2 User macros

Minifp provides (so far) six binary operations (that act on a pair of numbers):
addition, subtraction, multiplication, division, maximum and minimum, as well
as fourteen unary operations (that act on one number): negation, absolute value,

1Unlike most other packages for floating point arithmetic, minifp puts the macro to hold the
result last. This allows the calculation to be performed before the macro is even read, and makes
it somewhat easier for the stack- and argument-based versions to share code.

3

doubling, halving, integer part, fractional part, floor, ceiling, signum, squaring,
increment, decrement and inversion. With the “extra” option, the unary opera-
tions sine, cosine, logarithm, powers and square root are available, and the binary
operation angle. See section 4.

These extra operations are made available using the extra option in LATEX:

\usepackage[extra]{minifp}

In plain TEX, they will be loaded if you give the macro \MFPextra a definition
(any definition) before inputting minifp.sty:

\def\MFPextra{} \input minifp.sty

The extras can also be loaded by means of the command \MFPloadextra, issued
after minifp.sty is loaded.

If the extra operations are not needed, some memory and time might be saved
by using minifp.sty alone.

As previously mentioned, each of these operations come in two versions: a
version that acts on operands and stores the result in a macro, and a version that
acts on the stack. The former all have names that begin \MFP and the latter begin
with \R. The former can be used anywhere, while the latter can only be used in
a “program”. A program is started with \startMFPprogram and terminated with
\stopMFPprogram. The R in the names is for ‘real’. This is because it is possible
that stacks of other types will be implemented in the future.

For example, \MFPadd{1.3}{3.4}\X will add 1.20000000 to 3.40000000 and
then define \X to be the resulting 4.60000000. These operand forms do not alter
or even address the stack in any way. The stack-based version of the same operation
would look like the following:

\Rpush{1.2}

\Rpush{3.4}

\Radd

\Rpop\X

which would push first 1.20000000 then 3.40000000 onto the stack, then replace
them with 4.60000000, then remove that and store it in \X. Clearly the stack is
intended for calculations that produce a lot of intermediate values and only the
final result needs to be stored.

The command \startMFPprogram starts a group. That group should be ended
by \stopMFPprogram. Changes to the stack and defined macros are local to that
group. Thus the macro \X in the example above might seem to be useful only as
a temporary storage for later calculations in the same program group. However,
there are commands provided to force such a macro to survive the group, and
even to force the contents of the stack to survive the group (see the end of subsec-
tion 2.3). Do not try to turn a minifp program into a LATEX environment. The
extra grouping added by environments would defeat the effects of these commands.

2.1 Nonstack-based operations

In the following tables, an argument designated 〈num〉 can be any decimal real
number with at most 8 digits on each side of the decimal point, or they can be

4

macros that contain such a number. If the decimal dot is absent, the fractional
part will be taken to be 0, if the integer part or the fractional part is absent, it
will be taken to be 0. (One consequence of these rules is that all the following
arguments produce the same internal representation of zero: {0.0}, {0.}, {.0},
{0}, {.}, and {} .) Spaces may appear anywhere in the 〈num〉 arguments and
are stripped out before the number is used. For example, {3 . 1415 9265} is a
valid argument. Commas are not permitted. The decimal dot (period, fullstop)
character must be inactivated if some babel language makes it a shorthand.

The \macro argument is any legal macro. The result of using one of these
commands is that the macro is defined (or redefined, there is no checking done)
to contain the standard form of the result. If the 〈num〉 is a macro, the braces
surrounding it are optional.

Binary Operations

Command operation
\MFPadd{〈num1〉}{〈num2〉}\macro Stores the result of 〈num1〉+ 〈num2〉 in \macro

\MFPsub{〈num1〉}{〈num2〉}\macro Stores the result of 〈num1〉 − 〈num2〉 in \macro

\MFPmul{〈num1〉}{〈num2〉}\macro Stores the result of 〈num1〉 × 〈num2〉, rounded to
8 places after the decimal point, in \macro

\MFPmpy{〈num1〉}{〈num2〉}\macro Same as \MFPmul

\MFPdiv{〈num1〉}{〈num2〉}\macro Stores the result of 〈num1〉/〈num2〉, rounded to 8
places after the decimal point, in \macro

\MFPmin{〈num1〉}{〈num2〉}\macro Stores the smaller of 〈num1〉 and 〈num2〉 in \macro

\MFPmax{〈num1〉}{〈num2〉}\macro Stores the larger of 〈num1〉 and 〈num2〉 in \macro

5

Unary Operations

Command operation
\MFPchs{〈num〉}\macro Stores −〈num〉 in \macro.
\MFPabs{〈num〉}\macro Stores |〈num〉| in \macro.
\MFPdbl{〈num〉}\macro Stores 2〈num〉 in \macro.
\MFPhalve{〈num〉}\macro Stores 〈num〉/2, rounded to 8 places after the decimal

point, in \macro.
\MFPint{〈num〉}\macro Replaces the part of 〈num〉 after the decimal point with

zeros (keeps the sign unless the result is 0) and stores the
result in \macro.

\MFPfrac{〈num〉}\macro Replaces the part of 〈num〉 before the decimal point with
0 (keeps the sign unless the result is 0) and stores the
result in \macro.

\MFPfloor{〈num〉}\macro Stores the largest integer not more than 〈num〉 in
\macro.

\MFPceil{〈num〉}\macro Stores the smallest integer not less than 〈num〉 in \macro.
\MFPsgn{〈num〉}\macro Stores −1, 0 or 1 (in standard form) in \macro according

to whether 〈num〉 is negative, zero, or positive.
\MFPsq{〈num〉}\macro Stores the square of 〈num〉 in \macro.
\MFPinv{〈num〉}\macro Stores 1/〈num〉, rounded to 8 places after the decimal

point, in \macro.
\MFPincr{〈num〉}\macro Stores 〈num〉+ 1 in \macro.
\MFPdecr{〈num〉}\macro Stores 〈num〉 − 1 in \macro.
\MFPzero{〈num〉}\macro Ignores 〈num〉 and stores 0.00000000 in the \macro.
\MFPstore{〈num〉}\macro Stores the 〈num〉, converted to standard form, in \macro

The command \MFPzero is useful for “macro programs”. If you want to do
something to a number depending on the outcome of a test, you may occasionally
want to simply absorbed the number and output a default result. (There are more
efficient ways to simply store 0 in a macro.)

Note that one could easily double, halve, square, increment, decrement or invert
a 〈num〉 using the binary versions of \MFPadd, \MFPsub, \MFPmul or \MFPdiv. The
commands \MFPdbl, \MFPhalve, \MFPsq, \MFPincr, \MFPdecr and \MFPinv are
designed to be more efficient versions, since they are used repeatedly in internal
code.

Also, multiplication is far more efficient than division, so even if you use the
two argument versions, \MFPmul{〈num〉}{.5} is faster than \MFPdiv{〈num〉}{2}.

There is one command that takes no argument:

Nullary Operations

Command operation
\MFPnoop Does nothing.

The following are not commands at all, but macros that contain convenient
constants.

6

Constants

Constant value
\MFPpi 3.14159265, the eight-digit approximation to π.
\MFPe 2.71828183, the eight-digit approximation to e.
\MFPphi 1.61803399, the eight-digit approximation to the golden ratio φ.

There also exist commands to check the sign of a number and the relative size
of two numbers:

\MFPchk{〈num〉}
\MFPcmp{〈num1〉}{〈num2〉}

These influence the behavior of six commands:

\IFneg{〈true text〉}{〈false text〉}
\IFzero{〈true text〉}{〈false text〉}
\IFpos{〈true text〉}{〈false text〉}
\IFlt{〈true text〉}{〈false text〉}
\IFeq{〈true text〉}{〈false text〉}
\IFgt{〈true text〉}{〈false text〉}

Issuing \MFPchk{\X} will check the sign of the number stored in the macro \X.
Then \IFneg{A}{B} will produce ‘A’ if it is negative and ‘B’ if it is 0 or positive.
Similarly, \MFPcmp{\X}{1} will compare the number stored in \X to 1. Afterward,
\IFlt{A}{B} will produce ‘A’ if \X is less than 1 and ‘B’ if \X is equal to or greater
than 1.

If users finds it tiresome to type two separate commands, they can easily define
a single command that both checks a value and runs \IF.... For example

\def\IFisneg#1{\MFPchk{#1}\IFneg}

Used like
\IFisneg{\X}{A}{B}

this will check the value of \X and run \IFneg on the pair of alternatives that
follow.

The user might never need to use \MFPchk because every one of the operators
provided by the minifp package runs an internal version of \MFPchk on the result
of the operation before storing it in the \macro. For example, after \MFPzero

the command \IFzero will always return the first argument. For this reason one
should not insert any minifp operations between a check/compare and the \IF...
command that depends on it.

Note: the behavior of all six \IF... commands is influenced by both
\MFPchk and \MFPcmp. This is because internally \MFPchk{\X} (for example)
and \MFPcmp{\X}{0} do essentially the same thing. In fact there are only three
internal booleans that govern the behavior of the six \IF... commands. The
different names are for clarity: \IFgt after a compare is less confusing than the
entirely equivalent \IFpos.

It should probably be pointed out that the settings for the \IF... macros are
local to any TEX groups they are contained in.

7

2.2 Commands to process numbers for printing

After \MFPadd{1}{2}\X one can use \X anywhere and get 3.00000000. One might
may well prefer 3.0, and so commands are provided to truncate a number or round
it to some number of decimal places. Note: these are provided for printing and they
will not invoke the above \MFPchk. They do not have any stack-based versions.
The commands are

\MFPtruncate{〈int〉}{〈num〉}\macro
\MFPround{〈int〉}{〈num〉}\macro
\MFPstrip{〈num〉}\macro

where 〈int〉 is a whole number between −8 and 8 (inclusive). The other two
arguments are as before.

These commands merely process 〈num〉 and define \macro to produce a trun-
cated or rounded version, or one stripped of trailing zeros, or one with added
trailing zeros. Note that truncating or rounding a number to a number of digits
greater than it already has will actually lengthen it with added zeros. For ex-
ample, \MFPround{4}{3.14159}\X will cause \X to be defined to contain 3.1416,
while \MFPround{6}{3.14159}\X will cause \X to contain 3.141590. If \Y con-
tains 3.14159, then \MFPtruncate{4}\Y\Y will redefine \Y to contain 3.1415.
Also, \MFPstrip{1.20000000}\Z will cause \Z to contain 1.2. All these com-
mands first normalize the 〈num〉, so any spaces are removed and redundant signs
are discarded.

If 〈int〉 is negative, places are counted to the left of the decimal point and 0 s
are substituted for lower order digits. That is, \MFPtruncate{-2}{1864.3}\X will
give \X the value 1800 and \MFPround{-2}{1864}\X will give \X the value 1900.

If the first argument of \MFPround or \MFPtruncate is zero or negative then
the dot is also omitted from the result. If \MFPstrip is applied to a number with
all zeros after the dot, then one 0 is retained. There is a star form where the dot
and the zero are dropped.

For these three commands, the sign of the number is irrelevant. That is, the
results for negative numbers are the negatives of the results for the absolute values.
The processing will remove redundant signs along with redundant leading zeros:
\MFPtruncate{-3}{-+123.456} will produce 0. The rounding rule is as follows:
round up if the digit to the right of the rounding point is 5 or more, round down
if the digit is 4 or less.

2.3 Stack-based macros

The stack-based macros can only be used in a minifp program group. This group
is started by the command \startMFPprogram and ended by \stopMFPprogram.
None of the stack-based macros takes an argument, but merely operate on values on
the stack, replacing them with the results. There are also commands to manipulate
the stack and save a value on the stack into a macro. Finally, since all changes
to the stack (and to macros) are local and therefore lost after \stopMFPprogram,
there are commands to selectively cause them to be retained.

To place numbers on the stack we have \Rpush and to get them off we have

8

\Rpop. The syntax is
\Rpush{〈num〉}
\Rpop\macro

The first will preprocess the 〈num〉 as previously discussed and put it on the stack,
the second will remove the last number from the stack and define the given macro
to have that number as its definition.

All the binary operations remove the last two numbers from the stack, operate
on them in the order they were put on the stack, and push the result on the stack.
Thus the program

\Rpush{1.2}

\Rpush{3.4}

\Rsub

will first put 1.20000000 and 3.40000000 on the stack and then replace them
with -2.20000000. Note the order: 1.2− 3.4.

Binary Operations

Command operation
\Radd Adds the last two numbers on the stack.
\Rsub Subtracts the last two numbers on the stack.
\Rmul Multiplies the last two numbers on the stack, rounding to 8 decimal

places.
\Rmpy Same as \Rmul.
\Rdiv Divides the last two numbers on the stack, rounding to 8 decimal

places.
\Rmin Replaces the last two elements on the stack with the smaller one.
\Rmax Replaces the last two elements on the stack with the larger one.

The unary operations replace the last number on the stack with the result of
the operation performed on it.

9

Unary Operations

Command operation
\Rchs Changes the sign.
\Rabs Obtains the absolute value.
\Rdbl Doubles the value.
\Rhalve Halves the value, rounding to 8 places.
\Rint Replaces the fractional part with zeros. If the result equals 0.0,

any negative sign will be dropped.
\Rfrac Replaces the integer part with 0. If the result equals 0.0, any

negative sign will be dropped.
\Rfloor Obtains the largest integer not greater than the number.
\Rceil Obtains the smallest integer not less than the number.
\Rsgn Obtains −1, 0 or 1 according to whether the number is negative,

zero, or positive. These numbers are pushed onto the stack with
the usual decimal point followed by 8 zeros.

\Rsq Obtains the square. Slightly more efficient than the equivalent
\Rdup\Rmul. See below for \Rdup.

\Rinv Obtains the reciprocal. Slightly more efficient than the equivalent
division.

\Rincr Increases by 1. Slightly more efficient than the equivalent addition.
\Rdecr Decreases by 1. Slightly more efficient than the equivalent subtrac-

tion.
\Rzero Replaces the number with 0. Slightly more convenient than the

equivalent \Rpop\X followed by a \Rpush{0}.

There is one nullary operation, which does not read the stack nor change it.

Nullary Operations

Command operation
\Rnoop Does nothing.

There also exist commands to check the sign of the last number, and the relative
size of the last two numbers on the stack:

\Rchk

\Rcmp

They do not remove anything from the stack. Just like the nonstack counterparts,
they influence the behavior of six commands: \IFneg, \IFzero, \IFpos, \IFlt,
\IFeq and \IFgt. Issuing \Rchk will check the sign of the last number on the
stack, while \Rcmp will compare the last two in the order they were pushed. For
example, in the following

\Rpush{1.3}

\Rpush{-2.3}

\Rcmp

\IFgt{\Radd}{\Rsub}

\Rpush\X

\Rchk

\IFneg{\Radd}{\Rsub}

10

\Rcmp will compare 1.3 to −2.3. Since the first is greater than the second, \IFgt
will be true and they will be added, producing −1.0. Following this the contents
of the macro \X are pushed, it is examined by \Rchk and then either added to or
subtracted from −1.0.

The user might never need to use \Rchk because every operator that puts
something on the stack also runs \Rchk. In the above program, in fact, \Rchk is
redundant since \Rpush will already have run it on the contents of \X.

There exist stack manipulation commands that allow the contents of the stack
to be changed without performing any operations. These are really just conve-
niences, as there effects could be obtained with appropriate combinations of \Rpop
and \Rpush. These commands, however, do not run \Rchk as \Rpush would.

Stack Manipulations

Command operation
\Rdup Puts another copy of the last element of the stack onto the

stack.
\Rexch Exchanges the last two elements on the stack.

After \stopMFPprogram, any changes to macros or to the stack are lost, unless
arrangements have been made to save them. There are four commands provided.
Two act on a macro which is the only argument, the other two have no arguments
and act on the stack. The macro must simply contain a value, it cannot be more
complicated and certainly cannot take an argument.

Exporting changed values

Command operation
\Export\macro Causes the definition of \macro to survive the program group.
\Global\macro Causes the definition of \macro to be global.
\ExportStack Causes the contents of the stack to survive the program group.
\GlobalStack Causes the contents of the stack to be global.

The difference between \Export and \Global is solely in how other grouping
is handled. If the program group is contained in another group (for example,
inside an environment), then the result of \Global\X is that the definition of
\X survives that group (and all containing groups) as well. On the other hand,
after \Export\X, then the definition survives the program group, but not other
containing groups.

If TEX grouping is used inside a program group, then using \Export inside
that group has no effect at all, while \Global works as before.

The stack versions are implemented by running \Export or \Global on the
internal macro that defines the stack, so they have the same behavior.

2.4 Errors

If one tries to popfrom an empty stack, an error message will be issued. Ignoring
the error causes the macro to have the value stored in the macro \EndofStack.
Its default is 0.00000000.

11

If one tries to divide by 0, an error message will be issued. Ignoring the error
causes the result to be one of the following:

– Dividing 0 by 0 gives a result whose integer part is stored in \ZeroOverZeroInt

and whose fractional part is stored in \ZeroOverZeroFrac. The default is
0.00000000

– Dividing a nonzero x by 0 gives a result whose integer part is stored in
\xOverZeroInt and whose fractional part is stored in \xOverZeroFrac. The
defaults are both equal to 99999999. The sign of the result will be the sign of
x.

You can change any of these macros, but make sure they produce a result
which is a number in standard form (as described earlier). These macros are
copied directly into the result without checking. Then further processing steps
may require the result to be a number in standard form.

Error messages may result from trying to process numbers given in incorrect
format. However, there are so many ways for numbers to be incorrect that this
package does not even try to detect them. Thus, they will only be caught if some
TEX operation encounters something it cannot handle. (The LATEX manual calls
these “weird errors” because the messages tend to be uninformative.) Incorrect
numbers may even pass unnoticed, but leave random printed characters on the
paper, or odd spacing.

3 Implementation

3.1 Utility macros

We announce ourself, and our purpose. We save the catcode of @ and change it
to letter. Several other catcodes are saved and set to other in this file. We also
make provisions to load the extra definitions, either directly with \MFPloadextra

or through a declared option in LATEX.

1 〈∗sty〉
2 \expandafter

3 \ifx \csname MFP@finish\endcsname\relax

4 \else \expandafter\endinput \fi

5 \expandafter\edef\csname MFP@finish\endcsname{%

6 \catcode64=\the\catcode64 \space % @

7 \catcode46=\the\catcode46 \space % .

8 \catcode60=\the\catcode60 \space % <

9 \catcode62=\the\catcode62 \space}% >

10 \ifx\ProvidesPackage\UndEfInEd

11 \newlinechar‘\^^J%

12 \message{%

13 Package minifp: \MFPfiledate\space v\MFPfileversion. %

14 Macros for real number operations %

15 ^^Jand a stack-based programing language.^^J}%

16 \else

17 \ProvidesPackage{minifp}[\MFPfiledate\space v\MFPfileversion. %

12

18 Macros for real number operations %

19 and a stack-based programing language.]%

20 \DeclareOption{extra}{\def\MFPextra{}}%

21 \ProcessOptions\relax

22 \fi

23 \catcode64=11 % @=letter (already is in LaTeX)

24 \ifx\MFPextra\UndEfInEd

25 \def\MFP@loadextra{}%

26 \else

27 \def\MFP@loadextra{\input mfpextra\relax}%

28 \fi

29 \def\MFPloadextra{%

30 \edef\MFP@load@extra{%

31 \catcode46=12 \catcode60=12 \catcode62=12 \catcode64=11

32 \noexpand\input mfpextra\relax

33 \catcode46=\the\catcode46\relax\catcode60=\the\catcode60\relax

34 \catcode62=\the\catcode62\relax\catcode64=\the\catcode64\relax}%

35 \MFP@load@extra}%

36 \catcode46=12 % .

37 \catcode60=12 % <

38 \catcode62=12 % >

We check for LATEX (ignoring LATEX209); \MFP@ifnoLaTeX. . . \mfp@end is
skipped in LateX and executed otherwise.

39 \long\def\gobbleto@mfp@end#1\mfp@end{}%

40 \ifx\mfp@end\UndEfInEd\def\mfp@end{\@empty}\fi

41 \ifx\documentclass\UndEfInEd

42 \def\MFP@ifnoLaTeX{}%

43 \else

44 \let\MFP@ifnoLaTeX\gobbleto@mfp@end

45 \fi

We have LATEX’s \zap@space. It pretty much must be used inside \edef or
other purely expansion context. The rest of these are standard LATEX internals.
Note that the token list that \zap@space is applied to should probably never
contain braces or expandable tokens.

Usage: \edef\X{\zap@space<tokens> \@empty}
The space is necessary in case none exist; the \@empty terminates the loop.

46 \let\@xp\expandafter

47 \def\@XP{\@xp\@xp\@xp}%

48 \MFP@ifnoLaTeX

49 \def\@empty{}%

50 \long\def\@gobble#1{}%

51 \def\zap@space#1 #2{#1\ifx#2\@empty\else\@xp\zap@space\fi#2}%

52 \long\def\@ifnextchar#1#2#3{%

53 \let\reserved@d#1%

54 \def\reserved@a{#2}%

55 \def\reserved@b{#3}%

56 \futurelet\@let@token\@ifnch}%

57 \def\@ifnch{%

13

58 \ifx\@let@token\@sptoken

59 \let\reserved@c\@xifnch

60 \else

61 \ifx\@let@token\reserved@d

62 \let\reserved@c\reserved@a

63 \else

64 \let\reserved@c\reserved@b

65 \fi

66 \fi

67 \reserved@c}%

68 {%

69 \def\:{\global\let\@sptoken= }\: %

70 \def\:{\@xifnch}\@xp\gdef\: {\futurelet\@let@token\@ifnch}%

71 }%

72 \def\@ifstar#1{\@ifnextchar*{\@firstoftwo{#1}}}%

73 \long\def\@firstofone #1{#1}%

74 \long\def\@firstoftwo #1#2{#1}%

75 \long\def\@secondoftwo#1#2{#2}%

76 \mfp@end

We need to divide by both 104 and 108 several times. I could have allocated two
count registers, but have taken the approach of only using those for intermediate
calculations.

77 \def\MFP@tttfour {10000}% ttt = Ten To The

78 \def\MFP@ttteight{100000000}%

These are for manipulating digits. The \...ofmany commands require a se-
quence of arguments (brace groups or tokens) followed by \mfp@end. The minimum
number of required parameters is surely obvious. For example, \MFP@ninthofmany
must be used like

\MFP@ninthofmany〈9 or more arguments〉\mfp@end All these are fully expand-
able.

79 \def\MFP@firstofmany#1#2\mfp@end{#1}%

80 \def\MFP@fifthofmany#1#2#3#4#5#6\mfp@end{#5}%

81 \def\MFP@ninthofmany#1#2#3#4#5#6#7#8{\MFP@firstofmany}%

82 \def\MFP@firsteightofmany#1#2#3#4#5#6#7#8#9\mfp@end{#1#2#3#4#5#6#7#8}%

3.2 Processing numbers and the stack

Our stack stores elements in groups, like
{-1.234567890}{0.00001234}\MFP@eos

with an end marker. The purpose of the marker is to prevent certain parameter
manipulations from stripping off braces. This means we can’t use \@empty to test
for an empty stack. At the moment, only \Rpop actually checks, but all other
stack commands (so far) use \Rpop to get their arguments.

83 \let\MFP@eos\relax

84 \def\MFP@EOS{\MFP@eos}%

85 \def\MFP@initRstack{\def\MFP@Rstack{\MFP@eos}}%

86 \MFP@initRstack

14

Define some scratch registers for arithmetic operations. We don’t care that
these might be already in use, as we only use them inside a group. However, we
need one counter that will not be messed with by any of our operations. I must
be sure not to use commands that change \MFP@loopctr in code that depends on
it.

87 \countdef \MFP@tempa 0

88 \countdef \MFP@tempb 2

89 \countdef \MFP@tempc 4

90 \countdef \MFP@tempd 6

91 \countdef \MFP@tempe 8

92 \countdef \MFP@tempf 10

93 \newcount \MFP@loopctr

The following can only be used where unrestricted expansion is robust. It will
allow results obtained inside a group to survive the group, but not be unrestrictedly
global. Example: the code

\MFP@endgroup@after{\def\noexpand\MFP@z@Val{\MFP@z@Val}}

becomes
\edef\x{\endgroup\def\noexpand\MFP@z@Val{\MFP@z@Val}}\x

which gives, upon expansion of \x,
\endgroup\def\MFP@z@Val{〈expansion-of-\MFP@z@Val〉}

which defines \MFP@z@Val outside the current group to equal its expansion within
the current group, provided it was started with \begingroup.

We define a \MFP@returned@values to make all the conceivable produced val-
ues survive the group. The \MFPcurr@Sgn part is to permit testing the sign of the
result and allow conditional code based on it.

I have been lax at making sure \MFP@z@Ovr is properly initiallized and properly
checked whenever it could be relevant, and properly passed on. I think every
internal command \MFP@Rxxx should ensure it starts being 0 and ends with a
numerical value. I notice that division might make it empty.

\MFP@subroutine executes its argument (typically a single command) with a
wrapper that initializes all the macros that might need initializing, and returns
the necessary results.

94 \def\MFP@endgroup@after#1{\edef\x{\endgroup#1}\x}%

95 \def\MFP@endgroup@return{\MFP@endgroup@after\MFP@returned@values}%

96 \def\MFP@def@after{\def\noexpand}%

97 \def\MFP@returned@values{%

98 \MFP@def@after\MFP@z@Val{\MFP@z@Sign\MFP@z@Int.\MFP@z@Frc}%

99 \MFP@def@after\MFP@z@Ovr{\MFP@z@Ovr}%

100 \MFP@def@after\MFP@z@Und{\MFP@z@Und}%

101 \MFP@def@after\MFPcurr@Sgn{\MFP@z@Sgn}}%

102 \def\MFP@subroutine#1{%

103 \begingroup

104 \MFP@basic@init@z

105 #1%

106 \MFP@endgroup@return}%

107 \def\MFP@basic@init@z{%

108 \MFP@Rzero

15

109 \def\MFP@z@Ovr{0}%

110 \def\MFP@z@Und{0}}%

111 \def\MFP@Rzero{%

112 \def\MFP@z@Sgn{0}%

113 \def\MFP@z@Int{0}%

114 \def\MFP@z@Frc{00000000}}%

We define here the error messages: popping from an empty stack and dividing\EndofStack

by 0. In addition to the error messages, we provide some default values that
hopefully allow some operations to continue.

We also have a warning or two.

115 \def\MFP@errmsg#1#2{%

116 \begingroup

117 \newlinechar‘\^^J\let~\space

118 \def\MFP@msgbreak{^^J~~~~~~~~~~~~~~}%

119 \edef\reserved@a{\errhelp{#2}}\reserved@a

120 \errmessage{MiniFP error: #1}%

121 \endgroup}%

122 \def\MFP@popempty@err{%

123 \MFP@errmsg{cannot POP from an empty stack}%

124 {There were no items on the stack for the POP operation. %

125 If you continue, ^^Jthe macro will contain the %

126 value \EndofStack.}}%

127 \def\EndofStack{0.00000000}%

128 \def\MFP@dividebyzero@err{%

129 \MFP@errmsg{division by zero}%

130 {You tried to divide by zero. What were you thinking? %

131 If you continue, ^^Jthe value assigned will be either %

132 \ZeroOverZeroInt.\ZeroOverZeroFrac~(numerator=0) or %

133 ^^J+/-\xOverZeroInt.\xOverZeroFrac~(numerator<>0).}}%

134 \def\MFP@warn#1{%

135 \begingroup

136 \newlinechar‘\^^J\let~\space

137 \def\MFP@msgbreak{^^J~~~~~~~~~~~~~~~~}%

138 \immediate\write16{^^JMiniFP warning: #1.^^J}%

139 \endgroup}%

These are the largest possible integer and fractional parts of a real number.\MaxRealInt

\MaxRealFrac They are returned for division by 0, for logarithm of 0, and when overflow is
detected in the exponential function.

140 \def\MaxRealInt {99999999}%

141 \def\MaxRealFrac {99999999}%

These are the results returned when trying to divide by 0. Two are used when\xOverZeroInt

\xOverZeroFrac dividing a nonzero number by 0 and and two when trying to divide 0 by 0.
\ZeroOverZeroInt

\ZeroOverZeroFrac
142 \def\xOverZeroInt {\MaxRealInt}%

143 \def\xOverZeroFrac {\MaxRealFrac}%

144 \def\ZeroOverZeroInt {0}%

145 \def\ZeroOverZeroFrac{00000000}%

16

These macros strip the spaces, process a number into sign, integer and frac-
tional parts, and pad the fractional part out to eight decimals. They are used in
push so that the stack will only contains reals in a normalized form. Some of them
are also used to preprocess the reals in the operand versions of commands

The \MFP@*@Int and \MFP@*@Frc parts are always positive, the sign being
stored in \MFP@*@Sgn as −1, 0 or 1.

We strip the spaces and pad the fractional parts separately because they are
unnecessary when processing poped reals (though they wouldn’t hurt).

The number to be parsed is #4 and the macros to contain the parts are the first
three arguments. Since we normally call \MFPparse@real with one of two sets of
macros, we have two shortcuts for those cases.

146 \def\MFPparse@real#1#2#3#4{%

147 \MFPnospace@def\MFPtemp@Val{#4}%

148 \MFPprocess@into@parts\MFPtemp@Val#1#2#3%

149 \MFPpadto@eight#3}%

150 \def\MFPparse@x{\MFPparse@real\MFP@x@Sgn\MFP@x@Int\MFP@x@Frc}%

151 \def\MFPparse@y{\MFPparse@real\MFP@y@Sgn\MFP@y@Int\MFP@y@Frc}%

This macro strips all spaces out of the number (not just before and after). It
takes a macro that will hold the result, followed by the number (as a macro or a
group of actual digits).

152 \def\MFPnospace@def#1#2{%

153 \edef#1{#2\space}\edef#1{\@xp\zap@space#1\@empty}}%

This is the process that splits a number into parts. The biggest difficulty is
obtaining the sign. All four arguments are macros, with the first one holding the
number. Following that are the macros to hold the sign, integer and fractional
parts.

154 \def\MFPprocess@into@parts#1#2#3#4{%

155 \@xp\MFPsplit@dot#1..\mfp@end #3#4%

This is the first place where having at most eight digits simplifies things. At
this point #3 could contain any number of consecutive signs followed by any eight
digits. It could be 0, so to avoid losing the sign we append a 1 (for up to nine
digits). We temporarily define the sign based on the result, but may need to drop
it if both the integer and fractional parts are 0.

Prepending a 0 to the fractional part permits it to be empty. In the final \edef,
#3 is made positive.

156 \ifnum#31<0

157 \def#2{-1}%

158 \else

159 \def#2{1}%

160 \fi

161 \ifnum #30=0

162 \def#3{0}%

163 \ifnum 0#4=0

164 \def#2{0}%

165 \fi

166 \fi

17

167 \edef#3{\number \ifnum #2<0 -\fi#3}}%

This only copies the parts before and after the dot, #1 and #2, into macros #4
and #5.

168 \def\MFPsplit@dot#1.#2.#3\mfp@end#4#5{\edef#4{#1}\edef#5{#2}}%

This is used to pad the fractional part to eight places with zeros. If a number
with more than eight digits survives to this point, it gets truncated.

169 \def\MFPpadto@eight#1{%

170 \edef#1{\@xp\MFP@firsteightofmany#100000000\mfp@end}}%

These take operands off the stack. We know already that there are no spaces
and that the fractional part has eight digits.

171 \def\MFPgetoperand@x{\Rpop\MFP@x@Val

172 \MFPprocess@into@parts\MFP@x@Val\MFP@x@Sgn\MFP@x@Int\MFP@x@Frc}%

173 \def\MFPgetoperand@y{\Rpop\MFP@y@Val

174 \MFPprocess@into@parts\MFP@y@Val\MFP@y@Sgn\MFP@y@Int\MFP@y@Frc}%

Concatenate an argument (or two) to the front of stack. The material must
already be in correct format.

175 \def\MFP@Rcat#1{\edef\MFP@Rstack{{#1}\MFP@Rstack}}%

176 \def\MFP@Rcattwo#1#2{\edef\MFP@Rstack{{#1}{#2}\MFP@Rstack}}%

Convert from a signum (a number) to a sign (− or nothing):

177 \def\MFP@Sign#1{\ifnum#1<0 -\fi}%

178 \def\MFP@x@Sign{\MFP@Sign\MFP@x@Sgn}%

179 \def\MFP@y@Sign{\MFP@Sign\MFP@y@Sgn}%

180 \def\MFP@z@Sign{\MFP@Sign\MFP@z@Sgn}%

Sometimes only parts of the number needs changing (used in CHS, ABS).

181 \def\copyMFP@x{\edef\MFP@z@Int{\MFP@x@Int}\edef\MFP@z@Frc{\MFP@x@Frc}}%

We use \MFPpush@result to put the result of internal operations onto the
stack. For convenience, we also have it set the sign flags.

182 \def\MFPpush@result{\MFP@Rchk\MFPcurr@Sgn\MFP@Rcat\MFP@z@Val}%

When pop encounters an empty stack it gobbles the code that would perform
the pop (#1) and defines the macro (#2) to contain \EndofStack. The default
meaning for this macro is 0.

183 \def\if@EndofStack{%

184 \ifx\MFP@EOS\MFP@Rstack

185 \@xp\@firstoftwo

186 \else

187 \@xp\@secondoftwo

188 \fi}%

The macro \Rpop calls \MFP@popit followed by the contents of the stack, the
token \mfp@end and the macro to pop into. If the stack is not empty, \doMFP@popit
will read the first group #1 into that macro #3, and then redefine the stack to be
the rest of the argument #2. If the stack is empty, \doMFP@EOS will equate the
macro to \EndofStack (initialized to 0.00000000) after issuing an error message.

189 \def\MFP@popit{\if@EndofStack\doMFP@EOS\doMFP@popit}%

18

190 \def\doMFP@EOS#1\mfp@end#2{\MFP@popempty@err\let#2\EndofStack}%

191 \def\doMFP@popit#1#2\mfp@end#3{\edef\MFP@Rstack{#2}\edef#3{#1}}%

3.3 The user-level operations

All operations that can be done on arguments as well as the stack will have a
common format: The stack version pops the requisite numbers and splits them into
internal macros (\MFPgetoperand@*), runs an internal command that operates on
these internal macros, then “pushes” the result returned. The internal commands
take care to return the result in proper form so we don’t actually run \Rpush, but
only \MFPpush@result.

The operand version processes the operands into normalized form (as if pushed,
using \MFPparse@*), then proceeds as in the stack version, but copies the result
into the named macro instead of to the stack (\MFPstore@result).

For unary operations we process one argument or stack element. We call it x
and use the x version of all macros. All internal commands (#1) return the results
in z versions.

The \MFPchk command examines its argument and sets a flag according to its\MFPchk

sign.

192 \def\MFPchk#1{%

193 \MFPparse@x{#1}%

194 \MFP@Rchk\MFP@x@Sgn}%

We make \MFP@Rchk a little more general than is strictly needed here, by giving
it an argument (instead of only examining \MFP@x@Sgn). This is so we can apply
it to the results of operations (which would be in \MFPcurr@Sgn).

195 \def\MFP@Rchk#1{%

196 \MFPclear@flags

197 \ifnum#1>0 \MFP@postrue

198 \else\ifnum#1<0 \MFP@negtrue

199 \else \MFP@zerotrue

200 \fi\fi}%

201 \def\MFPclear@flags{\MFP@zerofalse \MFP@negfalse \MFP@posfalse}%

These are the user interface to the internal \ifMFP@zero, \ifMFP@neg,\IFzero

\IFneg

\IFpos

\ifMFP@pos

202 \def\IFzero{\ifMFP@zero\@xp\@firstoftwo\else\@xp\@secondoftwo\fi}%

203 \def\IFneg {\ifMFP@neg \@xp\@firstoftwo\else\@xp\@secondoftwo\fi}%

204 \def\IFpos {\ifMFP@pos \@xp\@firstoftwo\else\@xp\@secondoftwo\fi}%

205 \newif\ifMFP@zero \newif\ifMFP@neg \newif\ifMFP@pos

Our comparison commands parallel the check-sign commands. They even reuse\MFPcmp

the same internal booleans. The differences: the internal \MFP@Rcmp doesn’t take\IFeq

arguments and the comparison test is a little more involved. We could simply sub-\IFlt

tract, which automatically sets the internal booleans, but it is way more efficient\IFgt

to compare sizes directly.

206 \newif\ifMFPdebug

207 \def\MFPcmp#1#2{\MFPparse@x{#1}\MFPparse@y{#2}\MFP@Rcmp}%

208 \def\MFP@Rcmp{\MFPclear@flags

19

209 \ifnum \MFP@x@Sign\MFP@x@Int>\MFP@y@Sign\MFP@y@Int\relax

210 \MFP@postrue

211 \else\ifnum \MFP@x@Sign\MFP@x@Int<\MFP@y@Sign\MFP@y@Int\relax

212 \MFP@negtrue

213 \else\ifnum \MFP@x@Sign\MFP@x@Frc>\MFP@y@Sign\MFP@y@Frc\relax

214 \MFP@postrue

215 \else\ifnum \MFP@x@Sign\MFP@x@Frc<\MFP@y@Sign\MFP@y@Frc\relax

216 \MFP@negtrue

217 \else

218 \MFP@zerotrue

219 \fi\fi\fi\fi}%

220 \let\IFeq\IFzero\let\IFlt\IFneg \let\IFgt\IFpos

Given an operation (pop, chs, or whatever), the stack version will have the
same name with “R” (for “real”) prepended. The operand versions will have the
same name with “MFP” prepended. The internal version has the same name as the
stack version, with an “MFP@” prepended.

The unary operations are:

chs change sign of x.
abs absolute value of x.
dbl double x.
halve halve x.
sgn +1, −1 or 0 depending on the sign of x.
sq square x.
int zero out the fractional part of x.
frac zero out the integer part of x.
floor largest integer not exceeding x.
ceil smallest integer not less than x.

The binary operations are (x represents the first and y second):

add add x and y.
sub subtract y from x.
mul multiply x and y.
div divide x by y.

There are also some operations that do not actually change any values, but
may change the stack or the state of some boolean:

cmp compare x and y (stack version does not change stack).
chk examine the sign of x (stack version does not change stack).
dup stack only, duplicate the top element of the stack.
push stack only, put a value on top of the stack.
pop stack only, remove the top element of the stack, store it in a variable.
exch stack only, exchange top two elements of the stack.

The purpose of \startMFPprogram is to start the group, inside of which all the\startMFPprogram

stack operations can be used. The ensuing \stopMFPprogram closes the group.\stopMFPprogram

221 \def\startMFPprogram{%

222 \begingroup

20

Then we give definitions to all the stack-based macros. These definitions are\Rchs

\Rabs

\Rdbl

\Rhalve

\Rsgn

all lost after the group ends.
We start with the unary operations. Note that all they do is call a wrapper\Rsq

\Rinv

\Rint

\Rfrac

\Rfloor

\Rceil

\Rincr

\Rdecr

\Rzero

macro \MFP@stack@Unary with an argument which is the internal version of the
command.

223 \def\Rchs {\MFP@stack@Unary\MFP@Rchs}%

224 \def\Rabs {\MFP@stack@Unary\MFP@Rabs}%

225 \def\Rdbl {\MFP@stack@Unary\MFP@Rdbl}%

226 \def\Rhalve{\MFP@stack@Unary\MFP@Rhalve}%

227 \def\Rsgn {\MFP@stack@Unary\MFP@Rsgn}%

228 \def\Rsq {\MFP@stack@Unary\MFP@Rsq}%

229 \def\Rinv {\MFP@stack@Unary\MFP@Rinv}%

230 \def\Rint {\MFP@stack@Unary\MFP@Rint}%

231 \def\Rfrac {\MFP@stack@Unary\MFP@Rfrac}%

232 \def\Rfloor{\MFP@stack@Unary\MFP@Rfloor}%

233 \def\Rceil {\MFP@stack@Unary\MFP@Rceil}%

234 \def\Rincr {\MFP@stack@Unary\MFP@Rincr}%

235 \def\Rdecr {\MFP@stack@Unary\MFP@Rdecr}%

236 \def\Rzero {\MFP@stack@Unary\MFP@Rzero}%

Then the binary operations, which again call a wrapper around the internal\Radd

\Rsub

\Rmul

\Rmpy

\Rdiv

\Rmin

\Rmax

version.

237 \def\Radd {\MFP@stack@Binary\MFP@Radd}%

238 \def\Rmul {\MFP@stack@Binary\MFP@Rmul}%

239 \let\Rmpy\Rmul

240 \def\Rsub {\MFP@stack@Binary\MFP@Rsub}%

241 \def\Rdiv {\MFP@stack@Binary\MFP@Rdiv}%

242 \def\Rmin {\MFP@stack@Binary\MFP@Rmin}%

243 \def\Rmax {\MFP@stack@Binary\MFP@Rmax}%

And finally some special commands. There is a no-op and commands for com-\Rnoop

\Rcmp

\Rchk

\Rpush

\Rpop

\Rexch

\Rdup

paring, checking, and manipulation of the stack.

244 \let\Rnoop\relax

245 \def\Rcmp{%

246 \MFPgetoperand@y\MFPgetoperand@x % get operands (last pushed is y)

247 \MFP@Rcat\MFP@x@Val\MFP@Rcat\MFP@y@Val % put back: LOFI

248 \MFP@Rcmp}%

249 \def\Rchk{%

250 \MFPgetoperand@x

251 \MFP@Rcat\MFP@x@Val

252 \MFP@Rchk\MFP@x@Sgn}%

253 \def\Rpush##1{%

254 \MFPparse@x{##1}%

255 \edef\MFP@z@Val{\MFP@x@Sign\MFP@x@Int.\MFP@x@Frc}%

256 \edef\MFPcurr@Sgn{\MFP@x@Sgn}%

257 \MFPpush@result}%

258 \def\Rpop{\@xp\MFP@popit\MFP@Rstack\mfp@end}%

259 \def\Rexch{%

260 \Rpop\MFP@x@Val\Rpop\MFP@y@Val

261 \MFP@Rcattwo\MFP@y@Val\MFP@x@Val}%

21

262 \def\Rdup{%

263 \Rpop\MFP@x@Val

264 \MFP@Rcattwo\MFP@x@Val\MFP@x@Val}%

If mfpextra.tex is input, then \MFP@Rextra makes the additional commands
in that file available to an minifp program.

The last four commands allow computed values to be made available outside\Global

\GlobalStack

\Export

\ExportStack

the program group

265 \MFP@Rextra

266 \let\Global\MFP@Global

267 \let\GlobalStack\MFP@GlobalStack

268 \let\Export\MFP@Export

269 \let\ExportStack\MFP@ExportStack}%

270 \def\stopMFPprogram{\@xp\endgroup\MFPprogram@returns}%

271 \let\MFP@Rextra\@empty

272 \let\MFPprogram@returns\@empty

Now we define the operand versions. These also are defined via a wrapper\MFPchs

\MFPabs

\MFPdbl

\MFPhalve

\MFPsgn

\MFPsq

\MFPinv

command that executes the very same internal commands as the stack versions.
First the unary operations.

\MFPint

\MFPfrac

\MFPfloor

\MFPceil

\MFPincr

\MFPdecr

\MFPzero

\MFPstore

273 \def\MFPchs {\MFP@op@Unary\MFP@Rchs}%

274 \def\MFPabs {\MFP@op@Unary\MFP@Rabs}%

275 \def\MFPdbl {\MFP@op@Unary\MFP@Rdbl}%

276 \def\MFPhalve{\MFP@op@Unary\MFP@Rhalve}%

277 \def\MFPsgn {\MFP@op@Unary\MFP@Rsgn}%

278 \def\MFPsq {\MFP@op@Unary\MFP@Rsq}%

279 \def\MFPinv {\MFP@op@Unary\MFP@Rinv}%

280 \def\MFPint {\MFP@op@Unary\MFP@Rint}%

281 \def\MFPfrac {\MFP@op@Unary\MFP@Rfrac}%

282 \def\MFPfloor{\MFP@op@Unary\MFP@Rfloor}%

283 \def\MFPceil {\MFP@op@Unary\MFP@Rceil}%

284 \def\MFPincr {\MFP@op@Unary\MFP@Rincr}%

285 \def\MFPdecr {\MFP@op@Unary\MFP@Rdecr}%

286 \def\MFPzero {\MFP@op@Unary\MFP@Rzero}%

287 \def\MFPstore{\MFP@op@Unary\MFP@Rstore}%

Then the binary operations.\MFPadd

\MFPsub

\MFPmul

\MFPmpy

\MFPdiv

\MFPmin

\MFPmax

288 \def\MFPadd{\MFP@op@Binary\MFP@Radd}%

289 \def\MFPmul{\MFP@op@Binary\MFP@Rmul}%

290 \let\MFPmpy\MFPmul

291 \def\MFPsub{\MFP@op@Binary\MFP@Rsub}%

292 \def\MFPdiv{\MFP@op@Binary\MFP@Rdiv}%

293 \def\MFPmin{\MFP@op@Binary\MFP@Rmin}%

294 \def\MFPmax{\MFP@op@Binary\MFP@Rmax}%

These are the wrappers for unary operations. The operand versions have a
second argument, the macro that stores the result. But this will be the argument
of \MFPstore@result.

295 \def\MFP@stack@Unary#1{%

296 \MFPgetoperand@x

297 \MFP@subroutine{#1}\MFPpush@result}%

22

298 \def\MFP@op@Unary#1#2{%

299 \MFPparse@x{#2}%

300 \MFP@subroutine{#1}\MFPstore@result}%

301 \def\MFPstore@result#1{\MFP@Rchk\MFPcurr@Sgn\edef#1{\MFP@z@Val}}%

These are the wrappers for binary operations. The top level definitions are
almost identical to those of the unary operations. The only difference is they pop
or parse two operands.

302 \def\MFP@stack@Binary#1{%

303 \MFPgetoperand@y \MFPgetoperand@x

304 \MFP@subroutine{#1}\MFPpush@result}%

305 \def\MFP@op@Binary#1#2#3{%

306 \MFPparse@x{#2}\MFPparse@y{#3}%

307 \MFP@subroutine{#1}\MFPstore@result}%

We end with a traditional, but generally useless command, the no-op, which\MFPnoop

does nothing. It doesn’t even have a wrapper.

308 \let\MFPnoop\relax

3.4 The internal computations

To change the sign or get the absolute value, we just need to set the value of
\MFP@x@Sgn.

309 \def\MFP@Rabs{%

310 \copyMFP@x \edef\MFP@z@Sgn{\ifnum\MFP@x@Sgn=0 0\else1\fi}}%

311 \def\MFP@Rchs{\copyMFP@x \edef\MFP@z@Sgn{\number-\MFP@x@Sgn}}%

The doubling and halving operations are more efficient ways to multiply or
divide a number by 2. For doubling, copy x to y and add. For halving, we use
basic TEX integer division, more efficient than multiplying by 0.5 and far more
than using \MFP@Rdiv.

In \MFP@Rhalve. we add 1 to the fractional part for rounding purposes, and
we move any odd 1 from the end of the integer part to the start of the fractional
part.

312 \def\MFP@Rdbl{\MFP@Rcopy xy\MFP@Radd}%

313 \def\MFP@Rhalve{%

314 \MFP@tempa\MFP@x@Int

315 \MFP@tempb\MFP@x@Frc\relax

316 \ifodd\MFP@tempb

317 \def\MFP@z@Und{5}%

318 \advance\MFP@tempb 1 % round up

319 \ifnum\MFP@ttteight=\MFP@tempb

320 \MFP@tempb0 \advance\MFP@tempa1

321 \fi

322 \fi

323 \ifodd \MFP@tempa

324 \advance\MFP@tempb \MFP@ttteight\relax

325 \fi

326 \divide\MFP@tempa 2

327 \divide\MFP@tempb 2

23

328 \MFP@Rloadz\MFP@x@Sgn\MFP@tempa\MFP@tempb}%

The signum is 0.0, 1.0 or −1.0 to match the sign of x.

329 \def\MFP@Rsgn{\MFP@Rloadz \MFP@x@Sgn{\ifnum\MFP@x@Sgn=0 0\else1\fi}0}%

The squaring operation just calls \MFP@Rmul after copying x to y.

330 \def\MFP@Rsq{\MFP@Rcopy xy\MFP@Rmul}%

The inversion operation just calls \MFP@Rdiv after copying x to y and 1 to x.

331 \def\MFP@Rinv{\MFP@Rcopy xy\MFP@Rload x110\MFP@Rdiv}%

Integer part: replace fractional part with zeros.

332 \def\MFP@Rint{%

333 \MFP@Rloadz {\ifnum\MFP@x@Int=0 0\else\MFP@x@Sgn\fi}\MFP@x@Int 0}%

Fractional part: replace integer part with a 0.

334 \def\MFP@Rfrac{%

335 \MFP@Rloadz {\ifnum\MFP@x@Frc=0 0\else\MFP@x@Sgn\fi}0\MFP@x@Frc}%

To increment and decrement by 1, except in border cases, we need only address
the integer part of a number. This doesn’t seem so simple written out but, even
so, it is more efficient than full-blown addition. It would be very slightly more
efficient to repeat the increment code in decrementing, but it would be annoying
to do so,

336 \def\MFP@Rincr{%

337 \ifnum\MFP@x@Sgn<0

338 \ifcase\MFP@x@Int

339 \MFP@tempa\MFP@ttteight

340 \advance\MFP@tempa -\MFP@x@Frc\relax

341 \MFP@Rloadz 10\MFP@tempa

342 \or

343 \MFP@Rloadz{\ifnum\MFP@x@Frc=0 0\else -1\fi}0\MFP@x@Frc

344 \else

345 \MFP@tempa\MFP@x@Int

346 \advance\MFP@tempa -1

347 \MFP@Rloadz{-1}\MFP@tempa\MFP@x@Frc

348 \fi

349 \else

350 \MFP@tempa\MFP@x@Int

351 \advance\MFP@tempa 1

352 \MFP@Rloadz 1\MFP@tempa\MFP@x@Frc

353 \fi}%

354 \def\MFP@Rdecr{%

355 \edef\MFP@x@Sgn{\number -\MFP@x@Sgn}\MFP@Rincr

356 \edef\MFP@z@Sgn{\number -\MFP@z@Sgn}}%

357 \def\MFP@Rstore{\MFP@Rcopy xz}%

The floor of a real number x is the largest integer not larger than x. The ceiling
is the smallest integer not less than x. For positive x, floor is the same as integer
part. Not true for negative x. Example: int(−1.5) = −1 but floor = −2

We use the same code to get floor or ceiling, the appropriate inequality char-
acter being its argument.

24

358 \def\MFP@Rfloororceil#1{%

359 \MFP@tempa\MFP@x@Int\relax

360 \ifnum 0#1\MFP@x@Sgn

361 \ifnum\MFP@x@Frc=0

362 \else

363 \advance\MFP@tempa1

364 \fi

365 \fi

366 \MFP@Rloadz{\ifnum\MFP@x@Int=0 0\else\MFP@x@Sgn\fi}\MFP@tempa0}%

367 \def\MFP@Rfloor{\MFP@Rfloororceil>}%

368 \def\MFP@Rceil {\MFP@Rfloororceil<}%

For multiplication, after the usual break into integer and fractional parts, we
further split these parts into 4-digit pieces with \MFP@split. The first argument
(#1) holds the eight digit number, then #2 is a macro that will hold the top four
digits and #3 will hold the bottom four.

369 \def\MFP@split#1#2#3{%

370 \begingroup

371 \MFP@tempa#1\relax

372 \MFP@tempb\MFP@tempa

373 \divide\MFP@tempb by\MFP@tttfour

374 \edef#2{\number\MFP@tempb}%

375 \multiply\MFP@tempb by\MFP@tttfour

376 \advance\MFP@tempa-\MFP@tempb

377 \MFP@endgroup@after{%

378 \MFP@def@after#2{#2}%

379 \MFP@def@after#3{\number\MFP@tempa}%

380 }}%

381 %

382 \def\MFP@x@split{%

383 \MFP@split\MFP@x@Int\MFP@x@Int@ii\MFP@x@Int@i

384 \MFP@split\MFP@x@Frc\MFP@x@Frc@i\MFP@x@Frc@ii}%

385 \def\MFP@y@split{%

386 \MFP@split\MFP@y@Int\MFP@y@Int@ii\MFP@y@Int@i

387 \MFP@split\MFP@y@Frc\MFP@y@Frc@i\MFP@y@Frc@ii}%

We will store the intermediate and final products in \MFP@z@*. Each one is
ultimately reduced to four digits, like the parts of x and y. As each base-10000
digit of y is multiplied by a digit of x, we add the result to the appropriate digit
of the partial result z. Thus, we need to zero out z at the start (or treat the first
iteration differently):

The underflow ends up in \MFP@z@Frc@iv and \MFP@z@Frc@iii. Overflow will
be in \MFP@z@Int@iii. Unlike the rest, it can be up to eight digits because we do
not need to carry results out of it.

388 \def\MFPmore@init@z{%

389 \def\MFP@z@Frc@iv {0}%

390 \def\MFP@z@Frc@iii{0}%

391 \def\MFP@z@Frc@ii {0}%

392 \def\MFP@z@Frc@i {0}%

393 \def\MFP@z@Int@i {0}%

25

394 \def\MFP@z@Int@ii {0}%

395 \def\MFP@z@Int@iii{0}}%

This command prepends zeros so a number fills four slots. In the “make”
version, #1 is a macro holding the value and is redefined to contain the result. A
macro that calls these should ensure that #1 is not empty and is less than 10,000.

396 \def\MFP@fourdigits#1{%

397 \@xp\MFP@fifthofmany\number#1{}{0}{00}{000}\mfp@end\number#1}%

398 \def\makeMFP@fourdigits#1{\edef#1{\MFP@fourdigits{#1}}}%

This is the same, but produce eight digits.

399 \def\MFP@eightdigits#1{%

400 \@xp\MFP@ninthofmany\number#1%

401 {}{0}{00}{000}{0000}{00000}{000000}{0000000}\mfp@end\number#1}%

402 \def\makeMFP@eightdigits#1{\edef#1{\MFP@eightdigits{#1}}}%

The following macros implement carrying. The macros \MFP@carrya and
\MFP@carrym should be followed by two macros that hold numbers. The first
number can have too many digits. These macros remove extra digits from the
front and add their value to the number in the second macro (the “carry”). Both
act by calling \MFP@carry, which is told the number of digits to keep via #1 (10,000
for four digits, 100,000,000 for eight). The “a” in \MFP@carrya is for addition and
“m” is for multiplication, which indicates where these will mainly be used.

403 \def\MFP@carrya{\MFP@carry\MFP@ttteight}%

404 \def\MFP@carrym{\MFP@carry\MFP@tttfour}%

405 \def\MFP@carry#1#2#3{%

406 \begingroup

407 \MFP@carryi{#1}#2#3%

408 \MFP@endgroup@after{%

409 \MFP@def@after#3{\number\MFP@tempa}%

410 \MFP@def@after#2{\number\MFP@tempb}%

411 }}%

This is the “internal” carry. #1, #2, and #3 are as in \MFP@carry. Its advantage
is that it can be used used where #2 and #3 are not macros, leaving the result in
\MFP@tempa and \MFP@tempb with \MFP@tempb in the correct range, [0, #1). Its
disadvantage is it does not protect temporary registers. Warning: never use it
in the form \MFP@carryi〈num〉\MFP@tempa, because this would copy 〈num〉 to
\MFP@tempa, losing the value in the second argument before anything can be done.
The other order is okay, and \MFP@tempb can be used in either slot. Do not use it
without grouping if you want the values in the temp registers a, b or c preserved.

412 \def\MFP@carryi#1#2#3{%

413 \MFP@tempa=#3\relax

414 \MFP@tempb=#2\relax

415 \MFP@tempc=\MFP@tempb

416 \divide \MFP@tempc #1\relax

417 \advance \MFP@tempa \MFP@tempc

418 \multiply\MFP@tempc #1\relax

419 \advance \MFP@tempb -\MFP@tempc}%

26

This adds #1 to #2, the result goes into macro #3. This does no checking. It is
basicly used to add with macros instead of registers.

420 \def\MFP@addone#1#2#3{%

421 \begingroup

422 \MFP@tempa#1%

423 \advance\MFP@tempa#2\relax

424 \MFP@endgroup@after{%

425 \MFP@def@after#3{\number\MFP@tempa}%

426 }}%

Multiply #1 by \MFP@tempb and add to #2. \MFP@tempb is one digit
(base=10000) of y in multiplying x × y, #1 (usually a macro) holds one digit
of x. #2 is a macro that will hold one digit of the final product z. The product is
added to it (overflow is taken care of later by the carry routines).

427 \def\MFP@multiplyone#1#2{%

428 \MFP@tempa#1%

429 \multiply\MFP@tempa\MFP@tempb

430 \advance\MFP@tempa#2%

431 \edef#2{\number\MFP@tempa}}%

This does the above multiplication-addition for all four “digits” of x. This
is where \MFP@tempb is initialized for \MFP@multiplyone. The first argument
represents a digit of y, the remaining four arguments are macros representing the
digits of z that are involved in multiplying the digits of x by #1.

432 \def\MFP@multiplyfour#1#2#3#4#5{%

433 \MFP@tempb #1\relax

434 \MFP@multiplyone\MFP@x@Int@ii #2%

435 \MFP@multiplyone\MFP@x@Int@i #3%

436 \MFP@multiplyone\MFP@x@Frc@i #4%

437 \MFP@multiplyone\MFP@x@Frc@ii #5}%

Now we begin the internal implementations of the binary operations. All four
expect macros \MFP@x@Sgn, \MFP@x@Int, \MFP@x@Frc, \MFP@y@Sgn, \MFP@y@Int
and \MFP@y@Frc to be the normalized parts of two real numbers x and y.

\MFP@Rsub just changes the sign of y and then calls \MFP@Radd.
\MFP@Radd checks whether x and y have same or different signs. In the first

case we need only add absolute values and the sign of the result will match that
of the operands. In the second case, finding the sign of the result is a little more
involve (and “borrowing” may be needed).

438 \def\MFP@Rsub{\edef\MFP@y@Sgn{\number-\MFP@y@Sgn}\MFP@Radd}%

439 \def\MFP@Radd{%

440 \MFP@tempa\MFP@x@Sgn

441 \multiply\MFP@tempa\MFP@y@Sgn\relax

442 \ifcase\MFP@tempa

443 \ifnum \MFP@x@Sgn=0

444 \MFP@Rcopy yz%

445 \else

446 \MFP@Rcopy xz%

447 \fi

27

448 \or

449 \@xp\MFP@Radd@same

450 \else

451 \@xp\MFP@Radd@diff

452 \fi}%

\MFP@Radd@same adds two numbers which have the same sign. The sign of the
result is the common sign. The fractional and integer parts are added separately,
then a carry is invoked. The overflow (\MFP@z@Ovr) could be only a single digit 0
or 1.

453 \def\MFP@Radd@same{%

454 \MFP@addone\MFP@x@Frc\MFP@y@Frc\MFP@z@Frc

455 \MFP@addone\MFP@x@Int\MFP@y@Int\MFP@z@Int

456 \MFP@carrya\MFP@z@Frc\MFP@z@Int

457 \MFP@carrya\MFP@z@Int\MFP@z@Ovr

458 \makeMFP@eightdigits\MFP@z@Frc

459 \edef\MFP@z@Sgn{\MFP@x@Sgn}}%

We are now adding two numbers with opposite sign. Since x 6= 0 this is
the same as sgn(x)(|x| − |y|) . So we subtract absolute values, save the result
in \MFP@z@Sgn, \MFP@z@Int and \MFP@z@Frc (with the last two nonnegative, as
usual), then change the sign of \MFP@z@Sgn if \MFP@x@Sgn is negative. Since the
difference between numbers in [0, 108) has absolute value in that range, there is
no carrying. However, there may be borrowing.

460 \def\MFP@Radd@diff{%

461 \MFP@addone\MFP@x@Frc{-\MFP@y@Frc}\MFP@z@Frc

462 \MFP@addone\MFP@x@Int{-\MFP@y@Int}\MFP@z@Int

Now we need to establish the sign and arrange the borrow. The sign of the
result is the sign of \MFP@z@Int unless it is 0; in that case it, is the sign of
\MFP@z@Frc. There must be a simpler coding, though.

463 \MFP@tempa=\MFP@z@Int

464 \MFP@tempb=\MFP@z@Frc\relax

465 \ifnum\MFP@tempa=0 \else \MFP@tempa=\MFP@Sign\MFP@tempa 1 \fi

466 \ifnum\MFP@tempb=0 \else \MFP@tempb=\MFP@Sign\MFP@tempb 1 \fi

467 \ifnum\MFP@tempa=0 \MFP@tempa=\MFP@tempb \fi

Now we have the sign of |x| − |y| in \MFP@tempa, and we multiply that sign by
the sign of x to get \MFP@z@Sgn. Then we multiply the current value of z by that
sign to get the absolute value, stored in \MFP@tempa and \MFP@tempb.

468 \edef\MFP@z@Sgn{\number\MFP@x@Sign\MFP@tempa}%

469 \MFP@tempb\MFP@tempa

470 \multiply\MFP@tempa \MFP@z@Int

471 \multiply\MFP@tempb \MFP@z@Frc\relax

What we should have now is a positive number which might still be represented
with a negative fractional part. A human being performing the subtraction would
have borrowed first. Being a computer, we do it last, and we’re done.

472 \ifnum\MFP@tempb<0

473 \advance\MFP@tempb\MFP@ttteight

28

474 \advance\MFP@tempa-1

475 \fi

476 \edef\MFP@z@Int{\number\MFP@tempa}%

477 \edef\MFP@z@Frc{\number\MFP@tempb}%

478 \makeMFP@eightdigits\MFP@z@Frc}%

\MFP@Rmul first computes the (theoretical) sign of the product: if 0, return 0,
otherwise provisionally set the sign of the product and call \MFP@@Rmul.

479 \def\MFP@Rmul{%

480 \MFP@tempa\MFP@x@Sgn \multiply\MFP@tempa\MFP@y@Sgn\relax

481 \ifnum 0=\MFP@tempa

482 \MFP@Rzero

483 \else

484 \edef\MFP@z@Sgn{\number\MFP@tempa}%

485 \@xp\MFP@@Rmul

486 \fi}%

\MFP@@Rmul splits the four expected macros into eight macros considered to be
four base-10000 digits for each of x and y. Then each digit of y is used to multiply
the four digits of x and the results are added to corresponding digits of z, which
have been initialized to 0 by \MFPmore@init@z.

487 \def\MFP@@Rmul{%

488 \MFPmore@init@z

489 \MFP@x@split\MFP@y@split

490 \MFP@multiplyfour \MFP@y@Frc@ii \MFP@z@Frc@i

491 \MFP@z@Frc@ii \MFP@z@Frc@iii\MFP@z@Frc@iv

492 \MFP@multiplyfour \MFP@y@Frc@i \MFP@z@Int@i

493 \MFP@z@Frc@i \MFP@z@Frc@ii \MFP@z@Frc@iii

494 \MFP@multiplyfour \MFP@y@Int@i \MFP@z@Int@ii

495 \MFP@z@Int@i \MFP@z@Frc@i \MFP@z@Frc@ii

496 \MFP@multiplyfour \MFP@y@Int@ii \MFP@z@Int@iii

497 \MFP@z@Int@ii \MFP@z@Int@i \MFP@z@Frc@i

Now apply the carry routines on the underflow digits. . .

498 \MFP@carrym\MFP@z@Frc@iv\MFP@z@Frc@iii

499 \MFP@carrym\MFP@z@Frc@iii\MFP@z@Frc@ii

. . . pause to round the lowest digit that will be kept. . .

500 \ifnum\MFP@z@Frc@iii<5000 \else

501 \MFP@tempb\MFP@z@Frc@ii

502 \advance\MFP@tempb1

503 \edef\MFP@z@Frc@ii{\number\MFP@tempb}%

504 \fi

. . . and continue carrying.

505 \MFP@carrym\MFP@z@Frc@ii\MFP@z@Frc@i

506 \MFP@carrym\MFP@z@Frc@i \MFP@z@Int@i

507 \MFP@carrym\MFP@z@Int@i \MFP@z@Int@ii

508 \MFP@carrym\MFP@z@Int@ii\MFP@z@Int@iii

To end, we arrange for all macros to hold four digits (except \MFP@z@Int@ii which
doesn’t need leading 0s, and \MFP@z@Int@iii which also doesn’t) and load them

29

into the appropriate 8-digit macros. The underflow digits are stored in \MFP@z@Und

in case we ever need to examine them, and the overflow in \MFP@z@Ovr in case we
ever need to implement an overflow error. Theoretically z 6= 0, but it is possible
that z = 0 after rounding to eight places. If so, we must reset \MFP@z@Sgn.

509 \makeMFP@fourdigits\MFP@z@Frc@iv

510 \makeMFP@fourdigits\MFP@z@Frc@iii

511 \makeMFP@fourdigits\MFP@z@Frc@ii

512 \makeMFP@fourdigits\MFP@z@Frc@i

513 \makeMFP@fourdigits\MFP@z@Int@i

514 \edef\MFP@z@Int{\number\MFP@z@Int@ii\MFP@z@Int@i}%

515 \edef\MFP@z@Frc{\MFP@z@Frc@i\MFP@z@Frc@ii}%

516 \edef\MFP@z@Ovr{\number\MFP@z@Int@iii}%

517 \edef\MFP@z@Und{\MFP@z@Frc@iii\MFP@z@Frc@iv}%

518 \ifnum\MFP@z@Int>0

519 \else\ifnum\MFP@z@Frc>0

520 \else

521 \def\MFP@z@Sgn{0}%

522 \fi\fi}%

For division, we will obtain the result one digit at a time until the 9th digit after
the decimal is found. That 9th will be used to round to eight digits (and stored as
underflow). We normalize the denominator by shifting left until the integer part
is eight digits. We do the same for the numerator. The integer quotient of the
integer parts will be one digit (possibly a 0). If the denominator is shifted d digits
left and the numerator n digits left, the quotient will have to be shifted n − d
places right or d− n places left. Since the result is supposed to have 9 digits after
the dot, our quotient needs 9 + d − n + 1 total digits. Since d can be as high as
15 and n as low as 0, we could need 25 repetitions. However, that extreme would
put 15 or 16 digits in the integer part, a 7 or 8 digit overflow. (It can be argued
that only 16 significant digits should be retained in any case.) If d is 0 and n is
15 we would need −5 digits. That means the first nonzero digit is in the 15th or
16th place after the dot and the quotient is effectively 0.

Here I explain why we normalize the parts in this way. If a numerator has the
form n1.n2 and the denominator has the form d1.d2 then TeX can easily obtain
the integer part of n1/d1, because these are within its range for integers. The
resulting quotient (let’s call it q1) is the largest integer satisfying q1d1 ≤ n1. What
we seek, however is the largest integer q such that q(d1.d2) ≤ n1.n2. It can easily
be shown that q ≤ q1. It is true, but not so easily shown, that q ≥ q1 − 1. This is
only true if d1 is large enough, in our case it has to be at least five digits. Thus we
only have to do one simple division and decide if we need to reduce the quotient
by one. If we arrange for d1 to have eight digits, then q1 will be one digit and the
test for whether we need to reduce it becomes easier.

This test is done as follows. The first trial quotient, q1, will work if

q1d1(10)8 + q1d2 ≤ n1(10)8 + n2

This means
0 ≤ (n1 − q1d1)(10)8 + n2 − q1d2. (1)

30

Since d2 is no more than eight digits, q1d2 is less than 9(10)8. Inequality (1) is
therefore satisfied if n1− q1d1 ≥ 9. If that is not the case then the right side of (1)
is computable within TeX’s integer ranges and we can easily test the inequality.
If the inequality holds, then q = q1, otherwise q = q1 − 1.

Note also that when q = q1, then both terms in (1) (ignoring the 108 factor)
will be needed to calculate the remainder. If q = q1 − 1, we simply add d1 and d2
to the respective parts. Thus we will save these values for that use.

Now I need to get it organized. \MFP@Rdiv will have \MFP@x@* and \MFP@y@*

available. One step (could be first or last). Is to calculate the sign. Let’s do it
first (because we need to check for 0 anyway).

We invoke an error message upon division by 0, but nevertheless return a value.
By default it is 0 for 0/0 and the maximum possible real for x/0 when x is not 0.
If the numerator is 0 and the denominator not, we do nothing as z was initialized
to be 0.

If neither is 0, we calculate the sign of the result and call \MFP@@Rdiv to divide
the absolute values.

523 \def\MFP@Rdiv{%

524 \ifnum\MFP@y@Sgn=0

525 \MFP@dividebyzero@err

526 \ifnum\MFP@x@Sgn=0

527 \edef\MFP@z@Int{\ZeroOverZeroInt}%

528 \edef\MFP@z@Frc{\ZeroOverZeroFrac}%

529 \else

530 \edef\MFP@z@Int{\xOverZeroInt}%

531 \edef\MFP@z@Frc{\xOverZeroFrac}%

532 \fi

533 \edef\MFP@z@Sgn{\MFP@x@Sgn}%

534 \else\ifnum\MFP@x@Sgn=0

535 \MFP@Rzero

536 \else

537 \MFP@tempa\MFP@x@Sgn

538 \multiply\MFP@tempa\MFP@y@Sgn

539 \edef\MFP@z@Sgn{\number\MFP@tempa}%

540 \MFP@@Rdiv

541 \fi\fi}%

Now we have two positive values to divide. Our first step is to shift the de-
nominator (y) left and keep track of how many places. We store the shift in
\MFP@tempa. This actually changes the value of y, but knowing the shift will give
us the correct quotient in the end.

We first arrange that \MFP@y@Int is nonzero by making it \MFP@y@Frc if it is
0 (a shift of eight digits). Then the macro \MFP@numdigits@toshift computes
8 minus the number of digits in \MFP@y@Int, which is how many positions left y
will be shifted. We then call \MFP@doshift@y on the concatenation of the digits
in the integer and fractional parts (padded with zeros to ensure there are at least
16). All this macro does is read the first eight digits into \MFP@y@Int and the next
eight into \MFP@y@Frc.

542 \def\MFP@@Rdiv{%

31

543 \ifnum\MFP@y@Int=0

544 \edef\MFP@y@Int{\number\MFP@y@Frc}%

545 \def\MFP@y@Frc{00000000}%

546 \MFP@tempa=8

547 \else

548 \MFP@tempa=0

549 \fi

550 \advance\MFP@tempa\MFP@numdigits@toshift\MFP@y@Int\relax

551 \@XP\MFP@doshift@y\@xp\MFP@y@Int\MFP@y@Frc0000000\mfp@end

We repeat all that on the numerator x, except shifting its digits left means
the final outcome will need a corresponding right shift. We record that fact by
reducing \MFP@tempa, which ends up holding the net shift necesary.

This has the advantage that we know the result will be in the range [0.1, 10).
It also means we can reduce the number of places we will need to shift left as well
as reduce the number of iterations of the loop that calculates the digits.

552 \ifnum\MFP@x@Int=0

553 \edef\MFP@x@Int{\number\MFP@x@Frc}%

554 \def\MFP@x@Frc{00000000}%

555 \advance\MFP@tempa -8

556 \fi

557 \advance\MFP@tempa-\MFP@numdigits@toshift\MFP@x@Int\relax

558 \@XP\MFP@doshift@x\@xp\MFP@x@Int\MFP@x@Frc0000000\mfp@end

Since our result will have at most one digit in the integer part, a rightward
shift of 10 places will make every digit 0, including the rounding digit, so we do
nothing (returning 0).

559 \ifnum\MFP@tempa<-9

560 \else

Now we perform the division, which is a loop repeated 10 +\MFP@tempa times.
Therefore, we add 10 to \MFP@tempa in \MFP@tempf, our loop counter. We also
initialize the macro that will store the digits and then, after the division, shift and
split it into parts.

561 \MFP@tempf\MFP@tempa

562 \advance\MFP@tempf 10

563 \def\MFP@z@digits{}%

564 \MFP@Rdivloop

565 \MFPshiftandsplit@z@digits

The last remaining step is to round and carry and get the fractional part in
the appropriate 8-digit form..

566 \ifnum\MFP@z@Und>4

567 \MFP@addone\MFP@z@Frc1\MFP@z@Frc

568 \MFP@carrya\MFP@z@Frc\MFP@z@Int

569 \MFP@carrya\MFP@z@Int\MFP@z@Ovr

570 \makeMFP@eightdigits\MFP@z@Frc

571 \fi

572 \fi}%

32

If #1 of \MFP@numdigits@toshift, has n digits then \MFP@numdigits@toshift

picks out the value 8 − n. \MFP@doshift@x reads the first eight digits into
\MFP@x@Int and then pulls out eight more from the rest (#9) inside \MFP@x@Frc.
The same with \MFP@doshift@y.

573 \def\MFP@numdigits@toshift#1{\@xp\MFP@ninthofmany#101234567\mfp@end}%

574 \def\MFP@doshift@x#1#2#3#4#5#6#7#8#9\mfp@end{%

575 \def\MFP@x@Int{#1#2#3#4#5#6#7#8}%

576 \edef\MFP@x@Frc{\MFP@firsteightofmany#9\mfp@end}}%

577 \def\MFP@doshift@y#1#2#3#4#5#6#7#8#9\mfp@end{%

578 \def \MFP@y@Int{#1#2#3#4#5#6#7#8}%

579 \edef\MFP@y@Frc{\MFP@firsteightofmany#9\mfp@end}}%

The loop counter is \MFP@tempf, \MFP@tempa is reserved for the shift required
later, the quotient digit will be \MFP@tempb. The remainder will be calculated in
\MFP@tempc and \MFP@tempd. \MFP@tempe will hold the value whose size deter-
mines whether the quotient needs to be reduced.

580 \def\MFP@Rdivloop{%

581 \MFP@tempb\MFP@x@Int % \MFP@tempb = n_1

582 \MFP@tempc\MFP@y@Int % \MFP@tempc = d_1

583 \divide\MFP@tempb \MFP@tempc % \MFP@tempb = n_1/d_1 = q_1

584 \multiply \MFP@tempc \MFP@tempb % \MFP@tempc = q_1 d_1

585 \MFP@tempd \MFP@y@Frc % \MFP@tempd = d_2

586 \multiply \MFP@tempd \MFP@tempb % \MFP@tempd = q_1 d_2

587 \MFP@tempe \MFP@tempc

588 \advance \MFP@tempe -\MFP@x@Int\relax % \MFP@tempe = -n_1 + q_1 d_1

589 \ifnum \MFP@tempe > -9 % n_1 - q_1 d_1 < 9

590 \multiply \MFP@tempe\MFP@ttteight % -(n_1 - q_1 d_1)(10)^8

591 \advance \MFP@tempe \MFP@tempd % add q_1 d_2

592 \advance \MFP@tempe -\MFP@x@Frc\relax % add -n_2

593 \ifnum \MFP@tempe>0 % Crucial inequality fails

594 \advance\MFP@tempb -1 % new q = q_1 - 1

595 \advance\MFP@tempc -\MFP@y@Int % q_1 d_1 - d_1 = q d_1

596 \advance\MFP@tempd -\MFP@y@Frc\relax% q_1 d_2 - d_2 = q d_2

597 \fi

598 \fi

599 \edef\MFP@z@digits{\MFP@z@digits\number\MFP@tempb}%

It remains to:

– Do the carry from \MFP@tempd to \MFP@tempc. Then \MFP@tempc.\MFP@tempd

will represent q · y.
– Subtract them from \MFP@x@Int and \MFP@x@Frc (i.e. remainder = x− qy).
– Borrow, if needed, and we will have the remainder in \MFP@x@Int.\MFP@x@Frc.

Then we decrement the loop counter, and decide whether to repeat this loop. If
so, we need to shift the remainder right one digit (multiply by 10). We don’t use
\MFP@carrya since it requires macros; its internal code, \MFP@carryi just leaves
the results in \MFP@tempa.\MFP@tempb.

600 \begingroup

601 \MFP@carryi\MFP@ttteight\MFP@tempd\MFP@tempc

33

602 \MFP@endgroup@after{%

603 \MFP@tempc=\number\MFP@tempa

604 \MFP@tempd=\number\MFP@tempb\relax

605 }%

606 % subtract

607 \MFP@addone\MFP@x@Int{-\MFP@tempc}\MFP@x@Int

608 \MFP@addone\MFP@x@Frc{-\MFP@tempd}\MFP@x@Frc

609 % borrow

610 \ifnum\MFP@x@Frc<0

611 \MFP@addone\MFP@x@Frc\MFP@ttteight\MFP@x@Frc

612 \MFP@addone\MFP@x@Int{-1}\MFP@x@Int

613 \fi

614 \advance\MFP@tempf -1

615 \ifnum\MFP@tempf>0

616 \edef\MFP@x@Int{\MFP@x@Int0}% easy multiplications by 10

617 \edef\MFP@x@Frc{\MFP@x@Frc0}%

618 \MFP@carrya\MFP@x@Frc\MFP@x@Int

619 \@xp\MFP@Rdivloop

620 \fi}%

Now \MFPshiftandsplit@z@digits. At this point, the digits of the quotient
are stored in \MFP@z@digits. We need to shift the decimal \MFP@tempa places
left, and perform the rounding. There are \MFP@tempa + 10 digits. This could
be as little as 1 or as great as 25. In the first case \MFP@tempa is −9, and this
(rightward) shift produces 0 plus a rounding digit. In the latter case \MFP@tempa

is 15, and the shift produces 8 digits overflow, an 8-digit integer part, an 8-digit
fractional part and a rounding digit. In the example 0123456, \MFP@tempa+ 10 is
7, so \MFP@tempa is −3. The shift produces 0.0001 2345 6. The rounding digit (6)
makes the answer 0.0001 2346.

We take two cases:

– \MFP@tempa ≤ 7, prepend 7−\MFP@tempa zeros. The first 8 digits will become
the integer part, and there should be exactly 9 more digits.

– \MFP@tempa > 7, pluck \MFP@tempa − 7 digits for overflow, the next 8 for
integer part, leaving 9 more digits

In either case, the 9 last digits will be processed into a fractional part (with possible
carry if the rounding increases it to 108).

After this, we will return to \MFP@Rdiv so overwriting \MFP@temp* won’t cause
any problems.

621 \def\MFPshiftandsplit@z@digits{%

622 \advance \MFP@tempa -7

623 \ifnum\MFP@tempa>0

624 \def\MFP@z@Ovr{}%

625 \@xp\MFPget@Ovrdigits\MFP@z@digits\mfp@end

626 \else

627 \ifnum\MFP@tempa<-7

628 \edef\MFP@z@digits{00000000\MFP@z@digits}%

629 \advance\MFP@tempa8

630 \fi

34

631 \ifnum\MFP@tempa<-3

632 \edef\MFP@z@digits{0000\MFP@z@digits}%

633 \advance\MFP@tempa4

634 \fi

635 \edef\MFP@z@digits{%

636 \ifcase-\MFP@tempa\or

637 0\or

638 00\or

639 000\or

640 0000\else

641 00000%

642 \fi \MFP@z@digits}%

643 \@xp\MFPget@Intdigits\MFP@z@digits\mfp@end

644 \fi}%

The macro \MFPget@Ovrdigits is a loop that loads the first \MFP@tempa digits
of what follows into \MFP@z@Ovr. It does this one digit (#1) at a time. Once the
counter reaches 0, we call the macro that processes the integer part digits.

645 \def\MFPget@Ovrdigits#1{%

646 \edef\MFP@z@Ovr{\MFP@z@Ovr#1}%

647 \advance\MFP@tempa -1

648 \ifnum\MFP@tempa>0

649 \@xp\MFPget@Ovrdigits

650 \else

651 \@xp\MFPget@Intdigits

652 \fi}%

The macro \MFPget@Intdigits should have exactly 17 digits following it. It
puts eight of them in \MFP@z@Int, then calls \MFPget@Frcdigits to read the frac-
tional part. That requires exactly nine digits follow it, putting eight in \MFP@z@Frc

and the last in \MFP@z@Und. Still, to allow a graceful exit should there be more,
we gobble the rest of the digits.

653 \def\MFPget@Intdigits#1#2#3#4#5#6#7#8{%

654 \def\MFP@z@Int{\number#1#2#3#4#5#6#7#8}%

655 \MFPget@Frcdigits}%

656 \def\MFPget@Frcdigits#1#2#3#4#5#6#7#8#9{%

657 \def\MFP@z@Frc{#1#2#3#4#5#6#7#8}%

658 \def\MFP@z@Und{#9}\gobbleto@mfp@end}%

The max amd min operations simply run the compare operation and use and
use the resultant booleans to copy x or y to z.

659 \def\MFP@Rmax{%

660 \MFP@Rcmp \ifMFP@neg \MFP@Rcopy yz\else\MFP@Rcopy xz\fi}%

661 \def\MFP@Rmin{%

662 \MFP@Rcmp \ifMFP@pos \MFP@Rcopy yz\else\MFP@Rcopy xz\fi}%

3.5 Commands to format for printing

This first runs the parsing command so the fractional part has exactly eight digits.\MFPtruncate

These become the arguments of \MFP@@Rtrunc, which just keeps the right number.

35

For negative truncations we prepend zeros to the integer part so it too is exactly
eight digits. These become the arguments of \MFP@@iRtrunc, which substitutes 0
for the last -\MFP@tempa of them.

The macro to store the result in follows #2. It is read and defined by either
\MFP@Rtrunc or \MFP@iRtrunc.

663 \def\MFPtruncate#1#2{%

664 \begingroup

665 \MFP@tempa#1\relax

666 \MFPparse@x{#2}%

667 \ifnum\MFP@tempa<1

668 \@xp\MFP@iRtrunc

669 \else

670 \@xp\MFP@Rtrunc

671 \fi}%

672 \def\MFP@Rtrunc#1{%

673 \edef\MFP@x@Frc{\@xp\MFP@@Rtrunc\MFP@x@Frc\mfp@end}%

674 \ifnum\MFP@x@Int=0 % possibly returns 0

675 \ifnum\MFP@x@Frc=0

676 \def\MFP@x@Sgn{0}%

677 \fi

678 \fi

679 \MFP@endgroup@after{%

680 \MFP@def@after#1{\MFP@x@Sign\MFP@x@Int.\MFP@x@Frc}}}%

681 \def\MFP@@Rtrunc#1#2#3#4#5#6#7#8#9\mfp@end{%

682 \ifcase\MFP@tempa\or

683 #1\or

684 #1#2\or

685 #1#2#3\or

686 #1#2#3#4\or

687 #1#2#3#4#5\or

688 #1#2#3#4#5#6\or

689 #1#2#3#4#5#6#7\else

690 #1#2#3#4#5#6#7#8\fi}%

691 \def\MFP@iRtrunc#1{%

692 \makeMFP@eightdigits\MFP@x@Int

693 \edef\MFP@x@Val{\number\MFP@x@Sign\@xp\MFP@@iRtrunc\MFP@x@Int\mfp@end}%

694 \MFP@endgroup@after{\MFP@def@after#1{\MFP@x@Val}}}%

695 \def\MFP@@iRtrunc#1#2#3#4#5#6#7#8#9\mfp@end{%

696 \ifcase-\MFP@tempa

697 #1#2#3#4#5#6#7#8\or

698 #1#2#3#4#5#6#70\or

699 #1#2#3#4#5#600\or

700 #1#2#3#4#5000\or

701 #1#2#3#40000\or

702 #1#2#300000\or

703 #1#2000000\or

704 #10000000\else

705 00000000\fi}%

For rounding we simply add the appropriate fraction and truncate. The macro\MFPround

36

in which to store the result will follow #2, and be picked up by the \MFPtruncate

command.

706 \def\MFPround#1#2{%

707 \begingroup

708 \MFP@tempa#1\relax

709 \ifnum 0>\MFP@tempa

710 \edef\MFP@y@Tmp{%

711 \ifcase-\MFP@tempa\or

712 5\or % .5 x 10^1

713 50\or % .5 x 10^2

714 500\or % .5 x 10^3

715 5000\or % .5 x 10^4

716 50000\or % .5 x 10^5

717 500000\or % .5 x 10^6

718 5000000\else % .5 x 10^7

719 50000000\fi % .5 x 10^8

720 }%

721 \else

722 \edef\MFP@y@Tmp{%

723 \ifcase\MFP@tempa

724 .5\or % .5 x 10^0

725 .05\or % .5 x 10^{-1}

726 .005\or % .5 x 10^{-2}

727 .0005\or % .5 x 10^{-3}

728 .00005\or % .5 x 10^{-4}

729 .000005\or % .5 x 10^{-5}

730 .0000005\or % .5 x 10^{-6}

731 .00000005\else% .5 x 10^{-7}

732 0\fi %

733 }%

734 \fi

735 \MFPchk{#2}\ifMFP@neg\edef\MFP@y@Tmp{-\MFP@y@Tmp}\fi

736 \MFPadd{#2}\MFP@y@Tmp\MFP@z@Tmp

737 \MFP@endgroup@after{\MFP@def@after\MFP@z@Tmp{\MFP@z@Tmp}}%

738 \MFPtruncate{#1}\MFP@z@Tmp}%

Stripping zeros from the right end of the fractional part. The star form differs\MFPstrip

only in the handling of a 0 fractional part. So we check whether it is 0 and when
it is, we either append ‘.0’ or nothing. The rest of the code grabs a digit at a time
and stops when the rest are 0.

739 \def\MFPstrip{%

740 \@ifstar{\MFP@strip{}}{\MFP@strip{.0}}}%

741 \def\MFP@strip#1#2#3{%

742 \MFPparse@x{#2}%

743 \ifnum \MFP@x@Frc=0

744 \edef#3{\MFP@x@Sign\MFP@x@Int#1}%

745 \else

746 \edef#3{\MFP@x@Sign\MFP@x@Int.\@xp\MFP@@strip\MFP@x@Frc\mfp@end}%

747 \fi}%

748 \def\MFP@@strip#1#2\mfp@end{%

37

749 #1%

750 \ifnum 0#2>0

751 \@xp\MFP@@strip

752 \else

753 \@xp\gobbleto@mfp@end

754 \fi#2\mfp@end}%

3.6 Miscellaneous

Here is the code that allows definitions to survive after \stopMFPprogram. The
\Global variants are easiest.

755 \def\MFP@Global#1{\toks@\@xp{#1}\xdef#1{\the\toks@}}%

756 \def\MFP@GlobalStack{\MFP@Global\MFP@Rstack}%

The \Export command adds the command and its definition to a macro that
is executed after the closing group of the program.

757 \def\MFP@Export#1{%

758 \begingroup

759 \toks@\@xp{\MFPprogram@returns}%

760 \MFP@endgroup@after{%

761 \MFP@def@after\MFPprogram@returns{\the\toks@ \MFP@def@after#1{#1}}%

762 }}%

763 \def\MFP@ExportStack{\MFP@Export\MFP@Rstack}%

The various operations \MFP@R... together make up a “microcode” in terms
of which the stack language and the operand language are both defined. As a
language in its own right, it lacks only convenient ways to move numbers around,
as well as a few extra registers for saving intermediate results. In this language,
numbers are represented by a three part data structure, consisting of a signum,
an integer part and a fractional part.

Here we define extra commands to remedy this lack, starting with a way to
load a number (or rather, a three part data structure representing a number)
directly into a register. Here #1 is a register name (we always us a single letter)
and the remaining arguments are the signum, the integer part and the fractional
part (automatically normalized to 8 digits). The “register” is just a set of three
macros created from the name given.

We make loading a number into a register a little more general than strictly
needed, allowing the parts to be specified as anything TEX recognizes as a number
and allowing any register name. This generality might reduce efficiency but it
simplifies code. Because register z is by far the most common one to load, we
make more efficient version of it.

764 \def\MFP@Rload #1#2#3#4{%

765 \@xp\edef\csname MFP@#1@Sgn\endcsname{\number#2}%

766 \@xp\edef\csname MFP@#1@Int\endcsname{\number#3}%

767 \@xp\edef\csname MFP@#1@Frc\endcsname{\number#4}%

768 \@xp\makeMFP@eightdigits\csname MFP@#1@Frc\endcsname}%

769 \def\MFP@Rcopy#1#2{%

770 \MFP@Rload #2{\csname MFP@#1@Sgn\endcsname}%

38

771 {\csname MFP@#1@Int\endcsname}%

772 {\csname MFP@#1@Frc\endcsname}}%

773 \def\MFP@Rloadz#1#2#3{%

774 \edef\MFP@z@Sgn{\number#1}%

775 \edef\MFP@z@Int{\number#2}%

776 \edef\MFP@z@Frc{\number#3}%

777 \makeMFP@eightdigits\MFP@z@Frc}%

These are some miscellaneous constants. The 8-digit approximation to π, is\MFPpi

\MFPpi and the constant mathematicians call e is \MFPe. Finally, the golden ratio\MFPe

(often called φ) is obtained by \MFPphi.\MFPphi

778 \def\MFPpi{3.14159265}%

779 \def\MFPe{2.71828183}%

780 \def\MFPphi{1.61803399}%

Load (conditionally) mfpextra.tex.

781 \MFP@loadextra

782 \MFP@finish

783 〈/sty〉

4 Extras

The extras consist so far of sine, cosine, angle, logarithm, powers, and square root.
For completeness, here is the table of user-level commands available.

Operand versions

Command operation
\MFPsin{〈num〉}\macro Stores sin(〈num〉) in \macro, where 〈num〉 is an angle in

degrees.
\MFPcos{〈num〉}\macro Stores cos(〈num〉) in \macro, where 〈num〉 is an angle in

degrees.
\MFPangle{〈x〉}{〈y〉}\macro Stores in \macro the polar angle coordinate θ of the point

(x, y), where −180 < θ ≤ 180.
\MFPrad{〈num〉}\macro The angle 〈num〉 in degrees is converted to radians, and

result is stored in \macro.
\MFPdeg{〈num〉}\macro The angle 〈num〉 in radians is converted to degrees, and

result is stored in \macro.
\MFPlog{〈num〉}\macro Stores log(〈num〉) in \macro (base 10 logarithm).
\MFPln{〈num〉}\macro Stores ln(〈num〉) in \macro (natural logarithm).
\MFPexp{〈num〉}\macro Stores exp(〈num〉) (i.e., ex) in \macro.
\MFPsqrt{〈num〉}\macro Stores the square root of 〈num〉 in \macro.
\MFPpow{〈num〉}{〈int〉}\macro Stores the 〈int〉 power of 〈num〉 in \macro. The second

operand must be an integer (positive or negative).

39

Stack versions

Command operation
\Rsin The number is interpreted as degrees, and its sine is computed.
\Rcos The number is interpreted as degrees, and its cosine is computed.
\Rangle The top two numbers are interpreted as coordinates of a point P

in the order they were pushed. The polar angle coordinate θ of
P , with −180 < θ ≤ 180 is computed.

\Rrad The number of degrees is converted to radians.
\Rdeg The number of radians is converted to degrees.
\Rlog Computes the base-10 logarithm.
\Rln Computes the natural logarithm.
\Rexp Computes the exponential of the number (i.e., ex).
\Rsqrt Computes the square root of the number.
\Rpow Computes xy. The last number pushed (y) must be an integer.

The user could easily convert between radians and degrees using multiplica-
tion and/or division. The commands \Rdeg, \Rrad, etc., aim to be a little more
accurate.

4.1 Additional errors

These extra commands come with a few possible warnings and errors.
Trying to take the logarithm of 0 will result in an error message. If one allows\LogOfZeroInt

\LogOfZeroFrac TEX to continue, the returned value will be negative, with an integer part equal
to the contents of \LogOfZeroInt and a fractional part equal to the contents of
\LogOfZeroFrac. The defaults are both 99999999.

Trying to take the logarithm of a negative number will produce the warning

MFP warning: Log of a negative number is complex.

Computing real part only.

The log of the absolute value is returned.
Trying to take the square root of a negative number results in an error. If you

continue after the error message, the value 0 is returned.
Trying to take the exponential of a number larger than about 18.42 will cause

an error and the number returned has integer part 99999999 and fractional part
99999999.

Trying to take a negative power of 0 returns the same as trying to divide 1 by
0.

4.2 Loading the extras

We start mfpextra with the hook \MFP@Rextra that \starMFPprogram will call\Rsin

\Rcos

\Rangle

\Rrad

\Rdeg

\Rlog

\Rln

\Rexp

\Rsqrt

\Rpow

to make available the extra operations defined here.

784 〈∗extra〉
785 \def\MFP@Rextra{%

786 \def\Rcos {\MFP@stack@Unary\MFP@Rcos }%

787 \def\Rsin {\MFP@stack@Unary\MFP@Rsin }%

40

788 \def\Rangle{\MFP@stack@Binary\MFP@Rangle}%

789 \def\Rrad {\MFP@stack@Unary\MFP@Rrad }%

790 \def\Rdeg {\MFP@stack@Unary\MFP@Rdeg }%

791 \def\Rlog {\MFP@stack@Unary\MFP@Rlog }%

792 \def\Rln {\MFP@stack@Unary\MFP@Rln }%

793 \def\Rexp {\MFP@stack@Unary\MFP@Rexp }%

794 \def\Rsqrt {\MFP@stack@Unary\MFP@Rsqrt}%

795 \def\Rpow {\MFP@stack@Binary\MFP@Rpow}}%

Then the wrappers for the operand versions.\MFPsin

\MFPcos

\MFPrad

\MFPdeg

\MFPlog

\MFPln

\MFPexp

\MFPsqrt

\MFPpow

796 \def\MFPcos {\MFP@op@Unary\MFP@Rcos }%

797 \def\MFPsin {\MFP@op@Unary\MFP@Rsin }%

798 \def\MFPangle {\MFP@op@Binary\MFP@Rangle}%

799 \def\MFPrad {\MFP@op@Unary\MFP@Rrad }%

800 \def\MFPdeg {\MFP@op@Unary\MFP@Rdeg }%

801 \def\MFPlog {\MFP@op@Unary\MFP@Rlog }%

802 \def\MFPln {\MFP@op@Unary\MFP@Rln }%

803 \def\MFPexp {\MFP@op@Unary\MFP@Rexp }%

804 \def\MFPsqrt {\MFP@op@Unary\MFP@Rsqrt}%

805 \def\MFPpow {\MFP@op@Binary\MFP@Rpow}%

4.3 Error messages

Messages for errors related to impossible powers, roots and logarithms.

806 \def\MFP@logofzero@err{%

807 \MFP@errmsg{logarithm of zero}%

808 {You tried to take the logarithm of zero. What were you %

809 thinking? If you ^^Jcontinue, the value %

810 assigned will be -\LogOfZeroInt.\LogOfZeroFrac.}}%

811 \def\LogOfZeroInt {\MaxRealInt}%

812 \def\LogOfZeroFrac{\MaxRealFrac}%

813 \def\MFP@expoverflow@err{%

814 \MFP@errmsg{Power too large}%

815 {The power you tried to calcualate is too large for %

816 8 digits. If you continue, ^^Jthe value assigned will be %

817 \MaxRealInt.\MaxRealFrac.}}%

818 \def\MFP@sqrtofneg@err{%

819 \MFP@errmsg{square root of a negative number}%

820 {You tried to take the square root of a negative value. What %

821 were you thinking? If you continue, zero will be returned.}}%

822 \def\MFP@badpower@err{%

823 \MFP@errmsg{negative power of zero}%

824 {You tried to take a negative power of zero. What were you

825 thinking? If you ^^Jcontinue, the value assigned will be %

826 \xOverZeroInt.\xOverZeroFrac.}}%

41

4.4 Sine and Cosine

For iterated code, the most common register to copy is z and the most common
place to copy it is to x or y so we make single commands to do those.

827 \def\MFP@Rcopyz#1{\MFP@Rload {#1}\MFP@z@Sgn\MFP@z@Int\MFP@z@Frc}%

828 \def\MFP@Rcopyzx{\MFP@Rcopyz x}%

829 \def\MFP@Rcopyzy{\MFP@Rcopyz y}%

Our code assumes the number x is an angle in degrees. To get sine and cosine
of numbers as radians, simply convert your radians to degrees using \MFPdeg or
\Rdeg. Then find the sine or cosine of the result. For example, if \X holds the
angle in in radians and you want the result to be stored in \S:

\MFPdeg\X\Y \MFPsin\Y\S

Our degree/radian conversions try to be more accurate than a simple multi-
plication by 57.29577951 or 0.01745329. These conversion factors are accurate to
only eight digits, and the rounding error is magnified by multiplication. Thus we
will use 16 digits for these constants. That is, we multiply first by 57.29577951,
then by the next eight digits (.30823208 × 10−8), performing the “ × 10−8” by
using the (rounded) integer part as the fractional part.

The copying of x to t beforehand is so that we don’t have to remember
which operations (in this case only \MFP@Rmul and \MFP@Radd) leave register x

unchanged. All operations defined in mfpextra.tex overwrite the x register, as
do a few others.

830 \def\MFP@Rdeg{%

831 \MFP@Rcopy xt\MFP@Rload y1{57}{29577951}\MFP@Rmul

832 \MFP@Rcopyz s\MFP@Rcopy tx\MFP@Rload y10{30823209}\MFP@Rmul

833 \MFP@tempa\MFP@z@Int\relax

834 \ifnum\MFP@z@Frc<50000000 \else \advance\MFP@tempa 1 \fi

835 \MFP@Rload x{\ifnum\MFP@tempa>0 \MFP@z@Sgn\else0\fi}0\MFP@tempa

836 \MFP@Rcopy sy\MFP@Radd}%

837 \def\MFP@Rrad{%

838 \MFP@Rcopy xt\MFP@Rload y10{0174 5329}\MFP@Rmul

839 \MFP@Rcopyz s\MFP@Rcopy tx\MFP@Rload y10{25199433}\MFP@Rmul

840 \MFP@tempa\MFP@z@Int\relax

841 \ifnum\MFP@z@Frc<50000000 \else \advance\MFP@tempa 1 \fi

842 \MFP@Rload x{\ifnum\MFP@tempa>0 \MFP@z@Sgn\else0\fi}0\MFP@tempa

843 \MFP@Rcopy sy\MFP@Radd}%

There are very few angles that are expressible in eight digits whose sine or
cosine can be expressed exactly in eight digits. For these, we do obtain an exact
result. Other values produce inexact results. It would be nice if we could at least
obtain these correctly rounded to eight decimals, but unfortunately our methods
will often produce a result off by 1 in the eighth decimal from the correctly rounded
value. Anything that involves the addition of two or more rounded results can have
this problem. The only way to get correctly rounded results is to carry out all
operations internally to additional places. Even then, there will be the occasional
.4999 . . . that should round to 0 but rounds to 1 instead.

For the cosine, just compute sin(90− x).

42

844 \def\MFP@Rcos{%

845 \MFP@Rcopy xy\MFP@Rload x1{90}0\MFP@Rsub

846 \MFP@Rcopyzx\MFP@Rsin}%

Return 0 if x is 0. Then reduce |x| by subtracting 360 from the integer part
until it is less than 360. Of course, sinx = sgn(x) sin(|x|) so we only need to
compute sin(|x|). For |x| < 180, the sign will be that of x. For |x| >= 180,
calculate sin(|x| − 180) and the sign will be opposite that of x. Then again return
0 if x is 0. Finally, call \MFP@@Rsin to finish.

847 \def\MFP@Rsin{%

848 \ifnum \MFP@x@Sgn=0 % return 0

849 \MFP@Rzero

850 \else

851 \MFP@tempa\MFP@x@Int\relax

852 \MFP@reduce@angle

853 \ifnum \MFP@tempa<180

854 \edef\MFP@sin@Sgn{\MFP@x@Sgn}%

855 \else

856 \edef\MFP@sin@Sgn{\number-\MFP@x@Sgn}%

857 \advance \MFP@tempa-180

858 \fi

859 \MFP@tempb\MFP@x@Frc\relax

860 \ifnum\MFP@tempa>0

861 \MFP@@Rsin

862 \else\ifnum\MFP@tempb>0

863 \MFP@@Rsin

864 \else

865 \MFP@Rzero

866 \fi\fi

867 \fi}%

This following reduces |x| to the case 0 <= |x| < 360. It assumes the integer
part is in count register \MFP@tempa.

868 \def\MFP@reduce@angle{%

869 \ifnum\MFP@tempa<360

870 \else

871 \advance\MFP@tempa-360

872 \@xp\MFP@reduce@angle

873 \fi}%

At this point, |x| is represented by \MFP@tempa (integer part) and \MFP@tempb

(fractional part). Also, we already know the sign, stored in \MFP@sin@Sgn.
Moreover 0 < \MFP@tempa < 180. We now reduce to 0 < |x| ≤ 90 using
sin(x) = sin(180− |x|), and return 1 if equal to 90.

The calculation of 180−x is optimized, taking advantage of the fact that both
x and the result are known to be positive. If the fractional part is positive, we
would normally borrow 1 by reducing 180, but instead we increase the integer part
of x by one.

874 \def\MFP@@Rsin{%

875 \ifnum\MFP@tempa<90

43

876 \else

877 \ifnum\MFP@tempb>0

878 \advance\MFP@tempa 1

879 \MFP@tempb -\MFP@tempb

880 \advance\MFP@tempb \MFP@ttteight\relax

881 \fi

882 \MFP@tempa -\MFP@tempa

883 \advance\MFP@tempa 180

884 \fi

885 \ifnum\MFP@tempa=90

886 \MFP@Rloadz \MFP@sin@Sgn10%

887 \else

We would need to convert x to radians (multiply by π/180) to use the standard
power series, but instead we will incorporate the conversion factor into the power
series coefficients.

We will, however, try to increase accuracy by reducing the size of x and cor-
respondingly increasing the appropriate factors. Since the number of significant
figures of a product is limited by the least number of significant figures of the two
factors, the bottleneck on accuracy is that of the smaller term: all our numbers
have eight digits so if a number is small, the number of nonzero digits is small.

Dividing by 100 seems a good choice (so our units are “hectodegrees”). This
makes 0 < x < .9 and the integer part (\MFP@tempa) will be henceforth ignored.

The addition of 50 is for rounding purposes. After that, our computa-
tions amount to concatenating the top six digits of \MFP@tempb to the digits of
\MFP@tempa. This will produce the integer form of the fractional part of x/100
(the integer part of x/100 is 0).

Division by 100 can turn a number into 0. This is one place we can lose accuracy
in the last digit of the result. In compensation, the rest of the calculations become
extremely accurate.

888 \advance\MFP@tempb 50 \divide\MFP@tempb 100

889 \multiply\MFP@tempa 1000000 \advance\MFP@tempb\MFP@tempa

890 \ifnum\MFP@tempb=0

891 \MFP@Rzero

892 \else

We save some multiplications by working with t = x2. As we don’t need the
original x anymore, we simply replace it with the newly reduced value. We also
save this reduced x in another register, s, as we will need it again at the end,
and our intermediate calculations do not preserve the x register. Then we square
x and, if that square is 0 we can skip all the power series and simply return x
converted to radians (that’s the last multiplication). If x2 is not 0, we save it in
temporary register t and call our power series. When this program is finished, all
that remains is a final multiplication by a conversion factor. . .

893 \MFP@Rload x10\MFP@tempb

894 \MFP@Rcopy xs%

895 \MFP@Rsq

896 \ifnum \MFP@z@Frc>0

44

897 \MFP@Rcopyz t\MFP@Rsin@prog

898 \else

899 \MFP@Rcopy sx%

900 \fi

901 \MFP@Rload y11{74532925}\MFP@Rmul

. . . except this fiddle about the sign. Theoretically, all cases where sinx can be 0
were previously weeded out. However, I am not 100 percent certain that rounding
in \MFP@Rsin@prog will never lead to a value of 0.

902 \ifnum\MFP@z@Sgn=0 \else

903 \let\MFP@z@Sgn\MFP@sin@Sgn

904 \fi

905 \fi

906 \fi}%

\MFP@Rsin@prog is the power series computation. The power series need only
go to eight terms as the ninth would be less than .5 ∗ 10−8 and so our 8-place
computations would return 0. Our 8-term series is:

rx(1− r2t/3! + r4t2/5!− r6t3/7! + r8t4/9!− r10t5/11! + r12t6/13!− r14t7/15!)

where r is the factor that converts x to radian measure (hectodegrees to radians).
When x is so small as to produce t = 0 we have skipped all this.

We minimize any multiplications of tiny numbers by computing this as

r(1− gt(1− ft(1− et(1− dt(1− ct(1− bt(1− at))))))).

Now r = 1.74532925 and a, b, etc., have formulas:

a = r2/15/14, b = r2/13/12, c = r2/11/10, d = r2/9/8,
e = r2/7/6, f = r2/5/4, g = r2/3/2.

An alternative method would be to accumulate a sum, computing each term from
the previous one (e.g., if u = t3/7! is the fourth term, the next one is u ∗ t ∗ (1/(8 ∗
9))). This is a bit more complicated to code and requires moving values around
more. It would have the advantage that we can stop whenever a term evaluates
to 0, making computation faster for small values of x.

We avoid divisions by precomputing the coefficients a, b, c, etc. Note that
without the reduction in x, the value of a for example would be 0.00000145, with
only three significant figures of accuracy. Now we can have seven, and the accuracy
is more-or-less determined by that of the reduced x.

a = 0.01450559, b = 0.01952675, c = 0.02769249,
d = 0.04230797, e = 0.07252796, f = 0.15230871,

g = 0.50769570.

It is important to note that the following operations step all over the \MFP@tempx
\count registers, so we have made sure that we no longer need them.

The \MFP@flipz computes 1−z, where z is the result of the previous operation.
Instead of simply subtracting, we optimize based on the fact that z is known to
be nonnegative and not larger than 1.

45

The macro \MFP@com@iter ‘flips’ the previous result then multiplies by t and
the indicated coefficient. (The name of this macro stands for “common iterated”
code; it is reused for some other power series.)

For extra efficiency, the power series uses a “small” version of multiplication
\MFP@Rsmul, used only when the factors are sure to lie in [0, 1].

Despite what I said above, our chosen method of computation has a slightly
improved accuracy (in numerical experiments) if we take it one step further, but
adding only half the last term. This splits the difference between stopping at the
15th power or continuing to the 17th. It has provably better worst-case accuracy,
but on average, who knows? We are right at the edge of our 8-digit accuracy
anyway. The constant 00559959 corresponds to half of r2/16/17.

907 \def\MFP@Rsin@prog{%

908 \MFP@Rcopy tx%

909 \MFP@Rload y10{00559959}\MFP@Rsmul\MFP@com@iter{01450559}%

910 \MFP@com@iter{01952675}\MFP@com@iter{02769249}\MFP@com@iter{04230797}%

911 \MFP@com@iter{07252796}\MFP@com@iter{15230871}\MFP@com@iter{50769570}%

912 \MFP@flipz \MFP@Rcopyzx \MFP@Rcopy sy\MFP@Rsmul \MFP@Rcopyzx}%

913 \def\MFP@flipz{%

914 \ifnum\MFP@z@Sgn=0

915 \MFP@Rloadz 110%

916 \else

917 \MFP@tempa\MFP@ttteight

918 \advance\MFP@tempa-\MFP@z@Frc\relax

919 \MFP@Rloadz{\ifcase\MFP@tempa 0\else1\fi}0\MFP@tempa

920 \fi}%

921 \def\MFP@com@iter#1{\MFP@flipz

922 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul

923 \MFP@Rcopyzx\MFP@Rload y10{#1}\MFP@Rsmul}%

As to the accuracy of these computations, we can certainly lose accuracy at
each step. In principle, if x is known to 10 significant figures (x ≥ 10 degrees), then
even though we lose two figures with division by 100, the accuracy bottleneck is the
fact that our coefficients have only seven figures. Now we have 17 multiplications,
and while products are said to have the same number of significant figures as
the factors, in the worse case we can accumulate inaccuracy of about .5 × 10−8

per multiplication. So we are not guaranteed an accuracy of more than about
±10−7. Numerical tests, however, show that it isn’t that bad, probably because the
direction of inaccuracies usually varies randomly, and inaccuracies in one direction
compensate for those going the other way. I have not seen a case where the result
is off by more than 1 in the last decimal place (i.e., ±1.5×10−8). In the case where
we can know the result exactly, x = 30, we get an exact answer, even though we
don’t single it out (as we do 0, 90 and 180).

The following is the “small” version of \MFP@Rmul. Limited to non-negative
numbers less than or equal to 1. Theoretically all the numbers are strictly be-
tween 0 and 1, but in practice a multiplication could round to 0 and then, after
subtraction, a 1 could occur. We handle those easy cases separately, so that in
\MFP@@Rsmul we don’t have to worry about the integer parts at all.

46

924 \def\MFP@Rsmul{%

925 \ifnum \MFP@x@Sgn=0

926 \MFP@Rzero

927 \else\ifnum \MFP@y@Sgn=0

928 \MFP@Rzero

929 \else\ifnum\MFP@x@Int>0

930 \MFP@Rcopy yz%

931 \else\ifnum\MFP@y@Int>0

932 \MFP@Rcopy xz%

933 \else

934 \MFP@@Rsmul

935 \fi\fi\fi\fi}%

936 \def\MFP@@Rsmul{%

937 \MFP@split\MFP@x@Frc\MFP@x@Frc@i\MFP@x@Frc@ii

938 \MFP@split\MFP@y@Frc\MFP@y@Frc@i\MFP@y@Frc@ii

939 \def\MFP@z@Frc@i {0}\def\MFP@z@Frc@ii {0}%

940 \def\MFP@z@Frc@iii{0}\def\MFP@z@Frc@iv {0}%

941 \MFP@tempb\MFP@y@Frc@ii\relax

942 \MFP@multiplyone\MFP@x@Frc@ii\MFP@z@Frc@iv

943 \MFP@multiplyone\MFP@x@Frc@i\MFP@z@Frc@iii

944 \MFP@tempb\MFP@y@Frc@i\relax

945 \MFP@multiplyone\MFP@x@Frc@ii\MFP@z@Frc@iii

946 \MFP@multiplyone\MFP@x@Frc@i\MFP@z@Frc@ii

947 \MFP@carrym\MFP@z@Frc@iv\MFP@z@Frc@iii

948 \MFP@carrym\MFP@z@Frc@iii\MFP@z@Frc@ii

949 \ifnum\MFP@z@Frc@iii<5000 \else

950 \MFP@tempb\MFP@z@Frc@ii

951 \advance\MFP@tempb1

952 \edef\MFP@z@Frc@ii{\number\MFP@tempb}\fi

953 \MFP@carrym\MFP@z@Frc@ii\MFP@z@Frc@i

954 \makeMFP@fourdigits\MFP@z@Frc@iv

955 \makeMFP@fourdigits\MFP@z@Frc@iii

956 \makeMFP@fourdigits\MFP@z@Frc@ii

957 \makeMFP@fourdigits\MFP@z@Frc@i

958 \def\MFP@z@Int{0}%

959 \edef\MFP@z@Frc{\MFP@z@Frc@i\MFP@z@Frc@ii}%

960 \edef\MFP@z@Sgn{\ifnum\MFP@z@Frc=0 0\else 1\fi}%

961 \edef\MFP@z@Und{\MFP@z@Frc@iii\MFP@z@Frc@iv}%

962 \edef\MFP@z@Ovr{0}}%

4.5 Polar angle

Instead of supplying the arcsine and arccosine functions, we supply the more gen-
eral angle function. This is a binary operation that accepts the two coordinates of
a point and computes its angle in polar coordinates. One then has, for example,
arctanx = angle(1, x) and arccosx = 6 (x,

√
1− x2).

We start, as usual, with a few reductions. When the y-part is 0, we immediately
return 0 or 180. If the y-part is negative, we compute the angle for (x, |y|) and
negate it. If the x-part is negative, we compute the angle for |x| and subtract

47

it from 180. Finally, reduced to both coordinates positive, if y > x we compute
the angle of (y, x) and subtract that from 90. Ultimately, we apply a power series
formula for 6 (1, y/x) and get convergence when the argument is less than 1, but
convergence is poor unless the argument is less than 1/2. When that is not the case,
conceptually, we rotate the picture clockwise by the arctangent of 1/2, compute
the angle of the new point and then add a precomputed value of arctan(1/2).

963 \def\MFP@Rangle{%

964 \ifcase\MFP@y@Sgn\relax

965 \ifcase\MFP@x@Sgn\relax

966 \MFP@warn{Point (0,0) has no angle. Returning 0 anyway}%

967 \MFP@Rzero

968 \or

969 \MFP@Rzero

970 \else

971 \MFP@Rloadz 1{180}0%

972 \fi

973 \@xp\@gobble

974 \or

975 \def\MFP@angle@Sgn{1}\@xp\@firstofone

976 \else

977 \def\MFP@y@Sgn{1}%

978 \def\MFP@angle@Sgn{-1}\@xp\@firstofone

979 \fi

980 {\ifcase\MFP@x@Sgn\relax

981 \MFP@Rloadz1{90}0%

982 \or \MFP@@Rangle

983 \else

984 \def\MFP@x@Sgn{1}\MFP@@Rangle

985 \MFP@Rcopyzy\MFP@Rload x1{180}0\MFP@Rsub

986 \fi

987 \let\MFP@z@Sgn\MFP@angle@Sgn

988 }}%

989 \def\MFP@@Rangle{%

990 \MFP@Rcmp

991 \ifMFP@neg

992 \MFP@Rcopy xs\MFP@Rcopy yx\MFP@Rcopy sy%

993 \MFP@@@Rangle

994 \MFP@Rload x1{90}0\MFP@Rcopyzy\MFP@Rsub

995 \else

996 \MFP@@@Rangle

997 \fi

998 }%

Precisely what we do when we are finally in the case 0 < y < x is perform
a couple of reductions. Ultimately we want to compute the arctan of z = y/x.
We once again use a power series but, for fast convergence, we require z to be
considerably less than 1. For reasons we discuss later, we won’t be able to use
the more efficient \MFP@Rsmul so we want to keep the number of iterations of our
power series calculations low.

48

So we start with two iterations of the algorithm used by Knuth: if y/x > 1/2 we
transform the pair (x, y) to a new one whose angle has been reduced by arctan(1/2).
The new pair is (x′, y′) = (2x+ y, 2y − x). If we still have y/x > 1/4, we perform
(x′′, y′′) = (4x+y, 4y−x), which then satisfies y′′/x′′ ≤ 1/4. When either of these
transformations is performed, we add the corresponding angle to the “angle-so-far”
in register a.

We could continue this iteration 32 times to get (theoretically) the angle in
degrees to ±10−8. That seems a bit long, plus the accumulation of errors over 32
iterations could (in the worst case) produce less than ±10−7 accuracy.

To get the accuracy we need we work in “scaled reals”. That is, we get 10
decimal places of accuracy by letting two digits of the integer part represent the
first two digits after the decimal point, and the eight digits of the fractional part
represent digits 3 through 10 after the point. The macro \MFP@RmulC (around line
19 of the definition of \MFP@@@Rangle) is a quick multiplication by 100, converting
the argument of the arctangent command to a scaled real.

Since we ultimately take the arctangent of y/x we get best accuracy if y is
first scaled, which means it must necessarily be smaller than 106 to start with.
Our initial reductions can double its size, so we first make sure it is smaller than
500 000, dividing by 200. This can actually reduce accuracy, but as it is only done
when y already has 14 significant figures, and since the quotient 100y/x has at
most 10, the loss is not significant.

999 \def\MFP@Rquad{\MFP@Rdbl\MFP@Rcopyzx\MFP@Rdbl}%

1000 \def\MFP@@@Rangle{%

1001 \MFP@Rcopy xs\MFP@Rcopy yt%

1002 \ifnum\MFP@y@Int<500000

1003 \else

1004 \MFP@Rload y1{200}0\MFP@Rdiv

1005 \MFP@Rcopyz s\MFP@Rcopy tx%

1006 \MFP@Rload y1{200}0\MFP@Rdiv

1007 \MFP@Rcopyz t%

1008 \fi

1009 \MFP@Rcopy tx\MFP@Rdbl\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rcmp

1010 \ifMFP@pos

1011 \MFP@Rsub\MFP@Rcopyz u\MFP@Rcopy sx\MFP@Rdbl

1012 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Radd

1013 \MFP@Rcopyz s\MFP@Rcopy ut%

1014 \MFP@Rload a1{2656}{50511771}%

1015 \else

1016 \MFP@Rload a000%

1017 \fi

1018 \MFP@Rcopy tx\MFP@Rquad\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rcmp

1019 \ifMFP@pos

1020 \MFP@Rsub\MFP@Rcopyz u\MFP@Rcopy sx\MFP@Rquad

1021 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Radd

1022 \MFP@Rcopyz s\MFP@Rcopy ut%

1023 \MFP@Rcopy ax\MFP@Rload y1{1403}{62434679}%

1024 \MFP@Radd\MFP@Rcopy za%

1025 \fi

49

1026 \MFP@Rcopy tx\MFP@RmulC

1027 \MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rdiv

1028 \MFP@Rcopyzx\MFP@Ratanc

1029 \MFP@Rcopyzx\MFP@Rdeg

1030 \MFP@Rcopyzx\MFP@Rcopy ay\MFP@Radd

1031 \MFP@Rcopyzx\MFP@RdivC}%

Here are fast multiplication and division by 100. We need these because we
are going to compute the arctangent in radians to ten decimal places. We do this
by computing with scaled reals in which, for example, 0.5 is represented by 50.0.
When we do this, multiplication requires a division by 100: .5× .5 = .25 would be
computed as (50× 50)/100 = 25.

1032 \def\MFP@RmulC{%

1033 \makeMFP@eightdigits\MFP@x@Frc

1034 \edef\MFP@Tmp{\number\MFP@x@Int.\MFP@x@Frc}%

1035 \@xp\MFP@@RmulC\MFP@Tmp\mfp@end}%

1036 \def\MFP@@RmulC#1.#2#3#4\mfp@end{%

1037 \MFP@Rloadz\MFP@x@Sgn{#1#2#3}{#400}}%

1038 \def\MFP@RdivC{%

1039 \makeMFP@eightdigits\MFP@x@Int

1040 \makeMFP@eightdigits\MFP@x@Frc

1041 \@XP\MFP@@RdivC\@xp\MFP@x@Int\MFP@x@Frc\mfp@end}%

1042 \def\MFP@@RdivC#1#2#3#4#5#6{%

1043 \edef\MFP@z@Int{\number#1#2#3#4#5#6}%

1044 \MFP@@@RdivC}%

1045 \def\MFP@@@RdivC#1#2#3#4#5#6#7#8#9\mfp@end{%

1046 \MFP@tempa#1#2#3#4#5#6#7#8\relax

1047 \ifnum#9>49 \advance\MFP@tempa1 \fi

1048 \edef\MFP@z@Sgn{\MFP@x@Sgn}%

1049 \ifnum\MFP@tempa=0 \ifnum\MFP@x@Int=0 \def\MFP@z@Sgn{0}\fi\fi

1050 \MFP@Rloadz\MFP@z@Sgn\MFP@z@Int\MFP@tempa}%

Finally, we compute the arctan of a scaled real producing a result as a scaled
number (i..e., as “centiradians”—100 times the number of radians) using a power
series. Since that number could be around 0.25 (represented by 25.0), we have to
sum to at least its 15th power (4−15/15 ≈ .6 × 10−10 and the next term in the
series is effectively 0). Fortunately, the power series has only odd terms, so there
are only eight terms we actually need to calculate. The calculation proceeds much
like the one for the sine, starting with the sum

x

(
1− u

3
+
u2

5
− u3

7
+ · · · − u7

2 · 15

)
,

where u = x2.
We start with the common iterated code. It assumes a scaled value in x to

be multiplied by the saved (scaled) value of x2 (in register u) and by a coefficient
(supplied in separate integer and fractional parts). It ends with the new value in
x.

1051 \def\MFP@scaledmul{\MFP@Rmul\MFP@Rcopyzx\MFP@RdivC}%

50

1052 \def\MFP@atan@iter#1#2{%

1053 \MFP@Rcopy uy\MFP@scaledmul

1054 \MFP@Rcopyzx\MFP@Rload y1{#1}{#2}\MFP@scaledmul

1055 \MFP@Rcopyzy\MFP@Rload x1{100}{00000000}%

1056 \MFP@Rsub\MFP@Rcopyzx}%

1057 \def\MFP@Ratanc{%

1058 \MFP@Rcopy xs%

1059 \MFP@Rcopy xy\MFP@scaledmul\MFP@Rcopyz u%

1060 \MFP@Rcopyzx\MFP@Rload y1{86}{66666667}%

1061 \MFP@scaledmul

1062 \MFP@Rcopyzy\MFP@Rload x1{100}{00000000}%

1063 \MFP@Rsub\MFP@Rcopyzx

1064 \MFP@atan@iter{84}{61538462}\MFP@atan@iter{81}{81818182}%

1065 \MFP@atan@iter{77}{77777778}\MFP@atan@iter{71}{42857143}%

1066 \MFP@atan@iter{60}{00000000}\MFP@atan@iter{33}{33333333}%

1067 \MFP@Rcopy sy\MFP@scaledmul}%

4.6 Logarithms

Now for logarithms. We are going to compute a base 10 logarithm. This allows
the first step of the calculation to be essentially trivial: to get the integer part
of the log for numbers with positive integer part, count the digits in the integer
part and subtract 1. For numbers less than one, count the number of zeros at the
beginning of the fractional part and add 1 (subtract this from the result of the
second part). This reduces the problem to numbers 1 ≤ x < 10. A few divisions
(when necessary) reduce to the case where x = 1 +u with u small enough that the
power series for log(1 + u) can be computed accurately in an acceptable number
of of terms. Then we proceed as in the code for sine.

We keep the value-so-far in register s and the modified x-value in register t.
The log of t need only be added to register s for the final result.

1068 \def\MFP@Rlog{%

1069 \ifnum\MFP@x@Sgn=0

1070 \MFP@logofzero@err

1071 \MFP@Rloadz{-1}\LogOfZeroInt\LogOfZeroFrac

1072 \else

1073 \ifnum \MFP@x@Sgn<0

1074 \MFP@warn{The logarithm of a negative number is complex.%

1075 \MFP@msgbreak Only the real part will be computed}%

1076 \fi

1077 \MFP@Rload s000%

If the integer part is 0, the fractional part is not. Save the number of places
that will be shifted in \MFP@tempa. We use \number to strip the leading zeros
and (essentially) we count the number of digits that remain. Then we shift left,
putting the first digit into the integer part of s and the rest into the fractional part.
Despite its name, \MFP@numzeros actually returns one more than the number of
zeros, which is the number of places to shift, and the integer part of the logarithm.

1078 \ifnum \MFP@x@Int=0

51

1079 \edef\MFP@x@Tmp{\number\MFP@x@Frc}%

1080 \MFP@tempa=\MFP@numzeros\MFP@x@Tmp\relax

1081 \def\MFP@s@Sgn{-1}%

1082 \edef\MFP@t@Int{\@xp\MFP@firstofmany\MFP@x@Tmp\mfp@end}%

1083 \edef\MFP@t@Frc{\@xp\@gobble\MFP@x@Tmp0}%

1084 \MFPpadto@eight\MFP@t@Frc

1085 \else

When the integer part is not 0, we get the number of digits to shift again in
\MFP@tempa. We actually want one less than the number of digits, so that is what
\MFP@numdigits actually produces.

1086 \MFP@tempa\MFP@numdigits\MFP@x@Int

1087 \edef\MFP@x@Tmp{\MFP@x@Int\MFP@x@Frc}% gather all digits

1088 \edef\MFP@s@Sgn{1}%

1089 \edef\MFP@t@Int{\@xp\MFP@firstofmany\MFP@x@Tmp\mfp@end}%

1090 \edef\MFP@x@Tmp{\@xp\@gobble\MFP@x@Tmp}%

1091 \edef\MFP@t@Frc{\@xp\MFP@firsteightofmany\MFP@x@Tmp\mfp@end}%

1092 \fi

The integer part of log x is now known, so save it in value-so-far. Also, set
the sign of the reduced argument to positive. Then call \MFP@log@reduce, which
reduces x to at most 101/16 ≈ 1.155 . Finally, if the reduced x is 1, return the
value so far, otherwise call the power series program.

1093 \edef\MFP@s@Int{\number\MFP@tempa}%

1094 \def\MFP@t@Sgn{1}%

1095 \MFP@Rlog@reduce

1096 \ifnum\MFP@t@Frc=0

1097 \MFP@Rcopy sz%

1098 \else

1099 \MFP@Rlog@prog

1100 \fi

1101 \fi}%

1102 \def\showreg #1{% for debugging

1103 \begingroup

1104 \edef\reg{%

1105 #1 = (\csname MFP@#1@Sgn\endcsname)%

1106 \csname MFP@#1@Int\endcsname.%

1107 \csname MFP@#1@Frc\endcsname}%

1108 \show\reg

1109 \endgroup}%

We count the number of digits by lining them up, followed by the possible
numbers, and picking out the ninth argument. We count leading zeros in the
fractional part by removing leading zeros, lining up the remaining digits, followed
by the possible numbers, and again picking the ninth. In \MFP@Rlog@reduce we
divide by the square root of 10 if the number is larger than that (adding .5 to
value-so-far). We repeat with the 4th, 8th and 16th roots. For speed, instead of
dividing, we actually multiply by the precalculated reciprocal, passed as the third
argument.

1110 \def\MFP@numdigits#1{\@xp\MFP@ninthofmany#176543210\mfp@end}%

52

1111 \def\MFP@numzeros#1{%

1112 \@xp\MFP@ninthofmany#112345678\mfp@end}%

1113 \def\MFP@Rlog@reduce{%

1114 \MFP@reduceonce 3{16227766}{31622777}{50000000}%

1115 \MFP@reduceonce 1{77827941}{56234133}{25000000}%

1116 \MFP@reduceonce 1{33352143}{74989421}{12500000}%

1117 \MFP@reduceonce 1{15478198}{86596433}{06250000}}%

1118 \def\MFP@reduceonce#1#2#3#4{%

1119 \MFP@Rcopy tx\MFP@Rload y1{#1}{#2}\MFP@Rcmp

1120 \ifMFP@neg\else

1121 \MFP@Rload y10{#3}\MFP@Rmul

1122 \MFP@Rcopyz t\MFP@Rcopy sx\MFP@Rload y10{#4}\MFP@Radd

1123 \MFP@Rcopyz s%

1124 \fi}%

Now we have a value for t of the form 1 + u with 0 ≤ u < 0.155 (approx.) We
will use the formula

log(1 + u) =
1

ln 10

∞∑
n=0

(−1)n
un+1

n+ 1
.

We only need to carry it far enough to assure that the next term would be 0 in
our finite resolution arithmetic, that is .155k/k/ ln 10 < .5×10−8. This is satisfied
by k = 9, so we only need eight terms.

Again, we compute this by

ru(1− au(1− bu(1− cu(1− du(1− eu(1− fu(1− gu(1− hu))))))))

where a = 1/2, b = 2/3,. . . ,h = 7/8/2, and r = 1/ln10 = log e. This allows us to
reuse \MFP@com@iter.

The for the natural log lnx we multiply the common logarithm by ln 10. It
seems we are redundantly canceling the earlier division by ln 10, but remember
we are also multiplying the integer part, which did not have such a division in its
code.

1125 \def\MFP@Rlog@prog{%

1126 \MFP@Rcopy tx\MFP@Rdecr

1127 \MFP@Rcopyz t%

1128 \MFP@Rcopyzx\MFP@Rload y10{43750000}\MFP@Rsmul

1129 \MFP@com@iter{85714286}\MFP@com@iter{83333333}\MFP@com@iter{80000000}%

1130 \MFP@com@iter{75000000}\MFP@com@iter{66666667}\MFP@com@iter{50000000}%

1131 \MFP@com@iter{43429448}\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Radd}%

1132 \def\MFP@Rln{%

1133 \MFP@Rlog\MFP@Rcopyzx\MFP@Rload y12{30258509}\MFP@Rmul}%

4.7 Powers

With the exponential function we immediately return 1 if x = 0. We call two sep-
arate handlers for positive and negative x. This is because the issues are different
between positive and negative exponents.

53

1134 \def\MFP@Rexp{%

1135 \ifcase\MFP@x@Sgn\relax

1136 \MFP@Rloadz 110%

1137 \or

1138 \MFP@Rexp@pos

1139 \else

1140 \def\MFP@x@Sgn{1}%

1141 \MFP@Rexp@neg

1142 \fi}%

One issue for positive exponents is overflow, so we issue an error message for
that case. The largest mumber that will not produce overflow is 18.42068074
so we first compare to that; if larger, issue the error message and return
99999999.99999999.

We compute the integer power first, using an \ifcase. Because there are only
19 cases to consider a table lookup is faster than multiplications.

Then, we examine the first digit d after the decimal and compute e0.d, again by
cases. This is multiplied by the integer power previously found. What remains is
the rest of the fractional part of x, which is strictly less than 0.1. The exponential
of this is computed using the first several terms of the power series for ex.

1143 \def\MFP@Rexp@pos{%

1144 \MFP@Rload y1{18}{42068074}\MFP@Rcmp

1145 \ifMFP@pos % overflow

1146 \MFP@expoverflow@err

1147 \MFP@Rloadz 1\MaxRealInt\MaxRealFrac

1148 \else % handle integer part

1149 \MFP@tempa\MFP@x@Int

1150 \edef\MFP@powerof@e{%

1151 1\ifcase\MFP@tempa

1152 10\or

1153 2{71828183}\or

1154 7{38905610}\or

1155 {20}{08553692}\or

1156 {54}{59815003}\or

1157 {148}{41315910}\or

1158 {403}{42879349}\or

1159 {1096}{63315843}\or

1160 {2980}{95798704}\or

1161 {8103}{08392758}\or

1162 {22026}{46579481}\or

1163 {59874}{14171520}\or

1164 {162754}{79141900}\or

1165 {442413}{39200892}\or

1166 {1202604}{28416478}\or

1167 {3269017}{37247211}\or

1168 {8886110}{52050787}\or

1169 {24154952}{75357530}\or

1170 {65659969}{13733051}\else

1171 {\MaxRealInt}{\MaxRealFrac}\fi}%

54

1172 \@xp\MFP@Rloadz\MFP@powerof@e

1173 \ifnum\MFP@x@Frc=0

1174 \else

1175 \MFP@Rcopyz s%

1176 \MFP@tempa=\@xp\MFP@firstofmany\MFP@x@Frc\mfp@end

1177 \edef\MFP@powerof@e{%

1178 y1\ifcase\MFP@tempa

1179 10\or

1180 1{10517092}\or

1181 1{22140276}\or

1182 1{34985881}\or

1183 1{49182470}\or

1184 1{64872127}\or

1185 1{82211880}\or

1186 2{01375271}\or

1187 2{22554093}\or

1188 2{45960311}\else

1189 10\fi}%

1190 \edef\MFP@t@Frc{0\@xp\@gobble\MFP@x@Frc}%

1191 \MFP@Rcopy sx\@xp\MFP@Rload\MFP@powerof@e\MFP@Rmul

1192 \ifnum\MFP@t@Frc=0

1193 \else % handle the rest

1194 \MFP@Rcopyz s\MFP@Rload t10\MFP@t@Frc

1195 \MFP@Rexp@pos@prog

1196 \MFP@Rcopy sx\MFP@Rcopyzy\MFP@Rmul

1197 \fi

1198 \fi

1199 \fi}%

Since the x value is now less than 0.1, we can get eight places of accuracy with
only six terms of the power series. We can also arrange to use the more efficient
\MFP@Rsmul for multiplication.

We organize the computation thusly

1 + (x+ x/2(x+ x/3(x+ x/4(x+ x/5(x+ x/6)))))

We start by loading x (now in register t) into register z, then repeatedly run
\MFP@Rexp@iter feeding it the successive values of 1/n. This iterator first multi-
plies the most recent result (the z register) by 1/n, then that by x and then adds
x to that. The final step is to add 1.

1200 \def\MFP@Rexp@pos@prog{%

1201 \MFP@Rcopy tz\MFP@Rexp@iter{16666667}\MFP@Rexp@iter{20000000}%

1202 \MFP@Rexp@iter{25000000}\MFP@Rexp@iter{33333333}%

1203 \MFP@Rexp@iter{50000000}\MFP@Rcopyzx\MFP@Rincr}%

1204 \def\MFP@Rexp@iter#1{%

1205 \MFP@Rcopyzx\MFP@Rload y10{#1}\MFP@Rsmul

1206 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul

1207 \MFP@Rcopyzx\MFP@Rcopy ty\MFP@Radd}%

It is impossible to get accuracy to the last digit when ex is large. This is because
an absolute error in x converts to a relative error in ex, That is, knowing x only

55

to 10−8 means ex is off by (about) ex · 10−8. Roughly speaking, this means only
about 8 places of ex are accurate, so if the integer part of ex has six places then
only two places after the decimal are significant. Even if x is exact, we can only
represent e itself to eight decimals and the repeated multiplications accumulate
errors in such a way that one still cannot get more than eight significant figures.

The first issue with negative exponents is that it doesn’t take much to produce
a value of e−x that rounds to 0. Any x > 19.11382792. So we start by comparing
to that value and simply return 0 if x is larger.

We perform exactly the same reductions as for positive exponents, handling
the integer part and the first decimal separately. Then we call the power series
program (not the same).

1208 \def\MFP@Rexp@neg{%

1209 \MFP@Rload y1{19}{11382792}%

1210 \MFP@Rcmp

1211 \ifMFP@pos

1212 \MFP@Rloadz 000%

1213 \else % handle integer part

1214 \MFP@tempa\MFP@x@Int

1215 \edef\MFP@powerof@e{%

1216 \ifcase\MFP@tempa

1217 11{0}\or

1218 10{36787944}\or

1219 10{13533528}\or

1220 10{04978707}\or

1221 10{01831564}\or

1222 10{00673795}\or

1223 10{00247875}\or

1224 10{00091188}\or

1225 10{00033546}\or

1226 10{00012341}\or

1227 10{00004540}\or

1228 10{00001670}\or

1229 10{00000614}\or

1230 10{00000226}\or

1231 10{00000083}\or

1232 10{00000031}\or

1233 10{00000011}\or

1234 10{00000004}\or

1235 10{00000002}\or

1236 10{00000001}\else

1237 000\fi}%

1238 \@xp\MFP@Rloadz\MFP@powerof@e

1239 \ifnum\MFP@x@Frc=0

1240 \else % handle first decimal digit

1241 \MFP@Rcopyz s%

1242 \MFP@tempa=\@xp\MFP@firstofmany\MFP@x@Frc\mfp@end

1243 \edef\MFP@powerof@e{%

1244 y1\ifcase\MFP@tempa

56

1245 10\or

1246 0{90483742}\or

1247 0{81873075}\or

1248 0{74081822}\or

1249 0{67032005}\or

1250 0{60653066}\or

1251 0{54881164}\or

1252 0{49658530}\or

1253 0{44932896}\or

1254 0{40656966}\else

1255 10\fi}%

1256 \edef\MFP@t@Frc{0\@xp\@gobble\MFP@x@Frc}%

1257 \MFP@Rcopy sx\@xp\MFP@Rload\MFP@powerof@e\MFP@Rmul

1258 \ifnum\MFP@t@Frc=0

1259 \else % handle the rest

1260 \MFP@Rcopyz s\MFP@Rload t10\MFP@t@Frc

1261 \MFP@Rexp@neg@prog

1262 \MFP@Rcopy sx\MFP@Rcopyzy\MFP@Rmul

1263 \fi

1264 \fi

1265 \fi}%

Since x is now positive we calculate e−x. Again we need only up to the 6th
power, organized as follows

1− x(1− x/2(1− x/3(1− x/4(1− x/5(1− x/6)))))

Since this has exactly the same form as the the power series calculation for log and
sin, we can reuse the code in \MFP@com@iter. We end with the final multiplication
by x and the subtraction from 1 rather than call \MFP@com@iter with a useless
multiplication by 1.

1266 \def\MFP@Rexp@neg@prog{%

1267 \MFP@Rcopy tx\MFP@Rload y10{16666667}\MFP@Rsmul

1268 \MFP@com@iter{20000000}\MFP@com@iter{25000000}%

1269 \MFP@com@iter{33333333}\MFP@com@iter{50000000}%

1270 \MFP@flipz\MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul\MFP@flipz}%

The most efficient way to take an integer power of a number x is to scan the
binary code for the exponent. Each digit 1 in this code corresponds to a 2k power
of x, which can be computed by repeatedly squaring x. These dyadic powers are
mutiplied together. We can convert this idea to a simple loop illustrated by this
example of finding x13 (13 = 1101 in base 2). Here p holds the current product
and q holds the current dyadic power of x, initialized with p = 1 and q = x:

1. Rightmost digit 1: update p← pq = x and q ← q2 = x2.
2. Next digit 0: Just update q ← q2 = x4.
3. Next digit 1: update p← pq = x5 and q ← q2 = x8.
4. Next digit 1: update p← pq = x13, detect that we are at the end and skip the

update of q. Return p.

57

Of course, this requires the binary digits of the exponent n. But the rightmost
digit of n is 1 if and only if n is odd, and we can examine each digit in turn if we
divide n by 2 (discarding the remainder) at each stage. We detect the end when
n is reduced to 1.

Accuracy is partly a function of the number of multiplications. The above
scheme requires at most blog2 nc squarings and at most dlog2 ne multiplications
for xn, while directly multiplying x · x · · ·x would require n− 1 multiplications.

For negative powers we can either find the positive power and take its reciprocal
or take the reciprocal of x and find its positive power. We do the first so that
overflow can be detected in \MFP@@Rpow.

1271 \def\MFP@Rpow{%

1272 \ifnum\MFP@y@Frc>0

1273 \MFP@warn{The "pow" function requires an integer power.

1274 \MFP@msgbreak The fractional part will be ignored}%

1275 \fi

1276 \MFP@loopctr=\MFP@y@Int\relax

1277 \ifnum\MFP@loopctr=0

1278 \MFP@Rloadz 110%

1279 \else

1280 \ifnum\MFP@x@Sgn=0

1281 \ifnum\MFP@y@Sgn>0

1282 \MFP@Rloadz 000%

1283 \else

1284 \MFP@badpower@err

1285 \MFP@Rloadz 1\xOverZeroInt\xOverZeroFrac

1286 \fi

1287 \else % integer power of nonzero number

1288 % get the sign in case an overflow interrupts the calculations.

1289 \ifnum\MFP@x@Sgn>0

1290 \def\MFP@power@Sgn{1}%

1291 \else

1292 \edef\MFP@power@Sgn{\ifodd\MFP@loopctr -\fi 1}%

1293 \ifMFPdebug

1294 \show\MFP@power@Sgn

1295 \fi

1296 \fi

1297 \ifnum\MFP@y@Sgn<0 \MFP@Rinv \MFP@Rcopyzx\fi

1298 \ifnum\MFP@loopctr=1

1299 \MFP@Rloadz \MFP@power@Sgn\MFP@x@Int\MFP@x@Frc

1300 \else

1301 \MFP@@Rpow

1302 \ifMFPdebug

1303 \showreg z%

1304 \fi

1305 \fi

1306 \fi

1307 \fi}% %

58

This implements the algorithm discussed above. We save x in register q, ini-
tialize the starting value of 1 in p and then run the loop. If the binary digit just
read is a 1 (i.e., \ifodd is true), it multiplies p and q. It also saves the last prod-
uct (copies z to p). This need not be done on the last iteration, but must not
be moved out of the \ifodd conditional because intervening computations modify
z. If there are more iterations to do (i.e., the \ifnum is true), this squares q and
reduces the counter. Note that the exponents 0 and 1 do not occur since we have
handled them separately.

In case of overflow (either the multiplication or the squaring) we break the loop
and return ±∞.

1308 \def\MFP@@Rpow{%

1309 \MFP@Rcopy xq% initialize register to be squared

1310 \MFP@Rload p110% initialize register to hold partial products

1311 \MFP@Rpow@loop}%

1312 \def\MFP@Rpow@loop{%

1313 \ifodd\MFP@loopctr

1314 \MFP@Rcopy px\MFP@Rcopy qy\MFP@Rmul

1315 \ifnum \MFP@z@Ovr>0 \MFP@handle@expoverflow

1316 \else

1317 \ifnum\MFP@loopctr>1 \MFP@Rcopyz p\fi

1318 \fi

1319 \fi

1320 \ifnum\MFP@loopctr>1

1321 \MFP@Rcopy qx\MFP@Rsq

1322 \ifnum \MFP@z@Ovr>0 \MFP@handle@expoverflow

1323 \else

1324 \MFP@Rcopyz q%

1325 \divide\MFP@loopctr 2

1326 \@XP\MFP@Rpow@loop

1327 \fi

1328 \fi}%

1329 \def\MFP@handle@expoverflow{%

1330 \MFP@expoverflow@err

1331 \MFP@loopctr=0

1332 \MFP@Rloadz\MFP@power@Sgn\MaxRealInt\MaxRealFrac

1333 }%

4.8 The square root

One can combine logarithms and exponentials to can get any power: to get xy,
compute ey ln x. This has the disadvantage that it doesn’t work if x is negative.
Most powers of negative numbers are not defined, but certainly integer powers are.
Thus we have defined \MFPpow and \Rpow for that case.

If we enforce a positive x, then y can have any value. However, the computa-
tion of e.5 ln x cannot give a result as good as one can get from a special purpose
algorithm for the square root. For example, the inaccuracies in computing lnx
will make e.5 ln 9 inexact, while the square root function we implement below will

59

produce exactly
√

9 = 3. In fact, if a square root can be expressed exactly within
our 8-digit precision, our code will find it.

For the square root we return 0 if x is not positive. If the integer part of
x is 0, we copy the fractional part to the integer part (that is, we multiply by
108, remembering to multiply by 10−4 later). This makes the square root of
such numbers slightly more accurate. We then compute the square root using
an algorithm that will be exact whenever possible. We perform one additional
processing step. To explain it, note that our algorithm actually produces the
largest number s with four digits right of the decimal place that satisfies s2 ≤ x.
That is

s2 ≤ x <
(
s+ 10−4

)2
From this it follows that x = (s + ε)2 = s2 + 2sε + ε2 with ε < 10−4 (and so
ε2 < 10−8). We estimate this ε and add that estimate to s. The estimate we use
is obtained by discarding the very small ε2 and solving for the remaining ε get

ε ≈ ε̄ =
x− s2

2s

With this value, s+ ε̄ misses the exact square root by at most ε2/(2s) < .5 · 10−8,
because s ≥ 1. The final result s+ ε̄ is equivalent to computing the average s and
x/s. This, possibly divided by 104 is the returned value.

I originally tried power series methods, but they failed to produce exact answers
when they existed (unless they were inconveniently carried to nine decimals and
then rounded to eight). Then I tried the “exact when possible” algorithm to get
s, but correcting it as follows: find

√
x/s2 by power series and multiply by s. But

this turned out to be remarkably inaccurate, being paradoxically worst when s is
already close, but not equal, to

√
x. Finally, I hit on the above simple and efficient

correction, which turns out to be also the most accurate. By tests it produces a
result correct in all but the last (eighth) decimal place, and within 1 of the correct
value in that place. Of course, it still produces exact results when that is possible
within our digit limits.

1334 \def\MFP@Rsqrt{%

1335 \ifcase\MFP@x@Sgn\relax

1336 \MFP@Rzero

1337 \or

1338 \ifnum\MFP@x@Int=0

1339 \let\MFP@sqrt@reduce=Y%

1340 \edef\MFP@x@Int{\number\MFP@x@Frc}%

1341 \edef\MFP@x@Frc{00000000}%

1342 \else

1343 \let\MFP@sqrt@reduce=N%

1344 \fi

1345 \MFP@Rcopy xt%

1346 \MFP@Isqrt

1347 \MFP@Rcopyz s\MFP@Rcopyzy

1348 \MFP@Rcopy tx\MFP@Rdiv

1349 \MFP@Rcopy sx\MFP@Rcopyzy\MFP@Radd

60

1350 \MFP@Rcopyzx\MFP@Rhalve

1351 \ifx Y\MFP@sqrt@reduce

1352 \MFP@Rcopyzx\MFP@Rload y10{10000}\MFP@Rmul

1353 \fi

1354 \else

1355 \MFP@sqrtofneg@err

1356 \MFP@Rzero

1357 \fi}%

There is a rather straightforward pencil and paper algorithm that provides the
square root digit by digit, and it produces an exact answer when that is possible.
Unfortunately, the decimal version is not easy to code. Fortunately the same
algorithm works in any number base and it is rather simple to code the binary
version (because we only need to decide at each stage whether the “next digit”
is 0 or 1. This produces a square root in binary digits, from which it is easy to
compute the number itself. The result is exact if the answer would be a finite
number of binary digits. We apply it to the integer 108x. While this number is
too large for TEX to handle as an integer, it is not that hard to convert it to a
string of binary digits stored in a macro.

The process turns out to be simpler if we convert 108x to base 4 rather than
binary. Also, instead of producing the square root encoded in a string of binary
digits, we simply build the numerical result as we discover the binary digits (mul-
tiply previous value by two and add the new digit.) Fortunately, the square root
of 108x (and the temporary scratch registers used in the code) will never exceed
TEX’s limit for integers.

The macro \MFP@ItoQ implements the conversion to base-4 digits. The two
arguments are the integer and fractional part of x. The result is stored in
\MFP@ItoQ@Tmp, which is so far only used by the square root code.

The test \ifodd\MFP@tempb is used to get the binary digits. Combining two
of them yields the quadrenary digits. The \ifodd\MFP@tempa tests are there to
check whether there will be a remainder after division by 2, which should then be
inserted at the front of \MFP@tempb before division by 2. Two divisions by 2 each
iteration amounts to division by 4. This is slightly more efficient than dividing by
4 and determining the remainder.

1358 \def\MFP@ItoQ#1#2{%

1359 \MFP@tempa#1\relax\MFP@tempb#2\relax

1360 \def\MFP@ItoQ@Tmp{}\MFP@ItoQ@loop}%

1361 \def\MFP@ItoQ@loop{%

1362 \ifodd\MFP@tempb

1363 \ifodd\MFP@tempa \advance\MFP@tempb \MFP@ttteight\relax\fi

1364 \divide\MFP@tempa2 \divide\MFP@tempb2

1365 \edef\MFP@ItoQ@Tmp{\ifodd\MFP@tempb 3\else 1\fi\MFP@ItoQ@Tmp}%

1366 \else

1367 \ifodd\MFP@tempa \advance\MFP@tempb \MFP@ttteight\relax\fi

1368 \divide\MFP@tempa2 \divide\MFP@tempb2

1369 \edef\MFP@ItoQ@Tmp{\ifodd\MFP@tempb 2\else 0\fi\MFP@ItoQ@Tmp}%

1370 \fi

1371 \ifodd\MFP@tempa \advance\MFP@tempb \MFP@ttteight\relax\fi

61

1372 \divide\MFP@tempa 2 \divide\MFP@tempb 2

1373 \ifnum\MFP@tempa>0

1374 \@xp\MFP@ItoQ@loop

1375 \else\ifnum\MFP@tempb>0

1376 \@XP\MFP@ItoQ@loop

1377 \fi\fi}%

This integer square root n is 104 times the largest number y satisfying
y2 ≤ x and having at most four decimal places. The rest of the code after the
\MFP@Isqrt@loop is intended to divide n (returned in \MFP@tempc) by 104 in order
to get the number y itself.

1378 \def\MFP@Isqrt{%

1379 \MFP@ItoQ\MFP@x@Int\MFP@x@Frc

1380 \MFP@tempa=0 \MFP@tempb=0 \MFP@tempc=0

1381 \expandafter\MFP@Isqrt@loop\MFP@ItoQ@Tmp\mfp@end

1382 \MFP@tempa=\MFP@tempc

1383 \divide\MFP@tempc\MFP@tttfour

1384 \edef\MFP@z@Int{\number\MFP@tempc}%

1385 \multiply\MFP@tempc \MFP@tttfour

1386 \advance\MFP@tempa -\MFP@tempc

1387 \edef\MFP@z@Frc{\number\MFP@tempa}%

1388 \makeMFP@fourdigits\MFP@z@Frc

1389 \edef\MFP@z@Frc{\MFP@z@Frc0000}%

1390 \def\MFP@z@Sgn{1}}%

The following is a loop that essentially performs a base-2 version of the base-10
algorithm that I learned at age 12 from my father (apparently it was taught in
eighth or ninth grade in his day). Seeing it written out, I am surprise at how
concise and elegant it is!

1391 \def\MFP@Isqrt@loop#1{%

1392 \ifx\mfp@end #1%

1393 \else

1394 \multiply\MFP@tempa 2 \multiply\MFP@tempb 4 \multiply\MFP@tempc 2

1395 \advance \MFP@tempb#1\relax

1396 \ifnum\MFP@tempa<\MFP@tempb

1397 \advance\MFP@tempc 1 \advance\MFP@tempa 1

1398 \advance\MFP@tempb -\MFP@tempa

1399 \advance\MFP@tempa 1

1400 \fi

1401 \expandafter\MFP@Isqrt@loop

1402 \fi

1403 }%

1404 〈/extra〉
For my own benefit: this finds the next binary digit and updates the square root
(in \MFP@tempc) by appending that digit. The new digit is also appended to the
end of \MFP@tempa. This is subtracted from \MFP@tempb, but only if the last digit
is a 1. Then the next quadrenary digit is appended to \MFP@tempb. Finally, the
last binary digit found is added (not appended) to \MFP@tempa. The “appending”
of a digit means a multiplication by 2 (or 4) and the addition of the digit. We

62

perform such additions only if the digit is a 1, and we determine if the digit is 1
or 0 by the \ifnum test.

Index

Numbers refer to the page(s) where the corresponding entry is described.

E
\EndofStack 11, 16
\Export 11, 22
\ExportStack 11, 22

G
\Global 11, 22
\GlobalStack 11, 22

I
\IFeq 7, 19
\IFgt 7, 19
\IFlt 7, 19
\IFneg 7, 19
\IFpos 7, 19
\IFzero 7, 19

L
\LogOfZeroFrac 40
\LogOfZeroInt 40

M
\MaxRealFrac 16, 40
\MaxRealInt 16, 40
\MFPabs 6, 22
\MFPadd 5, 22
\MFPangle 39
\MFPceil 6, 22
\MFPchk 7, 19
\MFPchs 6, 22
\MFPcmp 7, 19
\MFPcos 39, 41
\MFPdbl 6, 22
\MFPdecr 6, 22
\MFPdeg 39, 41
\MFPdiv 5, 22
\MFPe 7, 39
\MFPexp 39, 41
\MFPfloor 6, 22

\MFPfrac 6, 22
\MFPhalve 6, 22
\MFPincr 6, 22
\MFPint 6, 22
\MFPinv 6, 22
\MFPln 39, 41
\MFPlog 39, 41
\MFPmax 5, 22
\MFPmin 5, 22
\MFPmpy 5, 22
\MFPmul 5, 22
\MFPnoop 6, 23
\MFPphi 7, 39
\MFPpi 7, 39
\MFPpow 39, 41
\MFPrad 39, 41
\MFPround 8, 36
\MFPsgn 6, 22
\MFPsin 39, 41
\MFPsq 6, 22
\MFPsqrt 39, 41
\MFPstore 6, 22
\MFPstrip 8, 37
\MFPsub 5, 22
\MFPtruncate 8, 35
\MFPzero 6, 22

R
\Rabs 10, 21
\Radd 9, 21
\Rangle 40
\Rceil 10, 21
\Rchk 10, 21
\Rchs 10, 21
\Rcmp 10, 21
\Rcos 40
\Rdbl 10, 21
\Rdecr 10, 21
\Rdeg 40

\Rdiv 9, 21
\Rdup 11, 21
\Rexch 11, 21
\Rexp 40
\Rfloor 10, 21
\Rfrac 10, 21
\Rhalve 10, 21
\Rincr 10, 21
\Rint 10, 21
\Rinv 10, 21
\Rln 40
\Rlog 40
\Rmax 9, 21
\Rmin 9, 21
\Rmpy 9, 21
\Rmul 9, 21
\Rnoop 10, 21
\Rpop 9, 21
\Rpow 40
\Rpush 9, 21
\Rrad 40
\Rsgn 10, 21
\Rsin 40
\Rsq 10, 21
\Rsqrt 40
\Rsub 9, 21
\Rzero 10, 21

S
\startMFPprogram . 4, 20
\stopMFPprogram . . 4, 20

X
\xOverZeroFrac . . 12, 16
\xOverZeroInt . . . 12, 16

Z
\ZeroOverZeroFrac 12, 16
\ZeroOverZeroInt 12, 16

63

