The MINIFP package*

Dan Luecking

$$
2013 / 01 / 01
$$

Abstract

This package provides minimal fixed point exact decimal arithmetic operations. 'Minimal' means numbers are limited to eight digits on either side of the decimal point. 'Exact' means that when a number can be represented exactly within those limits, it will be.

Contents

1 Introduction 2
2 User macros 3
2.1 Nonstack-based operations 4
2.2 Commands to process numbers for printing 8
2.3 Stack-based macros 8
2.4 Errors 11
3 Implementation 12
3.1 Utility macros 12
3.2 Processing numbers and the stack 14
3.3 The user-level operations 19
3.4 The internal computations 23
3.5 Commands to format for printing 35
3.6 Miscellaneous 38
4 Extras 39
4.1 Additional errors 40
4.2 Loading the extras 40
4.3 Error messages 41
4.4 Sine and Cosine 42
4.5 Polar angle 47
4.6 Logarithms 51
4.7 Powers 53
4.8 The square root 59

[^0]
1 Introduction

In working on an application that needed to be able to automatically generate numeric labels on the axes of a graph, I needed to be able to make simple calculations with real numbers. What $T_{E} X$ provides is far to limited. In fact, its only native user-level support for real numbers is as factors for dimensions. For example one can "multiply" 3.1×0.2 by \backslash dimen0 $=0.2 \mathrm{pt}$ \dimen0=3.1 \backslash dimen0 .

Unfortunately $\mathrm{T}_{\mathrm{E} X}$ stores dimensions as integer multiples of of the "scaled point" (sp) with $\mathrm{sp}=2^{-16} \mathrm{pt}$, and therefore .2 pt is approximated by $\frac{13107}{65536}$, which is not exact. Then mutiplying by 3.1 produces $\frac{40631}{65536}$. If we ask for 5 digit accuracy, this produces 0.61998 pt and not the exact value 0.62 . This is sufficiently accurate for positioning elements on a page, but not for displaying automatically computed axis labels if 5 digit accuracy is needed.

The MINIFP package was written to provide the necessary calculations with the necessary accuracy for this application. The implementation would have been an order of magnitude smaller and faster if only 4 digit accuracy were provided (and I may eventually do that for the application under consideration), but I have decided to clean up what I have produced and release it as is. The full minifp package provides nearly the same operations as a subset of the FP package, but the latter carries calculations to 18 decimal places, which is far more than necessary for my purposes. I want something small and fast to embed in the MFPIC drawing package.

I decided on eight digits on both sides of the decimal point essentially because I wanted at least 5 digits and the design I chose made multiples of 4 the easiest to work with.

Minifp also provides a simple stack-based language for writing assembly language-like programs. Originally, this was to be the native calculation method, but it turned out to be too unwieldy for ordinary use. I left it in because it adds only about 10% overhead to the code.

But why only eight digits? T_{E} only works with integers, and since the maximum integer allowed is about 2000000000 , the largest numbers that can be added are limited to about 999999 999. It is very little trouble to add numbers by adding their fractional parts and integer parts separately as 9 -digit integers. So it would seem multiples of 9 digits would be easy to implement.

However, something we have to do repeatedly in division is multiply the integer and fractional parts of a number by a one-digit number. For that purpose, nine digits would be too much, but eight digits is just right. For nine digits, we would have to inconveniently break the number into more than two parts. Limiting our numbers to eight-digit parts drastically simplifies division.

Another simplification: multiplication has to be done by breaking the number into parts. TEX can multiply any two 4-digit integers without overflow, but it cannot multiply most pairs of 5 -digit integers. Two 8-digit numbers conveniently break ito four 4-digit parts. To get even nine digits of accuracy would require six parts (five, if we don't insist on a separation occuring at the decimal point). The complexity of the multiplication process goes up as the square of the number of parts, so six parts would more than double the complexity.

A final simplification: $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ places a limit of 9 on the number of arguments a macro can have. Quite often the last argument is needed clear out unused text to be discarded. Thus, a string of eight digits can quite often be processed with one execution of one nine-argument macro.

Addition and subtraction can be exact, multiplication and division can extend numbers past the 8 -digit limit so they might be rounded. However, when the exact answer fits in the 8 -digit limit, our code should produce it. Overflow (in the sense that the integer part can exceed the allowed eight digits) is always possible, but is much more likely with multiplication and division.

Multiplication is carried out internally to an exact 16 -digit answer, which is then rounded to an 8 -digit result. Overflow (more than 8 digits in the integer part) is discarded. Division is internally carried to 9 digits after the decimal, which is then also rounded to an 8-digit result.

We supply two kinds of operations in this package. There are stack-based operations, in which the operands are popped from a stack and the results pushed onto it, and argument-based, in which the operands (and a macro to hold the result ${ }^{1}$) are arguments of a macro. Both types load the arguments into internal macros (think "registers"), then call internal commands (think "microcode") which return the results in internal macros. These results are then pushed onto the stack (stack-based operations) or stored in a supplied macro argument (think "variable").

The stack is implemented as an internal macro which is redefined with each command. The binary operations act on the last two pushed objects in the order they were pushed. For example, the sequence "push 5 , push 3 , subtract" performs $5-3$ by popping 3 and 5 into registers (thereby removing them from the stack), subtracting them and then pushing the result (2) onto the stack.

Our implementation of the push operation first prepares the number in a standard form. Thus, stack-based operations always obtain numbers in this form. The argument based operations will prepare the arguments in the same way. The internal commands will thus have a standard form to operate on. All results are returned in standard form.

The standard form referred to above is an integer part (1 to 8 digits with no unnecessary leading zeros nor unnecessary sign) followed by the decimal point (always a dot, which is ASCII 46), followed by exactly 8 digits, all of this preceded by a minus sign if the number is negative. Thus, --0.25 would be processed and stored as " 0.25000000 " and -.333333 as " -0.33333300 ".

2 User macros

Miniff provides (so far) six binary operations (that act on a pair of numbers): addition, subtraction, multiplication, division, maximum and minimum, as well as fourteen unary operations (that act on one number): negation, absolute value,

[^1]doubling, halving, integer part, fractional part, floor, ceiling, signum, squaring, increment, decrement and inversion. With the "extra" option, the unary operations sine, cosine, logarithm, powers and square root are available, and the binary operation angle. See section 4.

These extra operations are made available using the extra option in $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$:

```
\usepackage[extra]{minifp}
```

In plain $\mathrm{T}_{\mathrm{E}} \mathrm{X}$, they will be loaded if you give the macro \MFPextra a definition (any definition) before inputting minifp.sty:
\def \MFPextra\{\} \input minifp.sty
The extras can also be loaded by means of the command \MFPloadextra, issued after minifp. sty is loaded.

If the extra operations are not needed, some memory and time might be saved by using minifp.sty alone.

As previously mentioned, each of these operations come in two versions: a version that acts on operands and stores the result in a macro, and a version that acts on the stack. The former all have names that begin \MFP and the latter begin with \backslash. The former can be used anywhere, while the latter can only be used in a "program". A program is started with \startMFPprogram and terminated with \stopMFPprogram. The R in the names is for 'real'. This is because it is possible that stacks of other types will be implemented in the future.

For example, \MFPadd\{1.3\}\{3.4\}\X will add 1.20000000 to 3.40000000 and then define $\backslash \mathrm{X}$ to be the resulting 4.60000000 . These operand forms do not alter or even address the stack in any way. The stack-based version of the same operation would look like the following:

```
\Rpush\{1.2\}
\Rpush\{3.4\}
\(\backslash\) Radd
\(\backslash\) Rpop \X
```

which would push first 1.20000000 then 3.40000000 onto the stack, then replace them with 4.60000000 , then remove that and store it in $\backslash \mathrm{X}$. Clearly the stack is intended for calculations that produce a lot of intermediate values and only the final result needs to be stored.

The command \startMFPprogram starts a group. That group should be ended by \stopMFPprogram. Changes to the stack and defined macros are local to that group. Thus the macro $\backslash X$ in the example above might seem to be useful only as a temporary storage for later calculations in the same program group. However, there are commands provided to force such a macro to survive the group, and even to force the contents of the stack to survive the group (see the end of subsection 2.3). Do not try to turn a MINIFP program into a $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ environment. The extra grouping added by environments would defeat the effects of these commands.

2.1 Nonstack-based operations

In the following tables, an argument designated $\langle n u m\rangle$ can be any decimal real number with at most 8 digits on each side of the decimal point, or they can be
macros that contain such a number. If the decimal dot is absent, the fractional part will be taken to be 0 , if the integer part or the fractional part is absent, it will be taken to be 0 . (One consequence of these rules is that all the following arguments produce the same internal representation of zero: \{0.0\}, \{0.\}, \{.0\}, $\{0\},\{$.$\} , and \{\}.) Spaces may appear anywhere in the \langle n u m\rangle$ arguments and are stripped out before the number is used. For example, \{3 . 14159265$\}$ is a valid argument. Commas are not permitted. The decimal dot (period, fullstop) character must be inactivated if some babel language makes it a shorthand.

The \macro argument is any legal macro. The result of using one of these commands is that the macro is defined (or redefined, there is no checking done) to contain the standard form of the result. If the $\langle n u m\rangle$ is a macro, the braces surrounding it are optional.

Binary Operations

Command	operation
\backslash MFPadd $\left\{\left\langle n u m_{1}\right\rangle\right\}\left\{\left\langle\right.\right.$ num $\left.\left._{2}\right\rangle\right\} \backslash$ macro	Stores the result of $\left\langle n u m_{1}\right\rangle+\left\langle n u m_{2}\right\rangle$ in \macro
\backslash MFPsub $\left\{\left\langle n u m_{1}\right\rangle\right\}\left\{\left\langle\right.\right.$ num $\left.\left._{2}\right\rangle\right\} \backslash$ macro	Stores the result of $\left\langle n u m_{1}\right\rangle-\left\langle n u m_{2}\right\rangle$ in \macro
\backslash MFPmul $\left\{\left\langle\right.\right.$ num $\left.\left._{1}\right\rangle\right\}\left\{\left\langle\right.\right.$ num $\left.\left._{2}\right\rangle\right\} \backslash$ macro	Stores the result of $\left\langle n u m_{1}\right\rangle \times\left\langle n u m_{2}\right\rangle$, rounded to 8 places after the decimal point, in \macro
$\backslash \mathrm{MFPmpy}\left\{\left\langle\right.\right.$ num $\left.\left._{1}\right\rangle\right\}\left\{\left\langle\right.\right.$ num $\left.\left._{2}\right\rangle\right\} \backslash$ macro	Same as \MFPmul
\backslash MFPdiv $\left\{\left\langle n u m_{1}\right\rangle\right\}\left\{\left\langle n u m_{2}\right\rangle\right\} \backslash$ macro	Stores the result of $\left\langle n u m_{1}\right\rangle /\left\langle n u m_{2}\right\rangle$, rounded to 8 places after the decimal point, in \macro
\backslash MFPmin $\left\{\left\langle\right.\right.$ num $\left.\left._{1}\right\rangle\right\}\left\{\left\langle\right.\right.$ num $\left.\left._{2}\right\rangle\right\} \backslash$ macro	Stores the smaller of $\left\langle n u m_{1}\right\rangle$ and $\left\langle n u m_{2}\right\rangle$ in \backslash macro
\backslash MFPmax $\left\{\left\langle n u m_{1}\right\rangle\right\}\left\{\left\langle\right.\right.$ num $\left.\left._{2}\right\rangle\right\} \backslash$ macro	Stores the larger of $\left\langle n u m_{1}\right\rangle$ and $\left\langle n u m_{2}\right\rangle$ in \backslash macro

Command	operation
\backslash MFPchs $\{\langle n u m\rangle\} \backslash$ macro	Stores - \langle num \rangle in \macro.
\backslash MFPabs $\{\langle n u m\rangle\} \backslash$ macro	Stores $\|\langle n u m\rangle\|$ in \backslash macro.
$\backslash \mathrm{MFPdbl}\{\langle n u m\rangle\} \backslash$ macro	Stores $2\langle n u m\rangle$ in \macro.
\backslash MFPhalve $\{\langle n u m\rangle\} \backslash$ macro	Stores $\langle n u m\rangle / 2$, rounded to 8 places after the decimal point, in \macro.
\backslash MFPint $\{\langle n u m\rangle\} \backslash$ macro	Replaces the part of $\langle n u m\rangle$ after the decimal point with zeros (keeps the sign unless the result is zero) and stores the result in \macro.
\backslash MFPfrac $\{\langle n u m\rangle\} \backslash$ macro	Replaces the part of $\langle n u m\rangle$ before the decimal point with zero (keeps the sign unless the result is zero) and stores the result in \macro.
\backslash MFPfloor $\{\langle n u m\rangle\} \backslash$ macro	Stores the largest integer not more than $\langle n u m\rangle$ in \macro.
\backslash MFPceil $\{\langle$ num $\rangle\} \backslash$ macro	Stores the smallest integer not less than $\langle n u m\rangle$ in \macro.
\backslash MFPsgn $\{\langle n u m\rangle\} \backslash$ macro	Stores $-1,0$ or 1 (in standard form) in \macro according to whether $\langle n u m\rangle$ is negative, zero, or positive.
$\backslash \mathrm{MFPsq}\{\langle n u m\rangle\} \backslash$ macro	Stores the square of $\langle n u m\rangle$ in \macro.
\backslash MFPinv $\{\langle n u m\rangle\} \backslash$ macro	Stores $1 /\langle$ num \rangle, rounded to 8 places after the decimal point, in \macro.
\backslash MFPincr $\{\langle n u m\rangle\} \backslash$ macro	Stores $\langle n u m\rangle+1$ in \backslash macro.
\backslash MFPdecr $\{\langle n u m\rangle\} \backslash$ macro	Stores $\langle n u m\rangle$ - 1 in \macro.
\backslash MFPzero $\{\langle n u m\rangle\} \backslash$ macro	Ignores $\langle n u m\rangle$ and stores 0.00000000 in the \macro.
\backslash MFPstore $\{\langle n u m\rangle\} \backslash$ macro	Stores the $\langle n u m\rangle$, converted to standard form, in \macro

The command \MFPzero is useful for "macro programs". If you want to do something to a number depending on the outcome of a test, you may occasionally want to simply absorbed the number and output a default result. (There are more efficient ways to simply store 0 in a macro.)

Note that one could easily double, halve, square, increment, decrement or invert a $\langle n u m\rangle$ using the binary versions of $\backslash M F P a d d, ~ \ M F P s u b, ~ \ M F P m u l$ or $\backslash M F P d i v$. The commands \MFPdbl, \MFPhalve, \MFPsq, \MFPincr, \MFPdecr and \MFPinv are designed to be more efficient versions, since they are used repeatedly in internal code.

Also, multiplication is far more efficient than division, so even if you use the two argument versions, $\backslash \operatorname{MFPmul}\{\langle n u m\rangle\}\{.5\}$ is faster than $\backslash \mathrm{MFPdiv}\{\langle n u m\rangle\}\{2\}$.

There is one command that takes no argument:

Nullary Operations

Command	operation
\backslash MFPnoop	Does nothing.

The following are not commands at all, but macros that contain convenient constants.

Constants

Constant	value
$\backslash \mathrm{MFPpi}$	3.14159265, the eight-digit approximation to π.
$\backslash \mathrm{MFPe}$	2.71828183, the eight-digit approximation to e.
$\backslash \mathrm{MFPphi}$	1.61803399, the eight-digit approximation to the golden ratio ϕ.

There also exist commands to check the sign of a number and the relative size of two numbers:

```
\MFPchk{\langlenum\rangle}
\MFPcmp{\langlenum}\mp@subsup{|}{1}{}\rangle}{\langlenu\mp@subsup{m}{2}{}\rangle
```

These influence the behavior of six commands:

```
\IFneg{\langletrue text }\rangle}{\langle\mathrm{ false text }\rangle
\IFzero{\langletrue text\rangle}{\langle{alse text \rangle}
\IFpos{\langletrue text\rangle}{\langlefalse text\rangle}
\IFlt{\langletrue text }\rangle}{\langle\mathrm{ false text }\rangle
\IFeq{\langletrue text \rangle}{\langle{false text\rangle}
\IFgt{\langletrue text }\rangle}{\langle\mathrm{ false text }\rangle
```

Issuing $\backslash \operatorname{MFPchk}\{\backslash \mathrm{X}\}$ will check the sign of the number stored in the macro $\backslash \mathrm{X}$. Then \IFneg $\{A\}\{B\}$ will produce ' A ' if it is negative and ' B ' if it is 0 or positive. Similarly, $\backslash \mathrm{MFPcmp}\{\backslash X\}\{1\}$ will compare the number stored in $\backslash X$ to 1. Afterward, $\backslash I F l t\{A\}\{B\}$ will produce ' A ' if $\backslash X$ is less than 1 and ' B ' if $\backslash X$ is equal to or greater than 1.

If users finds it tiresome to type two separate commands, they can easily define a single command that both checks a value and runs \IF.... For example
\def \IFisneg\#1\{\MFPchk\{\#1\}\IFneg\} Used like
\backslash IFisneg $\{\backslash X\}\{A\}\{B\}$
this will check the value of $\backslash X$ and run \IFneg on the pair of alternatives that follow.

The user might never need to use \backslash MFPchk because every one of the operators provided by the MINIFP package runs an internal version of \MFPchk on the result of the operation before storing it in the \macro. For example, after \MFPzero the command \IFzero will always return the first argument. For this reason one should not insert any MINIFP operations between a check/compare and the \IF . . . command that depends on it.

Note: the behavior of all six \IF... commands is influenced by both \backslash MFPchk and \backslash MFPcmp. This is because internally \backslash MFPchk $\{\backslash X\}$ (for example) and $\backslash M F P c m p\{\backslash X\}\{0\}$ do essentially the same thing. In fact there are only three internal booleans that govern the behavior of the six \IF... commands. The different names are for clarity: \IFgt after a compare is less confusing than the entirely equivalent \IFpos.

It should probably be pointed out that the settings for the \IF. . . macros are local to any $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ groups they are contained in.

2.2 Commands to process numbers for printing

After \backslash MFPadd $\{1\}\{2\} \backslash \mathrm{X}$ one can use $\backslash \mathrm{X}$ anywhere and get 3.00000000 . One might may well prefer 3.0, and so commands are provided to truncate a number or round it to some number of decimal places. Note: these are provided for printing and they will not invoke the above \MFPchk. They do not have any stack-based versions. The commands are
\backslash MFPtruncate $\{\langle$ int $\rangle\}\{\langle n u m\rangle\} \backslash$ macro
\backslash MFPround $\{\langle$ int $\rangle\}\{\langle$ num $\rangle\} \backslash$ macro
\backslash MFPstrip $\{\langle n u m\rangle\} \backslash$ macro
where \langle int \rangle is a whole number between -8 and 8 (inclusive). The other two arguments are as before.

These commands merely process $\langle n u m\rangle$ and define \backslash macro to produce a truncated or rounded version, or one stripped of trailing zeros, or one with added trailing zeros. Note that truncating or rounding a number to a number of digits greater than it already has will actually lengthen it with added zeros. For example, $\backslash M F P r o u n d\{4\}\{3.14159\} \backslash X$ will cause $\backslash X$ to be defined to contain 3.1416, while $\backslash M F P r o u n d\{6\}\{3.14159\} \backslash X$ will cause $\backslash X$ to contain 3.141590. If $\backslash Y$ contains 3.14159, then \MFPtruncate\{4\}\Y\Y will redefine $\backslash Y$ to contain 3.1415. Also, \backslash MFPstrip $\{1.20000000\} \backslash Z$ will cause $\backslash Z$ to contain 1.2. All these commands first normalize the $\langle n u m\rangle$, so any spaces are removed and redundant signs are discarded.

If $\langle i n t\rangle$ is negative, places are counted to the left of the decimal point and 0 s are substituted for lower order digits. That is, \MFPtruncate $\{-2\}\{1864.3\} \backslash \mathrm{X}$ will give $\backslash X$ the value 1800 and $\backslash M F P r o u n d\{-2\}\{1864\} \backslash X$ will give $\backslash X$ the value 1900.
 the dot is also omitted from the result. If \backslash MFPstrip is applied to a number with all zeros after the dot, then one 0 is retained. There is a star form where the dot and the zero are dropped.

For these three commands, the sign of the number is irrelevant. That is, the results for negative numbers are the negatives of the results for the absolute values. The processing will remove redundant signs along with redundant leading zeros: \backslash MFPtruncate $\{-3\}\{-+123.456\}$ will produce 0 . The rounding rule is as follows: round up if the digit to the right of the rounding point is 5 or more, round down if the digit is 4 or less.

2.3 Stack-based macros

The stack-based macros can only be used in a MINIFP program group. This group is started by the command \startMFPprogram and ended by \stopMFPprogram. None of the stack-based macros takes an argument, but merely operate on values on the stack, replacing them with the results. There are also commands to manipulate the stack and save a value on the stack into a macro. Finally, since all changes to the stack (and to macros) are local and therefore lost after \stopMFPprogram, there are commands to selectively cause them to be retained.

To place numbers on the stack we have \Rpush and to get them off we have
\backslash Rpop. The syntax is
\backslash Rpush\{ $\langle n u m\rangle\}$
\backslash Rpop\macro
The first will preprocess the $\langle n u m\rangle$ as previously discussed and put it on the stack, the second will remove the last number from the stack and define the given macro to have that number as its definition.

All the binary operations remove the last two numbers from the stack, operate on them in the order they were put on the stack, and push the result on the stack. Thus the program
\backslash Rpush\{1.2\}
\backslash Rpush $\{3.4\}$
\backslash Rsub
will first put 1.20000000 and 3.40000000 on the stack and then replace them with -2.20000000 . Note the order: $1.2-3.4$.

Binary Operations

Command	operation
\backslash Radd	Adds the last two numbers on the stack.
\backslash Rsub	Subtracts the last two numbers on the stack.
\backslash Rmul	Multiplies the last two numbers on the stack, rounding to 8 decimal
	places.
\backslash Rmpy	Same as \backslash Rmul.
\backslash Rdiv	Divides the last two numbers on the stack, rounding to 8 decimal
	places.
\backslash Rmin	Replaces the last two elements on the stack with the smaller one.
\backslash Rmax	Replaces the last two elements on the stack with the larger one.

The unary operations replace the last number on the stack with the result of the operation performed on it.

Unary Operations

Command	operation
\backslash Rchs	Changes the sign.
\backslash Rabs	Obtains the absolute value.
\backslash Rdbl	Doubles the value.
\backslash Rhalve	Halves the value, rounding to 8 places.
\backslash Rint	Replaces the fractional part with zeros. If the result equals 0.0 , any negative sign will be dropped.
\backslash Rfrac	Replaces the integer part with 0 . If the result equals 0.0 , any negative sign will be dropped.
\backslash Rfloor	Obtains the largest integer not greater than the number.
\backslash Rceil	Obtains the smallest integer not less than the number.
\backslash Rsgn	Obtains $-1,0$ or 1 according to whether the number is negative, zero, or positive. These numbers are pushed onto the stack with the usual decimal point followed by 8 zeros.
\backslash Rsq	Obtains the square. Slightly more efficient than the equivalent \backslash Rdup \backslash Rmul. See below for \backslash Rdup.
\backslash Rinv	Obtains the reciprocal. Slightly more efficient than the equivalent division.
\backslash Rincr	Increases by 1. Slightly more efficient than the equivalent addition.
\backslash Rdecr	Decreases by 1. Slightly more efficient than the equivalent subtraction.
\backslash Rzero	Replaces the number with zero. Slightly more convenient than the equivalent \backslash Rpop $\backslash \mathrm{X}$ followed by a \backslash Rpush\{0\}.

There is one nullary operation, which does not read the stack nor change it.
Nullary Operations

Command	operation
\backslash Rnoop	Does nothing.

There also exist commands to check the sign of the last number, and the relative size of the last two numbers on the stack:
\backslash Rchk
\backslash Rcmp
They do not remove anything from the stack. Just like the nonstack counterparts, they influence the behavior of six commands: \IFneg, \IFzero, \IFpos, \IFlt, $\backslash I F e q$ and $\backslash I F g t$. Issuing \backslash Rchk will check the sign of the last number on the stack, while \backslash Rcmp will compare the last two in the order they were pushed. For example, in the following

```
\Rpush{1.3}
\Rpush{-2.3}
\Rcmp
\IFgt{\Radd}{\Rsub}
\Rpush\X
\Rchk
\IFneg{\Radd}{\Rsub}
```

\backslash Rcmp will compare 1.3 to -2.3 . Since the first is greater than the second, \backslash IFgt will be true and they will be added, producing -1.0 . Following this the contents of the macro $\backslash \mathrm{X}$ are pushed, it is examined by \backslash Rchk and then either added to or subtracted from -1.0 .

The user might never need to use \backslash Rchk because every operator that puts something on the stack also runs \backslash Rchk. In the above program, in fact, \backslash Rchk is redundant since \backslash Rpush will already have run it on the contents of $\backslash \mathrm{X}$.

There exist stack manipulation commands that allow the contents of the stack to be changed without performing any operations. These are really just conveniences, as there effects could be obtained with appropriate combinations of \backslash Rpop and \backslash Rpush. These commands, however, do not run \backslash Rchk as \backslash Rpush would.

Stack Manipulations

Command	operation
\backslash Rdup	Puts another copy of the last element of the stack onto the stack.
\backslash Rexch	Exchanges the last two elements on the stack.

After \stopMFPprogram, any changes to macros or to the stack are lost, unless arrangements have been made to save them. There are four commands provided. Two act on a macro which is the only argument, the other two have no arguments and act on the stack. The macro must simply contain a value, it cannot be more complicated and certainly cannot take an argument.

Exporting changed values

Command	operation
\backslash Export \backslash macro	Causes the definition of \macro to survive the program group.
\backslash Global\macro	Causes the definition of \macro to be global.
\backslash ExportStack	Causes the contents of the stack to survive the program group.
\backslash GlobalStack	Causes the contents of the stack to be global.

The difference between \Export and \Global is solely in how other grouping is handled. If the program group is contained in another group (for example, inside an environment), then the result of $\backslash G l o b a l \backslash X$ is that the definition of $\backslash X$ survives that group (and all containing groups) as well. On the other hand, after \backslash Export $\backslash X$, then the definition survives the program group, but not other containing groups.

If $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ grouping is used inside a program group, then using \Export inside that group has no effect at all, while \Global works as before.

The stack versions are implemented by running \Export or \Global on the internal macro that defines the stack, so they have the same behavior.

2.4 Errors

If one tries to pop from an empty stack, an error message will be issued. Ignoring the error causes the macro to have the value stored in the macro \EndofStack. Its default is 0.00000000 .

If one tries to divide by zero, an error message will be issued. Ignoring the error causes the result to be one of the following:

- Dividing 0 by 0 gives a result whose integer part is stored in \ZeroOverZeroInt and whose fractional part is stored in \ZeroOverZeroFrac. The default is 0.00000000
- Dividing a nonzero x by 0 gives a result whose integer part is stored in \xOverZeroInt and whose fractional part is stored in \xOverZeroFrac. The defaults are both equal to 99999999 . The sign of the result will be the sign of x.
You can change any of these macros, but make sure they produce a result which is a number in standard form (as described earlier). These macros are copied directly into the result without checking. Then further processing steps may require the result to be a number in standard form.

Error messages may result from trying to process numbers given in incorrect format. However, there are so many ways for numbers to be incorrect that this package does not even try to detect them. Thus, they will only be caught if some $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ operation encounters something it cannot handle. (The $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ manual calls these "weird errors" because the messages tend to be uninformative.) Incorrect numbers may even pass unnoticed, but leave random printed characters on the paper, or odd spacing.

3 Implementation

3.1 Utility macros

We announce ourself, and our purpose. We save the catcode of © and change it to letter. Several other catcodes are saved and set to other in this file. We also make provisions to load the extra definitions, either directly with \MFPloadextra or through a declared option in $\mathrm{E}_{\mathrm{A}} \mathrm{T} \mathrm{X}$.

```
1 〈*sty\rangle
2 \expandafter
3\ifx \csname MFP@finish\endcsname\relax
4\else \expandafter\endinput \fi
5 \expandafter\edef\csname MFP@finish\endcsname{%
    \catcode64=\the\catcode64 \space % @
    \catcode46=\the\catcode46 \space % .
    \catcode60=\the\catcode60 \space % <
    \catcode62=\the\catcode62 \space}% >
\ifx\ProvidesPackage\UndEfInEd
    \newlinechar'\``J%
    \message{%
        Package minifp: \MFPfiledate\space v\MFPfileversion. %
            Macros for real number operations %
            ``Jand a stack-based programing language.^^J}%
\else
17\ProvidesPackage{minifp}[\MFPfiledate\space v\MFPfileversion. %
```

```
    Macros for real number operations %
        and a stack-based programing language.]%
    \DeclareOption{extra}{\def\MFPextra{}}%
    \ProcessOptions\relax
\i
\catcode64=11 % @=letter (already is in LaTeX)
\ifx\MFPextra\UndEfInEd
    \def\MFP@loadextra{}%
\else
\def\MFP@loadextra{\input mfpextra\relax}%
\i
\def \MFPloadextra{%
    \edef\MFP@load@extra{%
        \catcode46=12 \catcode60=12 \catcode62=12 \catcode64=11
        \noexpand\input mfpextra\relax
        \catcode46=\the\catcode46\relax\catcode60=\the\catcode60\relax
        \catcode62=\the\catcode62\relax\catcode64=\the\catcode64\relax}%
    \MFP@load@extra}%
\catcode46=12 % .
\catcode60=12 % <
\catcode62=12 % >
```

We check for $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ (ignoring $\mathrm{IAT}_{\mathrm{E}} \mathrm{X} 209$); $\backslash \mathrm{MFP@ifnoLaTeX..}. \mathrm{\backslash mfp@end} \mathrm{is}$ skipped in LateX and executed otherwise.

```
\long\def\gobbleto@mfp@end#1\mfp@end{}%
\ifx\mfp@end\UndEfInEd\def\mfp@end{\@empty}\fi
\ifx\documentclass\UndEfInEd
    \def\MFP@ifnoLaTeX{}%
\else
    \let\MFP@ifnoLaTeX\gobbleto@mfp@end
\ \fi
```

We have $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$'s \zap@space. It pretty much must be used inside \edef or other purely expansion context. The rest of these are standard $\mathrm{IA}_{\mathrm{E}} \mathrm{X}$ internals. Note that the token list that \zap@space is applied to should probably never contain braces or expandable tokens.

Usage: \edef $\backslash X\left\{\backslash z a p @ s p a c e<t o k e n s>_{ப} \backslash @ e m p t y\right\}$
The space is necessary in case none exist; the \@empty terminates the loop.

```
\let\@xp\expandafter
\def\@XP{\@xp\@xp\@xp}%
\MFP@ifnoLaTeX
    \def\@empty{}%
    \long\def\@gobble#1{}%
    \def\zap@space#1 #2{#1\ifx#2\@empty\else\@xp\zap@space\fi#2}%
    \long\def\@ifnextchar#1#2#3{%
        \let\reserved@d#1%
        \def\reserved@a{#2}%
        \def\reserved@b{#3}%
        \futurelet\@let@token\@ifnch}%
    \def\@ifnch{%
```

```
8\ifx\@let@token\@sptoken
    \let\reserved@c\@xifnch
    \else
        \ifx\@let@token\reserved@d
        \let\reserved@c\reserved@a
        \else
        \let\reserved@c\reserved@b
        \i
        \fi
        \reserved@c}%
    {%
    \def\:{\global\let\@sptoken= }\:%
    \def\:{\@xifnch}\@xp\gdef\: {\futurelet\@let@token\@ifnch}%
    3%
    \def\@ifstar#1{\@ifnextchar*{\@firstoftwo{#1}}}%
    \long\def\@firstofone #1{#1}%
    \long\def\@firstoftwo #1#2{#1}%
    \long\def\@secondoftwo#1#2{#2}%
\mfp@end
```

We need to divide by both 10^{4} and 10^{8} several times. I could have allocated two count registers, but have taken the approach of only using those for intermediate calculations.
$77 \backslash$ def \backslash MFP@tttfour $\{10000\} \%$ ttt $=$ Ten To The
78 \def \MFP@ttteight\{100000000\}\%
These are for manipulating digits. The $\backslash \ldots$. ofmany commands require a sequence of arguments (brace groups or tokens) followed by $\backslash m f p @ e n d$. The minimum number of required parameters is surely obvious. For example, \MFP@ninthofmany must be used like
\backslash MFP@ninthofmany $\langle 9$ or more arguments $\rangle \backslash m f p @ e n d$ All these are fully expandable.
79 \def \MFP@firstofmany\#1\#2\mfp@end\{\#1\}\%
$80 \backslash$ def \MFP@fifthofmany\#1\#2\#3\#4\#5\#6\mfp@end\{\#5\}\%
81 \def \MFP@ninthofmany\#1\#2\#3\#4\#5\#6\#7\#8\{\MFP@firstofmany\}\%
82 \def \MFP@firsteightofmany\#1\#2\#3\#4\#5\#6\#7\#8\#9\mfp@end\{\#1\#2\#3\#4\#5\#6\#7\#8\}\%

3.2 Processing numbers and the stack

Our stack stores elements in groups, like
$\{-1.234567890\}\{0.00001234\} \backslash M F P @ e o s$
with an end marker. The purpose of the marker is to prevent certain parameter manipulations from stripping off braces. This means we can't use \@empty to test for an empty stack. At the moment, only \backslash Rpop actually checks, but all other stack commands (so far) use \Rpop to get their arguments.

```
83\let\MFP@eos\relax
84\def\MFP@EOS{\MFP@eos}%
85\def\MFP@initRstack{\def \MFP@Rstack{\MFP@eos}}%
86\MFP@initRstack
```

Define some scratch registers for arithmetic operations. We don't care that these might be already in use, as we only use them inside a group. However, we need one counter that will not be messed with by any of our operations. I must be sure not to use commands that change \MFP@loopctr in code that depends on it.

```
87\countdef \MFP@tempa 0
88\countdef \MFP@tempb 2
89\countdef \MFP@tempc 4
90\countdef \MFP@tempd 6
91 \countdef \MFP@tempe 8
92 \countdef \MFP@tempf 10
93 \newcount \MFP@loopctr
```

The following can only be used where unrestricted expansion is robust. It will allow results obtained inside a group to survive the group, but not be unrestrictedly global. Example: the code
\MFP@endgroup@after\{\def\noexpand $\backslash M F P @ z @ V a l\{\backslash M F P @ z @ V a l\}\}$
becomes
\edef $\backslash x\{\backslash$ endgroup \backslash def \backslash noexpand $\backslash M F P @ z @ V a l\{\backslash M F P @ z @ V a l\}\} \backslash x$ which gives, upon expansion of $\backslash x$,
\endgroup \backslash def $\backslash \mathrm{MFP@z@Val} \mathrm{\{ }\{$ expansion-of- $\backslash \mathrm{MFP@z@Val} \mathrm{\rangle} \mathrm{\}}$
which defines $\backslash M F P @ z @ V a l$ outside the current group to equal its expansion within the current group, provided it was started with \begingroup.

We define a \backslash MFP@returned@values to make all the conceivable produced values survive the group. The \backslash MFPcurr@Sgn part is to permit testing the sign of the result and allow conditional code based on it.

I have been lax at making sure \MFP@z@Ovr is properly initiallized and properly checked whenever it could be relevant, and properly passed on. I think every internal command \MFP@Rxxx should ensure it starts being 0 and ends with a numerical value. I notice that division might make it empty.
\MFP@subroutine executes its argument (typically a single command) with a wrapper that initializes all the macros that might need initializing, and returns the necessary results.

```
\def\MFP@endgroup@after#1{\edef\x{\endgroup#1}\x}%
\def\MFP@endgroup@return{\MFP@endgroup@after\MFP@returned@values}%
\def\MFP@def@after{\def\noexpand}%
\def\MFP@returned@values{%
    \MFP@def@after\MFP@z@Val{\MFP@z@Sign\MFP@z@Int.\MFP@z@Frc}%%
    \MFP@def@after\MFP@z@Ovr{\MFP@z@Ovr}%
    \MFP@def@after\MFP@z@Und{\MFP@z@Und}%
    \MFP@def@after\MFPcurr@Sgn{\MFP@z@Sgn}}%
\def\MFP@subroutine#1{%
    \begingroup
        \MFP@basic@init@z
        #1%
    \MFP@endgroup@return}%
\def\MFP@basic@init@z{%
\MFP@Rzero
```

```
\def\MFP@z@Ovr{0}%%
\EndofStack
We define here the error messages: popping from an empty stack and dividing by zero. In addition to the error messages, we provide some default values that hopefully allow some operations to continue.
We also have a warning or two.
```

```
\def\MFP@errmsg#1#2{%
```

\def\MFP@errmsg\#1\#2{%
\begingroup
\begingroup
\newlinechar'\^^J\let^\space
\newlinechar'\^^J\let^\space
\def\MFP@msgbreak{~^J~~~~~~~~~~~~~~
\def\MFP@msgbreak{~^J~~~~~~~~~~~~~~
\edef\reserved@a{\errhelp{\#2}}\reserved@a
\edef\reserved@a{\errhelp{\#2}}\reserved@a
\errmessage{MiniFP error: \#1}%
\errmessage{MiniFP error: \#1}%
\endgroup}%
\endgroup}%
\def\MFP@popempty@err{%
\def\MFP@popempty@err{%
\MFP@errmsg{cannot pop from an empty stack}%
\MFP@errmsg{cannot pop from an empty stack}%
{There were no items on the stack for the POP operation. %
{There were no items on the stack for the POP operation. %
If you continue, ``Jthe macro will contain the % If you continue, ``Jthe macro will contain the %
value \EndofStack.}}%
value \EndofStack.}}%
\def\EndofStack{0.00000000}%
\def\EndofStack{0.00000000}%
\def\MFP@dividebyzero@err{%
\def\MFP@dividebyzero@err{%
\MFP@errmsg{division by zero}%
\MFP@errmsg{division by zero}%
{You tried to divide by zero. What were you thinking? %
{You tried to divide by zero. What were you thinking? %
If you continue, ^^Jthe value assigned will be either %
If you continue, ^^Jthe value assigned will be either %
\ZeroOverZeroInt.\ZeroDverZeroFrac~(numerator=0) or %
\ZeroOverZeroInt.\ZeroDverZeroFrac~(numerator=0) or %
~`J+/-\x0verZeroInt.\x0verZeroFrac~(numerator<>0).}}% ~`J+/-\x0verZeroInt.\x0verZeroFrac~(numerator<>0).}}%
\def\MFP@warn\#1{%
\def\MFP@warn\#1{%
\begingroup
\begingroup
\newlinechar`\^^J\let~\space \newlinechar`\^^J\let~\space
\def\MFP@msgbreak{^^J~~~~~~~~~~~~~~~~
\def\MFP@msgbreak{^^J~~~~~~~~~~~~~~~~
\immediate\write16{^^JMiniFP warning: \#1.^^J}%
\immediate\write16{^^JMiniFP warning: \#1.^^J}%
\endgroup}%
\endgroup}%
\backslash MaxRealInt
\MaxRealFrac
These are the largest possible integer and fractional parts of a real number. They are returned for division by zero, for logarithm of 0 , and when overflow is detected in the exponential function.

```
140 \def \MaxRealInt {99999999}%
```

140 \def \MaxRealInt {99999999}%
141 \def \MaxRealFrac {99999999}%

```
141 \def \MaxRealFrac {99999999}%
```

These are the results returned when trying to divide by zero. Two are used when dividing a nonzero number by zero and and two when trying to divide zero by zero.

```
142 \def\xOverZeroInt {\MaxRealInt}%
```

142 \def\xOverZeroInt {\MaxRealInt}%
143 \def\xOverZeroFrac {\MaxRealFrac}%
143 \def\xOverZeroFrac {\MaxRealFrac}%
144 \def\ZeroOverZeroInt {0}%
144 \def\ZeroOverZeroInt {0}%
145\def \ZeroOverZeroFrac{00000000}%

```
```

145\def \ZeroOverZeroFrac{00000000}%

```
```

These macros strip the spaces, process a number into sign, integer and fractional parts, and pad the fractional part out to 8 decimals. They are used in PUSH so that the stack will only contains reals in a normalized form. Some of them are also used to preprocess the reals in the operand versions of commands

The $\backslash \mathrm{MFP@} @ @$ Int and $\backslash \mathrm{MFP@*@Frc}$ parts are always positive, the sign being stored in \MFP@*@Sgn as $-1,0$ or 1 .

We strip the spaces and pad the fractional parts separately because they are unnecessary when processing POPed reals (though they wouldn't hurt).

The number to be parsed is \#4 and the macros to contain the parts are the first three arguments. Since we normally call \MFPparse@real with one of two sets of macros, we have two shortcuts for those cases.

```
146 \def\MFPparse@real#1#2#3#4{%
    \MFPnospace@def\MFPtemp@Val{#4}%
    \MFPprocess@into@parts\MFPtemp@Val#1#2#3%
    \MFPpadto@eight#3}%
\def\MFPparse@x{\MFPparse@real\MFP@x@Sgn\MFP@x@Int\MFP@x@Frc}%
\def\MFPparse@y{\MFPparse@real\MFP@y@Sgn\MFP@y@Int\MFP@y@Frc}%
```

This macro strips all spaces out of the number (not just before and after). It takes a macro that will hold the result, followed by the number (as a macro or a group of actual digits).

\def \MFPnospace@def\#1\#2\{\%
 \edef\#1\{\#2\space\}\edef\#1\{\@xp\zap@space\#1\@empty\}\}\%

This is the process that splits a number into parts. The biggest difficulty is obtaining the sign. All four arguments are macros, with the first one holding the number. Following that are the macros to hold the sign, integer and fractional parts.

```
154 \def\MFPprocess@into@parts#1#2#3#4{%
155 \@xp\MFPsplit@dot#1..\mfp@end #3#4%
```

This is the first place where having at most 8 digits simplifies things. At this point \#3 could contain any number of consecutive signs followed by any 8 digits. It could be zero, so to avoid losing the sign we append a 1 (for up to 9 digits). We temporarily define the sign based on the result, but may need to drop it if both the integer and fractional parts are zero.

Prepending a zero to the fractional part pemits it to be empty. In the final \edef, \#3 is made positive.

```
\ifnum#31<0
    \def#2{-1}%
\else
    \def#2{1}%
\i
\ifnum #30=0
    \def#3{0}%
            \ifnum 0#4=0
                \def#2{0}%
            \fi
\fi
```

This only copies the parts before and after the dot, \#1 and \#2, into macros \#4 and \#5.

168 \def \MFPsplit@dot\#1.\#2.\#3\mfp@end\#4\#5\{\edef\#4\{\#1\}\edef\#5\{\#2\}\}\%
This is used to pad the fractional part to eight places with zeros. If a number with more than 8 digits survives to this point, it gets truncated.

```
169\def\MFPpadto@eight#1{%
170 \edef#1{\@xp\MFP@firsteightofmany#100000000\mfp@end}}%
```

These take operands off the stack. We know already that there are no spaces and that the fractional part has 8 digits.

```
171\def\MFPgetoperand@x{\Rpop\MFP@x@Val
172 \MFPprocess@into@parts\MFP@x@Val\MFP@x@Sgn\MFP@x@Int\MFP@x@Frc}%
173\def\MFPgetoperand@y{\Rpop\MFP@y@Val
174 \MFPprocess@into@parts\MFP@y@Val\MFP@y@Sgn\MFP@y@Int\MFP@y@Frc}%
```

Concatenate an argument (or two) to the front of stack. The material must already be in correct format.

```
175\def\MFP@Rcat#1{\edef\MFP@Rstack{{#1}\MFP@Rstack}}%
176\def\MFP@Rcattwo#1#2{\edef \MFP@Rstack{{#1}{#2}\MFP@Rstack}}%
```

Convert from a signum (a number) to a sign (- or nothing):
$177 \backslash d e f \backslash M F P @ S i g n \# 1\{\backslash i f n u m \# 1<0-\backslash f i\} \%$
178 \def \backslash MFP@x@Sign\{\MFP@Sign \backslash MFP@x@Sgn\} $\%$
179 \def \MFP@y@Sign\{ \MFP@Sign \MFP@y@Sgn\}\%
180 \def \MFP@z@Sign\{\MFP@Sign\MFP@z@Sgn\}\%
Sometimes only parts of the number needs changing (used in CHS, ABS).
181 \def \copyMFP@x\{\edef \backslash MFP@z@Int $\{\backslash$ MFP@x@Int\}
We use \MFPpush@result to put the result of internal operations onto the stack. For convenience, we also have it set the sign flags.
$182 \backslash$ def \backslash MFPpush@result $\{\backslash$ MFP@Rchk \backslash MFPcurr@Sgn \backslash MFP@Rcat \backslash MFP@z@Val $\} \%$
When POP encounters an empty stack it gobbles the code that would perform the pop (\#1) and defines the macro (\#2) to contain \EndofStack. The default meaning for this macro is 0 .

```
\def\if@EndofStack{%
    \ifx\MFP@EOS\MFP@Rstack
        \@xp\@firstoftwo
    \else
        \@xp\@secondoftwo
    \fi}%
```

The macro \Rpop calls \MFP@popit followed by the contents of the stack, the token \mfp@end and the macro to pop into. If the stack is not empty, \doMFP@popit will read the first group \#1 into that macro \#3, and then redefine the stack to be the rest of the argument \#2. If the stack is empty, \doMFP@EOS will equate the macro to \EndofStack (initialized to 0.00000000) after issuing an error message.
189 \def \MFP@popit $\{\backslash i f @ E n d o f S t a c k \backslash d o M F P @ E O S \backslash d o M F P @ p o p i t\} \%$

```
190\def\doMFP@EOS#1\mfp@end#2{\MFP@popempty@err\let#2\EndofStack}%
191 \def\doMFP@popit#1#2\mfp@end#3{\edef\MFP@Rstack{#2}\edef#3{#1}}%
```


3.3 The user-level operations

All operations that can be done on arguments as well as the stack will have a common format: The stack version pops the requisite numbers and splits them into internal macros (\backslash MFPgetoperand@*), runs an internal command that operates on these internal macros, then "pushes" the result returned. The internal commands take care to return the result in proper form so we don't actually run \backslash Rpush, but only \MFPpush@result.

The operand version processes the operands into normalized form (as if pushed, using \backslash MFPparse@*), then proceeds as in the stack version, but copies the result into the named macro instead of to the stack (\backslash MFPstore@result).

For unary operations we process one argument or stack element. We call it x and use the x version of all macros. All internal commands (\#1) return the results in z versions.

The \MFPchk command examines its argument and sets a flag according to its sign.
192 \def \MFPchk\#1\{\%
193 \MFPparse@x\{\#1\}\%
194 \MFP@Rchk\MFP@x@Sgn\}\%
We make $\backslash M F P @ R c h k$ a little more general than is strictly needed here, by giving it an argument (instead of only examining \MFP@x@Sgn). This is so we can apply it to the results of operations (which would be in \MFPcurr@Sgn).

5 \def \backslash MFP@Rchk\#1\{\%
\MFPclear@flags
\ifnum\#1>0 \MFP@postrue
\else\ifnum\#1<0 \MFP@negtrue
\else \MFP@zerotrue
\fi\fi\}\%
201 \def \MFPclear@flags\{\MFP@zerofalse \MFP@negfalse \MFP@posfalse\}\%
\IFzero
\IFneg
\IFpos

These are the user interface to the internal \ifMFP@zero, \ifMFP@neg, \ifMFP@pos
$202 \backslash$ def \IFzero\{\ifMFP@zero\@xp\@firstoftwo\else\@xp\@secondoftwo\fi\}\%
$203 \backslash d e f \backslash I F n e g ~\{\backslash i f M F P @ n e g ~ \ @ x p \backslash @ f i r s t o f t w o \backslash e l s e \backslash @ x p \ @ s e c o n d o f t w o \backslash f i\} \%$
$204 \backslash$ def $\backslash I F p o s\{\backslash i f M F P @ p o s ~ \ @ x p \backslash @ f i r s t o f t w o \backslash e l s e \backslash @ x p \ @ s e c o n d o f t w o \backslash f i\} \%$
205 \newif \ifMFP@zero \newif \ifMFP@neg \newif \ifMFP@pos
\MFPcmp
Our comparison commands parallel the check-sign commands. They even reuse the same internal booleans. The differences: the internal \MFP@Rcmp doesn't take arguments and the comparison test is a little more involved. We could simply sub\IFgt tract, which automatically sets the internal booleans, but it is way more efficient to compare sizes directly.
206 \newif \ifMFPdebug
207 \def \MFPcmp\#1\#2\{\MFPparse@x\{\#1\} \MFPparse@y\{\#2\}\MFP@Rcmp\}\%
208 \def \backslash MFP@Rcmp $\{\backslash$ MFPclear@flags

```
    \ifnum \MFP@x@Sign\MFP@x@Int>\MFP@y@Sign\MFP@y@Int\relax
```

 \ifnum \MFP@x@Sign\MFP@x@Int>\MFP@y@Sign\MFP@y@Int\relax
 \MFP@postrue
 \MFP@postrue
 \else\ifnum \MFP@x@Sign\MFP@x@Int<\MFP@y@Sign\MFP@y@Int\relax
 \else\ifnum \MFP@x@Sign\MFP@x@Int<\MFP@y@Sign\MFP@y@Int\relax
 \MFP@negtrue
 \MFP@negtrue
 \else\ifnum \MFP@x@Sign\MFP@x@Frc>\MFP@y@Sign\MFP@y@Frc\relax
 \else\ifnum \MFP@x@Sign\MFP@x@Frc>\MFP@y@Sign\MFP@y@Frc\relax
 \MFP@postrue
 \MFP@postrue
 \else\ifnum \MFP@x@Sign\MFP@x@Frc<\MFP@y@Sign\MFP@y@Frc\relax
 \else\ifnum \MFP@x@Sign\MFP@x@Frc<\MFP@y@Sign\MFP@y@Frc\relax
 \MFP@negtrue
 \MFP@negtrue
 \else
 \else
 \MFP@zerotrue
 \MFP@zerotrue
 \fi\fi\fi\fi}%
 \fi\fi\fi\fi}%
 \let\IFeq\IFzero\let\IFlt\IFneg \let\IFgt\IFpos
\let\IFeq\IFzero\let\IFlt\IFneg \let\IFgt\IFpos
Given an operation (pop, chs, or whatever), the stack version will have the same name with "R" (for "real") prepended. The operand versions will have the same name with "MFP" prepended. The internal version has the same name as the stack version, with an "MFP@" prepended.
The unary operations are:
chs change sign of x.
abs absolute value of x.
dbl double x.
halve halve x.
$\operatorname{sgn}+1,-1$ or 0 depending on the sign of x.
sq square x.
int zero out the fractional part of x.
frac zero out the integer part of x.
floor largest integer not exceeding x.
ceil smallest integer not less than x.
The binary operations are (x represents the first and y second):
add add x and y.
sub subtract y from x.
mul multiply x and y.
div divide x by y.
There are also some operations that do not actually change any values, but may change the stack or the state of some boolean:
cmp compare x and y (stack version does not change stack).
chk examine the sign of x (stack version does not change stack).
dup stack only, duplicate the top element of the stack.
push stack only, push a value onto the stack.
pop stack only, remove the top element of the stack, store it in a variable.
exch stack only, exchange top two elements of the stack.
\stopMFPprogram
The purpose of \startMFPprogram is to start the group, inside of which all the stack operations can be used. The ensuing \stopMFPprogram closes the group.

```
```

221\def\startMFPprogram{%

```
221\def\startMFPprogram{%
222\begingroup
```

222\begingroup

```
\begin{tabular}{|c|c|}
\hline \(\backslash\) Rchs & Then we give definitions to all the stack-based macros. These definitions are \\
\hline \(\backslash\) Rabs & all lost after the group ends. \\
\hline \(\backslash \mathrm{RHEd}\) & We start with the unary operations. Note that all they do is call a wrapper \\
\hline \(\backslash\) RhRIIE \Rṡgh & macro \MFP@stack@Unary with an argument which is the internal version of the command. \\
\hline \(\backslash\) Rfrac & 223 \def \Rchs \{\MFP@stack@unary \({ }^{\text {MFPP@Rchs\}\% }}\) \\
\hline \(\backslash\) Rfloor & \(224 \backslash\) \def \Rabs \{ \({ }^{\text {SMFP@stack@Unary } \backslash \text { MFP@Rabs }}\) \%\% \\
\hline \(\backslash\) Rceil & 225 \def\Rdbl \{\MFP@stack@Unary\MFP@Rdbl\}\% \\
\hline \(\backslash\) Rincr & 226 \def \Rhalve\{\MFP@stack@Unary\MFP@Rhalve\}\% \\
\hline \(\backslash\) Rdecr & 227 \def\Rsgn \{\MFP@stack@Unary\MFP@Rsgn\}\% \\
\hline \(\backslash\) Rzero & 228 \def\Rsq \(\{\backslash M F P @\) stack@Unary \(\backslash\) MFP@Rsq\}\% \\
\hline & 229 \def\Rinv \{\MFP@stack@Unary\MFP@Rinv\}\% \\
\hline & 230 \def\Rint \{\MFP@stack@Unary\MFP@Rint\}\% \\
\hline &  \\
\hline & 232 \def \Rfloor\{\MFP@stack@Unary\MFP@Rfloor\}\% \\
\hline & 233 \def\Rceil \{ \({ }^{\text {SMFP@stack@Unary } \backslash \text { MFP@Rceil\}\% }}\) \\
\hline & \(234 \backslash\) def \Rincr \{ \(\backslash\) MFP@stack@Unary \(\backslash\) MFP@Rincr\}\% \\
\hline & 235 \def\Rdecr \{ \({ }^{\text {dMFP@stack@Unary } \backslash \text { MFP@Rdecr\}\% }}\) \\
\hline & \(236 \backslash\) def \Rzero \{ \(\backslash\) MFP@stack@Unary \(\backslash\) MFP@Rzero\}\% \\
\hline \begin{tabular}{l}
\Radd \\
\(\backslash\) Rsub
\end{tabular} & Then the binary operations, which again call a wrapper around the internal version. \\
\hline \(\backslash\) Rmul & 237 \def\Radd \{ \({ }^{\text {a }}\) MFP@stack@Binary \({ }^{\text {MFP@Radd\}\% }}\) \\
\hline \(\backslash\) Rmpy & 238 \def \(\backslash\) Rmul \(\{\backslash\) MFP@stack@Binary \(\backslash\) MFP@Rmul\}\% \\
\hline \(\backslash\) Rdiv & 239 \let \(\backslash\) Rmpy \(\backslash\) Rmul \\
\hline \(\backslash\) Rmin & \(240 \backslash\) \def\Rsub \(\{\backslash\) MFP@stack@Binary\MFP@Rsub\}\% \\
\hline \(\backslash\) Rmax & 241 \def\Rdiv \{\MFP@stack@Binary\MFP@Rdiv\}\% \\
\hline & \(242 \backslash\) \def \(\backslash\) Rmin \(\{\backslash\) MFP@stack@Binary \(\backslash\) MFP@Rmin\}\% \\
\hline & 243 \def\Rmax \{ \({ }^{\text {d }}\) MFP@stack@Binary \(\backslash\) MFP@Rmax\}\% \\
\hline \(\backslash\) Rnoop \(\backslash\) Rcmp & And finally some special commands. There is a no-op and commands for comparing, checking, and manipulation of the stack. \\
\hline \(\backslash\) Rchk & \(244 \backslash\) let \(\backslash\) Rnoop \relax \\
\hline \(\backslash\) Rpush & 245 \def\Rcmp \({ }^{\text {\% }}\) \\
\hline \(\backslash\) Rpop & 246 \MFPgetoperand@ \(\backslash\) MFPgetoperand@x \% get operands (last pushed is y) \\
\hline \(\backslash\) Rexch & 247 \MFP@Rcat\MFP@x@Val\MFP@Rcat\MFP@y@Val \% put back: LOFI \\
\hline \(\backslash\) Rdup & 248 \MFP@Rcmp\}\% \\
\hline & 249 \def\Rchk\{\% \\
\hline & 250 \MFPgetoperand@x \\
\hline & 251 \MFP@Rcat\MFP@x@Val \\
\hline & 252 \MFP@Rchk\MFP@x@Sgn\}\% \\
\hline & \(253 \backslash\) \def \(\backslash\) Rpush\#\#1\{\% \\
\hline & 254 \MFPparse@x\{\#\#1\}\% \\
\hline & 255 \edef \MFP@z@Val\{\MFP@x@Sign\MFP@x@Int. \(\backslash\) MFP@x@Frc\}\% \\
\hline & 256 \edef \MFPcurr@Sgn\{\MFP@x@Sgn\}\% \\
\hline & 257 \MFPpush@result\}\% \\
\hline & 258 \def \Rpop\{\@xp\MFP@popit\MFP@Rstack\mfp@end\}\% \\
\hline & 259 \def \(\backslash\) Rexch \(4 \%\) \\
\hline & 260 \Rpop\MFP@x@Val \(\backslash\) Rpop \(\backslash\) MFP@y@Val \\
\hline & 261 \MFP@Rcattwo\MFP@y@Val\MFP@x@Val\}\% \\
\hline
\end{tabular}
```

\def\Rdup{%
\Rpop\MFP@x@Val
\MFP@Rcattwo\MFP@x@Val\MFP@x@Val}%
If mfpextra.tex is input, then \MFP@Rextra makes the additional commands in that file available to an MINIFP program.
The last four commands allow computed values to be made available outside the program group

```

265 \MFP@Rextra
266 \let\Global\MFP@Global
267 \let\GlobalStack\MFP@GlobalStack
\let\Export\MFP@Export
\let\ExportStack \(\backslash\) MFP@ExportStack\}\%
\(0 \backslash\) def \(\backslash\) stopMFPprogram\{\@xp\endgroup \(\backslash\) MFPprogram@returns \(\} \%\)
271 \let \MFP@Rextra\@empty
272 \let \(\backslash M F P p r o g r a m @ r e t u r n s \backslash @ e m p t y ~\)
```

Now we define the operand versions. These also are defined via a wrapper

```
\(\backslash \mathrm{MFPchs}\)
\MFPabs
\MFPdbl
\MFPhalve
\MFPsgn
\(\backslash\) MFPsq
\(\backslash\) MFPinv
\MFPint
\MFPfrac
\(\backslash M F P f l o o r\)
\MFPceil
\MFPincr
\MFPdecr
\MFPzero
\MFPstore
\MFPadd
\MFPsub
\MFPmul
\MFPmpy
\(\backslash\) MFPdiv
\(\backslash\) MFPmin
\(\backslash\) MFPmax
``` command that executes the very same internal commands as the stack versions.
First the unary operations.
273 \def \MFPchs \{\MFP@op@Unary\MFP@Rchs\}\%
274 \def \(\backslash\) MFPabs \(\{\backslash M F P @ o p @ U n a r y \backslash M F P @ R a b s\} \%\) 275 \def \(\backslash\) MFPdbl \(\{\backslash M F P @ o p @ U n a r y \backslash M F P @ R d b l\} \%\) 276 \def \(\backslash\) MFPhalve \(\{\backslash M F P @ o p @ U n a r y \backslash M F P @ R h a l v e\} \%\)
277 \def \MFPsgn \{\MFP@op@Unary\MFP@Rsgn\}\%
278 \def \MFPsq \(\{\backslash\) MFP@op@Unary \(\backslash\) MFP@Rsq\}\%
279 \def \MFPinv \{\MFP@op@Unary\MFP@Rinv\}\%
280 \def \MFPint \{\MFP@op@Unary\MFP@Rint\}\%
281 \def \MFPfrac \{\MFP@op@Unary \(\backslash\) MFP@Rfrac \(\} \%\)
282 \def \MFPfloor\{\MFP@op@Unary\MFP@Rfloor\}\%
283 \def \MFPceil \{\MFP@op@Unary\MFP@Rceil\}\%
284 \def \MFPincr \(\{\backslash\) MFP@op@Unary \(\backslash\) MFP@Rincr \(\} \%\)
285 \def \MFPdecr \{ \MFP@op@Unary \(\backslash\) MFP@Rdecr\}\%
286 \def \MFPzero \{ \MFP@op@Unary \(\backslash\) MFP@Rzero\}\%
287 \def \(\backslash\) MFPstore \(\{\backslash M F P @ o p @ U n a r y \backslash M F P @ R s t o r e\} \%\)
Then the binary operations.
288 \def \MFPadd\{\MFP@op@Binary \(\backslash\) MFP@Radd\}\%
289 \def \MFPmul\{\MFP@op@Binary \(\backslash M F P @ R m u l\} \%\)
290 \let \(\backslash M F P m p y \backslash M F P m u l\)
291 \def \MFPsub\{\MFP@op@Binary \(\backslash\) MFP@Rsub\}\%
292 \def \MFPdiv\{\MFP@op@Binary\MFP@Rdiv\}\%
293 \def \MFPmin\{\MFP@op@Binary\MFP@Rmin\}\% 294 \def \MFPmax \(\{\backslash\) MFP@op@Binary \(\backslash\) MFP@Rmax\}\%
These are the wrappers for unary operations. The operand versions have a second argument, the macro that stores the result. But this will be the argument of \MFPstore@result.
\def \MFP@stack@Unary\#1\{\%
\(\backslash\) MFPgetoperand@x
\MFP@subroutine\{\#1\}\MFPpush@result\}\%
```

```
298\def\MFP@op@Unary#1#2{%
299 \MFPparse@x{#2}%
300 \MFP@subroutine{#1}\MFPstore@result}%
301 \def\MFPstore@result#1{\MFP@Rchk\MFPcurr@Sgn\edef#1{\MFP@z@Val}}%
```

These are the wrappers for binary operations. The top level definitions are almost identical to those of the unary operations. The only difference is they pop or parse two operands.

```
\def\MFP@stack@Binary#1{%
 \MFPgetoperand@y \MFPgetoperand@x
 \MFP@subroutine{#1}\MFPpush@result}%
\def\MFP@op@Binary#1#2#3{%
 \MFPparse@x{#2}\MFPparse@y{#3}%
 \MFP@subroutine{#1}\MFPstore@result}%
```

We end with a traditional, but generally useless command, the no-op, which does nothing. It doesn't even have a wrapper.

```
308\let\MFPnoop\relax
```


### 3.4 The internal computations

To change the sign or get the absolute value, we just need to set the value of $\backslash M F P @ x @ S g n$.
309 \def \MFP@Rabs\{\%
$310 \backslash c o p y M F P @ x$ \edef $\backslash M F P @ z @ S g n\{\backslash i f n u m \backslash M F P @ x @ S g n=0 \quad 0 \backslash e l s e 1 \backslash f i\}\} \%$
311 \def \MFP@Rchs\{\copyMFP@x \edef\MFP@z@Sgn\{\number-\MFP@x@Sgn\}\}\%
The doubling and halving operations are more efficient ways to multiply or divide a number by 2 . For doubling, copy $x$ to $y$ and add. For halving, we use basic $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ integer division, more efficient than multiplying by 0.5 and far more than using \MFP@Rdiv.

In $\backslash M F P @ R h a l v e$. we add 1 to the fractional part for rounding purposes, and we move any odd 1 from the end of the integer part to the start of the fractional part.

```
312\def\MFP@Rdbl{\MFP@Rcopy xy\MFP@Radd}%
\def\MFP@Rhalve{%
 \MFP@tempa\MFP@x@Int
 \MFP@tempb\MFP@x@Frc\relax
 \ifodd\MFP@tempb
 \def\MFP@z@Und{5}%
 \advance\MFP@tempb 1 % round up
 \ifnum\MFP@ttteight=\MFP@tempb
 \MFP@tempb0 \advance\MFP@tempa1
 \fi
 \fi
 \ifodd \MFP@tempa
 \advance\MFP@tempb \MFP@ttteight\relax
 \fi
 \divide\MFP@tempa 2
 \divide\MFP@tempb 2
```

The signum is $0.0,1.0$ or -1.0 to match the sign of $x$.
329 \def $\backslash$ MFP@Rsgn\{\MFP@Rloadz \MFP@x@Sgn\{\ifnum\MFP@x@Sgn=0 0
The squaring operation just calls \MFP@Rmul after copying $x$ to $y$.
$330 \backslash$ def $\backslash$ MFP@Rsq\{ $\backslash$ MFP@Rcopy xy $\backslash$ MFP@Rmul $\} \%$
The inversion operation just calls \MFP@Rdiv after copying $x$ to $y$ and 1 to $x$. 331 \def \MFP@Rinv\{\MFP@Rcopy xy\MFP@Rload x110\MFP@Rdiv\}\%

Integer part: replace fractional part with zeros.
332 \def $\backslash$ MFP@Rint $\{\%$
$333 \backslash$ MFP@Rloadz \{\ifnum\MFP@x@Int=0 0\else\MFP@x@Sgn\fi\}\MFP@x@Int 0\}\%
Fractional part: replace integer part with a zero.
334 \def \MFP@Rfrac\{\%
$335 \backslash$ MFP@Rloadz \{\ifnum \MFP@x@Frc=0 0\else\MFP@x@Sgn\fi\}0\MFP@x@Frc\}\%
To increment and decrement by 1 , except in border cases, we need only address the integer part of a number. This doesn't seem so simple written out but, even so, it is more efficient than full-blown addition. It would be very slightly more efficient to repeat the increment code in decrementing, but it would be annoying to do so,

```
\def\MFP@Rincr{%
 \ifnum\MFP@x@Sgn<0
 \ifcase\MFP@x@Int
 \MFP@tempa\MFP@ttteight
 \advance\MFP@tempa -\MFP@x@Frc\relax
 \MFP@Rloadz 10\MFP@tempa
 \or
 \MFP@Rloadz{\ifnum\MFP@x@Frc=0 0\else -1\fi}0\MFP@x@Frc
 \else
 \MFP@tempa\MFP@x@Int
 \advance\MFP@tempa -1
 \MFP@Rloadz{-1}\MFP@tempa\MFP@x@Frc
 \fi
\else
 \MFP@tempa\MFP@x@Int
 \advance\MFP@tempa 1
 \MFP@Rloadz 1\MFP@tempa\MFP@x@Frc
\fi}%
\def\MFP@Rdecr{%
 \edef\MFP@x@Sgn{\number -\MFP@x@Sgn}\MFP@Rincr
 \edef\MFP@z@Sgn{\number -\MFP@z@Sgn}}%
\def\MFP@Rstore{\MFP@Rcopy xz}%
```

The floor of a real number $x$ is the largest integer not larger than $x$. The ceiling is the smallest integer not less than $x$. For positive $x$, floor is the same as integer part. Not true for negative $x$. Example: $\operatorname{int}(-1.5)=-1$ but floor $=-2$

We use the same code to get floor or ceiling, the appropriate inequality character being its argument.

```
\def\MFP@Rfloororceil#1{%
 \MFP@tempa\MFP@x@Int\relax
 \ifnum 0#1\MFP@x@Sgn
 \ifnum\MFP@x@Frc=0
 \else
 \advance\MFP@tempa1
 \fi
 \i
 \MFP@Rloadz{\ifnum\MFP@z@Int=0 0\else\MFP@x@Sgn\fi}\MFP@tempa0}%
\def\MFP@Rfloor{\MFP@Rfloororceil>}%
\def\MFP@Rceil {\MFP@Rfloororceil<}%
```

For multiplication, after the usual break into integer and fractional parts, we further split these parts into 4-digit pieces with \MFP@split. The first argument (\#1) holds the eight digit number, then \#2 is a macro that will hold the top four digits and \#3 will hold the bottom four.

```
\def\MFP@split#1#2#3{%
 \begingroup
 \MFP@tempa#1\relax
 \MFP@tempb\MFP@tempa
 \divide\MFP@tempb by\MFP@tttfour
 \edef#2{\number\MFP@tempb}%
 \multiply\MFP@tempb by\MFP@tttfour
 \advance\MFP@tempa-\MFP@tempb
 \MFP@endgroup@after{%
 \MFP@def@after#2{#2}%
 \MFP@def@after#3{\number\MFP@tempa}%
 }}%
1%
\def\MFP@x@split{%
 \MFP@split\MFP@x@Int\MFP@x@Int@ii\MFP@x@Int@i
 \MFP@split\MFP@x@Frc\MFP@x@Frc@i\MFP@x@Frc@ii}%
\def\MFP@y@split{%
 \MFP@split\MFP@y@Int\MFP@y@Int@ii\MFP@y@Int@i
 \MFP@split\MFP@y@Frc\MFP@y@Frc@i\MFP@y@Frc@ii}%
```

We will store the intermediate and final products in $\backslash \mathrm{MFP@} @ *$. Each one is ultimately reduced to 4 digits, like the parts of $x$ and $y$. As each base- 10000 digit of $y$ is multiplied by a digit of $x$, we add the result to the appropriate digit of the partial result $z$. Thus, we need to zero out $z$ at the start (or treat the first iteration differently):

The underflow ends up in \MFP@z@Frc@iv and $\backslash M F P @ z @ F r c @ i i i$. Overflow will be in \MFP@z@Int@iii. Unlike the rest, it can be up to 8 digits because we do not need to carry results out of it.

```
\def\MFPmore@init@z{%
 \def\MFP@z@Frc@iv {0}%
 \def\MFP@z@Frc@iii{0}%
 \def\MFP@z@Frc@ii {0}%
 \def\MFP@z@Frc@i {0}%
 \def\MFP@z@Int@i {0}%
```

```
394 \def\MFP@z@Int@ii {0}%
395\def\MFP@z@Int@iii{0}}%
```

This command prepends zeros so a number fills four slots. In the "make" version, \#1 is a macro holding the value and is redefined to contain the result. A macro that calls these should ensure that \#1 is not empty and is less than 10,000 .

```
396 \def\MFP@fourdigits#1{%
397\@xp\MFP@fifthofmany\number#1{}{0}{00}{000}\mfp@end\number#1}%
398\def\makeMFP@fourdigits#1{\edef#1{\MFP@fourdigits{#1}}}%
```

This is the same, but produce eight digits.

```
399 \def\MFP@eightdigits#1{%
 \@xp\MFP@ninthofmany\number#1%
 {}{0}{00}{000}{0000}{00000}{000000}{0000000}\mfp@end\number#1}%
\def\makeMFP@eightdigits#1{\edef#1{\MFP@eightdigits{#1}}}%
```

The following macros implement carrying. The macros \MFP@carrya and $\backslash$ MFP@carrym should be followed by two macros that hold numbers. The first number can have too many digits. These macros remove extra digits from the front and add their value to the number in the second macro (the "carry"). Both act by calling \MFP@carry, which is told the number of digits to keep via \#1 (10,000 for four digits, 100,000,000 for eight). The "a" in \MFP@carrya is for addition and " $m$ " is for multiplication, which indicates where these will mainly be used.

```
\def\MFP@carrya{\MFP@carry\MFP@ttteight}%
\def\MFP@carrym{\MFP@carry\MFP@tttfour}%
\def\MFP@carry#1#2#3{%
 \begingroup
 \MFP@carryi{#1}#2#3%
 \MFP@endgroup@after{%
 \MFP@def@after#3{\number\MFP@tempa}%
 \MFP@def@after#2{\number\MFP@tempb}%
 }}%
```

This is the "internal" carry. \#1, \#2, and \#3 are as in \MFP@carry. Its advantage is that it can be used used where \#2 and \#3 are not macros, leaving the result in $\backslash M F P @ t e m p a$ and $\backslash M F P @ t e m p b$ with $\backslash M F P @ t e m p b$ in the correct range, [0,\#1). Its disadvantage is it does not protect temporary registers. Warning: never use it in the form \MFP@carryi $\langle n u m\rangle \backslash$ MFP@tempa, because this would copy $\langle n u m\rangle$ to $\backslash$ MFP@tempa, losing the value in the second argument before anything can be done. The other order is okay, and $\backslash$ MFP@tempb can be used in either slot. Do not use it without grouping if you want the values in the temp registers a, b or c preserved.

```
\def\MFP@carryi#1#2#3{%
 \MFP@tempa=#3\relax
 \MFP@tempb=#2\relax
 \MFP@tempc=\MFP@tempb
 \divide \MFP@tempc #1\relax
 \advance \MFP@tempa \MFP@tempc
 \multiply\MFP@tempc #1\relax
 \advance \MFP@tempb -\MFP@tempc}%
```

This adds \#1 to \#2, the result goes into macro \#3. This does no checking. It is basicly used to add with macros instead of registers.

```
420 \def\MFP@addone#1#2#3{%
 \begingroup
 \MFP@tempa#1%
 \advance\MFP@tempa#2\relax
 \MFP@endgroup@after{%
 \MFP@def@after#3{\number\MFP@tempa}%
 }}%
```

Multiply \#1 by $\backslash$ MFP@tempb and add to \#2. \MFP@tempb is one digit (base $=10000$ ) of $y$ in multiplying $x \times y$, \#1 (usually a macro) holds one digit of $x$. \#2 is a macro that will hold one digit of the final product $z$. The product is added to it (overflow is taken care of later by the carry routines).

```
\def\MFP@multiplyone#1#2{%
 \MFP@tempa#1%
 \multiply\MFP@tempa\MFP@tempb
 \advance\MFP@tempa#2%
 \edef#2{\number\MFP@tempa}}%
```

This does the above multiplication-addition for all four "digits" of $x$. This is where \MFP@tempb is initialized for \MFP@multiplyone. The first argument represents a digit of $y$, the remaining four arguments are macros representing the digits of $z$ that are involved in multiplying the digits of $x$ by \#1.

```
432\def\MFP@multiplyfour#1#2#3#4#5{%
 \MFP@tempb #1\relax
 \MFP@multiplyone\MFP@x@Int@ii #2%
 \MFP@multiplyone\MFP@x@Int@i #3%
 \MFP@multiplyone\MFP@x@Frc@i #4%
 \MFP@multiplyone\MFP@x@Frc@ii #5}%
```

Now we begin the internal implementations of the binary operations. All four expect macros \MFP@x@Sgn, \MFP@x@Int, \MFP@x@Frc, \MFP@y@Sgn, \MFP@y@Int and $\backslash M F P @ y @ F r c$ to be the normalized parts of two real numbers $x$ and $y$.
$\backslash M F P @ R s u b$ just changes the sign of $y$ and then calls \MFP@Radd.
$\backslash M F P @ R a d d$ checks whether $x$ and $y$ have same or different signs. In the first case we need only add absolute values and the sign of the result will match that of the operands. In the second case, finding the sign of the result is a little more involve (and "borrowing" may be needed).

```
\def\MFP@Rsub{\edef\MFP@y@Sgn{\number-\MFP@y@Sgn}\MFP@Radd}%
\def\MFP@Radd{%
 \MFP@tempa\MFP@x@Sgn
 \multiply\MFP@tempa\MFP@y@Sgn\relax
 \ifcase\MFP@tempa
 \ifnum \MFP@x@Sgn=0
 \MFP@Rcopy yz%
 \else
 \MFP@Rcopy xz%
 \i
```

```
448 \or
 \@xp\MFP@Radd@same
\else
 \@xp\MFP@Radd@diff
\fi}%
```

 result is the common sign. The fractional and integer parts are added separately, then a carry is invoked. The overflow ( $\backslash \mathrm{MFP@z@Ovr}$ ) could be only a single digit 0 or 1 .

453 \def $\backslash$ MFP@Radd@same\{\%
$454 \backslash$ MFP@addone $\backslash$ MFP@x@Frc $\backslash$ MFP@y@Frc $\backslash$ MFP@z@Frc
455 \MFP@addone $\backslash M F P @ x @ I n t \backslash M F P @ y @ I n t \backslash M F P @ z @ I n t$
456 \MFP@carrya\MFP@z@Frc\MFP@z@Int
457 \MFP@carrya\MFP@z@Int\MFP@z@Ovr
458 \makeMFP@eightdigits\MFP@z@Frc
459 \edef \MFP@z@Sgn\{\MFP@x@Sgn\}\}\%
We are now adding two numbers with opposite sign. Since $x \neq 0$ this is the same as $\operatorname{sgn}(x)(|x|-|y|)$. So we subtract absolute values, save the result in $\backslash M F P @ z @ S g n, ~ \backslash M F P @ z @ I n t$ and $\backslash M F P @ z @ F r c$ (with the last two nonnegative, as usual), then change the sign of $\backslash M F P @ z @ S g n$ if $\backslash M F P @ x @ S g n$ is negative. Since the difference between numbers in $\left[0,10^{8}\right)$ has absolute value in that range, there is no carrying. However, there may be borrowing.

```
460\def\MFP@Radd@diff{%
461 \MFP@addone\MFP@x@Frc{-\MFP@y@Frc}\MFP@z@Frc
462 \MFP@addone\MFP@x@Int{-\MFP@y@Int}\MFP@z@Int
```

Now we need to establish the sign and arrange the borrow. The sign of the result is the sign of $\backslash \mathrm{MFP@z@Int}$ unless it is 0 ; in that case it, is the sign of $\backslash \mathrm{MFP@z@Frc}$. There must be a simpler coding, though.

```
\MFP@tempa=\MFP@z@Int
\MFP@tempb=\MFP@z@Frc\relax
\ifnum\MFP@tempa=0 \else \MFP@tempa=\MFP@Sign\MFP@tempa 1 \fi
\ifnum\MFP@tempb=0 \else \MFP@tempb=\MFP@Sign\MFP@tempb 1 \fi
\ifnum\MFP@tempa=0 \MFP@tempa=\MFP@tempb \fi
```

Now we have the sign of $|x|-|y|$ in $\backslash$ MFP@tempa, and we multiply that sign by the sign of $x$ to get $\backslash M F P @$ g@Sgn. Then we multiply the current value of $z$ by that sign to get the absolute value, stored in \MFP@tempa and \MFP@tempb.

```
\edef\MFP@z@Sgn{\number\MFP@x@Sign\MFP@tempa}%
\MFP@tempb\MFP@tempa
\multiply\MFP@tempa \MFP@z@Int
\multiply\MFP@tempb \MFP@z@Frc\relax
```

What we should have now is a positive number which might still be represented with a negative fractional part. A human being performing the subtraction would have borrowed first. Being a computer, we do it last, and we're done.

```
472 \ifnum\MFP@tempb<0
473 \advance\MFP@tempb\MFP@ttteight
```

```
474 \advance\MFP@tempa-1
475 \fi
476 \edef\MFP@z@Int{\number\MFP@tempa}%
477 \edef\MFP@z@Frc{\number\MFP@tempb}%
4 7 8 \ m a k e M F P @ e i g h t d i g i t s \ M F P @ z @ F r c \} \% \%
```

$\backslash M F P @ R m u l$ first computes the (theoretical) sign of the product: if zero return 0 , otherwise provisionally set the sign of the product and call $\backslash M F P @ @ R m u l$.

```
\def\MFP@Rmul{%
 \MFP@tempa\MFP@x@Sgn \multiply\MFP@tempa\MFP@y@Sgn\relax
 \ifnum 0=\MFP@tempa
 \MFP@Rzero
 \else
 \edef\MFP@z@Sgn{\number\MFP@tempa}%
 \@xp\MFP@@Rmul
 \fi}%
```

$\backslash$ MFP@@Rmul splits the four expected macros into eight macros considered to be four base- 10000 digits for each of $x$ and $y$. Then each digit of $y$ is used to multiply the 4 digits of $x$ and the results are added to corresponding digits of $z$, which have been initialized to 0 by \MFPmore@init@z.

```
\def\MFP@@Rmul{%
 \MFPmore@init@z
 \MFP@x@split\MFP@y@split
 \MFP@multiplyfour \MFP@y@Frc@ii \MFP@z@Frc@i
 \MFP@z@Frc@ii \MFP@z@Frc@iii\MFP@z@Frc@iv
 \MFP@multiplyfour \MFP@y@Frc@i \MFP@z@Int@i
 \MFP@z@Frc@i \MFP@z@Frc@ii \MFP@z@Frc@iii
 \MFP@multiplyfour \MFP@y@Int@i \MFP@z@Int@ii
 \MFP@z@Int@i \MFP@z@Frc@i \MFP@z@Frc@ii
 \MFP@multiplyfour \MFP@y@Int@ii \MFP@z@Int@iii
 \MFP@z@Int@ii \MFP@z@Int@i \MFP@z@Frc@i
```

Now apply the carry routines on the underflow digits...

```
4 9 8 \ M F P @ c a r r y m \ M F P @ z @ F r c @ i v \ M F P @ z @ F r c @ i i i ~
499\MFP@carrym\MFP@z@Frc@iii\MFP@z@Frc@ii
```

. . pause to round the lowest digit that will be kept...
\ifnum \MFP@z@Frc@iii<5000 \else
\MFP@tempb\MFP@z@Frc@ii
\advance\MFP@tempb1
\edef $\backslash$ MFP@z@Frc@ii\{\number $\backslash$ MFP@tempb $\} \%$
$\backslash f i$
.. and continue carrying.
505 \MFP@carrym\MFP@z@Frc@ii\MFP@z@Frc@i
$506 \backslash$ MFP@carrym $\backslash M F P @ z @ F r c @ i \quad$ MFP@z@Int@i
507 \MFP@carrym\MFP@z@Int@i \MFP@z@Int@ii
508 \MFP@carrym\MFP@z@Int@ii\MFP@z@Int@iii
To end, we arrange for all macros to hold 4 digits (except \MFP@z@Int@ii which doesn't need leading 0s, and \MFP@z@Int@iii which also doesn't) and load them
into the appropriate 8-digit macros. The underflow digits are stored in \MFP@z@Und in case we ever need to examine them, and the overflow in $\backslash M F P @ z @ O v r$ in case we ever need to implement an overflow error. Theoretically $z \neq 0$, but it is possible that $z=0$ after rounding to 8 places. If so, we must reset $\backslash \mathrm{MFP@z@Sgn}$.

```
\makeMFP@fourdigits\MFP@z@Frc@iv
\makeMFP@fourdigits\MFP@z@Frc@iii
\makeMFP@fourdigits\MFP@z@Frc@ii
\makeMFP@fourdigits\MFP@z@Frc@i
\makeMFP@fourdigits\MFP@z@Int@i
\edef\MFP@z@Int{\number\MFP@z@Int@ii\MFP@z@Int@i}%
\edef\MFP@z@Frc{\MFP@z@Frc@i\MFP@z@Frc@ii}%
\edef\MFP@z@Ovr{\number\MFP@z@Int@iii}%
\edef\MFP@z@Und{\MFP@z@Frc@iii\MFP@z@Frc@iv}%
\ifnum\MFP@z@Int>0
\else\ifnum\MFP@z@Frc>0
\else
 \def\MFP@z@Sgn{0}%
\fi\fi}%
```

For division, we will obtain the result one digit at a time until the 9th digit after the decimal is found. That 9th will be used to round to eight digits (and stored as underflow). We normalize the denominator by shifting left until the integer part is 8 digits. We do the same for the numerator. The integer quotient of the integer parts will be 1 digit (possibly 0 ). If the denominator is shifted $d$ digits left and the numerator $n$ digits left, the quotient will have to be shifted $n-d$ places right or $d-n$ places left. Since the result is supposed to have 9 digits after the dot, our quotient needs $9+d-n+1$ total digits. Since $d$ can be as high as 15 and $n$ as low as 0 , we could need 25 repetitions. However, that extreme would put 15 or 16 digits in the integer part, a 7 or 8 digit overflow. (It can be argued that only 16 significant digits should be retained in any case.) If $d$ is 0 and $n$ is 15 we would need -5 digits. That means the first nonzero digit is in the 15 th or 16 th place after the dot and the quotient is effectively 0 .

Here I explain why we normalize the parts in this way. If a numerator has the form $n_{1} \cdot n_{2}$ and the denominator has the form $d_{1} \cdot d_{2}$ then TeX can easily obtain the integer part of $n_{1} / d_{1}$, because these are within its range for integers. The resulting quotient (let's call it $q_{1}$ ) is the largest integer satisfying $q_{1} d_{1} \leq n_{1}$. What we seek, however is the largest integer $q$ such that $q\left(d_{1} . d_{2}\right) \leq n_{1} . n_{2}$. It can easily be shown that $q \leq q_{1}$. It is true, but not so easily shown, that $q \geq q_{1}-1$. This is only true if $d_{1}$ is large enough, in our case it has to be at least 5 digits. Thus we only have to do one simple division and decide if we need to reduce the quotient by one. If we arrange for $d_{1}$ to have 8 digits, then $q_{1}$ will be one digit and the test for whether we need to reduce it becomes easier.

This test is done as follows. The first trial quotient, $q_{1}$, will work if

$$
q_{1} d_{1}(10)^{8}+q_{1} d_{2} \leq n_{1}(10)^{8}+n_{2}
$$

This means

$$
\begin{equation*}
0 \leq\left(n_{1}-q_{1} d_{1}\right)(10)^{8}+n_{2}-q_{1} d_{2} . \tag{1}
\end{equation*}
$$

Since $d_{2}$ is no more than eight digits, $q_{1} d_{2}$ is less than $9(10)^{8}$. Inequality (1) is therefore satisfied if $n_{1}-q_{1} d_{1} \geq 9$. If that is not the case then the right side of (1) is computable within TeX's integer ranges and we can easily test the inequality. If the inequality holds, then $q=q_{1}$, otherwise $q=q_{1}-1$.

Note also that when $q=q_{1}$, then both terms in (1) (ignoring the $10^{8}$ factor) will be needed to calculate the remainder. If $q=q_{1}-1$, we simply add $d_{1}$ and $d_{2}$ to the respective parts. Thus we will save these values for that use.

Now I need to get it organized. \MFP@Rdiv will have \MFP@x@* and \MFP@y@* available. One step (could be first or last). Is to calculate the sign. Let's do it first (because we need to check for 0 anyway).

We invoke an error message upon division by 0 , but nevertheless return a value. By default they are 0 for $0 / 0$ and the maximum possible real for $x / 0$ when $x$ is not zero. If the numerator is 0 and the denominator not, we do nothing as $z$ was initialized to be 0 .

If neither is 0 , we calculate the sign of the result and call $\backslash$ MFP@@Rdiv to divide the absolute values.

```
\ \def\MFP@Rdiv{%
 \ifnum\MFP@y@Sgn=0
 \MFP@dividebyzero@err
 \ifnum\MFP@x@Sgn=0
 \edef\MFP@z@Int{\ZeroOverZeroInt}%
 \edef\MFP@z@Frc{\ZeroOverZeroFrac}%
 \else
 \edef\MFP@z@Int{\xOverZeroInt}%
 \edef\MFP@z@Frc{\xOverZeroFrac}%
 \fi
 \edef\MFP@z@Sgn{\MFP@x@Sgn}%
 \else\ifnum\MFP@x@Sgn=0
 \MFP@Rzero
 \else
 \MFP@tempa\MFP@x@Sgn
 \multiply\MFP@tempa\MFP@y@Sgn
 \edef\MFP@z@Sgn{\number\MFP@tempa}%
 \MFP@@Rdiv
 \fi\fi}%
```

Now we have two positive values to divide. Our first step is to shift the denominator ( $y$ ) left and keep track of how many places. We store the shift in $\backslash$ MFP@tempa. This actually changes the value of $y$, but knowing the shift will give us the correct quotient in the end.

We first arrange that \MFP@y@Int is nonzero by making it $\backslash M F P @ y @ F r c$ if it is zero (a shift of eight digits). Then the macro \MFP@numdigits@toshift computes 8 minus the number of digits in \MFP@y@Int, which is how many positions left $y$ will be shifted. We then call \MFP@doshift@y on the concatenation of the digits in the integer and fractional parts (padded with zeros to ensure there are at least 16). All this macro does is read the first eight digits into \MFP@y@Int and the next eight into \MFP@y@Frc.
542 \def $\backslash$ MFP@@Rdiv\{\%

```
543
544
545
```

\ifnum\MFP@y@Int=0

```
\ifnum\MFP@y@Int=0
 \edef\MFP@y@Int{\number\MFP@y@Frc}%
 \edef\MFP@y@Int{\number\MFP@y@Frc}%
 \def\MFP@y@Frc{00000000}%
 \def\MFP@y@Frc{00000000}%
 \MFP@tempa=8
 \MFP@tempa=8
\else
\else
 \MFP@tempa=0
 \MFP@tempa=0
\fi
\fi
\advance\MFP@tempa\MFP@numdigits@toshift\MFP@y@Int\relax
\advance\MFP@tempa\MFP@numdigits@toshift\MFP@y@Int\relax
\@XP\MFP@doshift@y\@xp\MFP@y@Int\MFP@y@Frc0000000\mfp@end
```

\@XP\MFP@doshift@y\@xp\MFP@y@Int\MFP@y@Frc0000000\mfp@end

```

We repeat all that on the numerator \(x\), except shifting its digits left means the final outcome will need a corresponding right shift. We record that fact by reducing \MFP@tempa, which ends up holding the net shift necesary.

This has the advantage that we know the result will be in the range \([0.1,10)\). It also means we can reduce the number of places we will need to shift left as well as reduce the number of iterations of the loop that calculates the digits.
```

\ifnum\MFP@x@Int=0
\edef\MFP@x@Int{\number\MFP@x@Frc}%
\def\MFP@x@Frc{00000000}%
\advance\MFP@tempa -8
\fi
\advance\MFP@tempa-\MFP@numdigits@toshift\MFP@x@Int\relax
\@XP\MFP@doshift@x\@xp\MFP@x@Int\MFP@x@Frc0000000\mfp@end

```

Since our result will have at most one digit in the integer part, a rightward shift of 10 places will make every digit 0 , including the rounding digit, so we do nothing (returning 0).
```

559 \ifnum\MFP@tempa<-9
500 \else

```

Now we perform the division, which is a loop repeated \(10+\backslash\) MFP@tempa times. Therefore, we add 10 to \MFP@tempa in \MFP@tempf, our loop counter. We also initialize the macro that will store the digits and then, after the division, shift and split it into parts.
```

\MFP@tempf\MFP@tempa
\advance\MFP@tempf 10
\def\MFP@z@digits{}%
\MFP@Rdivloop
\MFPshiftandsplit@z@digits

```

The last remaining step is to round and carry and get the fractional part in the appropriate 8-digit form..
```

\ifnum\MFP@z@Und>4
\MFP@addone\MFP@z@Frc1\MFP@z@Frc
\MFP@carrya\MFP@z@Frc\MFP@z@Int
\MFP@carrya\MFP@z@Int\MFP@z@Ovr
\makeMFP@eightdigits\MFP@z@Frc
\fi
\fi}%

```

If \#1 of \MFP@numdigits@toshift, has \(n\) digits then \MFP@numdigits@toshift picks out the value \(8-n\). \MFP@doshift@x reads the first eight digits into \(\backslash\) MFP@x@Int and then pulls out 8 more from the rest (\#9) inside \(\backslash \mathrm{MFP@x@Frc}\). The same with \MFP@doshift@y.
```

573\def\MFP@numdigits@toshift\#1{\@xp\MFP@ninthofmany\#101234567\mfp@end}%
574 \def\MFP@doshift@x\#1\#2\#3\#4\#5\#6\#7\#8\#9\mfp@end{%
575\def\MFP@x@Int{\#1\#2\#3\#4\#5\#6\#7\#8}%
576 \edef\MFP@x@Frc{\MFP@firsteightofmany\#9\mfp@end}}%
57<br>def\MFP@doshift@y\#1\#2\#3\#4\#5\#6\#7\#8\#9\mfp@end{%
578 \def \MFP@y@Int{\#1\#2\#3\#4\#5\#6\#7\#8}%
579 \edef\MFP@y@Frc{\MFP@firsteightofmany\#9\mfp@end}}%

```

The loop counter is \(\backslash\) MFP@tempf, \(\backslash\) MFP@tempa is reserved for the shift required later, the quotient digit will be \(\backslash M F P @ t e m p b\). The remainder will be calculated in \(\backslash\) MFP@tempc and \MFP@tempd. \MFP@tempe will hold the value whose size determines whether the quotient needs to be reduced.
```

\def\MFP@Rdivloop{%
\MFP@tempb\MFP@x@Int % \MFP@tempb = n_1
\MFP@tempc\MFP@y@Int % \MFP@tempc = d_1
\divide\MFP@tempb \MFP@tempc % \MFP@tempb = n_1/d_1 = q_1
\multiply \MFP@tempc \MFP@tempb
\MFP@tempd \MFP@y@Frc
\multiply \MFP@tempd \MFP@tempb % \MFP@tempd = q_1 d_2
% \MFP@tempc = q_1 d_1
% \MFP@tempd = d_2
\MFP@tempe \MFP@tempc
\advance \MFP@tempe -\MFP@x@Int\relax % \MFP@tempe = -n_1 + q_1 d_1
\ifnum \MFP@tempe > -9 % n_1 - q_1 d_1 < 9
\multiply \MFP@tempe\MFP@ttteight % -(n_1 - q_1 d_1)(10)^8
\advance \MFP@tempe \MFP@tempd % add q_1 d_2
\advance \MFP@tempe -\MFP@x@Frc\relax % add -n_2
\ifnum \MFP@tempe>0 % Crucial inequality fails
\advance\MFP@tempb -1 % new q = q_1 - 1
\advance\MFP@tempc -\MFP@y@Int % q_1 d_1 - d_1 = q d_1
\advance\MFP@tempd -\MFP@y@Frc\relax% q_1 d_2 - d_2 = q d_2
\fi
\fi
\edef\MFP@z@digits{\MFP@z@digits\number\MFP@tempb}%

```
 It remains to:
- Do the carry from \MFP@tempd to \MFP@tempc. Then \MFP@tempc. \(\backslash\) MFP@tempd will represent \(q \cdot y\).
- Subtract them from \(\backslash\) MFP@x@Int and \(\backslash\) MFP@x@Frc (i.e. remainder \(=x-q y\)).
- Borrow, if needed, and we will have the remainder in \MFP@x@Int. \(\backslash M F P @ x @ F r c\).

Then we decrement the loop counter, and decide whether to repeat this loop. If so, we need to shift the remainder right one digit (multiply by 10). We don't use \(\backslash\) MFP@carrya since it requires macros; its internal code, \MFP@carryi just leaves the results in \MFP@tempa. \MFP@tempb.
\(600 \quad\) \begingroup
\(601 \quad \backslash\) MFP@carryi \(\backslash\) MFP@ttteight \(\backslash\) MFP@tempd \(\backslash\) MFP@tempc
```

\MFP@endgroup@after{%
\MFP@tempc=\number\MFP@tempa
\MFP@tempd=\number\MFP@tempb\relax
}%
% subtract
\MFP@addone\MFP@x@Int{-\MFP@tempc}\MFP@x@Int
\MFP@addone\MFP@x@Frc{-\MFP@tempd}\MFP@x@Frc
% borrow
\ifnum\MFP@x@Frc<0
\MFP@addone\MFP@x@Frc\MFP@ttteight\MFP@x@Frc
\MFP@addone\MFP@x@Int{-1}\MFP@x@Int
\fi
\advance\MFP@tempf -1
\ifnum\MFP@tempf>0
\edef\MFP@x@Int{\MFP@x@Int0}% easy multiplications by }1
\edef\MFP@x@Frc{\MFP@x@Frc0}%
\MFP@carrya\MFP@x@Frc\MFP@x@Int
\@xp\MFP@Rdivloop
\fi}%

```

Now \MFPshiftandsplit@z@digits. At this point, the digits of the quotient are stored in \MFP@z@digits. We need to shift the decimal \MFP@tempa places left, and perform the rounding. There are \(\backslash\) MFP@tempa +10 digits. This could be as little as 1 or as great as 25 . In the first case \MFP@tempa is -9 , and this (rightward) shift produces 0 plus a rounding digit. In the latter case \(\backslash\) MFP@tempa is 15 , and the shift produces 8 digits overflow, an 8 -digit integer part, an 8 -digit fractional part and a rounding digit. In the example \(0123456, \backslash\) MFP@tempa +10 is 7 , so \(\backslash\) MFP@tempa is -3 . The shift produces 0.000123456 . The rounding digit (6) makes the answer 0.00012346.

We take two cases:
\(-\backslash\) MFP@tempa \(\leq 7\), prepend 7 - \MFP@tempa zeros. The first 8 digits will become the integer part, and there should be exactly 9 more digits.
- \MFP@tempa \(>7\), pluck \MFP@tempa -7 digits for overflow, the next 8 for integer part, leaving 9 more digits
In either case, the 9 last digits will be processed into a fractional part (with possible carry if the rounding increases it to \(10^{8}\)).

After this, we will return to \MFP@Rdiv so overwriting \MFP@temp* won't cause any problems.
```

621 \def\MFPshiftandsplit@z@digits{%
\advance \MFP@tempa -7
\ifnum\MFP@tempa>0
\def\MFP@z@Ovr{}%
\@xp\MFPget@Ovrdigits\MFP@z@digits\mfp@end
\else
\ifnum\MFP@tempa<-7
\edef\MFP@z@digits{00000000\MFP@z@digits}%
\advance\MFP@tempa8
\fi

```
```

    \ifnum\MFP@tempa<-3
        \edef\MFP@z@digits{0000\MFP@z@digits}%
        \advance\MFP@tempa4
    \i
    \edef\MFP@z@digits{%
        \ifcase-\MFP@tempa\or
        0\or
        00\or
        000\or
        0000\else
        00000%
        \fi \MFP@z@digits}%
        \@xp\MFPget@Intdigits\MFP@z@digits\mfp@end
    \fi}%

```

The macro \MFPget@Ovrdigits is a loop that loads the first \MFP@tempa digits of what follows into \(\backslash \mathrm{MFP@z@Ovr}\). It does this one digit (\#1) at a time. Once the counter reaches 0 , we call the macro that processes the integer part digits.
```

645 \def \MFPget@Ovrdigits\#1{%
\edef\MFP@z@Ovr{\MFP@z@Ovr\#1}%
\advance\MFP@tempa -1
\ifnum\MFP@tempa>0
\@xp\MFPget@Ovrdigits
\else
\@xp\MFPget@Intdigits
\fi}%

```

The macro \MFPget@Intdigits should have exactly 17 digits following it. It puts eight of them in \MFP@z@Int, then calls \MFPget@Frcdigits to read the fractional part. That requires exactly 9 digits follow it, putting eight in \(\backslash\) MFP@z@Frc and the last in \(\backslash M F P @ z @ U n d\). Still, to allow a graceful exit should there be more, we gobble the rest of the digits.
```

653\def\MFPget@Intdigits\#1\#2\#3\#4\#5\#6\#7\#8{%
654 \def\MFP@z@Int{\number\#1\#2\#3\#4\#5\#6\#7\#8}%
655 \MFPget@Frcdigits}%
656\def\MFPget@Frcdigits\#1\#2\#3\#4\#5\#6\#7\#8\#9{%
657 \def\MFP@z@Frc{\#1\#2\#3\#4\#5\#6\#7\#8}%
658\def\MFP@z@Und{\#9}\gobbleto@mfp@end}%

```

The max amd min operations simply run the compare operation and use and use the resultant booleans to copy \(x\) or \(y\) to \(z\).
```

659\def\MFP@Rmax{%
660 \MFP@Rcmp \ifMFP@neg \MFP@Rcopy yz\else\MFP@Rcopy xz\fi}%
661 \def\MFP@Rmin{%
662\MFP@Rcmp \ifMFP@pos \MFP@Rcopy yz\else\MFP@Rcopy xz\fi}%

```

\subsection*{3.5 Commands to format for printing}
\(\backslash M F P t r u n c a t e \quad\) This first runs the parsing command so the fractional part has exactly eight digits. These become the arguments of \MFP@@Rtrunc, which just keeps the right number.

For negative truncations we prepend zeros to the integer part so it too is exactly eight digits. These become the arguments of \MFP@@iRtrunc, which substitutes 0 for the last - \(\backslash\) MFP@tempa of them.

The macro to store the result in follows \#2. It is read and defined by either \(\backslash\) MFP@Rtrunc or \MFP@iRtrunc.
```

<br>def\MFPtruncate\#1\#2{%
\begingroup
\MFP@tempa\#1\relax
\MFPparse@x{\#2}%
\ifnum\MFP@tempa<1
\@xp\MFP@iRtrunc
\else
\@xp\MFP@Rtrunc
\fi}%
\def\MFP@Rtrunc\#1{%
\edef\MFP@x@Frc{\@xp\MFP@@Rtrunc\MFP@x@Frc\mfp@end}%
\ifnum\MFP@x@Int=0 % possibly returns 0
\ifnum\MFP@x@Frc=0
\def\MFP@x@Sgn{0}%
\fi
\fi
\MFP@endgroup@after{%
\MFP@def@after\#1{\MFP@x@Sign\MFP@x@Int.\MFP@x@Frc}}}%
\def\MFP@@Rtrunc\#1\#2\#3\#4\#5\#6\#7\#8\#9\mfp@end{%
\ifcase\MFP@tempa\or
\#1\or
\#1\#2\or
\#1\#2\#3\or
\#1\#2\#3\#4\or
\#1\#2\#3\#4\#5\or
\#1\#2\#3\#4\#5\#6\or
\#1\#2\#3\#4\#5\#6\#7\else
\#1\#2\#3\#4\#5\#6\#7\#8\fi}%
\def\MFP@iRtrunc\#1{%
\makeMFP@eightdigits\MFP@x@Int
\edef\MFP@x@Val{\number\MFP@x@Sign\@xp\MFP@@iRtrunc\MFP@x@Int\mfp@end}%
\MFP@endgroup@after{\MFP@def@after\#1{\MFP@x@Val}}}%
\def\MFP@@iRtrunc\#1\#2\#3\#4\#5\#6\#7\#8\#9\mfp@end{%
\ifcase-\MFP@tempa
\#1\#2\#3\#4\#5\#6\#7\#8\or
\#1\#2\#3\#4\#5\#6\#70\or
\#1\#2\#3\#4\#5\#600\or
\#1\#2\#3\#4\#5000\or
\#1\#2\#3\#40000\or
\#1\#2\#300000\or
\#1\#2000000\or
\#10000000\else
00000000\fi}%

```

For rounding we simply add the appropriate fraction and truncate. The macro
in which to store the result will follow \#2, and be picked up by the \MFPtruncate command.
```

6 \def\MFPround\#1\#2{%
\begingroup
\MFP@tempa\#1\relax
\ifnum 0>\MFP@tempa
\edef\MFP@y@Tmp{%
\ifcase-\MFP@tempa\or
5\or % . }5\times10^
50\or % . 5 x 10^2
500\or % . 5 x 10^3
5000\or % . 5 x 10^4
50000\or % . }5\times10^
500000\or % . }5\times10^
5000000\else % . }5\times10^
50000000\fi % . 5 x 10^8
}%
\else
\edef\MFP@y@Tmp{%
\ifcase\MFP@tempa
.5\or % . 5 x 10^0
.05\or % . }5\times10^{-1
.005\or % . 5 x 10^{-2}
.0005\or % . 5 x 10^{-3}
.00005\or % . }5\times10^{-4
.000005\or % . }5\times10^{-5
.0000005\or % . }5\times10^{-6
.00000005\else% . }5\times10^{-7
0\fi %
}%
\fi
\MFPchk{\#2}\ifMFP@neg\edef\MFP@y@Tmp{-\MFP@y@Tmp}\fi
\MFPadd{\#2}\MFP@y@Tmp\MFP@z@Tmp
\MFP@endgroup@after{\MFP@def@after\MFP@z@Tmp{\MFP@z@Tmp}}%
\MFPtruncate{\#1}\MFP@z@Tmp}%

```
\(\backslash\) MFPstrip \(\quad\) Stripping zeros from the right end of the fractional part. The star form differs only in the handling of a zero fractional part. So we check whether it is zero and when it is, we either append '. 0 ' or nothing. The rest of the code grabs a digit at a time and stops when the rest are zero.
```

739 \def \MFPstrip{%
\@ifstar{\MFP@strip{}}{\MFP@strip{.0}}}%
\def\MFP@strip\#1\#2\#3{%
\MFPparse@x{\#2}%
\ifnum \MFP@x@Frc=0
\edef\#3{\MFP@x@Sign\MFP@x@Int\#1}%
\else
\edef\#3{\MFP@x@Sign\MFP@x@Int.\@xp\MFP@@strip\MFP@x@Frc\mfp@end}%
\fi}%
\def\MFP@@strip\#1\#2\mfp@end{%

```
```

\#1%
\ifnum 0\#2>0
\@xp\MFP@@strip
\else
\@xp\gobbleto@mfp@end
\fi\#2\mfp@end}%

```

\subsection*{3.6 Miscellaneous}

Here is the code that allows definitions to survive after \stopMFPprogram. The \(\backslash\) Global variants are easiest.

755 \def \MFP@Global\#1\{\toks@\@xp\{\#1\}\xdef\#1\{\the\toks@\}\}\%
756 \def \MFP@GlobalStack\{\MFP@Global\MFP@Rstack\}\%
The \Export command adds the command and its definition to a macro that is executed after the closing group of the program.
```

\def\MFP@Export\#1{%
\begingroup
\toks@\@xp{\MFPprogram@returns}%
\MFP@endgroup@after{%
\MFP@def@after\MFPprogram@returns{\the\toks@ \MFP@def@after\#1{\#1}}%
}}%
\def\MFP@ExportStack{\MFP@Export\MFP@Rstack}%

```

The various operations \(\backslash M F P @ R .\). together make up a "microcode" in terms of which the stack language and the operand language are both defined. As a language in its own right, it lacks only convenient ways to move numbers around, as well as a few extra registers for saving intermediate results. In this language, numbers are represented by a three part data structure, consisting of a signum, an integer part and a fractional part.

Here we define extra commands to remedy this lack, starting with a way to load a number (or rather, a three part data structure representing a number) directly into a register. Here \(\# 1\) is a register name (we always us a single letter) and the remaining arguments are the signum, the integer part and the fractional part (automatically normalized to 8 digits). The "register" is just a set of three macros created from the name given.

We make loading a number into a register a little more general than strictly needed, allowing the parts to be specified as anything \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) recognizes as a number and allowing any register name. This generality might reduce efficiency but it simplifies code. Because register \(z\) is by far the most common one to load, we make more efficient version of it.
```

74 \def\MFP@Rload \#1\#2\#3\#4{%
\@xp\edef\csname MFP@\#1@Sgn\endcsname{\number\#2}%
\@xp\edef\csname MFP@\#1@Int\endcsname{\number\#3}%
\@xp\edef\csname MFP@\#1@Frc\endcsname{\number\#4}%
\@xp\makeMFP@eightdigits\csname MFP@\#1@Frc\endcsname}%
\def\MFP@Rcopy\#1\#2{%
\MFP@Rload \#2{\csname MFP@\#1@Sgn\endcsname}%

```
```

    771 {\csname MFP@#1@Int\endcsname}%
    772 {\csname MFP@#1@Frc\endcsname}}%
    773 \def\MFP@Rloadz#1#2#3{%
    774 \edef\MFP@z@Sgn{\number#1}%
    775 \edef\MFP@z@Int{\number#2}%
    776 \edef\MFP@z@Frc{\number#3}%
    777 \makeMFP@eightdigits\MFP@z@Frc}%
    $\backslash$ MFPpi These are some miscellaneous constants. The 8-digit approximation to $\pi$, is $\backslash M F P e \quad \backslash M F P p i$ and the constant mathematicians call $e$ is $\backslash M F P e$. Finally, the golden ratio $\backslash$ MFPphi (often called $\phi$ ) is obtained by $\backslash$ MFPphi.
778 \def $\backslash$ MFPpi $\{3.14159265\} \%$
779 \def \MFPe\{2.71828183\}\%
780 \def \MFPphi\{1.61803399\}\%
Load (conditionally) mfpextra.tex.
781 \MFP@loadextra
782 \MFP@finish
783 〈/sty〉

```

\section*{4 Extras}

The extras consist so far of sine, cosine, angle, logarithm, powers, and square root. For completeness, here is the table of user-level commands available.
Operand versions
\begin{tabular}{|c|c|}
\hline Command & operation \\
\hline \(\backslash\) MFPsin \(\{\langle n u m\rangle\} \backslash\) macro & Stores \(\sin (\langle n u m\rangle)\) in \(\backslash\) macro, where \(\langle n u m\rangle\) is an angle in degrees. \\
\hline \(\backslash\) MFPcos \(\{\langle n u m\rangle\} \backslash\) macro & Stores \(\cos (\langle n u m\rangle)\) in \(\backslash\) macro, where \(\langle n u m\rangle\) is an angle in degrees. \\
\hline \(\backslash\) MFPangle \(\{\langle x\rangle\}\{\langle y\rangle\} \backslash\) macro & Stores in \macro the polar angle coordinate \(\theta\) of the point \((x, y)\), where \(-180<\theta \leq 180\). \\
\hline \(\backslash \mathrm{MFPrad}\{\langle n u m\rangle\} \backslash\) macro & The angle \(\langle n u m\rangle\) in degrees is converted to radians, and result is stored in \macro. \\
\hline \(\backslash\) MFPdeg \(\{\langle n u m\rangle\} \backslash\) macro & The angle \(\langle n u m\rangle\) in radians is converted to degrees, and result is stored in \(\backslash\) macro. \\
\hline \(\backslash \mathrm{MFPlog}\{\langle n u m\rangle\} \backslash\) macro & Stores \(\log (\langle n u m\rangle)\) in \macro (base 10 logarithm). \\
\hline \(\backslash \mathrm{MFPln}\{\langle n u m\rangle\} \backslash\) macro & Stores \(\ln (\langle n u m\rangle)\) in \macro (natural logarithm). \\
\hline \(\backslash\) MFPexp \(\{\langle n u m\rangle\} \backslash\) macro & Stores \(\exp (\langle n u m\rangle)\) (i.e., \(\left.e^{x}\right)\) in \(\backslash\) macro. \\
\hline \(\backslash\) MFPsqrt \(\{\langle n u m\rangle\} \backslash\) macro & Stores the square root of \(\langle n u m\rangle\) in \macro. \\
\hline \(\backslash\) MFPpow \(\{\langle n u m\rangle\}\{\langle\) int \(\rangle\} \backslash\) macro & Stores the \(\langle\) int \(\rangle\) power of \(\langle n u m\rangle\) in \(\backslash\) macro. The second operand must be an integer (positive or negative). \\
\hline
\end{tabular}

Stack versions
\begin{tabular}{ll}
\hline \hline Command & operation \\
\hline\(\backslash\) Rsin & The number is interpreted as degrees, and its sine is computed. \\
\(\backslash\) Rcos & The number is interpreted as degrees, and its cosine is computed. \\
\(\backslash\) Rangle & The top two numbers are interpreted as coordinates of a point \(P\) \\
& in the order they were pushed. The polar angle coordinate \(\theta\) of \\
& \(P\), with \(-180<\theta \leq 180\) is computed. \\
\(\backslash\) Rrad & The number of degrees is converted to radians. \\
\(\backslash\) Rdeg & The number of radians is converted to degrees. \\
\(\backslash R 1 o g\) & Computes the base-10 logarithm. \\
\(\backslash R l n\) & Computes the natural logarithm. \\
\(\backslash R e x p\) & Computes the exponential of the number (i.e., \(\left.e^{x}\right)\). \\
\(\backslash\) Rsqrt & Computes the square root of the number. \\
\(\backslash R p o w\) & Computes \(x^{y}\). The last number pushed \((y)\) must be an integer.
\end{tabular}

The user could easily convert between radians and degrees using multiplication and/or division. The commands \(\backslash\) Rdeg, \(\backslash\) Rrad, etc., aim to be a little more accurate.

\subsection*{4.1 Additional errors}

These extra commands come with a few possible warnings and errors.
Trying to take the logarithm of 0 will result in an error message. If one allows \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) to continue, the returned value will be negative, with an integer part equal to the contents of \(\backslash\) LogOfZeroInt and a fractional part equal to the contents of \LogOfZeroFrac. The defaults are both 99999999.

Trying to take the logarithm of a negative number will produce the warning
```

MFP warning: Log of a negative number is complex.
Computing real part only.

```

The log of the absolute value is returned.
Trying to take the square root of a negative number results in an error. If you continue after the error message, the value 0 is returned.

Trying to take the exponential of a number larger than about 18.42 will cause an error and the number returned has integer part 99999999 and fractional part 99999999.

Trying to take a negative power of 0 returns the same as trying to divide 1 by 0.

\subsection*{4.2 Loading the extras}
\(\backslash\) Rsin
\(\backslash\) Rcos
\(\backslash\) Rangle
\Rrad 785 \def \(\backslash M F P @ R e x t r a\{\%\)
\(\backslash\) Rdeg 786 \def\Rcos \{\MFP@stack@Unary\MFP@Rcos \}\%
\(\backslash\) Rlog 787 \def\Rsin \(\{\backslash\) MFP@stack@Unary \(\backslash\) MFP@Rsin \(\} \%\)
\(\backslash\) Rln
\(\backslash\) Rexp
\(\backslash\) Rsqrt
\Rpow
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{8}{*}{} & 788 & Rangl & g \\
\hline & 789 & \(\backslash d e f \backslash\) Rrad & \{\MFP@stack@Unary\MFP@Rrad \}\% \\
\hline & 790 & \(\backslash \mathrm{def} \backslash\) Rdeg & \{ \MFP@stack@Unary\MFP@Rdeg \}\% \\
\hline & 791 & \(\backslash \mathrm{def}\) \Rlog & \{ \MFP@stack@Unary \(\backslash\) MFP@Rlog \}\% \\
\hline & 792 & \(\backslash \mathrm{def}\) \Rln & \{\MFP@stack@Unary\MFP@Rln \}\% \\
\hline & 793 & \(\\) def \(\backslash\) Rexp & \{ \MFP@stack@Unary\MFP@Rexp \}\% \\
\hline & 794 & \(\backslash \mathrm{def} \backslash\) Rsqrt & \{\MFP@stack@Unary\MFP@Rsqrt\}\% \\
\hline & 795 & \(\backslash\) def \(\backslash\) Rpow & \(\{\backslash M F P @\) stack@Binary \(\backslash\) MFP@Rpow\}\}\% \\
\hline \(\backslash M F P s i n\) & \multicolumn{3}{|r|}{Then the wrappers for the operand versions.} \\
\hline MFPcos & \multicolumn{3}{|l|}{\(796 \backslash\) def \(\backslash\) MFPcos \(\quad\) \M MFP@op@Unary \({ }^{\text {MFP@Rcos }}\) \}\%} \\
\hline \(\backslash\) MFPrad & 797 & def \(\backslash\) MFPsin & \multirow[t]{2}{*}{\(\{\backslash M F P @ o p @ U n a r y \backslash M F P @ R s i n\} \%\) \(\{\backslash M F P @ o p @ B i n a r y \backslash M F P @ R a n g l e\} \%\)} \\
\hline \(\backslash\) MFPdeg & 798 & def \(\backslash\) MFPangle & \\
\hline \(\backslash\) MFPlog & 799 & def \(\backslash\) MFPrad & \{\MFP@op@Unary MFP@Rrad \(^{\text {\% \% }}\) \\
\hline \(\backslash\) MFPln & & def \(\backslash\) MFPdeg & \{\MFP@op@Unary \MFP@Rdeg \}\% \\
\hline \MFPexp & 801 & def \(\backslash\) MFPlog & \(\{\backslash\) MFP@op@Unary \MFP@Rlog \}\% \\
\hline \MFPsqrt & 802 & def \(\backslash\) MFPln & \{\MFP@op@Unary\MFP@RIn \}\% \\
\hline & 803 & def \(\backslash\) MFPexp & \{\MFP@op@Unary \(\backslash\) MFP@Rexp \}\% \\
\hline & & def \(\backslash\) MFPsqrt & \(\{\backslash\) MFP@op@Unary \(\backslash\) MFP@Rsqrt\}\% \\
\hline & & def \MFPpow & \{\MFP@op@Binary MFPP@Rpow\}\% \(^{\text {a }}\) \\
\hline
\end{tabular}

\subsection*{4.3 Error messages}

Messages for errors related to impossible powers, roots and logarithms.
```

806 \def\MFP@logofzero@err{%
\MFP@errmsg{logarithm of zero}%
{You tried to take the logarithm of zero. What were you %
thinking? If you ``Jcontinue, the value %
assigned will be -\LogOfZeroInt.\LogOfZeroFrac.}}%
\def\LogOfZeroInt {\MaxRealInt}%
\def\LogOfZeroFrac{\MaxRealFrac}%
\def\MFP@expoverflow@err{%
\MFP@errmsg{Power too large}%
{The power you tried to calcualate is too large for %
8 digits. If you continue, `^Jthe value assigned will be %
\MaxRealInt.\MaxRealFrac.}}%
\def\MFP@sqrtofneg@err{%
\MFP@errmsg{square root of a negative number}%
{You tried to take the square root of a negative value. What %
were you thinking? If you continue, zero will be returned.}}%
\def\MFP@badpower@err{%
\MFP@errmsg{negative power of zero}%
{You tried to take a negative power of zero. What were you
thinking? If you ^^Jcontinue, the value assigned will be %
\xOverZeroInt.\xOverZeroFrac.}}%

```

\subsection*{4.4 Sine and Cosine}

For iterated code, the most common register to copy is \(\mathbf{z}\) and the most common place to copy it is to x or y so we make single commands to do those.
```

827\def\MFP@Rcopyz\#1{\MFP@Rload {\#1}\MFP@z@Sgn\MFP@z@Int\MFP@z@Frc}%
828 \def\MFP@Rcopyzx{\MFP@Rcopyz x}%
829 \def\MFP@Rcopyzy{\MFP@Rcopyz y}%

```

Our code assumes the number \(x\) is an angle in degrees. To get sine and cosine of numbers as radians, simply convert your radians to degrees using \MFPdeg or \(\backslash\) Rdeg. Then find the sine or cosine of the result. For example, if \(\backslash X\) holds the angle in in radians and you want the result to be stored in \(\backslash S\) :

\section*{\(\backslash M F P d e g \backslash X \backslash Y ~ \ M F P s i n \backslash Y \backslash S\)}

Our degree/radian conversions try to be more accurate than a simple multiplication by 57.29577951 or 0.01745329 . These conversion factors are accurate to only 8 digits, and the rounding error is magnified by multiplication. Thus we will use 16 digits for these constants. That is, we multiply first by 57.29577951 , then by the next eight digits \(\left(.30823208 \times 10^{-8}\right)\), performing the " \(\times 10^{-8}\) " by using the (rounded) integer part as the fractional part.

The copying of x to t beforehand is so that we don't have to remember which operations (in this case only \MFP@Rmul and \MFP@Radd) leave register x unchanged. All operations defined in mfpextra.tex overwrite the x register, as do a few others.
```

830\def\MFP@Rdeg{%
\MFP@Rcopy xt\MFP@Rload y1{57}{29577951}\MFP@Rmul
\MFP@Rcopyz s\MFP@Rcopy tx\MFP@Rload y10{30823209}\MFP@Rmul
\MFP@tempa\MFP@z@Int\relax
\ifnum\MFP@z@Frc<50000000 \else \advance\MFP@tempa 1 \fi
\MFP@Rload x{\ifnum\MFP@tempa>0 \MFP@z@Sgn\else0\fi}0\MFP@tempa
\MFP@Rcopy sy\MFP@Radd}%
\def\MFP@Rrad{%
\MFP@Rcopy xt\MFP@Rload y10{0174 5329}\MFP@Rmul
\MFP@Rcopyz s\MFP@Rcopy tx\MFP@Rload y10{25199433}\MFP@Rmul
\MFP@tempa\MFP@z@Int\relax
\ifnum\MFP@z@Frc<50000000 \else \advance\MFP@tempa 1 \fi
\MFP@Rload x{\ifnum\MFP@tempa>0 \MFP@z@Sgn\else0\fi}0\MFP@tempa
\MFP@Rcopy sy\MFP@Radd}%

```

There are very few angles that are expressible in 8 digits whose sine or cosine can be expressed exactly in 8 digits. For these, we do obtain an exact result. Other values produce inexact results. It would be nice if we could at least obtain these correctly rounded to 8 decimals, but unfortunately our methods will often produce a result off by 1 in the eighth decimal from the correctly rounded value. Anything that involves the addition of two or more rounded results can have this problem. The only way to get correctly rounded results is to carry out all operations internally to additional places. Even then, there will be the occasional \(.4999 \ldots\) that should round to 0 but rounds to 1 instead.

For the cosine, just compute \(\sin (90-x)\).
```

844\def\MFP@Rcos{%
845\MFP@Rcopy xy\MFP@Rload x1{90}0\MFP@Rsub
846 \MFP@Rcopyzx\MFP@Rsin}%

```

Return 0 if \(x\) is 0 . Then reduce \(|x|\) by subtracting 360 from the integer part until it is less than 360. Of course, \(\sin x=\operatorname{sgn}(x) \sin (|x|)\) so we only need to compute \(\sin (|x|)\). For \(|x|<180\), the sign will be that of \(x\). For \(|x|>=180\), calculate \(\sin (|x|-180)\) and the sign will be opposite that of \(x\). Then again return 0 if \(x\) is 0 . Finally, call \(\backslash\) MFP@@Rsin to finish.
```

847\def\MFP@Rsin{%
\ifnum \MFP@x@Sgn=0 % return 0
\MFP@Rzero
\else
\MFP@tempa\MFP@x@Int\relax
\MFP@reduce@angle
\ifnum \MFP@tempa<180
\edef\MFP@sin@Sgn{\MFP@x@Sgn}%
\else
\edef\MFP@sin@Sgn{\number-\MFP@x@Sgn}%
\advance \MFP@tempa-180
\fi
\MFP@tempb\MFP@x@Frc\relax
\ifnum\MFP@tempa>0
\MFP@@Rsin
\else\ifnum\MFP@tempb>0
\MFP@@Rsin
\else
\MFP@Rzero
\fi\fi
\fi}%

```

This following reduces \(|x|\) to the case \(0<=|x|<360\). It assumes the integer part is in count register \MFP@tempa.
```

868 \def\MFP@reduce@angle{%
\ifnum\MFP@tempa<360
\else
\advance\MFP@tempa-360
\@xp\MFP@reduce@angle
\fi}%

```

At this point, \(|x|\) is represented by \(\backslash\) MFP@tempa (integer part) and \(\backslash\) MFP@tempb (fractional part). Also, we already know the sign, stored in \MFP@sin@Sgn. Moreover \(0<\backslash\) MFP@tempa \(<180\). We now reduce to \(0<|x| \leq 90\) using \(\sin (x)=\sin (180-|x|)\), and return 1 if equal to 90 .

The calculation of \(180-x\) is optimized, taking advantage of the fact that both \(x\) and the result are known to be positive. If the fractional part is positive, we would normally borrow 1 by reducing 180, but instead we increase the integer part of \(x\) by one.
```

874 \def\MFP@@Rsin{%
875 \ifnum\MFP@tempa<90

```
```

\else
\ifnum\MFP@tempb>0
\advance\MFP@tempa 1
\MFP@tempb -\MFP@tempb
\advance\MFP@tempb \MFP@ttteight\relax
\fi
\MFP@tempa -\MFP@tempa
\advance\MFP@tempa }18
\i
\ifnum\MFP@tempa=90
\MFP@Rloadz \MFP@sin@Sgn10%
\else

```

We would need to convert \(x\) to radians (multiply by \(\pi / 180\)) to use the standard power series, but instead we will incorporate the conversion factor into the power series coefficients.

We will, however, try to increase accuracy by reducing the size of \(x\) and correspondingly increasing the appropriate factors. Since the number of significant figures of a product is limited by the least number of significant figures of the two factors, the bottleneck on accuracy is that of the smaller term: all our numbers have 8 digits so if a number is small, the number of nonzero digits is small.

Dividing by 100 seems a good choice (so our units are "hectodegrees"). This makes \(0<x<.9\) and the integer part (\(\backslash\) MFP@tempa) will be henceforth ignored.

The addition of 50 is for rounding purposes. After that, our computations amount to concatenating the top six digits of \MFP@tempb to the digits of \(\backslash\) MFP@tempa. This will produce the integer form of the fractional part of \(x / 100\) (the integer part of \(x / 100\) is 0).
```

88<br>advance\MFP@tempb 50
889 \divide\MFP@tempb }10
890 \multiply\MFP@tempa }100000
891 \advance\MFP@tempb\MFP@tempa
892 \MFP@Rsin@prog
893 \fi}%

```
\(\backslash\) MFP@Rsin@prog is the power series computation. We save some multiplications by working with \(t=x^{2}\). As we don't need the original \(x\) anymore, we simply replace it with the new reduced value. We also save this \(x\) in another register, \(\mathbf{s}\), as we will need it again at the end, and our intermediate calculations do not preserve the x register. Then we square \(x\) and save it in another temporary register t :
```

894\def\MFP@Rsin@prog{%
895 \MFP@Rload x10\MFP@tempb
896 \MFP@Rcopy xs%
897 \MFP@Rsq
898 \MFP@Rcopyz t%

```

The power series need only go to 8 terms as the ninth would be less than \(.5 * 10^{-8}\) and so our 8 -place computations would return 0 . Our 8 -term series is:
\[
r x\left(1-r^{2} t / 3!+r^{4} t^{2} / 5!-r^{6} t^{3} / 7!+r^{8} t^{4} / 9!-r^{10} t^{5} / 11!+r^{12} t^{6} / 13!-r^{14} t^{7} / 15!\right)
\]
where \(r\) is the factor that converts \(x\) to radian measure (hectodegrees to radians). We minimize any multiplications of tiny numbers by computing this as
\[
r(1-g t(1-f t(1-e t(1-d t(1-c t(1-b t(1-a t)))))))
\]

Now \(r=1.74532925\) and \(a, b\), etc., have formulas:
\[
\begin{gathered}
a=r^{2} / 15 / 14, b=r^{2} / 13 / 12, c=r^{2} / 11 / 10, d=r^{2} / 9 / 8 \\
e=r^{2} / 7 / 6, f=r^{2} / 5 / 4, g=r^{2} / 3 / 2
\end{gathered}
\]

An alternative method would be to accumulate a sum, computing each term from the previous one (e.g., if \(u=t^{3} / 7\) ! is the fourth term, the next one is \(u * t *(1 /(8 *\) \(9))\)). This is a bit more complicated to code and requires moving values around more. It would have the advantage that we can stop whenever a term evaluates to 0 , making computation faster for small values of \(x\).

We avoid divisions by precomputing the coefficients \(a, b, c\), etc. Note that without the reduction in \(x\), the value of \(a\) for example would be 0.00000145 , with only 3 significant figures of accuracy. Now we can have 7, and the accuracy is more-or-less determined by that of the reduced x .
\[
\begin{aligned}
a=0.01450559, & b=0.01952675, \\
d=0.04230797, & e=0.02769249 \\
& g=0.50769570
\end{aligned}
\]

It is important to note that the following operations step all over the \MFP@temp \(x\) \count registers, so we have made sure that we no longer need them.

The \(\backslash M F P @ f l i p z\) computes \(1-z\), where \(z\) is the result of the previous operation. Instead of simply subtracting, we optimize based on the fact that \(z\) is known to be nonnegative and not larger than 1 .

The macro \MFP@com@iter 'flips' the previous result then multiplies by \(t\) and the indicated coefficient. (The name of this macro stands for "common iterated" code; it is reused for other power series computations.)

Despite what I said above, our chosen method of computation has a slightly improved accuracy (in numerical experiments) if we take it one step further, but adding only half the last term. This splits the difference between stopping at the 15 th power or continuing to the 17 th. It has provably better worst-case accuracy, but on average, who knows? We are right at the edge of our 8-digit accuracy anyway. The constant 00559959 corresponds to half of \(r^{2} / 16 / 17\).

For extra efficiency I am using a "small" version of multiplication \MFP@Rsmul, used only when the multiplicands are sure to lie in \([0,1]\).
```

\MFP@Rcopy tx%
\MFP@Rload y10{00559959}\MFP@Rsmul\MFP@com@iter{01450559}%
\MFP@com@iter{01952675}\MFP@com@iter{02769249}\MFP@com@iter{04230797}%
\MFP@com@iter{07252796}\MFP@com@iter{15230871}\MFP@com@iter{50769570}%
\MFP@flipz\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rsmul
\MFP@Rcopyzx\MFP@Rload y11{74532925}\MFP@Rmul
\let\MFP@z@Sgn\MFP@sin@Sgn}%
\def\MFP@flipz{%

```
```

    \ifnum\MFP@z@Sgn=0
        \MFP@Rloadz 110%
    \else
        \MFP@tempa\MFP@ttteight % representing 1.00000000
        \advance\MFP@tempa-\MFP@z@Frc\relax
        \MFP@Rloadz{\ifcase\MFP@tempa 0\else1\fi}0\MFP@tempa
    \fi}%
    \def\MFP@com@iter\#1{\MFP@flipz
\MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul
\MFP@Rcopyzx\MFP@Rload y10{\#1}\MFP@Rsmul}%

```

As to the accuracy of these computations, we can certainly lose accuracy at each step. In principle, if \(x\) is known to 10 significant figures (\(x \geq 10\) degrees), then even though we lose 2 figures with division by 100 , the accuracy bottleneck is the fact that our coefficients have only seven figures. Now we have 17 multiplications, and while products are said to have the same number of significant figures as the factors, in the worse case we can accumulate inaccuracy of about \(.5 \times 10^{-8}\) per multiplication. So we are not guaranteed an accuracy of more than about \(\pm 10^{-7}\). Numerical tests, however, show that it isn't that bad, probably because the direction of inaccuracies usually varies randomly, and inaccuracies in one direction compensate for those going the other way. I have not seen a case where the result is off by more than 1 in the last decimal place (i.e., \(\pm 1.5 \times 10^{-8}\)). In the case where we can know the result exactly, \(x=30\), we get an exact answer, even though we don't single it out (as we do 0,90 and 180).

The following is the "small" version of \(\backslash M F P @ R m u l\). Limited to non-negative numbers less than or equal to 1 . Theoretically all the numbers are strictly between 0 and 1, but in practice a multiplication could round to 0 and then, after subtraction, a 1 could occur. We handle those easy cases separately, so that in \MFP@@Rsmul we don't have to wory about the integer parts at all.
```

<br>def\MFP@Rsmul{%
\ifnum \MFP@x@Sgn=0
\MFP@Rzero
\else\ifnum \MFP@y@Sgn=0
\MFP@Rzero
\else\ifnum\MFP@x@Int>0 % x must be 1.0
\MFP@Rcopy yz%
\else\ifnum\MFP@y@Int>0 % y must be 1.0
\MFP@Rcopy xz%
\else
\MFP@@Rsmul
\fi\fi\fi\fi}%
\def\MFP@@Rsmul{%
\MFP@split\MFP@x@Frc\MFP@x@Frc@i\MFP@x@Frc@ii
\MFP@split\MFP@y@Frc\MFP@y@Frc@i\MFP@y@Frc@ii
\def\MFP@z@Frc@i {0}\def\MFP@z@Frc@ii {0}%
\def\MFP@z@Frc@iii{0}\def\MFP@z@Frc@iv {0}%
\MFP@tempb\MFP@y@Frc@ii\relax
\MFP@multiplyone\MFP@x@Frc@ii\MFP@z@Frc@iv
\MFP@multiplyone\MFP@x@Frc@i\MFP@z@Frc@iii

```
```

\MFP@tempb\MFP@y@Frc@i\relax
\MFP@multiplyone\MFP@x@Frc@ii\MFP@z@Frc@iii
\MFP@multiplyone\MFP@x@Frc@i\MFP@z@Frc@ii
\MFP@carrym\MFP@z@Frc@iv\MFP@z@Frc@iii
\MFP@carrym\MFP@z@Frc@iii\MFP@z@Frc@ii
\ifnum\MFP@z@Frc@iii<5000 \else
\MFP@tempb\MFP@z@Frc@ii
\advance\MFP@tempb1
\edef\MFP@z@Frc@ii{\number\MFP@tempb}\fi
\MFP@carrym\MFP@z@Frc@ii\MFP@z@Frc@i
\makeMFP@fourdigits\MFP@z@Frc@iv
\makeMFP@fourdigits\MFP@z@Frc@iii
\makeMFP@fourdigits\MFP@z@Frc@ii
\makeMFP@fourdigits\MFP@z@Frc@i
\def\MFP@z@Int{0}%
\edef\MFP@z@Frc{\MFP@z@Frc@i\MFP@z@Frc@ii}%
\edef\MFP@z@Sgn{\ifnum\MFP@z@Frc=0 0\else 1\fi}%
\edef\MFP@z@Und{\MFP@z@Frc@iii\MFP@z@Frc@iv}%
\edef\MFP@z@Ovr{0}}%

```

\subsection*{4.5 Polar angle}

Instead of supplying the arcsine and arccosine functions, we supply the more general angle function. This is a binary operation that accepts the two coordinates of a point and computes its angle in polar coordinates. One then has, for example, \(\arctan x=\operatorname{angle}(1, x)\) and \(\arccos x=\angle\left(x, \sqrt{1-x^{2}}\right)\). The latter could be obtain in a program by:
```

\Rpush\X \Rdup
\Rqq \Rchs
\Rincr \Rsqrt
\angle

```

We start, as usual, with a few reductions. When the \(y\)-part is 0 , we immediately return 0 or 180 . If the \(y\)-part is negative, we compute the angle for \((x,|y|)\) and negate it. If the \(x\)-part is negative, we compute the angle for \(|x|\) and subtract it from 180. Finally, reduced to both coordinates positive, if \(y>x\) we compute the angle of \((y, x)\) and subtract that from 90 . Ultimately, we apply a power series formula for \(\angle(1, y / x)\) and get convergence when the argument is less than 1 , but convergence is poor unless the argument is less than \(1 / 2\). When that is not the case, conceptually, we rotate the picture clockwise by the arctangent of \(1 / 2\), compute the angle of the new point and then add a precomputed value of \(\arctan (1 / 2)\).
```

956\def\MFP@Rangle{%
\ifcase\MFP@y@Sgn\relax
\ifcase\MFP@x@Sgn\relax
\MFP@warn{Point (0,0) has no angle. Returning 0 anyway}%
\MFP@Rzero
\or
\MFP@Rzero

```
```

        \else
            \MFP@Rloadz 1{180}0%
        \fi
        \@xp\@gobble
    \or
\def\MFP@angle@Sgn{1}\@xp\@firstofone
\else
\def\MFP@y@Sgn{1}%
\def\MFP@angle@Sgn{-1}\@xp\@firstofone
\fi
{\ifcase\MFP@x@Sgn\relax
\MFP@RIoadz1{90}0%
\or \MFP@@Rangle
\else
\def\MFP@x@Sgn{1}\MFP@@Rangle
\MFP@Rcopyzy\MFP@Rload x1{180}0\MFP@Rsub
\fi
\let\MFP@z@Sgn\MFP@angle@Sgn
}}%
\def\MFP@@Rangle{%
\MFP@Rcmp
\ifMFP@neg
\MFP@Rcopy xs\MFP@Rcopy yx\MFP@Rcopy sy%
\MFP@@@Rangle
\MFP@Rload x1{90}0\MFP@Rcopyzy\MFP@Rsub
\else
\MFP@@@Rangle
\i
}%

```

Precisely what we do when we are finally in the case \(0<y<x\) is perform a couple of reductions. Ultimately we want to compute the arctan of \(z=y / x\). We once again use a power series but, for fast convergence, we require \(z\) to be considerably less than 1 . For reasons we discuss later, we won't be able to use the more efficient \(\backslash M F P @ R s m u l\) so we want to keep the number of iterations of our power series calculations low.

So we start with two iterations of the algorithm used by Knuth: if \(y / x>1 / 2\) we transform the pair \((x, y)\) to a new one whose angle has been reduced by \(\arctan (1 / 2)\). The new pair is \(\left(x^{\prime}, y^{\prime}\right)=(2 x+y, 2 y-x)\). If we still have \(y / x>1 / 4\), we perform \(\left(x^{\prime \prime}, y^{\prime \prime}\right)=(4 x+y, 4 y-x)\), which then satisfies \(y^{\prime \prime} / x^{\prime \prime} \leq 1 / 4\). When either of these transformations is performed, we add the corresponding angle to the "angle-so-far" in register a.

We could continue this iteration 32 times to get (theoretically) the angle in degrees to \(\pm 10^{-8}\). That seems a bit long, plus the accumulation of errors over 32 iterations could (in the worst case) produce less than \(\pm 10^{-7}\) accuracy.

To get the accuracy we need we work in "scaled reals". That is, we get 10 decimal places of accuracy by letting two digits of the integer part represent the first two digits after the decimal point, and the 8 digits of the fractional part represent digits 3 through 10 after the point. The macro \(\backslash\) MFP@RmulC (around line

19 of the definition of \(\backslash\) MFP@@@Rangle) is a quick multiplication by 100 , converting the argument of the arctangent command to a scaled real.

Since we ultimately take the arctangent of \(y / x\) we get best accuracy if \(y\) is first scaled, which means it must necessarily be smaller than \(10^{6}\) to start with. Our initial reductions can double its size, so we first make sure it is smaller than 500000 , dividing by 200 . This can actually reduce accuracy, but as it is only done when \(y\) already has 14 significant figures, and since the quotient \(100 y / x\) has at most 10 , the loss is not significant.
```

\def\MFP@Rquad{\MFP@Rdbl\MFP@Rcopyzx\MFP@Rdbl}%
\def\MFP@@@Rangle{%
\MFP@Rcopy xs\MFP@Rcopy yt%
\ifnum\MFP@y@Int<500000
\else
\MFP@Rload y1{200}0\MFP@Rdiv
\MFP@Rcopyz s\MFP@Rcopy tx%
\MFP@Rload y1{200}O\MFP@Rdiv
\MFP@Rcopyz t%
\fi
\MFP@Rcopy tx\MFP@Rdbl\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rcmp
\ifMFP@pos
\MFP@Rsub\MFP@Rcopyz u\MFP@Rcopy sx\MFP@Rdbl
\MFP@Rcopyzx\MFP@Rcopy ty\MFP@Radd
\MFP@Rcopyz s\MFP@Rcopy ut%
\MFP@Rload a1{2656}{50511771}%
\else
\MFP@Rload a000%
\f
\MFP@Rcopy tx\MFP@Rquad\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rcmp
\ifMFP@pos
\MFP@Rsub\MFP@Rcopyz u\MFP@Rcopy sx\MFP@Rquad
\MFP@Rcopyzx\MFP@Rcopy ty\MFP@Radd
\MFP@Rcopyz s\MFP@Rcopy ut%
\MFP@Rcopy ax\MFP@Rload y1{1403}{62434679}%
\MFP@Radd\MFP@Rcopy za%
\i
\MFP@Rcopy tx\MFP@RmulC
\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Rdiv
\MFP@Rcopyzx\MFP@Ratanc
\MFP@Rcopyzx\MFP@Rdeg
\MFP@Rcopyzx\MFP@Rcopy ay\MFP@Radd
\MFP@Rcopyzx\MFP@RdivC}%

```

Here are fast multiplication and division by 100. We need these because we are going to comput the arctangent in radians to ten decimal places. We do this by computing with scaled reals in which, for example, 0.5 is represented by 50.0 . When we do this, multiplication requires a division by \(100: .5 \times .5=.25\) would be computed as \((50 \times 50) / 100=25\).
1025 \def \MFP@RmulC\{\%
1026 \makeMFP@eightdigits \(\backslash\) MFP@x@Frc
```

1027 \edef\MFP@Tmp{\number\MFP@x@Int.\MFP@x@Frc}%
1028<br>@p\MFP@@RmulC\MFP@Tmp\mfp@end}%
1029\def\MFP@@RmulC\#1.\#2\#3\#4\mfp@end{%
1030 \MFP@Rloadz\MFP@x@Sgn{\#1\#2\#3}{\#400}}%
1031 \def \MFP@RdivC{%
1032 \makeMFP@eightdigits\MFP@x@Int
1033\makeMFP@eightdigits\MFP@x@Frc
1034 \@XP\MFP@@RdivC\@xp\MFP@x@Int\MFP@x@Frc\mfp@end}%
1035 \def \MFP@@RdivC\#1\#2\#3\#4\#5\#6{%
1036 \edef\MFP@z@Int{\number\#1\#2\#3\#4\#5\#6}%
1037 \MFP@@@RdivC}%
1038 \def\MFP@@@RdivC\#1\#2\#3\#4\#5\#6\#7\#8\#9\mfp@end{%
1039 \MFP@tempa\#1\#2\#3\#4\#5\#6\#7\#8\relax
1040 \ifnum\#9>49 \advance\MFP@tempa1 \fi
1041 \edef\MFP@z@Sgn{\MFP@x@Sgn}%
1042 \ifnum\MFP@tempa=0 \ifnum\MFP@x@Int=0 \def\MFP@z@Sgn{0}\fi\fi
1043 \MFP@Rloadz\MFP@z@Sgn\MFP@z@Int\MFP@tempa}%

```

Finally, we compute the arctan of a scaled real producing a result as a scaled number (i..e., as "centiradians" - 100 times the number of radians) using a power series. Since that number could be around 0.25 (represented by 25.0), we have to sum to at least its 15 th power \(\left(4^{-15} / 15 \approx .6 \times 10^{-10}\right.\) and the next term in the series is effectively 0). Fortunately, the power series has only odd terms, so there are only 8 terms we actually need to calculate. The calculation proceeds much like the one for the sine, starting with the sum
\[
x\left(1-\frac{u}{3}+\frac{u^{2}}{5}-\frac{u^{3}}{7}+\cdots-\frac{u^{7}}{2 \cdot 15}\right),
\]
where \(u=x^{2}\).
We start with the common iterated code. It assumes a scaled value in x to be multiplied by the saved (scaled) value of \(x^{2}\) (in register \(u\)) and by a coefficient (supplied in separate integer and fractional parts). It ends with the new value in x.
```

1044\def\MFP@scaledmul{\MFP@Rmul\MFP@Rcopyzx\MFP@RdivC}%
1045 \def\MFP@atan@iter\#1\#2{%
1046 \MFP@Rcopy uy\MFP@scaledmul
1047\MFP@Rcopyzx\MFP@Rload y1{\#1}{\#2}\MFP@scaledmul
1048 \MFP@Rcopyzy\MFP@Rload x1{100}{00000000}%
1049 \MFP@Rsub\MFP@Rcopyzx}%
1050 \def\MFP@Ratanc{%
1051 \MFP@Rcopy xs%
1052 \MFP@Rcopy xy\MFP@scaledmul\MFP@Rcopyz u%
1053\MFP@Rcopyzx\MFP@Rload y1{86}{66666667}%
1054 \MFP@scaledmul
1055 \MFP@Rcopyzy\MFP@Rload x1{100}{00000000}%
1056 \MFP@Rsub\MFP@Rcopyzx
1057 \MFP@atan@iter{84}{61538462}\MFP@atan@iter{81}{81818182}%
1058 \MFP@atan@iter{77}{77777778}\MFP@atan@iter{71}{42857143}%

```

\subsection*{4.6 Logarithms}

Now for logarithms. We are going to compute a base 10 logarithm. This allows the first step of the calculation to be essentially trivial: to get the integer part of the log for numbers with positive integer part, count the digits in the integer part and subtract 1. For numbers less than one, count the number of zeros at the beginning of the fractional part and add 1 (subtract this from the result of the second part). This reduces the problem to numbers \(1 \leq x<10\). A few divisions (when necessary) reduce to the case where \(x=1+u\) with \(u\) small enough that the power series for \(\log (1+u)\) can be computed accurately in an acceptable number of of terms. Then we proceed as in the code for sine.

We keep the value-so-far in register \(s\) and the modified \(x\)-value in register \(t\). The \(\log\) of \(t\) need only be added to register \(s\) for the final result.
```

1061 \def\MFP@Rlog{%
1062 \ifnum\MFP@x@Sgn=0
\MFP@logofzero@err
\MFP@Rloadz{-1}\LogOfZeroInt\LogOfZeroFrac
\else
\ifnum \MFP@x@Sgn<0
\MFP@warn{The logarithm of a negative number is complex.%
\MFP@msgbreak Only the real part will be computed}%
\fi
\MFP@Rload s000%

```

If the integer part is zero, the fractional part is not. Save the number of places that will be shifted in \MFP@tempa. We use \number to strip the leading zeros and (essentially) we count the number of digits that remain. Then we shift left, putting the first digit into the integer part of \(s\) and the rest into the fractional part. Despite its name, \MFP@numzeros actually returns one more than the number of zeros, which is the number of places to shift, and the integer part of the logarithm.
```

1071 \ifnum \MFP@x@Int=0
1072 \edef\MFP@x@Tmp{\number\MFP@x@Frc}%
1073 \MFP@tempa=\MFP@numzeros\MFP@x@Tmp\relax
1074 \def\MFP@s@Sgn{-1}%
1075 \edef\MFP@t@Int{\@xp\MFP@firstofmany\MFP@x@Tmp\mfp@end}%
1076 \edef\MFP@t@Frc{\@xp\@gobble\MFP@x@Tmp0}%
1077 \MFPpadto@eight\MFP@t@Frc
1078
\else

```

When the integer part is not zero, we get the number of digits to shift again in \MFP@tempa. We actually want one less than the number of digits, so that is what \MFP@numdigits actually produces.
\(1079 \quad \backslash\) MFP@tempa \(\ M F P @ n u m d i g i t s \backslash M F P @ x @ I n t\)
\(1080 \backslash\) dedef \(\backslash\) MFP@x@Tmp\{\MFP@x@Int \(\backslash\) MFP@x@Frc\}\% gather all digits
1081 \edef \(\backslash M F P @ s @ S g n\{1\} \%\)
\(1082 \backslash\) ledef \(\backslash\) MFP@t@Int\{\@xp\MFP@firstofmany \(\backslash M F P @ x @ T m p \backslash m f p @ e n d\} \%\)
```

1083 \edef\MFP@x@Tmp{\@xp\@gobble\MFP@x@Tmp}%
1084 \edef\MFP@t@Frc{\@xp\MFP@firsteightofmany\MFP@x@Tmp\mfp@end}%
1085 \fi

```

The integer part of \(\log x\) is now known, so save it in value-so-far. Also, set the sign of the reduced argument to positive. Then call \(\backslash M F P @ 1\) og@reduce, which reduces \(x\) to at most \(10^{1 / 16} \approx 1.155\). Finally, if the reduced \(x\) is 1 , return the value so far, otherwise call the power series program.
```

1086 \edef\MFP@s@Int{\number\MFP@tempa}%
1087 \def\MFP@t@Sgn{1}%
1088 \MFP@Rlog@reduce
1089 \ifnum\MFP@t@Frc=0
1090 \MFP@Rcopy sz%
1091 \else
\else
\fi
\fi}%
995\def\showreg \#1{% for debugging
1096 \begingroup
1097 \edef\reg{%
\#1 = (\csname MFP@\#1@Sgn\endcsname)%
\csname MFP@\#1@Int\endcsname.%
\csname MFP@\#1@Frc\endcsname}%
\show\reg
1102 \endgroup}%

```

We count the number of digits by lining them up, followed by the possible numbers, and picking out the ninth argument. We count leading zeros in the fractional part by removing leading zeros, lining up the remaining digits, followed by the possible numbers, and again picking the ninth. In \MFP@Rlog@reduce we divide by the square root of 10 if the number is larger than that (adding .5 to value-so-far). We repeat with the 4 th, 8 th and 16 th roots. For speed, instead of dividing, we actually multiply by the precalculated reciprocal, passed as the third argument.
```

1103\def\MFP@numdigits\#1{\@xp\MFP@ninthofmany\#176543210\mfp@end}%
1104 \def\MFP@numzeros\#1{%
1105 \@xp\MFP@ninthofmany\#112345678\mfp@end}%
1106\def\MFP@Rlog@reduce{%
1107 \MFP@reduceonce 3{16227766}{31622777}{50000000}%
1108 \MFP@reduceonce 1{77827941}{56234133}{25000000}%
1109 \MFP@reduceonce 1{33352143}{74989421}{12500000}%
1110 \MFP@reduceonce 1{15478198}{86596433}{06250000}}%
1111 \def\MFP@reduceonce\#1\#2\#3\#4{%
1112 \MFP@Rcopy tx\MFP@Rload y1{\#1}{\#2}\MFP@Rcmp
1113 \ifMFP@neg\else
1114 \MFP@Rload y10{\#3}\MFP@Rmul
1115 \MFP@Rcopyz t\MFP@Rcopy sx\MFP@Rload y10{\#4}\MFP@Radd
1116 \MFP@Rcopyz s%
1117 \fi}%

```

Now we have a value for \(t\) of the form \(1+u\) with \(0 \leq u<0.155\) (approx.) We will use the formula
\[
\log (1+u)=\frac{1}{\ln 10} \sum_{n=0}^{\infty}(-1)^{n} \frac{u^{n+1}}{n+1}
\]

We only need to carry it far enough to assure that the next term would be 0 in our finite resolution arithmetic, that is \(.155^{k} / k / \ln 10<.5 \times 10^{-8}\). This is satisfied by \(k=9\), so we only need 8 terms.

Again, we compute this by
\[
r u(1-a u(1-b u(1-c u(1-d u(1-e u(1-f u(1-g u(1-h u))))))))
\]
where \(a=1 / 2, b=2 / 3, \ldots, h=7 / 8 / 2\), and \(r=1 / \ln 10=\log e\). This allows us to reuse \MFP@com@iter.

The for the natural \(\log \ln x\) we multiply the common logarithm by \(\ln 10\). It seems we are redundantly canceling the earlier division by \(\ln 10\), but remember we are also multiplying the integer part, which did not have such a division in its code.
```

1118\def\MFP@Rlog@prog{%
1119 \MFP@Rcopy tx\MFP@Rdecr
1120 \MFP@Rcopyz t%
1121 \MFP@Rcopyzx\MFP@Rload y10{43750000}\MFP@Rsmul
1122 \MFP@com@iter{85714286}\MFP@com@iter{83333333}\MFP@com@iter{80000000}%
1123 \MFP@com@iter{75000000}\MFP@com@iter{66666667}\MFP@com@iter{50000000}%
1124\MFP@com@iter{43429448}\MFP@Rcopyzx\MFP@Rcopy sy\MFP@Radd}%
1125\def \MFP@Rln{%
1126\MFP@Rlog\MFP@Rcopyzx\MFP@Rload y12{30258509}\MFP@Rmul}%

```

\subsection*{4.7 Powers}

With the exponential function we immediately return 1 if \(x=0\). We call two separate handlers for positive and negative \(x\). This is because the issues are different between positive and negative exponents.
```

1127\def\MFP@Rexp{%
1128\ifcase\MFP@x@Sgn\relax
\MFP@Rloadz 110%
\or
\MFP@Rexp@pos
\else
\def\MFP@x@Sgn{1}%
\MFP@Rexp@neg % computes e^{-x}, not e^x
\fi}%

```

One issue for positive exponents is overflow, so we issue an error message for that case. The largest mumber that will not produce overflow is 18.42068074 so we first compare to that; if larger, issue the error message and return 99999999.99999999.

We compute the integer power first, using an \ifcase, because there are only 19 cases to consider.

Then, we examine the first digit \(d\) after the decimal and compute \(e^{0 . d}\), again by cases. This is multiplied by the integer power previously found. What remains is the rest of the fractional part of \(x\), which is strictly less than 0.1 . The exponential of this is computed using the first several terms of the power series for \(e^{x}\).
```

1136 \def\MFP@Rexp@pos{%
1137 \MFP@Rload y1{18}{42068074}\MFP@Rcmp
1138 \ifMFP@pos % overflow
1139 \MFP@expoverflow@err
1140 \MFP@Rloadz 1\MaxRealInt\MaxRealFrac
1 1 4 1 ~ \ e l s e ~ \% ~ h a n d l e ~ i n t e g e r ~ p a r t ~
1142 \MFP@tempa\MFP@x@Int
1143 \edef\MFP@powerof@e{%
1144 1\ifcase\MFP@tempa
1145 10\or
1146 2{71828183}\or
1147 7{38905610}\or
1148 {20}{08553692}\or
1149 {54}{59815003}\or
1150 {148}{41315910}\or
1151 {403}{42879349}\or
1152 {1096}{63315843}\or
1153 {2980}{95798704}\or
1154 {8103}{08392758}\or
1155 {22026}{46579481}\or
1156 {59874}{14171520}\or
1157 {162754}{79141900}\or
1158 {442413}{39200892}\or
1159 {1202604}{28416478}\or
1160 {3269017}{37247211}\or
1161 {8886110}{52050787}\or
1162 {24154952}{75357530}\or
1163 {65659969}{13733051}\else
1164 {\MaxRealInt}{\MaxRealFrac}\fi}%
1165<br>@xp\MFP@Rloadz\MFP@powerof@e
1166 \ifnum\MFP@x@Frc=0
1167 \else
1168 \MFP@Rcopyz s%
1169 \MFP@tempa=\@xp\MFP@firstofmany\MFP@x@Frc\mfp@end
1170 \edef\MFP@powerof@e{%
1171 y1\ifcase\MFP@tempa
1172 10\or
1173 1{10517092}\or
1174 1{22140276}\or
1175 1{34985881}\or
1176 1{49182470}\or
1177 1{64872127}\or
1178 1{82211880}\or

```
```

            2{01375271}\or
            2{22554093}\or
            2{45960311}\else
            10\fi}%
            \edef\MFP@t@Frc{0\@xp\@gobble\MFP@x@Frc}%
            \MFP@Rcopy sx\@xp\MFP@Rload\MFP@powerof@e\MFP@Rmul
            \ifnum\MFP@t@Frc=0
            \else % handle the rest
                \MFP@Rcopyz s\MFP@Rload t10\MFP@t@Frc
            \MFP@Rexp@pos@prog
            \MFP@Rcopy sx\MFP@Rcopyzy\MFP@Rmul
            \fi
                \fi
    \fi}%

```

Since the \(x\) value is now less than 0.1 , we can get 8 places of accuracy with only 6 terms of the power series. We can also arrange to use the more efficient \(\backslash\) MFP@Rsmul for multiplication.

We organize the computation thusly
\[
1+(x+x / 2(x+x / 3(x+x / 4(x+x / 5(x+x / 6)))))
\]

We start by loading \(x\) (now in register \(t\)) into register \(z\), then repeatedly run \(\backslash\) MFP@Rexp@iter feeding it the successive values of \(1 / n\). This iterator first multiplies the most recent result (the \(\mathbf{z}\) register) by \(1 / n\), then that by \(x\) and then adds \(x\) to that. The final step is to add 1.
```

1193\def\MFP@Rexp@pos@prog{%
1194 \MFP@Rcopy tz\MFP@Rexp@iter{16666667}\MFP@Rexp@iter{20000000}%
1195 \MFP@Rexp@iter{25000000}\MFP@Rexp@iter{33333333}%
1196 \MFP@Rexp@iter{50000000}\MFP@Rcopyzx\MFP@Rincr}%
1197 \def\MFP@Rexp@iter\#1{%
1198\MFP@Rcopyzx\MFP@Rload y10{\#1}\MFP@Rsmul
1199\MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul
1200\MFP@Rcopyzx\MFP@Rcopy ty\MFP@Radd}%

```

It is impossible to get accuracy to the last digit when \(e^{x}\) is large. This is because an absolute error in \(x\) converts to a relative error in \(e^{x}\), That is, knowing \(x\) only to \(10^{-8}\) means \(e^{x}\) is off by (about) \(e^{x} \cdot 10^{-8}\). Roughly speaking, this means only about 8 places of \(e^{x}\) are accurate, so if the integer part of \(e^{x}\) has six places then only 2 places after the decimal are significant. Even if \(x\) is exact (say \(x=10\)), we can only represent \(e\) itself to 8 decimals and the repeated multiplications accumulate errors in such a way that one still cannot get more than 8 significant figures.

The first issue with negative exponents is that it doesn't take much to produce a value of \(e^{-x}\) that rounds to 0 . Any \(x>19.11382792\). So we start by comparing to that value and simply return 0 if \(x\) is larger.

We perform exactly the same reductions as for positive exponents, handling the integer part and the first decimal separately. Then we call the power series program (not the same).
```

01 \def\MFP@Rexp@neg{%
1202\MFP@Rload y1{19}{11382792}%
1203 \MFP@Rcmp
1204 \ifMFP@pos
\MFP@Rloadz 000%
\else % handle integer part
\MFP@tempa\MFP@x@Int
\edef\MFP@powerof@e{%
\ifcase\MFP@tempa
11{0}\or
10{36787944}\or
10{13533528}\or
10{04978707}\or
10{01831564}\or
10{00673795}\or
10{00247875}\or
10{00091188}\or
10{00033546}\or
10{00012341}\or
10{00004540}\or
10{00001670}\or
10{00000614}\or
10{00000226}\or
10{00000083}\or
10{00000031}\or
10{00000011}\or
10{00000004}\or
10{00000002}\or
10{00000001}\else
000\fi}%
\@xp\MFP@Rloadz\MFP@powerof@e
\ifnum\MFP@x@Frc=0
\else % handle first decimal digit
\MFP@Rcopyz s%
\MFP@tempa=\@xp\MFP@firstofmany\MFP@x@Frc\mfp@end
\edef\MFP@powerof@e{%
y1\ifcase\MFP@tempa
10\or
0{90483742}\or
0{81873075}\or
0{74081822}\or
0{67032005}\or
0{60653066}\or
0{54881164}\or
0{49658530}\or
0{44932896}\or
0{40656966}\else
10\fi}%
\edef\MFP@t@Frc{0\@xp\@gobble\MFP@x@Frc}%
\MFP@Rcopy sx\@xp\MFP@Rload\MFP@powerof@e\MFP@Rmul

```
```

    \ifnum\MFP@t@Frc=0
    \else % handle the rest
        \MFP@Rcopyz s\MFP@Rload t10\MFP@t@Frc
        \MFP@Rexp@neg@prog
        \MFP@Rcopy sx\MFP@Rcopyzy\MFP@Rmul
        \i
        \fi
    \fi}%

```

Since \(x\) is now positive we calculate \(e^{-x}\). Again we need only up to the 6 th power, organized as follows
\[
1-x(1-x / 2(1-x / 3(1-x / 4(1-x / 5(1-x / 6)))))
\]

Since this has exactly the same form as the the power series calculation for log and sin, we can reuse the code in \MFP@com@iter. We end with the final multiplication by \(x\) and the subtraction from 1 rather than call \MFP@com@iter with a useless multiplication by 1 .
```

1259 \def\MFP@Rexp@neg@prog{%
1260 \MFP@Rcopy tx\MFP@Rload y10{16666667}\MFP@Rsmul
1261 \MFP@com@iter{20000000}\MFP@com@iter{25000000}%
1262 \MFP@com@iter{33333333}\MFP@com@iter{50000000}%
1263\MFP@flipz\MFP@Rcopyzx\MFP@Rcopy ty\MFP@Rsmul\MFP@flipz}%

```

The most efficient way to take an integer power of a number \(x\) is to scan the binary code for the exponent. Each digit 1 in this code corresponds to a \(2^{k}\) power of \(x\), which can be computed by repeatedly squaring \(x\). These dyadic powers are mutiplied together. We can convert this idea to a simple loop illustrated by this example of finding \(x^{13}(13=1101\) in base 2\()\). Here \(p\) holds the current product and \(q\) holds the current dyadic power of \(x\), initialized with \(p=1\) and \(q=x\) :
1. Rightmost digit 1: update \(p \leftarrow p q=x\) and \(q \leftarrow q^{2}=x^{2}\).
2. Next digit 0: Just update \(q \leftarrow q^{2}=x^{4}\).
3. Next digit 1: update \(p \leftarrow p q=x^{5}\) and \(q \leftarrow q^{2}=x^{8}\).
4. Next digit 1: update \(p \leftarrow p q=x^{13}\), detect that we are at the end and skip the update of \(q\). Return \(p\).
Of course, this requires the binary digits of the exponent \(n\). But the rightmost digit of \(n\) is 1 if and only if \(n\) is odd, and we can examine each digit in turn if we divide \(n\) by 2 (discarding the remainder) at each stage. We detect the end when \(n\) is reduced to 1 .

Accuracy is partly a function of the number of multiplications. The above scheme requires at most \(\left\lfloor\log _{2} n\right\rfloor\) squarings and at most \(\left\lceil\log _{2} n\right\rceil\) multiplications for \(x^{n}\), while directly multiplying \(x \cdot x \cdots x\) would require \(n-1\) multiplications.

For negative powers we can either find the positive power and take its reciprocal or take the reciprocal of \(x\) and find its positive power. We do the first so that overflow can be detected in \MFP@@Rpow.
```

1264 \def\MFP@Rpow{%
1265 \ifnum\MFP@y@Frc>0
1266 \MFP@warn{The "pow" function requires an integer power.

```
```

        \MFP@msgbreak The fractional part will be ignored}%
    \fi
\MFP@loopctr=\MFP@y@Int\relax
\ifnum\MFP@loopctr=0 % zero power = 1
\MFP@Rloadz 110%
\else
\ifnum\MFP@x@Sgn=0
\ifnum\MFP@y@Sgn>0 % + powers of zero are 0
\MFP@Rloadz 000%
\else
% - powers are errors
\MFP@badpower@err
\MFP@Rloadz 1\xOverZeroInt\xOverZeroFrac
\fi
\else % integer power of nonzero number
% get the sign in case an overflow interrupts the calculations.
\ifnum\MFP@x@Sgn>0
\def\MFP@power@Sgn{1}%
\else
\edef\MFP@power@Sgn{\ifodd\MFP@loopctr -\fi 1}%
\ifMFPdebug
\show\MFP@power@Sgn
\i
\fi
\ifnum\MFP@y@Sgn<0 \MFP@Rinv \MFP@Rcopyzx\fi
\ifnum\MFP@loopctr=1
\MFP@Rloadz \MFP@power@Sgn\MFP@x@Int\MFP@x@Frc
\else
\MFP@@Rpow
\ifMFPdebug
\showreg z%
\fi
\fi
\fi
\fi}%
%

```

This implements the algorithm discussed above. We save \(x\) in register \(\mathbf{q}\), initialize the starting value of 1 in \(p\) and then run the loop. If the binary digit just read is a 1 (i.e., \ifodd is true), it multiplies \(p\) and \(q\). It also saves the last product (copies \(z\) to \(p\)). This need not be done on the last iteration, but must not be moved out of the \ifodd conditional because intervening computations modify \(z\). If there are more iterations to do (i.e., the \ifnum is true), this squares \(q\) and reduces the counter. Note that the exponents 0 and 1 do not occur since we have handled them separately.

In case of overflow (either the multiplication or the squaring) we break the loop and return \(\pm \infty\).
```

1301 \def\MFP@@Rpow{%
1302 \MFP@Rcopy xq% initialize register to be squared
1303 \MFP@Rload p110% initialize register to hold partial products
1304 \MFP@Rpow@loop}%

```
```

\def\MFP@Rpow@loop{%
\ifodd\MFP@loopctr
\MFP@Rcopy px\MFP@Rcopy qy\MFP@Rmul
\ifnum \MFP@z@Ovr>0 \MFP@handle@expoverflow
\else
\ifnum\MFP@loopctr>1 \MFP@Rcopyz p\fi
\fi
\fi
\ifnum\MFP@loopctr>1
\MFP@Rcopy qx\MFP@Rsq
\ifnum \MFP@z@Ovr>0 \MFP@handle@expoverflow
\else
\MFP@Rcopyz q%
\divide\MFP@loopctr 2
\@XP\MFP@Rpow@loop
\fi
\fi}%
def\MFP@handle@expoverflow{%
\MFP@expoverflow@err
\MFP@loopctr=0
\MFP@Rloadz\MFP@power@Sgn\MaxRealInt\MaxRealFrac
}%

```

\subsection*{4.8 The square root}

One can combine logarithms and exponentials to can get any power: to get \(x^{y}\), compute \(e^{y \ln x}\). This has the disadvantage that it doesn't work if \(x\) is negative. Most powers of negative numbers are not defined, but certainly integer powers are. Thus we have defined \MFPpow and \Rpow for that case.

If we enforce a positive \(x\), then \(y\) can have any value. However, the computation of \(e^{.5 \ln x}\) cannot give a result as good as one can get from a special purpose algorithm for the square root. For example, the inaccuracies in computing \(\ln x\) will make \(e^{.5 \ln 9}\) inexact, while the square root function we implement below will produce exactly \(\sqrt{9}=3\). In fact, if a square root can be expressed exactly within our 8 -digit precision, our code will find it.

For the square root we return 0 if \(x\) is not positive. If the integer part of \(x\) is 0 , we copy the fractional part to the integer part (that is, we multiply by \(10^{8}\), remembering to multiply by \(10^{-4}\) later). This makes the square root of such numbers slightly more accurate. We then compute the square root using an algorithm that will be exact whenever possible. We perform one additional processing step. To explain it, note that our algorithm actually produces the largest number \(s\) with 4 digits right of the decimal place that satisfies \(s^{2} \leq x\). That is
\[
s^{2} \leq x<\left(s+10^{-4}\right)^{2}
\]

From this it follows that \(x=(s+\epsilon)^{2}=s^{2}+2 s \epsilon+\epsilon^{2}\) with \(\epsilon<10^{-4}\) (and so \(\epsilon^{2}<10^{-8}\)). We estimate this \(\epsilon\) and add that estimate to \(s\). The estimate we use
is obtained by discarding the very small \(\epsilon^{2}\) and solving for the remaining \(\epsilon\) get
\[
\epsilon \approx \bar{\epsilon}=\frac{x-s^{2}}{2 s}
\]

With this value, \(s+\bar{\epsilon}\) misses the exact square root by at most \(\epsilon^{2} /(2 s)<.5 \cdot 10^{-8}\), because \(s \geq 1\). The final result \(s+\bar{\epsilon}\) is equivalent to computing the average \(s\) and \(x / s\). This, possibly divided by \(10^{4}\) is the returned value.

I originally tried power series methods, but they failed to produce exact answers when they existed (unless they were inconveniently carried to 9 decimals and then rounded to 8). Then I tried the "exact when possible" algorithm to get \(s\), but correcting it as follows: find \(\sqrt{x / s^{2}}\) by power series and multiply by \(s\). But this turned out to be remarkably inaccurate, being paradoxically worst when \(s\) is already close, but not equal, to \(\sqrt{x}\). Finally, I hit on the above simple and efficient correction, which turns out to be also the most accurate. By tests it produces a result correct in all but the last (eighth) decimal place, and within 1 of the correct value in that place. Of course, it still produces exact results when that is possible within our digit limits.
```

\def\MFP@Rsqrt{%
\ifcase\MFP@x@Sgn\relax
\MFP@Rzero
\or
\ifnum\MFP@x@Int=0
\let\MFP@sqrt@reduce=Y%
\edef\MFP@x@Int{\number\MFP@x@Frc}%
\edef\MFP@x@Frc{00000000}%
\else
\let\MFP@sqrt@reduce=N%
\fi
\MFP@Rcopy xt%
\MFP@Isqrt
\MFP@Rcopyz s\MFP@Rcopyzy
\MFP@Rcopy tx\MFP@Rdiv
\MFP@Rcopy sx\MFP@Rcopyzy\MFP@Radd
\MFP@Rcopyzx\MFP@Rhalve
\ifx Y\MFP@sqrt@reduce
\MFP@Rcopyzx\MFP@Rload y10{10000}\MFP@Rmul
\fi
\else
\MFP@sqrtofneg@err
\MFP@Rzero
\fi}%

```

There is a rather straightforward pencil and paper algorithm that provides the square root digit by digit, and it produces an exact answer when that is possible. Unfortunately, the decimal version is not easy to code. Fortunately the same algorithm works in any number base and it is rather simple to code the binary version (because we only need to decide at each stage whether the "next digit" is 0 or 1 . This produces a square root in binary digits, from which it is easy to
compute the number itself. The result is exact if the answer would be a finite number of binary digits. We apply it to the integer \(10^{8} x\). While this number is too large for \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) to handle as an integer, it is not that hard to convert it to a string of binary digits stored in a macro.

The process turns out to be simpler if we convert \(10^{8} x\) to base 4 rather than binary. Also, instead of producing the square root encoded in a string of binary digits, we simply build the numerical result as we discover the binary digits (multiply previous value by 2 and add the new digit.) Fortunately, the square root of \(10^{8} x\) (and the temporary scratch registers used in the code) will never exceed \(\mathrm{T}_{\mathrm{E}} \mathrm{X}\) 's limit for integers.
 arguments are the integer and fractional part of \(x\). The result is stored in \(\backslash M F P @ I t o Q @ T m p\), which is so far only used by the square root code.

The test \ifodd \(\backslash\) MFP@tempb is used to get the binary digits. Combining two of them yields the quadrenary digits. The \ifodd \(\backslash\) MFP@tempa tests are there to check whether there will be a remainder after division by 2 , which should then be inserted at the front of \MFP@tempb before division by 2 . Two divisions by 2 each iteration amounts to division by 4 . This is slightly more efficient than dividing by 4 and determining the remainder.
```

1351 \def\MFP@ItoQ\#1\#2{%
1352\MFP@tempa\#1\relax\MFP@tempb\#2\relax
1353 \def\MFP@ItoQ@Tmp{}\MFP@ItoQ@loop}%
1354 \def\MFP@ItoQ@loop{%
1355 \ifodd\MFP@tempb
1356 \ifodd\MFP@tempa \advance\MFP@tempb \MFP@ttteight\relax\fi
1357 \divide\MFP@tempa2 \divide\MFP@tempb2
1358 \edef\MFP@ItoQ@Tmp{\ifodd\MFP@tempb 3\else 1\fi\MFP@ItoQ@Tmp}%
1359 \else
1360 \ifodd\MFP@tempa \advance\MFP@tempb \MFP@ttteight\relax\fi
1361 \divide\MFP@tempa2 \divide\MFP@tempb2
1362 \edef\MFP@ItoQ@Tmp{\ifodd\MFP@tempb 2\else 0\fi\MFP@ItoQ@Tmp}%
1363 \fi
1364 \ifodd\MFP@tempa \advance\MFP@tempb \MFP@ttteight\relax\fi
1365 \divide\MFP@tempa 2 \divide\MFP@tempb 2
1366 \ifnum\MFP@tempa>0
1367 \@xp\MFP@ItoQ@loop
1368 \else\ifnum\MFP@tempb>0
1369 \@XP\MFP@ItoQ@loop
1370 \fi\fi}%

```

This integer square root \(n\) is \(10^{4}\) times the largest number \(y\) satisfying \(y^{2} \leq x\) and having at most 4 decimal places. The rest of the code after the \(\backslash\) MFP@Isqrt@loop is intended to divide \(n\) (returned in \MFP@tempc) by \(10^{4}\) in order to get the number \(y\) itself.
```

1371 \def\MFP@Isqrt{%
1372 \MFP@ItoQ\MFP@x@Int\MFP@x@Frc
1373 \MFP@tempa=0 \MFP@tempb=0 \MFP@tempc=0
1374 \expandafter\MFP@Isqrt@loop\MFP@ItoQ@Tmp\mfp@end

```
```

1375 \MFP@tempa=\MFP@tempc
1376 \divide\MFP@tempc\MFP@tttfour
1377 \edef\MFP@z@Int{\number\MFP@tempc}%
1378 \multiply\MFP@tempc \MFP@tttfour
1379 \advance\MFP@tempa -\MFP@tempc
1380\ \edef\MFP@z@Frc{\number\MFP@tempa}%
1381 \makeMFP@fourdigits\MFP@z@Frc
1382 \edef\MFP@z@Frc{\MFP@z@Frc0000}%
1383<br>def\MFP@z@Sgn{1}}%

```

The following is a loop that essentially performs a base- 2 version of the base-10 algorithm that I learned at age 12 from my father (apparently it was taught in 8 th or 9 th grade in his day: he never finished grade 9). Seeing it written out, I am surprise at how concise and elegant it is!
```

1384\def\MFP@Isqrt@loop\#1{%
1385 \ifx\mfp@end \#1%
1386 \else
1387 \multiply\MFP@tempa 2 \multiply\MFP@tempb 4 \multiply\MFP@tempc 2
1388 \advance \MFP@tempb\#1\relax
1389 \ifnum\MFP@tempa<\MFP@tempb
1390 \advance\MFP@tempc 1 \advance\MFP@tempa 1
1391 \advance\MFP@tempb -\MFP@tempa
1392 \advance\MFP@tempa 1
1393 \fi
\expandafter\MFP@Isqrt@loop
1395 \fi
1396 }%
1397 </extra>

```

For my own benefit: this finds the next binary digit and updates the square root (in \(\backslash\) MFP@tempc) by appending that digit. The new digit is also appended to the end of \MFP@tempa. This is subtracted from \MFP@tempb, but only if the last digit is a 1 . Then the next quadrenary digit is appended to \MFP@tempb. Finally, the last binary digit found is added (not appended) to \MFP@tempa. The "appending" of a digit means a multiplication by 2 (or 4) and the addition of the digit. We perform such additions only if the digit is a 1 , and we determine if the digit is 1 or 0 by the \ifnum test.

\section*{Index}

Numbers refer to the page(s) where the corresponding entry is described.
\begin{tabular}{|c|c|c|c|c|c|}
\hline E & & \GlobalStack & 11, 22 & \IFpos & 7, 19 \\
\hline \multicolumn{2}{|l|}{\EndofStack 11, 16} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{I}} & \multirow[t]{2}{*}{\IFzero} & 7, 19 \\
\hline \(\backslash\) Export & 11, 22 & & & & \\
\hline \multirow[t]{2}{*}{\(\backslash\) ExportStack} & 11, 22 & \IFeq & 7, 19 & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{L}} \\
\hline & & \IFgt & 7, 19 & & \\
\hline G & & \IFlt & 7, 19 & \LogOfZeroFrac & 40 \\
\hline \Global & 11, 22 & \IFneg & 7, 19 & \LogOfZeroInt & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline M & & \MFPpow & 39, 41 & \(\backslash\) Rincr & 10, 21 \\
\hline \(\backslash\) MaxRealFrac & 16, 40 & \(\backslash\) MFPrad & 39, 41 & \(\backslash\) Rint & 10, 21 \\
\hline \(\backslash\) MaxRealInt & 16, 40 & \MFPround & 8, 36 & \(\backslash\) Rinv & 10, 21 \\
\hline \(\backslash \mathrm{MFPabs}\) & 6, 22 & \(\backslash \mathrm{MFPsgn}\) & 6, 22 & \(\backslash \mathrm{Rln}\) & 40 \\
\hline \(\backslash \mathrm{MFPadd}\) & 5, 22 & \(\backslash \mathrm{MFPsin}\) & 39, 41 & \(\backslash\) Rlog & 40 \\
\hline \MFPangle & & \(\backslash \mathrm{MFPsq}\) & 6, 22 & \(\backslash\) Rmax & 9, 21 \\
\hline \(\backslash\) MFPceil & 6, 22 & \MFPsqrt & 39, 41 & \(\backslash\) Rmin & 9, 21 \\
\hline \MFPchk & 7, 19 & \MFPstore & 6, 22 & \(\backslash\) Rmpy & 9, 21 \\
\hline \(\backslash \mathrm{MFPchs}\) & 6, 22 & \MFPstrip & 8, 37 & \(\backslash\) Rmul & 9, 21 \\
\hline \(\backslash \mathrm{MFPcmp}\) & 7, 19 & \(\backslash \mathrm{MFPsub}\) & 5, 22 & \(\backslash\) Rnoop & 10, 21 \\
\hline \(\backslash \mathrm{MFPcos}\) & 39, 41 & \(\backslash\) MFPtruncate & 8, 35 & \(\backslash\) Rpop & 9, 21 \\
\hline \(\backslash \mathrm{MFPdbl}\) & 6, 22 & \(\backslash\) MFPzero & 6, 22 & \(\backslash\) Rpow & 40 \\
\hline \MFPdecr & 6, 22 & & & \(\backslash\) Rpush & 9, 21 \\
\hline \(\backslash\) MFPdeg & 39, 41 & R & & \(\backslash\) Rrad & \\
\hline \MFPdiv & . 5, 22 & \(\backslash\) Rabs & 10, 21 & \(\backslash\) Rsgn & 10, 21 \\
\hline \(\backslash \mathrm{MFPe}\) & 7, 39 & \(\backslash\) Radd & 9, 21 & \(\backslash\) Rsin & \\
\hline \(\backslash\) MFPexp & 39, 41 & \(\backslash\) Rangle & 40 & \(\backslash \mathrm{Rsq}\) & 10, 21 \\
\hline \MFPfloor & . 6, 22 & \(\backslash\) Rceil & 10, 21 & \(\backslash\) Rsqrt & \\
\hline \(\backslash\) MFPfrac & 6, 22 & \(\backslash\) Rchk & 10, 21 & \(\backslash\) Rsub & 9, 21 \\
\hline \MFPhalve & 6, 22 & \(\backslash\) Rchs & 10, 21 & \(\backslash\) Rzero & 10, 21 \\
\hline \(\backslash \mathrm{MFPincr}\) & 6, 22 & \(\backslash\) Rcmp & 10, 21 & & \\
\hline \(\backslash\) MFPint & 6, 22 & \(\backslash \mathrm{Rcos}\) & . 40 & S & \\
\hline \MFPinv & 6, 22 & \(\backslash\) Rdbl & 10, 21 & \startMFPprogram & 4, 20 \\
\hline \(\backslash\) MFPln & 39, 41 & \(\backslash\) Rdecr & 10, 21 & \stopMFPprogram & . 4,20 \\
\hline \(\backslash\) MFPlog & 39, 41 & \(\backslash\) Rdeg & . 40 & & \\
\hline \(\backslash\) MFPmax & 5, 22 & \(\backslash\) Rdiv & 9, 21 & X & \\
\hline \(\backslash\) MFPmin & . 5,22 & \(\backslash\) Rdup & 11, 21 & \xOverZeroFrac & 12, 16 \\
\hline \MFPmpy & 5, 22 & \(\backslash\) Rexch & 11, 21 & \xOverZeroInt . & 12, 16 \\
\hline \(\backslash\) MFPmul & 5, 22 & \(\backslash\) Rexp & 40 & & \\
\hline \MFPnoop & . 6,23 & \(\backslash \mathrm{Rfloor}\) & 10, 21 & Z & \\
\hline \(\backslash \mathrm{MFPphi}\) & . 7, 39 & \(\backslash\) Rfrac & 10, 21 & \ZeroDverZeroFrac & 12, 16 \\
\hline \(\backslash \mathrm{MFPpi}\) & . 7, 39 & \(\backslash\) Rhalve & 10, 21 & \ZeroOverZeroInt & 12, 16 \\
\hline
\end{tabular}```

[^0]: *This file has version number v0.9., last revised 2013/01/01. The code described here was developed by Dan Luecking.

[^1]: ${ }^{1}$ Unlike most other packages for floating point arithmetic, MINIFP puts the macro to hold the result last. This allows the calculation to be performed before the macro is even read, and makes it somewhat easier for the stack- and argument-based versions to share code.

