
Mfpic: A Short Introduction

Daniel H. Luecking∗

2010/06/10

Contents

1 Introduction 1

2 Positioning text 3

3 Drawing figures 7

4 Functions 9

5 Transforming figures 12

6 Rendering figures 14

7 More on text 17

8 Arrows 19

9 Color 20

10 Closing paths 22

11 Appendices 23
11.1 Mfpic in plain TEX . 23
11.2 Mfpic without PDF . 24
11.3 Mfpic without metapost . 24
11.4 metafont configuration problems . 26

Mfpic version: 1.06.
∗Copyright 2003–2011, Daniel H. Luecking (luecking at uark dot edu)

i

1 Introduction

As this document aims only to instruct the reader in the building of figures with mfpic,
we will not be too concerned with the intricacies of running programs in various operating
systems and TEX distributions. What will be described here is the simplest case: a command-
line system in which commands are typed at a keyboard. To simplify things further, we will
assume that mfpic is used with the metapost option, in a LATEX document, with pdfLATEX
as the compiler. An appendix will discuss some of the differences when these assumptions
are not satisfied.

We will start right out with the “Hello, world” of mfpic. Construct a LATEX document
by typing the following in a text editor and saving it as first.tex.

% first.tex

\documentclass{article}

\usepackage[metapost]{mfpic}

\opengraphsfile{myfigs}

\begin{document}

My first figure:

\begin{mfpic}[72]{-1}{1}{-1}{1}

\ellipse{(0,0),1,.5}

\end{mfpic}

\closegraphsfile

\end{document}

Run the command

pdflatex first

which should create several files, the two most important being first.pdf and myfigs.mp.
You can go ahead and open first.pdf. You should see a 2 inch by 2 inch square with
something similar to ‘#1’ in the lower left corner. This shows where the picture will be when
it has been created.

Now run the command

mpost myfigs

which should create the file myfigs.1. This is an EPS file (Encapsulated PostScript) and
can be opened in GhostScript or GSview or similar Postscript viewing program to see an
ellipse.

If you are viewing first.pdf in Acrobat Reader or Adobe Reader, you will need to close
it. Now repeat the pdfLATEX step:

pdflatex first

and then view the file first.pdf. You should see something very close to figure 1.1.
What can go wrong? According to Murphy’s Law: anything. If mfpic is not properly

installed, one could obtain messages of files not found. If that happens, determine (from
your TEX system’s documentation) where TEX input files should go and make sure that
mfpic.tex and mfpic.sty reside there. Similarly, find out where metapost inputs should
go and make sure that grafbase.mp and dvipsnam.mp reside there. Then run whatever
command your TEX system might require to “update the filename database”. You may
safely ignore the message from mfpic itself that myfigs.1 is not found (on the first run of
pdfLATEX). This file should be created only after running mpost.

1

My first figure:

Figure 1.1.

If you get an error message from LATEX, carefully check your typing. Also check whether
an older version of mfpic might have been used instead of the current version. If you get an
error message from metapost do the same, especially checking the typing within the mfpic

environment. If you get a message from metapost that “Grafbase” believes your mfpic
installation may be broken, check the log files (first.log and myfigs.log) to find out the
locations of these input files:

mfpic.tex and grafbase.mp

and make sure that both these files are from the most recently installed mfpic package. If
you are only evaluating mfpic without committing to installing it, just make sure all the
files mentioned in the previous paragraphs are in the current directory.

If pdfLATEX complains it can’t write on the file first.pdf, unload first.pdf from your
pdf viewer and try again.

If the figures look a little choppy in Acrobat Reader, turn on “smooth line art” in the
edit preferences dialogue.

I will assume that eventually all went well and you are now able to obtain the ellipse of
figure 1.1. Each time you change an mfpic environment or the options to the package, you
potentially change the file myfigs.mp produced and you should repeat the sequence:

pdflatex first

mpost myfigs

pdflatex first

to be sure of seeing the changes.
One thing you might notice about figure 1.1 is that the ellipse is positioned quite a bit

above the base line of the text. This is because mfpic reserves the amount of space specified
in the arguments of the mfpic environment. These arguments are [72]{-1}{1}{-1}{1},
which means that each unit in the picture is 72 times the value of \mfpicunit, that is,
about one inch. The first pair of mandatory arguments, {-1}{1}, indicate the x-coordinates
run from −1 to 1. Since these differ by 2, they indicate a width of two inches. The second
pair similarly represents a height of two inches. But the ellipse is centered at (0, 0), which is
one inch above the bottom (bottom is at y = −1), and its vertical radius is .5. So the lowest
point on the ellipse should be 0.5 inches above the bottom of the space reserved. Mfpic
provides a way to fit the space reserved to the actual extent of ‘ink’ in the picture. That is
by the option truebbox:

2

\usepackage[metapost,truebbox]{mfpic}

This would then produce something like figure 1.2. From now on, this option will be in effect
in our examples.

My first figure:

Figure 1.2.

Even though the arguments to the mfpic environment are ignored in determining the
size of the figure (under truebbox), they are still needed in order to establish the coordinate
system that the ordered pairs refer to (for example (0,0) in the \ellipse arguments).

2 Positioning text

By now you are probably thinking: “This so-called ‘Hello, world’ of mfpic doesn’t say ‘Hello,
world’ anywhere!” We correct that with the following example:

\begin{mfpic}[72]{-1}{1}{-1}{1}

\ellipse{(0,0),1,.5}

\tlabel[cc](0,0){Hello, world.}

\end{mfpic}

This should give you figure 2.1.

Hello, world.

Figure 2.1.

The \tlabel command places the given text at the given position ((0, 0)) adjusted
according to the optional argument [cc], which says to center the text (both vertically and
horizontally) at that location. The [cc] is optional. Without it, the text would have the
leftmost point of its baseline (the imaginary line that most letters sit on) placed at (0, 0).

You are no doubt thinking: “The ellipse doesn’t really match the text. What you need
is some macro that measures the text and produces an oval with similar dimensions.” For
that we have the \tlabeloval command. The \tlabeljustify command in the example
below is to communicate to both the text placement and the curve generation procedures
that they are to be centered at the point (0, 0). (We’ll see an easier way to do this later.)

\begin{mfpic}[72]{-1}{1}{-1}{1}

\tlabeljustify{cc}

\tlabeloval(0,0){Hello, world.}

\end{mfpic}

3

Hello, world.

Figure 2.2.

This produces figure 2.2.
This would be better still if a little space is left around the text so the ellipse doesn’t

touch it. The \tlpathsep command can do that:

\begin{mfpic}[72]{-1}{1}{-1}{1}

\tlabeljustify{cc}

\tlpathsep{3pt}

\tlabeloval(0,0){Hello, world.}

\end{mfpic}

producing figure 2.3.

Hello, world.

Figure 2.3.

It would be nice to make the text pop out a bit with some color1. You can do that by
adding \gfill[yellow] in front of either \ellipse or \tlabeloval:

\begin{mfpic}[72]{-1}{1}{-1}{1}

\tlpathsep{3pt}

\tlabeljustify{cc}

\gfill[yellow]\tlabeloval(0,0){Hello, world.}

\end{mfpic}

This will produce figure 2.4.

Hello, world.

Figure 2.4.

Notice that now the boundary of the oval has not been drawn. This is the standard
behavior of mfpic. A figure command alone will draw the figure. If you want some other
rendering than that, you must explicitly provide all of it. To get the boundary back, simply
add \draw before the \gfill. You can draw the curve in a color other than black with an
optional argument. We can also make the line thicker with the command \penwd:

\begin{mfpic}[72]{-1}{1}{-1}{1}

\penwd{1.5pt}

\tlpathsep{3pt}

\tlabeljustify{cc}

\draw[blue]\gfill[yellow]\tlabeloval(0,0){Hello, world.}

\end{mfpic}

This will produce figure 2.5.

1Colors are included in this document only to give examples of their use in mfpic. I do not necessarily
recommend any of them.

4

Hello, world.

Figure 2.5.

This last version doesn’t look too bad, but it seems that the oval ought to be a little
fatter (slightly higher than it is now). By default, \tlabeloval will make the ratio of width
to height the same as that of the text, or rather of the text plus the additional space
specified by \tlpathsep. This can be changed with an optional argument, a number that
multiplies the width-to-height ratio. Decreasing this ratio will decrease the width (slightly)
and increase the height. Here we have also omitted the \tlabeljustify command and
shown that \tlabeloval takes a second optional argument that can be used to ‘justify’
both the curve and the text. To use this, one must explicitly include the first optional
argument; if the default is intended, an empty pair of brackets may be used.

\begin{mfpic}[72]{-1}{1}{-1}{1}

\penwd{1.5pt}

\tlpathsep{3pt}

\draw[blue]\gfill[yellow]\tlabeloval[.8][cc](0,0){Hello, world.}

\end{mfpic}

This will produce figure 2.6.

Hello, world.

Figure 2.6.

The \tlabeloval command places the label last, after the action of all the preceding
macros; therefore the text ends up on top of everything else. The \tlabeloval command
also has a ‘*-form’ that does everything except place the text. Finally, ovals are not the only
thing that can be used to surround text. See the manual (mfpic-doc.pdf) and below for
others.

Here is a more common use of tlabel commands: labeling a graph and axes. In the
following example we have given \tlabel the option [bl] to place the bottom left corner
of the text at the given coordinates. However, we have used \tlpointsep{3pt}, which has
the effect of shifting text away from its nominal location, to prevent the text from colliding
with the curve.2 The value set by \tlpointsep has an effect only if the point is on the edge
of the text, so there would be no shifting with the [cc] placement used earlier.

\begin{mfpic}[72]{0}{2.5}{0}{1}

\tlpointsep{3pt}

\polyline{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\tlabel[bl](.5,1){Max output}

\dashed\polyline{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\tlabel[bl](1.5,.7){Max input}

\end{mfpic}

This will produce figure 2.7.

2One can also use \tlabelsep, which is equivalent to \tlpathsep plus \tlpointsep.

5

Max output

Max input

Figure 2.7.

Notice that \polyline alone produces a solid line while \dashed\polyline makes a
dashed line. Let us close this section by dressing up this figure with axes, some fat dots
marking the keypoints, and hash marks on the axes:

\begin{mfpic}[72]{0}{2.5}{0}{1}

\tlpointsep{3pt}

\polyline{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\point[3pt]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\tlabel[bl](.5,1){Max output}

\dashed\polyline{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\pointfillfalse

\point[3pt]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\tlabel[bl](1.5,.7){Max input}

\axes

\xmarks{0,0.5,1,1.5,2}

\axislabels x{{50} .5, {100} 1, {150} 1.5, {200} 2}

\end{mfpic}

This will produce figure 2.8.

Max output

Max input

50 100 150 200

Figure 2.8.

The optional argument of \point specifies the diameter of the points to draw. The
command \pointfillfalse forces the points to be drawn as open circles. The axes configure
themselves to the size specified in the argument of the mfpic environment. The axislabels

command takes as arguments a letter, to specify the axis, and a comma separated list of
labels, each of which is specified by some text to place (in braces) and the x-coordinate to
place it at.

6

3 Drawing figures

Mfpic has several predefined figures and commands to obtain essentially any curve (pro-
vided one can obtain enough points on it with sufficient precision). We’ve already seen
\polyline and \ellipse. The former needs a list of points to connect with line segments
and the latter needs the center and radii of the ellipse. The \ellipse also takes an optional
argument: the number of degrees to rotate the ellipse. Here we list some of the more com-
mon such figures. Remember that all of them will produce some sort of line drawing if used
alone. They can be preceded by \dashed to make the lines dashed or dotted to make them
dotted. If the figure is a closed curve, \gfill will fill them in.

\begin{mfpic}[72]{0}{4}{0}{1}

\rect{(0,0),(1,.75)}

\circle{(1.5,.5),.45}

\arc[s]{(3,0),(2,1),45}

\ellipse[20]{(3.5, 0.5), 0.6, 0.4}

\end{mfpic}

This produces figure 3.1. The \arc command has several forms. The optional argument
picks the form to use. This one specifies the endpoints of the circular arc and the angle
of the arc (the angle between the radii from the center of the circle to those two points).
Other possibilities are a three-point form (option [t]), a polar form (option [p]), and a
center-point-sweep form (option [c], specify a center, starting point, and angle). See the
manual for details. The default (what would be assumed if no optional argument is given)
is [s] and is called the point-sweep form.

Figure 3.1.

The \polyline command draws straight lines connecting points. We can also draw
smooth curves. Lets take the same points from our \polyline example (figure 2.7), but
change \polyline to \curve, omit the text, and add the points from figure 2.8:

\begin{mfpic}[72]{0}{2.5}{0}{1}

\curve{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\point[3pt]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\dashed\curve{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\pointfillfalse

\point[3pt]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\end{mfpic}

This should produce figure 3.2.
This is somewhat unsatisfying. One could improve the result by selecting more points,

or by increasing the ‘tension’ in the curve.
Roughly speaking, tension determines how straight the segments between the points

are, and how sharp the turns at each point. High tension makes the curve look a little

7

Figure 3.2.

more like a polyline. The default tension is 1, a tension of about 5 makes the result look
somewhat like a polyline with very slightly rounded corners, very high tensions make the
curve indistinguishable from a polyline. Tension must (almost) always be greater than 0.75.

Another effect of increased tension is to reduce the little wobbles we can see in the first
curve. Let’s try a tension of 1.5, which can be specified as an optional argument to \curve:

\begin{mfpic}[72]{0}{2.5}{0}{1}

\curve[1.5]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\point[3pt]{(0,.2),(.5,1),(1,.7),(1.5,0),(2,.3)}

\dashed\curve[1.5]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\pointfillfalse

\point[3pt]{(0,.2),(.5,.6),(1,.3),(1.5,.7),(2,.1)}

\end{mfpic}

This give figure 3.3.

Figure 3.3.

When we use \curve, there is no way metapost can tell if we are just connecting points
or if we are trying to graph a function. It cannot enforce the requirement, which every
function must satisfy, that the curve should travel left-to-right. The command \fcncurve

does enforce this (assuming the points to be connected are listed in left-to-right order).
This command also permits an optional tension argument. The dotted line in figure 3.4
is produced with \curve, the solid one with \fcncurve. One might conceivably want to
decrease the tension a bit here.

\begin{mfpic}[72]{0}{2.5}{0}{1}

\dotted\curve{(0,.2),(.5,0),(.85,.5),(1,1),(1.5,0),(2,.3)}

\fcncurve{(0,.2),(.5,0),(.85,.5),(1,1),(1.5,0),(2,.3)}

\pointfillfalse

\point[3pt]{(0,.2),(.5,0),(.85,.5),(1,1),(1.5,0),(2,.3)}

\end{mfpic}

Other figures available include

8

Figure 3.4.

\cyclic Used just like \curve but closes the path (connects the last point smoothly to the
starting point).

\polygon Used just like \polyline except it connects the last point to the first with a
straight line.

\sector Makes a wedge with two straight lines and an arc. The arguments are almost the
same as \arc[p], but the order is different: center, radius and two angles.

Here are some other curves that, like \tlabeloval, are proportioned to fit given text.
All have a *-form that draws the path without placing the text.

\tlabelrect This produces a rectangle. It has the same usage as \tlabeloval, except
the first optional argument specifies the radius of quarter-circles used to make
rounded corners.

\tlabelellipse This is similar to \tlabeloval except that instead of modifying the width-
to-height ratio, the first optional argument is the width-to-height ratio. If that
argument is 1 (the default) you get a circle.

\tlabelcircle This produces a circle, of course.

4 Functions

Metapost is able to calculate a number of functions natively, and still more have been
defined in mfpic. Also available are the usual arithmetic operations. Any valid metapost
expression, containing one unknown x and producing a numerical result can be graphed.

Here is an example of the graphs of y = x2 and y = ±
√
x. Note that exponentials are

denoted by ** and it is important to note that it has the same precedence as multiplication
(denoted by a single *). That is, in a formula like 3*3**2, the operations are performed in
order, left to right, producing (3 · 3)2 = 81 and not 3 · 32 = 27. Parentheses are needed if
the latter is intended: 3*(3**2).

\setlength{\mfpicunit}{1cm}

\begin{mfpic}{-2.5}{2.5}{-1.5}{4}

\function{-2,2,.1}{x**2}

\function{0,2,.1}{sqrt x}

\function{0,2,.1}{-sqrt x}

\axes

\xmarks{-2,-1,1,2}

\ymarks{-1,1,2,3}

\tlpointsep{3pt}

\axislabels x{{-2}-2,{-1}-1,{1}1,{2}2}

\axislabels y{{-1}-1,{1}1,{2}2,{3}3}

\end{mfpic}

9

This produces figure 4.1.

−2 −1 1 2

−1

1

2

3

Figure 4.1.

The command \function has two arguments. The first contains the starting and ending
x-values of the desired graph, followed by a step size. Generally the smaller the steps the
better the accuracy, but metapost has a limit on the number of steps (usually about 2000).
There is also an optional argument which can be [s], the default, which means the graph
is to be smooth, or [p], which means the graph is constructed by connecting the calculated
points with straight lines. Here is the same example with larger step size to emphasize the
difference (see figure 4.2)

\setlength{\mfpicunit}{1cm}

\begin{mfpic}{-2.5}{2.5}{-1.5}{4}

\function[p]{-2,2,.5}{x**2}

\function[p]{0,2,.5}{sqrt x}

\function[p]{0,2,.5}{-sqrt x}

\axes

\xmarks{-2,-1,1,2}

\ymarks{-1,1,2,3}

\tlpointsep{3pt}

\axislabels x{{-2}-2,{-1}-1,{1}1,{2}2}

\axislabels y{{-1}-1,{1}1,{2}2,{3}3}

\end{mfpic}

In addition, one can increase the tension in the curve drawn by putting a tension value
after the s in [s]. For a tension of 2.4: \function[s2.4]{...}.

The functions available include sqrt and all the trig functions: sin x assumes x is an
angle in radians, sind x assumes it is in degrees, with a similar naming convention for
the remaining trig functions. The inverses are asin x, acos x, and atan x, which produce
angles in degrees, and invsin x, etc., which produce angles in radians. There is also ln x

or log x for the natural logarithm, exp x for ex, logten x for the base 10 logarithm,
logtwo x for base 2, and logbase for other bases: logbase(16) x (for example) for base
16. The general syntax of these functions is the following: if the argument is x alone or a
pure number alone or the particular case of a number followed by x (no * in between!) then

10

−2 −1 1 2

−1

1

2

3

Figure 4.2.

parentheses are not needed. Example: sin 2x. For almost anything else, parentheses are
required: sin(3*x) or sin(x**2).

Some other functions available are the hyperbolic functions, sinh x, cosh x, etc. (all 6
of them), and the inverses of three of them: asinh x, acosh x, and atanh x.

These functions (or any metapost numeric expression) can also be used in any of
the coordinates of points in drawing commands like \polyline (but not usually in text
placement commands like \tlabeloval). For example (from now on the value of \mfpicunit
is set to 1cm):

\begin{mfpic}{-.5}{2.5}{-1.5}{1.5}

\polyline{(2,-sqrt 2),(1,-1),(.5,- sqrt .5),(0,0),

(.5,sqrt .5),(1,1),(2,sqrt 2)}

\axes

\xmarks{1,2}

\ymarks{-1,1}

\tlpointsep{3pt}

\axislabels x{{1}1,{2}2}

\axislabels y{{-1}-1,{1}1}

\end{mfpic}

1 2

−1

1

Figure 4.3.

There are other types of functions: parametric functions, and polar coordinate versions.
Mfpic provides \parafcn and \plrfcn to graph these. The \parafcn requires a starting

11

value, and ending value and a step size just as in \function, but in the second argument
there must be either a pair of expressions in the variable t, separated by a comma and
enclosed in parentheses, or a single pair-valued expression. Metapost and mfpic provide
only a few pair-valued functions; one is used below.

The second argument of \plrfcn must contain a single numeric expression in the variable
t, and indicates a function of θ to be graphed in polar coordinates: r = f(θ). In the following
example (figure 4.4), we draw a portion of the graph of x = y2 by representing it as the
graph of the parametric equations x = t2, y = t, and a portion of a circle of radius 1.5
by representing it as the graph of the pair-valued function dir(t). The expression dir(t)

gives the point whose distance from (0, 0) is 1 in the direction given by the angle t.

\begin{mfpic}{-2}{4}{-2}{2}

\parafcn{-2,2,.1}{(t**2,t)}

\dotted\parafcn{45,315,5}{1.5*dir(t)}

\end{mfpic}

Figure 4.4.

Here is an example of a graph of the polar coordinate function r = 2 sin 3θ (figure 4.5).
We use the degree version sind in order to work with integers.

\begin{mfpic}{-2}{2}{-2}{2}

\plrfcn{0,180,5}{2*sind 3t}

\end{mfpic}

Figure 4.5.

5 Transforming figures

Metapost is capable of any affine transformation (things like shifting, rotating, scaling,
reflecting and slanting) of any path. The figures we’ve been dealing with so far (\ellipse,

12

\curve, \function, etc.) all produce, in the metapost code, the definition of some path
(as well as a drawing of that path). Mfpic provides for different methods of ‘drawing’ the
path with prefix macros. We’ve seen \dashed, \dotted, \gfill so far, in addition to the
default \draw. Mfpic also provides for modifying the shape and position of the path with
other prefixes. Here’s a simple example.

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}

\rotatepath{(1,.5), 45}\rect{(0,0),(2,1)}

\point{(1,.5)}

\end{mfpic}

The command \rotatepath obviously rotates the path that follows, but it needs to know
what the center of rotation will be, and how much to rotate. These are given in its mandatory
argument, separated by a comma. The example above (pictured in figure 5.1) rotates 45
degrees around the center of the rectangle.

Figure 5.1.

Notice that we have no drawing prefix. A combination of transformation-plus-figure is
treated as a figure in its own right and behaves the same. If we want the figure dashed, we
could write

\dashed\rotatepath{(1,.5),45}\rect{(0,0),(2,1)}

It may not be obvious, but we can also write a drawing macro between the rotation and the
figure, producing figure 5.2

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}

\rotatepath{(1,.5), 45}\draw\rect{(0,0),(2,1)}

\point{(1,.5)}

\end{mfpic}

Figure 5.2.

This illustrates another property of mfpic macros: the combination of a rendering prefix
and a figure is also treated the same as a figure in its own right: the same figure as the one
that follows. In fact, the only difference between \rect and \draw\rect in this example is
that the second one has a minor (!) side effect: the rectangle is drawn.

Finally, try to guess what happens if we add another prefix at the front:

13

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}

\dotted\rotatepath{(1,.5), 45}

\draw\rect{(0,0),(2,1)}

\end{mfpic}

and if we add another rotation in front of that.

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}

\rotatepath{(0,0),45}

\dotted\rotatepath{(1,.5), 45}

\draw\rect{(0,0),(2,1)}

\end{mfpic}

Available transformations include

\scalepath, \shiftpath, \xscalepath, \yscalepath, \slantpath, and
\reflectpath.

See the manual for a description of what arguments are required for each. Here’s a final
example, producing figure 5.3

\begin{mfpic}{-.5}{2.5}{-.5}{2.5}

\shiftpath{(-1,1)}\draw[red]\slantpath{.5,1}\dotted

\rotatepath{(0,0), 90}\dashed\rect{(0,0),(2,1)}

\point{(0,0),(2,1)}

\tlpointsep{2pt}

\tlabel[tr](0,0){$(0,0)$}

\tlabel[bl](2,1){$(2,1)$}

\end{mfpic}

(0, 0)

(2, 1)

Figure 5.3.

6 Rendering figures

Rendering is the act of making a description of a figure visible. Examples are: drawing a solid
curve, drawing a dashed curve, or filling its interior, For mfpic figure macros the default,
in the absence of explicit commands, is to use \draw. That is,

\rect{(0,0),(1,2)}

has the same result as

\draw\rect{(0,0),(1,2)}

The default rendering can be changed. Just say \setrender{\dashed}, and all figures af-
terward will be dashed (see figure 6.1).

14

\begin{mfpic}{0}{2}{0}{1}

\setrender{\dashed}

\rect{(0,0),(1,1)}

\circle{(1.5,.5),.5}

\end{mfpic}

Figure 6.1.

The \setrender command can be inside an mfpic environment to affect only later com-
mands in that figure, or outside to affect all later mfpic figures.

We give a few examples now of the renderings possible. These divide more-or-less into
those that trace a path and those that fill in a path. In order to fill in a path, it must be
a closed path, of course, but metapost distinguishes between closed paths and those that
merely happen to end where they began. There is a good reason for this: metapost cannot,
without human aid, know if two points are the same, or merely accidentally so close that
the accuracy of the program sees them as the same. It requires human aid in the form of an
explicit request to create a closed path. Of the mfpic macros we’ve seen so far, \ellipse,
\circle, \rect, \polygon, and \cyclic produce closed paths, but \polyline, \curve,
\function, \parafcn, and \plrfcn do not. Also producing closed paths are \tlabeloval

and its relatives.
The following example illustrates filling with a hatching pattern (parallel lines) and an

unfilling. Clearing the interior of a path may not seem like rendering, but it is treated in
exactly the same way (think of it as a negative rendering). We first hatch a rectangle, then
clear out a smaller rectangle with rounded corners to place our text inside. The results are
in figure 6.2.

\begin{mfpic}{0}{2}{0}{2}

\draw[red]\lhatch[2pt][blue]\rect{(0,0),(2,2)}

\gclear\tlabelrect[6pt][cc](1,1){Hatching!}

\end{mfpic}

Hatching!

Figure 6.2.

This example illustrates that \lhatch fills with left slanting lines. And that it takes two
optional arguments. The first is the distance between lines, and the second is the color to
make the lines. There are also \rhatch which slants the lines the other way, \xhatch which
uses both slants, and \thatch which can draw the lines at any angle.

Here is another example of rendering (figure 6.3). The new macro is \polkadot. We’ve
repeated this example twice to show the effect of changing the order of the prefixes. Each
prefix applies its rendering to the result of everything to the right of it. In the second example

15

the hatching goes over the dots (and a bit of the dashes as well). If the \gfill were first,
it would cover almost everything else.

\begin{mfpic}{0}{6}{0}{2}

\penwd{2pt}

\hatchwd{2pt}

\drawcolor{blue}

\hatchcolor{red}

\fillcolor{green}

\dashed\polkadot\rhatch[5pt]\gfill[yellow]\rect{(0,0),(2.8,1.8)}

\rhatch[5pt]\dashed\polkadot\gfill[yellow]\rect{(3,0),(5.8,1.8)}

\end{mfpic}

We’ve added a couple of other new features to this example. To emphasize effects, we’ve
increased the thickness of the drawing pen (\penwd) and the hatch lines (\hatchwd). We’ve
also used the \drawcolor macro and its relatives to set the colors to be used. The \polkadot
macro uses the color set by \fillcolor; so does \gfill if no optional color is given.

Figure 6.3.

If one wants to plot several curves in a single graph, they often need to be rendered
differently. The three methods we’ve seen so far, \draw, \dashed, and \dotted, may not be
enough. The \dashed and \dotted commands permit an optional argument to adjust the
length of the dashes and spaces, and size of the dots. One can also change the curve thickness
with \penwd. But that may not be ‘different’ enough. Mfpic provides a few solutions. When
color is available, they may be drawn in different colors. When not, there are two possibilities:
\gendashed and \plot.

The first, \gendashed, is a generalized dashing macro. It takes one mandatory argu-
ment, the name of a dashing pattern. Named dashing patterns may be created with the
\dashpattern command, as shown by the following example (see figure 6.4):

\begin{mfpic}{-3.5}{3.5}{-1.2}{1.2}

\dashpattern{dotdash}{0pt,4pt,3pt,4pt}

\gendashed{dotdash}\function{-pi,pi,.2}{sin 2x}

\function{-pi,pi,.2}{cos 2x}

\axes

\end{mfpic}

The \dashpattern command takes a name and an even number of lengths. The first,
third, etc., lengths represent the lengths of dashes (0pt means a dot), and the second, fourth,
etc., represent spaces. The given pattern is dot-space-dash-space. This pattern, when used
in a \gendashed command, is repeated for the length of the curve.

This last example illustrates that the predefined metapost variable pi (equal to 3.14159)
can be used pretty much anywhere a number can be used (except, often, in text label
commands).

16

Figure 6.4.

Another way to get more distinctive curves is to ‘dot’ them with something other than
tiny dots. The \plot command does that. It takes one mandatory argument, the name of a
symbol to use instead of a dot. Here are the same two curves \plot-ed (figure 6.5):

\begin{mfpic}{-3.5}{3.5}{-1.2}{1.2}

\setlength{\pointsize}{2.5pt}

\plot{Triangle}\function{-pi,pi,.2}{sin 2x}

\plot[2pt,6pt]{SolidCircle}\function{-pi,pi,.2}{cos 2x}

\axes

\end{mfpic}

Figure 6.5.

The \plot command takes an optional argument to specify the size of the symbols and
the spacing between them. The size of the symbols can also be adjusted by changing the
length command \pointsize (that also adjusts the size of the dots placed with the \point

command).
In this last example, \plotnodes is similar to \plot, except it placed the symbols at

the ‘nodes’ defined by the path command. In the case of \function, these are the points
(xk, f(xk)) with xk stepping through all the x-values determined by the first argument of
\function (figure 6.6).

\begin{mfpic}{-3.5}{3.5}{-1.2}{1.2}

\plotnodes[2.5pt]{Square}\function{-pi,pi,pi/16}{sin 2x}

\axes

\end{mfpic}

See the manual for the list of predefined symbols available to the \plot and \plotnodes

command.

7 More on text

The text positioning commands used so far in this guide are entirely handled by TEX or
LATEX. This is why we have occasionally had to say that certain things could be done
“except in text placement commands”. It is possible for text positioning to be done within

17

Figure 6.6.

metapost, making many things possible that couldn’t be done otherwise. For example,
text can be rotated about the point of placement. You are probably thinking that LATEX
can rotate text, but it is not all that easy to arrange for the point on the graph where we
place the text to be the center of rotation. Below are two examples, in which we attempt
to place the text separated from (0, 0) by 5pt and rotated 45 degrees around (0, 0). In the
first we try to use LATEX’s \rotatebox command, and in the second we turn on metapost
handling of labels and use a rotation option to the \tlabel command.

\begin{mfpic}{0}{1}{0}{1}

\point{(0,0)}

\polyline{(0,0),(1,1)}

\tlabel[Bl](0,0){\rotatebox{45}{\hspace{5pt}Test text}}

\end{mfpic}

\usemplabels

\begin{mfpic}{0}{1}{0}{1}

\point{(0,0)}

\polyline{(0,0),(1,1)}

\tlpointsep{5pt}

\tlabel[Bl45](0,0){Test text}

\end{mfpic}

Tes
t
te

xt

(a)

Tes
t
te

xt

(b)

Figure 7.1.

The first produces figure 7.1a and the second produces figure 7.1b. Our goal was to get
the baseline of the text lined up with the reference line drawn.

In the first example, LATEX’s \rotatebox command produces the following result, where
we put a frame around both the unrotated text and the rotated result to emphasize what
LATEX sees as the boundaries:

Tes
t
te

xt

This is then placed by the \tlabel command with the lower left corner of the outer box
at (0, 0). But LATEX’s axis of rotation was at the lower left corner of the inner box. In

18

the second case, metapost placed the label. The command \tlpointsep{5pt} and the
parameter [Bl45] explicitly request that the label be placed with its left baseline 5 points
from (0, 0) and rotated 45 degrees about the point (0, 0).

The \usemplabels command used above asks metapost to arrange for the setting of
labels. Adding the option mplabels to the \usepackage command that loads mfpic has the
same effect for the whole document. There can be problems with using metapost to set
labels. One is that metapost has to call a tex program to do the actual typesetting, and
then one must either make arrangements that ensure metapost will call LATEX, or never
use any macros in the labels that are not defined in plainTEX. If one does arrange for LATEX
to be used, one needs to arrange that a LATEX preamble is prepended to the output .mp file.
The \mfpverbtex command can be used for this.

The command \nomplabels can be used to return to having labels set at the document
level. For the rest of this guide, we have mplabels in effect.

There are a few more commands that place text on the picture. All of them pass the
final responsability for text placement to metapost if mplabels is in effect. See the manual
for more details.

8 Arrows

The command \arrow adds an arrowhead onto the end of any path that follows. For this
to have predictable effects, you need to know which part of a curve is the end, and which
the start. Not surprisingly, for the commands that connect a list of points in order the first
point in the list is the start point and the last point is the end. Except the closed paths
(\cyclic, \polygon, etc.); for them, the start and the end points are the same, but the order
of the points gives a direction to the arrowhead. The default \circle has an anticlockwise
direction, but if the circle is defined by three points (for example) the direction of the circle
is determined by the order in which the points are written.

Anyway, here are a few examples, illustrating the use of \arrow, and some of its optional
arguments.

\begin{mfpic}{0}{4}{0}{4}

\arrow[r5]\circle{(1,1),.5}

\arrow[b4pt]\arrow\polyline{(3,2),(3,0)}

\arrow[cred]\reverse\arrow\polyline{(0,3),(2,3)}

\arrow[l 5pt]\rect{(4,2),(2,4)}

\end{mfpic}

See figure 8.1 for the results of this example. There are four possible optional arguments,
the first character inside the brackets tells what option the rest of the argument applies to.
The first example above starts with ‘r’, which stands for ‘rotate’ and asks for the arrowhead
to be rotated 5 degrees (positive rotation means anticlockwise, negative means clockwise).
This is frequently useful for arrows on curved paths, as the default direction (tangent to the
path) often just looks wrong). The second example starts with ‘b’, which stands for ‘backset’
and it moves the head back 4pt from where it would otherwise be placed. In the example,
this is used to put a double arrowhead on the line. In the third example we put an arrow at
both ends by reversing the sense of the curve in between the two \arrow prefixes. We also
used the letter ‘c’ in the optional argument of one arrowhead. This stands for ‘color’ and
the requested color is ‘red’. Finally, the l option (that’s a lowercase ‘ell’, not the number
‘one’) changes the length of the arrowhead to 5 points (from the 3pt default).3

3I have put a space between the l and the 5pt so it won’t be mistaken for ‘15pt. Normally one should

19

Figure 8.1.

The options can be combined in one command: \arrow[cblue][b4pt][r25][l6pt]

would produce a 6pt long blue arrowhead rotated 25 degrees anticlockwise, set back 4pt.
The setting back is done in the direction determined after rotation. The order of the options
is not significant.

The shape of the arrowhead can be changed with the \headshape command. The follow-
ing example draws the arrowhead first normally, and then after an instance of this command.
We draw it a third time, exactly like the second time, except we use the *-form. We have
increased the length of head and the thickness of the pen to emphasize the effects.

\begin{mfpic}{0}{4}{0}{4}

\setlength{\headlen}{20pt}

\penwd{3pt}

\arrow\polyline{(0,3),(4,3)}

\headshape{.5}{2}{true}

\arrow\polyline{(0,2),(4,2)}

\arrow*\polyline{(0,1),(4,1)}

\end{mfpic}

The results are pictured in figure 8.2. The first argument to \headshape sets the ratio of
width to height for the head. We have cut it in half here. The second argument sets the
tension in the curves that form the sides of the head. This reduces the curvature in the sides.
The third argument can be only true or false and determines whether the head is a solid
shape, or only the two ‘barbs’. The defaults correspond to \headshape{1}{1}{false}. The
filled form does not draw the outline so what we see is the pointy arrowhead on top of a
thick line. The *-form tries to erase part of the line so that one sees an actual pointy arrow.

9 Color

We saw the use of color in earlier sections, and now it’s time to be systematic about it. The
several rendering commands have a color option; examples are \draw, \gfill, \arrow, and
the hatching commands. However, even those commands that don’t provide such an option
can have the color of their rendering changed. Mfpic provides the following commands to
change certain colors. Those commands with a color option can be used without that option
and then they will the use the appropriate color described here. Each of these color-changing

avoid spaces in mfpic optional arguments, but this is one case where it will cause no harm.

20

Figure 8.2.

commands takes a mandatory argument containing the color to change to, and an optional
argument to be described later.

\backgroundcolor This sets the color to be used by \gclear. It is the same color used
by \point for the inside of the points when \pointfillfalse has been used. In
metapost, the only way to clear the inside of a region is to cover it up. The
default color for this purpose is white. Use this command to change that default.

\drawcolor This sets the default color used by those rendering commands that draw a path.
This includes \draw, but also includes \dashed, \dotted, \plot and \plotnodes.
It is also used by other commands that produce lines or curves: figure macros used
without any rendering prefix, as well as \axes and related commands.

\fillcolor This sets the default color used by \gfill. It is also used by \polkadot (which
has no color option).

\hatchcolor This sets the default color used by any hatching command.
\headcolor This sets the default color for arrowheads added by the \arrow command. It

is also the color of arrowheads on any coordinate axis.
\pointcolor This sets the color used by \point, \grid, and \plotsymbol (the last one

will be described later).
\tlabelcolor This sets the color used for all text labels if the mplabels option is turned

on.

The color can be a common name for a color, provided that name is one of the following:
white, black, red, green, blue, cyan, magenta, or yellow. We have already seen this usage.
It can also be a color name defined in the file dvipsnam.mp that accompanies mfpic. It can
also be an explicit color formula, where color formulas are described in the mfpic manual.

The optional argument is one of the color models. See the manual for details, but the
syntax is just like that of the color package’s \color command. For example,

\pointcolor[rgb]{0,1,0}

would use the color model rgb with parameters 0, 1, and 0 (this is green). After each
of these commands a certain color name is assigned a value. For example, a use of the
\pointcolor command assigns a value to the color named pointcolor. Also \drawcolor

sets drawcolor and this pattern is followed for all the color setting commands above except
\backgroundcolor, which assigns its value to the color named background.

Color names for mfpic use can be defined using the \mfpdefinecolor command. Here’s
an example (figure 9.1). Note the use of the color name pointcolor to make arrowheads
and points have the same color.

\begin{mfpic}{0}{3.5}{0}{3.5}

\tlabelcolor{red}

21

\pointcolor{rgb(0,1,0)}% green

\drawcolor[rgb]{0,0,1} % blue

\fillcolor{Goldenrod} % from dvipsnam.mp

\headcolor{pointcolor} % will be green after above

\mfpdefinecolor{DarkerRed}{rgb}{.67,0,0}

\hatchcolor{DarkerRed}

\penwd{1pt}

\gfill\circle{(1,1),.5}

\point[3pt]{(1,.5),(1,1.5),(.5,1),(1.5,1)}

\hatch\rect{(2.5,2.5),(3.5,3.5)}

\arrow[l 5pt]\polyline{(1,1),(3,3)}

\tlabel[cc](1,3){Examples\\of\\colors}

\end{mfpic}

Examples
of
colors

Figure 9.1.

10 Closing paths

There are many different ways to modify a figure. We have already seen \arrow, which
appends an arrowhead, \reverse which reverses the sense, and several that apply an affine
transformation (\rotatepath, \shiftpath, etc.). Now we will see the simple operation of
closing a path.

All methods of closing a path have to connect the end to the start, but simply drawing
a connection is not enough. metapost has to be told to close the path, and what kind
of connection is desired. We have several macros that can do the job, the simplest being
\lclosed, which closes with a straight line. Putting \lclosed in front of \polyline, for
example, produces the same result as \polygon. Another macro is \sclosed which produces
a smooth closure. Putting it in front of \curve gives (almost) the same result as \cyclic.
There is one other useful macro, \bclosed, which also informs metapost to make a smooth
closure. The difference between \sclosed and \bclosed is that the first modifies slightly
the original path (in order to achieve the effect that \sclosed + \curve ≈ \cyclic), the
second just asks metapost to do its best to connect the ends smoothly. Here’s an example
comparing the two smooth methods (figure 10.1).

\begin{mfpic}{0}{4}{0}{4}

% an open curve:

\curve{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}

% \sclosed a shifted copy:

\draw\gfill[green]\sclosed\shiftpath{(2,0)}

\curve{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}

22

% \bclosed another copy:

\draw\gfill[yellow]\bclosed\shiftpath{(2,-2)}

\curve{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}

% \cyclic with same points, shifted:

\draw\gfill[red]\shiftpath{(0,-2)}

\cyclic{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}

\tlabeljustify{bc}

\nomplabels

\tlabels{

(1,2.4){\cs{curve}}

(3,2.4){\cs{sclosed}}

(1,0.4){\cs{cyclic}}

(3,0.4){\cs{bclosed}}

}

% Some points to help illustrate

\point{(0.49,3),(.5,3.7),(1,4),(1.5,3.7),(1.51,3)}

\point{(2.49,3),(2.5,3.7),(3,4),(3.5,3.7),(3.51,3)}

\point{(0.49,1),(.5,1.7),(1,2),(1.5,1.7),(1.51,1)}

\point{(2.49,1),(2.5,1.7),(3,2),(3.5,1.7),(3.51,1)}

\end{mfpic}

\curve \sclosed

\cyclic \bclosed

Figure 10.1.

A word about the labels: we turned off mplabels with the command \nomplabels, because
we used a command (\cs) defined for this document and not known to basic TEX or LATEX.
The labels therefore are position by LATEX while it assembles this document, instead of by
metapost which would call a separate instance of TEX or LATEX where \cs was unknown.
We could have kept mplabels, provided we had used \mfpverbtex to write the appropriate
LATEX preamble to the .mp output. It would need to be some subset of the preamble of this
document.

11 Appendices

In addition to pdfLATEX, Mfpic works with plain pdfTEX, LATEX, and plain TEX. Instead
of metapost as the figure processor, metafont can also be used. Let’s start with the
difference between using mfpic in a plain TEX document and using it in a LATEX document.

11.1 Mfpic in plain TEX

Here is a sample plain pdfTEX document with results the same as our first “Hello, world”
example. Let’s call this file plfirst

23

\input mfpic

\usemetapost

\opengraphsfile{myfigs}

My first figure:

\mfpic[72]{-1}{1}{-1}{1}

\ellipse{(0,0),1,.5}

\endmfpic

\closegraphsfile

\end

The main difference is the lack of LATEX commands. The crucial difference is in the first
two lines. There we simply \input mfpic and we turn on metapost support with the
\usemetapost command instead of an option to \usepackage.

Since \usepackage and its options don’t exist in plain TEX, all those features that we
select with options in LATEX must be selected by some command in plain. For example, the
mplabels option is replaced with the command \usemplabels (which can also be used in
LATEX).

Also, plain TEX doesn’t have environments, so instead of \begin{mfpic} we just use
\mfpic and instead of \end{mfpic} we use \endmfpic.

The external processing is essentially the same:

pdftex plfirst

mpost myfigs

pdftex plfirst

should produce plfirst.pdf with the same picture of an ellipse.

11.2 Mfpic without PDF

If we wish to use nonPDF versions of LATEX or plain TEX, the only difference is in the
processing steps. To process first.tex with LATEX, run the command

latex first

followed by

mpost myfigs

followed by latex again.

latex first

Then run the dvi processor of your choice. It should be one that can successfully handle eps
figures (or at least the simple eps produced by metapost). Certainly dvips can do it:

dvips first

will produce first.ps. The file.ps file can be viewed with gsview or printed, or converted
to PDF with some distillation program like ps2pdf. Also dvipdfm (if properly configured)
can be used convert the .dvi file to PDF.

11.3 Mfpic without metapost

Mfpic can produce figures using metafont instead of metapost. What it does is work
with metafont to produce a made-to-order font, where each picture is a large character in
that font.

Since pdfTEX and pdfLATEX do not work well with the fonts produced by metafont,
and many PDF viewers don’t display them well anyway, I do not recommend using mfpic

24

to produce PDF without turning on metapost support. However, all dvi viewers and dvips
do work well with such fonts, so it can make sense to use mfpic with metafont if you
don’t need the features that metapost enables: color and rotation of labels. One advantage
of doing this is the smaller number of files produced. If there are 100 mfpic figures in a
document, metapost produces 100 files (apart from a couple of temporary files and the
.log file), but the metafont procedure produces only four files no matter how many figures
are present.

To use mfpic without metapost, omit the metapost option or the \usemetapost com-
mand. If you want a visible reminder of the fact that metafont is being used, you can use
the metafont option or the \usemetafont command. Of course, you may not use mplabels
without metapost. You may use the color commands and options, but the only colors ac-
tually produced will be black and white (and occasionally a pattern of pixels that simulate
gray). The processing steps are different. After

latex first (or tex plfirst)

run metafont:

mf myfigs

This should produce three files: myfigs.log, myfigs.tfm, and myfigs.600gf. The last one
(which might have a different number on your system) is called a generic font (GF) file and
contains the bitmap descriptions. If the file produced is myfigs.2602gf, and the .tfm is not
produced, that indicates a configuration problem with your system that we’ll get to later.
If this did work, one needs to convert the GF file to a PK font file, the standard format for
bitmap fonts in the TEX world. This may be done with

gftopk myfigs.600gf

Some systems may require you to name the output file on the command line:

gftopk myfigs.600gf myfigs.600pk

And some systems may require the extension to be simply .pk:

gftopk myfigs.600gf myfigs.pk

Finally, some systems may have a makepk or mktexpk command that can be used in place
of the combination of metafont and gftopk. You’ll have to check what your system has
and what its usage might be, and what it might do with the PK file produced.

After the above, one again runs ‘latex first’ (or ‘tex plfirst’), and then the .dvi

can be viewed or processed with dvips. The two files myfigs.log and myfigs.600gf can
be deleted; only myfigs.tfm and myfigs.600pk are needed. If the viewed image shows
the pictures at a far different size than you expect, this can also indicate a configuration
problem.

Some systems permit on-the-fly creation of PK files by various .dvi processing programs.
It is not wise to allow this to happen when working with mfpic. The problem is that this
automatic creation process is not repeated when a figure is edited unless the old PK files
are deleted, and it may take some hunting to even locate them. One should always follow
the metafont step with the gftopk step. You might even want to write a batch script or
makefile to ensure that this happens.

Another problem (more an annoyance) that can occur comes from the behavior of most
dvi viewers: most will reload a .dvi file if they detect that it has changed (or if asked to), but
none that I know of will reload any fonts even if they have changed. So if one is going through

25

a edit-compile-view cycle involving mfpic figures, one usually has to close the viewer and
open it again before one can see changes that were made in the figures after starting the
viewer. It is also possible that PK fonts are cached and shared by other programs, so you
may need to close other programs to ensure the cache is cleared and the new figures loaded.

11.4 metafont configuration problems

To diagnose these problems it important to know something about printer modes. Meta-
font produces bitmap images of characters. This means a description of a block of pixels,
telling which ones are black and which are white. If the description says that 60 pixels in a
row are black, that produces a thin black line. How long that line is depends on the size of
a printer’s pixels. For the LaserJet IV, there are 600 pixels to the inch, so 60 pixels makes
1/10 of an inch. The LaserJet II, however, has 300 pixels to the inch, so 60 pixels is 1/5 of
an inch long. What metafont needs in order to produce an image that is the correct size
is (at a minimum) the resolution of the intended printer. This is typically reported in DPI
(dots per inch) and metafont keeps the value in the variable pixels_per_inch.

As part of the configuration of your DVI viewer or of dvips you may have needed
to select a printer from a list, or edit a line in some configuration file (e.g., config.ps).
What was going on then was the assigning of a default metafont printer mode. There
is a file on most TEX systems named modes.mf which assigns symbolic names to a set of
parameters that enable metafont to tune its output to a particular printer. For example,
the LaserJet IV is given the name ‘ljfour’ and that name is associated with the value 600
for pixels_per_inch. In order to tell metafont to make output for the LaserJet IV, one
can put that information on the command line:

mf \mode:=ljfour; input myfigs

Your operating system or TEX distribution may require you to quote the backslash in the
above command.

There is a system for making the selection of the correct mode semi-automatic, not
requiring a command line specification. Near the end of modes.mf is a line similar to

localfont:=ljfour;

This is intended to equate the symbolic name localfont with the user’s default printer. If
the LaserJet IV is your default printer, the line above would be the correct one. If it is not,
then that line should be changed. This can be done with an ordinary text editor, or your
TEX system may have a configuration utility to take care of it.

If you say “mf myfigs” on an mfpic file myfigs.mf, mfpic’s internal code will detect
that no mode was defined on the command line. It will then check if localfont is defined
and if so, use that for the printer mode. If that fails, it will try to select ljfour. If even
that is unknown, mfpic will define its own generic 600 DPI mode.

Mfpic doesn’t need to know all the parameters associated to a printer mode, only the
value of pixels_per_inch. If you get a GF file that indicates an incorrect DPI value for your
printer, you should arrange for the line in modes.mf that sets localfont to be corrected. At
the very least it should equate localfont to a name defined in modes.mf and associated to
a printer with the same DPI as yours. After changing modes.mf, you need to run whatever
programs your TEX system requires to remake the metafont format.

26

	Introduction
	Positioning text
	Drawing figures
	Functions
	Transforming figures
	Rendering figures
	More on text
	Arrows
	Color
	Closing paths
	Appendices
	Mfpic in plain TeX
	Mfpic without PDF
	Mfpic without Metapost
	Metafont configuration problems

