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1 Preface
This package loads no external packages, must be used with the ε-TEX engine, and must be called in
(pdf)(Xe)(lua)LATEX with the invocation

\usepackage{listofitems}

and under (pdf)(Xe)(Lua)TEX by way of

\input listofitems.tex

2 Read a Simple List
Set the parsing character The default parsing character is the comma and if we want change it, we must do
so before reading a list of items, with the de�nition \setsepchar{〈parse-character〉}. A 〈parse-character〉 is
a set of tokens which possess catcodes di�erent from 1 and 2 (the opening and closing braces), 14 (usually %) and
15. The token of catcode 6 (usually #) is accepted only if it is followed by an integer, denoting the argument of
a macro; In no case should this token be provided alone as the 〈parse-character〉. Commands can be included
in this set of tokens, including the TEX primitive \par.
The parsing-character 〈delimiter〉 “/” is reserved by default for nested lists (see page 3). It is therefore not proper
to write "\setsepchar{/}" because the listofitems package would misunderstand that you want to read a nested
list. To set “/” as the 〈parse-character〉 for a simple list, it is necessary, using the optional argument, to choose
a di�erent parsing-character 〈delimiter〉 for nested lists, for example “.”, and write “\setsepchar[.]{/}”.

It is not possible to select | as the 〈delimiter〉 because it would con�ict with the logical OR, denoted “||” (see
below). However, one can work around this limitation, at one’s own peril, writing “\setsepchar{{|}}”.

Read a list To read the list of items, the \readlist〈macro-list〉{〈list〉} should be called. In so doing, the
〈list〉 is read and the items are stored in a macro, denoted 〈macro-list〉 which therefore acts as a table with
the items of the 〈list〉. If braces appear as part of a list item, they must be balanced. Tokens possessing the
catcodes 6, 14 and 15 are not allowed in the lists.
For example, to set the 〈macro-list〉 named \foo, we can write

\setsepchar{,}

\readlist\foo{12,abc,x y ,{\bfseries z},,\TeX,,!}

If the 〈list〉 is contained in a macro, then this macro is expanded. Therefore, we can simply employ the syntax
\readlist〈macro-list〉〈macro〉 as in

\setsepchar{,}

\def\List{12,abc,x y ,{\bfseries z},,\TeX,,!}

\readlist\foo\List

Access an item The macro \foo requires a numeric argument in square brackets, which we symbolically
denote as i , indicating the rank of the item you wish to access. So \foo[1] is3 “12”. Similarly, \foo[4] is
“{\bfseries z}”.
The number i can also be negative in which case the counting is done from the end of the list: −1 represents the
last item, −2 the penultimate, etc. If the number of items is n, then the argument −n is the �rst item.

In general, if a 〈list〉 has a length n, then the index i can be in the interval [1 ;n] or [−n ;−1]. Otherwise, a
compilation error occurs.
If the index is empty, \foo[] produces the complete 〈list〉.

3\foo[i] requires 2 expansions to give the item.
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Select several possible parsing characters To specify several possible separators, use the OR operator,
denoted “||”. One can use this feature, for example, to isolate the terms in an algebraic sum:

\setsepchar{+||-}

\readlist\term{17-8+4-11}

1) \term[1]\par

2) \term[2]\par

3) \term[3]\par

4) \term[4]

1) 17
2) 8
3) 4
4) 11

Number of items If we write \readlist〈macro-list〉{〈list〉}, then the macro 〈macro-list〉len contains4

the number of the items in 〈list〉. In the example with \foo, the macro \foolen expands to 8.

View all items For purposes of debugging, the macro \showitems〈macro-list〉 includes all items from a list,
while the star version displays these items “detokenized.” 5

\showitems\foo\par

\showitems*\foo

12 abc x y z TEX !
12 abc x y {\bfseries z} \TeX !

The presentation of each list item is assigned to the macro \showitemsmacro whose code is

\newcommand\showitemsmacro[1]{%

\begingroup\fboxsep=0.25pt \fboxrule=0.5pt \fbox{\strut#1}\endgroup

\hskip0.25em\relax}

It is therefore possible — and desirable — to rede�ne it if we desire a di�erent presentation e�ect.

The macro \fbox and associated dimensions \fboxsep and \fboxrule, are de�ned by listofitems, when not
compiled under LATEX, to achieve the same result as if performed under LATEX.

Suppression of extreme (leading/trailing) spaces By default, listofitems reads and retains the spaces lo-
cated at the beginning and end of an item. For these spaces to be ignored when reading the 〈list〉, execute the
starred version \readlist*〈macro〉{〈list〉}:

\setsepchar{,}

\readlist*\foo{12,abc, x y ,{\bfseries z}, ,\TeX,,!}

\showitems\foo

12 abc x y z TEX !

Managing empty items By default, the listofitems package retains and accounts for empty items. Thus, in the
previous example, the 2nd expansion of \foo[7] is empty. For empty items of the list (i.e., those list items de�ned
by two consecutive parsing delimiters) to be ignored, we must, before invoking \readlist, execute the macro
\ignoreemptyitems . To return to the default package behavior, simply execute the macro \reademptyitems.
This option can be used alone or in combination with \readlist*, in which case the suppression of extreme
(leading/trailing) spaces occurs before listofitems ignores the empty list items:

\setsepchar{,}

\ignoreemptyitems

\readlist\foo{12,abc, x y ,{\bfseries z}, ,\TeX,,!}

a) number of items = \foolen\par

\showitems\foo

\readlist*\foo{12,abc, x y ,{\bfseries z}, ,\TeX,,!}

b) number of items = \foolen\par

\showitems\foo

a) number of items = 7
12 abc x y z TEX !
b) number of items = 6
12 abc x y z TEX !

4That is to say, it is purely expandable and grows into a number.
5The primitive \detokenize, conducting this decomposition, inserts a space after each control sequence.
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Iterate over a list Once a list read by \readlist and stored in a 〈macro-list〉, one may iterate over the list
with the syntax \foreachitem 〈variable〉 \in 〈macro-list〉{〈code〉}: The 〈variable〉 is a macro chosen by
the user that will loop over the value of each item in the list.
The macro 〈variable〉cnt represents the sequence number of the item in 〈variable〉.

\setsepchar{ }% parse-character = space

\readlist\phrase{One phrase to test.}

\foreachitem\word\in\phrase{List item number \wordcnt{}: \word\par}

List item number 1: One
List item number 2: phrase
List item number 3: to
List item number 4: test.

Assign an item to a macro The \itemtomacro〈macro-list〉[index]〈macro〉 assigns to the 〈macro〉 the item
designated by 〈macro-list〉[index]. The 〈macro〉 thus de�ned is purely expandable provided that the tokens in
the items are expandable.

\setsepchar{ }% parse-character = space

\readlist\phrase{One phrase to test.}

\itemtomacro\phrase[2]\aword

\meaning\aword\par

\itemtomacro\phrase[-1]\wordattheend

\meaning\wordattheend

macro:->phrase
macro:->test.

3 Nested Lists
We speak of a list being “nested” when asking listofitems to read a list where the items are, in turn, understood
as being a list (implying a parsing character di�erent from the top-tier list). The nesting depth is not limited, but
in practice, a depth of 2 or 3 will usually su�ce.

De�ning the parsing characters To indicate that a list will be nested, so that the list parsing will be per-
formed recursively, one must specify multiple parsing characters, each corresponding to the particular tier of
nesting. This list of parsing characters is itself given as a delimited list to the macro \setsepchar, with the
syntax \setsepchar[〈delimiter〉]{〈delimited-list-of-parse-characters〉}.
By default, the 〈delimiter〉 is “/”. Thus, writing

\setsepchar{\\/,/ }

indicates a recursive depth of 3, with the parsing-character list delimiter defaulting to “/”:
— Tier 1 items are parsed between “\\” delimiters;
— Tier 2 items are found within Tier 1 items, parsed between “,” delimiters;
— �nally, the Tier 3 items are found within Tier 2 items, parsed between the “ ” delimiters.

The 〈depth〉 of nesting is contained in the purely expandable macro \nestdepth.

Read and access list items For nested lists, the use of indices obey the following rules:
— [] is the main list, i.e., the argument of \readlist;
— [〈i〉] means the item number 〈i〉 of the main list;
— [〈i〉,〈j〉] means the item number 〈j〉 of the list mentioned in the previous point (a subitem);
— [〈i〉,〈j〉,〈k〉] means the item number 〈k〉 of the list mentioned in the previous point (a sub-subitem);
— etc.

As in the case of a non-nested list, the index may be negative.
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To read items, the syntax of \readlist is exactly the same as that for simple (non-nested) lists:

\setsepchar{\\/,/ }

\readlist\baz{1,2 a b,3 c\\4 d e f,5,6\\7,,8, ,9 xy z}

a) \string\baz[1] is \baz[1]\par

b) \string\baz[1,1] is \baz[1,1]\par

c) \string\baz[1,1,1] is \baz[1,1,1]\par

b) \string\bar[1,2] is \baz[1,2]\par

e) \string\baz[1,2,3] is \baz[1,2,3]\par

f) \string\baz[-2,1,-1] is \baz[-2,1,-1]

a) \baz[1] is 1,2 a b,3 c
b) \baz[1,1] is 1
c) \baz[1,1,1] is 1
b) \bar[1,2] is 2 a b
e) \baz[1,2,3] is b
f) \baz[-2,1,-1] is f

The operator “||” This operator may be employed at any level of nesting.

\setsepchar[,]{+||-,*||/}

\readlist\numbers{1+2*3-4/5*6}

Term 1: \numbers[1]\par

Term 2: \numbers[2] (factors: \numbers[2,1] and

\numbers[2,2])\par

Term 3: \numbers[3] (factors: \numbers[3,1],

\numbers[3,2] and \numbers[3,3])

Term 1: 1
Term 2: 2*3 (factors: 2 and 3)
Term 3: 4/5*6 (factors: 4, 5 and 6)

Number of list items The macro \listlen〈macro-list〉[〈index〉] requires 2 expansions in order to give the
number of items in the list speci�ed by the 〈index〉. The 〈depth〉 of the 〈index〉must be strictly less than that of
the list.
For the case where the 〈index〉 is empty, \listlen〈macro-list〉[], with 2 expansions, yields the identical result
as 〈macro-list〉len with 1 expansion.

\setsepchar{\\/,/ }

\readlist\baz{1,2 a b,3 c\\4 d e f,5,6\\7,,8, ,9 xy z}

a) \bazlen\ or \listlen\baz[]\par

b) \listlen\baz[1]\par

c) \listlen\baz[2]\par

d) \listlen\baz[3]\par

e) \listlen\baz[3,1]\par

f) \listlen\baz[3,4]\par% 2 empty items

g) \listlen\baz[3,5]

a) 3 or 3
b) 3
c) 3
d) 5
e) 1
f) 2
g) 3

Displaying list items The macro \showitems〈macrolist〉[〈index〉] displays items from the list speci�ed by
〈index〉, in the same manner as \listlen. The 〈depth〉 of the 〈index〉must be strictly less than that of the 〈list〉.

\setsepchar{\\/,/ }

\readlist\baz{1,2 a b,3 c\\4 d e f,5,6\\7,,8, ,9 xy z}

a) \showitems\baz[]\par

b) \showitems\baz[1]\par

c) \showitems\baz[2]\par

d) \showitems\baz[3]\par

e) \showitems\baz[3,1]\par

f) \showitems\baz[3,4]\par% 2 empty items

g) \showitems\baz[3,5]

a) 1,2 a b,3 c 4 d e f,5,6 7„8, ,9 xy z
b) 1 2 a b 3 c
c) 4 d e f 5 6
d) 7 8 9 xy z
e) 7
f)
g) 9 xy z

Empty items and extreme (leading/trailing) spaces The removal of empty items and/or leading/trailing
spaces will occur in all the items, regardless of the degree of nesting. It is clear that a space, “ ”, is useless as a
parsing character if you want to use \readlist*. Therefore, in the following example, “*” is instead selected as
the (3rd-tier) parsing character.
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Further, we remove only the extreme spaces, but retain empty items.

\setsepchar{\\/,/*}

\readlist*\baz{1, 2*a*b ,3*c\\4*d*e*f,5,6\\7,,8, ,9* xy *z}

a) \showitems\baz[]\par

b) \showitems\baz[1]\par

c) \showitems\baz[2]\par

d) \showitems\baz[3]\par

e) \showitems\baz[3,1]\par

f) \showitems\baz[3,4]\par

g) \showitems\baz[3,5]% "xy" without extreme spaces

a) 1, 2*a*b ,3*c 4*d*e*f,5,6 7„8, ,9* xy *z
b) 1 2*a*b 3*c
c) 4*d*e*f 5 6
d) 7 8 9* xy *z
e) 7
f)
g) 9 xy z

Iterate over a list The syntax \foreachitem 〈variable〉 \in 〈macro〉[〈index〉]{〈code〉} remains valid where
now the 〈index〉 speci�es the item (understood as a list) on which to iterate. The 〈depth〉 of the 〈index〉 must
be strictly less than that of the 〈list〉.

Assign an item to a macro The syntax \itemtomacro〈macro-list〉[〈index〉]〈macro〉 remains valid to assign
to 〈macro〉 the item speci�ed by 〈macro-list〉[〈index〉].

\setsepchar[,]{\\, }

\readlist\poem{There once was a runner named Dwight\\%

Who could speed even faster than light.\\%

He set out one day\\%

In a relative way\\%

And returned on the previous night.}

\itemtomacro\poem[2]\verse

2nd verse = \verse

\itemtomacro\poem[2,-4]\word

A word = \word

2nd verse = Who could speed even faster than light.
A word = even
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