
Package

listofitems
v1.0

20 August 2016

Christian Tellechea∗
Steven B. Segletes†

This simple package is designed to read a list of items whose parsing char-
acter may be selected by the user. Once the list is read, its items are stored
in a structure that behaves as a dimensioned array. As such, it becomes
very easy to access an item in the list by its number. For example, if the list
is stored in the macro \foo, the item number 3 is designated by \foo[3].
A component may, in turn, be a list with a parsing delimiter di�erent from
the parent list, paving the way for nesting and employing a syntax remi-
niscent of an array of several dimensions of the type \foo[3,2] to access
the item number 2 of the list contained within the item number 3 of the
top-tier list.

∗unbonpetit@openmailbox.org
†steven.b.segletes.civ@mail.mil



1 Preface
This package loads no external packages, must be used with the ε-TEX engine, and must be called in
(pdf)(Xe)(lua)LATEX with the invocation

\usepackage{listofitems}

and under (pdf)(Xe)(Lua)TEX by way of

\input listofitems.tex

2 Read a Simple List
Set the parsing character The default parsing character is the comma and if we want change it, we must do
so before reading a list of items, with the de�nition \setsepchar{〈parse-character〉}. A 〈parse-character〉 is
a set of tokens which possess catcodes di�erent from 1 and 2 (the opening and closing braces), 14 (usually %) and
15. The token of catcode 6 (usually #) is accepted only if it is followed by an integer, denoting the argument of
a macro; In no case should this token be provided alone as the 〈parse-character〉. Commands can be included
in this set of tokens, including the TEX primitive \par.
The parsing-character 〈delimiter〉 “/” is reserved by default for nested lists (see page 3). It is therefore not proper
to write "\setsepchar{/}" because the listofitems package would misunderstand that you want to read a nested
list. To set “/” as the 〈parse-character〉 for a simple list, it is necessary, using the optional argument, to choose
a di�erent parsing-character 〈delimiter〉 for nested lists, for example “.”, and write “\setsepchar[.]{/}”.

It is not possible to select | as the 〈delimiter〉 because it would con�ict with the logical OR, denoted “||” (see
below). However, one can work around this limitation, at one’s own peril, writing “\setsepchar{{|}}”.

Read a list To read the list of items, the \readlist〈macro-list〉{〈list〉} should be called. In so doing, the
〈list〉 is read and the items are stored in a macro, denoted 〈macro-list〉 which therefore acts as a table with
the items of the 〈list〉. If braces appear as part of a list item, they must be balanced. Tokens possessing the
catcodes 6, 14 and 15 are not allowed in the lists.
For example, to set the 〈macro-list〉 named \foo, we can write

\setsepchar{,}

\readlist\foo{12,abc,x y ,{\bfseries z},,\TeX,,!}

If the 〈list〉 is contained in a macro, then this macro is expanded. Therefore, we can simply employ the syntax
\readlist〈macro-list〉〈macro〉 as in

\setsepchar{,}

\def\List{12,abc,x y ,{\bfseries z},,\TeX,,!}

\readlist\foo\List

Access an item The macro \foo requires a numeric argument in square brackets, which we symbolically
denote as i , indicating the rank of the item you wish to access. So \foo[1] is3 “12”. Similarly, \foo[4] is
“{\bfseries z}”.
The number i can also be negative in which case the counting is done from the end of the list: −1 represents the
last item, −2 the penultimate, etc. If the number of items is n, then the argument −n is the �rst item.

In general, if a 〈list〉 has a length n, then the index i can be in the interval [1 ;n] or [−n ;−1]. Otherwise, a
compilation error occurs.
If the index is empty, \foo[] produces the complete 〈list〉.

3\foo[i] requires 2 expansions to give the item.

1



Select several possible parsing characters To specify several possible separators, use the OR operator,
denoted “||”. One can use this feature, for example, to isolate the terms in an algebraic sum:

\setsepchar{+||-}

\readlist\term{17-8+4-11}

1) \term[1]\par

2) \term[2]\par

3) \term[3]\par

4) \term[4]

1) 17
2) 8
3) 4
4) 11

Number of items If we write \readlist〈macro-list〉{〈list〉}, then the macro 〈macro-list〉len contains4

the number of the items in 〈list〉. In the example with \foo, the macro \foolen expands to 8.

View all items For purposes of debugging, the macro \showitems〈macro-list〉 includes all items from a list,
while the star version displays these items “detokenized.” 5

\showitems\foo\par

\showitems*\foo

12 abc x y z TEX !
12 abc x y {\bfseries z} \TeX !

The presentation of each list item is assigned to the macro \showitemsmacro whose code is

\newcommand\showitemsmacro[1]{%

\begingroup\fboxsep=0.25pt \fboxrule=0.5pt \fbox{\strut#1}\endgroup

\hskip0.25em\relax}

It is therefore possible — and desirable — to rede�ne it if we desire a di�erent presentation e�ect.

The macro \fbox and associated dimensions \fboxsep and \fboxrule, are de�ned by listofitems, when not
compiled under LATEX, to achieve the same result as if performed under LATEX.

Suppression of extreme (leading/trailing) spaces By default, listofitems reads and retains the spaces lo-
cated at the beginning and end of an item. For these spaces to be ignored when reading the 〈list〉, execute the
starred version \readlist*〈macro〉{〈list〉}:

\setsepchar{,}

\readlist*\foo{12,abc, x y ,{\bfseries z}, ,\TeX,,!}

\showitems\foo

12 abc x y z TEX !

Managing empty items By default, the listofitems package retains and accounts for empty items. Thus, in the
previous example, the 2nd expansion of \foo[7] is empty. For empty items of the list (i.e., those list items de�ned
by two consecutive parsing delimiters) to be ignored, we must, before invoking \readlist, execute the macro
\ignoreemptyitems . To return to the default package behavior, simply execute the macro \reademptyitems.
This option can be used alone or in combination with \readlist*, in which case the suppression of extreme
(leading/trailing) spaces occurs before listofitems ignores the empty list items:

\setsepchar{,}

\ignoreemptyitems

\readlist\foo{12,abc, x y ,{\bfseries z}, ,\TeX,,!}

a) number of items = \foolen\par

\showitems\foo

\readlist*\foo{12,abc, x y ,{\bfseries z}, ,\TeX,,!}

b) number of items = \foolen\par

\showitems\foo

a) number of items = 7
12 abc x y z TEX !
b) number of items = 6
12 abc x y z TEX !

4That is to say, it is purely expandable and grows into a number.
5The primitive \detokenize, conducting this decomposition, inserts a space after each control sequence.

2



Iterate over a list Once a list read by \readlist and stored in a 〈macro-list〉, one may iterate over the list
with the syntax \foreachitem 〈variable〉 \in 〈macro-list〉{〈code〉}: The 〈variable〉 is a macro chosen by
the user that will loop over the value of each item in the list.
The macro 〈variable〉cnt represents the sequence number of the item in 〈variable〉.

\setsepchar{ }% parse-character = space

\readlist\phrase{One phrase to test.}

\foreachitem\word\in\phrase{List item number \wordcnt{}: \word\par}

List item number 1: One
List item number 2: phrase
List item number 3: to
List item number 4: test.

Assign an item to a macro The \itemtomacro〈macro-list〉[index]〈macro〉 assigns to the 〈macro〉 the item
designated by 〈macro-list〉[index]. The 〈macro〉 thus de�ned is purely expandable provided that the tokens in
the items are expandable.

\setsepchar{ }% parse-character = space

\readlist\phrase{One phrase to test.}

\itemtomacro\phrase[2]\aword

\meaning\aword\par

\itemtomacro\phrase[-1]\wordattheend

\meaning\wordattheend

macro:->phrase
macro:->test.

3 Nested Lists
We speak of a list being “nested” when asking listofitems to read a list where the items are, in turn, understood
as being a list (implying a parsing character di�erent from the top-tier list). The nesting depth is not limited, but
in practice, a depth of 2 or 3 will usually su�ce.

De�ning the parsing characters To indicate that a list will be nested, so that the list parsing will be per-
formed recursively, one must specify multiple parsing characters, each corresponding to the particular tier of
nesting. This list of parsing characters is itself given as a delimited list to the macro \setsepchar, with the
syntax \setsepchar[〈delimiter〉]{〈delimited-list-of-parse-characters〉}.
By default, the 〈delimiter〉 is “/”. Thus, writing

\setsepchar{\\/,/ }

indicates a recursive depth of 3, with the parsing-character list delimiter defaulting to “/”:
— Tier 1 items are parsed between “\\” delimiters;
— Tier 2 items are found within Tier 1 items, parsed between “,” delimiters;
— �nally, the Tier 3 items are found within Tier 2 items, parsed between the “ ” delimiters.

The 〈depth〉 of nesting is contained in the purely expandable macro \nestdepth.

Read and access list items For nested lists, the use of indices obey the following rules:
— [] is the main list, i.e., the argument of \readlist;
— [〈i〉] means the item number 〈i〉 of the main list;
— [〈i〉,〈j〉] means the item number 〈j〉 of the list mentioned in the previous point (a subitem);
— [〈i〉,〈j〉,〈k〉] means the item number 〈k〉 of the list mentioned in the previous point (a sub-subitem);
— etc.

As in the case of a non-nested list, the index may be negative.

3



To read items, the syntax of \readlist is exactly the same as that for simple (non-nested) lists:

\setsepchar{\\/,/ }

\readlist\baz{1,2 a b,3 c\\4 d e f,5,6\\7,,8, ,9 xy z}

a) \string\baz[1] is \baz[1]\par

b) \string\baz[1,1] is \baz[1,1]\par

c) \string\baz[1,1,1] is \baz[1,1,1]\par

b) \string\bar[1,2] is \baz[1,2]\par

e) \string\baz[1,2,3] is \baz[1,2,3]\par

f) \string\baz[-2,1,-1] is \baz[-2,1,-1]

a) \baz[1] is 1,2 a b,3 c
b) \baz[1,1] is 1
c) \baz[1,1,1] is 1
b) \bar[1,2] is 2 a b
e) \baz[1,2,3] is b
f) \baz[-2,1,-1] is f

The operator “||” This operator may be employed at any level of nesting.

\setsepchar[,]{+||-,*||/}

\readlist\numbers{1+2*3-4/5*6}

Term 1: \numbers[1]\par

Term 2: \numbers[2] (factors: \numbers[2,1] and

\numbers[2,2])\par

Term 3: \numbers[3] (factors: \numbers[3,1],

\numbers[3,2] and \numbers[3,3])

Term 1: 1
Term 2: 2*3 (factors: 2 and 3)
Term 3: 4/5*6 (factors: 4, 5 and 6)

Number of list items The macro \listlen〈macro-list〉[〈index〉] requires 2 expansions in order to give the
number of items in the list speci�ed by the 〈index〉. The 〈depth〉 of the 〈index〉must be strictly less than that of
the list.
For the case where the 〈index〉 is empty, \listlen〈macro-list〉[], with 2 expansions, yields the identical result
as 〈macro-list〉len with 1 expansion.

\setsepchar{\\/,/ }

\readlist\baz{1,2 a b,3 c\\4 d e f,5,6\\7,,8, ,9 xy z}

a) \bazlen\ or \listlen\baz[]\par

b) \listlen\baz[1]\par

c) \listlen\baz[2]\par

d) \listlen\baz[3]\par

e) \listlen\baz[3,1]\par

f) \listlen\baz[3,4]\par% 2 empty items

g) \listlen\baz[3,5]

a) 3 or 3
b) 3
c) 3
d) 5
e) 1
f) 2
g) 3

Displaying list items The macro \showitems〈macrolist〉[〈index〉] displays items from the list speci�ed by
〈index〉, in the same manner as \listlen. The 〈depth〉 of the 〈index〉must be strictly less than that of the 〈list〉.

\setsepchar{\\/,/ }

\readlist\baz{1,2 a b,3 c\\4 d e f,5,6\\7,,8, ,9 xy z}

a) \showitems\baz[]\par

b) \showitems\baz[1]\par

c) \showitems\baz[2]\par

d) \showitems\baz[3]\par

e) \showitems\baz[3,1]\par

f) \showitems\baz[3,4]\par% 2 empty items

g) \showitems\baz[3,5]

a) 1,2 a b,3 c 4 d e f,5,6 7„8, ,9 xy z
b) 1 2 a b 3 c
c) 4 d e f 5 6
d) 7 8 9 xy z
e) 7
f)
g) 9 xy z

Empty items and extreme (leading/trailing) spaces The removal of empty items and/or leading/trailing
spaces will occur in all the items, regardless of the degree of nesting. It is clear that a space, “ ”, is useless as a
parsing character if you want to use \readlist*. Therefore, in the following example, “*” is instead selected as
the (3rd-tier) parsing character.

4



Further, we remove only the extreme spaces, but retain empty items.

\setsepchar{\\/,/*}

\readlist*\baz{1, 2*a*b ,3*c\\4*d*e*f,5,6\\7,,8, ,9* xy *z}

a) \showitems\baz[]\par

b) \showitems\baz[1]\par

c) \showitems\baz[2]\par

d) \showitems\baz[3]\par

e) \showitems\baz[3,1]\par

f) \showitems\baz[3,4]\par

g) \showitems\baz[3,5]% "xy" without extreme spaces

a) 1, 2*a*b ,3*c 4*d*e*f,5,6 7„8, ,9* xy *z
b) 1 2*a*b 3*c
c) 4*d*e*f 5 6
d) 7 8 9* xy *z
e) 7
f)
g) 9 xy z

Iterate over a list The syntax \foreachitem 〈variable〉 \in 〈macro〉[〈index〉]{〈code〉} remains valid where
now the 〈index〉 speci�es the item (understood as a list) on which to iterate. The 〈depth〉 of the 〈index〉 must
be strictly less than that of the 〈list〉.

Assign an item to a macro The syntax \itemtomacro〈macro-list〉[〈index〉]〈macro〉 remains valid to assign
to 〈macro〉 the item speci�ed by 〈macro-list〉[〈index〉].

\setsepchar[,]{\\, }

\readlist\poem{There once was a runner named Dwight\\%

Who could speed even faster than light.\\%

He set out one day\\%

In a relative way\\%

And returned on the previous night.}

\itemtomacro\poem[2]\verse

2nd verse = \verse

\itemtomacro\poem[2,-4]\word

A word = \word

2nd verse = Who could speed even faster than light.
A word = even

5


