
Appendix D 15

The WEAVE processor

(Version 4.4)

Section Page
Introduction . 1 16
The character set . 11 19
Input and output . 19 23
Reporting errors to the user . 29 25
Data structures . 36 27
Searching for identifiers . 55 32
Initializing the table of reserved words . 63 34
Searching for module names . 65 36
Lexical scanning . 70 38
Inputting the next token . 93 47
Phase one processing . 108 53
Low-level output routines . 121 57
Routines that copy TEX material . 132 61
Parsing . 139 64
Implementing the productions . 144 71
Initializing the scraps . 183 85
Output of tokens . 200 92
Phase two processing . 218 99
Phase three processing . 239 106
Debugging . 258 111
The main program . 261 113
System-dependent changes . 264 114
Index . 265 115

16 INTRODUCTION WEAVE §

1. Introduction. This program converts a WEB file to a TEX file. It was written by D. E. Knuth in
October, 1981; a somewhat similar SAIL program had been developed in March, 1979, although the earlier
program used a top-down parsing method that is quite different from the present scheme.

The code uses a few features of the local Pascal compiler that may need to be changed in other installations:

1) Case statements have a default.
2) Input-output routines may need to be adapted for use with a particular character set and/or for printing

messages on the user’s terminal.

These features are also present in the Pascal version of TEX, where they are used in a similar (but more
complex) way. System-dependent portions of WEAVE can be identified by looking at the entries for ‘system
dependencies’ in the index below.

The “banner line” defined here should be changed whenever WEAVE is modified.

define banner ≡ ´This is WEAVE, Version 4.4´

2. The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.
The WEB input comes from files web file and change file , and the TEX output goes to file tex file .

If it is necessary to abort the job because of a fatal error, the program calls the ‘jump out ’ procedure,
which goes to the label end of WEAVE .

define end of WEAVE = 9999 { go here to wrap it up }
〈Compiler directives 4 〉
program WEAVE (web file , change file , tex file);

label end of WEAVE ; { go here to finish }
const 〈Constants in the outer block 8 〉
type 〈Types in the outer block 11 〉
var 〈Globals in the outer block 9 〉
〈Error handling procedures 30 〉

procedure initialize ;
var 〈Local variables for initialization 16 〉
begin 〈Set initial values 10 〉
end;

3. Some of this code is optional for use when debugging only; such material is enclosed between the
delimiters debug and gubed. Other parts, delimited by stat and tats, are optionally included if statistics
about WEAVE’s memory usage are desired.

define debug ≡ @{ { change this to ‘debug ≡ ’ when debugging }
define gubed ≡ @} { change this to ‘gubed ≡ ’ when debugging }
format debug ≡ begin
format gubed ≡ end

define stat ≡ @{ { change this to ‘stat ≡ ’ when gathering usage statistics }
define tats ≡ @} { change this to ‘tats ≡ ’ when gathering usage statistics }
format stat ≡ begin
format tats ≡ end

4. The Pascal compiler used to develop this system has “compiler directives” that can appear in comments
whose first character is a dollar sign. In production versions of WEAVE these directives tell the compiler that
it is safe to avoid range checks and to leave out the extra code it inserts for the Pascal debugger’s benefit,
although interrupts will occur if there is arithmetic overflow.

〈Compiler directives 4 〉 ≡
@{@&$C−, A+, D−@} {no range check, catch arithmetic overflow, no debug overhead }
debug @{@&$C+, D+@} gubed { but turn everything on when debugging }

This code is used in section 2.

§5 WEAVE INTRODUCTION 17

5. Labels are given symbolic names by the following definitions. We insert the label ‘exit :’ just before
the ‘end’ of a procedure in which we have used the ‘return’ statement defined below; the label ‘restart ’
is occasionally used at the very beginning of a procedure; and the label ‘reswitch ’ is occasionally used just
prior to a case statement in which some cases change the conditions and we wish to branch to the newly
applicable case. Loops that are set up with the loop construction defined below are commonly exited by
going to ‘done ’ or to ‘found ’ or to ‘not found ’, and they are sometimes repeated by going to ‘continue ’.

define exit = 10 { go here to leave a procedure }
define restart = 20 { go here to start a procedure again }
define reswitch = 21 { go here to start a case statement again }
define continue = 22 { go here to resume a loop }
define done = 30 { go here to exit a loop }
define found = 31 { go here when you’ve found it }
define not found = 32 { go here when you’ve found something else }

6. Here are some macros for common programming idioms.

define incr (#) ≡ #← # + 1 { increase a variable by unity }
define decr (#) ≡ #← #− 1 {decrease a variable by unity }
define loop ≡ while true do { repeat over and over until a goto happens }
define do nothing ≡ { empty statement }
define return ≡ goto exit { terminate a procedure call }
format return ≡ nil
format loop ≡ xclause

7. We assume that case statements may include a default case that applies if no matching label is found.
Thus, we shall use constructions like

case x of
1: 〈 code for x = 1 〉;
3: 〈 code for x = 3 〉;
othercases 〈 code for x 6= 1 and x 6= 3 〉
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the compiler used to develop WEB and TEX allows ‘others :’ as a default label, and
other Pascals allow syntaxes like ‘else’ or ‘otherwise’ or ‘otherwise :’, etc. The definitions of othercases
and endcases should be changed to agree with local conventions. (Of course, if no default mechanism is
available, the case statements of this program must be extended by listing all remaining cases.)

define othercases ≡ others : { default for cases not listed explicitly }
define endcases ≡ end { follows the default case in an extended case statement }
format othercases ≡ else
format endcases ≡ end

18 INTRODUCTION WEAVE §8

8. The following parameters are set big enough to handle TEX, so they should be sufficient for most
applications of WEAVE.

〈Constants in the outer block 8 〉 ≡
max bytes = 45000; { 1/ww times the number of bytes in identifiers, index entries, and module names;

must be less than 65536 }
max names = 5000; { number of identifiers, index entries, and module names; must be less than 10240 }
max modules = 2000; { greater than the total number of modules }
hash size = 353; { should be prime }
buf size = 100; {maximum length of input line }
longest name = 400; {module names shouldn’t be longer than this }
long buf size = 500; { buf size + longest name }
line length = 80; { lines of TEX output have at most this many characters, should be less than 256 }
max refs = 30000; { number of cross references; must be less than 65536 }
max toks = 30000; { number of symbols in Pascal texts being parsed; must be less than 65536 }
max texts = 2000; { number of phrases in Pascal texts being parsed; must be less than 10240 }
max scraps = 1000; { number of tokens in Pascal texts being parsed }
stack size = 200; { number of simultaneous output levels }

This code is used in section 2.

9. A global variable called history will contain one of four values at the end of every run: spotless means that
no unusual messages were printed; harmless message means that a message of possible interest was printed
but no serious errors were detected; error message means that at least one error was found; fatal message
means that the program terminated abnormally. The value of history does not influence the behavior of the
program; it is simply computed for the convenience of systems that might want to use such information.

define spotless = 0 { history value for normal jobs }
define harmless message = 1 { history value when non-serious info was printed }
define error message = 2 { history value when an error was noted }
define fatal message = 3 { history value when we had to stop prematurely }
define mark harmless ≡ if history = spotless then history ← harmless message
define mark error ≡ history ← error message
define mark fatal ≡ history ← fatal message

〈Globals in the outer block 9 〉 ≡
history : spotless . . fatal message ; { how bad was this run? }
See also sections 13, 20, 23, 25, 27, 29, 37, 39, 45, 48, 53, 55, 63, 65, 71, 73, 93, 108, 114, 118, 121, 129, 144, 177, 202, 219, 229,

234, 240, 242, 244, 246, and 258.

This code is used in section 2.

10. 〈Set initial values 10 〉 ≡
history ← spotless ;

See also sections 14, 17, 18, 21, 26, 41, 43, 49, 54, 57, 94, 102, 124, 126, 145, 203, 245, 248, and 259.

This code is used in section 2.

§11 WEAVE THE CHARACTER SET 19

11. The character set. One of the main goals in the design of WEB has been to make it readily portable
between a wide variety of computers. Yet WEB by its very nature must use a greater variety of characters than
most computer programs deal with, and character encoding is one of the areas in which existing machines
differ most widely from each other.

To resolve this problem, all input to WEAVE and TANGLE is converted to an internal eight-bit code that is
essentially standard ASCII, the “American Standard Code for Information Interchange.” The conversion is
done immediately when each character is read in. Conversely, characters are converted from ASCII to the
user’s external representation just before they are output. (The original ASCII code was seven bits only;
WEB now allows eight bits in an attempt to keep up with modern times.)

Such an internal code is relevant to users of WEB only because it is the code used for preprocessed constants
like "A". If you are writing a program in WEB that makes use of such one-character constants, you should
convert your input to ASCII form, like WEAVE and TANGLE do. Otherwise WEB’s internal coding scheme does
not affect you.

Here is a table of the standard visible ASCII codes:

0 1 2 3 4 5 6 7

0́40 ! " # $ % & ’

0́50 () * + , - . /

0́60 0 1 2 3 4 5 6 7

0́70 8 9 : ; < = > ?

1́00 @ A B C D E F G

1́10 H I J K L M N O

1́20 P Q R S T U V W

1́30 X Y Z [\] ^ _

1́40 ‘ a b c d e f g

1́50 h i j k l m n o

1́60 p q r s t u v w

1́70 x y z { | } ~

(Actually, of course, code 0́40 is an invisible blank space.) Code 1́36 was once an upward arrow (↑), and
code 1́37 was once a left arrow (←), in olden times when the first draft of ASCII code was prepared; but
WEB works with today’s standard ASCII in which those codes represent circumflex and underline as shown.

〈Types in the outer block 11 〉 ≡
ASCII code = 0 . . 255; { eight-bit numbers, a subrange of the integers }

See also sections 12, 36, 38, 47, 52, and 201.

This code is used in section 2.

20 THE CHARACTER SET WEAVE §12

12. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital
and small letters in a convenient way, so WEB assumes that it is being used with a Pascal whose character set
contains at least the characters of standard ASCII as listed above. Some Pascal compilers use the original
name char for the data type associated with the characters in text files, while other Pascals consider char
to be a 64-element subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name text char to stand for the data type of
the characters in the input and output files. We shall also assume that text char consists of the elements
chr (first text char) through chr (last text char), inclusive. The following definitions should be adjusted if
necessary.

define text char ≡ char { the data type of characters in text files }
define first text char = 0 { ordinal number of the smallest element of text char }
define last text char = 255 { ordinal number of the largest element of text char }

〈Types in the outer block 11 〉 +≡
text file = packed file of text char ;

13. The WEAVE and TANGLE processors convert between ASCII code and the user’s external character set
by means of arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

〈Globals in the outer block 9 〉 +≡
xord : array [text char] of ASCII code ; { specifies conversion of input characters }
xchr : array [ASCII code] of text char ; { specifies conversion of output characters }

§14 WEAVE THE CHARACTER SET 21

14. If we assume that every system using WEB is able to read and write the visible characters of stan-
dard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the xchr array properly, without needing any system-dependent changes. For
example, the statement xchr[@´101]:=´A´ that appears in the present WEB file might be encoded in, say,
EBCDIC code on the external medium on which it resides, but TANGLE will convert from this external code to
ASCII and back again. Therefore the assignment statement XCHR[65]:=´A´ will appear in the corresponding
Pascal file, and Pascal will compile this statement so that xchr [65] receives the character A in the external
(char) code. Note that it would be quite incorrect to say xchr[@´101]:="A", because "A" is a constant of
type integer , not char , and because we have "A" = 65 regardless of the external character set.

〈Set initial values 10 〉 +≡
xchr [4́0]← ´ ´; xchr [4́1]← ´!´; xchr [4́2]← ´"´; xchr [4́3]← ´#´; xchr [4́4]← ´$´;
xchr [4́5]← ´%´; xchr [4́6]← ´&´; xchr [4́7]← ´´´´;
xchr [5́0]← ´(´; xchr [5́1]← ´)´; xchr [5́2]← ´*´; xchr [5́3]← ´+´; xchr [5́4]← ´,´;
xchr [5́5]← ´−´; xchr [5́6]← ´.´; xchr [5́7]← ´/´;
xchr [6́0]← ´0´; xchr [6́1]← ´1´; xchr [6́2]← ´2´; xchr [6́3]← ´3´; xchr [6́4]← ´4´;
xchr [6́5]← ´5´; xchr [6́6]← ´6´; xchr [6́7]← ´7´;
xchr [7́0]← ´8´; xchr [7́1]← ´9´; xchr [7́2]← ´:´; xchr [7́3]← ´;´; xchr [7́4]← ´<´;
xchr [7́5]← ´=´; xchr [7́6]← ´>´; xchr [7́7]← ´?´;
xchr [1́00]← ´@´; xchr [1́01]← ´A´; xchr [1́02]← ´B´; xchr [1́03]← ´C´; xchr [1́04]← ´D´;
xchr [1́05]← ´E´; xchr [1́06]← ´F´; xchr [1́07]← ´G´;
xchr [1́10]← ´H´; xchr [1́11]← ´I´; xchr [1́12]← ´J´; xchr [1́13]← ´K´; xchr [1́14]← ´L´;
xchr [1́15]← ´M´; xchr [1́16]← ´N´; xchr [1́17]← ´O´;
xchr [1́20]← ´P´; xchr [1́21]← ´Q´; xchr [1́22]← ´R´; xchr [1́23]← ´S´; xchr [1́24]← ´T´;
xchr [1́25]← ´U´; xchr [1́26]← ´V´; xchr [1́27]← ´W´;
xchr [1́30]← ´X´; xchr [1́31]← ´Y´; xchr [1́32]← ´Z´; xchr [1́33]← ´[´; xchr [1́34]← ´\´;
xchr [1́35]← ´]´; xchr [1́36]← ´^´; xchr [1́37]← ´_´;
xchr [1́40]← ´`´; xchr [1́41]← ´a´; xchr [1́42]← ´b´; xchr [1́43]← ´c´; xchr [1́44]← ´d´;
xchr [1́45]← ´e´; xchr [1́46]← ´f´; xchr [1́47]← ´g´;
xchr [1́50]← ´h´; xchr [1́51]← ´i´; xchr [1́52]← ´j´; xchr [1́53]← ´k´; xchr [1́54]← ´l´;
xchr [1́55]← ´m´; xchr [1́56]← ´n´; xchr [1́57]← ´o´;
xchr [1́60]← ´p´; xchr [1́61]← ´q´; xchr [1́62]← ´r´; xchr [1́63]← ´s´; xchr [1́64]← ´t´;
xchr [1́65]← ´u´; xchr [1́66]← ´v´; xchr [1́67]← ´w´;
xchr [1́70]← ´x´; xchr [1́71]← ´y´; xchr [1́72]← ´z´; xchr [1́73]← ´{´; xchr [1́74]← ´|´;
xchr [1́75]← ´}´; xchr [1́76]← ´~´;
xchr [0]← ´ ´; xchr [1́77]← ´ ´; { these ASCII codes are not used }

15. Some of the ASCII codes below 4́0 have been given symbolic names in WEAVE and TANGLE because
they are used with a special meaning.

define and sign = 4́ { equivalent to ‘and’ }
define not sign = 5́ { equivalent to ‘not’ }
define set element sign = 6́ { equivalent to ‘in’ }
define tab mark = 1́1 {ASCII code used as tab-skip }
define line feed = 1́2 {ASCII code thrown away at end of line }
define form feed = 1́4 {ASCII code used at end of page }
define carriage return = 1́5 {ASCII code used at end of line }
define left arrow = 3́0 { equivalent to ‘:=’ }
define not equal = 3́2 { equivalent to ‘<>’ }
define less or equal = 3́4 { equivalent to ‘<=’ }
define greater or equal = 3́5 { equivalent to ‘>=’ }
define equivalence sign = 3́6 { equivalent to ‘==’ }
define or sign = 3́7 { equivalent to ‘or’ }

22 THE CHARACTER SET WEAVE §16

16. When we initialize the xord array and the remaining parts of xchr , it will be convenient to make use
of an index variable, i.

〈Local variables for initialization 16 〉 ≡
i: 0 . . 255;

See also sections 40, 56, and 247.

This code is used in section 2.

17. Here now is the system-dependent part of the character set. If WEB is being implemented on a garden-
variety Pascal for which only standard ASCII codes will appear in the input and output files, you don’t
need to make any changes here. But if you have, for example, an extended character set like the one in
Appendix C of The TEXbook, the first line of code in this module should be changed to

for i← 1 to 3́7 do xchr [i]← chr (i);

WEB’s character set is essentially identical to TEX’s, even with respect to characters less than 4́0 .
Changes to the present module will make WEB more friendly on computers that have an extended character

set, so that one can type things like ≠ instead of <>. If you have an extended set of characters that are easily
incorporated into text files, you can assign codes arbitrarily here, giving an xchr equivalent to whatever
characters the users of WEB are allowed to have in their input files, provided that unsuitable characters do
not correspond to special codes like carriage return that are listed above.

(The present file WEAVE.WEB does not contain any of the non-ASCII characters, because it is intended
to be used with all implementations of WEB. It was originally created on a Stanford system that has a
convenient extended character set, then “sanitized” by applying another program that transliterated all of
the non-standard characters into standard equivalents.)

〈Set initial values 10 〉 +≡
for i← 1 to 3́7 do xchr [i]← ´ ´;
for i← 2́00 to 3́77 do xchr [i]← ´ ´;

18. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr .

〈Set initial values 10 〉 +≡
for i← first text char to last text char do xord [chr (i)]← " ";
for i← 1 to 3́77 do xord [xchr [i]]← i;
xord [´ ´]← " ";

§19 WEAVE INPUT AND OUTPUT 23

19. Input and output. The input conventions of this program are intended to be very much like those
of TEX (except, of course, that they are much simpler, because much less needs to be done). Furthermore
they are identical to those of TANGLE. Therefore people who need to make modifications to all three systems
should be able to do so without too many headaches.

We use the standard Pascal input/output procedures in several places that TEX cannot, since WEAVE does
not have to deal with files that are named dynamically by the user, and since there is no input from the
terminal.

20. Terminal output is done by writing on file term out , which is assumed to consist of characters of type
text char :

define print (#) ≡ write (term out , #) { ‘print ’ means write on the terminal }
define print ln (#) ≡ write ln (term out , #) { ‘print ’ and then start new line }
define new line ≡ write ln (term out) { start new line }
define print nl (#) ≡ { print information starting on a new line }

begin new line ; print (#);
end

〈Globals in the outer block 9 〉 +≡
term out : text file ; { the terminal as an output file }

21. Different systems have different ways of specifying that the output on a certain file will appear on
the user’s terminal. Here is one way to do this on the Pascal system that was used in TANGLE’s initial
development:

〈Set initial values 10 〉 +≡
rewrite (term out , ´TTY:´); { send term out output to the terminal }

22. The update terminal procedure is called when we want to make sure that everything we have output
to the terminal so far has actually left the computer’s internal buffers and been sent.

define update terminal ≡ break (term out) { empty the terminal output buffer }

23. The main input comes from web file ; this input may be overridden by changes in change file . (If
change file is empty, there are no changes.)

〈Globals in the outer block 9 〉 +≡
web file : text file ; { primary input }
change file : text file ; {updates }

24. The following code opens the input files. Since these files were listed in the program header, we assume
that the Pascal runtime system has already checked that suitable file names have been given; therefore no
additional error checking needs to be done. We will see below that WEAVE reads through the entire input
twice.

procedure open input ; {prepare to read web file and change file }
begin reset (web file); reset (change file);
end;

25. The main output goes to tex file .

〈Globals in the outer block 9 〉 +≡
tex file : text file ;

24 INPUT AND OUTPUT WEAVE §26

26. The following code opens tex file . Since this file was listed in the program header, we assume that the
Pascal runtime system has checked that a suitable external file name has been given.

〈Set initial values 10 〉 +≡
rewrite (tex file);

27. Input goes into an array called buffer .

〈Globals in the outer block 9 〉 +≡
buffer : array [0 . . long buf size] of ASCII code ;

28. The input ln procedure brings the next line of input from the specified file into the buffer array and
returns the value true , unless the file has already been entirely read, in which case it returns false . The
conventions of TEX are followed; i.e., ASCII code numbers representing the next line of the file are input
into buffer [0], buffer [1], . . . , buffer [limit − 1]; trailing blanks are ignored; and the global variable limit is set
to the length of the line. The value of limit must be strictly less than buf size .

We assume that none of the ASCII code values of buffer [j] for 0 ≤ j < limit is equal to 0, 1́77 , line feed ,
form feed , or carriage return . Since buf size is strictly less than long buf size , some of WEAVE’s routines use
the fact that it is safe to refer to buffer [limit + 2] without overstepping the bounds of the array.

function input ln (var f : text file): boolean ; { inputs a line or returns false }
var final limit : 0 . . buf size ; { limit without trailing blanks }
begin limit ← 0; final limit ← 0;
if eof (f) then input ln ← false
else begin while ¬eoln (f) do

begin buffer [limit]← xord [f↑]; get (f); incr (limit);
if buffer [limit − 1] 6= " " then final limit ← limit ;
if limit = buf size then

begin while ¬eoln (f) do get (f);
decr (limit); { keep buffer [buf size] empty }
if final limit > limit then final limit ← limit ;
print nl (´! Input line too long´); loc ← 0; error ;
end;

end;
read ln (f); limit ← final limit ; input ln ← true ;
end;

end;

§29 WEAVE REPORTING ERRORS TO THE USER 25

29. Reporting errors to the user. The WEAVE processor operates in three phases: first it inputs the
source file and stores cross-reference data, then it inputs the source once again and produces the TEX output
file, and finally it sorts and outputs the index.

The global variables phase one and phase three tell which Phase we are in.

〈Globals in the outer block 9 〉 +≡
phase one : boolean ; { true in Phase I, false in Phases II and III }
phase three : boolean ; { true in Phase III, false in Phases I and II }

30. If an error is detected while we are debugging, we usually want to look at the contents of memory. A
special procedure will be declared later for this purpose.

〈Error handling procedures 30 〉 ≡
debug procedure debug help ; forward ; gubed

See also sections 31 and 33.

This code is used in section 2.

31. The command ‘err print (´! Error message´)’ will report a syntax error to the user, by printing the
error message at the beginning of a new line and then giving an indication of where the error was spotted
in the source file. Note that no period follows the error message, since the error routine will automatically
supply a period.

The actual error indications are provided by a procedure called error . However, error messages are not
actually reported during phase one, since errors detected on the first pass will be detected again during the
second.

define err print (#) ≡
begin if ¬phase one then

begin new line ; print (#); error ;
end;

end

〈Error handling procedures 30 〉 +≡
procedure error ; { prints ‘.’ and location of error message }

var k, l: 0 . . long buf size ; { indices into buffer }
begin 〈Print error location based on input buffer 32 〉;
update terminal ; mark error ;
debug debug skipped ← debug cycle ; debug help ; gubed
end;

26 REPORTING ERRORS TO THE USER WEAVE §32

32. The error locations can be indicated by using the global variables loc , line , and changing , which tell
respectively the first unlooked-at position in buffer , the current line number, and whether or not the current
line is from change file or web file . This routine should be modified on systems whose standard text editor
has special line-numbering conventions.

〈Print error location based on input buffer 32 〉 ≡
begin if changing then print (´. (change file ´) else print (´. (´);
print ln (´l.´, line : 1, ´)´);
if loc ≥ limit then l← limit
else l← loc ;
for k ← 1 to l do

if buffer [k − 1] = tab mark then print (´ ´)
else print (xchr [buffer [k − 1]]); {print the characters already read }

new line ;
for k ← 1 to l do print (´ ´); { space out the next line }
for k ← l + 1 to limit do print (xchr [buffer [k − 1]]); {print the part not yet read }
if buffer [limit] = "|" then print (xchr ["|"]); { end of Pascal text in module names }
print (´ ´); { this space separates the message from future asterisks }
end

This code is used in section 31.

33. The jump out procedure just cuts across all active procedure levels and jumps out of the program.
This is the only non-local goto statement in WEAVE. It is used when no recovery from a particular error has
been provided.

Some Pascal compilers do not implement non-local goto statements. In such cases the code that appears at
label end of WEAVE should be copied into the jump out procedure, followed by a call to a system procedure
that terminates the program.

define fatal error (#) ≡
begin new line ; print (#); error ; mark fatal ; jump out ;
end

〈Error handling procedures 30 〉 +≡
procedure jump out ;

begin goto end of WEAVE ;
end;

34. Sometimes the program’s behavior is far different from what it should be, and WEAVE prints an error
message that is really for the WEAVE maintenance person, not the user. In such cases the program says
confusion (´indication of where we are´).

define confusion (#) ≡ fatal error (´! This can´´t happen (´, #, ´)´)

35. An overflow stop occurs if WEAVE’s tables aren’t large enough.

define overflow (#) ≡ fatal error (´! Sorry, ´, #, ´ capacity exceeded´)

§36 WEAVE DATA STRUCTURES 27

36. Data structures. During the first phase of its processing, WEAVE puts identifier names, index entries,
and module names into the large byte mem array, which is packed with eight-bit integers. Allocation is
sequential, since names are never deleted.

An auxiliary array byte start is used as a directory for byte mem , and the link , ilk , and xref arrays give
further information about names. These auxiliary arrays consist of sixteen-bit items.

〈Types in the outer block 11 〉 +≡
eight bits = 0 . . 255; { unsigned one-byte quantity }
sixteen bits = 0 . . 65535; { unsigned two-byte quantity }

37. WEAVE has been designed to avoid the need for indices that are more than sixteen bits wide, so that it
can be used on most computers. But there are programs that need more than 65536 bytes; TEX is one of
these. To get around this problem, a slight complication has been added to the data structures: byte mem is
a two-dimensional array, whose first index is either 0 or 1. (For generality, the first index is actually allowed
to run between 0 and ww − 1, where ww is defined to be 2; the program will work for any positive value of
ww , and it can be simplified in obvious ways if ww = 1.)

define ww = 2 {we multiply the byte capacity by approximately this amount }
〈Globals in the outer block 9 〉 +≡
byte mem : packed array [0 . . ww − 1, 0 . . max bytes] of ASCII code ; { characters of names }
byte start : array [0 . . max names] of sixteen bits ; { directory into byte mem }
link : array [0 . . max names] of sixteen bits ; { hash table or tree links }
ilk : array [0 . . max names] of sixteen bits ; { type codes or tree links }
xref : array [0 . . max names] of sixteen bits ; {heads of cross-reference lists }

38. The names of identifiers are found by computing a hash address h and then looking at strings of
bytes signified by hash [h], link [hash [h]], link [link [hash [h]]], . . . , until either finding the desired name or
encountering a zero.

A ‘name pointer ’ variable, which signifies a name, is an index into byte start . The actual sequence of
characters in the name pointed to by p appears in positions byte start [p] to byte start [p+ ww]− 1, inclusive,
in the segment of byte mem whose first index is p mod ww . Thus, when ww = 2 the even-numbered name
bytes appear in byte mem [0, ∗] and the odd-numbered ones appear in byte mem [1, ∗]. The pointer 0 is used
for undefined module names; we don’t want to use it for the names of identifiers, since 0 stands for a null
pointer in a linked list.

We usually have byte start [name ptr + w] = byte ptr [(name ptr + w) mod ww] for 0 ≤ w < ww , since
these are the starting positions for the next ww names to be stored in byte mem .

define length (#) ≡ byte start [# + ww]− byte start [#] { the length of a name }
〈Types in the outer block 11 〉 +≡

name pointer = 0 . . max names ; { identifies a name }

39. 〈Globals in the outer block 9 〉 +≡
name ptr : name pointer ; { first unused position in byte start }
byte ptr : array [0 . . ww − 1] of 0 . . max bytes ; { first unused position in byte mem }

40. 〈Local variables for initialization 16 〉 +≡
wi : 0 . . ww − 1; { to initialize the byte mem indices }

41. 〈Set initial values 10 〉 +≡
for wi ← 0 to ww − 1 do

begin byte start [wi]← 0; byte ptr [wi]← 0;
end;

byte start [ww]← 0; { this makes name 0 of length zero }
name ptr ← 1;

28 DATA STRUCTURES WEAVE §42

42. Several types of identifiers are distinguished by their ilk :

normal identifiers are part of the Pascal program and will appear in italic type.

roman identifiers are index entries that appear after @^ in the WEB file.

wildcard identifiers are index entries that appear after @: in the WEB file.

typewriter identifiers are index entries that appear after @. in the WEB file.

array like , begin like , . . . , var like identifiers are Pascal reserved words whose ilk explains how they are
to be treated when Pascal code is being formatted.

Finally, if c is an ASCII code, an ilk equal to char like + c denotes a reserved word that will be converted
to character c.

define normal = 0 { ordinary identifiers have normal ilk }
define roman = 1 {normal index entries have roman ilk }
define wildcard = 2 { user-formatted index entries have wildcard ilk }
define typewriter = 3 { ‘typewriter type’ entries have typewriter ilk }
define reserved (#) ≡ (ilk [#] > typewriter) { tells if a name is a reserved word }
define array like = 4 {array, file, set }
define begin like = 5 {begin }
define case like = 6 { case }
define const like = 7 { const, label, type }
define div like = 8 {div, mod }
define do like = 9 {do, of , then }
define else like = 10 { else }
define end like = 11 { end }
define for like = 12 { for, while, with }
define goto like = 13 {goto, packed }
define if like = 14 { if }
define in like = 15 { in }
define nil like = 16 {nil }
define proc like = 17 { function, procedure, program }
define record like = 18 { record }
define repeat like = 19 { repeat }
define to like = 20 {downto, to }
define until like = 21 {until }
define var like = 22 {var }
define loop like = 23 { loop, xclause }
define char like = 24 {and, or, not, in }

43. The names of modules are stored in byte mem together with the identifier names, but a hash table is
not used for them because WEAVE needs to be able to recognize a module name when given a prefix of that
name. A conventional binary seach tree is used to retrieve module names, with fields called llink and rlink
in place of link and ilk . The root of this tree is rlink [0].

define llink ≡ link { left link in binary search tree for module names }
define rlink ≡ ilk { right link in binary search tree for module names }
define root ≡ rlink [0] { the root of the binary search tree for module names }

〈Set initial values 10 〉 +≡
root ← 0; { the binary search tree starts out with nothing in it }

§44 WEAVE DATA STRUCTURES 29

44. Here is a little procedure that prints the text of a given name on the user’s terminal.

procedure print id (p : name pointer); {print identifier or module name }
var k: 0 . . max bytes ; { index into byte mem }
w: 0 . . ww − 1; { row of byte mem }

begin if p ≥ name ptr then print (´IMPOSSIBLE´)
else begin w ← p mod ww ;

for k ← byte start [p] to byte start [p + ww]− 1 do print (xchr [byte mem [w, k]]);
end;

end;

45. We keep track of the current module number in module count , which is the total number of modules
that have started. Modules which have been altered by a change file entry have their changed module flag
turned on during the first phase.

〈Globals in the outer block 9 〉 +≡
module count : 0 . . max modules ; { the current module number }
changed module : packed array [0 . . max modules] of boolean ; { is it changed? }
change exists : boolean ; { has any module changed? }

46. The other large memory area in WEAVE keeps the cross-reference data. All uses of the name p are
recorded in a linked list beginning at xref [p], which points into the xmem array. Entries in xmem consist of
two sixteen-bit items per word, called the num and xlink fields. If x is an index into xmem , reached from
name p, the value of num (x) is either a module number where p is used, or it is def flag plus a module
number where p is defined; and xlink (x) points to the next such cross reference for p, if any. This list of
cross references is in decreasing order by module number. The current number of cross references is xref ptr .

The global variable xref switch is set either to def flag or to zero, depending on whether the next cross
reference to an identifier is to be underlined or not in the index. This switch is set to def flag when @!

or @d or @f is scanned, and it is cleared to zero when the next identifier or index entry cross reference has
been made. Similarly, the global variable mod xref switch is either def flag or zero, depending on whether a
module name is being defined or used.

define num (#) ≡ xmem [#].num field
define xlink (#) ≡ xmem [#].xlink field
define def flag = 10240 {must be strictly larger than max modules }

47. 〈Types in the outer block 11 〉 +≡
xref number = 0 . . max refs ;

48. 〈Globals in the outer block 9 〉 +≡
xmem : array [xref number] of packed record

num field : sixteen bits ; {module number plus zero or def flag }
xlink field : sixteen bits ; { pointer to the previous cross reference }
end;

xref ptr : xref number ; { the largest occupied position in xmem }
xref switch ,mod xref switch : 0 . . def flag ; { either zero or def flag }

49. 〈Set initial values 10 〉 +≡
xref ptr ← 0; xref switch ← 0; mod xref switch ← 0; num (0)← 0; xref [0]← 0;

{ cross references to undefined modules }

30 DATA STRUCTURES WEAVE §50

50. A new cross reference for an identifier is formed by calling new xref , which discards duplicate entries
and ignores non-underlined references to one-letter identifiers or Pascal’s reserved words.

define append xref (#) ≡
if xref ptr = max refs then overflow (´cross reference´)
else begin incr (xref ptr); num (xref ptr)← #;

end

procedure new xref (p : name pointer);
label exit ;
var q: xref number ; { pointer to previous cross reference }
m,n: sixteen bits ; { new and previous cross-reference value }

begin if (reserved (p) ∨ (byte start [p] + 1 = byte start [p + ww])) ∧ (xref switch = 0) then return;
m← module count + xref switch ; xref switch ← 0; q ← xref [p];
if q > 0 then

begin n← num (q);
if (n = m) ∨ (n = m + def flag) then return
else if m = n + def flag then

begin num (q)← m; return;
end;

end;
append xref (m); xlink (xref ptr)← q; xref [p]← xref ptr ;

exit : end;

51. The cross reference lists for module names are slightly different. Suppose that a module name is
defined in modules m1, . . . , mk and used in modules n1, . . . , nl. Then its list will contain m1 + def flag ,
mk + def flag , . . . , m2 + def flag , nl, . . . , n1, in this order. After Phase II, however, the order will be
m1 + def flag , . . . , mk + def flag , n1, . . . , nl.

procedure new mod xref (p : name pointer);
var q, r: xref number ; { pointers to previous cross references }
begin q ← xref [p]; r ← 0;
if q > 0 then

begin if mod xref switch = 0 then
while num (q) ≥ def flag do

begin r ← q; q ← xlink (q);
end

else if num (q) ≥ def flag then
begin r ← q; q ← xlink (q);
end;

end;
append xref (module count + mod xref switch); xlink (xref ptr)← q; mod xref switch ← 0;
if r = 0 then xref [p]← xref ptr
else xlink (r)← xref ptr ;
end;

52. A third large area of memory is used for sixteen-bit ‘tokens’, which appear in short lists similar to
the strings of characters in byte mem . Token lists are used to contain the result of Pascal code translated
into TEX form; further details about them will be explained later. A text pointer variable is an index into
tok start .

〈Types in the outer block 11 〉 +≡
text pointer = 0 . . max texts ; { identifies a token list }

§53 WEAVE DATA STRUCTURES 31

53. The first position of tok mem that is unoccupied by replacement text is called tok ptr , and the first
unused location of tok start is called text ptr . Thus, we usually have tok start [text ptr] = tok ptr .

〈Globals in the outer block 9 〉 +≡
tok mem : packed array [0 . . max toks] of sixteen bits ; { tokens }
tok start : array [text pointer] of sixteen bits ; { directory into tok mem }
text ptr : text pointer ; {first unused position in tok start }
tok ptr : 0 . . max toks ; { first unused position in tok mem }
stat max tok ptr ,max txt ptr : 0 . . max toks ; { largest values occurring }
tats

54. 〈Set initial values 10 〉 +≡
tok ptr ← 1; text ptr ← 1; tok start [0]← 1; tok start [1]← 1;
stat max tok ptr ← 1; max txt ptr ← 1; tats

32 SEARCHING FOR IDENTIFIERS WEAVE §55

55. Searching for identifiers. The hash table described above is updated by the id lookup procedure,
which finds a given identifier and returns a pointer to its index in byte start . The identifier is supposed
to match character by character and it is also supposed to have a given ilk code; the same name may be
present more than once if it is supposed to appear in the index with different typesetting conventions. If the
identifier was not already present, it is inserted into the table.

Because of the way WEAVE’s scanning mechanism works, it is most convenient to let id lookup search for
an identifier that is present in the buffer array. Two other global variables specify its position in the buffer:
the first character is buffer [id first], and the last is buffer [id loc − 1].

〈Globals in the outer block 9 〉 +≡
id first : 0 . . long buf size ; {where the current identifier begins in the buffer }
id loc : 0 . . long buf size ; { just after the current identifier in the buffer }
hash : array [0 . . hash size] of sixteen bits ; { heads of hash lists }

56. Initially all the hash lists are empty.

〈Local variables for initialization 16 〉 +≡
h: 0 . . hash size ; { index into hash-head array }

57. 〈Set initial values 10 〉 +≡
for h← 0 to hash size − 1 do hash [h]← 0;

58. Here now is the main procedure for finding identifiers (and index entries). The parameter t is set to
the desired ilk code. The identifier must either have ilk = t, or we must have t = normal and the identifier
must be a reserved word.

function id lookup(t : eight bits): name pointer ; { finds current identifier }
label found ;
var i: 0 . . long buf size ; { index into buffer }
h: 0 . . hash size ; {hash code }
k: 0 . . max bytes ; { index into byte mem }
w: 0 . . ww − 1; { row of byte mem }
l: 0 . . long buf size ; { length of the given identifier }
p: name pointer ; {where the identifier is being sought }

begin l← id loc − id first ; { compute the length }
〈Compute the hash code h 59 〉;
〈Compute the name location p 60 〉;
if p = name ptr then 〈Enter a new name into the table at position p 62 〉;
id lookup ← p;
end;

59. A simple hash code is used: If the sequence of ASCII codes is c1c2 . . . cm, its hash value will be

(2n−1c1 + 2n−2c2 + · · ·+ cn) mod hash size .

〈Compute the hash code h 59 〉 ≡
h← buffer [id first]; i← id first + 1;
while i < id loc do

begin h← (h + h + buffer [i]) mod hash size ; incr (i);
end

This code is used in section 58.

§60 WEAVE SEARCHING FOR IDENTIFIERS 33

60. If the identifier is new, it will be placed in position p = name ptr , otherwise p will point to its existing
location.

〈Compute the name location p 60 〉 ≡
p← hash [h];
while p 6= 0 do

begin if (length (p) = l) ∧ ((ilk [p] = t) ∨ ((t = normal) ∧ reserved (p))) then
〈Compare name p with current identifier, goto found if equal 61 〉;

p← link [p];
end;

p← name ptr ; { the current identifier is new }
link [p]← hash [h]; hash [h]← p; { insert p at beginning of hash list }

found :

This code is used in section 58.

61. 〈Compare name p with current identifier, goto found if equal 61 〉 ≡
begin i← id first ; k ← byte start [p]; w ← p mod ww ;
while (i < id loc) ∧ (buffer [i] = byte mem [w, k]) do

begin incr (i); incr (k);
end;

if i = id loc then goto found ; { all characters agree }
end

This code is used in section 60.

62. When we begin the following segment of the program, p = name ptr .

〈Enter a new name into the table at position p 62 〉 ≡
begin w ← name ptr mod ww ;
if byte ptr [w] + l > max bytes then overflow (´byte memory´);
if name ptr + ww > max names then overflow (´name´);
i← id first ; k ← byte ptr [w]; { get ready to move the identifier into byte mem }
while i < id loc do

begin byte mem [w, k]← buffer [i]; incr (k); incr (i);
end;

byte ptr [w]← k; byte start [name ptr + ww]← k; incr (name ptr); ilk [p]← t; xref [p]← 0;
end

This code is used in section 58.

34 INITIALIZING THE TABLE OF RESERVED WORDS WEAVE §63

63. Initializing the table of reserved words. We have to get Pascal’s reserved words into the hash
table, and the simplest way to do this is to insert them every time WEAVE is run. A few macros permit us to
do the initialization with a compact program.

define sid9 (#) ≡ buffer [9]← #; cur name ← id lookup
define sid8 (#) ≡ buffer [8]← #; sid9
define sid7 (#) ≡ buffer [7]← #; sid8
define sid6 (#) ≡ buffer [6]← #; sid7
define sid5 (#) ≡ buffer [5]← #; sid6
define sid4 (#) ≡ buffer [4]← #; sid5
define sid3 (#) ≡ buffer [3]← #; sid4
define sid2 (#) ≡ buffer [2]← #; sid3
define sid1 (#) ≡ buffer [1]← #; sid2
define id2 ≡ id first ← 8; sid8
define id3 ≡ id first ← 7; sid7
define id4 ≡ id first ← 6; sid6
define id5 ≡ id first ← 5; sid5
define id6 ≡ id first ← 4; sid4
define id7 ≡ id first ← 3; sid3
define id8 ≡ id first ← 2; sid2
define id9 ≡ id first ← 1; sid1

〈Globals in the outer block 9 〉 +≡
cur name : name pointer ; { points to the identifier just inserted }

§64 WEAVE INITIALIZING THE TABLE OF RESERVED WORDS 35

64. The intended use of the macros above might not be immediately obvious, but the riddle is answered
by the following:

〈Store all the reserved words 64 〉 ≡
id loc ← 10;
id3 ("a")("n")("d")(char like + and sign);
id5 ("a")("r")("r")("a")("y")(array like);
id5 ("b")("e")("g")("i")("n")(begin like);
id4 ("c")("a")("s")("e")(case like);
id5 ("c")("o")("n")("s")("t")(const like);
id3 ("d")("i")("v")(div like);
id2 ("d")("o")(do like);
id6 ("d")("o")("w")("n")("t")("o")(to like);
id4 ("e")("l")("s")("e")(else like);
id3 ("e")("n")("d")(end like);
id4 ("f")("i")("l")("e")(array like);
id3 ("f")("o")("r")(for like);
id8 ("f")("u")("n")("c")("t")("i")("o")("n")(proc like);
id4 ("g")("o")("t")("o")(goto like);
id2 ("i")("f")(if like);
id2 ("i")("n")(char like + set element sign);
id5 ("l")("a")("b")("e")("l")(const like);
id3 ("m")("o")("d")(div like);
id3 ("n")("i")("l")(nil like);
id3 ("n")("o")("t")(char like + not sign);
id2 ("o")("f")(do like);
id2 ("o")("r")(char like + or sign);
id6 ("p")("a")("c")("k")("e")("d")(goto like);
id9 ("p")("r")("o")("c")("e")("d")("u")("r")("e")(proc like);
id7 ("p")("r")("o")("g")("r")("a")("m")(proc like);
id6 ("r")("e")("c")("o")("r")("d")(record like);
id6 ("r")("e")("p")("e")("a")("t")(repeat like);
id3 ("s")("e")("t")(array like);
id4 ("t")("h")("e")("n")(do like);
id2 ("t")("o")(to like);
id4 ("t")("y")("p")("e")(const like);
id5 ("u")("n")("t")("i")("l")(until like);
id3 ("v")("a")("r")(var like);
id5 ("w")("h")("i")("l")("e")(for like);
id4 ("w")("i")("t")("h")(for like);
id7 ("x")("c")("l")("a")("u")("s")("e")(loop like);

This code is used in section 261.

36 SEARCHING FOR MODULE NAMES WEAVE §65

65. Searching for module names. The mod lookup procedure finds the module name mod text [1 . . l]
in the search tree, after inserting it if necessary, and returns a pointer to where it was found.

〈Globals in the outer block 9 〉 +≡
mod text : array [0 . . longest name] of ASCII code ; { name being sought for }

66. According to the rules of WEB, no module name should be a proper prefix of another, so a “clean”
comparison should occur between any two names. The result of mod lookup is 0 if this prefix condition is
violated. An error message is printed when such violations are detected during phase two of WEAVE.

define less = 0 { the first name is lexicographically less than the second }
define equal = 1 { the first name is equal to the second }
define greater = 2 { the first name is lexicographically greater than the second }
define prefix = 3 { the first name is a proper prefix of the second }
define extension = 4 { the first name is a proper extension of the second }

function mod lookup(l : sixteen bits): name pointer ; { finds module name }
label found ;
var c: less . . extension ; { comparison between two names }
j: 0 . . longest name ; { index into mod text }
k: 0 . . max bytes ; { index into byte mem }
w: 0 . . ww − 1; { row of byte mem }
p: name pointer ; { current node of the search tree }
q: name pointer ; { father of node p }

begin c← greater ; q ← 0; p← root ;
while p 6= 0 do

begin 〈Set variable c to the result of comparing the given name to name p 68 〉;
q ← p;
if c = less then p← llink [q]
else if c = greater then p← rlink [q]

else goto found ;
end;
〈Enter a new module name into the tree 67 〉;

found : if c 6= equal then
begin err print (´! Incompatible section names´); p← 0;
end;

mod lookup ← p;
end;

67. 〈Enter a new module name into the tree 67 〉 ≡
w ← name ptr mod ww ; k ← byte ptr [w];
if k + l > max bytes then overflow (´byte memory´);
if name ptr > max names − ww then overflow (´name´);
p← name ptr ;
if c = less then llink [q]← p
else rlink [q]← p;
llink [p]← 0; rlink [p]← 0; xref [p]← 0; c← equal ;
for j ← 1 to l do byte mem [w, k + j − 1]← mod text [j];
byte ptr [w]← k + l; byte start [name ptr + ww]← k + l; incr (name ptr);

This code is used in section 66.

§68 WEAVE SEARCHING FOR MODULE NAMES 37

68. 〈Set variable c to the result of comparing the given name to name p 68 〉 ≡
begin k ← byte start [p]; w ← p mod ww ; c← equal ; j ← 1;
while (k < byte start [p + ww]) ∧ (j ≤ l) ∧ (mod text [j] = byte mem [w, k]) do

begin incr (k); incr (j);
end;

if k = byte start [p + ww] then
if j > l then c← equal
else c← extension

else if j > l then c← prefix
else if mod text [j] < byte mem [w, k] then c← less

else c← greater ;
end

This code is used in sections 66 and 69.

69. The prefix lookup procedure is supposed to find exactly one module name that has mod text [1 . . l] as
a prefix. Actually the algorithm silently accepts also the situation that some module name is a prefix of
mod text [1 . . l], because the user who painstakingly typed in more than necessary probably doesn’t want to
be told about the wasted effort.

Recall that error messages are not printed during phase one. It is possible that the prefix lookup procedure
will fail on the first pass, because there is no match, yet the second pass might detect no error if a matching
module name has occurred after the offending prefix. In such a case the cross-reference information will be
incorrect and WEAVE will report no error. However, such a mistake will be detected by the TANGLE processor.

function prefix lookup(l : sixteen bits): name pointer ; { finds name extension }
var c: less . . extension ; { comparison between two names }

count : 0 . . max names ; { the number of hits }
j: 0 . . longest name ; { index into mod text }
k: 0 . . max bytes ; { index into byte mem }
w: 0 . . ww − 1; { row of byte mem }
p: name pointer ; { current node of the search tree }
q: name pointer ; { another place to resume the search after one branch is done }
r: name pointer ; { extension found }

begin q ← 0; p← root ; count ← 0; r ← 0; { begin search at root of tree }
while p 6= 0 do

begin 〈Set variable c to the result of comparing the given name to name p 68 〉;
if c = less then p← llink [p]
else if c = greater then p← rlink [p]

else begin r ← p; incr (count); q ← rlink [p]; p← llink [p];
end;

if p = 0 then
begin p← q; q ← 0;
end;

end;
if count 6= 1 then

if count = 0 then err print (´! Name does not match´)
else err print (´! Ambiguous prefix´);

prefix lookup ← r; { the result will be 0 if there was no match }
end;

38 LEXICAL SCANNING WEAVE §70

70. Lexical scanning. Let us now consider the subroutines that read the WEB source file and break it
into meaningful units. There are four such procedures: One simply skips to the next ‘@ ’ or ‘@*’ that begins
a module; another passes over the TEX text at the beginning of a module; the third passes over the TEX
text in a Pascal comment; and the last, which is the most interesting, gets the next token of a Pascal text.

71. But first we need to consider the low-level routine get line that takes care of merging change file into
web file . The get line procedure also updates the line numbers for error messages.

〈Globals in the outer block 9 〉 +≡
ii : integer ; { general purpose for loop variable in the outer block }
line : integer ; { the number of the current line in the current file }
other line : integer ; { the number of the current line in the input file that is not currently being read }
temp line : integer ; { used when interchanging line with other line }
limit : 0 . . long buf size ; { the last character position occupied in the buffer }
loc : 0 . . long buf size ; { the next character position to be read from the buffer }
input has ended : boolean ; { if true , there is no more input }
changing : boolean ; { if true , the current line is from change file }
change pending : boolean ;

{ if true , the current change is not yet recorded in changed module [module count] }

72. As we change changing from true to false and back again, we must remember to swap the values of
line and other line so that the err print routine will be sure to report the correct line number.

define change changing ≡ changing ← ¬changing ; temp line ← other line ; other line ← line ;
line ← temp line { line ↔ other line }

73. When changing is false , the next line of change file is kept in change buffer [0 . . change limit], for
purposes of comparison with the next line of web file . After the change file has been completely input, we
set change limit ← 0, so that no further matches will be made.

〈Globals in the outer block 9 〉 +≡
change buffer : array [0 . . buf size] of ASCII code ;
change limit : 0 . . buf size ; { the last position occupied in change buffer }

74. Here’s a simple function that checks if the two buffers are different.

function lines dont match : boolean ;
label exit ;
var k: 0 . . buf size ; { index into the buffers }
begin lines dont match ← true ;
if change limit 6= limit then return;
if limit > 0 then

for k ← 0 to limit − 1 do
if change buffer [k] 6= buffer [k] then return;

lines dont match ← false ;
exit : end;

§75 WEAVE LEXICAL SCANNING 39

75. Procedure prime the change buffer sets change buffer in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have (change limit = 0) ∧ ¬changing if
and only if the change file is exhausted. This procedure is called only when changing is true; hence error
messages will be reported correctly.

procedure prime the change buffer ;
label continue , done , exit ;
var k: 0 . . buf size ; { index into the buffers }
begin change limit ← 0; { this value will be used if the change file ends }
〈Skip over comment lines in the change file; return if end of file 76 〉;
〈Skip to the next nonblank line; return if end of file 77 〉;
〈Move buffer and limit to change buffer and change limit 78 〉;

exit : end;

76. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).

〈Skip over comment lines in the change file; return if end of file 76 〉 ≡
loop begin incr (line);

if ¬input ln (change file) then return;
if limit < 2 then goto continue ;
if buffer [0] 6= "@" then goto continue ;
if (buffer [1] ≥ "X") ∧ (buffer [1] ≤ "Z") then buffer [1]← buffer [1] + "z"− "Z"; { lowercasify }
if buffer [1] = "x" then goto done ;
if (buffer [1] = "y") ∨ (buffer [1] = "z") then

begin loc ← 2; err print (´! Where is the matching @x?´);
end;

continue : end;
done :

This code is used in section 75.

77. Here we are looking at lines following the @x.

〈Skip to the next nonblank line; return if end of file 77 〉 ≡
repeat incr (line);

if ¬input ln (change file) then
begin err print (´! Change file ended after @x´); return;
end;

until limit > 0;

This code is used in section 75.

78. 〈Move buffer and limit to change buffer and change limit 78 〉 ≡
begin change limit ← limit ;
if limit > 0 then

for k ← 0 to limit − 1 do change buffer [k]← buffer [k];
end

This code is used in sections 75 and 79.

40 LEXICAL SCANNING WEAVE §79

79. The following procedure is used to see if the next change entry should go into effect; it is called only
when changing is false. The idea is to test whether or not the current contents of buffer matches the current
contents of change buffer . If not, there’s nothing more to do; but if so, a change is called for: All of the
text down to the @y is supposed to match. An error message is issued if any discrepancy is found. Then the
procedure prepares to read the next line from change file .

When a match is found, the current module is marked as changed unless the first line after the @x and
after the @y both start with either ´@*´ or ´@ ´ (possibly preceded by whitespace).

define if module start then make change pending (#) ≡ loc ← 0; buffer [limit]← "!";
while (buffer [loc] = " ") ∨ (buffer [loc] = tab mark) do incr (loc);
buffer [limit]← " ";
if buffer [loc] = "@" then

if (buffer [loc + 1] = "*") ∨ (buffer [loc + 1] = " ") ∨ (buffer [loc + 1] = tab mark) then
change pending ← #

procedure check change ; { switches to change file if the buffers match }
label exit ;
var n: integer ; { the number of discrepancies found }
k: 0 . . buf size ; { index into the buffers }

begin if lines dont match then return;
change pending ← false ;
if ¬changed module [module count] then

begin if module start then make change pending (true);
if ¬change pending then changed module [module count]← true ;
end;

n← 0;
loop begin change changing ; {now it’s true }

incr (line);
if ¬input ln (change file) then

begin err print (´! Change file ended before @y´); change limit ← 0; change changing ;
{ false again }

return;
end;

〈 If the current line starts with @y, report any discrepancies and return 80 〉;
〈Move buffer and limit to change buffer and change limit 78 〉;
change changing ; {now it’s false }
incr (line);
if ¬input ln (web file) then

begin err print (´! WEB file ended during a change´); input has ended ← true ; return;
end;

if lines dont match then incr (n);
end;

exit : end;

§80 WEAVE LEXICAL SCANNING 41

80. 〈 If the current line starts with @y, report any discrepancies and return 80 〉 ≡
if limit > 1 then

if buffer [0] = "@" then
begin if (buffer [1] ≥ "X") ∧ (buffer [1] ≤ "Z") then buffer [1]← buffer [1] + "z"− "Z";

{ lowercasify }
if (buffer [1] = "x") ∨ (buffer [1] = "z") then

begin loc ← 2; err print (´! Where is the matching @y?´);
end

else if buffer [1] = "y" then
begin if n > 0 then

begin loc ← 2;
err print (´! Hmm... ´, n : 1, ´ of the preceding lines failed to match´);
end;

return;
end;

end

This code is used in section 79.

81. The reset input procedure, which gets WEAVE ready to read the user’s WEB input, is used at the beginning
of phases one and two.

procedure reset input ;
begin open input ; line ← 0; other line ← 0;
changing ← true ; prime the change buffer ; change changing ;
limit ← 0; loc ← 1; buffer [0]← " "; input has ended ← false ;
end;

82. The get line procedure is called when loc > limit ; it puts the next line of merged input into the buffer
and updates the other variables appropriately. A space is placed at the right end of the line.

procedure get line ; { inputs the next line }
label restart ;
begin restart : if changing then 〈Read from change file and maybe turn off changing 84 〉;
if ¬changing then

begin 〈Read from web file and maybe turn on changing 83 〉;
if changing then goto restart ;
end;

loc ← 0; buffer [limit]← " ";
end;

83. 〈Read from web file and maybe turn on changing 83 〉 ≡
begin incr (line);
if ¬input ln (web file) then input has ended ← true
else if limit = change limit then

if buffer [0] = change buffer [0] then
if change limit > 0 then check change ;

end

This code is used in section 82.

42 LEXICAL SCANNING WEAVE §84

84. 〈Read from change file and maybe turn off changing 84 〉 ≡
begin incr (line);
if ¬input ln (change file) then

begin err print (´! Change file ended without @z´); buffer [0]← "@"; buffer [1]← "z"; limit ← 2;
end;

if limit > 0 then { check if the change has ended }
begin if change pending then

begin if module start then make change pending (false);
if change pending then

begin changed module [module count]← true ; change pending ← false ;
end;

end;
buffer [limit]← " ";
if buffer [0] = "@" then

begin if (buffer [1] ≥ "X") ∧ (buffer [1] ≤ "Z") then buffer [1]← buffer [1] + "z"− "Z";
{ lowercasify }

if (buffer [1] = "x") ∨ (buffer [1] = "y") then
begin loc ← 2; err print (´! Where is the matching @z?´);
end

else if buffer [1] = "z" then
begin prime the change buffer ; change changing ;
end;

end;
end;

end

This code is used in section 82.

85. At the end of the program, we will tell the user if the change file had a line that didn’t match any
relevant line in web file .

〈Check that all changes have been read 85 〉 ≡
if change limit 6= 0 then { changing is false }

begin for ii ← 0 to change limit do buffer [ii]← change buffer [ii];
limit ← change limit ; changing ← true ; line ← other line ; loc ← change limit ;
err print (´! Change file entry did not match´);
end

This code is used in section 261.

§86 WEAVE LEXICAL SCANNING 43

86. Control codes in WEB, which begin with ‘@’, are converted into a numeric code designed to simplify
WEAVE’s logic; for example, larger numbers are given to the control codes that denote more significant
milestones, and the code of new module should be the largest of all. Some of these numeric control codes
take the place of ASCII control codes that will not otherwise appear in the output of the scanning routines.

define ignore = 0 { control code of no interest to WEAVE }
define verbatim = 2́ { extended ASCII alpha will not appear }
define force line = 3́ { extended ASCII beta will not appear }
define begin comment = 1́1 {ASCII tab mark will not appear }
define end comment = 1́2 {ASCII line feed will not appear }
define octal = 1́4 {ASCII form feed will not appear }
define hex = 1́5 {ASCII carriage return will not appear }
define double dot = 4́0 {ASCII space will not appear except in strings }
define no underline = 1́75 { this code will be intercepted without confusion }
define underline = 1́76 { this code will be intercepted without confusion }
define param = 1́77 {ASCII delete will not appear }
define xref roman = 2́03 { control code for ‘@^’ }
define xref wildcard = 2́04 { control code for ‘@:’ }
define xref typewriter = 2́05 { control code for ‘@.’ }
define TeX string = 2́06 { control code for ‘@t’ }
define check sum = 2́07 { control code for ‘@$’ }
define join = 2́10 { control code for ‘@&’ }
define thin space = 2́11 { control code for ‘@,’ }
define math break = 2́12 { control code for ‘@|’ }
define line break = 2́13 { control code for ‘@/’ }
define big line break = 2́14 { control code for ‘@#’ }
define no line break = 2́15 { control code for ‘@+’ }
define pseudo semi = 2́16 { control code for ‘@;’ }
define format = 2́17 { control code for ‘@f’ }
define definition = 2́20 { control code for ‘@d’ }
define begin Pascal = 2́21 { control code for ‘@p’ }
define module name = 2́22 { control code for ‘@<’ }
define new module = 2́23 { control code for ‘@ ’ and ‘@*’ }

44 LEXICAL SCANNING WEAVE §87

87. Control codes are converted from ASCII to WEAVE’s internal representation by the control code routine.

function control code (c : ASCII code): eight bits ; { convert c after @ }
begin case c of
"@": control code ← "@"; { ‘quoted’ at sign }
"´": control code ← octal ; {precedes octal constant }
"""": control code ← hex ; { precedes hexadecimal constant }
"$": control code ← check sum ; {precedes check sum constant }
" ", tab mark , "*": control code ← new module ; { beginning of a new module }
"=": control code ← verbatim ;
"\": control code ← force line ;
"D", "d": control code ← definition ; {macro definition }
"F", "f": control code ← format ; { format definition }
"{": control code ← begin comment ; { begin-comment delimiter }
"}": control code ← end comment ; { end-comment delimiter }
"P", "p": control code ← begin Pascal ; {Pascal text in unnamed module }
"&": control code ← join ; { concatenate two tokens }
"<": control code ← module name ; { beginning of a module name }
">": begin err print (´! Extra @>´); control code ← ignore ;

end; { end of module name should not be discovered in this way }
"T", "t": control code ← TeX string ; {TEX box within Pascal }
"!": control code ← underline ; { set definition flag }
"?": control code ← no underline ; { reset definition flag }
"^": control code ← xref roman ; { index entry to be typeset normally }
":": control code ← xref wildcard ; { index entry to be in user format }
".": control code ← xref typewriter ; { index entry to be in typewriter type }
",": control code ← thin space ; { puts extra space in Pascal format }
"|": control code ← math break ; { allows a break in a formula }
"/": control code ← line break ; { forces end-of-line in Pascal format }
"#": control code ← big line break ; { forces end-of-line and some space besides }
"+": control code ← no line break ; { cancels end-of-line down to single space }
";": control code ← pseudo semi ; { acts like a semicolon, but is invisible }
〈Special control codes allowed only when debugging 88 〉
othercases begin err print (´! Unknown control code´); control code ← ignore ;

end
endcases;
end;

88. If WEAVE is compiled with debugging commands, one can write @2, @1, and @0 to turn tracing fully on,
partly on, and off, respectively.

〈Special control codes allowed only when debugging 88 〉 ≡
debug

"0", "1", "2": begin tracing ← c− "0"; control code ← ignore ;
end;
gubed

This code is used in section 87.

§89 WEAVE LEXICAL SCANNING 45

89. The skip limbo routine is used on the first pass to skip through portions of the input that are not
in any modules, i.e., that precede the first module. After this procedure has been called, the value of
input has ended will tell whether or not a new module has actually been found.

procedure skip limbo ; { skip to next module }
label exit ;
var c: ASCII code ; { character following @ }
begin loop

if loc > limit then
begin get line ;
if input has ended then return;
end

else begin buffer [limit + 1]← "@";
while buffer [loc] 6= "@" do incr (loc);
if loc ≤ limit then

begin loc ← loc + 2; c← buffer [loc − 1];
if (c = " ") ∨ (c = tab mark) ∨ (c = "*") then return;
end;

end;
exit : end;

90. The skip TeX routine is used on the first pass to skip through the TEX code at the beginning of a
module. It returns the next control code or ‘|’ found in the input. A new module is assumed to exist at the
very end of the file.

function skip TeX : eight bits ; { skip past pure TEX code }
label done ;
var c: eight bits ; { control code found }
begin loop

begin if loc > limit then
begin get line ;
if input has ended then

begin c← new module ; goto done ;
end;

end;
buffer [limit + 1]← "@";
repeat c← buffer [loc]; incr (loc);

if c = "|" then goto done ;
until c = "@";
if loc ≤ limit then

begin c← control code (buffer [loc]); incr (loc); goto done ;
end;

end;
done : skip TeX ← c;

end;

46 LEXICAL SCANNING WEAVE §91

91. The skip comment routine is used on the first pass to skip through TEX code in Pascal comments. The
bal parameter tells how many left braces are assumed to have been scanned when this routine is called, and
the procedure returns a corresponding value of bal at the point that scanning has stopped. Scanning stops
either at a ‘|’ that introduces Pascal text, in which case the returned value is positive, or it stops at the end
of the comment, in which case the returned value is zero. The scanning also stops in anomalous situations
when the comment doesn’t end or when it contains an illegal use of @. One should call skip comment (1)
when beginning to scan a comment.

function skip comment (bal : eight bits): eight bits ; { skips TEX code in comments }
label done ;
var c: ASCII code ; { the current character }
begin loop

begin if loc > limit then
begin get line ;
if input has ended then

begin bal ← 0; goto done ;
end; { an error message will occur in phase two }

end;
c← buffer [loc]; incr (loc);
if c = "|" then goto done ;
〈Do special things when c = "@", "\", "{", "}"; goto done at end 92 〉;
end;

done : skip comment ← bal ;
end;

92. 〈Do special things when c = "@", "\", "{", "}"; goto done at end 92 〉 ≡
if c = "@" then

begin c← buffer [loc];
if (c 6= " ") ∧ (c 6= tab mark) ∧ (c 6= "*") then incr (loc)
else begin decr (loc); bal ← 0; goto done ;

end { an error message will occur in phase two }
end

else if (c = "\") ∧ (buffer [loc] 6= "@") then incr (loc)
else if c = "{" then incr (bal)

else if c = "}" then
begin decr (bal);
if bal = 0 then goto done ;
end

This code is used in section 91.

§93 WEAVE INPUTTING THE NEXT TOKEN 47

93. Inputting the next token. As stated above, WEAVE’s most interesting lexical scanning routine
is the get next function that inputs the next token of Pascal input. However, get next is not especially
complicated.

The result of get next is either an ASCII code for some special character, or it is a special code representing
a pair of characters (e.g., ‘:=’ or ‘..’), or it is the numeric value computed by the control code procedure,
or it is one of the following special codes:

exponent : The ‘E’ in a real constant.

identifier : In this case the global variables id first and id loc will have been set to the appropriate values
needed by the id lookup routine.

string : In this case the global variables id first and id loc will have been set to the beginning and ending-
plus-one locations in the buffer. The string ends with the first reappearance of its initial delimiter;
thus, for example,

´This isn´´t a single string´

will be treated as two consecutive strings, the first being ´This isn´.

Furthermore, some of the control codes cause get next to take additional actions:

xref roman , xref wildcard , xref typewriter , TeX string : The values of id first and id loc will be set so that
the string in question appears in buffer [id first . . (id loc − 1)].

module name : In this case the global variable cur module will point to the byte start entry for the module
name that has just been scanned.

If get next sees ‘@!’ or ‘@?’, it sets xref switch to def flag or zero and goes on to the next token.
A global variable called scanning hex is set true during the time that the letters A through F should be

treated as if they were digits.

define exponent = 2́00 { E or e following a digit }
define string = 2́01 {Pascal string or WEB precomputed string }
define identifier = 2́02 {Pascal identifier or reserved word }

〈Globals in the outer block 9 〉 +≡
cur module : name pointer ; { name of module just scanned }
scanning hex : boolean ; { are we scanning a hexadecimal constant? }

94. 〈Set initial values 10 〉 +≡
scanning hex ← false ;

48 INPUTTING THE NEXT TOKEN WEAVE §95

95. As one might expect, get next consists mostly of a big switch that branches to the various special cases
that can arise.

define up to(#) ≡ #− 24, #− 23, #− 22, #− 21, #− 20, #− 19, #− 18, #− 17, #− 16, #− 15, #− 14, #− 13,
#− 12, #− 11, #− 10, #− 9, #− 8, #− 7, #− 6, #− 5, #− 4, #− 3, #− 2, #− 1, #

function get next : eight bits ; {produces the next input token }
label restart , done , found ;
var c: eight bits ; { the current character }
d: eight bits ; { the next character }
j, k: 0 . . longest name ; { indices into mod text }

begin restart : if loc > limit then
begin get line ;
if input has ended then

begin c← new module ; goto found ;
end;

end;
c← buffer [loc]; incr (loc);
if scanning hex then 〈Go to found if c is a hexadecimal digit, otherwise set scanning hex ← false 96 〉;
case c of
"A", up to("Z"), "a", up to("z"): 〈Get an identifier 98 〉;
"´", """": 〈Get a string 99 〉;
"@": 〈Get control code and possible module name 100 〉;
〈Compress two-symbol combinations like ‘:=’ 97 〉
" ", tab mark : goto restart ; { ignore spaces and tabs }
"}": begin err print (´! Extra }´); goto restart ;

end;
othercases if c ≥ 128 then goto restart { ignore nonstandard characters }

else do nothing
endcases;

found : debug if trouble shooting then debug help ; gubed
get next ← c;
end;

96. 〈Go to found if c is a hexadecimal digit, otherwise set scanning hex ← false 96 〉 ≡
if ((c ≥ "0") ∧ (c ≤ "9")) ∨ ((c ≥ "A") ∧ (c ≤ "F")) then goto found
else scanning hex ← false

This code is used in section 95.

§97 WEAVE INPUTTING THE NEXT TOKEN 49

97. Note that the following code substitutes @{ and @} for the respective combinations ‘(*’ and ‘*)’.
Explicit braces should be used for TEX comments in Pascal text.

define compress (#) ≡
begin if loc ≤ limit then

begin c← #; incr (loc);
end;

end

〈Compress two-symbol combinations like ‘:=’ 97 〉 ≡
".": if buffer [loc] = "." then compress (double dot)

else if buffer [loc] = ")" then compress ("]");
":": if buffer [loc] = "=" then compress (left arrow);
"=": if buffer [loc] = "=" then compress (equivalence sign);
">": if buffer [loc] = "=" then compress (greater or equal);
"<": if buffer [loc] = "=" then compress (less or equal)

else if buffer [loc] = ">" then compress (not equal);
"(": if buffer [loc] = "*" then compress (begin comment)

else if buffer [loc] = "." then compress ("[");
"*": if buffer [loc] = ")" then compress (end comment);

This code is used in section 95.

98. 〈Get an identifier 98 〉 ≡
begin if ((c = "E") ∨ (c = "e")) ∧ (loc > 1) then

if (buffer [loc − 2] ≤ "9") ∧ (buffer [loc − 2] ≥ "0") then c← exponent ;
if c 6= exponent then

begin decr (loc); id first ← loc ;
repeat incr (loc); d← buffer [loc];
until ((d < "0") ∨ ((d > "9") ∧ (d < "A")) ∨ ((d > "Z") ∧ (d < "a")) ∨ (d > "z")) ∧ (d 6= "_");
c← identifier ; id loc ← loc ;
end;

end

This code is used in section 95.

99. A string that starts and ends with single or double quote marks is scanned by the following piece of
the program.

〈Get a string 99 〉 ≡
begin id first ← loc − 1;
repeat d← buffer [loc]; incr (loc);

if loc > limit then
begin err print (´! String constant didn´´t end´); loc ← limit ; d← c;
end;

until d = c;
id loc ← loc ; c← string ;
end

This code is used in section 95.

50 INPUTTING THE NEXT TOKEN WEAVE §100

100. After an @ sign has been scanned, the next character tells us whether there is more work to do.

〈Get control code and possible module name 100 〉 ≡
begin c← control code (buffer [loc]); incr (loc);
if c = underline then

begin xref switch ← def flag ; goto restart ;
end

else if c = no underline then
begin xref switch ← 0; goto restart ;
end

else if (c ≤ TeX string) ∧ (c ≥ xref roman) then 〈Scan to the next @> 106 〉
else if c = hex then scanning hex ← true

else if c = module name then 〈Scan the module name and make cur module point to it 101 〉
else if c = verbatim then 〈Scan a verbatim string 107 〉;

end

This code is used in section 95.

101. The occurrence of a module name sets xref switch to zero, because the module name might (for
example) follow var.

〈Scan the module name and make cur module point to it 101 〉 ≡
begin 〈Put module name into mod text [1 . . k] 103 〉;
if k > 3 then

begin if (mod text [k] = ".") ∧ (mod text [k − 1] = ".") ∧ (mod text [k − 2] = ".") then
cur module ← prefix lookup(k − 3)

else cur module ← mod lookup(k);
end

else cur module ← mod lookup(k);
xref switch ← 0;
end

This code is used in section 100.

102. Module names are placed into the mod text array with consecutive spaces, tabs, and carriage-returns
replaced by single spaces. There will be no spaces at the beginning or the end. (We set mod text [0]← " "

to facilitate this, since the mod lookup routine uses mod text [1] as the first character of the name.)

〈Set initial values 10 〉 +≡
mod text [0]← " ";

§103 WEAVE INPUTTING THE NEXT TOKEN 51

103. 〈Put module name into mod text [1 . . k] 103 〉 ≡
k ← 0;
loop begin if loc > limit then

begin get line ;
if input has ended then

begin err print (´! Input ended in section name´); loc ← 1; goto done ;
end;

end;
d← buffer [loc]; 〈 If end of name, goto done 104 〉;
incr (loc);
if k < longest name − 1 then incr (k);
if (d = " ") ∨ (d = tab mark) then

begin d← " ";
if mod text [k − 1] = " " then decr (k);
end;

mod text [k]← d;
end;

done : 〈Check for overlong name 105 〉;
if (mod text [k] = " ") ∧ (k > 0) then decr (k)

This code is used in section 101.

104. 〈 If end of name, goto done 104 〉 ≡
if d = "@" then

begin d← buffer [loc + 1];
if d = ">" then

begin loc ← loc + 2; goto done ;
end;

if (d = " ") ∨ (d = tab mark) ∨ (d = "*") then
begin err print (´! Section name didn´´t end´); goto done ;
end;

incr (k); mod text [k]← "@"; incr (loc); { now d = buffer [loc] again }
end

This code is used in section 103.

105. 〈Check for overlong name 105 〉 ≡
if k ≥ longest name − 2 then

begin print nl (´! Section name too long: ´);
for j ← 1 to 25 do print (xchr [mod text [j]]);
print (´...´); mark harmless ;
end

This code is used in section 103.

52 INPUTTING THE NEXT TOKEN WEAVE §106

106. 〈Scan to the next @> 106 〉 ≡
begin id first ← loc ; buffer [limit + 1]← "@";
while buffer [loc] 6= "@" do incr (loc);
id loc ← loc ;
if loc > limit then

begin err print (´! Control text didn´´t end´); loc ← limit ;
end

else begin loc ← loc + 2;
if buffer [loc − 1] 6= ">" then err print (´! Control codes are forbidden in control text´);
end;

end

This code is used in section 100.

107. A verbatim Pascal string will be treated like ordinary strings, but with no surrounding delimiters. At
the present point in the program we have buffer [loc − 1] = verbatim ; we must set id first to the beginning
of the string itself, and id loc to its ending-plus-one location in the buffer. We also set loc to the position
just after the ending delimiter.

〈Scan a verbatim string 107 〉 ≡
begin id first ← loc ; incr (loc); buffer [limit + 1]← "@"; buffer [limit + 2]← ">";
while (buffer [loc] 6= "@") ∨ (buffer [loc + 1] 6= ">") do incr (loc);
if loc ≥ limit then err print (´! Verbatim string didn´´t end´);
id loc ← loc ; loc ← loc + 2;
end

This code is used in section 100.

§108 WEAVE PHASE ONE PROCESSING 53

108. Phase one processing. We now have accumulated enough subroutines to make it possible to
carry out WEAVE’s first pass over the source file. If everything works right, both phase one and phase two of
WEAVE will assign the same numbers to modules, and these numbers will agree with what TANGLE does.

The global variable next control often contains the most recent output of get next ; in interesting cases,
this will be the control code that ended a module or part of a module.

〈Globals in the outer block 9 〉 +≡
next control : eight bits ; { control code waiting to be acting upon }

109. The overall processing strategy in phase one has the following straightforward outline.

〈Phase I: Read all the user’s text and store the cross references 109 〉 ≡
phase one ← true ; phase three ← false ; reset input ; module count ← 0; skip limbo ;
change exists ← false ;
while ¬input has ended do 〈Store cross reference data for the current module 110 〉;
changed module [module count]← change exists ; { the index changes if anything does }
phase one ← false ; {prepare for second phase }
〈Print error messages about unused or undefined module names 120 〉;

This code is used in section 261.

110. 〈Store cross reference data for the current module 110 〉 ≡
begin incr (module count);
if module count = max modules then overflow (´section number´);
changed module [module count]← changing ; { it will become true if any line changes }
if buffer [loc − 1] = "*" then

begin print (´*´,module count : 1); update terminal ; { print a progress report }
end;
〈Store cross references in the TEX part of a module 113 〉;
〈Store cross references in the definition part of a module 115 〉;
〈Store cross references in the Pascal part of a module 117 〉;
if changed module [module count] then change exists ← true ;
end

This code is used in section 109.

54 PHASE ONE PROCESSING WEAVE §111

111. The Pascal xref subroutine stores references to identifiers in Pascal text material beginning with the
current value of next control and continuing until next control is ‘{’ or ‘|’, or until the next “milestone”
is passed (i.e., next control ≥ format). If next control ≥ format when Pascal xref is called, nothing will
happen; but if next control = "|" upon entry, the procedure assumes that this is the ‘|’ preceding Pascal
text that is to be processed.

The program uses the fact that our internal code numbers satisfy the relations xref roman = identifier +
roman and xref wildcard = identifier +wildcard and xref typewriter = identifier + typewriter and normal =
0. An implied ‘@!’ is inserted after function, procedure, program, and var.

procedure Pascal xref ; {makes cross references for Pascal identifiers }
label exit ;
var p: name pointer ; { a referenced name }
begin while next control < format do

begin if (next control ≥ identifier) ∧ (next control ≤ xref typewriter) then
begin p← id lookup(next control − identifier); new xref (p);
if (ilk [p] = proc like) ∨ (ilk [p] = var like) then xref switch ← def flag ; { implied ‘@!’ }
end;

next control ← get next ;
if (next control = "|") ∨ (next control = "{") then return;
end;

exit : end;

112. The outer xref subroutine is like Pascal xref but it begins with next control 6= "|" and ends with
next control ≥ format . Thus, it handles Pascal text with embedded comments.

procedure outer xref ; { extension of Pascal xref }
var bal : eight bits ; { brace level in comment }
begin while next control < format do

if next control 6= "{" then Pascal xref
else begin bal ← skip comment (1); next control ← "|";

while bal > 0 do
begin Pascal xref ;
if next control = "|" then bal ← skip comment (bal)
else bal ← 0; { an error will be reported in phase two }
end;

end;
end;

§113 WEAVE PHASE ONE PROCESSING 55

113. In the TEX part of a module, cross reference entries are made only for the identifiers in Pascal texts
enclosed in | . . . |, or for control texts enclosed in @^ . . . @> or @. . . . @> or @: . . . @>.

〈Store cross references in the TEX part of a module 113 〉 ≡
repeat next control ← skip TeX ;

case next control of
underline : xref switch ← def flag ;
no underline : xref switch ← 0;
"|": Pascal xref ;
xref roman , xref wildcard , xref typewriter ,module name : begin loc ← loc − 2;

next control ← get next ; { scan to @> }
if next control 6= module name then new xref (id lookup(next control − identifier));
end;

othercases do nothing
endcases;

until next control ≥ format

This code is used in section 110.

114. During the definition and Pascal parts of a module, cross references are made for all identifiers except
reserved words; however, the identifiers in a format definition are referenced even if they are reserved. The
TEX code in comments is, of course, ignored, except for Pascal portions enclosed in | . . . |; the text of a
module name is skipped entirely, even if it contains | . . . | constructions.

The variables lhs and rhs point to the respective identifiers involved in a format definition.

〈Globals in the outer block 9 〉 +≡
lhs , rhs : name pointer ; { indices into byte start for format identifiers }

115. When we get to the following code we have next control ≥ format .

〈Store cross references in the definition part of a module 115 〉 ≡
while next control ≤ definition do { format or definition }

begin xref switch ← def flag ; { implied @! }
if next control = definition then next control ← get next
else 〈Process a format definition 116 〉;
outer xref ;
end

This code is used in section 110.

56 PHASE ONE PROCESSING WEAVE §116

116. Error messages for improper format definitions will be issued in phase two. Our job in phase one is
to define the ilk of a properly formatted identifier, and to fool the new xref routine into thinking that the
identifier on the right-hand side of the format definition is not a reserved word.

〈Process a format definition 116 〉 ≡
begin next control ← get next ;
if next control = identifier then

begin lhs ← id lookup(normal); ilk [lhs]← normal ; new xref (lhs); next control ← get next ;
if next control = equivalence sign then

begin next control ← get next ;
if next control = identifier then

begin rhs ← id lookup(normal); ilk [lhs]← ilk [rhs]; ilk [rhs]← normal ; new xref (rhs);
ilk [rhs]← ilk [lhs]; next control ← get next ;
end;

end;
end;

end

This code is used in section 115.

117. Finally, when the TEX and definition parts have been treated, we have next control ≥ begin Pascal .

〈Store cross references in the Pascal part of a module 117 〉 ≡
if next control ≤ module name then { begin Pascal or module name }

begin if next control = begin Pascal then mod xref switch ← 0
else mod xref switch ← def flag ;
repeat if next control = module name then new mod xref (cur module);

next control ← get next ; outer xref ;
until next control > module name ;
end

This code is used in section 110.

118. After phase one has looked at everything, we want to check that each module name was both defined
and used. The variable cur xref will point to cross references for the current module name of interest.

〈Globals in the outer block 9 〉 +≡
cur xref : xref number ; { temporary cross reference pointer }

119. The following recursive procedure walks through the tree of module names and prints out anomalies.

procedure mod check (p : name pointer); { print anomalies in subtree p }
begin if p > 0 then

begin mod check (llink [p]);
cur xref ← xref [p];
if num (cur xref) < def flag then

begin print nl (´! Never defined: <´); print id (p); print (´>´); mark harmless ;
end;

while num (cur xref) ≥ def flag do cur xref ← xlink (cur xref);
if cur xref = 0 then

begin print nl (´! Never used: <´); print id (p); print (´>´); mark harmless ;
end;

mod check (rlink [p]);
end;

end;

120. 〈Print error messages about unused or undefined module names 120 〉 ≡ mod check (root)

This code is used in section 109.

§121 WEAVE LOW-LEVEL OUTPUT ROUTINES 57

121. Low-level output routines. The TEX output is supposed to appear in lines at most line length
characters long, so we place it into an output buffer. During the output process, out line will hold the
current line number of the line about to be output.

〈Globals in the outer block 9 〉 +≡
out buf : array [0 . . line length] of ASCII code ; { assembled characters }
out ptr : 0 . . line length ; {number of characters in out buf }
out line : integer ; { coordinates of next line to be output }

122. The flush buffer routine empties the buffer up to a given breakpoint, and moves any remaining
characters to the beginning of the next line. If the per cent parameter is true , a "%" is appended to the line
that is being output; in this case the breakpoint b should be strictly less than line length . If the per cent
parameter is false , trailing blanks are suppressed. The characters emptied from the buffer form a new line
of output; if the carryover parameter is true, a "%" in that line will be carried over to the next line (so that
TEX will ignore the completion of commented-out text).

procedure flush buffer (b : eight bits ; per cent , carryover : boolean);
{ outputs out buf [1 . . b], where b ≤ out ptr }

label done , found ;
var j, k: 0 . . line length ;
begin j ← b;
if ¬per cent then { remove trailing blanks }

loop begin if j = 0 then goto done ;
if out buf [j] 6= " " then goto done ;
decr (j);
end;

done : for k ← 1 to j do write (tex file , xchr [out buf [k]]);
if per cent then write (tex file , xchr ["%"]);
write ln (tex file); incr (out line);
if carryover then

for k ← 1 to j do
if out buf [k] = "%" then

if (k = 1) ∨ (out buf [k − 1] 6= "\") then { comment mode should be preserved }
begin out buf [b]← "%"; decr (b); goto found ;
end;

found : if (b < out ptr) then
for k ← b + 1 to out ptr do out buf [k − b]← out buf [k];

out ptr ← out ptr − b;
end;

58 LOW-LEVEL OUTPUT ROUTINES WEAVE §123

123. When we are copying TEX source material, we retain line breaks that occur in the input, except that
an empty line is not output when the TEX source line was nonempty. For example, a line of the TEX file
that contains only an index cross-reference entry will not be copied. The finish line routine is called just
before get line inputs a new line, and just after a line break token has been emitted during the output of
translated Pascal text.

procedure finish line ; { do this at the end of a line }
label exit ;
var k: 0 . . buf size ; { index into buffer }
begin if out ptr > 0 then flush buffer (out ptr , false , false)
else begin for k ← 0 to limit do

if (buffer [k] 6= " ") ∧ (buffer [k] 6= tab mark) then return;
flush buffer (0, false , false);
end;

exit : end;

124. In particular, the finish line procedure is called near the very beginning of phase two. We initialize
the output variables in a slightly tricky way so that the first line of the output file will be ‘\input webmac’.

〈Set initial values 10 〉 +≡
out ptr ← 1; out line ← 1; out buf [1]← "c"; write (tex file , ´\input webma´);

125. When we wish to append the character c to the output buffer, we write ‘out (c)’; this will cause the
buffer to be emptied if it was already full. Similarly, ‘out2 (c1)(c2)’ appends a pair of characters. A line
break will occur at a space or after a single-nonletter TEX control sequence.

define oot (#) ≡
if out ptr = line length then break out ;
incr (out ptr); out buf [out ptr]← #;

define oot1 (#) ≡ oot (#) end
define oot2 (#) ≡ oot (#) oot1
define oot3 (#) ≡ oot (#) oot2
define oot4 (#) ≡ oot (#) oot3
define oot5 (#) ≡ oot (#) oot4
define out ≡ begin oot1
define out2 ≡ begin oot2
define out3 ≡ begin oot3
define out4 ≡ begin oot4
define out5 ≡ begin oot5

126. The break out routine is called just before the output buffer is about to overflow. To make this
routine a little faster, we initialize position 0 of the output buffer to ‘\’; this character isn’t really output.

〈Set initial values 10 〉 +≡
out buf [0]← "\";

§127 WEAVE LOW-LEVEL OUTPUT ROUTINES 59

127. A long line is broken at a blank space or just before a backslash that isn’t preceded by another
backslash. In the latter case, a "%" is output at the break.

procedure break out ; { finds a way to break the output line }
label exit ;
var k: 0 . . line length ; { index into out buf }
d: ASCII code ; { character from the buffer }

begin k ← out ptr ;
loop begin if k = 0 then 〈Print warning message, break the line, return 128 〉;
d← out buf [k];
if d = " " then

begin flush buffer (k, false , true); return;
end;

if (d = "\") ∧ (out buf [k − 1] 6= "\") then { in this case k > 1 }
begin flush buffer (k − 1, true , true); return;
end;

decr (k);
end;

exit : end;

128. We get to this module only in unusual cases that the entire output line consists of a string of
backslashes followed by a string of nonblank non-backslashes. In such cases it is almost always safe to break
the line by putting a "%" just before the last character.

〈Print warning message, break the line, return 128 〉 ≡
begin print nl (´! Line had to be broken (output l.´, out line : 1); print ln (´):´);
for k ← 1 to out ptr − 1 do print (xchr [out buf [k]]);
new line ; mark harmless ; flush buffer (out ptr − 1, true , true); return;
end

This code is used in section 127.

129. Here is a procedure that outputs a module number in decimal notation.

〈Globals in the outer block 9 〉 +≡
dig : array [0 . . 4] of 0 . . 9; { digits to output }

130. The number to be converted by out mod is known to be less than def flag , so it cannot have more
than five decimal digits. If the module is changed, we output ‘*’ just after the number.

procedure out mod (m : integer); { output a module number }
var k: 0 . . 5; { index into dig }
a: integer ; { accumulator }

begin k ← 0; a← m;
repeat dig [k]← a mod 10; a← a div 10; incr (k);
until a = 0;
repeat decr (k); out (dig [k] + "0");
until k = 0;
if changed module [m] then out2 ("\")("*");
end;

60 LOW-LEVEL OUTPUT ROUTINES WEAVE §131

131. The out name subroutine is used to output an identifier or index entry, enclosing it in braces.

procedure out name (p : name pointer); { outputs a name }
var k: 0 . . max bytes ; { index into byte mem }
w: 0 . . ww − 1; { row of byte mem }

begin out ("{"); w ← p mod ww ;
for k ← byte start [p] to byte start [p + ww]− 1 do

begin if byte mem [w, k] = "_" then out ("\");
out (byte mem [w, k]);
end;

out ("}");
end;

§132 WEAVE ROUTINES THAT COPY TEX MATERIAL 61

132. Routines that copy TEX material. During phase two, we use the subroutines copy limbo ,
copy TeX , and copy comment in place of the analogous skip limbo , skip TeX , and skip comment that were
used in phase one.

The copy limbo routine, for example, takes TEX material that is not part of any module and transcribes
it almost verbatim to the output file. No ‘@’ signs should occur in such material except in ‘@@’ pairs; such
pairs are replaced by singletons.

procedure copy limbo ; { copy TEX code until the next module begins }
label exit ;
var c: ASCII code ; { character following @ sign }
begin loop

if loc > limit then
begin finish line ; get line ;
if input has ended then return;
end

else begin buffer [limit + 1]← "@"; 〈Copy up to control code, return if finished 133 〉;
end;

exit : end;

133. 〈Copy up to control code, return if finished 133 〉 ≡
while buffer [loc] 6= "@" do

begin out (buffer [loc]); incr (loc);
end;

if loc ≤ limit then
begin loc ← loc + 2; c← buffer [loc − 1];
if (c = " ") ∨ (c = tab mark) ∨ (c = "*") then return;
if (c 6= "z") ∧ (c 6= "Z") then

begin out ("@");
if c 6= "@" then err print (´! Double @ required outside of sections´);
end;

end

This code is used in section 132.

134. The copy TeX routine processes the TEX code at the beginning of a module; for example, the words
you are now reading were copied in this way. It returns the next control code or ‘|’ found in the input.

function copy TeX : eight bits ; { copy pure TEX material }
label done ;
var c: eight bits ; { control code found }
begin loop

begin if loc > limit then
begin finish line ; get line ;
if input has ended then

begin c← new module ; goto done ;
end;

end;
buffer [limit + 1]← "@"; 〈Copy up to ‘|’ or control code, goto done if finished 135 〉;
end;

done : copy TeX ← c;
end;

62 ROUTINES THAT COPY TEX MATERIAL WEAVE §135

135. We don’t copy spaces or tab marks into the beginning of a line. This makes the test for empty lines
in finish line work.

〈Copy up to ‘|’ or control code, goto done if finished 135 〉 ≡
repeat c← buffer [loc]; incr (loc);

if c = "|" then goto done ;
if c 6= "@" then

begin out (c);
if (out ptr = 1) ∧ ((c = " ") ∨ (c = tab mark)) then decr (out ptr);
end;

until c = "@";
if loc ≤ limit then

begin c← control code (buffer [loc]); incr (loc); goto done ;
end

This code is used in section 134.

136. The copy comment uses and returns a brace-balance value, following the conventions of skip comment
above. Instead of copying the TEX material into the output buffer, this procedure copies it into the token
memory. The abbreviation app tok (t) is used to append token t to the current token list, and it also makes
sure that it is possible to append at least one further token without overflow.

define app tok (#) ≡
begin if tok ptr + 2 > max toks then overflow (´token´);
tok mem [tok ptr]← #; incr (tok ptr);
end

function copy comment (bal : eight bits): eight bits ; { copies TEX code in comments }
label done ;
var c: ASCII code ; { current character being copied }
begin loop

begin if loc > limit then
begin get line ;
if input has ended then

begin err print (´! Input ended in mid−comment´); loc ← 1; 〈Clear bal and goto done 138 〉;
end;

end;
c← buffer [loc]; incr (loc);
if c = "|" then goto done ;
app tok (c); 〈Copy special things when c = "@", "\", "{", "}"; goto done at end 137 〉;
end;

done : copy comment ← bal ;
end;

§137 WEAVE ROUTINES THAT COPY TEX MATERIAL 63

137. 〈Copy special things when c = "@", "\", "{", "}"; goto done at end 137 〉 ≡
if c = "@" then

begin incr (loc);
if buffer [loc − 1] 6= "@" then

begin err print (´! Illegal use of @ in comment´); loc ← loc − 2; decr (tok ptr);
〈Clear bal and goto done 138 〉;
end;

end
else if (c = "\") ∧ (buffer [loc] 6= "@") then

begin app tok (buffer [loc]); incr (loc);
end

else if c = "{" then incr (bal)
else if c = "}" then

begin decr (bal);
if bal = 0 then goto done ;
end

This code is used in section 136.

138. When the comment has terminated abruptly due to an error, we output enough right braces to keep
TEX happy.

〈Clear bal and goto done 138 〉 ≡
app tok (" "); { this is done in case the previous character was ‘\’ }
repeat app tok ("}"); decr (bal);
until bal = 0;
goto done ;

This code is used in sections 136 and 137.

64 PARSING WEAVE §139

139. Parsing. The most intricate part of WEAVE is its mechanism for converting Pascal-like code into
TEX code, and we might as well plunge into this aspect of the program now. A “bottom up” approach is
used to parse the Pascal-like material, since WEAVE must deal with fragmentary constructions whose overall
“part of speech” is not known.

At the lowest level, the input is represented as a sequence of entities that we shall call scraps, where each
scrap of information consists of two parts, its category and its translation. The category is essentially a
syntactic class, and the translation is a token list that represents TEX code. Rules of syntax and semantics
tell us how to combine adjacent scraps into larger ones, and if we are lucky an entire Pascal text that starts
out as hundreds of small scraps will join together into one gigantic scrap whose translation is the desired
TEX code. If we are unlucky, we will be left with several scraps that don’t combine; their translations will
simply be output, one by one.

The combination rules are given as context-sensitive productions that are applied from left to right.
Suppose that we are currently working on the sequence of scraps s1 s2 . . . sn. We try first to find the longest
production that applies to an initial substring s1 s2 . . . ; but if no such productions exist, we find to find the
longest production applicable to the next substring s2 s3 . . . ; and if that fails, we try to match s3 s4 . . . , etc.

A production applies if the category codes have a given pattern. For example, one of the productions is

open math semi → open math

and it means that three consecutive scraps whose respective categories are open , math , and semi are con-
verted to two scraps whose categories are open and math . This production also has an associated rule that
tells how to combine the translation parts:

O2 = O1

M2 = M1 S \, opt 5

This means that the open scrap has not changed, while the new math scrap has a translation M2 composed
of the translation M1 of the original math scrap followed by the translation S of the semi scrap followed by
‘\,’ followed by ‘opt ’ followed by ‘5’. (In the TEX file, this will specify an additional thin space after the
semicolon, followed by an optional line break with penalty 50.) Translation rules use subscripts to distinguish
between translations of scraps whose categories have the same initial letter; these subscripts are assigned
from left to right.
WEAVE also has the production rule

semi → terminator

(meaning that a semicolon can terminate a Pascal statement). Since productions are applied from left to
right, this rule will be activated only if the semi is not preceded by scraps that match other productions; in
particular, a semi that is preceded by ‘open math ’ will have disappeared because of the production above,
and such semicolons do not act as statement terminators. This incidentally is how WEAVE is able to treat
semicolons in two distinctly different ways, the first of which is intended for semicolons in the parameter list
of a procedure declaration.

The translation rule corresponding to semi → terminator is

T = S

but we shall not mention translation rules in the common case that the translation of the new scrap on the
right-hand side is simply the concatenation of the disappearing scraps on the left-hand side.

§140 WEAVE PARSING 65

140. Here is a list of the category codes that scraps can have.

define simp = 1 { the translation can be used both in horizontal mode and in math mode of TEX }
define math = 2 { the translation should be used only in TEX math mode }
define intro = 3 { a statement is expected to follow this, after a space and an optional break }
define open = 4 { denotes an incomplete parenthesized quantity to be used in math mode }
define beginning = 5 {denotes an incomplete compound statement to be used in horizontal mode }
define close = 6 { ends a parenthesis or compound statement }
define alpha = 7 {denotes the beginning of a clause }
define omega = 8 { denotes the ending of a clause and possible comment following }
define semi = 9 { denotes a semicolon and possible comment following it }
define terminator = 10 { something that ends a statement or declaration }
define stmt = 11 { denotes a statement or declaration including its terminator }
define cond = 12 { precedes an if clause that might have a matching else }
define clause = 13 { precedes a statement after which indentation ends }
define colon = 14 { denotes a colon }
define exp = 15 { stands for the E in a floating point constant }
define proc = 16 { denotes a procedure or program or function heading }
define case head = 17 { denotes a case statement or record heading }
define record head = 18 { denotes a record heading without indentation }
define var head = 19 {denotes a variable declaration heading }
define elsie = 20 { else }
define casey = 21 { case }
define mod scrap = 22 { denotes a module name }
debug procedure print cat (c : eight bits); { symbolic printout of a category }
begin case c of
simp : print (´simp´);
math : print (´math´);
intro : print (´intro´);
open : print (´open´);
beginning : print (´beginning´);
close : print (´close´);
alpha : print (´alpha´);
omega : print (´omega´);
semi : print (´semi´);
terminator : print (´terminator´);
stmt : print (´stmt´);
cond : print (´cond´);
clause : print (´clause´);
colon : print (´colon´);
exp : print (´exp´);
proc : print (´proc´);
case head : print (´casehead´);
record head : print (´recordhead´);
var head : print (´varhead´);
elsie : print (´elsie´);
casey : print (´casey´);
mod scrap : print (´module´);
othercases print (´UNKNOWN´)
endcases;
end;
gubed

66 PARSING WEAVE §141

141. The token lists for translated TEX output contain some special control symbols as well as ordinary
characters. These control symbols are interpreted by WEAVE before they are written to the output file.

break space denotes an optional line break or an en space;

force denotes a line break;

big force denotes a line break with additional vertical space;

opt denotes an optional line break (with the continuation line indented two ems with respect to the normal
starting position)—this code is followed by an integer n, and the break will occur with penalty 10n;

backup denotes a backspace of one em;

cancel obliterates any break space or force or big force tokens that immediately precede or follow it and
also cancels any backup tokens that follow it;

indent causes future lines to be indented one more em;

outdent causes future lines to be indented one less em.

All of these tokens are removed from the TEX output that comes from Pascal text between | . . . | signs;
break space and force and big force become single spaces in this mode. The translation of other Pascal texts
results in TEX control sequences \1, \2, \3, \4, \5, \6, \7 corresponding respectively to indent , outdent ,
opt , backup , break space , force , and big force . However, a sequence of consecutive ‘ ’, break space , force ,
and/or big force tokens is first replaced by a single token (the maximum of the given ones).

The tokens math rel , math bin , math op will be translated into \mathrel{, \mathbin{, and \mathop{,
respectively. Other control sequences in the TEX output will be ‘\\{ . . . }’ surrounding identifiers, ‘\&{ . . . }’
surrounding reserved words, ‘\.{ . . . }’ surrounding strings, ‘\C{ . . . } force ’ surrounding comments, and
‘\Xn: . . . \X’ surrounding module names, where n is the module number.

define math bin = 2́03
define math rel = 2́04
define math op = 2́05
define big cancel = 2́06 { like cancel , also overrides spaces }
define cancel = 2́07 { overrides backup , break space , force , big force }
define indent = cancel + 1 { one more tab (\1) }
define outdent = cancel + 2 { one less tab (\2) }
define opt = cancel + 3 { optional break in mid-statement (\3) }
define backup = cancel + 4 { stick out one unit to the left (\4) }
define break space = cancel + 5 { optional break between statements (\5) }
define force = cancel + 6 { forced break between statements (\6) }
define big force = cancel + 7 { forced break with additional space (\7) }
define end translation = big force + 1 { special sentinel token at end of list }

§142 WEAVE PARSING 67

142. The raw input is converted into scraps according to the following table, which gives category codes
followed by the translations. Sometimes a single item of input produces more than one scrap. (The symbol
‘**’ stands for ‘\&{identifier}’, i.e., the identifier itself treated as a reserved word. In a few cases the category
is given as ‘comment ’; this is not an actual category code, it means that the translation will be treated as a
comment, as explained below.)

<> math : \I
<= math : \L
>= math : \G
:= math : \K
== math : \S
(* math : \B
*) math : \T
(. open : [
.) close :]
" string " simp : \.{"modified string "}
´ string ´ simp : \.{\´modified string \´}
@= string @> simp : \={modified string }
math : \#
$ math : \$
_ math : _
% math : \%
^ math : \^
(open : (
) close :)
[open : [
] close :]
* math : \ast
, math : , opt 9
.. math : \to
. simp : .
: colon : :
; semi : ;
identifier simp : \\{ identifier }
E in constant exp : \E{
digit d simp : d
other character c math : c
and math : \W
array alpha : **
begin beginning : force ** cancel intro :
case casey : alpha : force **

const intro : force backup **

div math : math bin ** }

do omega : **
downto math : math rel ** }
else terminator : elsie : force backup **

end terminator : close : force **

file alpha : **
for alpha : force **

function proc : force backup ** cancel intro : indent \
goto intro : **
if cond : alpha : force **

in math : \in

68 PARSING WEAVE §142

label intro : force backup **

mod math : math bin ** }

nil simp : **
not math : \R
of omega : **
or math : \V
packed intro : **
procedure proc : force backup ** cancel intro : indent \
program proc : force backup ** cancel intro : indent \
record record head : ** intro :
repeat beginning : force indent ** cancel intro :
set alpha : **
then omega : **
to math : math rel ** }
type intro : force backup **

until terminator : close : force backup ** clause :
var var head : force backup ** cancel intro :
while alpha : force **

with alpha : force **

xclause alpha : force \~ omega : **
@´ const simp : \O{const}
@" const simp : \H{const}
@$ simp : \)
@\ simp : \]
@, math : \,
@t stuff @> simp : \hbox{ stuff }

@<module @> mod scrap : \Xn:module \X
@# comment : big force
@/ comment : force
@| simp : opt 0
@+ comment : big cancel \ big cancel
@; semi :
@& math : \J
@{ math : \B
@} math : \T

When a string is output, certain characters are preceded by ‘\’ signs so that they will print properly.
A comment in the input will be combined with the preceding omega or semi scrap, or with the following

terminator scrap, if possible; otherwise it will be inserted as a separate terminator scrap. An additional
“comment” is effectively appended at the end of the Pascal text, just before translation begins; this consists
of a cancel token in the case of Pascal text in | . . . |, otherwise it consists of a force token.

From this table it is evident that WEAVE will parse a lot of non-Pascal programs. For example, the
reserved words ‘for’ and ‘array’ are treated in an identical way by WEAVE from a syntactic standpoint, and
semantically they are equivalent except that a forced line break occurs just before ‘for’; Pascal programmers
may well be surprised at this similarity. The idea is to keep WEAVE’s rules as simple as possible, consistent
with doing a reasonable job on syntactically correct Pascal programs. The production rules below have been
formulated in the same spirit of “almost anything goes.”

§143 WEAVE PARSING 69

143. Here is a table of all the productions. The reader can best get a feel for how they work by trying
them out by hand on small examples; no amount of explanation will be as effective as watching the rules in
action. Parsing can also be watched by debugging with ‘@2’.

Production categories [[translations]] Remarks

1 alpha math colon → alpha math e.g., case v : boolean of
2 alpha math omega → clause [[C = A $M $ indent O]] e.g., while x > 0 do
3 alpha omega → clause [[C = A indent O]] e.g., file of
4 alpha simp → alpha math convert to math mode
5 beginning close (terminator or stmt) → stmt compound statement ends
6 beginning stmt → beginning [[B2 = B1 break space S]] compound statement grows
7 case head casey clause → case head [[C4 = C1 outdent C2 C3]] variant records
8 case head close terminator → stmt [[S = C1 cancel outdent C2 T]] end of case statement
9 case head stmt → case head [[C2 = C1 force S]] case statement grows

10 casey clause → case head beginning of case statement
11 clause stmt → stmt [[S2 = C break space S1 cancel outdent force]] end of controlled statement
12 cond clause stmt elsie → clause [[C3 = C1 C2 break space S E cancel]] complete conditional
13 cond clause stmt → stmt

[[S2 = C1 C2 break space S1 cancel outdent force]] incomplete conditional
14 elsie → intro unmatched else
15 exp math simp* → math [[M2 = EM1 S }]] signed exponent
16 exp simp* → math [[M = E S }]] unsigned exponent
17 intro stmt → stmt [[S2 = I opt 7 cancel S1]] labeled statement, etc.
18 math close → stmt close [[S = $M $]] end of field list
19 math colon → intro [[I = force backup $M $C]] compound label
20 math math → math simple concatenation
21 math simp → math simple concatenation
22 math stmt → stmt

[[S2 = $M $ indent break space S1 cancel outdent force]] macro or type definition
23 math terminator → stmt [[S = $M $T]] statement involving math
24 mod scrap (terminator or semi) → stmt [[S = M T force]] module like a statement
25 mod scrap → simp module unlike a statement
26 open case head close → math [[M = O $ cancel C1 cancel outdent $C2]] case in field list
27 open close → math [[M = O \ ,C]] empty set []
28 open math case head close → math

[[M2 = OM1 $ cancel C1 cancel outdent $C2]] case in field list
29 open math close → math parenthesized group
30 open math colon → open math colon in parentheses
31 open math proc intro → open math [[M2 = M1 math op cancel P }]] procedure in parentheses
32 open math semi → open math [[M2 = M1 S \ , opt 5]] semicolon in parentheses
33 open math var head intro → open math [[M2 = M1 math op cancel V }]] var in parentheses
34 open proc intro → open math [[M = math op cancel P }]] procedure in parentheses
35 open simp → open math convert to math mode
36 open stmt close → math [[M = O $ cancel S cancel $C]] field list
37 open var head intro → open math [[M = math op cancel V }]] var in parentheses
38 proc beginning close terminator → stmt [[S = P cancel outdent BC T]] end of procedure declaration
39 proc stmt → proc [[P2 = P1 break space S]] procedure declaration grows
40 record head intro casey → casey [[C2 = RI cancel C1]] record case . . .
41 record head → case head [[C = indent R cancel]] other record structures
42 semi → terminator semicolon after statement
43 simp close → stmt close end of field list
44 simp colon → intro [[I = force backup S C]] simple label
45 simp math → math simple concatenation

70 PARSING WEAVE §143

46 simp mod scrap → mod scrap in emergencies
47 simp simp → simp simple concatenation
48 simp terminator → stmt simple statement
49 stmt stmt → stmt [[S3 = S1 break space S2]] adjacent statements
50 terminator → stmt empty statement
51 var head beginning → stmt beginning end of variable declarations
52 var head math colon → var head intro [[I = $M $C]] variable declaration
53 var head simp colon → var head intro variable declaration
54 var head stmt → var head [[V2 = V1 break space S]] variable declarations grow

Translations are not specified here when they are simple concatenations of the scraps that change. For
example, the full translation of ‘open math colon → open math ’ is O2 = O1, M2 = M1C.

The notation ‘simp*’, in the exp -related productions above, stands for a simp scrap that isn’t followed by
another simp .

§144 WEAVE IMPLEMENTING THE PRODUCTIONS 71

144. Implementing the productions. When Pascal text is to be processed with the grammar above,
we put its initial scraps s1 . . . sn into two arrays cat [1 . . n] and trans [1 . . n]. The value of cat [k] is simply
a category code from the list above; the value of trans [k] is a text pointer, i.e., an index into tok start . Our
production rules have the nice property that the right-hand side is never longer than the left-hand side.
Therefore it is convenient to use sequential allocation for the current sequence of scraps. Five pointers are
used to manage the parsing:

pp (the parsing pointer) is such that we are trying to match the category codes cat [pp] cat [pp + 1] . . . to
the left-hand sides of productions.

scrap base , lo ptr , hi ptr , and scrap ptr are such that the current sequence of scraps appears in positions
scrap base through lo ptr and hi ptr through scrap ptr , inclusive, in the cat and trans arrays. Scraps
located between scrap base and lo ptr have been examined, while those in positions ≥ hi ptr have
not yet been looked at by the parsing process.

Initially scrap ptr is set to the position of the final scrap to be parsed, and it doesn’t change its value.
The parsing process makes sure that lo ptr ≥ pp + 3, since productions have as many as four terms, by
moving scraps from hi ptr to lo ptr . If there are fewer than pp + 3 scraps left, the positions up to pp + 3
are filled with blanks that will not match in any productions. Parsing stops when pp = lo ptr + 1 and
hi ptr = scrap ptr + 1.

The trans array elements are declared to be of type 0 . . 10239 instead of type text pointer , because the
final sorting phase of WEAVE uses this array to contain elements of type name pointer . Both of these types
are subranges of 0 . . 10239.

〈Globals in the outer block 9 〉 +≡
cat : array [0 . . max scraps] of eight bits ; { category codes of scraps }
trans : array [0 . . max scraps] of 0 . . 10239; { translation texts of scraps }
pp : 0 . . max scraps ; { current position for reducing productions }
scrap base : 0 . . max scraps ; { beginning of the current scrap sequence }
scrap ptr : 0 . . max scraps ; { ending of the current scrap sequence }
lo ptr : 0 . . max scraps ; { last scrap that has been examined }
hi ptr : 0 . . max scraps ; {first scrap that has not been examined }

stat max scr ptr : 0 . . max scraps ; { largest value assumed by scrap ptr }
tats

145. 〈Set initial values 10 〉 +≡
scrap base ← 1; scrap ptr ← 0;
stat max scr ptr ← 0; tats

72 IMPLEMENTING THE PRODUCTIONS WEAVE §146

146. Token lists in tok mem are composed of the following kinds of items for TEX output.

• ASCII codes and special codes like force and math rel represent themselves;
• id flag + p represents \\{identifier p};
• res flag + p represents \&{identifier p};
• mod flag + p represents module name p;
• tok flag + p represents token list number p;
• inner tok flag + p represents token list number p, to be translated without line-break controls.

define id flag = 10240 { signifies an identifier }
define res flag = id flag + id flag { signifies a reserved word }
define mod flag = res flag + id flag { signifies a module name }
define tok flag ≡ mod flag + id flag { signifies a token list }
define inner tok flag ≡ tok flag + id flag { signifies a token list in ‘| . . . |’ }
define lbrace ≡ xchr ["{"] { this avoids possible Pascal compiler confusion }
define rbrace ≡ xchr ["}"] { because these braces might occur within comments }
debug procedure print text (p : text pointer); { prints a token list }
var j: 0 . . max toks ; { index into tok mem }
r: 0 . . id flag − 1; { remainder of token after the flag has been stripped off }

begin if p ≥ text ptr then print (´BAD´)
else for j ← tok start [p] to tok start [p + 1]− 1 do

begin r ← tok mem [j] mod id flag ;
case tok mem [j] div id flag of
1: begin print (´\\´, lbrace); print id (r); print (rbrace);

end; { id flag }
2: begin print (´\&´, lbrace); print id (r); print (rbrace);

end; { res flag }
3: begin print (´<´); print id (r); print (´>´);

end; {mod flag }
4: print (´[[´, r : 1, ´]]´); { tok flag }
5: print (´|[[´, r : 1, ´]]|´); { inner tok flag }
othercases 〈Print token r in symbolic form 147 〉
endcases;
end;

end;
gubed

§147 WEAVE IMPLEMENTING THE PRODUCTIONS 73

147. 〈Print token r in symbolic form 147 〉 ≡
case r of
math bin : print (´\mathbin´, lbrace);
math rel : print (´\mathrel´, lbrace);
math op : print (´\mathop´, lbrace);
big cancel : print (´[ccancel]´);
cancel : print (´[cancel]´);
indent : print (´[indent]´);
outdent : print (´[outdent]´);
backup : print (´[backup]´);
opt : print (´[opt]´);
break space : print (´[break]´);
force : print (´[force]´);
big force : print (´[fforce]´);
end translation : print (´[quit]´);
othercases print (xchr [r])
endcases

This code is used in section 146.

74 IMPLEMENTING THE PRODUCTIONS WEAVE §148

148. The production rules listed above are embedded directly into the WEAVE program, since it is easier
to do this than to write an interpretive system that would handle production systems in general. Several
macros are defined here so that the program for each production is fairly short.

All of our productions conform to the general notion that some k consecutive scraps starting at some
position j are to be replaced by a single scrap of some category c whose translation is composed from the
translations of the disappearing scraps. After this production has been applied, the production pointer pp
should change by an amount d. Such a production can be represented by the quadruple (j, k, c, d). For
example, the production ‘simp math → math ’ would be represented by ‘(pp , 2,math ,−1)’; in this case the
pointer pp should decrease by 1 after the production has been applied, because some productions with math
in their second positions might now match, but no productions have math in the third or fourth position of
their left-hand sides. Note that the value of d is determined by the whole collection of productions, not by an
individual one. Consider the further example ‘var head math colon → var head intro ’, which is represented
by ‘(pp + 1, 2, intro ,+1)’; the +1 here is deduced by looking at the grammar and seeing that no matches
could possibly occur at positions ≤ pp after this production has been applied. The determination of d has
been done by hand in each case, based on the full set of productions but not on the grammar of Pascal or
on the rules for constructing the initial scraps.

We also attach a serial number to each production, so that additional information is available when
debugging. For example, the program below contains the statement ‘reduce (pp + 1, 2, intro ,+1)(52)’ when
it implements the production just mentioned.

Before calling reduce , the program should have appended the tokens of the new translation to the tok mem
array. We commonly want to append copies of several existing translations, and macros are defined to simplify
these common cases. For example, app2 (pp) will append the translations of two consecutive scraps, trans [pp]
and trans [pp + 1], to the current token list. If the entire new translation is formed in this way, we write
‘squash (j, k, c, d)’ instead of ‘reduce (j, k, c, d)’. For example, ‘squash (pp , 2,math ,−1)’ is an abbreviation for
‘app2 (pp); reduce (pp , 2,math ,−1)’.

The code below is an exact translation of the production rules into Pascal, using such macros, and
the reader should have no difficulty understanding the format by comparing the code with the symbolic
productions as they were listed earlier.

Caution: The macros app , app1 , app2 , and app3 are sequences of statements that are not enclosed with
begin and end, because such delimiters would make the Pascal program much longer. This means that it
is necessary to write begin and end explicitly when such a macro is used as a single statement. Several
mysterious bugs in the original programming of WEAVE were caused by a failure to remember this fact. Next
time the author will know better.

define production (#) ≡
debug prod (#)
gubed;

goto found
define reduce (#) ≡ red (#); production
define production end (#) ≡

debug prod (#)
gubed;

goto found ;
end

define squash (#) ≡
begin sq (#); production end

define app(#) ≡ tok mem [tok ptr]← #; incr (tok ptr)
{ this is like app tok , but it doesn’t test for overflow }

define app1 (#) ≡ tok mem [tok ptr]← tok flag + trans [#]; incr (tok ptr)
define app2 (#) ≡ app1 (#); app1 (# + 1)
define app3 (#) ≡ app2 (#); app1 (# + 2)

§149 WEAVE IMPLEMENTING THE PRODUCTIONS 75

149. Let us consider the big case statement for productions now, before looking at its context. We want
to design the program so that this case statement works, so we might as well not keep ourselves in suspense
about exactly what code needs to be provided with a proper environment.

The code here is more complicated than it need be, since some popular Pascal compilers are unable to
deal with procedures that contain a lot of program text. The translate procedure, which incorporates the
case statement here, would become too long for those compilers if we did not do something to split the cases
into parts. Therefore a separate procedure called five cases has been introduced. This auxiliary procedure
contains approximately half of the program text that translate would otherwise have had. There’s also a
procedure called alpha cases , which turned out to be necessary because the best two-way split wasn’t good
enough. The procedure could be split further in an analogous manner, but the present scheme works on all
compilers known to the author.

〈Match a production at pp , or increase pp if there is no match 149 〉 ≡
if cat [pp] ≤ alpha then

if cat [pp] < alpha then five cases else alpha cases
else begin case cat [pp] of

case head : 〈Cases for case head 153 〉;
casey : 〈Cases for casey 154 〉;
clause : 〈Cases for clause 155 〉;
cond : 〈Cases for cond 156 〉;
elsie : 〈Cases for elsie 157 〉;
exp : 〈Cases for exp 158 〉;
mod scrap : 〈Cases for mod scrap 161 〉;
proc : 〈Cases for proc 164 〉;
record head : 〈Cases for record head 165 〉;
semi : 〈Cases for semi 166 〉;
stmt : 〈Cases for stmt 168 〉;
terminator : 〈Cases for terminator 169 〉;
var head : 〈Cases for var head 170 〉;
othercases do nothing
endcases;
incr (pp); { if no match was found, we move to the right }

found : end

This code is used in section 175.

76 IMPLEMENTING THE PRODUCTIONS WEAVE §150

150. Here are the procedures that need to be present for the reason just explained.

〈Declaration of subprocedures for translate 150 〉 ≡
procedure five cases ; { handles almost half of the syntax }

label found ;
begin case cat [pp] of
beginning : 〈Cases for beginning 152 〉;
intro : 〈Cases for intro 159 〉;
math : 〈Cases for math 160 〉;
open : 〈Cases for open 162 〉;
simp : 〈Cases for simp 167 〉;
othercases do nothing
endcases;
incr (pp); { if no match was found, we move to the right }

found : end;

procedure alpha cases ;
label found ;
begin 〈Cases for alpha 151 〉;
incr (pp); { if no match was found, we move to the right }

found : end;

This code is used in section 179.

151. Now comes the code that tries to match each production starting with a particular type of scrap.
Whenever a match is discovered, the squash or reduce macro will cause the appropriate action to be
performed, followed by goto found .

〈Cases for alpha 151 〉 ≡
if cat [pp + 1] = math then

begin if cat [pp + 2] = colon then squash (pp + 1, 2,math , 0)(1)
else if cat [pp + 2] = omega then

begin app1 (pp); app(" "); app("$"); app1 (pp + 1); app("$"); app(" "); app(indent);
app1 (pp + 2); reduce (pp , 3, clause ,−2)(2);
end;

end
else if cat [pp + 1] = omega then

begin app1 (pp); app(" "); app(indent); app1 (pp + 1); reduce (pp , 2, clause ,−2)(3);
end

else if cat [pp + 1] = simp then squash (pp + 1, 1,math , 0)(4)

This code is used in section 150.

152. 〈Cases for beginning 152 〉 ≡
if cat [pp + 1] = close then

begin if (cat [pp + 2] = terminator) ∨ (cat [pp + 2] = stmt) then squash (pp , 3, stmt ,−2)(5);
end

else if cat [pp + 1] = stmt then
begin app1 (pp); app(break space); app1 (pp + 1); reduce (pp , 2, beginning ,−1)(6);
end

This code is used in section 150.

§153 WEAVE IMPLEMENTING THE PRODUCTIONS 77

153. 〈Cases for case head 153 〉 ≡
if cat [pp + 1] = casey then

begin if cat [pp + 2] = clause then
begin app1 (pp); app(outdent); app2 (pp + 1); reduce (pp , 3, case head , 0)(7);
end;

end
else if cat [pp + 1] = close then

begin if cat [pp + 2] = terminator then
begin app1 (pp); app(cancel); app(outdent); app2 (pp + 1); reduce (pp , 3, stmt ,−2)(8);
end;

end
else if cat [pp + 1] = stmt then

begin app1 (pp); app(force); app1 (pp + 1); reduce (pp , 2, case head , 0)(9);
end

This code is used in section 149.

154. 〈Cases for casey 154 〉 ≡
if cat [pp + 1] = clause then squash (pp , 2, case head , 0)(10)

This code is used in section 149.

155. 〈Cases for clause 155 〉 ≡
if cat [pp + 1] = stmt then

begin app1 (pp); app(break space); app1 (pp + 1); app(cancel); app(outdent); app(force);
reduce (pp , 2, stmt ,−2)(11);
end

This code is used in section 149.

156. 〈Cases for cond 156 〉 ≡
if (cat [pp + 1] = clause) ∧ (cat [pp + 2] = stmt) then

if cat [pp + 3] = elsie then
begin app2 (pp); app(break space); app2 (pp + 2); app(" "); app(cancel);
reduce (pp , 4, clause ,−2)(12);
end

else begin app2 (pp); app(break space); app1 (pp + 2); app(cancel); app(outdent); app(force);
reduce (pp , 3, stmt ,−2)(13);
end

This code is used in section 149.

157. 〈Cases for elsie 157 〉 ≡
squash (pp , 1, intro ,−3)(14)

This code is used in section 149.

78 IMPLEMENTING THE PRODUCTIONS WEAVE §158

158. 〈Cases for exp 158 〉 ≡
if cat [pp + 1] = math then

begin if cat [pp + 2] = simp then
if cat [pp + 3] 6= simp then

begin app3 (pp); app("}"); reduce (pp , 3,math ,−1)(15);
end;

end
else if cat [pp + 1] = simp then

if cat [pp + 2] 6= simp then
begin app2 (pp); app("}"); reduce (pp , 2,math ,−1)(16);
end

This code is used in section 149.

159. 〈Cases for intro 159 〉 ≡
if cat [pp + 1] = stmt then

begin app1 (pp); app(" "); app(opt); app("7"); app(cancel); app1 (pp + 1);
reduce (pp , 2, stmt ,−2)(17);
end

This code is used in section 150.

160. 〈Cases for math 160 〉 ≡
if cat [pp + 1] = close then

begin app("$"); app1 (pp); app("$"); reduce (pp , 1, stmt ,−2)(18);
end

else if cat [pp + 1] = colon then
begin app(force); app(backup); app("$"); app1 (pp); app("$"); app1 (pp + 1);
reduce (pp , 2, intro ,−3)(19);
end

else if cat [pp + 1] = math then squash (pp , 2,math ,−1)(20)
else if cat [pp + 1] = simp then squash (pp , 2,math ,−1)(21)

else if cat [pp + 1] = stmt then
begin app("$"); app1 (pp); app("$"); app(indent); app(break space); app1 (pp + 1);
app(cancel); app(outdent); app(force); reduce (pp , 2, stmt ,−2)(22);
end

else if cat [pp + 1] = terminator then
begin app("$"); app1 (pp); app("$"); app1 (pp + 1); reduce (pp , 2, stmt ,−2)(23);
end

This code is used in section 150.

161. 〈Cases for mod scrap 161 〉 ≡
if (cat [pp + 1] = terminator) ∨ (cat [pp + 1] = semi) then

begin app2 (pp); app(force); reduce (pp , 2, stmt ,−2)(24);
end

else squash (pp , 1, simp ,−2)(25)

This code is used in section 149.

§162 WEAVE IMPLEMENTING THE PRODUCTIONS 79

162. 〈Cases for open 162 〉 ≡
if (cat [pp + 1] = case head) ∧ (cat [pp + 2] = close) then

begin app1 (pp); app("$"); app(cancel); app1 (pp + 1); app(cancel); app(outdent); app("$");
app1 (pp + 2); reduce (pp , 3,math ,−1)(26);
end

else if cat [pp + 1] = close then
begin app1 (pp); app("\"); app(","); app1 (pp + 1); reduce (pp , 2,math ,−1)(27);
end

else if cat [pp + 1] = math then 〈Cases for open math 163 〉
else if cat [pp + 1] = proc then

begin if cat [pp + 2] = intro then
begin app(math op); app(cancel); app1 (pp + 1); app("}"); reduce (pp + 1, 2,math , 0)(34);
end;

end
else if cat [pp + 1] = simp then squash (pp + 1, 1,math , 0)(35)

else if (cat [pp + 1] = stmt) ∧ (cat [pp + 2] = close) then
begin app1 (pp); app("$"); app(cancel); app1 (pp + 1); app(cancel); app("$");
app1 (pp + 2); reduce (pp , 3,math ,−1)(36);
end

else if cat [pp + 1] = var head then
begin if cat [pp + 2] = intro then

begin app(math op); app(cancel); app1 (pp + 1); app("}");
reduce (pp + 1, 2,math , 0)(37);
end;

end

This code is used in section 150.

163. 〈Cases for open math 163 〉 ≡
begin if (cat [pp + 2] = case head) ∧ (cat [pp + 3] = close) then

begin app2 (pp); app("$"); app(cancel); app1 (pp + 2); app(cancel); app(outdent); app("$");
app1 (pp + 3); reduce (pp , 4,math ,−1)(28);
end

else if cat [pp + 2] = close then squash (pp , 3,math ,−1)(29)
else if cat [pp + 2] = colon then squash (pp + 1, 2,math , 0)(30)

else if cat [pp + 2] = proc then
begin if cat [pp + 3] = intro then

begin app1 (pp + 1); app(math op); app(cancel); app1 (pp + 2); app("}");
reduce (pp + 1, 3,math , 0)(31);
end;

end
else if cat [pp + 2] = semi then

begin app2 (pp + 1); app("\"); app(","); app(opt); app("5");
reduce (pp + 1, 2,math , 0)(32);
end

else if cat [pp + 2] = var head then
begin if cat [pp + 3] = intro then

begin app1 (pp + 1); app(math op); app(cancel); app1 (pp + 2); app("}");
reduce (pp + 1, 3,math , 0)(31);
end;

end;
end

This code is used in section 162.

80 IMPLEMENTING THE PRODUCTIONS WEAVE §164

164. 〈Cases for proc 164 〉 ≡
if cat [pp + 1] = beginning then

begin if (cat [pp + 2] = close) ∧ (cat [pp + 3] = terminator) then
begin app1 (pp); app(cancel); app(outdent); app3 (pp + 1); reduce (pp , 4, stmt ,−2)(38);
end;

end
else if cat [pp + 1] = stmt then

begin app1 (pp); app(break space); app1 (pp + 1); reduce (pp , 2, proc ,−2)(39);
end

This code is used in section 149.

165. 〈Cases for record head 165 〉 ≡
if (cat [pp + 1] = intro) ∧ (cat [pp + 2] = casey) then

begin app2 (pp); app(" "); app(cancel); app1 (pp + 2); reduce (pp , 3, casey ,−2)(40);
end

else begin app(indent); app1 (pp); app(cancel); reduce (pp , 1, case head , 0)(41);
end

This code is used in section 149.

166. 〈Cases for semi 166 〉 ≡
squash (pp , 1, terminator ,−3)(42)

This code is used in section 149.

167. 〈Cases for simp 167 〉 ≡
if cat [pp + 1] = close then squash (pp , 1, stmt ,−2)(43)
else if cat [pp + 1] = colon then

begin app(force); app(backup); app2 (pp); reduce (pp , 2, intro ,−3)(44);
end

else if cat [pp + 1] = math then squash (pp , 2,math ,−1)(45)
else if cat [pp + 1] = mod scrap then squash (pp , 2,mod scrap , 0)(46)

else if cat [pp + 1] = simp then squash (pp , 2, simp ,−2)(47)
else if cat [pp + 1] = terminator then squash (pp , 2, stmt ,−2)(48)

This code is used in section 150.

168. 〈Cases for stmt 168 〉 ≡
if cat [pp + 1] = stmt then

begin app1 (pp); app(break space); app1 (pp + 1); reduce (pp , 2, stmt ,−2)(49);
end

This code is used in section 149.

169. 〈Cases for terminator 169 〉 ≡
squash (pp , 1, stmt ,−2)(50)

This code is used in section 149.

§170 WEAVE IMPLEMENTING THE PRODUCTIONS 81

170. 〈Cases for var head 170 〉 ≡
if cat [pp + 1] = beginning then squash (pp , 1, stmt ,−2)(51)
else if cat [pp + 1] = math then

begin if cat [pp + 2] = colon then
begin app("$"); app1 (pp + 1); app("$"); app1 (pp + 2); reduce (pp + 1, 2, intro ,+1)(52);
end;

end
else if cat [pp + 1] = simp then

begin if cat [pp + 2] = colon then squash (pp + 1, 2, intro ,+1)(53);
end

else if cat [pp + 1] = stmt then
begin app1 (pp); app(break space); app1 (pp + 1); reduce (pp , 2, var head ,−2)(54);
end

This code is used in section 149.

171. The ‘freeze text ’ macro is used to give official status to a token list. Before saying freeze text , items
are appended to the current token list, and we know that the eventual number of this token list will be the
current value of text ptr . But no list of that number really exists as yet, because no ending point for the
current list has been stored in the tok start array. After saying freeze text , the old current token list becomes
legitimate, and its number is the current value of text ptr − 1 since text ptr has been increased. The new
current token list is empty and ready to be appended to. Note that freeze text does not check to see that
text ptr hasn’t gotten too large, since it is assumed that this test was done beforehand.

define freeze text ≡ incr (text ptr); tok start [text ptr]← tok ptr

172. The ‘reduce ’ macro used in our code for productions actually calls on a procedure named ‘red ’, which
makes the appropriate changes to the scrap list.

procedure red (j : sixteen bits ; k : eight bits ; c : eight bits ; d : integer);
var i: 0 . . max scraps ; { index into scrap memory }
begin cat [j]← c; trans [j]← text ptr ; freeze text ;
if k > 1 then

begin for i← j + k to lo ptr do
begin cat [i− k + 1]← cat [i]; trans [i− k + 1]← trans [i];
end;

lo ptr ← lo ptr − k + 1;
end;
〈Change pp to max(scrap base ,pp+d) 173 〉;
end;

173. 〈Change pp to max(scrap base ,pp+d) 173 〉 ≡
if pp + d ≥ scrap base then pp ← pp + d
else pp ← scrap base

This code is used in sections 172 and 174.

82 IMPLEMENTING THE PRODUCTIONS WEAVE §174

174. Similarly, the ‘squash ’ macro invokes a procedure called ‘sq ’. This procedure takes advantage of the
simplification that occurs when k = 1.

procedure sq (j : sixteen bits ; k : eight bits ; c : eight bits ; d : integer);
var i: 0 . . max scraps ; { index into scrap memory }
begin if k = 1 then

begin cat [j]← c; 〈Change pp to max(scrap base ,pp+d) 173 〉;
end

else begin for i← j to j + k − 1 do
begin app1 (i);
end;

red (j, k, c, d);
end;

end;

175. Here now is the code that applies productions as long as possible. It requires two local labels (found
and done), as well as a local variable (i).

〈Reduce the scraps using the productions until no more rules apply 175 〉 ≡
loop begin 〈Make sure the entries cat [pp . . (pp + 3)] are defined 176 〉;

if (tok ptr + 8 > max toks) ∨ (text ptr + 4 > max texts) then
begin stat if tok ptr > max tok ptr then max tok ptr ← tok ptr ;
if text ptr > max txt ptr then max txt ptr ← text ptr ;
tats
overflow (´token/text´);
end;

if pp > lo ptr then goto done ;
〈Match a production at pp , or increase pp if there is no match 149 〉;
end;

done :

This code is used in section 179.

176. If we get to the end of the scrap list, category codes equal to zero are stored, since zero does not
match anything in a production.

〈Make sure the entries cat [pp . . (pp + 3)] are defined 176 〉 ≡
if lo ptr < pp + 3 then

begin repeat if hi ptr ≤ scrap ptr then
begin incr (lo ptr);
cat [lo ptr]← cat [hi ptr]; trans [lo ptr]← trans [hi ptr];
incr (hi ptr);
end;

until (hi ptr > scrap ptr) ∨ (lo ptr = pp + 3);
for i← lo ptr + 1 to pp + 3 do cat [i]← 0;
end

This code is used in section 175.

177. If WEAVE is being run in debugging mode, the production numbers and current stack categories will
be printed out when tracing is set to 2; a sequence of two or more irreducible scraps will be printed out
when tracing is set to 1.

〈Globals in the outer block 9 〉 +≡
debug tracing : 0 . . 2; { can be used to show parsing details }
gubed

§178 WEAVE IMPLEMENTING THE PRODUCTIONS 83

178. The prod procedure is called in debugging mode just after reduce or squash ; its parameter is the
number of the production that has just been applied.

debug procedure prod (n : eight bits); { shows current categories }
var k: 1 . . max scraps ; { index into cat }
begin if tracing = 2 then

begin print nl (n : 1, ´:´);
for k ← scrap base to lo ptr do

begin if k = pp then print (´*´) else print (´ ´);
print cat (cat [k]);
end;

if hi ptr ≤ scrap ptr then print (´...´); { indicate that more is coming }
end;

end;
gubed

179. The translate function assumes that scraps have been stored in positions scrap base through scrap ptr
of cat and trans . It appends a terminator scrap and begins to apply productions as much as possible. The
result is a token list containing the translation of the given sequence of scraps.

After calling translate , we will have text ptr + 3 ≤ max texts and tok ptr + 6 ≤ max toks , so it will be
possible to create up to three token lists with up to six tokens without checking for overflow. Before calling
translate , we should have text ptr < max texts and scrap ptr < max scraps , since translate might add a
new text and a new scrap before it checks for overflow.

〈Declaration of subprocedures for translate 150 〉
function translate : text pointer ; { converts a sequence of scraps }

label done , found ;
var i: 1 . . max scraps ; { index into cat }
j: 0 . . max scraps ; { runs through final scraps }
k: 0 . . long buf size ; { index into buffer }

begin pp ← scrap base ; lo ptr ← pp − 1; hi ptr ← pp ;
〈 If tracing, print an indication of where we are 182 〉;
〈Reduce the scraps using the productions until no more rules apply 175 〉;
if (lo ptr = scrap base) ∧ (cat [lo ptr] 6= math) then translate ← trans [lo ptr]
else 〈Combine the irreducible scraps that remain 180 〉;
end;

84 IMPLEMENTING THE PRODUCTIONS WEAVE §180

180. If the initial sequence of scraps does not reduce to a single scrap, we concatenate the translations
of all remaining scraps, separated by blank spaces, with dollar signs surrounding the translations of math
scraps.

〈Combine the irreducible scraps that remain 180 〉 ≡
begin 〈 If semi-tracing, show the irreducible scraps 181 〉;
for j ← scrap base to lo ptr do

begin if j 6= scrap base then
begin app(" ");
end;

if cat [j] = math then
begin app("$");
end;

app1 (j);
if cat [j] = math then

begin app("$");
end;

if tok ptr + 6 > max toks then overflow (´token´);
end;

freeze text ; translate ← text ptr − 1;
end

This code is used in section 179.

181. 〈 If semi-tracing, show the irreducible scraps 181 〉 ≡
debug if (lo ptr > scrap base) ∧ (tracing = 1) then

begin print nl (´Irreducible scrap sequence in section ´,module count : 1); print ln (´:´);
mark harmless ;
for j ← scrap base to lo ptr do

begin print (´ ´); print cat (cat [j]);
end;

end;
gubed

This code is used in section 180.

182. 〈 If tracing, print an indication of where we are 182 〉 ≡
debug if tracing = 2 then

begin print nl (´Tracing after l.´, line : 1, ´:´); mark harmless ;
if loc > 50 then

begin print (´...´);
for k ← loc − 50 to loc do print (xchr [buffer [k − 1]]);
end

else for k ← 1 to loc do print (xchr [buffer [k − 1]]);
end

gubed

This code is used in section 179.

§183 WEAVE INITIALIZING THE SCRAPS 85

183. Initializing the scraps. If we are going to use the powerful production mechanism just developed,
we must get the scraps set up in the first place, given a Pascal text. A table of the initial scraps corresponding
to Pascal tokens appeared above in the section on parsing; our goal now is to implement that table. We
shall do this by implementing a subroutine called Pascal parse that is analogous to the Pascal xref routine
used during phase one.

Like Pascal xref , the Pascal parse procedure starts with the current value of next control and it uses the
operation next control ← get next repeatedly to read Pascal text until encountering the next ‘|’ or ‘{’, or
until next control ≥ format . The scraps corresponding to what it reads are appended into the cat and trans
arrays, and scrap ptr is advanced.

Like prod , this procedure has to split into pieces so that each part is short enough to be handled by
Pascal compilers that discriminate against long subroutines. This time there are two split-off routines, called
easy cases and sub cases .

After studying Pascal parse , we will look at the sub-procedures app comment , app octal , and app hex
that are used in some of its branches.

〈Declaration of the app comment procedure 195 〉
〈Declaration of the app octal and app hex procedures 196 〉
〈Declaration of the easy cases procedure 186 〉
〈Declaration of the sub cases procedure 192 〉

procedure Pascal parse ; { creates scraps from Pascal tokens }
label reswitch , exit ;
var j: 0 . . long buf size ; { index into buffer }
p: name pointer ; { identifier designator }

begin while next control < format do
begin 〈Append the scrap appropriate to next control 185 〉;
next control ← get next ;
if (next control = "|") ∨ (next control = "{") then return;
end;

exit : end;

184. The macros defined here are helpful abbreviations for the operations needed when generating the
scraps. A scrap of category c whose translation has three tokens t1, t2, t3 is generated by sc3 (t1)(t2)(t3)(c),
etc.

define s0 (#) ≡ incr (scrap ptr); cat [scrap ptr]← #; trans [scrap ptr]← text ptr ; freeze text ;
end

define s1 (#) ≡ app(#); s0
define s2 (#) ≡ app(#); s1
define s3 (#) ≡ app(#); s2
define s4 (#) ≡ app(#); s3
define sc4 ≡ begin s4
define sc3 ≡ begin s3
define sc2 ≡ begin s2
define sc1 ≡ begin s1
define sc0 (#) ≡

begin incr (scrap ptr); cat [scrap ptr]← #; trans [scrap ptr]← 0;
end

define comment scrap(#) ≡
begin app(#); app comment ;
end

86 INITIALIZING THE SCRAPS WEAVE §185

185. 〈Append the scrap appropriate to next control 185 〉 ≡
〈Make sure that there is room for at least four more scraps, six more tokens, and four more texts 187 〉;

reswitch : case next control of
string , verbatim : 〈Append a string scrap 189 〉;
identifier : 〈Append an identifier scrap 191 〉;
TeX string : 〈Append a TEX string scrap 190 〉;
othercases easy cases
endcases

This code is used in section 183.

186. The easy cases each result in straightforward scraps.

〈Declaration of the easy cases procedure 186 〉 ≡
procedure easy cases ; { a subprocedure of Pascal parse }

begin case next control of
set element sign : sc3 ("\")("i")("n")(math);
double dot : sc3 ("\")("t")("o")(math);
"#", "$", "%", "^", "_": sc2 ("\")(next control)(math);
ignore , "|", xref roman , xref wildcard , xref typewriter : do nothing ;
"(", "[": sc1 (next control)(open);
")", "]": sc1 (next control)(close);
"*": sc4 ("\")("a")("s")("t")(math);
",": sc3 (",")(opt)("9")(math);
".", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9": sc1 (next control)(simp);
";": sc1 (";")(semi);
":": sc1 (":")(colon);
〈Cases involving nonstandard ASCII characters 188 〉
exponent : sc3 ("\")("E")("{")(exp);
begin comment : sc2 ("\")("B")(math);
end comment : sc2 ("\")("T")(math);
octal : app octal ;
hex : app hex ;
check sum : sc2 ("\")(")")(simp);
force line : sc2 ("\")("]")(simp);
thin space : sc2 ("\")(",")(math);
math break : sc2 (opt)("0")(simp);
line break : comment scrap(force);
big line break : comment scrap(big force);
no line break : begin app(big cancel); app("\"); app(" "); comment scrap(big cancel);

end;
pseudo semi : sc0 (semi);
join : sc2 ("\")("J")(math);
othercases sc1 (next control)(math)
endcases;
end;

This code is used in section 183.

§187 WEAVE INITIALIZING THE SCRAPS 87

187. 〈Make sure that there is room for at least four more scraps, six more tokens, and four more
texts 187 〉 ≡

if (scrap ptr + 4 > max scraps) ∨ (tok ptr + 6 > max toks) ∨ (text ptr + 4 > max texts) then
begin stat if scrap ptr > max scr ptr then max scr ptr ← scrap ptr ;
if tok ptr > max tok ptr then max tok ptr ← tok ptr ;
if text ptr > max txt ptr then max txt ptr ← text ptr ;
tats
overflow (´scrap/token/text´);
end

This code is used in section 185.

188. Some nonstandard ASCII characters may have entered WEAVE by means of standard ones. They are
converted to TEX control sequences so that it is possible to keep WEAVE from stepping beyond standard
ASCII.

〈Cases involving nonstandard ASCII characters 188 〉 ≡
not equal : sc2 ("\")("I")(math);
less or equal : sc2 ("\")("L")(math);
greater or equal : sc2 ("\")("G")(math);
equivalence sign : sc2 ("\")("S")(math);
and sign : sc2 ("\")("W")(math);
or sign : sc2 ("\")("V")(math);
not sign : sc2 ("\")("R")(math);
left arrow : sc2 ("\")("K")(math);

This code is used in section 186.

189. The following code must use app tok instead of app in order to protect against overflow. Note that
tok ptr + 1 ≤ max toks after app tok has been used, so another app is legitimate before testing again.

Many of the special characters in a string must be prefixed by ‘\’ so that TEX will print them properly.

〈Append a string scrap 189 〉 ≡
begin app("\");
if next control = verbatim then

begin app("=");
end

else begin app(".");
end;

app("{"); j ← id first ;
while j < id loc do

begin case buffer [j] of
" ", "\", "#", "%", "$", "^", "´", "`", "{", "}", "~", "&", "_": begin app("\");

end;
"@": if buffer [j + 1] = "@" then incr (j)

else err print (´! Double @ should be used in strings´);
othercases do nothing
endcases;
app tok (buffer [j]); incr (j);
end;

sc1 ("}")(simp);
end

This code is used in section 185.

88 INITIALIZING THE SCRAPS WEAVE §190

190. 〈Append a TEX string scrap 190 〉 ≡
begin app("\"); app("h"); app("b"); app("o"); app("x"); app("{");
for j ← id first to id loc − 1 do app tok (buffer [j]);
sc1 ("}")(simp);
end

This code is used in section 185.

191. 〈Append an identifier scrap 191 〉 ≡
begin p← id lookup(normal);
case ilk [p] of
normal , array like , const like , div like , do like , for like , goto like ,nil like , to like : sub cases (p);
〈Cases that generate more than one scrap 193 〉
othercases begin next control ← ilk [p]− char like ; goto reswitch ;

end {and, in, not, or }
endcases;
end

This code is used in section 185.

192. The sub cases also result in straightforward scraps.

〈Declaration of the sub cases procedure 192 〉 ≡
procedure sub cases (p : name pointer); { a subprocedure of Pascal parse }

begin case ilk [p] of
normal : sc1 (id flag + p)(simp); { not a reserved word }
array like : sc1 (res flag + p)(alpha); {array, file, set }
const like : sc3 (force)(backup)(res flag + p)(intro); { const, label, type }
div like : sc3 (math bin)(res flag + p)("}")(math); {div, mod }
do like : sc1 (res flag + p)(omega); {do, of , then }
for like : sc2 (force)(res flag + p)(alpha); { for, while, with }
goto like : sc1 (res flag + p)(intro); {goto, packed }
nil like : sc1 (res flag + p)(simp); {nil }
to like : sc3 (math rel)(res flag + p)("}")(math); {downto, to }
end;
end;

This code is used in section 183.

§193 WEAVE INITIALIZING THE SCRAPS 89

193. 〈Cases that generate more than one scrap 193 〉 ≡
begin like : begin sc3 (force)(res flag + p)(cancel)(beginning); sc0 (intro);

end; {begin }
case like : begin sc0 (casey); sc2 (force)(res flag + p)(alpha);

end; { case }
else like : begin 〈Append terminator if not already present 194 〉;

sc3 (force)(backup)(res flag + p)(elsie);
end; { else }

end like : begin 〈Append terminator if not already present 194 〉;
sc2 (force)(res flag + p)(close);
end; { end }

if like : begin sc0 (cond); sc2 (force)(res flag + p)(alpha);
end; { if }

loop like : begin sc3 (force)("\")("~")(alpha); sc1 (res flag + p)(omega);
end; {xclause }

proc like : begin sc4 (force)(backup)(res flag + p)(cancel)(proc); sc3 (indent)("\")(" ")(intro);
end; { function, procedure, program }

record like : begin sc1 (res flag + p)(record head); sc0 (intro);
end; { record }

repeat like : begin sc4 (force)(indent)(res flag + p)(cancel)(beginning); sc0 (intro);
end; { repeat }

until like : begin 〈Append terminator if not already present 194 〉;
sc3 (force)(backup)(res flag + p)(close); sc0 (clause);
end; {until }

var like : begin sc4 (force)(backup)(res flag + p)(cancel)(var head); sc0 (intro);
end; {var }

This code is used in section 191.

194. If a comment or semicolon appears before the reserved words end, else, or until, the semi or
terminator scrap that is already present overrides the terminator scrap belonging to this reserved word.

〈Append terminator if not already present 194 〉 ≡
if (scrap ptr < scrap base) ∨ ((cat [scrap ptr] 6= terminator) ∧ (cat [scrap ptr] 6= semi)) then

sc0 (terminator)

This code is used in sections 193, 193, and 193.

195. A comment is incorporated into the previous scrap if that scrap is of type omega or semi or
terminator . (These three categories have consecutive category codes.) Otherwise the comment is entered as
a separate scrap of type terminator , and it will combine with a terminator scrap that immediately follows it.

The app comment procedure takes care of placing a comment at the end of the current scrap list. When
app comment is called, we assume that the current token list is the translation of the comment involved.

〈Declaration of the app comment procedure 195 〉 ≡
procedure app comment ; { append a comment to the scrap list }

begin freeze text ;
if (scrap ptr < scrap base) ∨ (cat [scrap ptr] < omega) ∨ (cat [scrap ptr] > terminator) then

sc0 (terminator)
else begin app1 (scrap ptr); { cat [scrap ptr] is omega or semi or terminator }

end;
app(text ptr − 1 + tok flag); trans [scrap ptr]← text ptr ; freeze text ;
end;

This code is used in section 183.

90 INITIALIZING THE SCRAPS WEAVE §196

196. We are now finished with Pascal parse , except for two relatively trivial subprocedures that convert
constants into tokens.

〈Declaration of the app octal and app hex procedures 196 〉 ≡
procedure app octal ;

begin app("\"); app("O"); app("{");
while (buffer [loc] ≥ "0") ∧ (buffer [loc] ≤ "7") do

begin app tok (buffer [loc]); incr (loc);
end;

sc1 ("}")(simp);
end;

procedure app hex ;
begin app("\"); app("H"); app("{");
while ((buffer [loc] ≥ "0") ∧ (buffer [loc] ≤ "9")) ∨ ((buffer [loc] ≥ "A") ∧ (buffer [loc] ≤ "F")) do

begin app tok (buffer [loc]); incr (loc);
end;

sc1 ("}")(simp);
end;

This code is used in section 183.

197. When the ‘|’ that introduces Pascal text is sensed, a call on Pascal translate will return a pointer
to the TEX translation of that text. If scraps exist in the cat and trans arrays, they are unaffected by this
translation process.

function Pascal translate : text pointer ;
var p: text pointer ; {points to the translation }

save base : 0 . . max scraps ; { holds original value of scrap base }
begin save base ← scrap base ; scrap base ← scrap ptr + 1; Pascal parse ; { get the scraps together }
if next control 6= "|" then err print (´! Missing "|" after Pascal text´);
app tok (cancel); app comment ; { place a cancel token as a final “comment” }
p← translate ; {make the translation }
stat if scrap ptr > max scr ptr then max scr ptr ← scrap ptr ; tats
scrap ptr ← scrap base − 1; scrap base ← save base ; { scrap the scraps }
Pascal translate ← p;
end;

§198 WEAVE INITIALIZING THE SCRAPS 91

198. The outer parse routine is to Pascal parse as outer xref is to Pascal xref : It constructs a sequence
of scraps for Pascal text until next control ≥ format . Thus, it takes care of embedded comments.

procedure outer parse ; {makes scraps from Pascal tokens and comments }
var bal : eight bits ; { brace level in comment }
p, q: text pointer ; { partial comments }

begin while next control < format do
if next control 6= "{" then Pascal parse
else begin 〈Make sure that there is room for at least seven more tokens, three more texts, and one

more scrap 199 〉;
app("\"); app("C"); app("{"); bal ← copy comment (1); next control ← "|";
while bal > 0 do

begin p← text ptr ; freeze text ; q ← Pascal translate ;
{ at this point we have tok ptr + 6 ≤ max toks }

app(tok flag + p); app(inner tok flag + q);
if next control = "|" then bal ← copy comment (bal)
else bal ← 0; { an error has been reported }
end;

app(force); app comment ; { the full comment becomes a scrap }
end;

end;

199. 〈Make sure that there is room for at least seven more tokens, three more texts, and one more
scrap 199 〉 ≡

if (tok ptr + 7 > max toks) ∨ (text ptr + 3 > max texts) ∨ (scrap ptr ≥ max scraps) then
begin stat if scrap ptr > max scr ptr then max scr ptr ← scrap ptr ;
if tok ptr > max tok ptr then max tok ptr ← tok ptr ;
if text ptr > max txt ptr then max txt ptr ← text ptr ;
tats
overflow (´token/text/scrap´);
end

This code is used in section 198.

92 OUTPUT OF TOKENS WEAVE §200

200. Output of tokens. So far our programs have only built up multi-layered token lists in WEAVE’s
internal memory; we have to figure out how to get them into the desired final form. The job of converting
token lists to characters in the TEX output file is not difficult, although it is an implicitly recursive process.
Four main considerations had to be kept in mind when this part of WEAVE was designed. (a) There are two
modes of output: outer mode, which translates tokens like force into line-breaking control sequences, and
inner mode, which ignores them except that blank spaces take the place of line breaks. (b) The cancel
instruction applies to adjacent token or tokens that are output, and this cuts across levels of recursion since
‘cancel ’ occurs at the beginning or end of a token list on one level. (c) The TEX output file will be semi-
readable if line breaks are inserted after the result of tokens like break space and force . (d) The final line
break should be suppressed, and there should be no force token output immediately after ‘\Y\P’.

201. The output process uses a stack to keep track of what is going on at different “levels” as the token
lists are being written out. Entries on this stack have three parts:

end field is the tok mem location where the token list of a particular level will end;

tok field is the tok mem location from which the next token on a particular level will be read;

mode field is the current mode, either inner or outer .

The current values of these quantities are referred to quite frequently, so they are stored in a separate place
instead of in the stack array. We call the current values cur end , cur tok , and cur mode .

The global variable stack ptr tells how many levels of output are currently in progress. The end of output
occurs when an end translation token is found, so the stack is never empty except when we first begin the
output process.

define inner = 0 { value of mode for Pascal texts within TEX texts }
define outer = 1 { value of mode for Pascal texts in modules }

〈Types in the outer block 11 〉 +≡
mode = inner . . outer ;
output state = record end field : sixteen bits ; { ending location of token list }

tok field : sixteen bits ; { present location within token list }
mode field : mode ; { interpretation of control tokens }
end;

202. define cur end ≡ cur state .end field { current ending location in tok mem }
define cur tok ≡ cur state .tok field { location of next output token in tok mem }
define cur mode ≡ cur state .mode field { current mode of interpretation }
define init stack ≡ stack ptr ← 0; cur mode ← outer {do this to initialize the stack }

〈Globals in the outer block 9 〉 +≡
cur state : output state ; { cur end , cur tok , cur mode }
stack : array [1 . . stack size] of output state ; { info for non-current levels }
stack ptr : 0 . . stack size ; { first unused location in the output state stack }

stat max stack ptr : 0 . . stack size ; { largest value assumed by stack ptr }
tats

203. 〈Set initial values 10 〉 +≡
stat max stack ptr ← 0; tats

§204 WEAVE OUTPUT OF TOKENS 93

204. To insert token-list p into the output, the push level subroutine is called; it saves the old level of
output and gets a new one going. The value of cur mode is not changed.

procedure push level (p : text pointer); { suspends the current level }
begin if stack ptr = stack size then overflow (´stack´)
else begin if stack ptr > 0 then stack [stack ptr]← cur state ; { save cur end . . . cur mode }

incr (stack ptr);
stat if stack ptr > max stack ptr then max stack ptr ← stack ptr ; tats
cur tok ← tok start [p]; cur end ← tok start [p + 1];
end;

end;

205. Conversely, the pop level routine restores the conditions that were in force when the current level was
begun. This subroutine will never be called when stack ptr = 1. It is so simple, we declare it as a macro:

define pop level ≡
begin decr (stack ptr); cur state ← stack [stack ptr];
end { do this when cur tok reaches cur end }

206. The get output function returns the next byte of output that is not a reference to a token list. It
returns the values identifier or res word or mod name if the next token is to be an identifier (typeset in
italics), a reserved word (typeset in boldface) or a module name (typeset by a complex routine that might
generate additional levels of output). In these cases cur name points to the identifier or module name in
question.

define res word = 2́01 { returned by get output for reserved words }
define mod name = 2́00 { returned by get output for module names }

function get output : eight bits ; { returns the next token of output }
label restart ;
var a: sixteen bits ; { current item read from tok mem }
begin restart : while cur tok = cur end do pop level ;
a← tok mem [cur tok]; incr (cur tok);
if a ≥ 4́00 then

begin cur name ← a mod id flag ;
case a div id flag of
2: a← res word ; { a = res flag + cur name }
3: a← mod name ; { a = mod flag + cur name }
4: begin push level (cur name); goto restart ;

end; { a = tok flag + cur name }
5: begin push level (cur name); cur mode ← inner ; goto restart ;

end; { a = inner tok flag + cur name }
othercases a← identifier { a = id flag + cur name }
endcases;
end;

debug if trouble shooting then debug help ;
gubed
get output ← a;
end;

94 OUTPUT OF TOKENS WEAVE §207

207. The real work associated with token output is done by make output . This procedure appends an
end translation token to the current token list, and then it repeatedly calls get output and feeds characters
to the output buffer until reaching the end translation sentinel. It is possible for make output to be called
recursively, since a module name may include embedded Pascal text; however, the depth of recursion never
exceeds one level, since module names cannot be inside of module names.

A procedure called output Pascal does the scanning, translation, and output of Pascal text within ‘| . . . |’
brackets, and this procedure uses make output to output the current token list. Thus, the recursive call of
make output actually occurs when make output calls output Pascal while outputting the name of a module.

procedure make output ; forward ;

procedure output Pascal ; { outputs the current token list }
var save tok ptr , save text ptr , save next control : sixteen bits ; { values to be restored }
p: text pointer ; { translation of the Pascal text }

begin save tok ptr ← tok ptr ; save text ptr ← text ptr ; save next control ← next control ;
next control ← "|"; p← Pascal translate ; app(p + inner tok flag); make output ; { output the list }
stat if text ptr > max txt ptr then max txt ptr ← text ptr ;
if tok ptr > max tok ptr then max tok ptr ← tok ptr ; tats
text ptr ← save text ptr ; tok ptr ← save tok ptr ; { forget the tokens }
next control ← save next control ; { restore next control to original state }
end;

§208 WEAVE OUTPUT OF TOKENS 95

208. Here is WEAVE’s major output handler.

procedure make output ; { outputs the equivalents of tokens }
label reswitch , exit , found ;
var a: eight bits ; { current output byte }
b: eight bits ; { next output byte }
k, k limit : 0 . . max bytes ; { indices into byte mem }
w: 0 . . ww − 1; { row of byte mem }
j: 0 . . long buf size ; { index into buffer }
string delimiter : ASCII code ; { first and last character of string being copied }
save loc , save limit : 0 . . long buf size ; { loc and limit to be restored }
cur mod name : name pointer ; {name of module being output }
save mode : mode ; { value of cur mode before a sequence of breaks }

begin app(end translation); { append a sentinel }
freeze text ; push level (text ptr − 1);
loop begin a← get output ;
reswitch : case a of

end translation : return;
identifier , res word : 〈Output an identifier 209 〉;
mod name : 〈Output a module name 213 〉;
math bin ,math op ,math rel : 〈Output a \math operator 210 〉;
cancel : begin repeat a← get output ;

until (a < backup) ∨ (a > big force);
goto reswitch ;
end;

big cancel : begin repeat a← get output ;
until ((a < backup) ∧ (a 6= " ")) ∨ (a > big force);
goto reswitch ;
end;

indent , outdent , opt , backup , break space , force , big force : 〈Output a control, look ahead in case of line
breaks, possibly goto reswitch 211 〉;

othercases out (a) { otherwise a is an ASCII character }
endcases;
end;

exit : end;

209. An identifier of length one does not have to be enclosed in braces, and it looks slightly better if set
in a math-italic font instead of a (slightly narrower) text-italic font. Thus we output ‘\|a’ but ‘\\{aa}’.

〈Output an identifier 209 〉 ≡
begin out ("\");
if a = identifier then

if length (cur name) = 1 then out ("|")
else out ("\")

else out ("&"); { a = res word }
if length (cur name) = 1 then out (byte mem [cur name mod ww , byte start [cur name]])
else out name (cur name);
end

This code is used in section 208.

96 OUTPUT OF TOKENS WEAVE §210

210. 〈Output a \math operator 210 〉 ≡
begin out5 ("\")("m")("a")("t")("h");
if a = math bin then out3 ("b")("i")("n")
else if a = math rel then out3 ("r")("e")("l")

else out2 ("o")("p");
out ("{");
end

This code is used in section 208.

211. The current mode does not affect the behavior of WEAVE’s output routine except when we are
outputting control tokens.

〈Output a control, look ahead in case of line breaks, possibly goto reswitch 211 〉 ≡
if a < break space then

begin if cur mode = outer then
begin out2 ("\")(a− cancel + "0");
if a = opt then out (get output) { opt is followed by a digit }
end

else if a = opt then b← get output { ignore digit following opt }
end

else 〈Look ahead for strongest line break, goto reswitch 212 〉
This code is used in section 208.

212. If several of the tokens break space , force , big force occur in a row, possibly mixed with blank spaces
(which are ignored), the largest one is used. A line break also occurs in the output file, except at the very
end of the translation. The very first line break is suppressed (i.e., a line break that follows ‘\Y\P’).

〈Look ahead for strongest line break, goto reswitch 212 〉 ≡
begin b← a; save mode ← cur mode ;
loop begin a← get output ;

if (a = cancel) ∨ (a = big cancel) then goto reswitch ; { cancel overrides everything }
if ((a 6= " ") ∧ (a < break space)) ∨ (a > big force) then

begin if save mode = outer then
begin if out ptr > 3 then

if (out buf [out ptr] = "P") ∧ (out buf [out ptr − 1] = "\") ∧ (out buf [out ptr − 2] =
"Y") ∧ (out buf [out ptr − 3] = "\") then goto reswitch ;

out2 ("\")(b− cancel + "0");
if a 6= end translation then finish line ;
end

else if (a 6= end translation) ∧ (cur mode = inner) then out (" ");
goto reswitch ;
end;

if a > b then b← a; { if a = " " we have a < b }
end;

end

This code is used in section 211.

§213 WEAVE OUTPUT OF TOKENS 97

213. The remaining part of make output is somewhat more complicated. When we output a module name,
we may need to enter the parsing and translation routines, since the name may contain Pascal code embedded
in | . . . | constructions. This Pascal code is placed at the end of the active input buffer and the translation
process uses the end of the active tok mem area.

〈Output a module name 213 〉 ≡
begin out2 ("\")("X"); cur xref ← xref [cur name];
if num (cur xref) ≥ def flag then

begin out mod (num (cur xref)− def flag);
if phase three then

begin cur xref ← xlink (cur xref);
while num (cur xref) ≥ def flag do

begin out2 (",")(" "); out mod (num (cur xref)− def flag); cur xref ← xlink (cur xref);
end;

end;
end

else out ("0"); { output the module number, or zero if it was undefined }
out (":"); 〈Output the text of the module name 214 〉;
out2 ("\")("X");
end

This code is used in section 208.

214. 〈Output the text of the module name 214 〉 ≡
k ← byte start [cur name]; w ← cur name mod ww ; k limit ← byte start [cur name + ww];
cur mod name ← cur name ;
while k < k limit do

begin b← byte mem [w, k]; incr (k);
if b = "@" then 〈Skip next character, give error if not ‘@’ 215 〉;
if b 6= "|" then out (b)
else begin 〈Copy the Pascal text into buffer [(limit + 1) . . j] 216 〉;

save loc ← loc ; save limit ← limit ; loc ← limit + 2; limit ← j + 1; buffer [limit]← "|";
output Pascal ; loc ← save loc ; limit ← save limit ;
end;

end

This code is used in section 213.

215. 〈Skip next character, give error if not ‘@’ 215 〉 ≡
begin if byte mem [w, k] 6= "@" then

begin print nl (´! Illegal control code in section name:´); print nl (´<´);
print id (cur mod name); print (´> ´); mark error ;
end;

incr (k);
end

This code is used in section 214.

98 OUTPUT OF TOKENS WEAVE §216

216. The Pascal text enclosed in | . . . | should not contain ‘|’ characters, except within strings. We put
a ‘|’ at the front of the buffer, so that an error message that displays the whole buffer will look a little bit
sensible. The variable string delimiter is zero outside of strings, otherwise it equals the delimiter that began
the string being copied.

〈Copy the Pascal text into buffer [(limit + 1) . . j] 216 〉 ≡
j ← limit + 1; buffer [j]← "|"; string delimiter ← 0;
loop begin if k ≥ k limit then

begin print nl (´! Pascal text in section name didn´´t end:´); print nl (´<´);
print id (cur mod name); print (´> ´); mark error ; goto found ;
end;

b← byte mem [w, k]; incr (k);
if b = "@" then 〈Copy a control code into the buffer 217 〉
else begin if (b = """") ∨ (b = "´") then

if string delimiter = 0 then string delimiter ← b
else if string delimiter = b then string delimiter ← 0;

if (b 6= "|") ∨ (string delimiter 6= 0) then
begin if j > long buf size − 3 then overflow (´buffer´);
incr (j); buffer [j]← b;
end

else goto found ;
end;

end;
found :

This code is used in section 214.

217. 〈Copy a control code into the buffer 217 〉 ≡
begin if j > long buf size − 4 then overflow (´buffer´);
buffer [j + 1]← "@"; buffer [j + 2]← byte mem [w, k]; j ← j + 2; incr (k);
end

This code is used in section 216.

§218 WEAVE PHASE TWO PROCESSING 99

218. Phase two processing. We have assembled enough pieces of the puzzle in order to be ready to
specify the processing in WEAVE’s main pass over the source file. Phase two is analogous to phase one, except
that more work is involved because we must actually output the TEX material instead of merely looking at
the WEB specifications.

〈Phase II: Read all the text again and translate it to TEX form 218 〉 ≡
reset input ; print nl (´Writing the output file...´); module count ← 0; copy limbo ; finish line ;
flush buffer (0, false , false); { insert a blank line, it looks nice }
while ¬input has ended do 〈Translate the current module 220 〉

This code is used in section 261.

219. The output file will contain the control sequence \Y between non-null sections of a module, e.g.,
between the TEX and definition parts if both are nonempty. This puts a little white space between the parts
when they are printed. However, we don’t want \Y to occur between two definitions within a single module.
The variables out line or out ptr will change if a section is non-null, so the following macros ‘save position ’
and ‘emit space if needed ’ are able to handle the situation:

define save position ≡ save line ← out line ; save place ← out ptr
define emit space if needed ≡

if (save line 6= out line) ∨ (save place 6= out ptr) then out2 ("\")("Y")

〈Globals in the outer block 9 〉 +≡
save line : integer ; { former value of out line }
save place : sixteen bits ; { former value of out ptr }

220. 〈Translate the current module 220 〉 ≡
begin incr (module count);
〈Output the code for the beginning of a new module 221 〉;
save position ;
〈Translate the TEX part of the current module 222 〉;
〈Translate the definition part of the current module 225 〉;
〈Translate the Pascal part of the current module 230 〉;
〈Show cross references to this module 233 〉;
〈Output the code for the end of a module 238 〉;
end

This code is used in section 218.

221. Modules beginning with the WEB control sequence ‘@ ’ start in the output with the TEX control
sequence ‘\M’, followed by the module number. Similarly, ‘@*’ modules lead to the control sequence ‘\N’. If
this is a changed module, we put * just before the module number.

〈Output the code for the beginning of a new module 221 〉 ≡
out ("\");
if buffer [loc − 1] 6= "*" then out ("M")
else begin out ("N"); print (´*´,module count : 1); update terminal ; {print a progress report }

end;
out mod (module count); out2 (".")(" ")

This code is used in section 220.

100 PHASE TWO PROCESSING WEAVE §222

222. In the TEX part of a module, we simply copy the source text, except that index entries are not copied
and Pascal text within | . . . | is translated.

〈Translate the TEX part of the current module 222 〉 ≡
repeat next control ← copy TeX ;

case next control of
"|": begin init stack ; output Pascal ;

end;
"@": out ("@");
octal : 〈Translate an octal constant appearing in TEX text 223 〉;
hex : 〈Translate a hexadecimal constant appearing in TEX text 224 〉;
TeX string , xref roman , xref wildcard , xref typewriter ,module name : begin loc ← loc − 2;

next control ← get next ; { skip to @> }
if next control = TeX string then err print (´! TeX string should be in Pascal text only´);
end;

begin comment , end comment , check sum , thin space ,math break , line break , big line break ,
no line break , join , pseudo semi : err print (´! You can´´t do that in TeX text´);

othercases do nothing
endcases;

until next control ≥ format

This code is used in section 220.

223. 〈Translate an octal constant appearing in TEX text 223 〉 ≡
begin out3 ("\")("O")("{");
while (buffer [loc] ≥ "0") ∧ (buffer [loc] ≤ "7") do

begin out (buffer [loc]); incr (loc);
end; { since buffer [limit] = " ", this loop will end }

out ("}");
end

This code is used in section 222.

224. 〈Translate a hexadecimal constant appearing in TEX text 224 〉 ≡
begin out3 ("\")("H")("{");
while ((buffer [loc] ≥ "0") ∧ (buffer [loc] ≤ "9")) ∨ ((buffer [loc] ≥ "A") ∧ (buffer [loc] ≤ "F")) do

begin out (buffer [loc]); incr (loc);
end;

out ("}");
end

This code is used in section 222.

§225 WEAVE PHASE TWO PROCESSING 101

225. When we get to the following code we have next control ≥ format , and the token memory is in its
initial empty state.

〈Translate the definition part of the current module 225 〉 ≡
if next control ≤ definition then { definition part non-empty }

begin emit space if needed ; save position ;
end;

while next control ≤ definition do { format or definition }
begin init stack ;
if next control = definition then 〈Start a macro definition 227 〉
else 〈Start a format definition 228 〉;
outer parse ; finish Pascal ;
end

This code is used in section 220.

226. The finish Pascal procedure outputs the translation of the current scraps, preceded by the control
sequence ‘\P’ and followed by the control sequence ‘\par’. It also restores the token and scrap memories to
their initial empty state.

A force token is appended to the current scraps before translation takes place, so that the translation
will normally end with \6 or \7 (the TEX macros for force and big force). This \6 or \7 is replaced by the
concluding \par or by \Y\par.

procedure finish Pascal ; { finishes a definition or a Pascal part }
var p: text pointer ; { translation of the scraps }
begin out2 ("\")("P"); app tok (force); app comment ; p← translate ; app(p + tok flag); make output ;
{ output the list }

if out ptr > 1 then
if out buf [out ptr − 1] = "\" then

if out buf [out ptr] = "6" then out ptr ← out ptr − 2
else if out buf [out ptr] = "7" then out buf [out ptr]← "Y";

out4 ("\")("p")("a")("r"); finish line ;
stat if text ptr > max txt ptr then max txt ptr ← text ptr ;
if tok ptr > max tok ptr then max tok ptr ← tok ptr ;
if scrap ptr > max scr ptr then max scr ptr ← scrap ptr ;
tats
tok ptr ← 1; text ptr ← 1; scrap ptr ← 0; { forget the tokens and the scraps }
end;

227. 〈Start a macro definition 227 〉 ≡
begin sc2 ("\")("D")(intro); { this will produce ‘define ’ }
next control ← get next ;
if next control 6= identifier then err print (´! Improper macro definition´)
else sc1 (id flag + id lookup(normal))(math);
next control ← get next ;
end

This code is used in section 225.

102 PHASE TWO PROCESSING WEAVE §228

228. 〈Start a format definition 228 〉 ≡
begin sc2 ("\")("F")(intro); { this will produce ‘format ’ }
next control ← get next ;
if next control = identifier then

begin sc1 (id flag + id lookup(normal))(math); next control ← get next ;
if next control = equivalence sign then

begin sc2 ("\")("S")(math); { output an equivalence sign }
next control ← get next ;
if next control = identifier then

begin sc1 (id flag + id lookup(normal))(math); sc0 (semi); { insert an invisible semicolon }
next control ← get next ;
end;

end;
end;

if scrap ptr 6= 5 then err print (´! Improper format definition´);
end

This code is used in section 225.

229. Finally, when the TEX and definition parts have been treated, we have next control ≥ begin Pascal .
We will make the global variable this module point to the current module name, if it has a name.

〈Globals in the outer block 9 〉 +≡
this module : name pointer ; { the current module name, or zero }

230. 〈Translate the Pascal part of the current module 230 〉 ≡
this module ← 0;
if next control ≤ module name then

begin emit space if needed ; init stack ;
if next control = begin Pascal then next control ← get next
else begin this module ← cur module ; 〈Check that = or ≡ follows this module name, and emit the

scraps to start the module definition 231 〉;
end;

while next control ≤ module name do
begin outer parse ; 〈Emit the scrap for a module name if present 232 〉;
end;

finish Pascal ;
end

This code is used in section 220.

§231 WEAVE PHASE TWO PROCESSING 103

231. 〈Check that = or ≡ follows this module name, and emit the scraps to start the module
definition 231 〉 ≡

repeat next control ← get next ;
until next control 6= "+"; { allow optional ‘+=’ }
if (next control 6= "=") ∧ (next control 6= equivalence sign) then

err print (´! You need an = sign after the section name´)
else next control ← get next ;
if out ptr > 1 then

if (out buf [out ptr] = "Y") ∧ (out buf [out ptr − 1] = "\") then
begin app(backup); { the module name will be flush left }
end;

sc1 (mod flag + this module)(mod scrap); cur xref ← xref [this module];
if num (cur xref) 6= module count + def flag then

begin sc3 (math rel)("+")("}")(math); {module name is multiply defined }
this module ← 0; { so we won’t give cross-reference info here }
end;

sc2 ("\")("S")(math); { output an equivalence sign }
sc1 (force)(semi); { this forces a line break unless ‘@+’ follows }

This code is used in section 230.

232. 〈Emit the scrap for a module name if present 232 〉 ≡
if next control < module name then

begin err print (´! You can´´t do that in Pascal text´); next control ← get next ;
end

else if next control = module name then
begin sc1 (mod flag + cur module)(mod scrap); next control ← get next ;
end

This code is used in section 230.

233. Cross references relating to a named module are given after the module ends.

〈Show cross references to this module 233 〉 ≡
if this module > 0 then

begin 〈Rearrange the list pointed to by cur xref 235 〉;
footnote (def flag); footnote (0);
end

This code is used in section 220.

234. To rearrange the order of the linked list of cross references, we need four more variables that point
to cross reference entries. We’ll end up with a list pointed to by cur xref .

〈Globals in the outer block 9 〉 +≡
next xref , this xref ,first xref ,mid xref : xref number ; { pointer variables for rearranging a list }

104 PHASE TWO PROCESSING WEAVE §235

235. We want to rearrange the cross reference list so that all the entries with def flag come first, in
ascending order; then come all the other entries, in ascending order. There may be no entries in either one
or both of these categories.

〈Rearrange the list pointed to by cur xref 235 〉 ≡
first xref ← xref [this module]; this xref ← xlink (first xref); {bypass current module number }
if num (this xref) > def flag then

begin mid xref ← this xref ; cur xref ← 0; { this value doesn’t matter }
repeat next xref ← xlink (this xref); xlink (this xref)← cur xref ; cur xref ← this xref ;

this xref ← next xref ;
until num (this xref) ≤ def flag ;
xlink (first xref)← cur xref ;
end

else mid xref ← 0; {first list null }
cur xref ← 0;
while this xref 6= 0 do

begin next xref ← xlink (this xref); xlink (this xref)← cur xref ; cur xref ← this xref ;
this xref ← next xref ;
end;

if mid xref > 0 then xlink (mid xref)← cur xref
else xlink (first xref)← cur xref ;
cur xref ← xlink (first xref)

This code is used in section 233.

236. The footnote procedure gives cross reference information about multiply defined module names (if
the flag parameter is def flag), or about the uses of a module name (if the flag parameter is zero). It assumes
that cur xref points to the first cross-reference entry of interest, and it leaves cur xref pointing to the first
element not printed. Typical outputs: ‘\A101.’; ‘\Us370\ET1009.’; ‘\As8, 27*, 51\ETs64.’.

procedure footnote (flag : sixteen bits); { outputs module cross-references }
label done , exit ;
var q: xref number ; { cross-reference pointer variable }
begin if num (cur xref) ≤ flag then return;
finish line ; out ("\");
if flag = 0 then out ("U") else out ("A");
〈Output all the module numbers on the reference list cur xref 237 〉;
out (".");

exit : end;

§237 WEAVE PHASE TWO PROCESSING 105

237. The following code distinguishes three cases, according as the number of cross references is one, two,
or more than two. Variable q points to the first cross reference, and the last link is a zero.

〈Output all the module numbers on the reference list cur xref 237 〉 ≡
q ← cur xref ;
if num (xlink (q)) > flag then out ("s"); { plural }
loop begin out mod (num (cur xref)− flag); cur xref ← xlink (cur xref);

{point to the next cross reference to output }
if num (cur xref) ≤ flag then goto done ;
if num (xlink (cur xref)) > flag then out2 (",")(" ") { not the last }
else begin out3 ("\")("E")("T"); { the last }

if cur xref 6= xlink (q) then out ("s"); { the last of more than two }
end;

end;
done :

This code is used in section 236.

238. 〈Output the code for the end of a module 238 〉 ≡
out3 ("\")("f")("i"); finish line ; flush buffer (0, false , false); { insert a blank line, it looks nice }

This code is used in section 220.

106 PHASE THREE PROCESSING WEAVE §239

239. Phase three processing. We are nearly finished! WEAVE’s only remaining task is to write out the
index, after sorting the identifiers and index entries.

〈Phase III: Output the cross-reference index 239 〉 ≡
phase three ← true ; print nl (´Writing the index...´);
if change exists then

begin finish line ; 〈Tell about changed modules 241 〉;
end;

finish line ; out4 ("\")("i")("n")("x"); finish line ; 〈Do the first pass of sorting 243 〉;
〈Sort and output the index 250 〉;
out4 ("\")("f")("i")("n"); finish line ; 〈Output all the module names 257 〉;
out4 ("\")("c")("o")("n"); finish line ; print (´Done.´);

This code is used in section 261.

240. Just before the index comes a list of all the changed modules, including the index module itself.

〈Globals in the outer block 9 〉 +≡
k module : 0 . . max modules ; { runs through the modules }

241. 〈Tell about changed modules 241 〉 ≡
begin { remember that the index is already marked as changed }
k module ← 1; out4 ("\")("c")("h")(" ");
while k module < module count do

begin if changed module [k module] then
begin out mod (k module); out2 (",")(" ");
end;

incr (k module);
end;

out mod (k module); out (".");
end

This code is used in section 239.

242. A left-to-right radix sorting method is used, since this makes it easy to adjust the collating sequence
and since the running time will be at worst proportional to the total length of all entries in the index. We
put the identifiers into 230 different lists based on their first characters. (Uppercase letters are put into
the same list as the corresponding lowercase letters, since we want to have ‘t < TeX < to’.) The list for
character c begins at location bucket [c] and continues through the blink array.

〈Globals in the outer block 9 〉 +≡
bucket : array [ASCII code] of name pointer ;
next name : name pointer ; { successor of cur name when sorting }
c: ASCII code ; { index into bucket }
h: 0 . . hash size ; { index into hash }
blink : array [0 . . max names] of sixteen bits ; { links in the buckets }

§243 WEAVE PHASE THREE PROCESSING 107

243. To begin the sorting, we go through all the hash lists and put each entry having a nonempty cross-
reference list into the proper bucket.

〈Do the first pass of sorting 243 〉 ≡
for c← 0 to 255 do bucket [c]← 0;
for h← 0 to hash size − 1 do

begin next name ← hash [h];
while next name 6= 0 do

begin cur name ← next name ; next name ← link [cur name];
if xref [cur name] 6= 0 then

begin c← byte mem [cur name mod ww , byte start [cur name]];
if (c ≤ "Z") ∧ (c ≥ "A") then c← c + 4́0 ;
blink [cur name]← bucket [c]; bucket [c]← cur name ;
end;

end;
end

This code is used in section 239.

244. During the sorting phase we shall use the cat and trans arrays from WEAVE’s parsing algorithm and
rename them depth and head . They now represent a stack of identifier lists for all the index entries that
have not yet been output. The variable sort ptr tells how many such lists are present; the lists are output
in reverse order (first sort ptr , then sort ptr − 1, etc.). The jth list starts at head [j], and if the first k
characters of all entries on this list are known to be equal we have depth [j] = k.

define depth ≡ cat { reclaims memory that is no longer needed for parsing }
define head ≡ trans { ditto }
define sort ptr ≡ scrap ptr { ditto }
define max sorts ≡ max scraps { ditto }

〈Globals in the outer block 9 〉 +≡
cur depth : eight bits ; { depth of current buckets }
cur byte : 0 . . max bytes ; { index into byte mem }
cur bank : 0 . . ww − 1; { row of byte mem }
cur val : sixteen bits ; { current cross reference number }

stat max sort ptr : 0 . . max sorts ; tats { largest value of sort ptr }

245. 〈Set initial values 10 〉 +≡
stat max sort ptr ← 0; tats

246. The desired alphabetic order is specified by the collate array; namely, collate [0] < collate [1] < · · · <
collate [229].

〈Globals in the outer block 9 〉 +≡
collate : array [0 . . 229] of ASCII code ; { collation order }

247. 〈Local variables for initialization 16 〉 +≡
c: ASCII code ; {used to initialize collate }

108 PHASE THREE PROCESSING WEAVE §248

248. We use the order null < < other characters < _ < A = a < · · · < Z = z < 0 < · · · < 9.

〈Set initial values 10 〉 +≡
collate [0]← 0; collate [1]← " ";
for c← 1 to " "− 1 do collate [c + 1]← c;
for c← " " + 1 to "0"− 1 do collate [c]← c;
for c← "9" + 1 to "A"− 1 do collate [c− 10]← c;
for c← "Z" + 1 to "_"− 1 do collate [c− 36]← c;
collate ["_"− 36]← "_" + 1;
for c← "z" + 1 to 255 do collate [c− 63]← c;
collate [193]← "_";
for c← "a" to "z" do collate [c− "a" + 194]← c;
for c← "0" to "9" do collate [c− "0" + 220]← c;

249. Procedure unbucket goes through the buckets and adds nonempty lists to the stack, using the collating
sequence specified in the collate array. The parameter to unbucket tells the current depth in the buckets.
Any two sequences that agree in their first 255 character positions are regarded as identical.

define infinity = 255 {∞ (approximately) }
procedure unbucket (d : eight bits); { empties buckets having depth d }

var c: ASCII code ; { index into bucket }
begin for c← 229 downto 0 do

if bucket [collate [c]] > 0 then
begin if sort ptr > max sorts then overflow (´sorting´);
incr (sort ptr);
stat if sort ptr > max sort ptr then max sort ptr ← sort ptr ; tats
if c = 0 then depth [sort ptr]← infinity
else depth [sort ptr]← d;
head [sort ptr]← bucket [collate [c]]; bucket [collate [c]]← 0;
end;

end;

250. 〈Sort and output the index 250 〉 ≡
sort ptr ← 0; unbucket (1);
while sort ptr > 0 do

begin cur depth ← cat [sort ptr];
if (blink [head [sort ptr]] = 0) ∨ (cur depth = infinity) then
〈Output index entries for the list at sort ptr 252 〉

else 〈Split the list at sort ptr into further lists 251 〉;
end

This code is used in section 239.

§251 WEAVE PHASE THREE PROCESSING 109

251. 〈Split the list at sort ptr into further lists 251 〉 ≡
begin next name ← head [sort ptr];
repeat cur name ← next name ; next name ← blink [cur name];

cur byte ← byte start [cur name] + cur depth ; cur bank ← cur name mod ww ;
if cur byte = byte start [cur name + ww] then c← 0 {we hit the end of the name }
else begin c← byte mem [cur bank , cur byte];

if (c ≤ "Z") ∧ (c ≥ "A") then c← c + 4́0 ;
end;

blink [cur name]← bucket [c]; bucket [c]← cur name ;
until next name = 0;
decr (sort ptr); unbucket (cur depth + 1);
end

This code is used in section 250.

252. 〈Output index entries for the list at sort ptr 252 〉 ≡
begin cur name ← head [sort ptr];
debug if trouble shooting then debug help ; gubed
repeat out2 ("\")(":"); 〈Output the name at cur name 253 〉;
〈Output the cross-references at cur name 254 〉;
cur name ← blink [cur name];

until cur name = 0;
decr (sort ptr);
end

This code is used in section 250.

253. 〈Output the name at cur name 253 〉 ≡
case ilk [cur name] of
normal : if length (cur name) = 1 then out2 ("\")("|") else out2 ("\")("\");
roman : do nothing ;
wildcard : out2 ("\")("9");
typewriter : out2 ("\")(".");
othercases out2 ("\")("&")
endcases;
out name (cur name)

This code is used in section 252.

254. Section numbers that are to be underlined are enclosed in ‘\[. . .]’.

〈Output the cross-references at cur name 254 〉 ≡
〈 Invert the cross-reference list at cur name , making cur xref the head 255 〉;
repeat out2 (",")(" "); cur val ← num (cur xref);

if cur val < def flag then out mod (cur val)
else begin out2 ("\")("["); out mod (cur val − def flag); out ("]");

end;
cur xref ← xlink (cur xref);

until cur xref = 0;
out ("."); finish line

This code is used in section 252.

110 PHASE THREE PROCESSING WEAVE §255

255. List inversion is best thought of as popping elements off one stack and pushing them onto another.
In this case cur xref will be the head of the stack that we push things onto.

〈 Invert the cross-reference list at cur name , making cur xref the head 255 〉 ≡
this xref ← xref [cur name]; cur xref ← 0;
repeat next xref ← xlink (this xref); xlink (this xref)← cur xref ; cur xref ← this xref ;

this xref ← next xref ;
until this xref = 0

This code is used in section 254.

256. The following recursive procedure walks through the tree of module names and prints them.

procedure mod print (p : name pointer); { print all module names in subtree p }
begin if p > 0 then

begin mod print (llink [p]);
out2 ("\")(":");
tok ptr ← 1; text ptr ← 1; scrap ptr ← 0; init stack ; app(p + mod flag); make output ; footnote (0);

{ cur xref was set by make output }
finish line ;
mod print (rlink [p]);
end;

end;

257. 〈Output all the module names 257 〉 ≡ mod print (root)

This code is used in section 239.

§258 WEAVE DEBUGGING 111

258. Debugging. The Pascal debugger with which WEAVE was developed allows breakpoints to be set,
and variables can be read and changed, but procedures cannot be executed. Therefore a ‘debug help ’
procedure has been inserted in the main loops of each phase of the program; when ddt and dd are set
to appropriate values, symbolic printouts of various tables will appear.

The idea is to set a breakpoint inside the debug help routine, at the place of ‘breakpoint :’ below. Then
when debug help is to be activated, set trouble shooting equal to true . The debug help routine will prompt
you for values of ddt and dd , discontinuing this when ddt ≤ 0; thus you type 2n + 1 integers, ending with
zero or a negative number. Then control either passes to the breakpoint, allowing you to look at and/or
change variables (if you typed zero), or to exit the routine (if you typed a negative value).

Another global variable, debug cycle , can be used to skip silently past calls on debug help . If you set
debug cycle > 1, the program stops only every debug cycle times debug help is called; however, any error
stop will set debug cycle to zero.

〈Globals in the outer block 9 〉 +≡
debug trouble shooting : boolean ; { is debug help wanted? }

ddt : integer ; { operation code for the debug help routine }
dd : integer ; { operand in procedures performed by debug help }
debug cycle : integer ; { threshold for debug help stopping }
debug skipped : integer ; {we have skipped this many debug help calls }
term in : text file ; { the user’s terminal as an input file }

gubed

259. The debugging routine needs to read from the user’s terminal.

〈Set initial values 10 〉 +≡
debug trouble shooting ← true ; debug cycle ← 1; debug skipped ← 0; tracing ← 0;
trouble shooting ← false ; debug cycle ← 99999; { use these when it almost works }
reset (term in , ´TTY:´, ´/I´); { open term in as the terminal, don’t do a get }
gubed

112 DEBUGGING WEAVE §260

260. define breakpoint = 888 { place where a breakpoint is desirable }
debug procedure debug help ; { routine to display various things }
label breakpoint , exit ;
var k: integer ; { index into various arrays }
begin incr (debug skipped);
if debug skipped < debug cycle then return;
debug skipped ← 0;
loop begin print nl (´#´); update terminal ; { prompt }

read (term in , ddt); { read a debug-command code }
if ddt < 0 then return
else if ddt = 0 then

begin goto breakpoint ; @\ { go to every label at least once }
breakpoint : ddt ← 0; @\

end
else begin read (term in , dd);

case ddt of
1: print id (dd);
2: print text (dd);
3: for k ← 1 to dd do print (xchr [buffer [k]]);
4: for k ← 1 to dd do print (xchr [mod text [k]]);
5: for k ← 1 to out ptr do print (xchr [out buf [k]]);
6: for k ← 1 to dd do

begin print cat (cat [k]); print (´ ´);
end;

othercases print (´?´)
endcases;
end;

end;
exit : end;

gubed

§261 WEAVE THE MAIN PROGRAM 113

261. The main program. Let’s put it all together now: WEAVE starts and ends here.
The main procedure has been split into three sub-procedures in order to keep certain Pascal compilers

from overflowing their capacity.

procedure Phase I ;
begin 〈Phase I: Read all the user’s text and store the cross references 109 〉;
end;

procedure Phase II ;
begin 〈Phase II: Read all the text again and translate it to TEX form 218 〉;
end;

begin initialize ; { beginning of the main program }
print ln (banner); {print a “banner line” }
〈Store all the reserved words 64 〉;
Phase I ; Phase II ;
〈Phase III: Output the cross-reference index 239 〉;
〈Check that all changes have been read 85 〉;

end of WEAVE : stat 〈Print statistics about memory usage 262 〉; tats
{ here files should be closed if the operating system requires it }
〈Print the job history 263 〉;
end.

262. 〈Print statistics about memory usage 262 〉 ≡
print nl (´Memory usage statistics: ´,name ptr : 1, ´ names, ´, xref ptr : 1,

´ cross references, ´, byte ptr [0] : 1);
for cur bank ← 1 to ww − 1 do print (´+´, byte ptr [cur bank] : 1);
print (´ bytes;´); print nl (´parsing required ´,max scr ptr : 1, ´ scraps, ´,max txt ptr : 1,

´ texts, ´,max tok ptr : 1, ´ tokens, ´,max stack ptr : 1, ´ levels;´);
print nl (´sorting required ´,max sort ptr : 1, ´ levels.´)

This code is used in section 261.

263. Some implementations may wish to pass the history value to the operating system so that it can be
used to govern whether or not other programs are started. Here we simply report the history to the user.

〈Print the job history 263 〉 ≡
case history of
spotless : print nl (´(No errors were found.)´);
harmless message : print nl (´(Did you see the warning message above?)´);
error message : print nl (´(Pardon me, but I think I spotted something wrong.)´);
fatal message : print nl (´(That was a fatal error, my friend.)´);
end { there are no other cases }

This code is used in section 261.

114 SYSTEM-DEPENDENT CHANGES WEAVE §264

264. System-dependent changes. This module should be replaced, if necessary, by changes to the
program that are necessary to make WEAVE work at a particular installation. It is usually best to design
your change file so that all changes to previous modules preserve the module numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new modules,
can be inserted here; then only the index itself will get a new module number.

§265 WEAVE INDEX 115

265. Index. If you have read and understood the code for Phase III above, you know what is in this
index and how it got here. All modules in which an identifier is used are listed with that identifier, except that
reserved words are indexed only when they appear in format definitions, and the appearances of identifiers
in module names are not indexed. Underlined entries correspond to where the identifier was declared. Error
messages, control sequences put into the output, and a few other things like “recursion” are indexed here
too.

\) : 186
* : 130
\, : 162, 163, 186
\. : 189, 253
\: : 252, 256
\= : 189
\[: 254
\ : 186, 189, 193
\# : 186, 189
\$: 186, 189
\% : 186, 189
\& : 189, 209, 253
\´ : 189
\\ : 189, 209, 253
\^ : 186, 189
\` : 189
\{ : 189
\} : 189
\~ : 189, 193
\] : 186
\| : 209, 253
_ : 131, 189
\A : 236
\As : 237
\ast : 186
\B : 186
\C : 198
\con : 239
\D : 227
\E : 186
\ET : 237
\ETs : 237
\F : 228
\fi : 238
\fin : 239
\G : 188
\H : 196, 224
\I : 188
\in : 186
\input webmac : 124
\inx : 239
\J : 186
\K : 188
\L : 188
\M : 221
\N : 221

\O : 196, 223
\P : 212, 226
\R : 188
\S : 188, 228, 231
\T : 186
\to : 186
\U : 236
\Us : 237
\V : 188
\W : 188
\X : 213
\Y : 212, 219, 226, 231
\1 : 211, 212
\2 : 211, 212
\3 : 211, 212
\4 : 211, 212
\5 : 211, 212
\6 : 211, 212, 226
\7 : 211, 212, 226
\9 : 253
@1 : 88, 177
@2 : 88, 177
a: 130, 206, 208
alpha : 140, 142, 143, 149, 192, 193
alpha cases : 149, 150
Ambiguous prefix : 69
and sign : 15, 64, 188
app : 148, 151, 152, 153, 155, 156, 158, 159,

160, 161, 162, 163, 164, 165, 167, 168, 170,
180, 184, 186, 189, 190, 195, 196, 198, 207,
208, 226, 231, 256

app comment : 183, 184, 195, 197, 198, 226
app hex : 183, 186, 196
app octal : 183, 186, 196
app tok : 136, 137, 138, 148, 189, 190, 196, 197, 226
append xref : 50, 51
app1 : 148, 151, 152, 153, 155, 156, 159, 160, 162,

163, 164, 165, 168, 170, 174, 180, 195
app2 : 148, 153, 156, 158, 161, 163, 165, 167
app3 : 148, 158, 164
array like : 42, 64, 191, 192
ASCII code: 11, 86
ASCII code : 11, 13, 27, 28, 37, 65, 73, 87, 89, 91,

121, 127, 132, 136, 208, 242, 246, 247, 249
b: 122, 208

116 INDEX WEAVE §265

backup : 141, 142, 143, 147, 160, 167, 192, 193,
208, 231

bal : 91, 92, 112, 136, 137, 138, 198
banner : 1, 261
begin: 3
begin comment : 86, 87, 97, 186, 222
begin like : 42, 64, 193
begin Pascal : 86, 87, 117, 229, 230
beginning : 140, 142, 143, 150, 152, 164, 170, 193
big cancel : 141, 142, 147, 186, 208, 212
big force : 141, 142, 147, 186, 208, 212, 226
big line break : 86, 87, 186, 222
blink : 242, 243, 250, 251, 252
boolean : 28, 29, 45, 71, 74, 93, 122, 143, 258
break : 22
break out : 125, 126, 127
break space : 141, 143, 147, 152, 155, 156, 160,

164, 168, 170, 200, 208, 211, 212
breakpoint : 258, 260
bucket : 242, 243, 249, 251
buf size : 8, 28, 73, 74, 75, 79, 123
buffer : 27, 28, 31, 32, 55, 58, 59, 61, 62, 63, 74, 76,

78, 79, 80, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93,
95, 97, 98, 99, 100, 103, 104, 106, 107, 110, 123,
132, 133, 134, 135, 136, 137, 179, 182, 183, 189,
190, 196, 208, 214, 216, 217, 221, 223, 224, 260

byte mem : 36, 37, 38, 39, 40, 43, 44, 52, 58, 61,
62, 66, 67, 68, 69, 131, 208, 209, 214, 215,
216, 217, 243, 244, 251

byte ptr : 38, 39, 41, 62, 67, 262
byte start : 36, 37, 38, 39, 41, 44, 50, 55, 61, 62,

67, 68, 93, 114, 131, 209, 214, 243, 251
c: 66, 69, 87, 89, 90, 91, 95, 132, 134, 136, 140,

172, 174, 242, 247, 249
cancel : 141, 142, 143, 147, 153, 155, 156, 159, 160,

162, 163, 164, 165, 193, 197, 200, 208, 211, 212
carriage return : 15, 17, 28
carryover : 122
case head : 140, 143, 149, 153, 154, 162, 163, 165
case like : 42, 64, 193
casey : 140, 142, 143, 149, 153, 165, 193
cat : 144, 149, 150, 151, 152, 153, 154, 155, 156,

158, 159, 160, 161, 162, 163, 164, 165, 167,
168, 170, 172, 174, 176, 178, 179, 180, 181,
183, 184, 194, 195, 197, 244, 250, 260

Change file ended... : 77, 79, 84
Change file entry did not match : 85
change buffer : 73, 74, 75, 78, 79, 83, 85
change changing : 72, 79, 81, 84
change exists : 45, 109, 110, 239
change file : 2, 23, 24, 32, 71, 73, 76, 77, 79, 84
change limit : 73, 74, 75, 78, 79, 83, 85

change pending : 71, 79, 84
changed module : 45, 71, 79, 84, 109, 110, 130, 241
changing : 32, 71, 72, 73, 75, 79, 81, 82, 85, 110
char : 12, 14
char like : 42, 64, 191
check change : 79, 83
check sum : 86, 87, 186, 222
chr : 12, 13, 17, 18
clause : 140, 142, 143, 149, 151, 153, 154, 156, 193
close : 140, 142, 143, 152, 153, 160, 162, 163,

164, 167, 186, 193
collate : 246, 247, 248, 249
colon : 140, 142, 143, 148, 151, 160, 163, 167,

170, 186
comment : 142
comment scrap : 184, 186
compress : 97
cond : 140, 142, 143, 149, 193
confusion : 34
const like : 42, 64, 191, 192
continue : 5, 75, 76
Control codes are forbidden... : 106
Control text didn’t end : 106
control code : 87, 88, 90, 93, 100, 135
copy comment : 132, 136, 198
copy limbo : 132, 218
copy TeX : 132, 134, 222
count : 69
cur bank : 244, 251, 262
cur byte : 244, 251
cur depth : 244, 250, 251
cur end : 201, 202, 204, 205, 206
cur mod name : 208, 214, 215, 216
cur mode : 201, 202, 204, 206, 208, 211, 212
cur module : 93, 101, 117, 230, 232
cur name : 63, 206, 209, 213, 214, 242, 243,

251, 252, 253, 255
cur state : 202, 204, 205
cur tok : 201, 202, 204, 205, 206
cur val : 244, 254
cur xref : 118, 119, 213, 231, 234, 235, 236, 237,

254, 255, 256
d: 95, 127, 172, 174, 249
dd : 258, 260
ddt : 258, 260
debug: 3, 4, 30, 31, 88, 95, 140, 146, 148, 177,

178, 181, 182, 206, 252, 258, 259, 260
debug cycle : 31, 258, 259, 260
debug help : 30, 31, 95, 206, 252, 258, 260
debug skipped : 31, 258, 259, 260
decr : 6, 28, 92, 98, 103, 122, 127, 130, 135, 137,

138, 205, 251, 252

§265 WEAVE INDEX 117

def flag : 46, 48, 50, 51, 93, 100, 111, 113, 115,
117, 119, 130, 213, 231, 233, 235, 236, 254

definition : 86, 87, 115, 225
depth : 244, 249
dig : 129, 130
div like : 42, 64, 191, 192
do like : 42, 64, 191, 192
do nothing : 6, 95, 113, 149, 150, 186, 189, 222, 253
done : 5, 75, 76, 90, 91, 92, 95, 103, 104, 122, 134,

135, 136, 137, 138, 175, 179, 236, 237
Double @ required... : 133
Double @ should be used... : 189
double dot : 86, 97, 186
easy cases : 183, 185, 186
eight bits : 36, 58, 87, 90, 91, 95, 108, 112, 122,

134, 136, 140, 144, 172, 174, 178, 198, 206,
208, 244, 249

else: 7
else like : 42, 64, 193
elsie : 140, 142, 143, 149, 156, 193
emit space if needed : 219, 225, 230
end: 3, 7
end comment : 86, 87, 97, 186, 222
end field : 201, 202
end like : 42, 64, 193
end of WEAVE : 2, 33, 261
end translation : 141, 147, 201, 207, 208, 212
endcases: 7
eof : 28
eoln : 28
equal : 66, 67, 68
equivalence sign : 15, 97, 116, 188, 228, 231
err print : 31, 66, 69, 72, 76, 77, 79, 80, 84, 85,

87, 95, 99, 103, 104, 106, 107, 133, 136, 137,
189, 197, 222, 227, 228, 231, 232

error : 28, 31, 33
error message : 9, 263
exit : 5, 6, 50, 74, 75, 79, 89, 111, 123, 127, 132,

183, 208, 236, 260
exp : 140, 142, 143, 149, 186
exponent : 93, 98, 186
extension : 66, 68, 69
Extra } : 95
Extra @> : 87
f : 28
false : 28, 29, 72, 73, 74, 79, 81, 84, 94, 96, 109,

122, 123, 127, 218, 238, 259
fatal error : 33, 34, 35
fatal message : 9, 263
final limit : 28
finish line : 123, 124, 132, 134, 135, 212, 218, 226,

236, 238, 239, 254, 256

finish Pascal : 225, 226, 230
first text char : 12, 18
first xref : 234, 235
five cases : 149, 150
flag : 236, 237
flush buffer : 122, 123, 127, 128, 218, 238
footnote : 233, 236, 256
for like : 42, 64, 191, 192
force : 141, 142, 143, 146, 147, 153, 155, 156,

160, 161, 167, 186, 192, 193, 198, 200, 208,
212, 226, 231

force line : 86, 87, 186
form feed : 15, 28
format : 86, 87, 111, 112, 113, 115, 183, 198,

222, 225
forward : 30, 207
found : 5, 58, 60, 61, 66, 95, 96, 122, 148, 149,

150, 151, 175, 179, 208, 216
freeze text : 171, 172, 180, 184, 195, 198, 208
get : 28, 259
get line : 71, 82, 89, 90, 91, 95, 103, 123, 132,

134, 136
get next : 93, 95, 108, 111, 113, 115, 116, 117, 183,

222, 227, 228, 230, 231, 232
get output : 206, 207, 208, 211, 212
goto like : 42, 64, 191, 192
greater : 66, 68, 69
greater or equal : 15, 97, 188
gubed: 3
h: 56, 58, 242
harmless message : 9, 263
hash : 38, 55, 57, 60, 242, 243
hash size : 8, 55, 56, 57, 58, 59, 242, 243
head : 244, 249, 250, 251, 252
hex : 86, 87, 100, 186, 222
hi ptr : 144, 176, 178, 179
history : 9, 10, 263
Hmm... n of the preceding... : 80
i: 16, 58, 172, 174, 179
id first : 55, 58, 59, 61, 62, 63, 93, 98, 99, 106,

107, 189, 190
id flag : 146, 192, 206, 227, 228
id loc : 55, 58, 59, 61, 62, 64, 93, 98, 99, 106,

107, 189, 190
id lookup : 55, 58, 63, 93, 111, 113, 116, 191,

227, 228
identifier : 93, 98, 111, 113, 116, 185, 206, 208,

209, 227, 228
id2 : 63, 64
id3 : 63, 64
id4 : 63, 64
id5 : 63, 64

118 INDEX WEAVE §265

id6 : 63, 64
id7 : 63, 64
id8 : 63, 64
id9 : 63, 64
if like : 42, 64, 193
if module start then make change pending : 79, 84
ignore : 86, 87, 88, 186
ii : 71, 85
ilk : 36, 37, 42, 43, 55, 58, 60, 62, 111, 116,

191, 192, 253
Illegal control code... : 215
Illegal use of @... : 137
Improper format definition : 228
Improper macro definition : 227
in like : 42
Incompatible section names : 66
incr : 6, 28, 50, 59, 61, 62, 67, 68, 69, 76, 77,

79, 83, 84, 89, 90, 91, 92, 95, 97, 98, 99, 100,
103, 104, 106, 107, 110, 122, 125, 130, 133,
135, 136, 137, 148, 149, 150, 171, 176, 184,
189, 196, 204, 206, 214, 215, 216, 217, 220,
223, 224, 241, 249, 260

indent : 141, 142, 143, 147, 151, 160, 165, 193, 208
infinity : 249, 250
init stack : 202, 222, 225, 230, 256
initialize : 2, 261
inner : 200, 201, 206, 212
inner tok flag : 146, 198, 206, 207
Input ended in mid−comment : 136
Input ended in section name : 103
Input line too long : 28
input has ended : 71, 79, 81, 83, 89, 90, 91, 95,

103, 109, 132, 134, 136, 218
input ln : 28, 76, 77, 79, 83, 84
integer : 14, 71, 79, 121, 130, 172, 174, 219,

258, 260
intro : 140, 142, 143, 148, 150, 157, 160, 162, 163,

165, 167, 170, 192, 193, 227, 228
j: 66, 69, 95, 122, 146, 172, 174, 179, 183, 208
join : 86, 87, 186, 222
jump out : 2, 33
k: 31, 44, 58, 66, 69, 74, 75, 79, 95, 122, 123, 127,

130, 131, 172, 174, 178, 179, 208, 260
k limit : 208, 214, 216
k module : 240, 241
l: 31, 58, 66, 69
last text char : 12, 18
lbrace : 146, 147
left arrow : 15, 97, 188
length : 38, 60, 209, 253
less : 66, 67, 68, 69
less or equal : 15, 97, 188

lhs : 114, 116
limit : 28, 32, 71, 74, 76, 77, 78, 79, 80, 81, 82, 83,

84, 85, 89, 90, 91, 95, 97, 99, 103, 106, 107,
123, 132, 133, 134, 135, 136, 208, 214, 216, 223

line : 32, 71, 72, 76, 77, 79, 81, 83, 84, 85, 182
Line had to be broken : 128
line break : 86, 87, 186, 222
line feed : 15, 28
line length : 8, 121, 122, 125, 127
lines dont match : 74, 79
link : 36, 37, 38, 43, 60, 243
llink : 43, 66, 67, 69, 119, 256
lo ptr : 144, 172, 175, 176, 178, 179, 180, 181
loc : 28, 32, 71, 76, 79, 80, 81, 82, 84, 85, 89, 90,

91, 92, 95, 97, 98, 99, 100, 103, 104, 106, 107,
110, 113, 132, 133, 134, 135, 136, 137, 182,
196, 208, 214, 221, 222, 223, 224

long buf size : 8, 27, 28, 31, 55, 58, 71, 179,
183, 208, 216, 217

longest name : 8, 65, 66, 69, 95, 103, 105
loop: 6
loop like : 42, 64, 193
m: 50, 130
make output : 207, 208, 213, 226, 256
mark error : 9, 31, 215, 216
mark fatal : 9, 33
mark harmless : 9, 105, 119, 128, 181, 182
math : 139, 140, 142, 143, 148, 150, 151, 158,

160, 162, 163, 167, 170, 179, 180, 186, 188,
192, 227, 228, 231

math bin : 141, 142, 147, 192, 208, 210
math break : 86, 87, 186, 222
math op : 141, 143, 147, 162, 163, 208
math rel : 141, 142, 146, 147, 192, 208, 210, 231
max bytes : 8, 37, 39, 44, 58, 62, 66, 67, 69,

131, 208, 244
max modules : 8, 45, 46, 110, 240
max names : 8, 37, 38, 62, 67, 69, 242
max refs : 8, 47, 50
max scr ptr : 144, 145, 187, 197, 199, 226, 262
max scraps : 8, 144, 172, 174, 178, 179, 187,

197, 199, 244
max sort ptr : 244, 245, 249, 262
max sorts : 244, 249
max stack ptr : 202, 203, 204, 262
max texts : 8, 52, 175, 179, 187, 199
max tok ptr : 53, 54, 175, 187, 199, 207, 226, 262
max toks : 8, 53, 136, 146, 175, 179, 180, 187,

189, 198, 199
max txt ptr : 53, 54, 175, 187, 199, 207, 226, 262
mid xref : 234, 235
Missing "|"... : 197

§265 WEAVE INDEX 119

mod check : 119, 120
mod flag : 146, 206, 231, 232, 256
mod lookup : 65, 66, 101, 102
mod name : 206, 208
mod print : 256, 257
mod scrap : 140, 142, 143, 149, 167, 231, 232
mod text : 65, 66, 67, 68, 69, 95, 101, 102, 103,

104, 105, 260
mod xref switch : 46, 48, 49, 51, 117
mode : 201, 208
mode field : 201, 202
module count : 45, 50, 51, 71, 79, 84, 109, 110,

181, 218, 220, 221, 231, 241
module name : 86, 87, 93, 100, 113, 117, 222,

230, 232
n: 50, 79, 178
Name does not match : 69
name pointer : 38, 39, 44, 50, 51, 58, 63, 66,

69, 93, 111, 114, 119, 131, 144, 183, 192,
208, 229, 242, 256

name ptr : 38, 39, 41, 44, 58, 60, 62, 67, 262
Never defined: <section name> : 119
Never used: <section name> : 119
new line : 20, 31, 32, 33, 128
new mod xref : 51, 117
new module : 86, 87, 90, 95, 134
new xref : 50, 111, 113, 116
next control : 108, 111, 112, 113, 115, 116, 117,

183, 185, 186, 189, 191, 197, 198, 207, 222,
225, 227, 228, 229, 230, 231, 232

next name : 242, 243, 251
next xref : 234, 235, 255
nil: 6
nil like : 42, 64, 191, 192
no line break : 86, 87, 186, 222
no underline : 86, 87, 100, 113
normal : 42, 58, 60, 111, 116, 191, 192, 227,

228, 253
not equal : 15, 97, 188
not found : 5
not sign : 15, 64, 188
num : 46, 49, 50, 51, 119, 213, 231, 235, 236,

237, 254
num field : 46, 48
octal : 86, 87, 186, 222
omega : 140, 142, 143, 151, 192, 193, 195
oot : 125
oot1 : 125
oot2 : 125
oot3 : 125
oot4 : 125
oot5 : 125

open : 139, 140, 142, 143, 150, 186
open input : 24, 81
opt : 139, 141, 142, 143, 147, 159, 163, 186, 208, 211
or sign : 15, 64, 188
ord : 13
other line : 71, 72, 81, 85
othercases: 7
others : 7
out : 125, 130, 131, 133, 135, 208, 209, 210,

211, 212, 213, 214, 221, 222, 223, 224, 236,
237, 241, 254

out buf : 121, 122, 124, 125, 126, 127, 128, 212,
226, 231, 260

out line : 121, 122, 124, 128, 219
out mod : 130, 213, 221, 237, 241, 254
out name : 131, 209, 253
out ptr : 121, 122, 123, 124, 125, 127, 128, 135,

212, 219, 226, 231, 260
outdent : 141, 143, 147, 153, 155, 156, 160, 162,

163, 164, 208
outer : 200, 201, 202, 211, 212
outer parse : 198, 225, 230
outer xref : 112, 115, 117, 198
output Pascal : 207, 214, 222
output state : 201, 202
out2 : 125, 130, 210, 211, 212, 213, 219, 221, 226,

237, 241, 252, 253, 254, 256
out3 : 125, 210, 223, 224, 237, 238
out4 : 125, 226, 239, 241
out5 : 125, 210
overflow : 35, 50, 62, 67, 110, 136, 175, 180, 187,

199, 204, 216, 217, 249
p: 44, 50, 51, 58, 66, 69, 111, 119, 131, 146, 183,

192, 197, 198, 204, 226
param : 86
Pascal text...didn’t end : 216
Pascal parse : 183, 186, 192, 196, 197, 198
Pascal translate : 197, 198, 207
Pascal xref : 111, 112, 113, 183, 198
per cent : 122
Phase I : 261
Phase II : 261
phase one : 29, 31, 109
phase three : 29, 109, 213, 239
pop level : 205, 206
pp : 144, 148, 149, 150, 151, 152, 153, 154, 155,

156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
166, 167, 168, 169, 170, 173, 175, 176, 178, 179

prefix : 66, 68
prefix lookup : 69, 101
prime the change buffer : 75, 81, 84

120 INDEX WEAVE §265

print : 20, 31, 32, 33, 44, 105, 110, 119, 128,
140, 146, 147, 178, 181, 182, 215, 216, 221,
239, 260, 262

print cat : 140, 178, 181, 260
print id : 44, 119, 146, 215, 216, 260
print ln : 20, 32, 128, 181, 261
print nl : 20, 28, 105, 119, 128, 178, 181, 182, 215,

216, 218, 239, 260, 262, 263
print text : 146, 260
proc : 140, 142, 143, 149, 162, 163, 164, 193
proc like : 42, 64, 111, 193
prod : 148, 178, 183
production : 148
production end : 148
productions, table of: 143
pseudo semi : 86, 87, 186, 222
push level : 204, 206, 208
q: 50, 51, 66, 69, 198, 236
r: 51, 69, 146
rbrace : 146
read : 260
read ln : 28
record head : 140, 142, 143, 149, 193
record like : 42, 64, 193
recursion: 119, 207, 256
red : 148, 172, 174
reduce : 148, 151, 152, 153, 155, 156, 158, 159, 160,

161, 162, 163, 164, 165, 167, 168, 170, 172, 178
repeat like : 42, 64, 193
res flag : 146, 192, 193, 206
res word : 206, 208, 209
reserved : 42, 50, 60
reset : 24, 259
reset input : 81, 109, 218
restart : 5, 82, 95, 100, 206
reswitch : 5, 183, 185, 191, 208, 212
return: 5, 6
rewrite : 21, 26
rhs : 114, 116
rlink : 43, 66, 67, 69, 119, 256
roman : 42, 111, 253
root : 43, 66, 69, 120, 257
save base : 197
save limit : 208, 214
save line : 219
save loc : 208, 214
save mode : 208, 212
save next control : 207
save place : 219
save position : 219, 220, 225
save text ptr : 207
save tok ptr : 207

scanning hex : 93, 94, 95, 96, 100
scrap base : 144, 145, 173, 178, 179, 180, 181,

194, 195, 197
scrap ptr : 144, 145, 176, 178, 179, 183, 184, 187,

194, 195, 197, 199, 226, 228, 244, 256
sc0 : 184, 186, 193, 194, 195, 228
sc1 : 184, 186, 189, 190, 192, 193, 196, 227,

228, 231, 232
sc2 : 184, 186, 188, 192, 193, 227, 228, 231
sc3 : 184, 186, 192, 193, 231
sc4 : 184, 186, 193
Section name didn’t end : 104
Section name too long : 105
semi : 139, 140, 142, 143, 149, 161, 163, 186,

194, 195, 228, 231
set element sign : 15, 64, 186
sid1 : 63
sid2 : 63
sid3 : 63
sid4 : 63
sid5 : 63
sid6 : 63
sid7 : 63
sid8 : 63
sid9 : 63
simp : 140, 142, 143, 148, 150, 151, 158, 160, 161,

162, 167, 170, 186, 189, 190, 192, 196
sixteen bits : 36, 37, 48, 50, 53, 55, 66, 69, 172,

174, 201, 206, 207, 219, 236, 242, 244
skip comment : 91, 112, 132, 136
skip limbo : 89, 109, 132
skip TeX : 90, 113, 132
Sorry, x capacity exceeded : 35
sort ptr : 244, 249, 250, 251, 252
special string characters: 189
split procedures: 149, 183, 261
spotless : 9, 10, 263
sq : 148, 174
squash : 148, 151, 152, 154, 157, 160, 161, 162,

163, 166, 167, 169, 170, 174, 178
stack : 201, 202, 204, 205
stack ptr : 201, 202, 204, 205
stack size : 8, 202, 204
stat: 3
stmt : 140, 143, 149, 152, 153, 155, 156, 159, 160,

161, 162, 164, 167, 168, 169, 170
string : 93, 99, 185
String constant didn’t end : 99
string delimiter : 208, 216
sub cases : 183, 191, 192
system dependencies: 1, 2, 4, 7, 12, 17, 20, 21, 22,

24, 26, 28, 32, 33, 259, 260, 261, 263, 264

§265 WEAVE INDEX 121

s0 : 184
s1 : 184
s2 : 184
s3 : 184
s4 : 184
t: 58
tab mark : 15, 32, 79, 87, 89, 92, 95, 103, 104,

123, 133, 135
tats: 3
temp line : 71, 72
term in : 258, 259, 260
term out : 20, 21, 22
terminator : 139, 140, 142, 143, 149, 152, 153, 160,

161, 164, 166, 167, 179, 194, 195
TeX string should be... : 222
tex file : 2, 25, 26, 122, 124
TeX string : 86, 87, 93, 100, 185, 222
text char : 12, 13, 20
text file : 12, 20, 23, 25, 28, 258
text pointer : 52, 53, 144, 146, 179, 197, 198,

204, 207, 226
text ptr : 53, 54, 146, 171, 172, 175, 179, 180, 184,

187, 195, 198, 199, 207, 208, 226, 256
thin space : 86, 87, 186, 222
This can’t happen : 34
this module : 229, 230, 231, 233, 235
this xref : 234, 235, 255
to like : 42, 64, 191, 192
tok field : 201, 202
tok flag : 146, 148, 195, 198, 206, 226
tok mem : 53, 136, 146, 148, 201, 202, 206, 213
tok ptr : 53, 54, 136, 137, 148, 171, 175, 179, 180,

187, 189, 198, 199, 207, 226, 256
tok start : 52, 53, 54, 144, 146, 171, 204
tracing : 88, 177, 178, 181, 182, 259
trans : 144, 148, 172, 176, 179, 183, 184, 195,

197, 244
translate : 149, 179, 180, 197, 226
trouble shooting : 95, 206, 252, 258, 259
true : 6, 28, 29, 71, 72, 74, 79, 81, 83, 84, 85, 93,

100, 109, 110, 122, 127, 128, 239, 258, 259
typewriter : 42, 111, 253
unbucket : 249, 250, 251
underline : 86, 87, 100, 113
Unknown control code : 87
until like : 42, 64, 193
up to : 95
update terminal : 22, 31, 110, 221, 260
var head : 140, 142, 143, 148, 149, 162, 163,

170, 193
var like : 42, 64, 111, 193
verbatim : 86, 87, 100, 107, 185, 189

Verbatim string didn’t end : 107
w: 44, 58, 66, 69, 131, 208
WEAVE : 2
WEB file ended... : 79
web file : 2, 23, 24, 32, 71, 73, 79, 83, 85
webmac : 124
Where is the match... : 76, 80, 84
wi : 40, 41
wildcard : 42, 111, 253
write : 20, 122, 124
write ln : 20, 122
ww : 8, 37, 38, 39, 40, 41, 44, 50, 58, 61, 62, 66, 67,

68, 69, 131, 208, 209, 214, 243, 244, 251, 262
xchr : 13, 14, 16, 17, 18, 32, 44, 105, 122, 128,

146, 147, 182, 260
xclause: 6
xlink : 46, 50, 51, 119, 213, 235, 237, 254, 255
xlink field : 46, 48
xmem : 46, 48
xord : 13, 16, 18, 28
xref : 36, 37, 46, 49, 50, 51, 62, 67, 119, 213,

231, 235, 243, 255
xref number : 47, 48, 50, 51, 118, 234, 236
xref ptr : 46, 48, 49, 50, 51, 262
xref roman : 86, 87, 93, 100, 111, 113, 186, 222
xref switch : 46, 48, 49, 50, 93, 100, 101, 111,

113, 115
xref typewriter : 86, 87, 93, 111, 113, 186, 222
xref wildcard : 86, 87, 93, 111, 113, 186, 222
You can’t do that... : 222, 232
You need an = sign... : 231

122 NAMES OF THE SECTIONS WEAVE §265

〈Append a string scrap 189 〉 Used in section 185.

〈Append a TEX string scrap 190 〉 Used in section 185.

〈Append an identifier scrap 191 〉 Used in section 185.

〈Append the scrap appropriate to next control 185 〉 Used in section 183.

〈Append terminator if not already present 194 〉 Used in sections 193, 193, and 193.

〈Cases for alpha 151 〉 Used in section 150.

〈Cases for beginning 152 〉 Used in section 150.

〈Cases for case head 153 〉 Used in section 149.

〈Cases for casey 154 〉 Used in section 149.

〈Cases for clause 155 〉 Used in section 149.

〈Cases for cond 156 〉 Used in section 149.

〈Cases for elsie 157 〉 Used in section 149.

〈Cases for exp 158 〉 Used in section 149.

〈Cases for intro 159 〉 Used in section 150.

〈Cases for math 160 〉 Used in section 150.

〈Cases for mod scrap 161 〉 Used in section 149.

〈Cases for open math 163 〉 Used in section 162.

〈Cases for open 162 〉 Used in section 150.

〈Cases for proc 164 〉 Used in section 149.

〈Cases for record head 165 〉 Used in section 149.

〈Cases for semi 166 〉 Used in section 149.

〈Cases for simp 167 〉 Used in section 150.

〈Cases for stmt 168 〉 Used in section 149.

〈Cases for terminator 169 〉 Used in section 149.

〈Cases for var head 170 〉 Used in section 149.

〈Cases involving nonstandard ASCII characters 188 〉 Used in section 186.

〈Cases that generate more than one scrap 193 〉 Used in section 191.

〈Change pp to max(scrap base ,pp+d) 173 〉 Used in sections 172 and 174.

〈Check for overlong name 105 〉 Used in section 103.

〈Check that all changes have been read 85 〉 Used in section 261.

〈Check that = or ≡ follows this module name, and emit the scraps to start the module definition 231 〉
Used in section 230.

〈Clear bal and goto done 138 〉 Used in sections 136 and 137.

〈Combine the irreducible scraps that remain 180 〉 Used in section 179.

〈Compare name p with current identifier, goto found if equal 61 〉 Used in section 60.

〈Compiler directives 4 〉 Used in section 2.

〈Compress two-symbol combinations like ‘:=’ 97 〉 Used in section 95.

〈Compute the hash code h 59 〉 Used in section 58.

〈Compute the name location p 60 〉 Used in section 58.

〈Constants in the outer block 8 〉 Used in section 2.

〈Copy a control code into the buffer 217 〉 Used in section 216.

〈Copy special things when c = "@", "\", "{", "}"; goto done at end 137 〉 Used in section 136.

〈Copy the Pascal text into buffer [(limit + 1) . . j] 216 〉 Used in section 214.

〈Copy up to ‘|’ or control code, goto done if finished 135 〉 Used in section 134.

〈Copy up to control code, return if finished 133 〉 Used in section 132.

〈Declaration of subprocedures for translate 150 〉 Used in section 179.

〈Declaration of the app comment procedure 195 〉 Used in section 183.

〈Declaration of the app octal and app hex procedures 196 〉 Used in section 183.

〈Declaration of the easy cases procedure 186 〉 Used in section 183.

〈Declaration of the sub cases procedure 192 〉 Used in section 183.

〈Do special things when c = "@", "\", "{", "}"; goto done at end 92 〉 Used in section 91.

〈Do the first pass of sorting 243 〉 Used in section 239.

§265 WEAVE NAMES OF THE SECTIONS 123

〈Emit the scrap for a module name if present 232 〉 Used in section 230.

〈Enter a new module name into the tree 67 〉 Used in section 66.

〈Enter a new name into the table at position p 62 〉 Used in section 58.

〈Error handling procedures 30, 31, 33 〉 Used in section 2.

〈Get a string 99 〉 Used in section 95.

〈Get an identifier 98 〉 Used in section 95.

〈Get control code and possible module name 100 〉 Used in section 95.

〈Globals in the outer block 9, 13, 20, 23, 25, 27, 29, 37, 39, 45, 48, 53, 55, 63, 65, 71, 73, 93, 108, 114, 118, 121, 129, 144,

177, 202, 219, 229, 234, 240, 242, 244, 246, 258 〉 Used in section 2.

〈Go to found if c is a hexadecimal digit, otherwise set scanning hex ← false 96 〉 Used in section 95.

〈 If end of name, goto done 104 〉 Used in section 103.

〈 If semi-tracing, show the irreducible scraps 181 〉 Used in section 180.

〈 If the current line starts with @y, report any discrepancies and return 80 〉 Used in section 79.

〈 If tracing, print an indication of where we are 182 〉 Used in section 179.

〈 Invert the cross-reference list at cur name , making cur xref the head 255 〉 Used in section 254.

〈Local variables for initialization 16, 40, 56, 247 〉 Used in section 2.

〈Look ahead for strongest line break, goto reswitch 212 〉 Used in section 211.

〈Make sure that there is room for at least four more scraps, six more tokens, and four more texts 187 〉
Used in section 185.

〈Make sure that there is room for at least seven more tokens, three more texts, and one more scrap 199 〉
Used in section 198.

〈Make sure the entries cat [pp . . (pp + 3)] are defined 176 〉 Used in section 175.

〈Match a production at pp , or increase pp if there is no match 149 〉 Used in section 175.

〈Move buffer and limit to change buffer and change limit 78 〉 Used in sections 75 and 79.

〈Output a control, look ahead in case of line breaks, possibly goto reswitch 211 〉 Used in section 208.

〈Output a \math operator 210 〉 Used in section 208.

〈Output a module name 213 〉 Used in section 208.

〈Output all the module names 257 〉 Used in section 239.

〈Output all the module numbers on the reference list cur xref 237 〉 Used in section 236.

〈Output an identifier 209 〉 Used in section 208.

〈Output index entries for the list at sort ptr 252 〉 Used in section 250.

〈Output the code for the beginning of a new module 221 〉 Used in section 220.

〈Output the code for the end of a module 238 〉 Used in section 220.

〈Output the cross-references at cur name 254 〉 Used in section 252.

〈Output the name at cur name 253 〉 Used in section 252.

〈Output the text of the module name 214 〉 Used in section 213.

〈Phase I: Read all the user’s text and store the cross references 109 〉 Used in section 261.

〈Phase II: Read all the text again and translate it to TEX form 218 〉 Used in section 261.

〈Phase III: Output the cross-reference index 239 〉 Used in section 261.

〈Print error location based on input buffer 32 〉 Used in section 31.

〈Print error messages about unused or undefined module names 120 〉 Used in section 109.

〈Print statistics about memory usage 262 〉 Used in section 261.

〈Print the job history 263 〉 Used in section 261.

〈Print token r in symbolic form 147 〉 Used in section 146.

〈Print warning message, break the line, return 128 〉 Used in section 127.

〈Process a format definition 116 〉 Used in section 115.

〈Put module name into mod text [1 . . k] 103 〉 Used in section 101.

〈Read from change file and maybe turn off changing 84 〉 Used in section 82.

〈Read from web file and maybe turn on changing 83 〉 Used in section 82.

〈Rearrange the list pointed to by cur xref 235 〉 Used in section 233.

〈Reduce the scraps using the productions until no more rules apply 175 〉 Used in section 179.

〈Scan a verbatim string 107 〉 Used in section 100.

124 NAMES OF THE SECTIONS WEAVE §265

〈Scan the module name and make cur module point to it 101 〉 Used in section 100.

〈Scan to the next @> 106 〉 Used in section 100.

〈Set initial values 10, 14, 17, 18, 21, 26, 41, 43, 49, 54, 57, 94, 102, 124, 126, 145, 203, 245, 248, 259 〉 Used in section 2.

〈Set variable c to the result of comparing the given name to name p 68 〉 Used in sections 66 and 69.

〈Show cross references to this module 233 〉 Used in section 220.

〈Skip next character, give error if not ‘@’ 215 〉 Used in section 214.

〈Skip over comment lines in the change file; return if end of file 76 〉 Used in section 75.

〈Skip to the next nonblank line; return if end of file 77 〉 Used in section 75.

〈Sort and output the index 250 〉 Used in section 239.

〈Special control codes allowed only when debugging 88 〉 Used in section 87.

〈Split the list at sort ptr into further lists 251 〉 Used in section 250.

〈Start a format definition 228 〉 Used in section 225.

〈Start a macro definition 227 〉 Used in section 225.

〈Store all the reserved words 64 〉 Used in section 261.

〈Store cross reference data for the current module 110 〉 Used in section 109.

〈Store cross references in the definition part of a module 115 〉 Used in section 110.

〈Store cross references in the Pascal part of a module 117 〉 Used in section 110.

〈Store cross references in the TEX part of a module 113 〉 Used in section 110.

〈Tell about changed modules 241 〉 Used in section 239.

〈Translate a hexadecimal constant appearing in TEX text 224 〉 Used in section 222.

〈Translate an octal constant appearing in TEX text 223 〉 Used in section 222.

〈Translate the current module 220 〉 Used in section 218.

〈Translate the definition part of the current module 225 〉 Used in section 220.

〈Translate the Pascal part of the current module 230 〉 Used in section 220.

〈Translate the TEX part of the current module 222 〉 Used in section 220.

〈Types in the outer block 11, 12, 36, 38, 47, 52, 201 〉 Used in section 2.

	1. Introduction
	11. The character set
	19. Input and output
	29. Reporting errors to the user
	36. Data structures
	55. Searching for identifiers
	63. Initializing the table of reserved words
	65. Searching for module names
	70. Lexical scanning
	93. Inputting the next token
	108. Phase one processing
	121. Low-level output routines
	132. Routines that copy T\kern -.1667em\lower .5ex\hbox {E}\kern -.125emX\ material
	139. Parsing
	144. Implementing the productions
	183. Initializing the scraps
	200. Output of tokens
	218. Phase two processing
	239. Phase three processing
	258. Debugging
	261. The main program
	264. System-dependent changes
	265. Index
	Names of the sections
	[tex/tex]
	[tex/tripman]
	[tex/glue]
	[texware/pooltype]
	[texware/tftopl]
	[texware/pltotf]
	[texware/dvitype]
	[mf/mf]
	[mf/trapman]
	[mfware/gftype]
	[mfware/gftopk]
	[mfware/gftodvi]
	[mfware/mft]
	[etc/vftovp]
	[etc/vptovf]
	[web/weave]
	[web/tangle]
	[web/webman]

