
dowith.sty
—

Apply Command to Each Item

in a List of Arguments in “TEX’s Mouth”∗

Uwe Lück†

May 22, 2012

Abstract

This package provides macros for applying a “command” to all items in
a “list of possible macro arguments,” and also for extending and reducing
macros storing such lists. “Brace groups” are single items of such lists,
as opposed to token lists. Applications in mind belonged to LATEX, but
the package should work with other formats as well. Loop and list macros
in other packages are discussed. Iteration is implemented within “TEX’s
mouth,” so works within \write as with blog.sty. There is no need for
ε-TEX.

Related packages: etextools, etoolbox, forarray, forloop, multido, more-
defs, lmake, texapi, xfor, xspace

Keywords: programming structures; macro programming, loops, list
macros

Contents

1 Usage and Features 2
1.1 Installing and Calling . 2
1.2 What It Does With What Lists 2
1.3 The Notion of Arglists for LATEX Users 3
1.4 TEX’s Tokens . 4
1.5 Arglists vs. Lists of Tokens—Example 5
1.6 Another Notation and the Example’s Steps 6
1.7 Summary of Possible Arglist Items 7
1.8 Summary: “Commands” Usable with dowith 8

∗This document describes version v0.21a of dowith.sty as of 2012/05/19.
†http://contact-ednotes.sty.de.vu

1

http://ctan.org/pkg/morehype
http://ctan.org/pkg/e-tex
http://contact-ednotes.sty.de.vu

1 USAGE AND FEATURES 2

2 Similar Commands in other Packages 9
2.1 “Heavy” Packages . 9
2.2 Separators . 9
2.3 “For” Loops vs. “Foreach” Loops 9
2.4 Iterators . 9
2.5 Separator Macros . 11
2.6 Ye Olde \loop . 11
2.7 Without Iterator and Separators 11

3 Implementation 12
3.1 Package File Header (Legalese) 12
3.2 Proceeding without LATEX . 12
3.3 Applying a Command . 13

3.3.1 Core . 13
3.3.2 \do being the Command 13
3.3.3 Expand List Macro . 14

3.4 Handling List Macros . 14
3.4.1 Initializing . 14
3.4.2 Testing for Occurrence of a Token 15
3.4.3 Adding and Removing . 15

3.5 Leaving and History . 16

4 Ack.: 25 Years of Kabelschacht’s Method 16

1 Usage and Features

1.1 Installing and Calling

The file dowith.sty is provided ready, installation only requires putting it some-
where where TEX finds it (which may need updating the filename data base).1

With LATEX, you load dowith.sty (as usually) by

\usepackage{dowith}

below the \documentclass line(s) and above \begin{document}. However, the
package can also be used with other formats, just

\input dowith.sty

1.2 What It Does With What Lists

The single commands that the package provides are described in the implemen-
tation section below. What follows here is some general background about how
the commands work.

The term ‘list’ may refer to various things and need clarification here.

1http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

1 USAGE AND FEATURES 3

First of all, we are not referring to LATEX list environments such as
enumerate or itemize; neither to “TODO” lists of what needs to be done soon.

Rather, dowith allows you to abbreviate

〈cmd〉〈arg-1 〉〈cmd〉〈arg-2 〉 . . . 〈cmd〉〈arg-n〉

by

\DoWith〈cmd〉〈arg-1 〉〈arg-2 〉 . . . 〈arg-n〉\StopDoing

or by

\DoWithAllOf〈cmd〉{〈arg-1 〉〈arg-2 〉 . . . 〈arg-n〉}

With small n, one may doubt whether this really is an abbreviation . . . ; anyway,

〈arg-1 〉〈arg-2 〉 . . . 〈arg-n〉

was an attempt to refer to the kind of lists we are dealing with.

〈arg-1 〉, 〈art-2 〉, . . . , 〈arg-n〉

are the “items” of the list. The question is: what counts as an item?
We might say that aa is a list of two items, 〈arg-1 〉 being a and 〈arg-2 〉

being a, too.
When we do three keystrokes to get a a instead of aa, we still have two

items, 〈arg-1 〉 being a and 〈arg-2 〉 being a too. Strange, isn’t it?
Also, when in aa we replace the first a by a backslash, \, we get \a, and this

is a list of a single item, 〈arg-1 〉 = \a . . .
You shouldn’t believe these stories of mine entirely. What I am alluding to is

that the “items” dowith is about are determined in terms of TEX’s tokens, and
the relation between the “characters you type” and TEX’s tokens is not entirely
straightforward.

1.3 The Notion of Arglists for LATEX Users

Still, it may suffice to clarify what counts as an 〈arg-i〉 without speaking of tokens
explicitly: It is simply what a one-parameter macro (where the parameter is not
delimited in terms of The TEXbook pp. 203f.) can take as an argument.

The lists dowith is about then are lists of possible arguments in the previous
sense—let me call them “arglists.”2 The single items of such lists are those single
possible arguments. They become actual arguments beginning from the leftmost
possible one when dowith presents them to that 〈cmd〉 mentioned earlier—where
〈cmd〉 should be a one-parameter macro (or some TEX primitive parsing argu-
ments similarly).

The reader perhaps has an intuitive understanding of what can be an ar-
gument of a one-parameter macro. A strict LATEX user may think that such
an argument 〈arg-i〉 just has form {〈ark-i〉}, i.e., 〈arg-i〉 = {〈ark-i〉} for some

2Not to be confused with German Arglist.

http://de.wiktionary.org/wiki/Arglist

1 USAGE AND FEATURES 4

〈ark-i〉. Such arguments are also called “brace groups”. (LATEX’s optional argu-
ments [〈extra〉] do not count as possible arguments here, they are not macro
arguments in the sense of The TEXbook.) In this restricted LATEX sense, arglists
consist of brace groups

{〈ark-1 〉}{〈ark-2 〉} . . . {〈ark-n〉},

and each single brace group is an item of it.
The TEX macro writer, by contrast, knows that a macro argument doesn’t

need outer braces. In an intuitive sense, a single “command” can be a macro
argument, too. “Command” may be understood as “control sequence” (start-
ing with a backslash), but some authors also have considered single characters
(character tokens?) “commands.” Blank spaces, by contrast, are ignored when
a macro looks for its argument.

1.4 TEX’s Tokens

What TEXnically matters is what happens in “TEX’s mouth,”3 as some authors
have suggested a metaphor,4 or somewhere deeper. The dowith package is a tool
to control those events (and actually, it is confined to TEX’s mouth).

The “characters you type” are somewhere in front of “TEX’s mouth”, while in TEX’s
mouth, there are tokens. Before TEX swallows them, it often manipulates them in some ways,
after they got into its mouth.

More formally, TEX has a character buffer. It forms a single token from an initial segment
of the buffer content—unless there is a special situation with blank spaces or something
pathological. When an escape character, as the backslash usually is one, has been noticed
recently (that isn’t followed by another one immediately), the character buffer may need to
be feeded from more outside, until it contains enough material to form a token from. The
character(s) after the escape character until some delimiting character form a string that is
the name of the token that is formed. What has been used to form a token is removed from
the character buffer.

There are two kinds of tokens here: named tokens and character tokens. “Named” tokens
usually are referred to as “control sequence tokens” or just “control sequences”—I really want
to avoid those horrible confusions from The TEXbook. There never are any “parameter tokens”
in TEX’s mouth (perhaps unless one considers a one-step macro expansion a two-or-more-step
procedure).

For every string of characters, there is exactly one (possible) named token whose name
the string is.5 It is so common (starting from The TEXbook) to denote the token whose name
is 〈string〉 by ‘\〈string〉’. For instance, the token whose name is input is denoted by ‘\input’.
On the other hand, on page 7 of The TEXbook ‘\input’ is a “string of characters.” With this
notation, it is already difficult to explain what the LATEX command \DeclareRobustCommand

does or what the difference between a starred LATEX command and a starred LATEX envi-
ronment is.6 The TEXbook makes it worse by saying on page 39: “A control sequence is

3Cf. The TEXbook p. 46.
4Alan Jeffrey: “Lists in TEX’s Mouth,” TUGboat Vol. 11 (1990), No. 2, pp. 237–245),

tug.org/TUGboat/tb11-2/tb28jeffrey.pdf.
5“Possible” refers to the fact that TEX does not store named tokens anywhere before they

appear in its mouth, maybe apart from “primitive” tokens that have a “pre-assigned meaning”
when a TEXrun starts.—What is more bad with my claim is that the TEX program by design
cannot extend its memory arbitrarily—even not using the “cloud”—, so it doesn’t support
tokens whose name lengths are above a certain limit.

6A reader knowing LATEX only thinks that ‘\\ ’ is the result of typing a double backslash
and a space and that ‘\equation*’ is the “command” \equation followed by a *.

http://tug.org/TUGboat/tb11-2/tb28jeffrey.pdf
http://tug.org/TUGboat/tb11-2/tb28jeffrey.pdf

1 USAGE AND FEATURES 5

considered to be a single object that is no longer composed of a sequence of symbols.” So “it
depends” whether ‘\input’ is a string of characters or not—it is before tokenization, but no
longer afterwards. So if you have two computers and start a TEX run on each of them with a
little difference in time, there will be a moment where ‘\input’ is a string on the one computer
but not on the other? This is like saying “When we apply the square root function to the
number 4, the number 4 will no longer be the number 4, it will be the number 2 instead.”

The TEXbook does offer an alternative notation for named tokens: “boxing;”
so the token whose name is input can be denoted by the rather “graphical”
notation ‘ input ’ (used only exceptionally).7 I would suggest something like
‘ntok(input)’ for clarity and ‘?input’ for brevity.8

Character tokens get into TEX’s mouth by tokenization when characters begin the buffer
content while not scanning a name for a named token. A single character then is removed
from the character buffer, and a token storing its character code and current category code is
pushed into TEX’s mouth.

Named tokens may get into TEX’s mouth by “tokenization” as described above, i.e., they
are drawn from the character buffer. But they also can appear in TEX’s mouth “from within,”
by the manipulation inside TEX’s mouth.

More formally, those manipulations are called “expansion,” and TEX’s mouth can be
conceived of as a token buffer that is feeded to the right (or end) by tokenization from the
character buffer. Expansion means that certain tokens in the token buffer are substituted by
other ones. This way tokens may get into TEX’s mouth that emerged from tokenization a
“long time ago”, maybe in a previous run that created the format (TEX’s variant INITEX); or
tokens may appear by some hardwired expansion function.

However, named tokens may get into TEX’s mouth also by expansion, never having been
drawn by tokenization and not being hardwired. This happens by the \csname name construct.
The input code may contain

\csname tupni\endcsname

This may be converted into 7 tokens entering TEX’s mouth, the first one being ntok(csname),
the last one ntok(endcsname), and five character tokens in between. Due to some function
(which I would denote as *csname) originally associated with the token ntok(csname), those
seven tokens then are replaced by ntok(tupni), the named token whose name is tupni. It is
not required that the TEX program knows about a token ntok(tupni), neither anybody must
type ‘\tupni’ in any file.9

1.5 Arglists vs. Lists of Tokens—Example

Let us reconsider the examples from Sections 1.2 and 1.3, and pack them into
a single example. If you type a file line

a a\a{a} (1)

7The box notation is introduced on page 38 without explanation, as if it explained some-
thing.

8I am suggesting the question mark for named tokens since TEX “must look up the current
definition” of a named token according to The TEXbook p. 39, while the meaning of character
tokens rather is “fixed,” at least according to The TEXbook p. 39. However, active-character
such as .~ are in the same situation as named tokens as to this respect. The dot notation may
be fine for them, though.

9These considerations may not be essential here, rather a draft for a paper. Using dowith,
one better just thinks of the arglist items one actually lists.

1 USAGE AND FEATURES 6

(eight keystrokes), it should usually be converted into this seven-item list of
(five) tokens:

a11 10 a11 ntok(a) {1 a11 }2 (2)

—with notation from Section 1.4 and The TEXbook ’s notation 〈char〉〈cat〉 for
the character token that TEX’s tokenizer forms from 〈char〉 in the character
buffer when 〈char〉’s category code is 〈cat〉.

It turns out that the token list in 2 provides an arglist of four items: The
token a11 at the first and third place, the named token ntok(a), and the en-
tire token list {1a11}2 as a single item—a “brace group.” The space token is
ignored.10

You can try this after \renewcommand{\a}{A}11 with dowith:

\DoWith\typein a a\a{a}\StopDoing (3)

Then LATEX shows a, a, A from \a, and another a from within the braces—
\typein (as any macro with arguments) removes them.

I have avoided saying 2 were an arglist of 4 items. The mathematical basic
way of writing lists—understood as finite sequences—as “commma-separated
lists” within brackets may clarify the difference (that the juxtaposition notation
tends to conceal). The token list is

(a11, 10, a11, ntok(a), {1, a11, }2) (4)

while the list of macro arguments is

(a11, a11, ntok(a), ({1, a11, }2)). (5)

2 or 4 simply is not an arglist (since neither {1 nor }2 can be a macro argument),
and the arglist 5 “provided” by the list of tokens is not a list of tokens—its final
item is a three-item list of tokens, and a token cannot be a list of two or more
tokens itself(!?).

1.6 Another Notation and the Example’s Steps

To write token lists easier and hopefully easier to read, I would suggest writing ‘.〈char〉’ for
the character token that the tokenizer “usually” forms from character 〈char〉, i.e., adding the
standard category code as in The TEXbook (page 37). Then 2 would read12

.a . .a ?a .{ .a .} (6)

and the corresponding arglist is

(.a, .a, ?a, (.{ .a .})) (7)

In “retrospect,” the result of tokenizing 2 should be

?DoWith ?typein .a . .a ?a .{ .a .} ?StopDoing (8)

10The TEXbook p. 201: “TEX doesn’t use single spaces as undelimited arguments.”
11Otherwise \a is a one-parameter macro that breaks dowith’s control.
12See Section 1.4 for the question mark.

http://en.wikipedia.org/wiki/sequence
http://en.wikipedia.org/wiki/bracket
http://en.wikipedia.org/wiki/juxtaposition

1 USAGE AND FEATURES 7

and the intention is that it works like

?typein.{.a.} ?typein.{.a.} ?typein.{?a.} ?typein.{.a.} (9)

(The definition of \DoWith in Section 3.3.1 indeed adds surrounding braces, if missing.) How-
ever, TEX rather tries to work with as few tokens ahead as possible. When it finds ?DoWith
and the latter’s meaning is the one intended by dowith, it first looks for nothing more than
the two arguments required by our definition of \DoWith. A few moments later, the token
buffer’s content will just be13

?typein.{.a.} ?expandafter ?DoWith ?expandafter ?typein ?fi (10)

Next ?typein.{.a.} is expanded according to the code for \typein in latex.ltx. Some unex-
pandable tokens will emerge and be moved into the “command buffer,” and you should get
a screen message with a and a prompt. When you have entered something, the remaining
?expandafter tokens and the ?fi will be removed from the character buffer, and it contains
only

?DoWith ?typein (11)

Another token is ordered from the tokenizer to provide a second argument for expanding
?DoWith. The token . comes in, but that doesn’t serve as a macro argument. It is removed,
and the next token is .a. The same story as before happens, until the named token ?a is
found . . .

1.7 Summary of Possible Arglist Items

For 0 ≤ i ≤ 15, let Xi be the set of character tokens of category code i. X1 is the set of tokens
working like {1, and X2 is the set of tokens working like }2.

Let E be the set {3, 4, 6, 7, 8, 11, 12, 13}. These numbers are the category codes for math,
align, parameter, super, sub, letter, other, active respectively. Let XE be the set of character
tokens of category code in E (so XE =

⋃
i∈E Xi).

Let ◦ be the concatenation operation among token lists.14

The following kinds of token lists form a single arglist item, i.e., can serve as an argument
for an undelimited parameter:

1. a named token, or the single-token list consisting of it, if you prefer that;

2. a character token from XE or the list consisting of it;

3. a brace group. That is a token list meeting the following conditions: (i) its first token
is in X1, (ii) its last token is in X2, (iii) it has as many occurrences of tokens from
X1 as from X2, (iv) if it is split as λ ◦ ρ, there are not more X2 occurrences in λ than
X1 occurrences in ρ (“don’t close before opening”).

The second claim can be checked with

\DoWith\typein$#^_a1~\StopDoing (12)

as to what works. (The claim is not affected by one or two surprises.)15 Characters with
different category codes either are not converted into a character token16 or are not accepted

13If you use \DoWithAllOf\typein{a a\a{a}} instead, the entire token sequence 8 will ap-
pear in the token buffer “at once.”

14TODO: Define for representations by maps, or: “Concatenation is about as basic as
natural numbers and is understood in terms of axioms rather than by a definition.”—See notes
from 2011 (even with attempts with Category theory) the English Wikipedia for sequences—
German article too much restricted to maps.

15Moreover, \DoWith\typein#1\StopDoing tells something about “parameter tokens.”
16The TEXbook p. 47.

http://en.wikipedia.org/wiki/Category theory
http://en.wikipedia.org/wiki/Sequence
http://de.wikipedia.org/wiki/Folge (Mathematik)

1 USAGE AND FEATURES 8

as macro arguments. The latter applies to “brace” tokens in X1, X2 and to the single space
token 10.

As to “brace groups”, the third and fourth condition above are intended to say that what
is between the two outer tokens is 〈balanced text〉 in the sense of The TEXbook pp. 275f.
and 385; i.e., for two tokens a, b and a token list β, (a) ◦β ◦ (b) is a brace group exactly if a is
from X1, b is from X2, and β is 〈balanced text〉. The conditions are more formal than what I
can find in The TEXbook, but still they don’t give me an idea of all possibities. This should
be improved by the following recursive definition:

B1. The empty list is balanced text. B2. For any token t not in X1 or X2, the single-item
token list (t) is balanced text. (Such a token is either a named token or a character token
from XE or the space token 10.) B3. If α and β are balanced texts, then α ◦ β is balanced
text. B4. If β is balanced text, a is from X1, and b is from X2, then (a) ◦ β ◦ (b) is balanced
text. (This is a brace group, and the only way of getting a brace group.) B5. Nothing else is
balanced text.

In other words, a token list is a brace group if and only if it is balanced text and starts
with a token from X1 and ends with a token from X2.17

1.8 Summary: “Commands” Usable with dowith

In the implementation section, you learn about

\DoWith〈cmd〉, \DoWithAllOf〈cmd〉, and \DoWithAllIn〈cmd〉.
(LATEX users may type {〈cmd〉} instead.) What 〈cmd〉s are allowed?

1. All one-parameter macros 〈cmd〉 work this way, unless there are pro-
gramming mistakes outside dowith (also thinking of arguments that take
over control from dowith commands before the argument list is finished).

2. Other one-parameter “commands” 〈cmd〉 such as TEX primitives may
work—you must think of the fact that surrounding braces are added.18 So
the primitives \hbox and \vbox work, for instance. \show is an example
that doesn’t work at all, it takes the single starting brace token and then
confuses \DoWith.

3. Some 〈cmd〉s taking no argument may make sense, e.g., for getting

(a) apples,

(b) pears,

(c) peaches

from

\begin{enumerate}

\DoWithAllOf{\item}{{apples,}{pears,}{peaches}}

\end{enumerate}

Recall that \item at most takes an optional argument.

4. 〈cmd〉 must not take more than one parameter. A different package
will support multi-parameter macros.

17Again, this may be more of a draft for a paper, or notes for it, than package documentation.
18TODO: in the future, variants not adding braces could be added.

2 SIMILAR COMMANDS IN OTHER PACKAGES 9

2 Similar Commands in other Packages

2.1 “Heavy” Packages

The ε-TeX-related packages etextools (Florent Chervet), etoolbox (Philipp
Lehman), and texapi (Paul Isambert) seem to include and (very much) extend
the functionality of dowith. Also the \ForEach... macros of forarray (Christian
Schröppel) seem to extend the present \DoWith... commands. moredefs (Matt
Swift) provides list handling commands like the few that are here.19 (I do not
want to load that much.)

2.2 Separators

Regarding LATEX macros in latex.ltx, the basic macro \DoWith of the present
package resembles \@tfor very much, which likewise deals with lists without
separators. By contrast, LATEX’s \@for deals with comma-separated lists (such
as lists of package options). With comma-separated lists, a “string” of char-
acters counts as an item when it is delimited by commas, or by a comma and
the list “border,” or spaces may be used as separators additionally. However,
when LATEX analyzes such lists (in “TEX’s mouth”), it uses representations by
character tokens of them.

The more recent lmake (Shengjun Pan) provides a key-value syntax for print-
ing lists of complex mathematical expressions easily (using some assignments)
as well as defining commands according to a pattern from a list. Those lists are
comma-separated.

2.3 “For” Loops vs. “Foreach” Loops

What about forloop (Nick Setzer), multido (Timothy Van Zandt, Rolf Nie-
praksch, Herbert Voß), and xfor (Nicola Talbot)?

xfor is just a reimplementation of \@for. forloop and multido are more close
to “real ‘for’ loops” (cf. Wikipedia). Loops of the latter kind go through a
certain set as well, but such sets rather consist of numbers and are exhausted
by incrementing (or also decrementing) variables (counters). This is essentially
not needed (neither helpful) when a list literally is enumerated—such loops are
distinguished as “foreach loops.”

2.4 Iterators

So \DoWith and \@tfor rather provide “foreach” loops. A major difference
between them is that the latter uses a “loop variable” or “iterator” to which
the elements of the list are assigned. \DoWith〈cmd〉 does not use such a loop
variable or such assignments and thus is “expandable” at least when 〈cmd〉
(and the elements, depending on 〈cmd〉) are expandable. On the other hand,
\@tfor applies some procedure to the list elements without needing a name for

19arrayjobx provides somewhat “exotic” handling of “lists”.

http://ctan.org/pkg/etex
http://ctan.org/pkg/etextools
http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/texapi
http://ctan.org/pkg/forarray
http://ctan.org/pkg/moredefs
http://ctan.org/pkg/lmake
http://ctan.org/pkg/forloop
http://ctan.org/pkg/multido
http://ctan.org/pkg/xfor
http://en.wikipedia.org/wiki/for loop
http://en.wikipedia.org/wiki/Loop counter
http://en.wikipedia.org/wiki/Foreach loop
http://en.wikipedia.org/wiki/For loop
http://en.wikipedia.org/wiki/Iterator
http://ctan.org/pkg/arrayjobx

2 SIMILAR COMMANDS IN OTHER PACKAGES 10

the procedure (or a macro storing the procedure). I wondered whether behind
LATEX’s \@tfor (and \@for) there was an “ideological” consideration such as
“A loop must have a loop variable!” . . .

Hopefully more clearly on “loop variable” vs. our approach: In order to run

〈code-before〉〈item〉〈code-after〉

on each 〈item〉 of a 〈list〉, we here

define \do as #1 → 〈code-before〉#1〈code-after〉 (13)

and then run \do{〈item〉} for each 〈item〉 in 〈list〉,20

always replacing \do{〈item〉} by \do{〈item〉}\do. (14)

(\do is only an example command that dowith supports especially.) In
latex.ltx instead, we find things like

\@tfor\@tmp:=〈list〉\do{〈code-before〉\@tmp〈code-after〉} (15)

where \@tmp is a macro that is set to be 〈item〉 at each iteration of the loop, by

\def\@tmp{〈item〉} (16)

within \@tforloop. After that,

〈code-before〉\@tmp〈code-after〉 (17)

from 15 is run.—17 like 15 is stored in a larger macro. \do in 15 does not act
as a macro, it just delimits a macro parameter in order give a feeling of some
familiar programming structure. This organisation of macros is fine when the
loop body code is only used by the containing macro, while the dowith approach
to store the “loop body” in an own macro has been useful when the loop body
code also is used for different purposes or when it has been introduced before I
thought of using it in a loop.

Note that this only was an example. In general, 〈item〉 may appear more
than once in the “loop body.”

“Expandability” by avoiding something iterating \def\@tmp{〈item〉} and
doing iteration in TEX’s mouth (\do or so must have been defined earlier) is
essential especially within \write. Assignments do not work there. A major
motivation for developing dowith developed with the blog package that \writes
HTML code. Assignments happen somewhere behind “TEX’s mouth.” That place
might be called the “command buffer” to which the “expansion processor” moves
items from the incoming token buffer that cannot be expanded (any more).

20Cf. description of procedure in terms of tokens in Section 1.6.

http://ctan.org/pkg/blog

2 SIMILAR COMMANDS IN OTHER PACKAGES 11

2.5 Separator Macros

Commands like \DoWith also could save tokens thinking of list macros (in
LATEX/latex.ltx) that use a separator macro which may be used as a com-
mand to be applied to the list elements. One example is \dospecials that
already is in Plain TEX and expands to

\do\ \do\\\do\{\do\}\do\$\do\&\do\#\do\^\do_\do\%\do\~

An important application of \dospecials is temporarily switching off the “spe-
cial” functionality of the “elements” in \dospecials. With LATEX, this may
happen thus:

\let\do\@makeother\dospecials

With dowith, you can do the same with a shorter variant \specials of
\dospecials, defined by

\def\specials{\ \\\{\}\$\&\#\^_\%\~}

and then

\DoWithAllIn\@makeother\specials

latex.ltx uses \@elt instead of \do for its own list macros.

2.6 Ye Olde \loop

There also is \loop〈loop-body〉\repeat in Plain TEX and a refined21 version
of it in latex.ltx. It is not expandable since it starts with an assignment for
\body (Plain TEX) or \iterate (latex.ltx), and then some assignments are
needed to stop the loop, such as incrementing or decrementing a counter. As
to the programming structure, it is very simple and general, I think any kind
of loop can be implemented by this (apart from nested loops). E.g., I realize22

that even a “foreach” loop could be implemented by managing a list macro, e.g.,
using LATEX’s internal \@next.

2.7 Without Iterator and Separators

In LATEX’s tools bundle, xspace was developed in the nineties by David Carlisle.
It had a rather fixed exception list implemented by a deeply nested condi-
tional. In 2004 Morton Høgholm joined, and now xspace has a list macro
\@xspace@exceptions@tlp without separators. It is handled like here, except
that it “breaks” the loop when an item is found that applies. After the “next”
token is stored by the usual \futurelet, the exception list is searched without
using an iterator. Addition and removal commands are provided as well.

21Using Kabelschacht’s suggestion, cf. Section 4
222012-05-20

http://ctan.org/pkg/tools
http://ctan.org/pkg/xspace

3 IMPLEMENTATION 12

3 Implementation

3.1 Package File Header (Legalese)

1 \def\filename{dowith} \def\fileinfo{simple list loop (UL)}

2 \def\filedate{2012/05/19} \def\fileversion{v0.21a}

3 %% Copyright (C) 2011 Uwe Lueck,

4 %% http://www.contact-ednotes.sty.de.vu

5 %% -- author-maintained in the sense of LPPL below --

6 %%

7 %% This file can be redistributed and/or modified under

8 %% the terms of the LaTeX Project Public License; either

9 %% version 1.3c of the License, or any later version.

10 %% The latest version of this license is in

11 %% http://www.latex-project.org/lppl.txt

12 %% We did our best to help you, but there is NO WARRANTY.

13 %%

14 %% Please report bugs, problems, and suggestions via

15 %%

16 %% http://www.contact-ednotes.sty.de.vu

3.2 Proceeding without LATEX

A little LATEX as in Bernd Raichle’s ngerman.sty:

17 \chardef\atcode=\catcode‘\@

18 \catcode‘\@=11 % \makeatletter

19 \begingroup\expandafter\expandafter\expandafter\endgroup

I need \ProvidesPackage for fileinfo, my package version tools.

20 \expandafter\ifx\csname ProvidesPackage\endcsname\relax

When \ProvidesPackage is not defined, we provide a version of LATEX’s \in@

(an old version that may wrongly claim to have found an occurrence of a se-
quence, but is correct for single tokens) for checking token list macros. LATEX
must not see \ifin@ when it parses the \ifx conditional:

21 \expandafter\newif\csname ifin@\endcsname

22 \def\in@#1#2{%

23 \def\in@@##1#1##2##3\in@@{%

24 \ifx\in@##2\in@false\else\in@true\fi}%

25 \in@@#2#1\in@\in@@}

readprov stops reading the file at \Provides..., therefore . . .

26 \long\def\@gobble#1{} \expandafter\@gobble

27 \else

28 \expandafter\@firstofone

29 \fi

30 { \ProvidesPackage{\filename}[\filedate\space

31 \fileversion\space \fileinfo] }

http://ctan.org/pkg/ngerman
http://ctan.org/pkg/fileinfo

3 IMPLEMENTATION 13

3.3 Applying a Command

3.3.1 Core

\DoWith{〈cmd〉}〈list〉\StopDoing applies 〈cmd〉 to all elements of 〈list〉. An
element of 〈list〉 (after tokenizing) may be either a single token or a group
{〈balanced〉}.

32 \def\DoWith#1#2{%

33 \ifx\StopDoing#2%

34 \else#1{#2}\expandafter\DoWith\expandafter#1\fi}

\StopDoing delimits the list:

35 \let\StopDoing\DoWith

. . . something arbitrary that is not expected to occur in a list. With

\let\StopDoing*

instead, the star would end lists.
\DoWithAllOf{〈cmd〉}{〈list〉} works like

\DoWith{〈cmd〉}〈list〉\StopDoing :

36 \def\DoWithAllOf#1#2{\DoWith#1#2\StopDoing}

3.3.2 \do being the Command

When the 〈list〉 is worked at a single time in the TEX run where assignments
are possible, instead of introducing a new macro name for 〈cmd〉 you can use
\do for 〈cmd〉 as a “temporary” macro and define it right before

\DoWith{\do}〈list〉\StopDoing

However, we provide

\DoDoWith{〈cmd〉}〈list〉\StopDoing

as a substitute for the former line that at least saves one token. For the definition
of \do, we provide \setdo{〈def-text〉} . It works similarly to

\renewcommand{\do}[1]{〈def-text〉},

so 〈def-text〉 should contain a #1:

37 \def\setdo{\long\def\do##1}

With \letdo〈cmd〉 that is provided next where 〈cmd〉 is defined elsewhere,
you could type

\letdo〈cmd〉\DoDoWith〈list〉\StopDoing

3 IMPLEMENTATION 14

It seems to me, however, that you better type

\dowith〈cmd〉〈list〉\StopDoing

instead. So I provide \letdo although I consider it useless here. It is provided
somewhat for the sake of “completeness,” thinking that it might be useful at
other occasions such as preceding \dospecials.

38 \def\letdo{\let\do}

\DoDoWith has been described above:

39 \def\DoDoWith{\DoWith\do}

By analogy to \DoWithAllOf, we provide \DoDoWithAllOf{〈list〉} :

40 \def\DoDoWithAllOf{\DoWithAllOf\do}

3.3.3 Expand List Macro

The former facilities may be quite useless as such a 〈list〉 will not be typed at
a single place in the source code, rather the items to run 〈cmd〉 on may be
collected occasionally when some routines run. The elements may be collected
in a macro 〈list-macro〉 expanding to 〈list〉. So we provide

\DoWithAllIn{〈cmd〉}{〈list-macro〉}

(or \DoWithAllIn〈cmd〉〈list-macro〉). There is no need to type \StopDoing

here:

41 \def\DoWithAllIn#1#2{%

42 \expandafter\DoWith\expandafter#1#2\StopDoing}

\DoDoWithAllIn{〈list-macro〉} saves a backslash or token for \do as above in
Sec. 3.3.2:

43 \def\DoDoWithAllIn{\DoWithAllIn\do}

3.4 Handling List Macros

3.4.1 Initializing

Here is some advanced \let〈cmd〉\empty, perhaps a little irrelevant for practical
purposes. Both

\InitializeListMacro{〈list-macro〉}

and

\ReInitializeListMacro{〈list-macro〉}

attempt to “empty” 〈list-macro〉, and when we don’t believe that LATEX has
been loaded, both do the same indeed. Otherwise the first one complains when
〈list-macro〉 seems to have been used earlier while the second complains when
〈list-macro〉 seems not to have been used before:

3 IMPLEMENTATION 15

44 \expandafter\ifx\csname @latex@error\endcsname\relax

45 \def\InitializeListMacro#1{\let#1\empty} %% not \@empty 2011/11/07

46 \let\ReInitializeListMacro\InitializeListMacro

47 \else

48 \def\InitializeListMacro#1{\@ifdefinable#1{\let#1\empty}}

49 \def\ReInitializeListMacro#1{%

50 \edef\@tempa{\expandafter\@gobble\string#1}%

51 \expandafter\@ifundefined\expandafter{\@tempa}%

52 {\@latex@error{\noexpand#1undefined}\@ehc}%

53 {\let#1\empty}}

54 \fi

\ToListMacroAdd{〈list-macro〉}{〈cmd-or〉} appends 〈cmd-or〉 to the replace-
ment token list of 〈list-macro〉. 〈cmd-or〉 may either be tokenized into a single
token, or it is some {〈balanced〉}.

55 \def\ToListMacroAdd#1#2{\DefExpandStart#1{#1#2}}

56 \def\DefExpandStart#1{\expandafter\def\expandafter#1\expandafter}

3.4.2 Testing for Occurrence of a Token

\TestListMacroForToken{〈list-macro〉}{〈cmd〉} sets \in@true when 〈cmd〉
occurs in 〈list-macro〉 and sets \in@false otherwise:

57 \def\TestListMacroForToken#1#2{%

58 \expandafter \in@ \expandafter #2\expandafter{#1}}

Indeed I removed an earlier \IfTokenInListMacro, now it’s a kind of compro-
mise between having a shorthand macro below and a generalization for users of
the package.

3.4.3 Adding and Removing

\FromTokenListMacroRemove{〈list-macro〉}{〈cmd〉} removes the token corre-
sponding to 〈cmd〉 from the list stored in 〈list-macro〉 (our parsing method does
not work with braces):

59 \def\FromTokenListMacroRemove#1#2{%

I am not happy about defining two parser macros, but for now . . .

60 \TestListMacroForToken#1#2%

61 \ifin@

62 \def\RemoveThisToken##1#2{##1}%

63 \expandafter \DefExpandStart

64 \expandafter #1\expandafter {%

65 \expandafter\RemoveThisToken #1}%

TODO warning otherwise?

66 \fi}

4 ACK.: 25 YEARS OF KABELSCHACHT’S METHOD 16

. . . but this only removes a single occurrence . . .

\InTokenListMacroProvide{〈list-macro〉}{〈cmd〉}

avoids multiple entries of a token by not adding anything when 〈cmd〉 al-
ready occurs in 〈list-macro〉 (again, this does not work with braces, try
\in@{{}}{{}}).

67 \def\InTokenListMacroProvide#1#2{%

68 \TestListMacroForToken#1#2%

69 \ifin@ \else %% TODO warning?

70 \ToListMacroAdd#1#2%

71 \fi}

3.5 Leaving and History

72 \catcode‘\@=\atcode

73 \endinput

74

75 VERSION HISTORY

76 v0.1 2011/06/23/28 stored separately

77 v0.2 2011/11/02 simpler, documented

78 2011/11/03 corrected \if/\else for init

79 2011/11/07 \TestListMacroForToken, \InListMacroProvide;

80 doc.: \pagebreak, structure

81 2011/11/19 modified LaTeX supplements

82 v0.21 2012/05/14 fix for "generic" and ‘typeoutfileinfo’:

83 @ before ...!

84 v0.21a 2012/05/19 \labels sec:apply, sec:core; \pagebreak?

85

4 Ack.: 25 Years of Kabelschacht’s Method

The essential idea of dowith and \DoWith is

\if〈code〉\expandafter〈one-token〉\fi

It was described by Alois Kabelschacht as “\expandafter vs. \let and
\def in Conditionals and a Generalization of PLAIN’s \loop” in TUGboat
Vol. 8 (1987), No. 2, pp. 184f. (a little more than one column).23 See some Ger-
man biographical notes on Kabelschacht in the German Wikipedia.24 It seems to
me that Knuth didn’t note this application of \expandafter in The TEXbook.

25

It was then applied in many macros of latex.ltx, cf. source2e.pdf.

23tug.org/TUGboat/tb08-2/tb18kabel.pdf
24de.wikipedia.org/wiki/Benutzer:RolteVolte/Alois_Kabelschacht
25However, the paper ‘uses the fact that the expansion of both \else ... \fi and \fi is

empty.’ In The TEXbook I only find ‘The “expansion” of a conditional is empty’ on page 213.

http://tug.org/TUGboat/tb08-2/tb18kabel.pdf
http://tug.org/TUGboat/tb08-2/tb18kabel.pdf
http://de.wikipedia.org/wiki/Benutzer:RolteVolte/Alois_Kabelschacht
http://tug.org/TUGboat/tb08-2/tb18kabel.pdf
http://de.wikipedia.org/wiki/Benutzer:RolteVolte/Alois_Kabelschacht

	Usage and Features
	Installing and Calling
	What It Does With What Lists
	The Notion of Arglists for LaTeX Users
	TeX's Tokens
	Arglists vs. Lists of Tokens—Example
	Another Notation and the Example's Steps
	Summary of Possible Arglist Items
	Summary: ``Commands" Usable with 'dowith'

	Similar Commands in other Packages
	``Heavy" Packages
	Separators
	``For" Loops vs. ``Foreach" Loops
	Iterators
	Separator Macros
	Ye Olde \loop
	Without Iterator and Separators

	Implementation
	Package File Header (Legalese)
	Proceeding without LaTeX
	Applying a Command
	Core
	`\do' being the Command
	Expand List Macro

	Handling List Macros
	Initializing
	Testing for Occurrence of a Token
	Adding and Removing

	Leaving and History

	Ack.: 25 Years of Kabelschacht's Method

