
dowith.sty
—

Apply Command to Elements of Lists without

Separators— and without Iterator∗

Uwe Lück†

May 10, 2012

Abstract

This package provides macros for applying a command to all elements of a
list without separators, such as \DoWithAllIn{〈cmd〉}{〈list-macro〉}, and
also for extending and reducing macros storing such lists. Applications in
mind belonged to LATEX, but the package should work with other formats
as well. Loop and list macros in other packages are discussed. There is
an emphasis on expandability (no iterator), without relying on ε-TEX.

Related packages: etextools, etoolbox, forarray, forloop, multido, more-
defs, lmake, texapi, xfor, xspace

Keywords: macro programming, loops, list macros

Contents

1 Usage 2

2 Similar Commands in other Packages 2

3 Implementation 4
3.1 Package File Header (Legalese) 4
3.2 Proceeding without LATEX . 4
3.3 Applying a Command . 5

3.3.1 Core . 5
3.3.2 \do being the Command 5
3.3.3 Expand List Macro . 6

3.4 Handling List Macros . 6
3.4.1 Initializing . 6
3.4.2 Testing for Occurrence of a Token 7
3.4.3 Adding and Removing . 7

3.5 Leaving and History . 8

∗This document describes version v0.2 of dowith.sty as of 2011/11/19.
†http://contact-ednotes.sty.de.vu

1

http://en.wikipedia.org/wiki/iterator
http://ctan.org/pkg/e-tex
http://contact-ednotes.sty.de.vu

1 USAGE 2

1 Usage

The file dowith.sty is provided ready, installation only requires putting it some-
where where TEX finds it (which may need updating the filename data base).1

With LATEX, you load dowith.sty (as usually) by

\usepackage{dowith}

below the \documentclass line(s) and above \begin{document}. However, the
package can also be used with other formats, just

\input dowith.sty

The single commands that the package provides are described below together
with their implementation.

2 Similar Commands in other Packages

The ε-TeX-related packages etextools (Florent Chervet), etoolbox (Philipp
Lehman), and texapi (Paul Isambert) seem to include and (very much) extend
the functionality of dowith. Also the \ForEach... macros of forarray (Christian
Schröppel) seem to extend the present \DoWith... commands. moredefs (Matt
Swift) provides list handling commands like the few that are here.2 (I do not
want to load that much.)

Regarding LATEX macros in latex.ltx, the basic macro \DoWith of the
present package resembles \@tfor very much, which likewise deals with lists
without separators. By contrast, LATEX’s \@for deals with comma-separated
lists (such as lists of options).

A major difference between \DoWith and \@tfor is that the latter uses a
“loop variable” or rather “iterator” to which the elements of the list are assigned.
\DoWith〈cmd〉 does not use such a loop variable or such assignments and thus
is “expandable” at least when 〈cmd〉 (and the elements, depending on 〈cmd〉)
are expandable. On the other hand, \@tfor applies some procedure to the list
elements without needing a name for the procedure (or a macro storing the
procedure).

What about forloop (Nick Setzer), multido (Timothy Van Zandt, Rolf
Niepraksch, Herbert Voß), and xfor (Nicola Talbot)?

xfor is just a reimplementation of \@for. forloop and multido are more close
to “real ‘for’ loops” (cf. Wikipedia). Loops of the latter kind go through a
certain set as well, but such sets rather consist of numbers and are exhausted
by incrementing (or also decrementing) variables (counters). This is essentially
not needed when a list literally is enumerated—such loops are distinguished as
“foreach loops.” I wondered whether behind LATEX’s \@tfor (and \@for) there
was an “ideological” consideration such as “A loop must have a loop variable!”

1http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf
2arrayjobx provides somewhat “exotic” handling of “lists”.

http://ctan.org/pkg/etex
http://ctan.org/pkg/etextools
http://ctan.org/pkg/etoolbox
http://ctan.org/pkg/texapi
http://ctan.org/pkg/forarray
http://ctan.org/pkg/moredefs
http://en.wikipedia.org/wiki/iterator
http://ctan.org/pkg/forloop
http://ctan.org/pkg/multido
http://ctan.org/pkg/xfor
http://en.wikipedia.org/wiki/for loop
http://en.wikipedia.org/wiki/Foreach loop
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf
http://ctan.org/pkg/arrayjobx

2 SIMILAR COMMANDS IN OTHER PACKAGES 3

However, avoiding usage of a macro name and a macro parameter may have
been a good reason.

Commands like \DoWith also save tokens thinking of list macros (in
LATEX/latex.ltx) that use a separator macro which may be used as a com-
mand to be applied to the list elements. One example is \dospecials that
already is in Plain TEX and expands to

\do\ \do\\\do\{\do\}\do\$\do\&\do\#\do\^\do_\do\%\do\~

An important application of \dospecials is temporarily switching off the “spe-
cial” functionality of the “elements” in \dospecials. With LATEX, this may
happen thus:

\let\do\@makeother\dospecials

With dowith, you can do the same with a shorter variant \specials of
\dospecials, defined by

\def\specials{\ \\\{\}\$\&\#\^_\%\~}

and then

\DoWithAllIn\@makeother\specials

latex.ltx uses \@elt instead of \do for its own list macros.
There also is \loop〈loop-body〉\repeat in Plain TEX and a refined version

of it in latex.ltx. It is not expandable since it starts with an assignment for
\body (Plain TEX) or \iterate (latex.ltx). As to the programming structure,
it is so simple and general that you cannot immediately see what kind of loops
it addresses. However, the applications I have seen have been “for” or (rather)
“while” loops. “While” loops can “emulate” “for” and “foreach” loops by having
the “incrementation” method or the “enumeration” method in their body. This
is quite obvious for “for” loops, not quite so for “foreach” loops; which for
practical application (in my view) means that neither LATEX/TEX’s \loop macro
nor in general “while” loops is/are very helpful for implementing “foreach” loops,
as rather \DoWith and similar constructions are. The reason for this is (as it
seems to me) is that you (a human being) can much more easily enumerate
(“list”) the items of a list (you have in mind) than define the method that
(allegedly) is behind your enumeration. Example:

\DoWithAllOf{\printsamplearea}{\red\green\blue}

—how (according to what “method”?) did you “proceed” from \red to \green

and from \green to \blue?
In LATEX’s tools bundle, xspace has a list macro \@xpspace@exceptions@tlp

without separators. It is handled like here, except that it “breaks” the loop when
an item is found that applies.

The more recent lmake provides a key-value syntax for printing lists of com-
plex mathematical expressions easily (using some assignments) as well as defin-
ing commands according to a pattern from a list.

http://ctan.org/pkg/tools
http://ctan.org/pkg/xspace
http://ctan.org/pkg/lmake

3 IMPLEMENTATION 4

3 Implementation

3.1 Package File Header (Legalese)

1 \def\filename{dowith} \def\fileinfo{simple list loop (UL)}

2 \def\filedate{2011/11/19} \def\fileversion{v0.2}

3 %% Copyright (C) 2011 Uwe Lueck,

4 %% http://www.contact-ednotes.sty.de.vu

5 %% -- author-maintained in the sense of LPPL below --

6 %%

7 %% This file can be redistributed and/or modified under

8 %% the terms of the LaTeX Project Public License; either

9 %% version 1.3c of the License, or any later version.

10 %% The latest version of this license is in

11 %% http://www.latex-project.org/lppl.txt

12 %% We did our best to help you, but there is NO WARRANTY.

13 %%

14 %% Please report bugs, problems, and suggestions via

15 %%

16 %% http://www.contact-ednotes.sty.de.vu

3.2 Proceeding without LATEX

A little LATEX as in Bernd Raichle’s ngerman.sty:

17 \begingroup\expandafter\expandafter\expandafter\endgroup

I need \ProvidesPackage for fileinfo, my package version tools.

18 \expandafter\ifx\csname ProvidesPackage\endcsname\relax

When \ProvidesPackage is not defined, we provide a version of LATEX’s \in@

(an old version that may wrongly claim to have found an occurrence of a se-
quence, but is correct for single tokens) for checking token list macros. LATEX
must not see \ifin@ when it parses the \ifx conditional:

19 \expandafter\newif\csname ifin@\endcsname

20 \def\in@#1#2{%

21 \def\in@@##1#1##2##3\in@@{%

22 \ifx\in@##2\in@false\else\in@true\fi}%

23 \in@@#2#1\in@\in@@}

readprov stops reading the file at \Provides..., therefore . . .

24 \long\def\@gobble#1{} \expandafter\@gobble

25 \else

26 \expandafter\@firstofone

27 \fi

28 { \ProvidesPackage{\filename}[\filedate\space

29 \fileversion\space \fileinfo] }

30 \chardef\atcode=\catcode‘\@

31 \catcode‘\@=11 % \makeatletter

http://ctan.org/pkg/ngerman
http://ctan.org/pkg/fileinfo

3 IMPLEMENTATION 5

3.3 Applying a Command

3.3.1 Core

\DoWith{〈cmd〉}〈list〉\StopDoing applies 〈cmd〉 to all elements of 〈list〉. An
element of 〈list〉 (after tokenizing) may be either a single token or a group
{〈balanced〉}.

32 \def\DoWith#1#2{%

33 \ifx\StopDoing#2%

34 \else#1{#2}\expandafter\DoWith\expandafter#1\fi}

\StopDoing delimits the list:

35 \let\StopDoing\DoWith

. . . something arbitrary that is not expected to occur in a list. With

\let\StopDoing*

instead, the star would end lists.
\DoWithAllOf{〈cmd〉}{〈list〉} works like

\DoWith{〈cmd〉}〈list〉\StopDoing :

36 \def\DoWithAllOf#1#2{\DoWith#1#2\StopDoing}

3.3.2 \do being the Command

When the 〈list〉 is worked at a single time in the TEX run where assignments
are possible, instead of introducing a new macro name for 〈cmd〉 you can use
\do for 〈cmd〉 as a “temporary” macro and define it right before

\DoWith{\do}〈list〉\StopDoing

However, we provide

\DoDoWith{〈cmd〉}〈list〉\StopDoing

as a substitute for the former line that at least saves one token. For the definition
of \do, we provide \setdo{〈def-text〉} . It works similarly to

\renewcommand{\do}[1]{〈def-text〉},

so 〈def-text〉 should contain a #1:

37 \def\setdo{\long\def\do##1}

With \letdo〈cmd〉 that is provided next where 〈cmd〉 is defined elsewhere,
you could type

\letdo〈cmd〉\DoDoWith〈list〉\StopDoing

3 IMPLEMENTATION 6

It seems to me, however, that you better type

\dowith〈cmd〉〈list〉\StopDoing

instead. So I provide \letdo although I consider it useless here. It is provided
somewhat for the sake of “completeness,” thinking that it might be useful at
other occasions such as preceding \dospecials.

38 \def\letdo{\let\do}

\DoDoWith has been described above:

39 \def\DoDoWith{\DoWith\do}

By analogy to \DoWithAllOf, we provide \DoDoWithAllOf{〈list〉} :

40 \def\DoDoWithAllOf{\DoWithAllOf\do}

3.3.3 Expand List Macro

The former facilities may be quite useless as such a 〈list〉 will not be typed at
a single place in the source code, rather the items to run 〈cmd〉 on may be
collected occasionally when some routines run. The elements may be collected
in a macro 〈list-macro〉 expanding to 〈list〉. So we provide

\DoWithAllIn{〈cmd〉}{〈list-macro〉}

(or \DoWithAllIn〈cmd〉〈list-macro〉). There is no need to type \StopDoing

here:

41 \def\DoWithAllIn#1#2{%

42 \expandafter\DoWith\expandafter#1#2\StopDoing}

\DoDoWithAllIn{〈list-macro〉} saves a backslash or token for \do as above in
Sec. 3.3.2:

43 \def\DoDoWithAllIn{\DoWithAllIn\do}

3.4 Handling List Macros

3.4.1 Initializing

Here is some advanced \let〈cmd〉\empty, perhaps a little irrelevant for practical
purposes. Both

\InitializeListMacro{〈list-macro〉}

and

\ReInitializeListMacro{〈list-macro〉}

attempt to “empty” 〈list-macro〉, and when we don’t believe that LATEX has
been loaded, both do the same indeed. Otherwise the first one complains when
〈list-macro〉 seems to have been used earlier while the second complains when
〈list-macro〉 seems not to have been used before:

3 IMPLEMENTATION 7

44 \expandafter\ifx\csname @latex@error\endcsname\relax

45 \def\InitializeListMacro#1{\let#1\empty} %% not \@empty 2011/11/07

46 \let\ReInitializeListMacro\InitializeListMacro

47 \else

48 \def\InitializeListMacro#1{\@ifdefinable#1{\let#1\empty}}

49 \def\ReInitializeListMacro#1{%

50 \edef\@tempa{\expandafter\@gobble\string#1}%

51 \expandafter\@ifundefined\expandafter{\@tempa}%

52 {\@latex@error{\noexpand#1undefined}\@ehc}%

53 {\let#1\empty}}

54 \fi

\ToListMacroAdd{〈list-macro〉}{〈cmd-or〉} appends 〈cmd-or〉 to the replace-
ment token list of 〈list-macro〉. 〈cmd-or〉 may either be tokenized into a single
token, or it is some {〈balanced〉}.

55 \def\ToListMacroAdd#1#2{\DefExpandStart#1{#1#2}}

56 \def\DefExpandStart#1{\expandafter\def\expandafter#1\expandafter}

3.4.2 Testing for Occurrence of a Token

\TestListMacroForToken{〈list-macro〉}{〈cmd〉} sets \in@true when 〈cmd〉
occurs in 〈list-macro〉 and sets \in@false otherwise:

57 \def\TestListMacroForToken#1#2{%

58 \expandafter \in@ \expandafter #2\expandafter{#1}}

Indeed I removed an earlier \IfTokenInListMacro, now it’s a kind of compro-
mise between having a shorthand macro below and a generalization for users of
the package.

3.4.3 Adding and Removing

\FromTokenListMacroRemove{〈list-macro〉}{〈cmd〉} removes the token corre-
sponding to 〈cmd〉 from the list stored in 〈list-macro〉 (our parsing method does
not work with braces):

59 \def\FromTokenListMacroRemove#1#2{%

I am not happy about defining two parser macros, but for now . . .

60 \TestListMacroForToken#1#2%

61 \ifin@

62 \def\RemoveThisToken##1#2{##1}%

63 \expandafter \DefExpandStart

64 \expandafter #1\expandafter {%

65 \expandafter\RemoveThisToken #1}%

TODO warning otherwise?

66 \fi}

3 IMPLEMENTATION 8

. . . but this only removes a single occurrence . . .

\InTokenListMacroProvide{〈list-macro〉}{〈cmd〉}

avoids multiple entries of a token by not adding anything when 〈cmd〉 al-
ready occurs in 〈list-macro〉 (again, this does not work with braces, try
\in@{{}}{{}}).

67 \def\InTokenListMacroProvide#1#2{%

68 \TestListMacroForToken#1#2%

69 \ifin@ \else %% TODO warning?

70 \ToListMacroAdd#1#2%

71 \fi}

3.5 Leaving and History

72 \catcode‘\@=\atcode

73 \endinput

74

75 VERSION HISTORY

76 v0.1 2011/06/23/28 stored separately

77 v0.2 2011/11/02 simpler, documented

78 2011/11/03 corrected \if/\else for init

79 2011/11/07 \TestListMacroForToken, \InListMacroProvide;

80 doc.: \pagebreak, structure

81 2011/11/19 modified LaTeX supplements

82

	Usage
	Similar Commands in other Packages
	Implementation
	Package File Header (Legalese)
	Proceeding without LaTeX
	Applying a Command
	Core
	`\do' being the Command
	Expand List Macro

	Handling List Macros
	Initializing
	Testing for Occurrence of a Token
	Adding and Removing

	Leaving and History

