
preliminary draft, October 27, 2010 6:59 preliminary draft, October 27, 2010 6:59

TUGboat, Volume 16 (1995), No. 4 preliminary draft, October 27, 2010 6:59 1

The status of babel

Johannes L. Braams

Abstract

In this article I will give an overview of what has
happened to babel lately. First I will briefly de-
scribe the history of babel; then I will introduce the
concept of ‘shorthands’. New ways of changing the
‘language’ have been introduced and babel can now
easily be adapted for local needs. Finally I will dis-
cuss some compatibility issues.

1 A brief history of babel

The first ideas of developing a set of macros to sup-
port typesetting documents with TEX in languages
other than English developed around the time of
the EuroTEX conference in Karlsruhe (). Back
then I had created support for typesetting in Dutch
by stealing german.tex (by Hubert Partl c.s.) and
modifying it for Dutch conventions. This worked,
but I was not completely satisfied as I hate the du-
plication of code. Soon after that I found that more
‘copies’ of german.tex existed to support other lan-
guages. This led me to the idea of creating a package
that combined these kind of language support pack-
ages. It would have to consist of at least two ‘layers’:
all the code the various copies of german.tex had
in common in one place, loaded only once by TEX,
and a set of files with the code needed to support
language specific needs. During the Karlsruhe con-
ference the name ‘babel’ came up in discussions I
had. It seemed an appropriate name and I sticked
to it.

First ideas at EuroTEX’89 Karlsruhe
First published in TUGboat 12–2
Update article in TUGboat 14–1
Presentation of new release at EuroTEX’95

Table 1: A brief history of babel

After the conference I started to work on “babel,
a multilingual style-option system for use with LATEX’
standard document styles”. The first release with
support for about half a dozen languages appeared
in the first half of . In TUGboat volume
number an article appeared describing babel. Soon
thereafter people started contributing translations
for the ‘standard terms’ for languages not yet present
in babel. The next big update appeared in ,
accompanied by an article in TUGboat volume
number . The main new features were that an in-
terface was added to ‘push’ and ‘pop’ macro defini-
tions and values of registers. Also some code was
moved from language files to the core of babel. In
 some changes were needed to get babel to work
with LATEX 2ε. As it turned out a lot of problems
were still unsolved, amongst which the incompatibil-

ity between babel and the use of T encoded fonts
was most important.
Therefore babel version . has appeared. It’s main
features are:

• complete rewrite of the way active characters
are dealt with;

• new ways to switch the language;

• A language switch is also written to the .aux

file;

• possibility to ‘configure’ the language specific
files;

• extended syntax of language.dat;

• compatibility with both the inputenc and
fontenc packages;

• new languages (breton, estonian, irish, scottish,
lower and upper sorbian).

These changes are described in the remainder of this
article.

2 Shorthands and active characters

During babel’s lifetime the number of languages for
which one or more characters were made active has
grown. Until babel release . this needed a lot of
duplication of code for each extra active character.
A situation with which I obviously was not very
happy as I hate the duplication of code. Another
problematic aspect of the way babel dealt with ac-
tive characters was the way babel made it possible to
still use them in the arguments of cross referencing
commands. Babel did this with a trick that involves
the use of \meaning. This resulted in the fact that
the argument of \label was no longer expanded by
TEX.

Because of these problems I set out to find a dif-
ferent implementation of active characters. A start-
ing point was that a character that is made active
should remain active for the rest of the document;
only it’s definition should change. During the de-
velopment of this new implementation it was sug-
gested in discussions I had within the LATEX3 team
to devise a way to have ‘different kinds’ of active
characters. Out of this discussion came the current
‘shorthands’.

A shorthand is a sequence of one or two char-
acters that expands to arbitrary TEX code.

These shorthands are implemented in such a
way that there are three levels of shorthands:

• user level

• language level

• system level

Shorthands can be used for different kinds of things:

• the character ~ is redefined by babel as a one
character, system level shorthand;

• In some languages shorthands such as "a are
defined to be able to hyphenate the word;

The status of babel

preliminary draft, October 27, 2010 6:59 preliminary draft, October 27, 2010 6:59

2 preliminary draft, October 27, 2010 6:59 TUGboat, Volume 16 (1995), No. 4

• In some languages shorthands such as ! are
used to insert the right amount of white space.

When you want to use or define shorthands you
should keep the following in mind:

• User level takes precedence over language level;

• Language level takes precedence over system
level;

• One character shorthands take precedence over
two character shorthands;

• Shorthands are written unexpanded to .aux files.

In table 2 an overview is given of the various short-
hand characters that are used for different languages.

~ system, catalan, estonian, galician, spanish
: breton, francais, turkish
; breton, francais
! breton, francais, turkish
? breton, francais
" catalan, danish, dutch, estonian, finnish

galician, german, polish, portuguese, slovene
spanish, upper sorbian

‘ catalan (optional)
’ catalan, galician, spanish (optional)
^ esperanto
= turkish

Table 2: Overview of shorthands

Note that the acute and grave characters are
only used as shorthand characters when the options
activeacute and activegrave are used.

On the user level three additional commands
are available to deal with shorthands:

\useshorthands This command takes one argument,
the character that should become a shorthand
character.

\defineshorthand This command takes two argu-
ments, the first argument being the shorthand
character sequence, the second argument being
the code the shorthand should expand to.

\languageshorthands This last command (which
takes one argument, the name of a language)
can be used to switch to the shorthands of an-
other language, not switching other language
facilities. Of course this only works if both lan-
guages were specified as an option when loading
the package babel.

On the level of the language definition files four
new commands are introduced to interface with the
shorthand code.

\initiate@active@char This command is used to
tell LATEX that the character in its argument is
going to be used as a shorthand character. It
makes the character active, but lets it expand
to its non-active self.

\bbl@activate This can be used to switch the ex-
pansion of an active character to its active code.

\bbl@deactivate This command resets the expan-
sion of an active character to expand to its non-
active self.

\declare@shorthand This command is the internal
command for (and also used by) \defineshorthand;
it has three arguments: the first argument is
the name of the language for which to define
the shorthands, the other two are the same as
for \defineshorthand.

One of the goals of the introduction of short-
hands was to reduce the amount of code needed in
the language definition files to support active char-
acters. This goal has been reached; when a language
needs the double quote character (") to be active all
one has to put into the language definition file are
code fragments such as shown in figure 1.

\initiate@active@char{"}

\addto\extrasdutch{%

\languageshorthands{dutch}%

\bbl@activate{"}}

...

\declare@shorthand{dutch}{"‘}{%

\textormath{\quotedblbase{}}%

{\mbox{\quotedblbase}}}

...

Figure 1: Example of defining a shorthand

Apart from removing a lot of code from lan-
guage definition files by introducing shorthands, some
other code has been moved to babel.def as well.
In some language definition files it was necessary to
provide access to glyphs that are not normally easily
available (such as the \quotedblbase in the exam-
ple in figure 1. Some of these glyphs have to be ‘con-
structed’ for ot encoding while they are present in
t encoded fonts. Having all such (encoding depen-
dent) code together in one place has the advantage
these glyphs are the same for all the language defi-
nition files of babel; also maintenance is easier this
way.

3 Switching the language

Until release . babel only had one command to
switch between languages: \selectlanguage. It
takes the name of the language to switch to as an
argument; the command is used as a declaration
and always switches everything1. Two new ways
to switch to another language have now been intro-
duced.

\selectlanguage This command was available in
babel from the start.

\foreignlanguage This new command is meant to
be used when a short piece of text (such as a

1 that means the hyphenation pattern, the
\lefthyphenmin and \righthyphenmin parameters, the
translations of the words, the date and the specials

Johannes L. Braams

preliminary draft, October 27, 2010 6:59 preliminary draft, October 27, 2010 6:59

TUGboat, Volume 16 (1995), No. 4 preliminary draft, October 27, 2010 6:59 3

quote) comes from another language. This text
should not be longer than one paragraph. For
the text the hyphenation patterns and the spe-
cials are switched. The command has two argu-
ments: the name of the language and the text
from that language.

environment ‘otherlanguage’ This new environ-
ment switches the same aspects as the com-
mand \selectlanguage does. The difference is
that the switches are local to the environment
whereas one either has to use \selectlanguage
in a group to get the same effect or one has
to issue multiple \selectlanguage commands.
Also the environment is one of the things needed
to enable the development of language defini-
tion files that support right-to-left typesetting.

An aspect of some multilingual documents might
be that they have section titles or figure captions in
different languages. For this to work properly babel
now writes some information on the .aux file when
a language switch from either \selectlanguage or
the otherlanguage environment occurs. Babel nows
about the .toc, .lof and .lot files; if you have
added an extra table of contents you should be aware
of this.

4 Adapting babel for local usage

In the past people have had to find ways to adapt ba-
bel to document classes that have been developed lo-
cally (implementing house style for instance). Some
have found ways to that without changing any of
the babel files, others have modified language def-
inition files and have found themselves having to
make these changes each time a new release of babel
is made available2. It has been suggested to provide
an easier way of doing this. Therefore I have copied
the concept of configuration files from LATEX 2ε and
introduced language configuration files. For each
language definition file that is loaded LATEX will try
to find a configuration file. Such files have the same
name as the language definition file; except for their
extension which has to be .cfg.

5 Loading hyphenation patterns

An important change to the core of babel is that the
syntax of language.dat has been extended. This
was suggested by Bernard Gaulle, author of the pack-
age french. His package supports an enhanced ver-
sion of language.dat in which one can optionally
indicate that a file with a list of hyphenation ex-
cpetions has to be loaded. It is also possible to have
more than one name for the same hyphenation pat-
tern register.

As you can see in the example of language.dat
in figure 2, an equals sign (=) on the beginning
of a line now has a significant meaning. It tells
LATEX that the name which follows the equals sign

2 which doesn’t happen too often ;-).

% File : language.dat

% Purpose : specify which hypenation

% patterns to load while running

% iniTeX

=american

english hyphen.english exceptions.english

=USenglish

french fr8hyph.tex

english ukhyphen.tex

=UKenglish

=british

dutch hyphen.dutch

german hyphen.german

Figure 2: Example of language.dat

is to be an alternate name for the hyphenation pat-
terns that were loaded last. As you probably ex-
pect, there is one exception to this rule: when the
first (non-comment) line starts with an equals sign
it will be an alternate name for the next hyphen-
ation patterns that will be loaded. Hence, in the
example the hyphenation patterns stored in the file
hyphen.english will be known to TEX as: ‘ameri-
can’, ‘english’ and ‘USenglish’. You can also see in
figuree 2 that for ‘english’ an extra file is specified.
It will be loaded after hyphen.english and should
contain some hyphenation exceptions.

6 Compatibility with other formats

This release of babel has been tested with LATEX 2ε;
with and without either of the packages inputenc or
fontenc. There should no longer be any problems
using one (or both) of these packages together with
babel.
This release has also been tested with Plain TEX,
it should not provide any problems when used with
that format. Therefore babel version . should not
pose any problems when used with any format which
is based on Plain TEX; this has not been tested
by me though. Some provisions are made to make
babel . work with LATEX .; but not all features
may work as expected as I haven’t tested this fully.

Please note that although it was necessary to
copy parts of inputenc and fontenc this does not
mean that you get t support in Plain TEX, simply
by adding babel. To acheive that much more work
is needed.

The status of babel

	1 A brief history of babel
	2 Shorthands and active characters
	3 Switching the language
	4 Adapting babel for local usage
	5 Loading hyphenation patterns
	6 Compatibility with other formats

