Babel, a multilingual package for use with IITEX’s
standard document classes®

Johannes Braams
Kersengaarde 33
2723 BP Zoetermeer
The Netherlands

babel@braams.cistron.nl

Printed August 26, 2006

Abstract

The standard distribution of I¥TEX contains a number of document
classes that are meant to be used, but also serve as examples for other
users to create their own document classes. These document classes have
become very popular among IXTEX users. But it should be kept in mind
that they were designed for American tastes and typography. At one time
they contained a number of hard-wired texts. This report describes babel,
a package that makes use of the new capabilities of TEX version 3 to pro-
vide an environment in which documents can be typeset in a non-American
language, or in more than one language.

Contents 8 Compatibility with ngerman.sty 12

1 The user interface 4 9 Compatibility with the
1.1 Languages supported by french package 12

Babel 5
1.2 Workarounds 6 10 Identification 12

2 Changes for BTEX 2¢ 6 11 The Package File 13

3 Changes in Babel version 3.7 6 11.1 Language options 13

4 Changes in Babel version 3.6 8 12 The Kernel of Babel 16

12.1 Encoding issues (part 1) . 17

5 Changes in Babel version 3.5 8 12.2 Multiple languages 18

12.3 Support for active char-

6 The interface between the acters 30
core of babel and the lan- 12.4 Shorthands 31
guage definition ﬁl'es 9 12.5 Language attributes . . . 40
6.1 Support for active char- s

ters 10 12.6 Support for saving macro
6.9 gc ers t. f. T definitions 42
: upport for saving macro e o
definitions 11 12.7 Support for extending
. . MAaCrosS v o . .. 43
6.3 Support for extending
X 12.8 Macros common to a
macros« 11

6.4 Macros common to a number of languages . . . 43

number of languages . . . 11 12.9 Making glyphs available . 44

12.10Quotation marks 44
7 Compatibility with german.sty 12 12.11Letters 45

*During the development ideas from Nico Poppelier, Piet van Oostrum and many others have
been used. Bernd Raichle has provided many helpful suggestions.

12.12Shorthands for quotation
marks

12.13Umlauts and trema’s . . .

12.14The redefinition of the
style commands
12.14.1 Redefinition of

macros

12.15Cross referencing macros .
12.16marks
12.17Encoding issues (part 2) .

12.18Preventing clashes with
other packages

12.18.1ifthen
12.18.2varioref
12.18.3hhline
12.18.4 General

13 Local Language Configura-

tion

14 Driver files for the docu-

mented source code
15 Conclusion
16 Acknowledgements
17 References

18 The Esperanto language

19 The Interlingua language

20 The Dutch language
21 The English language

22 The German language

23 The German language — new

orthography
24 The Breton language
25 The Welsh language
26 The Irish language
27 The Scottish language

28 The Greek language

28.1 Typing conventions

28.2 Greek numbering

29 The French language

30 TEXnical details 110
46 30.1 Initial setup 110
47 30.2 Caption names 112
30.3 Punctuation 114
48 30.4 French quotation marks . 115
30.5 French lists 117
49 30.6 French indentation of
59 sections 119
30.7 Formatting footnotes . . . 120
56 30.8 Formatting numbers . . . 121
57 30.9 Dots... 123
30.10Global layout 124
57 30.11Extra utilities 124
57 30.12Date and clean up . 127
58
58 31 The Italian language 129
31.1 Support for etymological
59 hyphenation 131
31.2 Facilities required by the
ISO 31/XI regulations . . 133
59 31.3 Accents 134
31.4 Caporali or French dou-
ble quotes 134
60 31.5 Finishing commands . . . 137
31.6 References 137
64
32 The Latin language 138
64
33 Latin shortcuts 141
64
34 Etymological hyphenation 143
65 35 The Portuguese language 145
68 36 The Spanish language 149
36.1 The Code 150
70
37 The Catalan language 168
74
38 The Galician language 175
8 39 The Basque language 179
82 40 The Romanian language 182
41 The Danish language 184
85
42 The Icelandic language 186
88 42.1 Overview 186
42.2 References 186
90 42.3 TpXnical details. 187
42.4 Captionnames and date . 188
92 42.5 Icelandic quotation marks 189
42.6 Old Icelandic 189
94 42.7 Formatting numbers . . . 190
42.8 Extra utilities 192
94
94 43 The Norwegian language 194
102 44 The Swedish language 198

45 The North Sami language
45.1 The code of samin.dtx

46 The Finnish language
47 The Hungarian language

48 The Estonian language
48.1 Implementation

49 The Albanian language
50 The Croatian language
51 The Czech language

52 The Polish language

202

. 202

204

207

222
222

226

229

231

233

53 The Serbocroatian language238

62.4.11 Bibliography and
citations
62.4.12 Additional bidi-

rectional commands317

54 The Slovak language 241
55 The Slovenian language 245
56 The Russian language 247
57 The Bulgarian language 259
58 The Ukrainian language 270
59 The Lower Sorbian lan-
guage 282
60 The Upper Sorbian lan-
guage 284
61 The Turkish language 287
62 The Hebrew language 290
62.1 Acknowledgement 290
62.2 The DOCSTRIP modules . 290
62.3 Hebrew language defini-
tions 291
62.3.1 Hebrew numerals . 294
62.4 Right to left support . . . 300
62.4.1 Switching from
LR to RL mode
and back 300
62.4.2 Counters 303
62.4.3 Preserving logos . 304
62.4.4 List environments 304
62.4.5 Tables of moving
stuff 305
62.4.6 Two-column mode 309
62.4.7 Footnotes 310
62.4.8 Headings and

two-side support . 310
62.4.9 Postscript Porblems313
62.4.10 Miscellaneous in-

ternal INTEX macros314

62.5 Hebrew calendar 318
62.5.1 Introduction . . . 319
62.5.2 Registers, Com-

mands, Format-
ting Macros 319
62.5.3 Auxiliary Macros . 321
62.5.4 Gregorian Part . . 322
62.5.5 Hebrew Part . 323
63 Hebrew input encodings 327

63.1 Default definitions for
characters 328

63.2 The SI-960 encoding . . . 329

63.3 The ISO 8859-8 encod-
ing and the MS Windows
cpl255 encoding 329

63.4 The IBM code page 862 . 331

64 Hebrew font encodings 333

64.1 THIS SECTION IS OUT
OF DATE. UPDATE
DOCS TO MATCH HES
ENCODING 333

64.2 The DOCSTRIP modules . 334

64.3 The LHEencoding defini-
tion file 334

64.4 The font definition files
(in LHE encoding) 336
64.4.1 Hebrew default font336
64.4.2 Hebrew sans-serif

font 336
64.4.3 Hebrew type-
writer font .. 337
64.4.4 Hebrew classic font 337
64.4.5 Hebrew shalom
fonts 338
64.4.6 Hebrew frank-
ruehl font 338
64.4.7 Hebrew carmel font 339
64.4.8 Hebrew redis font . 339

64.5 The HE8encoding defini-
tion file 340
64.5.1 CHECK HERE

FOR HER UP-
DATES 340

64.6 The font definition files

(in HE8 encoding) 342

64.6.1 Hebrew default font342
64.6.2 Hebrew sans-serif
font 342
64.6.3 Hebrew type-
writer font 343
64.6.4 8Bit OmegaHe-
brew font 343

\selectlanguage

otherlanguage

\foreignlanguage

otherlanguagex*

hyphenrules

\languagename

\iflanguage

\useshorthands

\defineshorthand

\aliasshorthand

64.6.5 8Bit Aharoni font 343 65 Hebrew in BTEX 2.09 com-

64.6.6 8Bit David font . . 344 patibility mode 348

64.6.7 8Bit Drugulin font 344 65.1 The DOCSTRIP .modules . 348

64.6.8 8Bit Ellinia font . 344 65.2 Obsolete style files 348

64.6.9 8Bit FrankRuehl 66 The Bahasa Indonesian lan-
font 344 guage 350

64.6.10 8Bit KtavYad font 345

64.6.11 SBit Miri- 67 The Bahasa Malaysia lan-
amMono font . . . 345 guage 352

64.6.12 8Bit Nachlieli font 345 68 Not renaming hyphen.tex 354

64.6.13 Hebrew font
switching com- 69 Support for formats based
mands 345 on PLAINTEX 355

1 The user interface

The user interface of this package is quite simple. It consists of a set of commands
that switch from one language to another, and a set of commands that deal with
shorthands. It is also possible to find out what the current language is.

When a user wants to switch from one language to another he can do so using
the macro \selectlanguage. This macro takes the language, defined previously
by a language definition file, as its argument. It calls several macros that should
be defined in the language definition files to activate the special definitions for the
language chosen.

The environment otherlanguage does basically the same as \selectlanguage,
except the language change is local to the environment. This environment is re-
quired for intermixing left-to-right typesetting with right-to-left typesetting. The
language to switch to is specified as an argument to \begin{otherlanguage}.

The command \foreignlanguage takes two arguments; the second argument
is a phrase to be typeset according to the rules of the language named in its first
argument. This command only switches the extra definitions and the hyphenation
rules for the language, not the names and dates.

In the environment otherlanguage* only the typesetting is done according to
the rules of the other language, but the text-strings such as ‘figure’; ‘table’; etc.
are left as they were set outside this environment.

The environment hyphenrules can be used to select only the hyphenation
rules to be used. This can for instance be used to select ‘nohyphenation’, pro-
vided that in language.dat the ‘language’ nohyphenation is defined by loading
serohyph.tex.

The control sequence \languagename contains the name of the current lan-
guage.

If more than one language is used, it might be necessary to know which lan-
guage is active at a specific time. This can be checked by a call to \iflanguage.
This macro takes three arguments. The first argument is the name of a language;
the second and third arguments are the actions to take if the result of the test is
true or false respectively.

The command \useshorthands initiates the definition of user-defined short-
hand sequences. It has one argument, the character that starts these personal
shorthands.

The command \defineshorthand takes two arguments: the first is a one-
or two-character shorthand sequence, and the second is the code the shorthand
should expand to.

The command \aliasshorthand can be used to let another character perform
the same functions as the default shorthand character. If one prefers for example to
use the character / over " in typing polish texts, this can be achieved by entering

\languageshorthands

\shorthandon
\shorthandoff

\languageattribute

\aliasshorthand{"}{/}. Please note that the substitute shorthand character
must have been declared in the preamble of your document, using a command
such as \useshorthands{/} in this example.

The command \languageshorthands can be used to switch the shorthands on
the language level. It takes one argument, the name of a language. Note that for
this to work the language should have been specified as an option when loading
the babel package.

It is sometimes necessary to switch a shorthand character off temporarily, be-
cause it must be used in an entirely different way. For this purpose, the user
commands \shorthandoff and \shorthandon are provided. They each take a
list of characters as their arguments. The command \shorthandoff sets the
\catcode for each of the characters in its argument to other (12); the command
\shorthandon sets the \catcode to active (13). Both commands only work on
‘known’ shorthand characters. If a character is not known to be a shorthand
character its category code will be left unchanged.

This is a user-level command, to be used in the preamble of a document (after
\usepackagel[...]{babel}), that declares which attributes are to be used for a
given language. It takes two arguments: the first is the name of the language;
the second, a (list of) attribute(s) to used. The command checks whether the
language is known in this document and whether the attribute(s) are known for
this language.

1.1 Languages supported by Babel

In the following table all the languages supported by Babel are listed, together
with the names of the options with which you can load babel for each language.

Language Option(s)

Afrikaans afrikaans

Bahasa bahasa

Basque basque

Breton breton

Bulgarian bulgarian

Catalan catalan

Croatian croatian

Czech czech

Danish danish

Dutch dutch

English english, USenglish, american, UKenglish, british,
canadian, australian, newzealand

Esperanto esperanto

Estonian estonian

Finnish finnish

French french, francais, canadien, acadian

Galician galician

German austrian, german, germanb, ngerman, naustrian

Greek greek, polutonikogreek

Hebrew hebrew

Hungarian magyar, hungarian

Icelandic icelandic

Interlingua interlingua

Irish Gaelic irish

Ttalian italian

Latin latin

Lower Sorbian lowersorbian

North Sami samin

Language Option(s)

Norwegian norsk, nynorsk
Polish polish
Portuguese portuges, portuguese, brazilian, brazil
Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

For some languages babel supports the options activeacute and activegrave; for
typestting Russian texts, babel knows about the options LWN and LCY to specify
the fontencoding of the cyrillic font used. Currently only LWN is supported.

1.2 Workarounds

If you use the document class book and you use \ref inside the argument of
\chapter, I/ TEX will keep complaining about an undefined label. The reason is
that the argument of \ref is passed through \uppercase at some time during
processing. To prevent such problems, you could revert to using uppercase labels,
or you can use \lowercase{\ref{foo}} inside the argument of \chapter.

2 Changes for BTEX 2¢

With the advent of ITEX 2¢ the interface to babel in the preamble of the document
has changed. With KTEX2.09 one used to call up the babel system with a line
such as:

\documentstyle[dutch,english]{article}

which would tell XTEX that the document would be written in two languages,
Dutch and English, and that English would be the first language in use.
The IMTEX 2¢ way of providing the same information is:

\documentclass{article}
\usepackage [dutch,english] {babel}

or, making dutch and english global options in order to let other packages detect
and use them:

\documentclass[dutch,english]{article}
\usepackage{babel}

\usepackage{varioref}

In this last example, the package varioref will also see the options and will
be able to use them.

3 Changes in Babel version 3.7

In Babel version 3.7 a number of bugs that were found in version 3.6 are fixed.
Also a number of changes and additions have occurred:

Shorthands are expandable again. The disadvantage is that one has to type
>{}a when the acute accent is used as a shorthand character. The advantage
is that a number of other problems (such as the breaking of ligatures, etc.)
have vanished.

Two new commands, \shorthandon and \shorthandoff have been intro-
duced to enable to temporarily switch off one or more shorthands.

Support for typesetting Greek has been enhanced. Code from the kdgreek
package (suggested by the author) was added and \greeknumeral has been
added.

Support for typesetting Basque is now available thanks to Juan Aguirre-
gabiria.

Support for typesetting Serbian with Latin script is now available thanks to
Dejan Muhamedagi¢ and Jankovic Slobodan.

Support for typesetting Hebrew (and potential support for typesetting other
right-to-left written languages) is now available thanks to Rama Porrat and
Boris Lavva.

Support for typesetting Bulgarian is now available thanks to Georgi Bosh-
nakov.

Support for typesetting Latin is now available, thanks to Claudio Beccari
and Krzysztof Konrad Zelechowski.

Support for typesetting North Sami is now available, thanks to Regnor
Jernsletten.

The options canadian, canadien and acadien have been added for Canadian
English and French use.

A language attribute has been added to the \mark. .. commands in order to
make sure that a Greek header line comes out right on the last page before
a language switch.

Hyphenation pattern files are now read inside a group; therefore any changes
a pattern file needs to make to lowercase codes, uppercase codes, and cate-
gory codes are kept local to that group. If they are needed for the language,
these changes will need to be repeated and stored in \extras. ..

The concept of language attributes is introduced. It is intended to give the
user some control over the features a language-definition file provides. Its
first use is for the Greek language, where the user can choose the ToAvTovké
(“Polutoniko” or multi-accented) Greek way of typesetting texts. These at-
tributes will possibly find wider use in future releases.

The environment hyphenrules is introduced.

The syntax of the file language . dat has been extended to allow (optionally)
specifying the font encoding to be used while processing the patterns file.

The command \providehyphenmins should now be used in language defi-
nition files in order to be able to keep any settings provided by the pattern
file.

4 Changes in Babel version 3.6

In Babel version 3.6 a number of bugs that were found in version 3.5 are fixed.
Also a number of changes and additions have occurred:

e A new environment otherlanguage* is introduced. it only switches the ‘spe-
cials’, but leaves the ‘captions’ untouched.

e The shorthands are no longer fully expandable. Some problems could only be
solved by peeking at the token following an active character. The advantage
is that ’{}a works as expected for languages that have the > active.

e Support for typesetting french texts is much enhanced; the file francais.1df
is now replaced by frenchb.1ldf which is maintained by Daniel Flipo.

e Support for typesetting the russian language is again available. The lan-
guage definition file was originally developed by Olga Lapko from CyrTUG.
The fonts needed to typeset the russian language are now part of the babel
distribution. The support is not yet up to the level which is needed according
to Olga, but this is a start.

e Support for typesetting greek texts is now also available. What is offered
in this release is a first attempt; it will be enhanced later on by Yannis
Haralambous.

e in babel 3.6j some hooks have been added for the development of support
for Hebrew typesetting.

e Support for typesetting texts in Afrikaans (a variant of Dutch, spoken in
South Africa) has been added to dutch.1df.

e Support for typesetting Welsh texts is now available.

e A new command \aliasshorthand is introduced. It seems that in Poland
various conventions are used to type the necessary Polish letters. It is now
possible to use the character / as a shorthand character instead of the char-
acter ", by issuing the command \aliasshorthand{"}{/}.

e The shorthand mechanism now deals correctly with characters that are al-
ready active.

e Shorthand characters are made active at \begin{document}, not earlier.
This is to prevent problems with other packages.

e A preambleonly command \substitutefontfamily has been added to cre-
ate .fd files on the fly when the font families of the Latin text differ from
the families used for the Cyrillic or Greek parts of the text.

e Three new commands \LdfInit, \1df@quit and \1df@finish are intro-
duced that perform a number of standard tasks.

e In babel 3.6k the language Ukrainian has been added and the support for
Russian typesetting has been adapted to the package ’cyrillic’ to be released
with the December 1998 release of I4TEX 2¢.

5 Changes in Babel version 3.5

In Babel version 3.5 a lot of changes have been made when compared with the
previous release. Here is a list of the most important ones:

e the selection of the language is delayed until \begin{document}, which
means you must add appropriate \selectlanguage commands if you in-
clude \hyphenation lists in the preamble of your document.

e babel now has a language environment and a new command \foreignlanguage;

e the way active characters are dealt with is completely changed. They are
called ‘shorthands’; one can have three levels of shorthands: on the user
level, the language level, and on ‘system level’. A consequence of the new
way of handling active characters is that they are now written to auxiliary
files ‘verbatim’;

e A language change now also writes information in the .aux file, as the change
might also affect typesetting the table of contents. The consequence is that
an .aux file generated by a LaTeX format with babel preloaded gives errors
when read with a LaTeX format without babel; but I think this probably
doesn’t occur;

e babel is now compatible with the inputenc and fontenc packages;
e the language definition files now have a new extension, 1df;

e the syntax of the file language.dat is extended to be compatible with the
french package by Bernard Gaulle;

e each language definition file looks for a configuration file which has the same
name, but the extension .cfg. It can contain any valid M TEX code.

6 The interface between the core of babel and the
language definition files

In the core of the babel system, several macros are defined for use in language
definition files. Their purpose is to make a new language known.

\addlanguage The macro \addlanguage is a non-outer version of the macro \newlanguage,
defined in plain.tex version 3.x. For older versions of plain.tex and 1lplain.tex
a substitute definition is used.

\adddialect The macro \adddialect can be used when two languages can (or must) use
the same hyphenation patterns. This can also be useful for languages for which
no patterns are preloaded in the format. In such cases the default behaviour of
the babel system is to define this language as a ‘dialect’ of the language for which
the patterns were loaded as \languageO.

The language definition files must conform to a number of conventions, because
these files have to fill in the gaps left by the common code in babel.def, i.e.,
the definitions of the macros that produce texts. Also the language-switching
possibility which has been built into the babel system has its implications.

The following assumptions are made:

e Some of the language-specific definitions might be used by plain TEX users,
so the files have to be coded so that they can be read by both KTEX and
plain TEX. The current format can be checked by looking at the value of
the macro \fmtname.

e The common part of the babel system redefines a number of macros and
environments (defined previously in the document style) to put in the names
of macros that replace the previously hard-wired texts. These macros have
to be defined in the language definition files.

e The language definition files define five macros, used to activate and deacti-
vate the language-specific definitions. These macros are \(lang)hyphenmins,
\captions(lang), \date(lang), \extras(lang) and \noextras(lang); where
(lang) is either the name of the language definition file or the name of the
ITEX option that is to be used. These macros and their functions are dis-
cussed below.

\providehyphenmins

\langhyphenmins
\captionslang

\datelang
\extraslang

\noextraslang

\bbl@declare@ttribute

\main@language

\ProvidesLanguage

\LdfInit

\1ldf@quit

\1ldf@finish

\loadlocalcfg

\substitutefontfamily

\initiate@active@char

e When a language definition file is loaded, it can define \1@{lang) to be a
dialect of \languageO when \1@(lang) is undefined.

e The language definition files can be read in the preamble of the document,
but also in the middle of document processing. This means that they have
to function independently of the current \catcode of the @ sign.

The macro \providehyphenmins should be used in the language definition files
to set the \lefthyphenmin and \righthyphenmin. This macro will check whether
these parameters were provided by the hyphenation file before it takes any action.

The macro \(lang)hyphenmins is used to store the values of the \lefthyphenmin
and \righthyphenmin.

The macro \captions(lang) defines the macros that hold the texts to replace
the original hard-wired texts.

The macro \date(lang) defines \today and

The macro \extras(lang) contains all the extra definitions needed for a specific
language.

Because we want to let the user switch between languages, but we do not know
what state TEX might be in after the execution of \extras(lang), a macro that
brings TEX into a predefined state is needed. It will be no surprise that the name
of this macro is \noextras(lang).

This is a command to be used in the language definition files for declaring
a language attribute. It takes three arguments: the name of the language, the
attribute to be defined, and the code to be executed when the attribute is to be
used.

To postpone the activation of the definitions needed for a language until the
beginning of a document, all language definition files should use \main@language
instead of \selectlanguage. This will just store the name of the language, and
the proper language will be activated at the start of the document.

The macro \ProvidesLanguage should be used to identify the language
definition files. Its syntax is similar to the syntax of the KTEX command
\ProvidesPackage.

The macro \LdfInit performs a couple of standard checks that must be made
at the beginning of a language definition file, such as checking the category code
of the @Q-sign, preventing the .1df file from being processed twice, etc.

The macro \1df@quit does work needed if a .1df file was processed earlier.
This includes resetting the category code of the @Q-sign, preparing the language to
be activated at \begin{document} time, and ending the input stream.

The macro \1df@finish does work needed at the end of each .1df file. This
includes resetting the category code of the @-sign, loading a local configuration
file, and preparing the language to be activated at \begin{document} time.

After processing a language definition file, IATEX can be instructed to load
a local configuration file. This file can, for instance, be used to add strings to
\captions(lang) to support local document classes. The user will be informed
that this configuration file has been loaded. This macro is called by \1df@finish.

This command takes three arguments, a font encoding and two font family
names. It creates a font description file for the first font in the given encoding.
This . £d file will instruct IXTEX to use a font from the second family when a font
from the first family in the given encoding seems to be needed.

6.1 Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files
to instruct ITEX to give a character the category code ‘active’. When a character
has been made active it will remain that way until the end of the document. Its
definition may vary.

10

\bbl@activate
\bbl@deactivate

\declare@shorthand

\bbl@add@special
\bbl@remove@special

\babel@save

\babel@savevariable

\addto

\allowhyphens

\set@low@box

\save@sf@q

\bbl@frenchspacing
\bbl@nonfrenchspacing

The command \bbl@activate is used to change the way an active character
expands. \bbl@activate ‘switches on’ the active behaviour of the character.
\bbl@deactivate lets the active character expand to its former (mostly) non-
active self.

The macro \declare@shorthand is used to define the various shorthands. It
takes three arguments: the name for the collection of shorthands this definition
belongs to; the character (sequence) that makes up the shorthand, i.e. ~ or "a;
and the code to be executed when the shorthand is encountered.

The TEXbook states: “Plain TEX includes a macro called \dospecials that
is essentially a set macro, representing the set of all characters that have a spe-
cial category code.” [l, p. 380] It is used to set text ‘verbatim’. To make this
work if more characters get a special category code, you have to add this char-
acter to the macro \dospecial. IXTEX adds another macro called \@sanitize
representing the same character set, but without the curly braces. The macros
\bbl@add@special(char) and \bbl@remove@special(char) add and remove the
character (char) to these two sets.

6.2 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefor
a mechanism for saving (and restoring) the original definition of those macros is
provided. We provide two macros for this'.

To save the current meaning of any control sequence, the macro \babel@save
is provided. It takes one argument, (csname), the control sequence for which the
meaning has to be saved.

A second macro is provided to save the current value of a variable. In this
context, anything that is allowed after the \the primitive is considered to be a
variable. The macro takes one argument, the (variable).

The effect of the preceding macros is to append a piece of code to the current
definition of \originalTeX. When \originalTeX is expanded, this code restores
the previous definition of the control sequence or the previous value of the variable.

6.3 Support for extending macros

The macro \addto{(control sequence)}{(TEX code)} can be used to extend the
definition of a macro. The macro need not be defined. This macro can, for
instance, be used in adding instructions to a macro like \extrasenglish.

6.4 Macros common to a number of languages

In a couple of European languages compound words are used. This means that
when TEX has to hyphenate such a compound word, it only does so at the ‘-’ that
is used in such words. To allow hyphenation in the rest of such a compound word,
the macro \allowhyphens can be used.

For some languages, quotes need to be lowered to the baseline. For this pur-
pose the macro \set@low@box is available. It takes one argument and puts that
argument in an \hbox, at the baseline. The result is available in \box0 for further
processing.

Sometimes it is necessary to preserve the \spacefactor. For this purpose
the macro \save@sf@q is available. It takes one argument, saves the current
spacefactor, executes the argument, and restores the spacefactor.

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be
used to properly switch French spacing on and off.

1This mechanism was introduced by Bernd Raichle.

11

\ProvidesLanguage

7 Compatibility with german.sty

The file german. sty has been one of the sources of inspiration for the babel sys-
tem. Because of this I wanted to include german.sty in the babel system. To
be able to do that I had to allow for one incompatibility: in the definition of the
macro \selectlanguage in german.sty the argument is used as the (number)
for an \ifcase. So in this case a call to \selectlanguage might look like
\selectlanguage{\german}.

In the definition of the macro \selectlanguage in babel.def the argument
is used as a part of other macronames, so a call to \selectlanguage now looks
like \selectlanguage{german}. Notice the absence of the escape character. As
of version 3.1a of babel both syntaxes are allowed.

All other features of the original german. sty have been copied into a new file,
called germanb.sty?.

Although the babel system was developed to be used with I¥TEX, some of the
features implemented in the language definition files might be needed by plain
TEX users. Care has been taken that all files in the system can be processed by

plain TEX.

8 Compatibility with ngerman.sty

When used with the options ngerman or naustrian, babel will provide all features of
the package ngerman. There is however one exception: The commands for special
hyphenation of double consonants ("ff etc.) and ck ("ck), which are no longer
required with the new German orthography, are undefined. With the ngerman
package, however, these commands will generate appropriate warning messages
only.

9 Compatibility with the french package

It has been reported to me that the package french by Bernard Gaulle
(gaulle@idris.fr) works together with babel. On the other hand, it seems not
to work well together with a lot of other packages. Therefore I have decided to no
longer load french.1df by default. Instead, when you want to use the package by
Bernard Gaulle, you will have to request it specifically, by passing either frenchle
or frenchpro as an option to babel.

10 Identification

The file babel.sty® is meant for WIEX 2¢, therefor we make sure that the format
file used is the right one.

The identification code for each file is something that was introduced in BTEX 2¢.
When the command \ProvidesFile does not exist, a dummy definition is
provided temporarily. For use in the language definition file the command
\ProvidesLanguage is defined by babel.

10.1 (x!package)

10.2 \ifx\ProvidesFile\@undefined

10.3 \def\ProvidesFile#1[#2 #3 #41{%

10.4 \wlog{File: #1 #4 #3 <#2>}J

10.5 (xkernel & patterns)

10.6 \toks8{Babel <#3> and hyphenation patterns for }J,

10.7 (/kernel & patterns)

2The ‘b’ is added to the name to distinguish the file from Partls’ file.
3The file described in this section is called babel.dtx, has version number v3.8h and was last
revised on 2005/11/23.

12

10.8 \let\ProvidesFile\@undefined

10.9 }

As an alternative for \ProvidesFile we define \ProvidesLanguage here to be
used in the language definition files.

10.10 (xkernel)
10.11 \def\ProvidesLanguage#1[#2 #3 #4]{),

10.12 \wlog{Language: #1 #4 #3 <#2>}),
10.13 }
10.14 \else

In this case we save the original definition of \ProvidesFile in \bbl@tempa and
restore it after we have stored the version of the file in \toks8.

10.15 (xkernel & patterns)

10.16 \let\bbl@tempa\ProvidesFile

10.17 \def\ProvidesFile#1[#2 #3 #41{J,

10.18 \toks8{Babel <#3> and hyphenation patterns for }J,
10.19 \bbl@tempa#1[#2 #3 #4]},
10.20 \let\ProvidesFile\bbl@tempa}

10.21 (/kernel & patterns)
When \ProvidesFile is defined we give \ProvidesLanguage a similar definition.
10.22 \def\ProvidesLanguage#1{},

10.23 \begingroup

10.24 \catcode‘\ 10 7

10.25 \@makeother\/}

10.26 \@ifnextchar([}]

10.27 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}
10.28 \def\@provideslanguage#1 [#2]{},

10.29 \wlog{Language: #1 #2}J

10.30 \expandafter\xdef\csname ver@#1.1df\endcsname{#2}7,
10.31 \endgroup}

10.32 (/kernel)

10.33 \fi

10.34 (/!package)

Identify each file that is produced from this source file.

10.35
10.36
10.37
10.38

+package)\ProvidesPackage{babel}
+core)\ProvidesFile{babel.def}

+kernel & patterns)\ProvidesFile{hyphen.cfg}
+kernel&!patterns)\ProvidesFile{switch.def}
10.39 (-+driver&!user)\ProvidesFile{babel.drv}

10.40 (+driver & user)\ProvidesFile{user.drv}

10.41 [2005/11/23 v3.8h ¥

10.42 (+package) The Babel packagel

10.43 (+-core) Babel common definitions]
10.44 (+kernel) Babel language switching mechanism]
10.45 (+driver)]

o~~~ o~~~

11 The Package File

In order to make use of the features of IATEX 2¢, the babel system contains a
package file, babel.sty. This file is loaded by the \usepackage command and
defines all the language options known in the babel system. It also takes care of a
number of compatibility issues with other packages.

11.1 Language options

11.1 (xpackage)
11.2 \ifx\LdfInit\@undefined\input babel.def\relax\fi

For all the languages supported we need to declare an option.
11.3 \DeclareOption{acadian}{\input{frenchb.1df}}

13

11.4 \DeclareOption{albanian}{\input{albanian.1df}}
11.5 \DeclareOption{afrikaans}{\input{dutch.1df}}
11.6 \DeclareOption{american}{\input{english.1df}}
11.7 \DeclareOption{australian}{\input{english.1df}}

Austrian is really a dialect of German.
11.8 \DeclareOption{austrian}{\input{germanb.1df}}

11.9 \DeclareOption{bahasa}{\input{bahasai.ldf}}

.10 \DeclareOption{indonesian}{\input{bahasai.1ldf}}
.11 \DeclareOption{indon}{\input{bahasai.ldf}}

.12 \DeclareOption{bahasai}{\input{bahasai.ldf}}
.13 \DeclareOption{malay}{\input{bahasam.1df}}

.14 \DeclareOption{meyalu}{\input{bahasam.1df}}

.15 \DeclareOption{bahasam}{\input{bahasam.1df}}
.16 \DeclareOption{basque}{\input{basque.1df}}

.17 \DeclareOption{brazil}{\input{portuges.1df}}

1
1
1
1
1
1
1
1

e e e e

1
1

—

.18 \DeclareOption{brazilian}{\input{portuges.1df}}
.19 \DeclareOption{breton}{\input{breton.1df}}

[,

11.20 \DeclareOption{british}{\input{english.1df}}
11.21 \DeclareOption{bulgarian}{\input{bulgarian.1ldf}}
11.22 \DeclareOption{canadian}{\input{english.1df}}
11.23 \DeclareOption{canadien}{\input{frenchb.1df}}
11.24 \DeclareOption{catalan}{\input{catalan.1df}}
11.25 \DeclareOption{croatian}{\input{croatian.1df}}
11.26 \DeclareOption{czech}{\input{czech.1df}}

11.27 \DeclareOption{danish}{\input{danish.1df}}

11.28 \DeclareOption{dutch}{\input{dutch.1df}}

11.29 \DeclareOption{english}{\input{english.1df}}
11.30 \DeclareOption{esperanto}{\input{esperanto.1df}}
11.31 \DeclareOption{estonian}{\input{estonian.1df}}
11.32 \DeclareOption{finnish}{\input{finnish.1df}}

The babel support or French used to be stored in francais.ldf; therefor the
¥TEX2.09 option used to be francais. The hyphenation patterns may be loaded as
either ‘french’ or as ‘francais’.

11.33 \DeclareOption{francais}{\input{frenchb.1df}}

11.34 \DeclareOption{frenchb}{\input{frenchb.1df}}

With KTEX 2 we can now also use the option french and still call the file
frenchb.1df.

11.35 \DeclareOption{french}{\input{frenchb.1df}}},

11.36 \DeclareOption{galician}{\input{galician.1df}}

11.37 \DeclareOption{german}{\input{germanb.1df}}

11.38 \DeclareOption{germanb}{\input{germanb.1df}}

11.39 \DeclareOption{greek}{\input{greek.1df}}
11.40 \DeclareOption{polutonikogreek}{%

11.41 \input{greek.1ldf}},

11.42 \languageattribute{greek}{polutonikol}}

11.43 \DeclareOption{hebrew}{%
11.44 \input{rlbabel.defl}V,
11.45 \input{hebrew.ldf}}

hungarian is just a synonym for magyar
11.46 \DeclareOption{hungarian}{\input{magyar.1df}}
11.47 \DeclareOption{icelandic}{\input{icelandic.1df}}
11.48 \DeclareOption{interlingua}{\input{interlingua.ldf}}
11.49 \DeclareOption{irish}{\input{irish.1df}}
11.50 \DeclareOption{italian}{\input{italian.1df}}
11.51 \DeclareOption{latin}{\input{latin.1df}}
11.52 \DeclareOption{lowersorbian}{\input{lsorbian.1df}}
11.53 %~ ~A\DeclareOption{kannada}{\input{kannada.1ldf}}
11.54 \DeclareOption{magyar}{\input{magyar.1df}}

14

11.55 %~ ~A\DeclareOption{nagari}{\input{nagari.1ldf}}

‘New’ German orthography, including Austrian variant:
11.56 \DeclareOption{naustrian}{\input{ngermanb.1df}}
11.57 \DeclareOption{newzealand}{\input{english.1df}}
11.58 \DeclareOption{ngerman}{\input{ngermanb.1df}}
11.59 \DeclareOption{norsk}{\input{norsk.1df}}

11.60 \DeclareOption{samin}{\input{samin.1df}}

For Norwegian two spelling variants are provided.
11.61 \DeclareOption{nynorsk}{\input{norsk.1df}}
11.62 \DeclareOption{polish}{\input{polish.1df}}
11.63 \DeclareOption{portuges}{\input{portuges.1df}}
11.64 \DeclareOption{portuguese}{\input{portuges.1ldf}}
11.65 \DeclareOption{romanian}{\input{romanian.1df}}
11.66 \DeclareOption{russian}{\input{russianb.1df}}

11.67 %~ ~A\DeclareOption{sanskrit}{\input{sanskrit.1df}}
11.68 \DeclareOption{scottish}{\input{scottish.1df}}
11.69 \DeclareOption{serbian}{\input{serbian.1df}}

11.70 \DeclareOption{slovak}{\input{slovak.1ldf}}

11.71 \DeclareOption{slovene}{\input{slovene.ldf}}

11.72 \DeclareOption{spanish}{\input{spanish.1df}}

11.73 \DeclareOption{swedish}{\input{swedish.1df}}

11.74 %~ ~A\DeclareOption{tamil}{\input{tamil.1ldf}}

11.75 \DeclareOption{turkish}{\input{turkish.1df}}

11.76 \DeclareOption{ukrainian}{\input{ukraineb.1ldf}}
11.77 \DeclareOption{uppersorbian}{\input{usorbian.1df}}
11.78 \DeclareOption{welsh}{\input{welsh.1df}}

11.79 \DeclareOption{UKenglish}{\input{english.1df}}
11.80 \DeclareOption{USenglish}{\input{english.1df}}

For all those languages for which the option name is the same as the name of
the language specific file we specify a default option, which tries to load the file
specified. If this doesn’t succeed an error is signalled.

11.81 \DeclareOption*{%
11.82 \InputIfFileExists{\CurrentOption.ldf}{}{%

11.83 \PackageError{babel}{/,

11.84 Language definition file \CurrentOption.ldf not found}{%
11.85 Maybe you misspelled the language option?}}%

11.86 }

Another way to extend the list of ‘known’ options for babel is to create the file
bblopts.cfg in which one can add option declarations.

11.87 \InputIfFileExists{bblopts.cfg}{%
11.88 \typeout{Hikskskskskskskskokkokkokskkokkokkokokokok ok ok ok ok ok ko ok ook =~ JY)

11.89 * Local config file bblopts.cfg used~"J%
11.90 *}%
1191 H?}

Apart from all the language options we also have a few options that influence
the behaviour of language definition files.

The following options don’t do anything themselves, they are just defined in
order to make it possible for language definition files to check if one of them was
specified by the user.

11.92 \DeclareOption{activeacute}{}
11.93 \DeclareOption{activegrave}{}

The next option tells babel to leave shorthand characters active at the end of
processing the package. This is not the default as it can cause problems with
other packages, but for those who want to use the shorthand characters in the
preamble of their documents this can help.

11.94 \DeclareOption{KeepShorthandsActive}{}

The options have to be processed in the order in which the user specified them:
11.95 \ProcessOptions*

15

In order to catch the case where the user forgot to specify a language we check
whether \bbl@main@language, has become defined. If not, no language has been
loaded and an error message is displayed.

11.96 \ifx\bbl@main@language\@undefined

11.97
11.98
11.99
11.100
11.101
11.102
11.103

\PackageError{babell}{},

You haven’t specified a language option}{%

You need to specify a language, either as a global
option\MessageBreak

or as an optional argument to the \string\usepackage\space
command; \MessageBreak

You shouldn’t try to proceed from here, type x to quit.}

To prevent undefined command errors when the user insists on continuing we load
babel.def here. He should expect more errors though.

11.104

\input{babel.def}
11.105 \fi

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first
argument is an encoding mnemonic, the second and third arguments are font
family names.

11.106 \def\substitutefontfamily#1#2#3{}%

11.107
11.108
11.109
11.110
11.111
11.112
11.113
11.114
11.115
11.116
11.117
11.118
11.119
11.120
11.121
11.122
11.123

\lowercase{\immediate\openout15=#1#2.fd\relax}/,
\immediate\write15{%

\string\ProvidesFile{#1#2.£d}},

[\the\year/\two@digits{\the\month}/\two@digits{\the\day}

\space generated font description file]~~J
\string\DeclareFontFamily{#1}{#2}{}~~J
\string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}~"J
\string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}~"J
\string\DeclareFontShape{#1}{#2}m}{s1}{<->ssub * #3/m/s1}{}~"J
\string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}~~J
\string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}~~J
\string\DeclareFontShape{#1}{#2}b}{it}{<->ssub * #3/bx/it}{}~~J
\string\DeclareFontShape{#1}{#2}{b}{s1}{<->ssub * #3/bx/sl}{}~"J
\string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}{}~"J
Y

\closeouti15

This command should only be used in the preamble of a document.

11.124 \Q@onlypreamble\substitutefontfamily

11.125 (/package)

12 The Kernel of Babel

The kernel of the babel system is stored in either hyphen.cfg or switch.def and
babel.def. The file hyphen.cfg is a file that can be loaded into the format,
which is necessary when you want to be able to switch hyphenation patterns.
The file babel.def contains some TEX code that can be read in at run time.
When babel.def is loaded it checks if hyphen.cfg is in the format; if not the file
switch.def is loaded.

Because plain TEX users might want to use some of the features of the babel
system too, care has to be taken that plain TEX can process the files. For this
reason the current format will have to be checked in a number of places. Some
of the code below is common to plain TEX and I*TEX, some of it is for the ITEX
case only.

When the command \AtBeginDocument doesn’t exist we assume that we are
dealing with a plain-based format. In that case the file plain.def is needed.

12.1 (xkernel | core)
12.2 \ifx\AtBeginDocument\@undefined

16

\latinencoding

\latintext

\textlatin

But we need to use the second part of plain.def (when we load it from
switch.def) which we can do by defining \adddialect.

12.3 (kernel&!patterns) \def\adddialect{}

12.4 \input plain.defl\relax

12.5 \fi

12.6 (/kernel | core)

Check the presence of the command \iflanguage, if it is undefined read the

file switch.def.

12.7 (xcore)

12.8 \ifx\iflanguage\@undefined

12.9 \input switch.def\relax
12.10 \fi
12.11 (/core)

12.1 Encoding issues (part 1)

The first thing we need to do is to determine, at \begin{document}, which latin
fontencoding to use.

When text is being typeset in an encoding other than ‘latin’ (0T1 or T1), it would
be nice to still have Roman numerals come out in the Latin encoding. So we first
assume that the current encoding at the end of processing the package is the Latin
encoding.

12.12 (xcore)

12.13 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}
But this might be overruled with a later loading of the package fontenc. Therefor
we check at the execution of \begin{document} whether it was loaded with the
T1 option. The normal way to do this (using \@ifpackageloaded) is disabled for
this package. Now we have to revert to parsing the internal macro \@filelist
which contains all the filenames loaded.

12.14 \AtBeginDocument{/

12.15 \gdef\latinencoding{0T1}%
12.16 \ifx\cf@encoding\bbl@t@one

12.17 \xdef\latinencoding{\bbl@t@one}/,

12.18 \else

12.19 \@ifl@aded{def}{tlenc}{\xdef\latinencoding{\bbl@t@one}}{}7
12.20 \fi

12.21 }

Then we can define the command \latintext which is a declarative switch to a
latin font-encoding.

12.22 \DeclareRobustCommand{\latintext}{%

12.23 \fontencoding{\latinencoding}\selectfont

12.24 \def\encodingdefault{\latinencoding}}

This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

12.25 \ifx\Qundefined\DeclareTextFontCommand

12.26 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}

12.27 \else

12.28 \DeclareTextFontCommand{\textlatin}{\latintext}

12.29 \fi

12.30 (/core)

We also need to redefine a number of commands to ensure that the right font
encoding is used, but this can’t be done before babel.def is loaded.

17

\language

\last@language

12.2 Multiple languages

With TEX version 3.0 it has become possible to load hyphenation patterns for more
than one language. This means that some extra administration has to be taken
care of. The user has to know for which languages patterns have been loaded, and
what values of \language have been used.

Some discussion has been going on in the TEX world about how to use
\language. Some have suggested to set a fixed standard, i.e., patterns for each
language should always be loaded in the same location. It has also been suggested
to use the 180 list for this purpose. Others have pointed out that the 1SO list
contains more than 256 languages, which have not been numbered consecutively.

I think the best way to use \language, is to use it dynamically. This code
implements an algorithm to do so. It uses an external file in which the person who
maintains a TEX environment has to record for which languages he has hyphen-
ation patterns and in which files these are stored*. When hyphenation exceptions
are stored in a separate file this can be indicated by naming that file after the file
with the hyphenation patterns.

This “configuration file” can contain empty lines and comments, as well as
lines which start with an equals (=) sign. Such a line will instruct IXTEX that the
hyphenation patterns just processed have to be known under an alternative name.
Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch % Nederlands
german hyphen.ger

As the file switch.def needs to be read only once, we check whether it was
read before. If it was, the command \iflanguage is already defined, so we can
stop processing.

12.31 (xkernel)

12.32 (*!patterns)

12.33 \expandafter\ifx\csname iflanguage\endcsname\relax \else
12.34 \expandafter\endinput

12.35 \fi

12.36 (/!patterns)

Plain TEX version 3.0 provides the primitive \language that is used to store
the current language. When used with a pre-3.0 version this function has to be
implemented by allocating a counter.

12.37 \ifx\language\Qundefined

12.38 \csname newcount\endcsname\language

12.39 \fi

Another counter is used to store the last language defined. For pre-3.0 formats an
extra counter has to be allocated,

12.40 \ifx\newlanguage\@undefined

12.41 \csname newcount\endcsname\last@language
plain TEX version 3.0 uses \count 19 for this purpose.

12.42 \else
12.43 \countdef\last@language=19
12.44 \fi

4This is because different operating systems sometimes use very different file-naming conven-
tions.

18

\addlanguage

\adddialect

\iflanguage

\selectlanguage

To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage,
in a pre-3.0 environment a similar macro has to be provided. For both cases a
new macro is defined here, because the original \newlanguage was defined to be
\outer.

For a format based on plain version 2.x, the definition of \newlanguage can
not be copied because \count 19 is used for other purposes in these formats.
Therefor \addlanguage is defined using a definition based on the macros used to
define \newlanguage in plain TEX version 3.0.

12.45 \ifx\newlanguage\Qundefined
12.46 \def\addlanguage#1{J,
12.47 \globalladvance\last@language \G@ne

12.48 \ifnum\last@language<\@cclvi

12.49 \else

12.50 \errmessage{No room for a new \string\language!l}J
12.51 \fi

12.52 \global\chardef#1\last@language

12.53 \wlog{\string#1l = \string\language\the\last@languagel}}

For formats based on plain version 3.0 the definition of \newlanguage can be
simply copied, removing \outer.
12.54 \else

12.55 \def\addlanguage{\alloc@9\language\chardef\@cclvi}
12.56 \fi

The macro \adddialect can be used to add the name of a dialect or variant
language, for which an already defined hyphenation table can be used.
12.57 \def\adddialect#1#2{%

12.58 \global\chardef#1#2\relax
12.59 \wlog{\string#l = a dialect from \string\language#2}}

Users might want to test (in a private package for instance) which language is
currently active. For this we provide a test macro, \iflanguage, that has three
arguments. It checks whether the first argument is a known language. If so, it
compares the first argument with the value of \language. Then, depending on
the result of the comparison, it executes either the second or the third argument.

12.60 \def\iflanguage#1{/,
12.61 \expandafter\ifx\csname 1@#1\endcsname\relax

12.62 \@nolanerr{#1}/,

12.63 \else

12.64 \bbl@afterfi{\ifnum\csname 1@#1\endcsname=\language
12.65 \expandafter\@firstoftwo

12.66 \else

12.67 \expandafter\@secondoftwo

12.68 \fi}}

12.69 \fi}

The macro \selectlanguage checks whether the language is already defined
before it performs its actual task, which is to update \language and activate
language-specific definitions.

To allow the call of \selectlanguage either with a control sequence name or
with a simple string as argument, we have to use a trick to delete the optional
escape character.

To convert a control sequence to a string, we use the \string primitive. Next
we have to look at the first character of this string and compare it with the escape
character. Because this escape character can be changed by setting the internal
integer \escapechar to a character number, we have to compare this number with
the character of the string. To do this we have to use TEX’s backquote notation
to specify the character as a number.

19

\bbl@pop@language

\bbl@language®@stack

\bbl@push@language
\bbl@pop@language

\bbl@pop@lang

If the first character of the \string’ed argument is the current escape char-
acter, the comparison has stripped this character and the rest in the ‘then’ part
consists of the rest of the control sequence name. Otherwise we know that either
the argument is not a control sequence or \escapechar is set to a value outside
of the character range 0-255.

If the user gives an empty argument, we provide a default argument for
\string. This argument should expand to nothing.

12.70 \edef\selectlanguage{’,

12.71 \noexpand\protect

12.72 \expandafter\noexpand\csname selectlanguage \endcsname
12.73 }

Because the command \selectlanguage could be used in a moving argument it
expands to \protect\selectlanguage . Therefor, we have to make sure that a
macro \protect exists. If it doesn’t it is \let to \relax.

12.74 \ifx\@undefined\protect\let\protect\relax\fi

As ITEX 2.09 writes to files expanded whereas INTEX 2¢ takes care not to expand
the arguments of \write statements we need to be a bit clever about the way we
add information to .aux files. Therefor we introduce the macro \xstring which
should expand to the right amount of \string’s.

12.75 \ifx\documentclass\@Qundefined

12.76 \def\xstring{\string\string\string}

12.77 \else

12.78 \let\xstring\string

12.79 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset
table of contents etc. in the correct language environment.

But when the language change happens inside a group the end of the group
doesn’t write anything to the auxiliary files. Therefor we need TEX’s aftergroup
mechanism to help us. The command \aftergroup stores the token immediately
following it to be executed when the current group is closed. So we define a
temporary control sequence \bbl@pop@language to be executed at the end of the
group. It calls \bbl@set@language with the name of the current language as its
argument.

The previous solution works for one level of nesting groups, but as soon as
more levels are used it is no longer adequate. For that case we need to keep
track of the nested languages using a stack mechanism. This stack is called
\bbl@language@stack and initially empty.

12.80 \xdef\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to
retrieve the information afterwards.

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push
function can be simple:

12.81 \def\bbl@push@language{%

12.82 \xdef\bbl@language@stack{\languagename+\bbl@language@stackl}’

12.83 }
Retrieving information from the stack is a little bit less simple, as we need to
remove the element from the stack while storing it in the macro \languagename.
For this we first define a helper function.

This macro stores its first element (which is delimited by the ‘+’-sign) in
\languagename and stores the rest of the string (delimited by ‘-’) in its third
argument.

12.84 \def\bbl@pop@lang#1+#2-#3{Y

12.85 \def\languagename{#1}\xdef#3{#21}/,

12.86 }

20

\bbl@set@language

The reason for the somewhat weird arrangement of arguments to the helper func-
tion is the fact it is called in the following way:

12.87 \def\bbl@pop@language{’
12.88 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack

This means that before \bbl@pop@lang is executed TEX first expands the stack,
stored in \bbl@language@stack. The result of that is that the argument string of
\bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign
(zero language names won’t occur as this macro will only be called after something
has been pushed on the stack) followed by the ‘-’-sign and finally the reference to
the stack.

12.89 $$

12.90 \expandafter\bbl@set@language\expandafter{\languagenamel},

12.91 }

Once the name of the previous language is retrieved from the stack, it is fed to
\bbl@set@language to do the actual work of switching everything that needs
switching.

12.92 \expandafter\def\csname selectlanguage \endcsname#1{},
12.93 \bbl@push@language

12.94 \aftergroup\bbl@pop@language

12.95 \bbl@set@language{#1}}

The macro \bbl@set@language takes care of switching the language environment
and of writing entries on the auxiliary files.

12.96 \def\bbl@set@language#1{J

12.97 \edef\languagename{/,

12.98 \ifnum\escapechar=\expandafter‘\string#1\Q@empty

12.99 \else \string#1\Qempty\fil}J,

12.100 \select@language{\languagenamel,
We also write a command to change the current language in the auxiliary files.

12.101 \if@filesw

12.102 \protected@urite\Qauxout{}{\string\select@language{\languagename}}/,
12.103 \addtocontents{toc}{\xstring\select@language{\languagenamel}}/,
12.104 \addtocontents{lof}{\xstring\select@language{\languagename}},
12.105 \addtocontents{lot}{\xstring\select@language{\languagenamel}}%

12.106 \fi}

First, check if the user asks for a known language. If so, update the value of
\language and call \originalTeX to bring TEX in a certain pre-defined state.

12.107 \def\select@language#1{/,
12.108 \expandafter\ifx\csname 1@#1\endcsname\relax

12.109 \@nolanerr{#1}%

12.110 \else

12.111 \expandafter\ifx\csname date#1\endcsname\relax
12.112 \@noopterr{#1}%

12.113 \else

12.114 \language=\csname 10#1\endcsname\relax

12.115 \originalTeX

The name of the language is stored in the control sequence \languagename. The
contents of this control sequence could be tested in the following way:

\edef\tmp{\string english}
\ifx\languagename\tmp

\else

\fi

21

The construction with \string is necessary because \languagename returns the
name with characters of category code 12 (other). Then we have to redefine
\originalTeX to compensate for the things that have been activated. To save
memory space for the macro definition of \originalTeX, we construct the control
sequence name for the \noextras(lang) command at definition time by expanding
the \csname primitive.

12.116 \expandafter\def\expandafter\originalTeX
12.117 \expandafter{\csname noextras#1\endcsname
12.118 \let\originalTeX\@emptyl}’
12.119 \languageshorthands{nonel}y,

12.120 \babel@beginsave

Now activate the language-specific definitions. This is done by constructing
the names of three macros by concatenating three words with the argument of
\selectlanguage, and calling these macros.

12.121 \csname captions#1\endcsname
12.122 \csname date#1\endcsname
12.123 \csname extras#1\endcsname\relax

The switching of the values of \lefthyphenmin and \righthyphenmin is some-
what different. First we save their current values, then we check if \(lang)hyphenmins
is defined. If it is not, we set default values (2 and 3), otherwise the values in
\(lang)hyphenmins will be used.

12.124 \babel@savevariable\lefthyphenmin

12.125 \babel@savevariable\righthyphenmin

12.126 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.127 \set@hyphenmins\tw@\thre@\relax

12.128 \else

12.129 \expandafter\expandafter\expandafter\set@hyphenmins
12.130 \csname #1lhyphenmins\endcsname\relax

12.131 \fi

12.132 \fi

12.133 \fi}

otherlanguage The otherlanguage environment can be used as an alternative to using the
\selectlanguage declarative command. When you are typesetting a document
which mixes left-to-right and right-to-left typesetting you have to use this envi-
ronment in order to let things work as you expect them to.

The first thing this environment does is store the name of the language in
\languagename; it then calls \selectlanguage to switch on everything that is
needed for this language The \ignorespaces command is necessary to hide the
environment when it is entered in horizontal mode.

12.134 \long\def\otherlanguage#1{/,

12.135 \csname selectlanguage \endcsname{#11}J,

12.136 \ignorespaces

12,137}
The \endotherlanguage part of the environment calls \originalTeX to restore
(most of) the settings and tries to hide itself when it is called in horizontal mode.

12.138 \long\def\endotherlanguage{’

12.139 \originalTeX

12.140 \global\@ignoretrue\ignorespaces
12.141 }

otherlanguage* The otherlanguage environment is meant to be used when a large part of text from
a different language needs to be typeset, but without changing the translation of
words such as ‘figure’.
This environment makes use of \foreign@language.
12.142 \expandafter\def\csname otherlanguage*\endcsname#1{/
12.143 \foreign@language{#1}%
12.144 }

22

At the end of the environment we need to switch off the extra definitions. The
grouping mechanism of the environment will take care of resetting the correct
hyphenation rules.

12.145 \expandafter\def\csname endotherlanguage*\endcsname{/,

12.146 \csname noextras\languagename\endcsname

12.147 }

\foreignlanguage The \foreignlanguage command is another substitute for the \selectlanguage
command. This command takes two arguments, the first argument is the name of
the language to use for typesetting the text specified in the second argument.

Unlike \selectlanguage this command doesn’t switch everything, it only
switches the hyphenation rules and the extra definitions for the language specified.
It does this within a group and assumes the \extras(lang) command doesn’t make
any \global changes. The coding is very similar to part of \selectlanguage.

12.148 \def\foreignlanguage{\protect\csname foreignlanguage \endcsname}
12.149 \expandafter\def\csname foreignlanguage \endcsname#1#2{%
12.150 \begingroup

12.151 \originalTeX

12.152 \foreign@language{#1}/

12.153 #2,

12.154 \csname noextras#1\endcsname
12.155 \endgroup

12.156 1}

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environ-
ment.

12.157 \def\foreign@language#1{/,
First we need to store the name of the language and check that it is a known
language.

12.158 \def\languagename{#1}%

12.159 \expandafter\ifx\csname 1@#1\endcsname\relax
12.160 \@nolanerr{#1}%

12.161 \else

If it is we can select the proper hyphenation table and switch on the extra defini-
tions for this language.

12.162 \language=\csname 1@#1\endcsname\relax
12.163 \languageshorthands{nonel}j,

Then we set the left- and right hyphenmin variables.

12.164 \csname extras#1\endcsname

12.165 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.166 \set@hyphenmins\tw@\thro@\relax

12.167 \else

12.168 \expandafter\expandafter\expandafter\set@hyphenmins
12.169 \csname #lhyphenmins\endcsname\relax

12.170 \fi

12171 \fi

12172}

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules.
This environment does not change \languagename and when the hyphenation
rules specified were not loaded it has no effect.

12.173 \def \hyphenrules#1{/
12.174 \expandafter\ifx\csname 1@#1\endcsname\Qundefined

12.175 \@nolanerr{#1}%

12.176 \else

12.177 \language=\csname 1@#1\endcsname\relax
12.178 \languageshorthands{nonel}y,

12179 \fi

12.180 }

12.181 \def\endhyphenrules{}

23

\providehyphenmins

\set@hyphenmins

\LdfInit

The macro \providehyphenmins should be used in the language definition files
to provide a default setting for the hyphenation parameters \lefthyphenmin and
\righthyphenmin. If the macro \(lang)hyphenmins is already defined this com-
mand has no effect.

12.182 \def\providehyphenmins#1#2{Y

12.183 \expandafter\ifx\csname #lhyphenmins\endcsname\relax

12.184 \@namedef{#1hyphenmins}{#2}/

12185 \fi}

This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects
two values as its argument.

12.186 \def\setOhyphenmins#1#2{\lefthyphenmin#1\righthyphenmin#2}

This macro is defined in two versions. The first version is to be part of the ‘kernel’
of babel, ie. the part that is loaded in the format; the second version is defined
in babel.def. The version in the format just checks the category code of the
ampersand and then loads babel.def.

12.187 \def\LdfInit{%

12.188 \chardef\atcatcode=\catcode‘\@

12.189 \catcode‘\@=11\relax

12.190 \input babel.def\relax

The category code of the ampersand is restored and the macro calls itself again
with the new definition from babel.def

12.191 \catcode‘\@=\atcatcode \let\atcatcode\relax

12.192 \LdfInit}

12.193 (/kernel)

The second version of this macro takes two arguments. The first argument is the
name of the language that will be defined in the language definition file; the second
argument is either a control sequence or a string from which a control sequence
should be constructed. The existence of the control sequence indicates that the
file has been processed before.

At the start of processing a language definition file we always check the category
code of the ampersand. We make sure that it is a ‘letter’ during the processing of
the file.

12.194 (xcore)

12.195 \def\Ldf Init#1#2{%

12.196 \chardef\atcatcode=\catcode‘\@

12.197 \catcode‘\@=11\relax
Another character that needs to have the correct category code during processing
of language definition files is the equals sign, ‘=", because it is sometimes used in
constructions with the \let primitive. Therefor we store its current catcode and
restore it later on.

12.198 \chardef\eqcatcode=\catcode‘\=

12.199 \catcode‘\==12\relax

Now we check whether we should perhaps stop the processing of this file. To do
this we first need to check whether the second argument that is passed to \LdfInit
is a control sequence. We do that by looking at the first token after passing #2
through string. When it is equal to \@backslashchar we are dealing with a
control sequence which we can compare with \@undefined.

12.200 \let\bbl@tempa\relax
12.201 \expandafter\if\expandafter\@backslashchar

12.202 \expandafter\@car\string#2\@nil
12.203 \ifx#2\@undefined
12.204 \else

If so, we call \1df@quit (but after the end of this \if construction) to set the
main language, restore the category code of the @-sign and call \endinput.

12.205 \def\bbl@tempa{\ldf@quit{#1}}

24

12.206 \fi
12.207 \else

When #2 was not a control sequence we construct one and compare it with \relax.

12.208 \expandafter\ifx\csname#2\endcsname\relax
12.209 \else

12.210 \def\bbl@tempa{\1df@quit{#1}}

12.211 \fi

12.212 \fi

12.213 \bbl@tempa
Finally we check \originalTeX.
12.214 \ifx\originalTeX\@undefined

12.215 \let\originalTeX\@empty
12.216 \else
12.217 \originalTeX

12.218 \fi}

\ldfequit This macro interrupts the processing of a language definition file.
12.219 \def\ldf@quit#1{J
12.220 \expandafter\main@language\expandafter{#1}J,
12.221 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.222 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12.223 \endinput
12.224 }

\ldfefinish This macro takes one argument. It is the name of the language that was defined
in the language definition file.

We load the local configuration file if one is present, we set the main language
(taking into account that the argument might be a control sequence that needs to
be expanded) and reset the category code of the @-sign.

12.225 \def\1df@finish#1{}

12.226 \loadlocalcfg{#1}/,

12.227 \expandafter\main@language\expandafter{#1}J,
12.228 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.229 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12.230 }

After the preamble of the document the commands \LdfInit, \1df@quit and
\1df@finish are no longer needed. Therefor they are turned into warning mes-
sages in BTEX.

12.231 \@onlypreamble\LdfInit
12.232 \Qonlypreamble\1df@quit
12.233 \Q@onlypreamble\1df@finish

\main@language This command should be used in the various language definition files. It stores its
\bbl@main@language argument in \bbl@main@language; to be used to switch to the correct language
at the beginning of the document.
12.234 \def\main@language#1{/
12.235 \def\bbl@main@language{#11}}
12.236 \let\languagename\bbl@main@language
12.237 \language=\csname 1l@\languagename\endcsname\relax
12.238 }

The default is to use English as the main language.

12.239 \ifx\1l@english\@undefined

12.240 \let\l@english\z@

12.241 \fi

12.242 \main@language{english}
We also have to make sure that some code gets executed at the beginning of the
document.

12.243 \AtBeginDocument{’,

25

\originalTeX

\@nolanerr

\@nopatterns

\@noopterr

12.244 \expandafter\selectlanguage\expandafter{\bbl@main@languagel}}
12.245 (/core)

The macro\originalTeX should be known to TEX at this moment. As it has to
be expandable we \let it to \@empty instead of \relax.

12.246 (xkernel)

12.247 \ifx\originalTeX\@undefined\let\originalTeX\Q@empty\fi
Because this part of the code can be included in a format, we make sure that the
macro which initialises the save mechanism, \babel@beginsave, is not considered
to be undefined.

12.248 \ifx\babel@beginsave\Q@undefined\let\babel@beginsave\relax\fi

The babel package will signal an error when a documents tries to select a language
that hasn’t been defined earlier. When a user selects a language for which no
hyphenation patterns were loaded into the format he will be given a warning
about that fact. We revert to the patterns for \language=0 in that case. In most
formats that will be (US)english, but it might also be empty.

When the package was loaded without options not everything will work as ex-
pected. An error message is issued in that case.
When the format knows about \PackageError it must be BITEX 2¢, so we can
safely use its error handling interface. Otherwise we’ll have to ‘keep it simple’.
12.249 \ifx\PackageError\Qundefined
12.250 \def\@nolanerr#1{}

12.251 \errhelp{Your command will be ignored, type <return> to proceedl}’
12.252 \errmessage{You haven’t defined the language #1\space yet}}

12.253 \def\@nopatterns#1{/,

12.254 \message{No hyphenation patterns were loaded forl}

12.255 \message{the language ‘#1’}}

12.256 \message{I will use the patterns loaded for \string\language=0
12.257 instead}}

12.258 \def\@noopterr#1{}

12.259 \errmessage{The option #1 was not specified in \string\usepackage}
12.260 \errhelp{You may continue, but expect unexpected resultsl}}

12.261 \def\Q@activated#1{}

12.262 \wlog{Package babel Info: Making #1 an active characterl}}

12.263 \else
12.264 \newcommand*{\@nolanerr}[1]1{%

12.265 \PackageError{babell}/,

12.266 {You haven’t defined the language #1\space yetl}%
12.267 {Your command will be ignored, type <return> to proceed}}
12.268 \newcommand*{\@nopatterns}[1]{%

12.269 \PackageWarningNoLine{babel}}

12.270 {No hyphenation patterns were loaded for\MessageBreak
12.271 the language ‘#1’\MessageBreak

12.272 I will use the patterns loaded for \string\language=0
12.273 instead}}

12.274 \newcommand*{\@noopterr}[1]{%

12.275 \PackageError{babell}},

12.276 {You haven’t loaded the option #1\space yetl}/
12.277 {You may proceed, but expect unexpected resultsl}}
12.278 \newcommand*{\@activated}[1]{/

12.279 \PackageInfo{babell}{J

12.280 Making #1 an active character}}

12.281 \fi

The following code is meant to be read by iniTEX because it should instruct
TEX to read hyphenation patterns. To this end the docstrip option patterns
can be used to include this code in the file hyphen.cfg.

12.282 (kpatterns)

26

\process@line

Each line in the file language .dat is processed by \process@line after it is read.
The first thing this macro does is to check whether the line starts with =. When
the first token of a line is an =, the macro \process@synonymn is called; otherwise
the macro \process@language will continue.

12.283 \def\process@line#1#2 #3/{),

12.284 \ifx=#1

12.285 \process@synonym#2 /

12.286 \else

12.287 \process@language#1#2 #3/7,
12.288 \fi

12.289 }

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token

\process@language

register to begin with.
12.290 \toks@{}

12.291 \def\process@synonym#1 /{}
12.292 \ifnum\last@language=\m@ne

When no languages have been loaded yet, the name following the = will be a
synonym for hyphenation register 0.

12.293 \expandafter\chardef\csname 10#1\endcsnameO\relax

12.294 \wlog{\string\l@#1=\string\languageO}
As no hyphenation patterns are read in yet, we can not yet set the hyphenmin

parameters. Therefor a commands to do so is stored in a token register and
executed when the first pattern file has been processed.

12.295 \toks@\expandafter{\the\toks@
12.296 \expandafter\let\csname #1lhyphenmins\expandafter\endcsname
12.297 \csname\languagename hyphenmins\endcsname}y

12.298 \else

Otherwise the name will be a synonym for the language loaded last.

12.299 \expandafter\chardef\csname 10#1\endcsname\last@language
12.300 \wlog{\string\l1@#1=\string\language\the\last@language}
We also need to copy the hyphenmin parameters for the synonym.
12.301 \expandafter\let\csname #lhyphenmins\expandafter\endcsname
12.302 \csname\languagename hyphenmins\endcsname
12.303 \fi
12.304 }
The macro \process@language is used to process a non-empty line from the ‘con-

figuration file’. It has three arguments, each delimited by white space. The third
argument is optional, so a / character is expected to delimit the last argument.
The first argument is the ‘name’ of a language; the second is the name of the
file that contains the patterns. The optional third argument is the name of a file
containing hyphenation exceptions.
The first thing to do is call \addlanguage to allocate a pattern register and

to make that register ‘active’.

12.305 \def\process@language#1 #2 #3/{}

12.306 \expandafter\addlanguage\csname 1@#1\endcsname

12.307 \expandafter\language\csname 10@#1\endcsname

12.308 \def\languagename{#1}},
Then the ‘name’ of the language that will be loaded now is added to the token
register \toks8. and finally the pattern file is read.

12.309 \global\toks8\expandafter{\the\toks8#1, }/

For some hyphenation patterns it is needed to load them with a specific font
encoding selected. This can be specified in the file language.dat by adding for
instance ‘:T1’ to the name of the language. The macro \bbl@get@enc extracts
the font encoding from the language name and stores it in \bbl@hyph@enc.

12.310 \begingroup

27

12.311 \bbl@get@enc#1:\000

12.312 \ifx\bbl@hyph@enc\@empty

12.313 \else

12.314 \fontencoding{\bbl@hyph@enc}\selectfont
12.315 \fi

Some pattern files contain assignments to \lefthyphenmin and \righthyphenmin.
TEX does not keep track of these assignments. Therefor we try to detect such as-
signments and store them in the \(lang)hyphenmins macro. When no assignments
were made we provide a default setting.
12.316 \lefthyphenmin\m@ne

Some pattern files contain changes to the \lccode en \uccode arrays. Such
changes should remain local to the language; therefor we process the pattern file
in a group; the \patterns command acts globally so its effect will be remembered.

12.317 \input #2\relax

Now we globally store the settings of \1lefthyphenmin and \righthyphenmin and
close the group.

12.318 \ifnum\lefthyphenmin=\m@ne

12.319 \else

12.320 \expandafter\xdef\csname #lhyphenmins\endcsname{7,
12.321 \the\lefthyphenmin\the\righthyphenmin}}

12.322 \fi

12.323 \endgroup

If the counter \language is still equal to zero we set the hyphenmin parameters
to the values for the language loaded on pattern register 0.

12.324 \ifnum\the\language=\z@

12.325 \expandafter\ifx\csname #1hyphenmins\endcsname\relax
12.326 \set@hyphenmins\tw@\thr@@\relax

12.327 \else

12.328 \expandafter\expandafter\expandafter\set@hyphenmins
12.329 \csname #1hyphenmins\endcsname

12.330 \fi

Now execute the contents of token register zero as it may contain commands
which set the hyphenmin parameters for synonyms that were defined before the
first pattern file is read in.

12.331 \the\toks@
12.332 \fi

Empty the token register after use.

12.333 \toks@{}/
When the hyphenation patterns have been processed we need to see if a file with
hyphenation exceptions needs to be read. This is the case when the third argument
is not empty and when it does not contain a space token.

12.334 \def\bbl@tempa{#3}/
12.335 \ifx\bbl@tempa\@empty
12.336 \else

12.337 \ifx\bbl@tempa\space
12.338 \else

12.339 \input #3\relax
12.340 \fi

12.341 \fi

12.342 }

\bbleget@enc The macro \bbl@get@enc extracts the font encoding from the language name and
\bbl@hyph@enc Stores it in \bbl@hyphQenc. It uses delimited arguments to achieve this.

12.343 \def\bbl@get@enc#1:#2\000e{},

28

\readconfigfile

First store both arguments in temporary macros,

12.344 \def\bbl@tempa{#1}],

12.345 \def\bbl@tempb{#2}},
then, if the second argument was empty, no font encoding was specified and we’re
done.

12.346 \ifx\bbl@tempb\Qempty

12.347 \let\bbl@hyph@enc\@empty

12.348 \else
But if the second argument was not empty it will now have a superfluous colon
attached to it which we need to remove. This done by feeding it to \bbl@get@enc.
The string that we are after will then be in the first argument and be stored in
\bbl@tempa.

12.349 \bbl@get@enc#2\00Q

12.350 \edef\bbl@hyph@enc{\bbl@tempal}
12.351 \fi}

The configuration file can now be opened for reading.
12.352 \openinl = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The
user will be informed about this.

12.353 \ifeof1

12.354 \message{I couldn’t find the file language.dat, \space
12.355 I will try the file hyphen.tex}

12.356 \input hyphen.tex\relax

12.357 \else

Pattern registers are allocated using count register \last@language. Its initial
value is 0. The definition of the macro \newlanguage is such that it first incre-
ments the count register and then defines the language. In order to have the first
patterns loaded in pattern register number 0 we initialize \last@language with
the value —1.

12.358 \last@language\mOne
We now read lines from the file until the end is found
12.359 \loop

While reading from the input, it is useful to switch off recognition of the end-
of-line character. This saves us stripping off spaces from the contents of the control
sequence.

12.360 \endlinechar\m@ne
12.361 \readl to \bbl@line
12.362 \endlinechar ‘\~~M

Empty lines are skipped.
12.363 \ifx\bbl@line\Qempty
12.364 \else
Now we add a space and a / character to the end of \bbl@line. This is needed
to be able to recognize the third, optional, argument of \process@language later
on.

12.365 \edef\bbl@line{\bbl@line\space/}/,
12.366 \expandafter\process@line\bbl@line
12.367 \fi

Check for the end of the file. To avoid a new if control sequence we create
the necessary \iftrue or \iffalse with the help of \csname. But there is one
complication with this approach: when skipping the loop...repeat TEX has to
read \if /\fi pairs. So we have to insert a ‘dummy’ \iftrue.

12.368 \iftrue \csname fi\endcsname
12.369 \csname if\ifeofl false\else true\fi\endcsname
12.370 \repeat

29

Reactivate the default patterns,

12.371 \language=0
12.372 \fi

and close the configuration file.
12.373 \closein1l

Also remove some macros from memory
12.374 \let\process@language\@undefined
12.375 \let\process@synonym\@undefined
12.376 \let\process@line\@undefined
12.377 \let\bbl@tempa\Qundefined
12.378 \let\bbl@tempb\@undefined
12.379 \let\bbl@eq@\@undefined

12.380 \let\bbl@line\@undefined
12.381 \let\bbl@get@enc\Qundefined

We add a message about the fact that babel is loaded in the format and with
which language patterns to the \everyjob register.
12.382 \ifx\addto@hook\Qundefined
12.383 \else
12.384 \expandafter\addto@hook\expandafter\everyjob\expandafter{y,
12.385 \expandafter\typeout\expandafter{\the\toks8 loaded.}}
12.386 \fi

Here the code for iniTEX ends.

12.387 (/patterns)
12.388 (/kernel)

12.3 Support for active characters

\bbl@add@special The macro \bbl@add@special is used to add a new character (or single character
control sequence) to the macro \dospecials (and \@sanitize if IXTEX is used).
To keep all changes local, we begin a new group. Then we redefine the macros
\do and \@makeother to add themselves and the given character without expan-
sion.
12.389 (xcore | shorthands)
12.390 \def\bbl@add@special#1{\begingroup
12.391 \def\do{\noexpand\do\noexpandl}/,
12.392 \def\@makeother{\noexpand\@makeother\noexpand}/
To add the character to the macros, we expand the original macros with the
additional character inside the redefinition of the macros. Because \@sanitize
can be undefined, we put the definition inside a conditional.

12.393 \edef\x{\endgroup

12.394 \def\noexpand\dospecials{\dospecials\do#1}}

12.395 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.396 \def\noexpand\@sanitize{\@sanitize\@makeother#11}},
12.397 \£i}%

The macro \x contains at this moment the following:

\endgroup\def\dospecials{old contents \do{char)}.

If \@sanitize is defined, it contains an additional definition of this macro.
The last thing we have to do, is the expansion of \x. Then \endgroup is executed,
which restores the old meaning of \x, \do and \@makeother. After the group is
closed, the new definition of \dospecials (and \@sanitize) is assigned.

12.398 \x}

\bble@remove@special The companion of the former macro is \bbl@remove@special. It is used to remove
a character from the set macros \dospecials and \@sanitize.

To keep all changes local, we begin a new group. Then we define a help macro

\x, which expands to empty if the characters match, otherwise it expands to its

nonexpandable input. Because TEX inserts a \relax, if the corresponding \else

30

or \fi is scanned before the comparison is evaluated, we provide a ‘stop sign’
which should expand to nothing.

12.399 \def\bbl@remove@special#1{\begingroup
12.400 \def\x##1##2{\ifnum‘#1="##2\noexpand\Q@empty
12.401 \else\noexpand##1\noexpand##2\fi}},

With the help of this macro we define \do and \make@other.

12.402 \def\do{\x\do}%

12.403 \def \@makeother{\x\@makeother}y,
The rest of the work is similar to \bbl@add@special.
12.404 \edef\x{\endgroup
12.405 \def\noexpand\dospecials{\dospecialsl}},
12.406 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.407 \def\noexpand\@sanitize{\@sanitizel}
12.408 \fi}t}
12.409 \x}

\initiate@active@char

\bbl@afterelse
\bbl@afterfi

12.4 Shorthands

A language definition file can call this macro to make a character active. This
macro takes one argument, the character that is to be made active. When the
character was already active this macro does nothing. Otherwise, this macro
defines the control sequence \normal@char(char) to expand to the character in its
‘normal state’ and it defines the active character to expand to \normal@char(char)
by default ({char) being the character to be made active). Later its definition can
be changed to expand to \active@char(char) by calling \bbl@activate{(char)}.

For example, to make the double quote character active one could have the
following line in a language definition file:

\initiate@active@char{"}

Because the code that is used in the handling of active characters may need to
look ahead, we take extra care to ‘throw’ it over the \else and \fi parts of an
\if-statement®. These macros will break if another \if...\fi statement appears
in one of the arguments.

12.410 \long\def\bbl@afterelse#l\else#2\fi{\fi#1}
12.411 \long\def\bbl@afterfi#1\fi{\fi#1}

\peekQtoken

\bbl@test@token

To prevent error messages when a shorthand, which normally takes an argument,
sees a \par, or }, or similar tokens, we need to be able to ‘peek’ at what is coming
up next in the input stream. Depending on the category code of the token that
is seen, we need to either continue the code for the active character, or insert
the non-active version of that character in the output. The macro \peek@token
therefore takes two arguments, with which it constructs the control sequence to
expand next. It \let’s \bbl@nexta and \bbl@nextb to the two possible macros.
This is necessary for \bbl@test@token to take the right decision.

12.412 %\def \peek@token#1#2{%

12.413 % \expandafter\let\expandafter\bbl@nexta\csname #1\string#2\endcsname
12.414 % \expandafter\let\expandafter\bbl@nextb

12.415 % \csname system@active\string#2\endcsname

12.416 % \futurelet\bbl@token\bblO@test@token}

When the result of peeking at the next token has yielded a token with category
‘letter’, ‘other’ or ‘active’ it is safe to proceed with evaluating the code for the
shorthand. When a token is found with any other category code proceeding is
unsafe and therefor the original shorthand character is inserted in the output. The

5This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion
Power Lemma” by Sonja Maus.

31

macro that calls \bbl@test@token needs to setup \bbl@nexta and \bbl@nextb
in order to achieve this.

12.417 %\def\bbl@test@token{}

12.418 % \let\bbl@next\bblGnexta
12.419 % \ifcat\noexpand\bbl@token aJ
12.420 4 \else

12.421 % \ifcat\noexpand\bbl@token=j,

12.422 % \else

12.423 % \ifcat\noexpand\bbl@token\noexpand\bbl@next
12.424 % \else

12.425 % \let\bbl@next\bbl@nextb

12.426 % \fi

12.427 % \fi
12.428 % \fi
12.429 % \bbl@next}

The macro \initiate@active®@char takes all the necessary actions to make
its argument a shorthand character. The real work is performed once for each
character.

12.430 \def\initiate@active@char#1{Y

12.431 \expandafter\ifx\csname active@char\string##1\endcsname\relax
12.432 \bbl@afterfi{\@initiate@active@char{#1}1}

12.433 \fi}

Note that the definition of \@initiate@active@char needs an active character,
for this the ~ is used. Some of the changes we need, do not have to become
available later on, so we do it inside a group.

12.434 \begingroup

12.435 \catcode‘\™\active

12.436 \def\x{\endgroup

12.437 \def\@initiate@active@char##1{}
If the character is already active we provide the default expansion under this
shorthand mechanism.

12.438 \ifcat\noexpand##1\noexpand~\relax

12.439 \@ifundefined{normal@char\string##1}{%

12.440 \expandafter\let\csname normal@char\string##1\endcsname##17,
12.441 \expandafter\gdef

12.442 \expandafter##1},

12.443 \expandafter{’

12.444 \expandafter\active@prefix\expandafter##1,

12.445 \csname normal@char\string##1\endcsnamel}}{}/

12.446 \else

Otherwise we write a message in the transcript file,
12.447 \Qactivated{##1}%

and define \normal@char(char) to expand to the character in its default state.

12.448 \@namedef{normal@char\string##1}{##1}/,
If we are making the right quote active we need to change \pr@me@s as well.
12.449 \ifx##1°Y,
12.450 \let\prim@s\bbl@prim@s
Also, make sure that a single ’ in math mode ‘does the right thing’.
12.451 \@namedef{normal@char\string##1}{/,
12.452 \textormath{##1}{~\bgroup\prim@sl}}%
12.453 \fi

If we are using the caret as a shorthand character special care should be taken
to make sure math still works. Therefor an extra level of expansion is introduced
with a check for math mode on the upper level.

12.454 \ifx##1°9
12.455 \gdef\bbl@act@caret{%

32

12.456 \ifmmode

12.457 \csname normal@char\string~\endcsname

12.458 \else

12.459 \bbl@afterfi

12.460 {\if@safe@actives

12.461 \bbl@afterelse\csname normal@char\string##1\endcsname
12.462 \else

12.463 \bbl@afterfi\csname user@active\string##1\endcsname
12.464 \£fi}¥

12.465 \fi}

12.466 \fi

To prevent problems with the loading of other packages after babel we reset the
catcode of the character at the end of the package.

12.467 \@ifpackagewith{babel}{KeepShorthandsActive}{}{%
12.468 \edef\bbl@tempa{\catcode‘\noexpand##1i\the\catcode‘##1}J,
12.469 \expandafter\AtEndOfPackage\expandafter{\bbl@tempal}}’

Now we set the lowercase code of the ~ equal to that of the character to be made
active and execute the rest of the code inside a \lowercase ‘environment’.

12.470 \@tempcnta=\lccode‘\~
12.471 \lccode‘~=“##1,
12.472 \lowercase{’

Make the character active and add it to \dospecials and \@sanitize.

12.473 \catcode‘~\active
12.474 \expandafter\bbl@add@special
12.475 \csname \string##1\endcsname

Also re-activate it again at \begin{document}.

12.476 \AtBeginDocument{%

12.477 \catcode‘##1\active
We also need to make sure that the shorthands are active during the processing
of the .aux file. Otherwise some citations may give unexpected results in the
printout when a shorthand was used in the optional argument of \bibitem for
example.

12.478 \if@filesw

12.479 \immediate\write\@mainaux{%

12.480 \string\catcode‘##1\string\activel},
12.481 \fi}¥

Define the character to expand to
\active@prefix (char) \normal@char(char)

(where \active@char(char) is one control sequence!).

12.482 \expandafter\gdef

12.483 \expandafter™,

12.484 \expandafter{/,

12.485 \expandafter\active@prefix\expandafter##1},
12.486 \csname normal@char\string##1\endcsnamel}}/,
12.487 \lccode‘\"\@tempcnta

12.488 \fi

For the active caret we first expand to \bbl@act@caret in order to be able to
handle math mode correctly.

12.489 \ifx##1~%
12.490 \@namedef{active@char\string##1}{\bbl@act@caretl},
12.491 \else

We define the first level expansion of \active@char(char) to check the status of
the @safe@actives flag. If it is set to true we expand to the ‘normal’ version of
this character, otherwise we call \@active@char(char).

12.492 \@namedef{active@char\string##1}{/,
12.493 \if@safeQactives

33

12.494 \bbl@afterelse\csname normal@char\string##1\endcsname
12.495 \else

12.496 \bbl@afterfi\csname user@active\string##1\endcsname
12.497 \fi}y
12.498 \fi

The next level of the code checks whether a user has defined a shorthand for
himself with this character. First we check for a single character shorthand. If
that doesn’t exist we check for a shorthand with an argument.

12.499 \@namedef{user@active\string##1}{J,

12.500 \expandafter\ifx

12.501 \csname \user@group @sh@\string##1@\endcsname

12.502 \relax

12.503 \bbl@afterelse\bbl@sh@select\user@group##1y,

12.504 {user@active@arg\string##1}{language@active\string##1}J,
12.505 \else

12.506 \bbl@afterfi\csname \user@group @sh@\string##10\endcsname
12.507 \fi}%

When there is also no user-level shorthand with an argument we will check whether
there is a language defined shorthand for this active character. Before the next
token is absorbed as argument we need to make sure that this is safe. Therefor
\peek@token is called to decide that.

12.508 \long\@namedef{user@active@arg\string##1}####1{
12.509 \expandafter\ifx

12.510 \csname \user@group ©@sh@\string##1@\string####10\endcsname
12.511 \relax

12.512 \bblQafterelse

12.513 \csname language@active\string##1\endcsname####1,
12.514 \else

12.515 \bbl@afterfi

12.516 \csname \user@group @sh@\string##10\string####1@J,
12.517 \endcsname

12.518 \fi}%

In order to do the right thing when a shorthand with an argument is used by itself
at the end of the line we provide a definition for the case of an empty argument.
For that case we let the shorthand character expand to its non-active self.

12.519 \@namedef{\user@group @sh@\string##100}{%

12.520 \csname normal@char\string##1\endcsnamel}

Like the shorthands that can be defined by the user, a language definition file

can also define shorthands with and without an argument, so we need two more
macros to check if they exist.

12.521 \@namedef{language@active\string##1}{%

12.522 \expandafter\ifx

12.523 \csname \language@group @sh@\string##1@\endcsname

12.524 \relax

12.525 \bbl@afterelse\bbl@sh@select\language@group##1/,

12.526 {language@active@arg\string##1}{systemQ@active\string##1}J
12.527 \else

12.528 \bbl@afterfi

12.529 \csname \language@group @sh@\string##1@\endcsname

12.530 \fi}%

12.531 \long\@namedef{language@active@arg\string##1####1{/,

12.532 \expandafter\ifx

12.533 \csname \language@group Q@sh@\string##10\string####10\endcsname
12.534 \relax

12.535 \bbl@afterelse

12.536 \csname system@active\string##1\endcsname####1/,

12.537 \else

12.538 \bbl@afterfi

12.539 \csname \language@group @sh@\string##10\string####10},

34

\bbl@sh@select

\active@prefix

12.540 \endcsname
12.541 \fi}%

And the same goes for the system level.

12.542 \@namedef{system@active\string##1}{/

12.543 \expandafter\ifx

12.544 \csname \system@group @sh@\string##10\endcsname

12.545 \relax

12.546 \bbl@afterelse\bbl@sh@select\system@group##1/,

12.547 {system@active@arg\string##1}{normal@char\string##1}/

12.548 \else

12.549 \bbl@afterfi\csname \system@group Osh@\string##10@\endcsname
12.550 \fi}%

When no shorthands were found the ‘normal’ version of the active character is
inserted.

12.551 \long\@namedef{system@active@arg\string##1 H####1{}

12.552 \expandafter\ifx

12.553 \csname \system@group @sh@\string##1@\string####10\endcsname
12.554 \relax

12.555 \bbl@afterelse\csname normal@char\string##1\endcsname####17,
12.556 \else

12.557 \bbl@afterfi

12.558 \csname \system@group @sh@\string##10\string####1@\endcsname
12.559 \fi}V

When a shorthand combination such as ’>’ ends up in a heading TEX would see
\protect’\protect’. To prevent this from happening a shorthand needs to be
defined at user level.

12.560 \@namedef{user@sh@\string##10@\string\protect@}{%
12.561 \csname user@active\string##1\endcsnamel}y,
12.562 i
12.563 RNx
This command helps the shorthand supporting macros to select how to proceed.

Note that this macro needs to be expandable as do all the shorthand macros in
order for them to work in expansion-only environments such as the argument of
\hyphenation.

This macro expects the name of a group of shorthands in its first argument
and a shorthand character in its second argument. It will expand to either
\bbl@firstcs or \bbl@scndcs. Hence two more arguments need to follow it.

12.564 \def\bbl@sh@select#1#2{Y
12.565 \expandafter\ifx\csname#1@sh@\string#20@sel\endcsname\relax

12.566 \bbl@afterelse\bbl@scndcs
12.567 \else
12.568 \bbl@afterfi\csname#10@sh@\string#20@sel\endcsname
12.569 \fi
12.570 }
The command \active@prefix which is used in the expansion of active charac-

ters has a function similar to \0T1-cmd in that it \protects the active character
whenever \protect is not \@typeset@protect.

12.571 \def\active@prefix#1{}
12.572 \ifx\protect\@typeset@protect
12.573 \else

When \protect is set to \@unexpandable@protect we make sure that the active
character is als not expanded by inserting \noexpand in front of it. The \@gobble
is needed to remove a token such as \activechar: (when the double colon was
the active character to be dealt with).

12.574 \ifx\protect\Q@unexpandable@protect

35

12.575 \bbl@afterelse\bbl@afterfi\noexpand#1\Qgobble

12.576 \else
12.577 \bbl@afterfi\bbl@afterfi\protect#1\@gobble
12.578 \fi

12.579 \fi}

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an
active character on the fly. For this purpose the switch @safe@actives is avail-
able. The setting of this switch should be checked in the first level expansion of
\active@char(char).

12.580 \newif\if@safe@actives
12.581 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this
must be undone in the headers to prevent unexpected typeset results. For this
situation we define a command to make them “unsafe” again.

12.582 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbleactivate This macro takes one argument, like \initiate@active@char. The macro is used
to change the definition of an active character to expand to \active@char(char)
instead of \normal@char(char).

12.583 \def\bblQactivate#1{/

12.584 \expandafter\def
12.585 \expandafter#1\expandafter{),

12.586 \expandafter\active@prefix
12.587 \expandafter#l\csname active@char\string#1\endcsname},
12.588 }

\bbledeactivate This macro takes one argument, like \bbl@activate. The macro doesn’t
really make a character non-active; it changes its definition to expand to
\normal@char(char).

12.589 \def\bbl@deactivate#1{%
12.590 \expandafter\def
12.591 \expandafter#1l\expandafter{’,

12.592 \expandafter\active@prefix
12.593 \expandafter#l\csname normal@char\string#1\endcsname}j,
12.594 }

\bblefirstcs These macros have two arguments. They use one of their arguments to build a
\bbl@scndcs control sequence from.

12.595 \def\bbl@firstcs#1#2{\csname#1\endcsname}
12.596 \def\bbl@scndcs#1#2{\csname#2\endcsname}

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain
level. It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;
2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

3. the code to be executed when the shorthand is encountered.

12.597 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}
12.598 \def\@decl@short#1#2#3\Cnil#4{%

12.599 \def\bbl@tempa{#3}%

12.600 \ifx\bbl@tempa\Qempty

12.601 \expandafter\let\csname #1Q@sh@\string#2@sel\endcsname\bbl@scndcs
12.602 \@namedef{#10sh@\string#20}{#41}/,

12.603 \else

12.604 \expandafter\let\csname #1Q@sh@\string#2@sel\endcsname\bbl@firstcs
12.605 \@namedef{#10sh@\string#20@\string#30}{#41}/,

12.606 \fi}

36

\textormath Some of the shorthands that will be declared by the language definition files
have to be usable in both text and mathmode. To achieve this the helper macro
\textormath is provided.

12.607 \def\textormath#1#2{%
12.608 \ifmmode

12.609 \bbl@afterelse#2/
12.610 \else
12.611 \bbl@afterfi#1,

12.612 \fi}

\user@group The current concept of ‘shorthands’ supports three levels or groups of shorthands.
\language@group For each level the name of the level or group is stored in a macro. The default is
\system@group tO have a user group; use language group ‘english’ and have a system group called
‘system’.
12.613 \def\user@group{user}
12.614 \def\language@group{english}
12.615 \def\system@group{system}

\useshorthands This is the user level command to tell XTEX that user level shorthands will be used
in the document. It takes one argument, the character that starts a shorthand.

12.616 \def\useshorthands#1{%

First note that this is user level.
12.617 \def\userQgroup{userl}y,

Then initialize the character for use as a shorthand character.
12.618 \initiate®@active@char{#1}%

Now that TEX has seen the character its category code is fixed, but for the actions
of \bbl@activate to succeed we need it to be active. Hence the trick with the
\lccode to circumvent this.

12.619 \@tempcnta\lccode‘\~

12.620 \lccode‘~=‘#17

12.621 \lowercase{\catcode‘~\active\bbl@activate{~}}%
12.622 \lccode‘\~\@tempcnta}

\defineshorthand Currently we only support one group of user level shorthands, called ‘user’.
12.623 \def\defineshorthand{\declare@shorthand{user}}

\languageshorthands A user level command to change the language from which shorthands are used.
12.624 \def\languageshorthands#1{\def\language@group{#1}}

\aliasshorthand
12.625 \def\aliasshorthand#1#2{%
First the new shorthand needs to be initialized,

12.626 \expandafter\ifx\csname active@char\string#2\endcsname\relax

12.627 \ifx\document\@notprerr
12.628 \@notshorthand{#2}

12.629 \else

12.630 \initiate@active@char{#2}}

Then we need to use the \lccode trick to make the new shorthand behave like
the old one. Therefore we save the current \1lccode of the ~-character and restore
it later. Then we \let the new shorthand character be equal to the original.

12.631 \@tempcntallccode‘\~
12.632 \lccode‘~=‘#2,

12.633 \lowercase{\let #1}/
12.634 \lccode‘\~\@tempcnta
12.635 \fi

12.636 \fi

12.637 }

37

\@notshorthand
12.638 \def\@notshorthand#1{%

12.639 \PackageError{babell}{/,

12.640 The character ‘\string #1’ should be made

12.641 a shorthand character;\MessageBreak

12.642 add the command \string\useshorthands\string{#1\string} to
12.643 the preamble.\MessageBreak

12.644 I will ignore your instruction}{}%

12.645 }

\shorthandon The first level definition of these macros just passes the argument on to
\shorthandoff \bbl@switch@sh, adding \@nil at the end to denote the end of the list of char-
acters.

12.646 \newcommand*\shorthandon[1] {\bbl@switch@sh{on}#1\@nil}
12.647 \newcommand*\shorthandoff [1]{\bbl@switch@sh{off}#1\@nil}

\bbl@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and
subsequently switches the category code of the shorthand character according to
the first argument of \bbl@switch@sh.

12.648 \def\bbl@switch@sh#1#2#3\@nil{%
But before any of this switching takes place we make sure that the character we

are dealing with is known as a shorthand character. If it is, a macro such as
\active@char" should exist.

12.649 \@ifundefined{active@char\string#2}{J

12.650 \PackageError{babel}{/,

12.651 The character ’\string #2’ is not a shorthand character
12.652 in \languagenamel}{J

12.653 Maybe you made a typing mistake?\MessageBreak

12.654 I will ignore your instruction}}{’

12.655 \csname bbl@switch@sh@#1\endcsname#2},

Now that, as the first character in the list has been taken care of, we pass the rest
of the list back to \bbl@switch@sh.

12.656 \ifx#3\Qempty\else

12.657 \bbl@afterfi\bbl@switch@sh{#1}#3\@nil

12.658 \fi}

\bbl@switch@sh@off All that is left to do is define the actual switching macros. Switching off is easy,
we just set the category code to ‘other’ (12).

12.659 \def\bbl@switch@sh@off#1{\catcode‘#112\relax}

\bbl@switch@sh@n But switching the shorthand character back on is a bit more tricky. It involves
making sure that we have an active character to begin with when the macro is
being defined. It also needs the use of \lowercase and \lccode trickery to get
everything to work out as expected. And to keep things local that need to remain
local a group is opened, which is closed as soon as \x gets executed.

12.660 \begingroup
12.661 \catcode‘\™\active
12.662 \def\x{\endgroup

12.663 \def\bbl@switch@sh@on##1{},
12.664 \lccode‘~=‘##1Y,

12.665 \lowercase{’

12.666 \catcode‘~\active
12.667 Y

12.668 jyA

12.669 }

The next operation makes the above definition effective.

12.670 \x
12.671 %

38

\bbl@prim@s
\bbl@premes

\OT1dgpos
\T1dgpos

To prevent problems with constructs such as \char"01A when the double quote
is made active, we define a shorthand on system level.

12.672 \declare@shorthand{system}{"}{\csname normal@char\string"\endcsname}

When the right quote is made active we need to take care of handling it cor-
rectly in mathmode. Therefore we define a shorthand at system level to make it
expand to a non-active right quote in textmode, but expand to its original defini-
tion in mathmode. (Note that the right quote is ‘active’ in mathmode because of
its mathcode.)

12.673 \declare@shorthand{system}{’}{/
12.674 \textormath{\csname normal@char\string’\endcsname}/,
12.675 {\sp\bgroup\prim@s}}

When the left quote is made active we need to take care of handling it correctly
when it is followed by for instance an open brace token. Therefore we define a
shorthand at system level to make it expand to a non-active left quote.

12.676 \declare@shorthand{system}{‘}{\csname normal@char\string‘\endcsname}

One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote.
When the right quote is active, the definition of this macro needs to be adapted
to look for an active right quote.

12.677 \def\bbl@prim@s{%,

12.678 \prime\futurelet\@let@token\bbl@prem@s}

12.679 \begingroup

12.680 \catcode‘\’\active\let’\relax

12.681 \def\x{\endgroup

12.682 \def\bbl@premes{’,

12.683 \ifx’\@let@token
12.684 \expandafter\pr@ees
12.685 \else

12.686 \ifx~\Q@let@token
12.687 \expandafter\expandafter\expandafter\preoat
12.688 \else

12.689 \egroup

12.690 \fi

12.691 \£i}¥%

12.692 }

12.693 \x

12.694 (/core | shorthands)

Normally the ~ is active and expands to \penalty\@M\,. When it is written
to the .aux file it is written expanded. To prevent that and to be able to use
the character ~ as a start character for a shorthand, it is redefined here as a one
character shorthand on system level.

12.695 (*core)

12.696 \initiate®@active@char{~}

12.697 \declare@shorthand{system}{~}{\leavevmode\nobreak\ }
12.698 \bblQactivate{~}

The position of the double quote character is different for the OT1 and T1 encod-
ings. It will later be selected using the \f@encoding macro. Therefor we define
two macros here to store the position of the character in these encodings.

12.699 \expandafter\def\csname 0Tldgpos\endcsname{127}

12.700 \expandafter\def\csname Tldqpos\endcsname{4}
When the macro \f@encoding is undefined (as it is in plain TEX) we define it here
to expand to 0T1

12.701 \ifx\f@encoding\@undefined

12.702 \def\f@encoding{0T1}
12.703 \fi

39

12.5 Language attributes

Language attributes provide a means to give the user control over which features
of the language definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and then
activates the selected language attribute.

12.704 \newcommand\languageattribute [2]{/
First check whether the language is known.

12.705 \expandafter\ifx\csname 1@#1\endcsname\relax

12.706 \@nolanerr{#1}},

12.707 \else
Than process each attribute in the list.

12.708 \@for\bbl@attr:=#2\do{%
We want to make sure that each attribute is selected only once; therefor we store
the already selected attributes in \bbl@known®@attribs. When that control se-
quence is not yet defined this attribute is certainly not selected before.

12.709 \ifx\bbl@known@attribs\@undefined
12.710 \in@false
12.711 \else

Now we need to see if the attribute occurs in the list of already selected attributes.

12.712 \edef\bbl@tempa{\noexpand\in@{,#1-\bbl@attr, }%
12.713 {,\bbl@known@attribs,}}%
12.714 \bbl@tempa
12.715 \fi
When the attribute was in the list we issue a warning; this might not be the users
intention.
12.716 \ifin®@
12.717 \PackageWarning{Babell}{/,
12.718 You have more than once selected the attribute
12.719 ’\bbl@attr’\MessageBreak for language #11}J,
12.720 \else

When we end up here the attribute is not selected before. So, we add it to the list
of selected attributes and execute the associated TEX-code.

12.721 \edef\bbl@tempa{’

12.722 \noexpand\bblO@add@list\noexpand\bbl@known@attribs{#1-\bbl@attr}}/
12.723 \bbl@tempa

12.724 \edef\bblO@tempa{#1-\bbl@attr}y

12.725 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes,
12.726 {\csname#1@attr@\bbl@attr\endcsnamel}y,

12.727 {\@attrerr{#1}{\bbl@attr}}},

12.728 \fi

12.729 }

12730 \fi}

This command should only be used in the preamble of a document.
12.731 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.
12.732 \newcommand*{\Qattrerr}[2]{%

12.733 \PackageError{babell}},
12.734 {The attribute #2 is unknown for language #1.1}J
12.735 {Your command will be ignored, type <return> to proceed}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of known
attributes.

12.736 \def\bbl@declare@ttribute#1#2#3{%
12.737 \bbl@add@list\bbl@attributes{#1-#2}%

40

\bbl@ifattributeset

\bbl@add@list

\bbl@ifknown@ttrib

Then it defines a control sequence to be executed when the attribute is used in a
document. The result of this should be that the macro \extras. .. for the current
language is extended, otherwise the attribute will not work as its code is removed
from memory at \begin{document}.

12.738 \expandafter\def\csname#1Q@attr@#2\endcsname{#3}/
12739}

This internal macro has 4 arguments. It can be used to interpret TEX code based
on whether a certain attribute was set. This command should appear inside the
argument to \AtBeginDocument because the attributes are set in the document
preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being
checked, and the third and fourth arguments are the true and false clauses.

12.740 \def\bbl@ifattributeset#1#2#3#4{),
First we need to find out if any attributes were set; if not we’re done.

12.741 \ifx\bbl@known@attribs\@undefined
12.742 \in@false
12.743 \else

The we need to check the list of known attributes.

12.744 \edef\bbl@tempa{\noexpand\in@{,#1-#2,}},
12.745 {,\bbl@known@attribs,}}V

12.746 \bbl@tempa

12.747 \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was
set or not. Just to be safe the code to be executed is ‘thrown over the \fi’.

12.748 \ifin®@

12.749 \bbl@afterelse#3,
12.750 \else
12.751 \bbl@afterfi#4
12.752 \fi
12.753 }
This internal macro adds its second argument to a comma separated list in its

first argument. When the list is not defined yet (or empty), it will be initiated

12.754 \def\bblQ@add@list#1#2{}
12.755 \ifx#1\Qundefined
12.756 \def#1{#2}%

12.757 \else

12.758 \ifx#1\Q@empty
12.759 \def#1{#2}}
12.760 \else
12.761 \edef#1{#1,#2}%
12.762 \fi
12.763 \fi
12.764 }
An internal macro to check whether a given language/attribute is known. The

macro takes 4 arguments, the language/attribute, the attribute list, the TEX-code
to be executed when the attribute is known and the TgX-code to be executed
otherwise.

12.765 \def \bbl@ifknown@ttrib#1#2{Y
We first assume the attribute is unknown.
12.766 \let\bbl@tempa\@secondoftwo
Then we loop over the list of known attributes, trying to find a match.

12.767 \@for\bbl@tempb:=#2\do{%
12.768 \expandafter\in@\expandafter{\expandafter, \bbl@tempb, }{,#1,}%
12.769 \ifin@

41

When a match is found the definition of \bbl@tempa is changed.

12.770 \let\bbl@tempa\@firstoftwo
12.771 \else
12.772 \fi}%

Finally we execute \bbl@tempa.

12.773 \bbl@tempa
12.774 }

\bbl@clear@ttribs This macro removes all the attribute code from ETEX’s memory at \begin{document}
time (if any is present).
12.775 \def\bbl@clear@ttribs{}
12.776 \ifx\bbl@attributes\@undefined\else

12.777 \@for\bbl@tempa:=\bbl@attributes\do{’
12.778 \expandafter\bbl@clear@ttrib\bbl@tempa.
12.779 Yh

12.780 \let\bbl@attributes\Qundefined

12781 \fi

12.782 }

12.783 \def\bbl@clear@ttrib#1-#2.{}
12.784 \expandafter\let\csname#1Qattr@#2\endcsname\Qundefined}
12.785 \AtBeginDocument{\bbl@clear@ttribs}

12.6 Support for saving macro definitions

To save the meaning of control sequences using \babel@save, we use temporary
control sequences. To save hash table entries for these control sequences, we don’t
use the name of the control sequence to be saved to construct the temporary
name. Instead we simply use the value of a counter, which is reset to zero each
time we begin to save new values. This works well because we release the saved
meanings before we begin to save a new set of control sequence meanings (see
\selectlanguage and \originalTeX).

\babel@savecnt The initialization of a new save cycle: reset the counter to zero.
\babel@beginsavel2.786 \def\babel@beginsave{\babel@savecnt\z@}
Before it’s forgotten, allocate the counter and initialize all.

12.787 \newcount\babel@savecnt
12.788 \babel@beginsave

\babel@save The macro \babel@save(csname) saves the current meaning of the control se-
quence {csname) to \originalTeX’. To do this, we let the current meaning to a
temporary control sequence, the restore commands are appended to \originalTeX
and the counter is incremented.

12.789 \def\babel@save#1{Y
12.790 \expandafter\let\csname babel@\number\babel@savecnt\endcsname #1\relax
12.791 \begingroup

12.792 \toks@\expandafter{\originalTeX \let#1=1}},

12.793 \edef\x{\endgroup

12.794 \def\noexpand\originalTeX{\the\toks@ \expandafter\noexpand
12.795 \csname babel@\number\babel@savecnt\endcsname\relax}}/,
12.796 \x

12.797 \advance\babel@savecnt\@ne}

\babel@savevariable The macro \babel@savevariable(variable) saves the value of the variable.
(variable) can be anything allowed after the \the primitive.
12.798 \def\babel@savevariable#1{\begingroup

12.799 \toks@\expandafter{\originalTeX #1=}},

12.800 \edef\x{\endgroup

12.801 \def\noexpand\originalTeX{\the\toks@ \the#l\relaxl}}/,
12.802 \x}

6\originalTeX has to be expandable, i.e. you shouldn’t let it to \relax.

42

\bbl@frenchspacing
\bbl@nonfrenchspacing

\addto

\allowhyphens

Some languages need to have \frenchspacing in effect. Others don’t want that.
The command \bbl@frenchspacing switches it on when it isn’t already in effect
and \bbl@nonfrenchspacing switches it off if necessary.

12.803 \def\bbl@frenchspacing{’
12.804 \ifnum\the\sfcode‘\.=\@m

12.805 \let\bbl@nonfrenchspacing\relax

12.806 \else

12.807 \frenchspacing

12.808 \let\bbl@nonfrenchspacing\nonfrenchspacing

12.809 \fi}
12.810 \let\bbl@nonfrenchspacing\nonfrenchspacing

12.7 Support for extending macros

For each language four control sequences have to be defined that control the
language-specific definitions. To be able to add something to these macro once
they have been defined the macro \addto is introduced. It takes two arguments,
a {control sequence) and TEX-code to be added to the (control sequence).
If the (control sequence) has not been defined before it is defined now.

12.811 \def\addto#1#2{%

12.812 \ifx#1\@undefined

12.813 \def#1{#2}/,

12.814 \else

The control sequence could also expand to \relax, in which case a circular defi-
nition results. The net result is a stack overflow.

12.815 \ifx#1\relax
12.816 \def#1{#2}%
12.817 \else

Otherwise the replacement text for the (control sequence) is expanded and stored
in a token register, together with the TEX-code to be added. Finally the {control
sequence) is redefined, using the contents of the token register.

12.818 {\toks@\expandafter{#1#2}J
12.819 \xdef#1{\the\toks@}1}¥
12.820 \fi

12.821 \fi

12.822 }

12.8 Macros common to a number of languages

This macro makes hyphenation possible. Basically its definition is nothing more
than \nobreak \hskip Opt plus Opt’.

12.823 \def\bbl@t@one{T1}

12.824 \def\allowhyphens{/

12.825 \ifx\cf@encoding\bbl@t@one\else\bbl@allowhyphens\fi}
12.826 \def\bbl@allowhyphens{\nobreak\hskip\z@skip}

\set@low@box The following macro is used to lower quotes to the same level as the comma. It

prepares its argument in box register 0.
12.827 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}Y%
12.828 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@},
12.829 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.

12.830 \def\save@sf@q #1{\leavevmode
12.831 \begingroup
12.832 \edef\@SF{\spacefactor \the\spacefactor}#1\@SF

7"TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak
at this glue node.

43

12.833 \endgroup
12.834 }

\bbledisc For some languages the macro \bbl@disc is used to ease the insertion of discre-
tionaries for letters that behave ‘abnormally’ at a breakpoint.

12.835 \def\bbl@disc#1#2{}
12.836 \nobreak\discretionary{#2-}{}{#1}\allowhyphens}

12.9 Making glyphs available

The file babel.dtx® makes a number of glyphs available that either do not exist
in the 0T1 encoding and have to be ‘faked’, or that are not accessible through
Tlenc.def.

12.10 Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a
separate character, accessible via \quotedblbase. In the 0T1 encoding it is not
available, therefor we make it available by lowering the normal open quote char-
acter to the baseline.

12.837 \ProvideTextCommand{\quotedblbase}{0T1}{%

12.838 \save@sf@q{\set@low@box{\textquotedblright\/}/

12.839 \box\z@\kern-.04em\allowhyphens}}
Make sure that when an encoding other than 0T1 or T1 is used this glyph can still
be typeset.

12.840 \ProvideTextCommandDefault{\quotedblbase}{%

12.841 \UseTextSymbol{0T1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

12.842 \ProvideTextCommand{\quotesinglbase}{0T1}{%

12.843 \save@sf@q{\set@low@box{\textquoteright\/}/

12.844 \box\z@\kern-.04em\allowhyphens}}
Make sure that when an encoding other than 0T1 or T1 is used this glyph can still
be typeset.

12.845 \ProvideTextCommandDefault{\quotesinglbase}{/
12.846 \UseTextSymbol{0T1}{\quotesinglbase}}

\guillemotleft The guillemet characters are not available in 0T1 encoding. They are faked.

\guillemotright12.847 \ProvideTextCommand{\guillemotleft}{0T1}{%
12.848 \ifmmode

12.849 \11

12.850 \else

12.851 \save@sf@q{\nobreak

12.852 \raise.2ex\hbox{$\scriptscriptstyle\11l$}\allowhyphens},

12.853 \fi}
12.854 \ProvideTextCommand{\guillemotright}{0T1}{%
12.855 \ifmmode

12.856 \gg

12.857 \else

12.858 \save@sf@q{\nobreak

12.859 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\allowhyphens}y

12.860 \fi}
Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.861 \ProvideTextCommandDefault{\guillemotleft}{}
12.862 \UseTextSymbol{0T1}{\guillemotleft}}

8The file described in this section has version number v3.8h, and was last revised on
2005/11/23

44

12.863 \ProvideTextCommandDefault{\guillemotright}{%
12.864 \UseTextSymbol{0T1}{\guillemotright}}

\guilsinglleft The single guillemets are not available in 0T1 encoding. They are faked.

\guilsinglright12.865 \ProvideTextCommand{\guilsinglleft}{0T1}{%
12.866 \ifmmode

12.867 <h

12.868 \else

12.869 \save@sf@q{\nobreak

12.870 \raise.2ex\hbox{$\scriptscriptstyle<$}\allowhyphensl}/,

12.871 \fi}
12.872 \ProvideTextCommand{\guilsinglright}{0T1}{%
12.873 \ifmmode

12.874 >%

12.875 \else

12.876 \save@sf@q{\nobreak

12.877 \raise.2ex\hbox{$\scriptscriptstyle>$}\allowhyphensl}

12.878 \fi}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.879 \ProvideTextCommandDefault{\guilsinglleft}{%
12.880 \UseTextSymbol{0T1}{\guilsinglleft}}
12.881 \ProvideTextCommandDefault{\guilsinglright}{/
12.882 \UseTextSymbol{0T1}{\guilsinglright}}

12.11 Letters

\ij The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not
\1J in the OT1 encoded fonts. Therefor we fake it for the 0T1 encoding.

12.883 \DeclareTextCommand{\ij}{0T1}{%

12.884 \allowhyphens i\kern-0.02em j\allowhyphens}
12.885 \DeclareTextCommand{\IJ}{0T1}{%

12.886 \allowhyphens I\kern-0.02em J\allowhyphens}
12.887 \DeclareTextCommand{\ij}{T1}{\char188}

12.888 \DeclareTextCommand{\IJ}{T1}{\char156}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.889 \ProvideTextCommandDefault{\ij}{%
12.890 \UseTextSymbol{OT1}{\ij}}
12.891 \ProvideTextCommandDefault{\IJ}{/
12.892 \UseTextSymbol{0T1}{\IJ}}

\dj The croatian language needs the letters \dj and \DJ; they are available in the T1
\pJ encoding, but not in the 0T1 encoding by default.
Some code to construct these glyphs for the 0T1 encoding was made available
to me by Stipcevic Mario, (stipcevic@olimp.irb.hr).

12.893 \def\crrtic@{\hrule height0.lex widthO.3em}

12.894 \def\crttic@{\hrule heightO.lex widthO.33em}

12.895 %

12.896 \def\ddje{%

12.897 \setbox0\hbox{d}\dimen@=\htO

12.898 \advance\dimen@lex

12.899 \dimen@.45\dimen@

12.900 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

12.901 \advance\dimen@ii.b5ex

12.902 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
12.903 \def\DDJO{Y,

12.904 \setboxO\hbox{D}\dimen®=.55\ht0

12.905 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimeno

12.906 \advance\dimen@ii.15ex % correction for the dash position

45

12.907 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font
12.908 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen®

12.909 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
12.910 %

12.911 \DeclareTextCommand{\dj}{0T1}{\ddje d}

12.912 \DeclareTextCommand{\DJ}{0T1}{\DDJ@ D}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.913 \ProvideTextCommandDefault{\dj}{/%

12.914 \UseTextSymbol{0T1}{\dj}}

12.915 \ProvideTextCommandDefault{\DJ}{%

12.916 \UseTextSymbol{0T1}{\DJ}}

\8S For the T1 encoding \SS is defined and selects a specific glyph from the font, but
for other encodings it is not available. Therefor we make it available here.

12.917 \DeclareTextCommand{\SS}{0T1}{SS}
12.918 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{0T1}{\SS}}

12.12 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make
them usable both outside and inside mathmode.

\glg The ‘german’ single quotes.

\grq12.919 \ProvideTextCommand{\glq}{0T1}{%
12.920 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
12.921 \ProvideTextCommand{\glq}{T1}{%
12.922 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
12.923 \ProvideTextCommandDefault{\glq}{\UseTextSymbol{0T1}\glq}

The definition of \grq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

12.924 \ProvideTextCommand{\grq}{T1}{%

12.925 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}
12.926 \ProvideTextCommand{\grq}{0T1}{%

12.927 \save@sfQq{\kern-.0125em},

12.928 \textormath{\textquoteleft}{\mbox{\textquoteleft}}’
12.929 \kern.O7em\relax}}

12.930 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{0T1}\grq}

\glqq The ‘german’ double quotes.

\grqq12.931 \ProvideTextCommand{\glqq}{0T1}{%
12.932 \textormath{\quotedblbase}{\mbox{\quotedblbasel}}}
12.933 \ProvideTextCommand{\glqq}{T1}{%
12.934 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
12.935 \ProvideTextCommandDefault{\glqq}{\UseTextSymbol{0T1}\glqq}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

12.936 \ProvideTextCommand{\grqg}{T1}{%

12.937 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}

12.938 \ProvideTextCommand{\grqq}{0T1}{%

12.939 \save@sf@q{\kern-.07em},

12.940 \textormath{\textquotedblleft}{\mbox{\textquotedblleftl}}/,

12.941 \kern.O7em\relax}}

12.942 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{0T1}\grqq}

\flq The ‘french’ single guillemets.

\frq12.943 \ProvideTextCommand{\f1q}{0T1}{%
12.944 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.945 \ProvideTextCommand{\f1q}{T1}{%
12.946 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.947 \ProvideTextCommandDefault{\f1q}{\UseTextSymbol{0T1}\f1lq}

46

12.948 \ProvideTextCommand{\frq}{0T1}{%

12.949 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.950 \ProvideTextCommand{\frq}{T1}{%

12.951 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.952 \ProvideTextCommandDefault{\frq}{\UseTextSymbol{0T1}\frq}

\flqq The ‘french’ double guillemets.
\frqq12.953 \ProvideTextCommand{\f1qq}{0T1}{/
12.954 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.955 \ProvideTextCommand{\f1qq}{T1}{%
12.956 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.957 \ProvideTextCommandDefault{\f1lqq}{\UseTextSymbol{0T1}\flqq}

12.958 \ProvideTextCommand{\frqq}{0T1}{%

12.959 \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.960 \ProvideTextCommand{\frqg}{T1}{%

12.961 \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.962 \ProvideTextCommandDefault{\frqq}{\UseTextSymbol{0T1}\frqq}

12.13 Umlauts and trema’s

The command \" needs to have a different effect for different languages. For
German for instance, the ‘umlaut’ should be positioned lower than the default
position for placing it over the letters a, o, u, A, O and U. When placed over an
e, i, E or I it can retain its normal position. For Dutch the same glyph is always
placed in the lower position.

\umlauthigh To be able to provide both positions of \" we provide two commands to switch
\umlautlow the positioning, the default will be \umlauthigh (the normal positioning).

12.963 \def\umlauthigh{J

12.964 \def\bblQumlauta##1{\leavevmode\bgroup’

12.965 \expandafter\accent\csname\f@encoding dgqpos\endcsname

12.966 ##1\allowhyphens\egroup}’%

12.967 \let\bbl@umlaute\bbl@umlauta}

12.968 \def\umlautlow{’

12.969 \def\bbl@umlauta{\protect\lower@umlautl}}

12.970 \def\umlautelow{’

12.971 \def\bbl@umlaute{\protect\lowerQumlaut}}

12.972 \umlauthigh

\lower@umlaut The command \lower@umlaut is used to position the \" closer the the letter.
We want the umlaut character lowered, nearer to the letter. To do this we

need an extra (dimen) register.

12.973 \expandafter\ifx\csname U@D\endcsname\relax

12.974 \csname newdimen\endcsname\U@D

12.975 \fi
The following code fools TEX’s make_accent procedure about the current x-height
of the font to force another placement of the umlaut character.

12.976 \def\lower@umlaut#1{%
First we have to save the current x-height of the font, because we’ll change this
font dimension and this is always done globally.

12.977 \leavevmode\bgroup

12.978 \U@D 1ex,
Then we compute the new x-height in such a way that the umlaut character is
lowered to the base character. The value of .45ex depends on the METAFONT
parameters with which the fonts were built. (Just try out, which value will look

best.)
12.979 {\setbox\z@\hbox{/
12.980 \expandafter\char\csname\f@encoding dgpos\endcsname}
12.981 \dimen@ -.45ex\advance\dimen@\ht\zQ

47

If the new x-height is too low, it is not changed.
12.982 \ifdim lex<\dimen@ \fontdimen5\font\dimen@ \fil}J,

Finally we call the \accent primitive, reset the old x-height and insert the base
character in the argument.

12.983 \expandafter\accent\csname\f@encoding dgqpos\endcsname

12.984 \fontdimen5\font\UGD #17

12.985 \egroup}

For all vowels we declare \" to be a composite command which uses
\bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to
be sure that these definitions override the ones that are provided when the pack-
age fontenc with option OT1 is used. Therefor these declarations are postponed
until the beginning of the document.

12.986 \AtBeginDocument{/,

12.987 \DeclareTextCompositeCommand{\"}{0T1}{a}{\bbl@umlauta{al}}y,
12.988 \DeclareTextCompositeCommand{\"}{0T1}{e}{\bblCumlaute{e}}%
12.989 \DeclareTextCompositeCommand{\"}{0T1}{i}{\bblCumlaute{\i}}}
12.990 \DeclareTextCompositeCommand{\"}{0T1}{\i}{\bblQumlaute{\i}}/,
12.991 \DeclareTextCompositeCommand{\"}{0T1}{o}{\bblCumlauta{o}}%
12.992 \DeclareTextCompositeCommand{\"}{0T1}{u}{\bblCumlauta{u}}%
12.993 \DeclareTextCompositeCommand{\"}{0T1}{A}{\bbl@umlauta{A}}/,
12.994 \DeclareTextCompositeCommand{\"}{0T1}{E}{\bblCumlaute{E}}%
12.995 \DeclareTextCompositeCommand{\"}{0T1}{I}{\bblCumlaute{I}}%
12.996 \DeclareTextCompositeCommand{\"}{0T1}{0}{\bbl@umlauta{0}}/,
12.997 \DeclareTextCompositeCommand{\"}{0T1}{U}{\bbl@umlauta{U}}%
12.998 }

12.14 The redefinition of the style commands

The rest of the code in this file can only be processed by I#TEX, so we check the
current format. If it is plain TEX, processing should stop here. But, because of the
need to limit the scope of the definition of \format, a macro that is used locally in
the following \if statement, this comparison is done inside a group. To prevent
TEX from complaining about an unclosed group, the processing of the command
\endinput is deferred until after the group is closed. This is accomplished by the
command \aftergroup.

12.999 {\def\format{lplain}

12.1000 \ifx\fmtname\format

12.1001 \else

12.1002 \def\format{LaTeX2e}

12.1003 \ifx\fmtname\format

12.1004 \else

12.1005 \aftergroup\endinput

12.1006 \fi

12.1007 \fi}

Now that we’re sure that the code is seen by IATEX only, we have to find out
what the main (primary) document style is because we want to redefine some
macros. This is only necessary for releases of INTEX dated before December 1991.
Therefor this part of the code can optionally be included in babel.def by speci-
fying the docstrip option names.

12.1008 (knames)

The standard styles can be distinguished by checking whether some macros are
defined. In table 1 an overview is given of the macros that can be used for this
purpose.

The macros that have to be redefined for the report and book document styles
happen to be the same, so there is no need to distinguish between those two styles.

\doc@style First a parameter \doc@style is defined to identify the current document style.
This parameter might have been defined by a document style that already uses

48

article : both the \chapter and \opening macros are unde-
fined

report and book : the \chapter macro is defined and the \opening is
undefined

letter : the \chapter macro is undefined and the \opening
is defined

Table 1: How to determine the main document style

macros instead of hard-wired texts, such as artikell.sty [6], so the existence of
\doc@style is checked. If this macro is undefined, i.e., if the document style is
unknown and could therefore contain hard-wired texts, \doc@style is defined to
the default value ‘0.

12.1009 \ifx\@undefined\doc@style

12.1010 \def\doc@style{0}
This parameter is defined in the following if construction (see table 1):

12.1011 \ifx\@undefined\opening

12.1012 \ifx\Qundefined\chapter
12.1013 \def\doc@style{1}}
12.1014 \else

12.1015 \def\doc@style{2}%
12.1016 \fi

12.1017 \else

12.1018 \def\doc@style{3}

12.1019 \fij
12.1020 \fi}

12.14.1 Redefinition of macros

Now here comes the real work: we start to redefine things and replace hard-wired
texts by macros. These redefinitions should be carried out conditionally, in case
it has already been done.

For the figure and table environments we have in all styles:

12.1021 \@ifundefined{figurename}{\def\fnum@figure{\figurename{} \thefigure}}{}
12.1022 \@ifundefined{tablename}{\def\fnum@table{\tablename{} \thetable}}{}

The rest of the macros have to be treated differently for each style. When
\doc@style still has its default value nothing needs to be done.

12.1023 \ifcase \doc@style\relax
12.1024 \or
This means that babel.def is read after the article style, where no \chapter
and \opening commands are defined”.
First we have the \tableofcontents, \listoffigures and \listoftables:

12.1025 \@ifundefined{contentsname}};

12.1026 {\def\tableofcontents{\section*{\contentsname\@nkboth

12.1027 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}J
12.1028 \@starttoc{toc}}}{}

12.1029

12.1030 \@ifundefined{listfigurename}},

12.1031 {\def\listoffigures{\section*{\listfigurename\@ukboth

12.1032 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}J
12.1033 \@starttoc{lof}}}{}

12.1034

12.1035 \@ifundefined{listtablename}y

12.1036 {\def\listoftables{\section*{\listtablename\@mkboth

9A fact that was pointed out to me by Nico Poppelier and was already used in Piet van
Oostrum’s document style option nl.

49

12.
.1038 \@starttoc{lot}}}{}

12

12.

12

12.
12.
12.
12.
12.
12.

12

12.
12.
12.
12.

12

12.

12

12.
12.

12

12

12.
12.
12.
12.

12

12.

12.
1067 {\def\@part [#1]#2{\ifnum \c@secnumdepth >\m@ne
12.

1

[V)

12

12.

12

12.
12.
12.
12.

12

12.
12.
12.
12.
12.

12.

12.
12.
12.

12

1037 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}J

Then the \thebibliography and \theindex environments.

1039 \@ifundefined{refname}},

.1040 {\def\thebibliography#1{\section*{\refname
1041 \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}}7
1042 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}}
1043 \leftmargin\labelwidth
1044 \advance\leftmargin\labelsep
1045 \usecounter{enumi}}}
1046 \def\newblock{\hskip.1lem plus.33em minus.07em}),
.1047 \sloppy\clubpenalty4000\widowpenalty\clubpenalty
1048 \sfcode ‘\.=1000\relax}}{}
1049
1050 \@ifundefined{indexname}7,
1051 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
.1052 \columnseprule \z@
1053 \columnsep 35pt\twocolumn[\section*{\indexname}]7,
.1054 \@nkboth{\uppercase{\indexname}}{\uppercase{\indexname}}J
1055 \thispagestyle{plain}y,
1056 \parskip\z@ plus.3pt\parindent\z@\let\item\@idxitem}}{}

The abstract environment:

.1057 \@ifundefined{abstractname}};
12.

1058 {\def\abstract{\if@twocolumn

.1059 \section*{\abstractname})

1060 \else \small

1061 \begin{center}y

1062 {\bf \abstractname\vspace{-.5em}\vspace{\z@}}}
1063 \end{center}},

.1064 \quotation

1065 \fi}H{}
And last but not least, the macro \part:

1066 \@ifundefined{partname}y,

1068 \refstepcounter{part})

.1069 \addcontentsline{toc}{part}{\thepart
1070 \hspace{lem}#1}\else

.1071 \addcontentsline{toc}Hpart}{#1}\fi
1072 {\parindent\z@ \raggedright

1073 \ifnum \c@secnumdepth >\m@ne

1074 \Large \bf \partname{} \thepart
1075 \par \nobreak

.1076 \fi

1077 \huge \bf

1078 #2\markboth{}{}\par}/

1079 \nobreak

1080 \vskip 3ex\@afterheading}y

1081 }{}

This is all that needs to be done for the article style.

1082 \or

The next case is formed by the two styles book and report. Basically we have
to do the same as for the article style, except now we must also change the

\chapter command.
The tables of contents, figures and tables:

1083 \@ifundefined{contentsname}};

1084 {\def\tableofcontents{\@restonecolfalse
1085 \if@twocolumn\@restonecoltrue\onecolumn
.1086 \fi\chapter*{\contentsname\@mkboth

50

12

12

12
12
12
12
12
12

12

12.
12.
12.
12.
12.
12.

12

12.
12.
12.
12.

12

12.

12.

12

12.

12

12.
12.
12.
12.

12

12.

12

12.
12.
12.
12.

12

12.

12.
12.
12.
12.
12.
12.

12.
1133)
12.
12.
12.
12.
12.
12.
12.

12

1087 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}J

.1088 \@starttoc{toc})

1089 \csname if@restonecol\endcsname\twocolumn
1090 \csname fi\endcsname}}{}

1091

1092 \@ifundefined{listfigurenamel},

1093 {\def\listoffigures{\@restonecolfalse

1094 \if@twocolumn\@restonecoltrue\onecolumn
.1095 \fi\chapter*{\listfigurename\@ukboth

1096 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}J
1097 \@starttoc{lof})

1098 \csname if@restonecol\endcsname\twocolumn
1099 \csname fi\endcsname}}{}

1100

1101 \@ifundefined{listtablenamel}},

.1102 {\def\listoftables{\@restonecolfalse

1103 \if@twocolumn\@restonecoltrue\onecolumn
1104 \fi\chapter*{\listtablename\@nkboth

1105 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}},
1106 \@starttoc{lot})

1107 \csname if@restonecol\endcsname\twocolumn
1108 \csname fi\endcsname}}{}

Again, the bibliography and index environments; notice that in this case we
use \bibname instead of \refname as in the definitions for the article style. The
reason for this is that in the article document style the term ‘References’ is used
in the definition of \thebibliography. In the report and book document styles
the term ‘Bibliography’ is used.

1109 \@ifundefined{bibnamel}};

.1110 {\def\thebibliography#1{\chapter*{\bibname

1111 \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}}/,
1112 \list{[\arabic{enumi}]}{\settowidth\labelwidth{[#1]}}

1113 \leftmargin\labelwidth \advance\leftmargin\labelsep

1114 \usecounter{enumi}}y

1115 \def\newblock{\hskip.1lem plus.33em minus.07em}},

1116 \sloppy\clubpenalty4000\widowpenalty\clubpenalty

1117 \sfcode‘\.=1000\relax}}{}

1118

.1119 \@ifundefined{indexname}J

1120 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
1121 \columnseprule \z@

1122 \columnsep 35pt\twocolumn[\@makeschapterhead{\indexname}]},
1123 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}J,
1124 \thispagestyle{plain}’,

1125 \parskip\z@ plus.3pt\parindent\z@ \let\item\@idxitem}}{}

Here is the abstract environment:
1126 \@ifundefined{abstractnamel}/,

1127 {\def\abstract{\titlepage
1128 \null\vfil

1129 \begin{center}/

1130 {\bf \abstractnamel}l},

1131 \end{center}}}{}

And last but not least the \chapter, \appendix and \part macros.
1132 \@ifundefined{chaptername}{\def\@chapapp{\chaptername}}{}

1134 \@ifundefined{appendixnamel}},
1135 {\def\appendix{\par

1136 \setcounter{chapter}{0}}

1137 \setcounter{section}{0}},

1138 \def \@chapapp{\appendixname}},

1139 \def\thechapter{\Alph{chapter}}}}{}
1140 %

51

12.1141 \@ifundefined{partname}},

12.1142 {\def\@part [#1]#2{\ifnum \c@secnumdepth >-2\relax
12.1143 \refstepcounter{part}}

12.1144 \addcontentsline{toc}{part}{\thepart
12.1145 \hspace{lem}#1}\else

12.1146 \addcontentsline{toc}{part }H{#1}\fi
12.1147 \markboth{H}%

12.1148 {\centering

12.1149 \ifnum \c@secnumdepth >-2\relax

12.1150 \huge\bf \partname{} \thepart

12.1151 \par

12.1152 \vskip 20pt \fi

12.1153 \Huge \bf

12.1154 #1\par}\@endpart}}{}

12.1155 \or

Now we address the case where babel.def is read after the letter style.
The letter document style defines the macro \opening and some other macros
that are specific to letter. This means that we have to redefine other macros,
compared to the previous two cases.

First two macros for the material at the end of a letter, the \cc and \encl
macros.

12.1156 \@ifundefined{ccname}/,

12.1157 {\def\cc#1{\par\noindent

12.1158 \parbox [t]{\textwidth}/

12.1159 {\@hangfrom{\rm \ccname : }\ignorespaces #1\strut}\par}}{}
12.1160

12.1161 \@ifundefined{enclname}}

12.1162 {\def\encl#1{\par\noindent

12.1163 \parbox [t]{\textwidth}/

12.1164 {\@hangfrom{\rm \enclname : }\ignorespaces #1\strut}\par}}{}

The last thing we have to do here is to redefine the headings pagestyle:
12.1165 \@ifundefined{headtonamel}}

12.1166 {\def\ps@headings{/

12.1167 \def\@oddhead{\sl \headtoname{} \ignorespaces\toname \hfil
12.1168 \@date \hfil \pagename{} \thepagel}/

12.1169 \def\@oddfoot{}}}{}

This was the last of the four standard document styles, so if \doc@style has
another value we do nothing and just close the if construction.

12.1170 \fi

Here ends the code that can be optionally included when a version of IXTEX is in
use that is dated before December 1991.

12.1171 (/names)
12.1172 (/core)

12.15 Cross referencing macros

The ETEX book states:

The key argument is any sequence of letters, digits, and punctuation
symbols; upper- and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a lan-
guage that has active characters, special care has to be taken of the category
codes of these characters when they appear in an argument of the cross referenc-
ing macros.

When a cross referencing command processes its argument, all tokens in this
argument should be character tokens with category ‘letter’ or ‘other’.

The only way to accomplish this in most cases is to use the trick described in
the TEXbook [1] (Appendix D, page 382). The primitive \meaning applied to a

52

token expands to the current meaning of this token. For example, ‘\meaning\A’
with \A defined as ‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with
all category codes set to ‘other’ or ‘space’.

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine
it to call the original macro with the ‘sanitized’ argument. The reason why we do
it this way is that we don’t want to redefine the I#TEX macros completely in case
their definitions change (they have changed in the past).

Because we need to redefine a number of commands we define the command
\bbl@redefine which takes care of this. It creates a new control sequence,
\org@. ..

12.1173 (xcore | shorthands)

12.1174 \def\bbl@redefine#1{},

12.1175 \edef\bbl@tempa{\expandafter\@gobble\string#1}/,
12.1176 \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1177 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.
12.1178 \@onlypreamble\bblOredefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such
as \ifthenelse.
12.1179 \def\bbl@redefine@long#1{/,
12.1180 \edef\bbl@tempa{\expandafter\@gobble\string#1}/
12.1181 \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1182 \expandafter\long\expandafter\def\csname\bblO@tempa\endcsnamel}
12.1183 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly
more intelligent macro. A robust command foo is defined to expand to
\protect\foo.,. So it is necessary to check whether \foo, exists.
12.1184 \def\bbl@redefinerobust#1{/,
12.1185 \edef\bbl@tempa{\expandafter\@gobble\string#1}/,
12.1186 \expandafter\ifx\csname \bbl@tempa\space\endcsname\relax

12.1187 \expandafter\let\csname org@\bbl@tempa\endcsname#1

12.1188 \expandafter\edef\csname\bbl@tempa\endcsname{\noexpand\protect
12.1189 \expandafter\noexpand\csname\bbl@tempa\space\endcsnamel}’,
12.1190 \else

12.1191 \expandafter\let\csname org@\bbl@tempa\expandafter\endcsname
12.1192 \csname\bbl@tempa\space\endcsname

12.1193 \fi
The result of the code above is that the command that is being redefined is always
robust afterwards. Therefor all we need to do now is define \foo_,.
12.1194 \expandafter\def\csname\bbl@tempa\space\endcsname}
This command should only be used in the preamble of the document.
12.1195 \@onlypreamble\bbl@redefinerobust

\newlabel The macro \label writes a line with a \newlabel command into the .aux file to
define labels.

12.1196 %\bbl@redefine\newlabel#1#2{%
12.1197 % \@safe@activestrue\org@newlabel{#1}{#2}\@safe@activesfalse}

\@newl@bel We need to change the definition of the IXTEX-internal macro \@newl@bel. This
is needed because we need to make sure that shorthand characters expand to their
non-active version.

12.1198 \def\@newl@bel#1#2#3{%

First we open a new group to keep the changed setting of \protect local and then
we set the @safe@actives switch to true to make sure that any shorthand that
appears in any of the arguments immediately expands to its non-active self.

53

12.1199 {%

12.1200 \@safe@activestrue

12.1201 \@ifundefined{#10@#2}%

12.1202 \relax

12.1203 A

12.1204 \gdef \@multiplelabels {%

12.1205 \@latex@warning@no@line{There were multiply-defined labels}}}
12.1206 \@latex@warning@no@line{Label ‘#2’ multiply definedl}%
12.1207 Yh

12.1208 \global\@namedef{#10#2}{#31}/,

12.1209 Yh

12.1210 }

\@testdef An internal IATEX macro used to test if the labels that have been written on the
.aux file have changed. It is called by the \enddocument macro. This macro needs
to be completely rewritten, using \meaning. The reason for this is that in some
cases the expansion of \#10#2 contains the same characters as the #3; but the
character codes differ. Therefor BTEX keeps reporting that the labels may have
changed.

12.1211 \CheckCommand*\@testdef [3]{%

12.1212 \def\reserved@a{#3}/,

12.1213 \expandafter \ifx \csname #1@#2\endcsname \reserved®a
12.1214 \else

12.1215 \@tempswatrue

12.1216 \fi}

Now that we made sure that \@testdef still has the same definition we can rewrite
it. First we make the shorthands ‘safe’.

12.1217 \def\Q@testdef #1#2#3{%

12.1218 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which
is being checked.

12.1219 \expandafter\let\expandafter\bbl@tempa\csname #10#2\endcsname
Then we define \bbl@tempb just as \@newl@bel does it.

12.1220 \def\bbl@tempb{#3}%
12.1221 \@safe@activesfalse

When the label is defined we replace the definition of \bbl@tempa by its meaning.
12.1222 \ifx\bbl@tempa\relax
12.1223 \else

12.1224 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bblQ@tempaly,
12,1225 \fi

We do the same for \bbl@tempb.
12.1226 \edef\bbl@tempb{\expandafter\stripOprefix\meaning\bbl@tempbl}

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.
12.1227 \ifx \bbl@tempa \bbl@tempb
12.1228 \else

12.1229 \@tempswatrue
12.1230 \fi}

\ref The same holds for the macro \ref that references a label and \pageref to refer-
\pageref ence a page. So we redefine \ref and \pageref. While we change these macros,
we make them robust as well (if they weren’t already) to prevent problems if they
should become expanded at the wrong moment.
12.1231 \bbl@redefinerobust\ref#1{},
12.1232 \@safe®@activestrue\org@ref{#1}\@safe@activesfalse}
12.1233 \bbl@redefinerobust\pageref#1{J,
12.1234 \@safe@activestrue\org@pageref{#1}\@safeQactivesfalse}

54

\ecitex The macro used to cite from a bibliography, \cite, uses an internal macro,
\@citex. It is this internal macro that picks up the argument(s), so we rede-
fine this internal macro and leave \cite alone. The first argument is used for
typesetting, so the shorthands need only be deactivated in the second argument.

12.1235 \bbl@redefine\Q@citex [#1]#2{%

12.1236 \@safe®@activestrue\edef\@tempa{#2}\@safe@activesfalse

12.1237 \org@@citex [#1]{\@tempa}}
Unfortunately, the packages natbib and cite need a different definition of
\@citex... To begin with, natbib has a definition for \@citex with three ar-
guments... We only know that a package is loaded when \begin{document} is
executed, so we need to postpone the different redefinition.

12.1238 \AtBeginDocument{Y

12.1239 \@ifpackageloaded{natbib}{/
Notice that we use \def here instead of \bbl@redefine because \org@@citex is
already defined and we don’t want to overwrite that definition (it would result in
parameter stack overflow because of a circular definition).

12.1240 \def\@citex[#1] [#2]#3{},

12.1241 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse

12.1242 \org@@citex [#1] [#2] {\@tempal}}’

12.1243 H}}
The package cite has a definition of \@citex where the shorthands need to be
turned off in both arguments.

12.1244 \AtBeginDocument{Y

12.1245 \@ifpackageloaded{cite}{%

12.1246 \def\@citex [#1]1#2{/,

12.1247 \@safe@activestrue\org@@citex [#1]{#2}\@safe@activesfalsel),

12.1248 H3

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references
from the database.

12.1249 \bbl@redefine\nocite#1{},
12.1250 \@safe@activestrue\org@nocite{#1}\O@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages
such as natbib or cite are not loaded its second argument is used to typeset the
citation label. In that case, this second argument can contain active characters
but is used in an environment where \@safe@activestrue is in effect. This switch
needs to be reset inside the \hbox which contains the citation label. In order to
determine during .aux file processing which definition of \bibcite is needed we
define \bibcite in such a way that it redefines itself with the proper definition.

12.1251 \bbl@redefine\bibcite{%
We call \bbl@cite@choice to select the proper definition for \bibcite. This new
definition is then activated.

12.1252 \bbl@cite@choice
12.1253 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither
natbib nor cite is loaded.

12.1254 \def\bbl@bibcite#1#2{%
12.1255 \org@bibcite{#1}{\@safe@activesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.
12.1256 \def\bbl@cite@choice{%
First we give \bibcite its default definition.
12.1257 \global\let\bibcite\bbl@bibcite

Then, when natbib is loaded we restore the original definition of \bibcite .
12.1258 \Q@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%

55

For cite we do the same.
12.1259 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%
Make sure this only happens once.

12.1260 \globalllet\bbl@cite@choice\relax
12.1261 }

When a document is run for the first time, no .aux file is available, and
\bibcite will not yet be properly defined. In this case, this has to happen before
the document starts.

12.1262 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal IATEX macros called by \bibitem that write the citation
label on the .aux file.

12.1263 \bbl@redefine\@bibitem#1{%
12.1264 \@safe@activestrue\org@@bibitem{#1}\@safe@activesfalse}

12.16 marks

\markright Because the output routine is asynchronous, we must pass the current language
\markboth attribute to the head lines, together with the text that is put into them. To achieve
this we need to adapt the definition of \markright and \markboth somewhat.

12.1265 \bbl@redefine\markright#1{/

First of all we temporarily store the language switching command, using an ex-
panded definition in order to get the current value of \languagename.

12.1266 \edef\bbl@tempb{\noexpand\protect

12.1267 \noexpand\foreignlanguage{\languagenamel}}’
Then, we check whether the argument is empty; if it is, we just make sure the
scratch token register is empty.

12.1268 \def\bblQarg{#11}/,

12.1269 \ifx\bbl@arg\Qempty

12.1270 \toks@{}%

12.1271 \else
Next, we store the argument to \markright in the scratch token register, together
with the expansion of \bbl@tempb (containing the language switching command)
as defined before. This way these commands will not be expanded by using \edef
later on, and we make sure that the text is typeset using the correct language set-
tings. While doing so, we make sure that active characters that may end up in the
mark are not disabled by the output routine kicking in while \@safe@activestrue

is in effect.
12.1272 \expandafter\toks@\expandafter{/,
12.1273 \bbl@tempb{\protect\bbl@restore@actives#1}}%

12,1274 \fi
Then we define a temporary control sequence using \edef.
12.1275 \edef\bbl@tempa{’,

When \bbl@tempa is executed, only \languagename will be expanded, because of
the way the token register was filled.

12.1276 \noexpand\org@markright{\the\toks@}}/,
12.1277 \bbl@tempa
12.1278 }

The definition of \markboth is equivalent to that of \markright, except that we
need two token registers.

12.1279 \bbl@redefine\markboth#1#2{%

12.1280 \edef\bbl@tempb{\noexpand\protect

12.1281 \noexpand\foreignlanguage{\languagenamel}}’

12.1282 \def\bblQarg{#11}/,

12.1283 \ifx\bbl@arg\Qempty

56

12.1284 \toks@e{}%

12.1285 \else

12.1286 \expandafter\toks@\expandafter{)

12.1287 \bbl@tempb{\protect\bbl@restore@actives#1}}%
12.1288 \fi

12.1289 \def\bblQarg{#21}/,

12.1200 \ifx\bbl@arg\Gempty

12.1291 \toks8{}

12.1292 \else

12.1293 \expandafter\toks8\expandafter{y,

12.1294 \bbl@tempb{\protect\bblOrestoreQactives#2}1}/,

12.1295 \fi
12.1206 \edef\bbl@tempa{’

12.1297 \noexpand\org@markboth{\the\toks@}{\the\toks8}1}/
12.1298 \bbl@tempa
12.1299 }

12.1300 (/core | shorthands)

12.17 Encoding issues (part 2)

\TeX Because documents may use font encodings other than one of the latin encodings,
\LaTex Wwe make sure that the logos of TEX and KETEX always come out in the right
encoding.
12.1301 (*core)
12.1302 \bbl@redefine\TeX{\textlatin{\org@TeX}}
12.1303 \bbl@redefine\LaTeX{\textlatin{\org@LaTeX}}
12.1304 (/core)

12.18 Preventing clashes with other packages
12.18.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the
page a certain fragment of text appears on. This can be achieved by the following
piece of code:

\ifthenelse{\isodd{\pageref{some:label}}}
{code for odd pages}
{code for even pages}

In order for this to work the argument of \isodd needs to be fully expandable.
With the above redefinition of \pageref it is not in the case of this example. To
overcome that, we add some code to the definition of \ifthenelse to make things
work.
The first thing we need to do is check if the package ifthen is loaded. This

should be done at \begin{document} time.

12.1305 (*package)

12.1306 \AtBeginDocument{%

12.1307 \@ifpackageloaded{ifthen}{%
Then we can redefine \ifthenelse:

12.1308 \bbl@redefine@long\ifthenelse#1#2#3{}

We want to revert the definition of \pageref to its original definition for the
duration of \ifthenelse, so we first need to store its current meaning.

12.1309 \let\bbl@tempa\pageref

12.1310 \let\pageref\org@pageref
Then we can set the \@safe@actives switch and call the original \ifthenelse.
In order to be able to use shorthands in the second and third arguments of
\ifthenelse the resetting of the switch and the definition of \pageref happens
inside those arguments.

o7

12.1311 \@safe@activestrue

12.1312 \org@ifthenelse{#1}{%
12.1313 \let\pageref\bbl@tempa
12.1314 \@safe@activesfalse
12.1315 #23{%

12.1316 \let\pageref\bbl@tempa
12.1317 \@safe@activesfalse
12.1318 #3}%

12.1319 Y

When the package wasn’t loaded we do nothing.

12.1320 H¥%
12.1321 }

12.18.2 varioref

\@@vpageref When the package varioref is in use we need to modify its internal command
\vrefpagenum \@@vpageref in order to prevent problems when an active character ends up in
\Ref the argument of \vref.
12.1322 \AtBeginDocument{%
12.1323 \@ifpackageloaded{varioref}{%

12.1324 \bbl@redefine\@Q@vpageref#1 [#2]#3{}
12.1325 \@safe@activestrue

12.1326 \org@@Qvpageref{#1} [#2] {#3}V
12.1327 \@safe@activesfalsel}),

The same needs to happen for \vrefpagenum.

12.1328 \bbl@redefine\vrefpagenum#1#2{%
12.1329 \@safe@activestrue

12.1330 \org@vrefpagenum{#1}{#2}%
12.1331 \@safe@activesfalsel}’

The package varioref defines \Ref to be a robust command wich uppercases
the first character of the reference text. In order to be able to do that it needs
to access the exandable form of \ref. So we employ a little trick here. We
redefine the (internal) command \Ref,, to call \org@ref instead of \ref. The
disadvantgage of this solution is that whenever the derfinition of \Ref changes,
this definition needs to be updated as well.

12.1332 \expandafter\def\csname Ref \endcsname#1{J,

12.1333 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\Qtempa}
12.1334 HY%

12.1335 }

12.18.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with
the hhline package. The reason is that it uses the -’ character which is made
active by the french support in babel. Therefor we need to reload the package
when the ‘’ is an active character.

So at \begin{document} we check whether hhline is loaded.
12.1336 \AtBeginDocument{}
12.1337 \@ifpackageloaded{hhlinel}%
Then we check whether the expansion of \normal@char: is not equal to \relax.
12.1338 {\expandafter\ifx\csname normal@char\string:\endcsname\relax
12.1339 \else
In that case we simply reload the package. Note that this happens after the
category code of the @-sign has been changed to other, so we need to temporarily
change it to letter again.

12.1340 \makeatletter

12.1341 \def\@currname{hhline}\input{hhline.sty}\makeatother
12.1342 \£i}%

12.1343 {3

58

12.18.4 General

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat dif-
ferently as the standard classes. A symptom of this is that the command
\foreignlanguage which babel adds to the marks can end up inside the ar-
gument of \MakeUppercase. To prevent unexpected results we need to define
\FOREIGNLANGUAGE here.

12.1344 \DeclareRobustCommand{\FOREIGNLANGUAGE}[1]{%
12.1345 \lowercase{\foreignlanguage{#1}}}
12.1346 (/package)

\nfss@catcodes IATEX’s font selection scheme sometimes wants to read font definition files in the
middle of processing the document. In order to guard against any characters
having the wrong \catcodes it always calls \nfss@catcodes before loading a file.
Unfortunately, the characters " and ’ are not dealt with. Therefor we have to add
them until ¥TEX does that herself.

12.1347 (*core | shorthands)

12.1348 \ifx\nfss@catcodes\Qundefined
12.1349 \else

12.1350 \addto\nfss@catcodes{/,

12.1351 \@makeother\’¥
12.1352 \@makeother\"%
12.1353 }

12.1354 \fi

12.1355 (/core | shorthands)

13 Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language defini-
tion file. This can be done by creating a file with the same name as the language
definition file, but with the extension .cfg. For instance the file norsk.cfg will
be loaded when the language definition file norsk.1df is loaded.

13.1 (*core)
For plain-based formats we don’t want to override the definition of \loadlocalcfg
from plain.def.

13.2 \ifx\loadlocalcfg\@undefined
13.3 \def\loadlocalcfg#1{J

13.4 \InputIfFileExists{#1.cfg}

13.5 L\ typeout {xksksokskokskkskokskkkkkkkkkkkdokdokdorkokkxkxk k™~ I
13.6 * Local config file #1.cfg used~"~J%

13.7 *}h

13.8 }

13.9 {3}

13.10 \fi

Just to be compatible with I TEX 2.09 we add a few more lines of code:
13.11 \ifx\Qunexpandable@protect\Qundefined

13.12 \def\Q@unexpandable@protect{\noexpand\protect\noexpand}
13.13 \long\def \protected@urite#1#2#3{%

13.14 \begingroup

13.15 \let\thepage\relax

13.16 #2%

13.17 \let\protect\@unexpandable@protect
13.18 \edef\reserved@a{\write#1{#3}}/
13.19 \reserved@a

13.20 \endgroup

13.21 \if@nobreak\ifvmode\nobreak\fi\fi
13.22 }

13.23 \fi

13.24 (/core)

59

14 Driver files for the documented source code

Since babel version 3.4 all source files that are part of the babel system can be
typeset separately. But to typeset them all in one document, the file babel.drv
can be used. If you only want the information on how to use the babel system
and what goodies are provided by the language-specific files, you can run the file

user.drv through ITEX to get a user guide.

14.1 (*driver)
14.2 \documentclass{ltxdoc}
14.3 \usepackage{url,tlenc,supertabular}
14.4 \usepackage [icelandic,english]{babel}
14.5 \DoNotIndex{\!,\’,\,,\.,\=,\:,\5,\7,\/,\ 7, \ ¢, \aM}
14.6 \DoNotIndex{\@, \@ne, \@m, \@afterheading, \@date, \@endpart}
14.7 \DoNotIndex{\@hangfrom, \@idxitem, \@makeschapterhead, \@mkboth}
14.8 \DoNotIndex{\@oddfoot,\@oddhead, \@restonecolfalse, \@restonecoltrue}
14.9 \DoNotIndex{\@starttoc,\@unused}
14.10 \DoNotIndex{\accent,\active}
14.11 \DoNotIndex{\addcontentsline, \advance, \Alph, \arabic}
14.12 \DoNotIndex{\baselineskip, \begin, \begingroup, \bf, \box, \c@secnumdepth}
14.13 \DoNotIndex{\catcode, \centering, \char, \chardef,\clubpenalty}
14.14 \DoNotIndex{\columnsep, \columnseprule, \crcr, \csname}
14.15 \DoNotIndex{\day, \def,\dimen,\discretionary,\divide,\dp, \do}
14.16 \DoNotIndex{\edef,\else, \@empty, \end, \endgroup, \endcsname, \endinput}
14.17 \DoNotIndex{\errhelp, \errmessage, \expandafter,\fi,\filedate}
14.18 \DoNotIndex{\fileversion, \fmtname, \fnum@figure, \fnum@table,\fontdimen}
14.19 \DoNotIndex{\gdef,\global}
14.20 \DoNotIndex{\hbox,\hidewidth,\hfil,\hskip, \hspace,\ht,\Huge, \huge}
14.21 \DoNotIndex{\ialign,\if@twocolumn,\ifcase,\ifcat,\ifhmode, \ifmmode}
14.22 \DoNotIndex{\ifnum, \ifx,\immediate,\ignorespaces, \input,\item}
14.23 \DoNotIndex{\kern}
14.24 \DoNotIndex{\labelsep, \Large, \large, \labelwidth,\lccode,\leftmargin}
14.25 \DoNotIndex{\lineskip, \leavevmode,\let,\list,\11,\long, \lower}
14.26 \DoNotIndex{\m@ne, \mathchar, \mathaccent,\markboth, \month,\multiply}
14.27 \DoNotIndex{\newblock, \newbox, \newcount, \newdimen, \newif, \newwrite}
14.28 \DoNotIndex{\nobreak, \noexpand, \noindent, \null, \number}
14.29 \DoNotIndex{\onecolumn, \or}
14.30 \DoNotIndex{\p@,par, \parbox,\parindent,\parskip,\penalty}
14.31 \DoNotIndex{\protect, \ps@headings}
14.32 \DoNotIndex{\quotation}
14.33 \DoNotIndex{\raggedright,\raise, \refstepcounter, \relax,\rm, \setbox}
14.34 \DoNotIndex{\section, \setcounter,\settowidth, \scriptscriptstyle}
14.35 \DoNotIndex{\sfcode,\sl, \sloppy,\small,\space, \spacefactor, \strut}
14.36 \DoNotIndex{\string}
14.37 \DoNotIndex{\textwidth, \the, \thechapter, \thefigure, \thepage, \thepart}
14.38 \DoNotIndex{\thetable, \thispagestyle,\titlepage, \tracingmacros}
14.39 \DoNotIndex{\tw@, \twocolumn, \typeout, \uppercase, \usecounter}
14.40 \DoNotIndex{\vbox,\vfil, \vskip, \vspace, \vss}
14.41 \DoNotIndex{\widowpenalty, \write, \xdef,\year,\z@,\z0@skip}

Here \d1qq is defined so that an example of "’ can be given.

14.42 \makeatletter

14.43 \gdef\d1lqq{{\setbox\tw@=\hbox{, }\setbox\z@=\hbox{’’}%
14.44 \dimen\z@=\ht\z@ \advance\dimen\z@-\ht\tw@

14.45 \setbox\z@=\hbox{\lower\dimen\z@\box\z@}\ht\z@=\ht\tw@
14.46 \dp\z@=\dp\tw@ \box\z@\kern-.04em}}

The code lines are numbered within sections,

14.47 (*luser)

14.48 \@addtoreset{CodelineNo}{section}

14.49 \renewcommand\theCodelineNo{},

14.50 \reset@font\scriptsize\thesection. \arabic{CodelineNo}}

60

which should also be visible in the index; hence this redefinition of a macro from
doc.sty.

14.51 \renewcommand\codeline@wrindex[1]{\if@filesw

14.52 \immediate\write\@indexfile
14.53 {\string\indexentry{#1}J
14.54 {\number\c@section. \number\c@CodelineNo}}\fi}

The glossary environment is used or the change log, but its definition needs
changing for this document.

14.55 \renewenvironment{theglossary}{J,

14.56 \glossary@prologue/,
14.57 \GlossaryParms \let\item\@idxitem \ignorespaces}y
1458 {}

14.59 (/luser)
14.60 \makeatother
A few shorthands used in the documentation
14.61 \font\manual=logol0 7 font used for the METAFONT logo, etc.
14.62 \newcommand*\MF{{\manual META}\-{\manual FONT}}
14.63 \newcommand*\TeXhax{\TeX hax}
14.64 \newcommand*\babel{\textsf{babel}}
14.65 \newcommand*\Babel{\textsf{Babel}}
14.66 \newcommand*\m[1] {\mbox{\langle\it#1\/\rangle}}
14.67 \newcommand*\langvar{\m{lang}}

Some more definitions needed in the documentation.

14.68 % \newcommand*\note [1] {\textbf{#1}}
14.69 \newcommand*\note [1]{}

14.70 \newcommand*\bs1l{\protect\bslash}
14.71 \newcommand*\Lopt [1]{\textsf{#1}}
14.72 \newcommand*\Lenv [1]{\textsf{#1}}
14.73 \newcommand*\file[1]{\texttt{#1}}
14.74 \newcommand*\cls [1]{\texttt{#1}}
14.75 \newcommand*\pkg [1] {\texttt{#1}}
14.76 \newcommand*\langdeffile [1]{/
14.77 (—user) \clearpage

14.78 \DocInput{#1}}

When a full index should be generated uncomment the line with \EnableCrossrefs.
Beware, processing may take some time. Use \DisableCrossrefs when the index
is ready.

14.79 % \EnableCrossrefs
14.80 \DisableCrossrefs

Inlude the change log.
14.81 (—user) \RecordChanges
The index should use the linenumbers of the code.
14.82 (—user)\CodelineIndex
Set everything in \MacroFont instead of \AltMacroFont
14.83 \setcounter{StandardModuleDepth}{1}
For the user guide we only want the description parts of all the files.
14.84 (+user)\OnlyDescription
Here starts the document

14.85 \begin{document}
14.86 \DocInput{babel.dtx}

All the language definition files.

14.87 (4user)\clearpage

14.88 \langdeffile{esperanto.dtx}
14.89 \langdeffile{interlingua.dtx}
14.90 %

14.91 \langdeffile{dutch.dtx}

61

14.92 \1langdeffile{english.dtx}
14.93 \langdeffile{germanb.dtx}
14.94 \langdeffile{ngermanb.dtx}
14.95 %
14.96 \langdeffile{breton.dtx}
14.97 \langdeffile{welsh.dtx}
14.98 \langdeffile{irish.dtx}
14.99 \langdeffile{scottish.dtx}
14.100 %
14.101 \langdeffile{greek.dtx}
14.102 %
14.103 \langdeffile{frenchb.dtx}
14.104 \langdeffile{italian.dtx}
14.105 \langdeffile{latin.dtx}
14.106 \langdeffile{po