Babel, a multilingual package for use with IITEX’s
standard document classes®

Johannes Braams
Kersengaarde 33
2723 BP Zoetermeer
The Netherlands
babel@braams.xs4all.nl

Printed November 16, 2011

Abstract

The standard distribution of I¥TEX contains a number of document
classes that are meant to be used, but also serve as examples for other
users to create their own document classes. These document classes have
become very popular among IXTEX users. But it should be kept in mind
that they were designed for American tastes and typography. At one time
they contained a number of hard-wired texts. This report describes babel, a
package that makes use of the new capabilities of TEX version 3 to provide
an environment in which documents can be typeset in a language other than
US English, or in more than one language.

Contents
1 The user interface 6
1.1 Languages supported by Babel 7
1.2 Workarounds L 8
2 Changes for BTEX 2¢ 8
3 Changes in Babel version 3.7 8
4 Changes in Babel version 3.6 9
5 Changes in Babel version 3.5 10
6 The interface between the core of babel and the language defi-
nition files 11
6.1 Support for active characters 12
6.2 Support for saving macro definitions L. 13
6.3 Support for extending macros 13
6.4 Macros common to a number of languages 13
7 Compatibility with german.sty 13
8 Compatibility with ngerman.sty 14
9 Compatibility with the french package 14

*During the development ideas from Nico Poppelier, Piet van Oostrum and many others have
been used. Bernd Raichle has provided many helpful suggestions.

10 Identification

11 The Package File
11.1 Language options

12 The Kernel of Babel

12.1 Encoding issues (part 1)
12.2 Multiple languages
12.3 Support for active characters
124 Shorthands
12.5 Language attributes
12.6 Support for saving macro definitions . . .
12.7 Support for extending macros
12.8 Macros common to a number of languages
12.9 Making glyphs available
12.10 Quotation marks
12.11 Letters
12.12 Shorthands for quotation marks
12.13 Umlauts and trema’s
12.14 The redefinition of the style commands . .

12.14.1 Redefinition of macros
12.15 Cross referencing macros
12.16 markso
12.17 Encoding issues (part 2)
12.18 Preventing clashes with other packages . .

12.18.1 ifthen

12.18.2 varioref

12.18.3 hhline

12.18.4 hyperref

12.18.5 General

13 Local Language Configuration

14 Driver files for the documented source code
15 Conclusion

16 Acknowledgements

17 References

18 The Esperanto language

19 The Interlingua language

20 The Dutch language

21 The English language

22 The German language

23 The German language — new orthography
24 The Breton language

25 The Welsh language

26 The Irish language

27 The Scottish language

14

15
15

18
19
19
32
33
42
44
45
46
46
46
47
48
49
50
o1
55
58
59
60
60
60
61
61
61

62

63

67

67

67

68

71

73

77

81

86

89

92

94

96

28 The Greek language
28.1 Typing conventions L oo
28.2 Greek numbering

29 The French language
29.1 Basicinterface oL
29.2 Customisation e
29.3 Hyphenation checks o000
29.4 Changes i e
29.5 File frenchb.cfg oo
29.6 Imitial setup
29.7 Punctuationo Lo
29.8 Commands for French quotation marks
29.9 DateinFrench
29.10 Extra utilities Lo o
29.11 Formatting numbers oo
29.12 Caption names. oo e e e e e
29.13 French lists. L
29.14 French indentation of sections
29.15 Formatting footnotes o oL
29.16 Global layout
29.17 Dots... . o .o e
29.18 Setup options: keyval stuff
29.19 Clean up and exit

30 The Italian language
30.1 Support for etymological hyphenation
30.2 Facilities required by the ISO 31/XI regulations
30.3 Accents
30.4 Caporali or French double quotes
30.5 Finishing commands
30.6 References e

31 The Latin language

32 Latin shortcuts

33 Etymological hyphenation
34 The Portuguese language

35 The Spanish language
35.1 The Code e

36 The Catalan language
37 This file

38 The Galcian language
38.1 The Code e

39 The Basque language
40 The Romanian language

41 The Danish language

98
98
98

106
106
107
109
110
112
112
114
119
120
120
124
125
127
129
129
130
131
132
141

142
144
146
147
147
150
150

151

154

156

158

162
166

182

189

189
191

208

211

213

42 The Icelandic language

42.1
42.2
42.3
42.4
42.5
42.6
42.7
42.8

OVEIVIEW v o e e e e e e e e
References
TEXnical details oo
Captionnames and date
Icelandic quotation marks
Old Icelandic. i e
Formatting numbers L L Lo
Extra utilitieso oo

43 The Norwegian language

44 The Swedish language

45 The North Sami language

45.1

The code of samin.dtx

46 The Finnish language

47 The Hungarian language

48 The Estonian language

48.1

Implementation

49 The Albanian language

50 The Croatian language

51 The Czech Language

51.1
51.2
51.3

Usage o i e e
Compatibility
Implementation L oo Lo

52 The Polish language

53 The Serbocroatian language

54 The Slovak language

54.1
54.2

Compatibility o
Implementation

55 The Slovenian language

56 The Russian language

57 The Bulgarian language

58 The Ukrainian language

59 The Lower Sorbian language

60 The Upper Sorbian language

61 The Turkish language

62 The Hebrew language

62.1
62.2
62.3

62.4

Acknowledgement oL Lo o
The DOCSTRIP modules
Hebrew language definitions
62.3.1 Hebrew numerals
Right to left support

224

228

232
232

234

237

252
252

256

259

261
261
261
262

273

278

281
282
282

294

296

308

319

331

333

336

62.4.1 Switching from LR to RL mode and back 349

62.4.2 Counters 352
62.4.3 Preserving logos 0oL 353
62.4.4 List environments Lo Lo 353
62.4.5 Tables of moving stuffo 0oL 354
62.4.6 Two-columnmode 358
62.4.7 Footnotes L Lo 359
62.4.8 Headings and two-side support 359
62.4.9 Postscript Porblems o000 362
62.4.10 Miscellaneous internal IWTEX macros 362
62.4.11 Bibliography and citations 364
62.4.12 Additional bidirectional commands 366
62.5 Hebrew calendar L oL 367
62.5.1 Introduction oL 368
62.5.2 Registers, Commands, Formatting Macros 368
62.5.3 Auxiliary Macros 370
62.5.4 Gregorian Parto oL 371
62.5.5 Hebrew Part 372
63 Hebrew input encodings 376
63.1 Default definitions for characters. 377
63.2 The SI-960 encodingo 378
63.3 The ISO 8859-8 encoding and the MS Windows ¢p1255 encoding 378
63.4 The IBM code page 862 380
64 Hebrew font encodings 382
64.1 THIS SECTION IS OUT OF DATE. UPDATE DOCS TO
MATCH HE8 ENCODING oo 382
64.2 The DOCSTRIP modules, 382
64.3 The LHE encoding definition file 383
64.4 The font definition files (in LHE encoding) 385
64.4.1 Hebrew default font 0. 385
64.4.2 Hebrew sans-serif font 385
64.4.3 Hebrew typewriter font 0. 386
64.4.4 Hebrew classic font 386
64.4.5 Hebrew shalom fonts 387
64.4.6 Hebrew frank-ruehl font 387
64.4.7 Hebrew carmel font 388
64.4.8 Hebrew redis font oL 388
64.5 The HE8 encoding definition file 389
64.5.1 CHECK HERE FOR HE8 UPDATES 389
64.6 The font definition files (in HE8 encoding) 391
64.6.1 Hebrew default font 391
64.6.2 Hebrew sans-serif font L. 391
64.6.3 Hebrew typewriter font 0. 391
64.6.4 8Bit OmegaHebrew font 392
64.6.5 8Bit Aharoni font 00 392
64.6.6 8Bit David font o oo 392
64.6.7 8Bit Drugulin font 0oL 393
64.6.8 8Bit Elliniafont 393
64.6.9 8Bit FrankRuehl font 393
64.6.10 8Bit KtavYad font 393
64.6.11 8Bit MiriamMono font 394
64.6.12 8Bit Nachlieli font 394
64.6.13 Hebrew font switching commands 394

\selectlanguage

otherlanguage

\foreignlanguage

otherlanguagex*

hyphenrules

\languagename

\iflanguage

\useshorthands

\defineshorthand

\aliasshorthand

\languageshorthands

65 Hebrew in BTEX 2.09 compatibility mode 397

65.1 The DOCSTRIP modules 397
65.2 Obsolete stylefiles. 397
66 The Bahasa Indonesian language 399
67 The Bahasa Malaysia language 401
68 Not renaming hyphen.tex 403
69 Support for formats based on PLAINTEX 404

1 The user interface

The user interface of this package is quite simple. It consists of a set of commands
that switch from one language to another, and a set of commands that deal with
shorthands. It is also possible to find out what the current language is.

When a user wants to switch from one language to another he can do so using
the macro \selectlanguage. This macro takes the language, defined previously
by a language definition file, as its argument. It calls several macros that should
be defined in the language definition files to activate the special definitions for the
language chosen.

The environment otherlanguage does basically the same as \selectlanguage,
except the language change is local to the environment. This environment is re-
quired for intermixing left-to-right typesetting with right-to-left typesetting. The
language to switch to is specified as an argument to \begin{otherlanguagel.

The command \foreignlanguage takes two arguments; the second argument
is a phrase to be typeset according to the rules of the language named in its first
argument. This command only switches the extra definitions and the hyphenation
rules for the language, not the names and dates.

In the environment otherlanguage* only the typesetting is done according to
the rules of the other language, but the text-strings such as ‘figure’, ‘table’, etc.
are left as they were set outside this environment.

The environment hyphenrules can be used to select only the hyphenation
rules to be used. This can for instance be used to select ‘nohyphenation’, pro-
vided that in language.dat the ‘language’ nohyphenation is defined by loading
serohyph. tex.

The control sequence \languagename contains the name of the current lan-
guage.

If more than one language is used, it might be necessary to know which lan-
guage is active at a specific time. This can be checked by a call to \iflanguage.
This macro takes three arguments. The first argument is the name of a language;
the second and third arguments are the actions to take if the result of the test is
true or false respectively.

The command \useshorthands initiates the definition of user-defined short-
hand sequences. It has one argument, the character that starts these personal
shorthands.

The command \defineshorthand takes two arguments: the first is a one-
or two-character shorthand sequence, and the second is the code the shorthand
should expand to.

The command \aliasshorthand can be used to let another character perform
the same functions as the default shorthand character. If one prefers for example to
use the character / over " in typing polish texts, this can be achieved by entering
\aliasshorthand{"}{/}. Please note that the substitute shorthand character
must have been declared in the preamble of your document, using a command
such as \useshorthands{/} in this example.

The command \languageshorthands can be used to switch the shorthands on

\shorthandon
\shorthandoff

\languageattribute

the language level. It takes one argument, the name of a language. Note that for
this to work the language should have been specified as an option when loading
the babel package.

It is sometimes necessary to switch a shorthand character off temporarily, be-
cause it must be used in an entirely different way. For this purpose, the user
commands \shorthandoff and \shorthandon are provided. They each take a
list of characters as their arguments. The command \shorthandoff sets the
\catcode for each of the characters in its argument to other (12); the command
\shorthandon sets the \catcode to active (13). Both commands only work on
‘known’ shorthand characters. If a character is not known to be a shorthand
character its category code will be left unchanged.

This is a user-level command, to be used in the preamble of a document (after
\usepackagel...]{babel}), that declares which attributes are to be used for a
given language. It takes two arguments: the first is the name of the language;
the second, a (list of) attribute(s) to used. The command checks whether the
language is known in this document and whether the attribute(s) are known for
this language.

1.1 Languages supported by Babel

In the following table all the languages supported by Babel are listed, together
with the names of the options with which you can load babel for each language.

Language Option(s)

Afrikaans afrikaans

Bahasa bahasa, indonesian, indon, bahasai, bahasam, malay,
meyalu

Basque basque

Breton breton

Bulgarian bulgarian

Catalan catalan

Croatian croatian

Czech czech

Danish danish

Dutch dutch

English english, USenglish, american, UKenglish, british,
canadian, australian, newzealand

Esperanto esperanto

Estonian estonian

Finnish finnish

French french, francais, canadien, acadian

Galician galician

German austrian, german, germanb, ngerman, naustrian

Greek greek, polutonikogreek

Hebrew hebrew

Hungarian magyar, hungarian

Icelandic icelandic

Interlingua interlingua

Irish Gaelic irish

Ttalian italian

Latin latin

Lower Sorbian lowersorbian

North Sami samin

Norwegian norsk, nynorsk

Polish polish

Portuguese portuges, portuguese, brazilian, brazil

Language Option(s)

Romanian romanian
Russian russian
Scottish Gaelic scottish
Spanish spanish
Slovakian slovak
Slovenian slovene
Swedish swedish
Serbian serbian
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

For some languages babel supports the options activeacute and activegrave; for
typestting Russian texts, babel knows about the options LWN and LCY to specify
the fontencoding of the cyrillic font used. Currently only LWN is supported.

1.2 Workarounds

If you use the document class book and you use \ref inside the argument of
\chapter, ITEX will keep complaining about an undefined label. The reason is
that the argument of \ref is passed through \uppercase at some time during
processing. To prevent such problems, you could revert to using uppercase labels,
or you can use \lowercase{\ref{fool}} inside the argument of \chapter.

2 Changes for ETEX 2¢

With the advent of EXTEX 2¢ the interface to babel in the preamble of the document
has changed. With ETEX2.09 one used to call up the babel system with a line
such as:

\documentstyle[dutch,english]{article}

which would tell TEX that the document would be written in two languages,
Dutch and English, and that English would be the first language in use.
The ETEX 2¢ way of providing the same information is:

\documentclass{article}
\usepackage [dutch,english] {babel}

or, making dutch and english global options in order to let other packages detect
and use them:

\documentclass[dutch,english]{article}
\usepackage{babel}
\usepackage{varioref}

In this last example, the package varioref will also see the options and will
be able to use them.

3 Changes in Babel version 3.7

In Babel version 3.7 a number of bugs that were found in version 3.6 are fixed.
Also a number of changes and additions have occurred:

e Shorthands are expandable again. The disadvantage is that one has to type
>{}a when the acute accent is used as a shorthand character. The advantage
is that a number of other problems (such as the breaking of ligatures, etc.)
have vanished.

4

Two new commands, \shorthandon and \shorthandoff have been intro-
duced to enable to temporarily switch off one or more shorthands.

Support for typesetting Greek has been enhanced. Code from the kdgreek
package (suggested by the author) was added and \greeknumeral has been
added.

Support for typesetting Basque is now available thanks to Juan Aguirre-
gabiria.

Support for typesetting Serbian with Latin script is now available thanks to
Dejan Muhamedagi¢ and Jankovic Slobodan.

Support for typesetting Hebrew (and potential support for typesetting other
right-to-left written languages) is now available thanks to Rama Porrat and
Boris Lavva.

Support for typesetting Bulgarian is now available thanks to Georgi Bosh-
nakov.

Support for typesetting Latin is now available, thanks to Claudio Beccari
and Krzysztof Konrad Zelechowski.

Support for typesetting North Sami is now available, thanks to Regnor
Jernsletten.

The options canadian, canadien and acadien have been added for Canadian
English and French use.

A language attribute has been added to the \mark. .. commands in order to
make sure that a Greek header line comes out right on the last page before
a language switch.

Hyphenation pattern files are now read inside a group; therefore any changes
a pattern file needs to make to lowercase codes, uppercase codes, and cate-
gory codes are kept local to that group. If they are needed for the language,
these changes will need to be repeated and stored in \extras. ..

The concept of language attributes is introduced. It is intended to give the
user some control over the features a language-definition file provides. Its
first use is for the Greek language, where the user can choose the moAvTorké
(“Polutoniko” or multi-accented) Greek way of typesetting texts. These at-
tributes will possibly find wider use in future releases.

The environment hyphenrules is introduced.

The syntax of the file language .dat has been extended to allow (optionally)
specifying the font encoding to be used while processing the patterns file.

The command \providehyphenmins should now be used in language defi-
nition files in order to be able to keep any settings provided by the pattern
file.

Changes in Babel version 3.6

In Babel version 3.6 a number of bugs that were found in version 3.5 are fixed.
Also a number of changes and additions have occurred:

e A new environment otherlanguage* is introduced. it only switches the ‘spe-

cials’, but leaves the ‘captions’ untouched.

e The shorthands are no longer fully expandable. Some problems could only be
solved by peeking at the token following an active character. The advantage
is that >{}a works as expected for languages that have the ’ active.

e Support for typesetting french texts is much enhanced; the file francais.1df
is now replaced by frenchb.1ldf which is maintained by Daniel Flipo.

e Support for typesetting the russian language is again available. The lan-
guage definition file was originally developed by Olga Lapko from CyrTUG.
The fonts needed to typeset the russian language are now part of the babel
distribution. The support is not yet up to the level which is needed according
to Olga, but this is a start.

e Support for typesetting greek texts is now also available. What is offered
in this release is a first attempt; it will be enhanced later on by Yannis
Haralambous.

e in babel 3.6 some hooks have been added for the development of support
for Hebrew typesetting.

e Support for typesetting texts in Afrikaans (a variant of Dutch, spoken in
South Africa) has been added to dutch.1df.

e Support for typesetting Welsh texts is now available.

e A new command \aliasshorthand is introduced. It seems that in Poland
various conventions are used to type the necessary Polish letters. It is now
possible to use the character / as a shorthand character instead of the char-
acter ", by issuing the command \aliasshorthand{"}{/}.

e The shorthand mechanism now deals correctly with characters that are al-
ready active.

e Shorthand characters are made active at \begin{document}, not earlier.
This is to prevent problems with other packages.

e A preambleonly command \substitutefontfamily has been added to cre-
ate .fd files on the fly when the font families of the Latin text differ from
the families used for the Cyrillic or Greek parts of the text.

e Three new commands \LdfInit, \1df@quit and \1df@finish are intro-
duced that perform a number of standard tasks.

e In babel 3.6k the language Ukrainian has been added and the support for
Russian typesetting has been adapted to the package ’cyrillic’ to be released
with the December 1998 release of TEX 2¢.

5 Changes in Babel version 3.5

In Babel version 3.5 a lot of changes have been made when compared with the
previous release. Here is a list of the most important ones:

e the selection of the language is delayed until \begin{document}, which
means you must add appropriate \selectlanguage commands if you in-
clude \hyphenation lists in the preamble of your document.

e babel now has a language environment and a new command \foreignlanguage;

e the way active characters are dealt with is completely changed. They are
called ‘shorthands’; one can have three levels of shorthands: on the user
level, the language level, and on ‘system level’. A consequence of the new
way of handling active characters is that they are now written to auxiliary
files ‘verbatim’;

10

\addlanguage

\adddialect

e A language change now also writes information in the .aux file, as the change
might also affect typesetting the table of contents. The consequence is that
an .aux file generated by a LaTeX format with babel preloaded gives errors
when read with a LaTeX format without babel; but I think this probably
doesn’t occur;

e babel is now compatible with the inputenc and fontenc packages;
e the language definition files now have a new extension, 1df;

e the syntax of the file language.dat is extended to be compatible with the
french package by Bernard Gaulle;

e each language definition file looks for a configuration file which has the same
name, but the extension .cfg. It can contain any valid IXTEX code.

6 The interface between the core of babel and the
language definition files

In the core of the babel system, several macros are defined for use in language
definition files. Their purpose is to make a new language known.

The macro \addlanguage is a non-outer version of the macro \newlanguage,
defined in plain. tex version 3.x. For older versions of plain.tex and lplain.tex
a substitute definition is used.

The macro \adddialect can be used when two languages can (or must) use
the same hyphenation patterns. This can also be useful for languages for which
no patterns are preloaded in the format. In such cases the default behaviour of
the babel system is to define this language as a ‘dialect’ of the language for which
the patterns were loaded as \languageO.

The language definition files must conform to a number of conventions, because
these files have to fill in the gaps left by the common code in babel.def, i.e.,
the definitions of the macros that produce texts. Also the language-switching
possibility which has been built into the babel system has its implications.

The following assumptions are made:

e Some of the language-specific definitions might be used by plain TEX users,
so the files have to be coded so that they can be read by both I¥TEX and
plain TEX. The current format can be checked by looking at the value of
the macro \fmtname.

e The common part of the babel system redefines a number of macros and
environments (defined previously in the document style) to put in the names
of macros that replace the previously hard-wired texts. These macros have
to be defined in the language definition files.

e The language definition files define five macros, used to activate and deacti-
vate the language-specific definitions. These macros are \(lang)hyphenmins,
\captions(lang), \date(lang), \extras(lang) and \noextras(lang); where
(lang) is either the name of the language definition file or the name of the
ETEX option that is to be used. These macros and their functions are dis-
cussed below.

e When a language definition file is loaded, it can define \1@(lang) to be a
dialect of \languageO when \1@(lang) is undefined.

e The language definition files can be read in the preamble of the document,
but also in the middle of document processing. This means that they have
to function independently of the current \catcode of the @ sign.

11

\providehyphenmins

\langhyphenmins
\captionslang

\datelang
\extraslang

\noextraslang

\bbl@declare@ttribute

\main@language

\ProvidesLanguage

\LdfInit

\1ldfequit

\1ldf@finish

\loadlocalcfg

\substitutefontfamily

\initiate@active@char

\bbl@activate
\bbl@deactivate

\declare@shorthand

The macro \providehyphenmins should be used in the language definition files
to set the \lefthyphenmin and \righthyphenmin. This macro will check whether
these parameters were provided by the hyphenation file before it takes any action.

The macro \(lang)hyphenmins is used to store the values of the \1lefthyphenmin
and \righthyphenmin.

The macro \captions(lang) defines the macros that hold the texts to replace
the original hard-wired texts.

The macro \date(lang) defines \today and

The macro \extras(lang) contains all the extra definitions needed for a specific
language.

Because we want to let the user switch between languages, but we do not know
what state TEX might be in after the execution of \extras(lang), a macro that
brings TEX into a predefined state is needed. It will be no surprise that the name
of this macro is \noextras(lang).

This is a command to be used in the language definition files for declaring
a language attribute. It takes three arguments: the name of the language, the
attribute to be defined, and the code to be executed when the attribute is to be
used.

To postpone the activation of the definitions needed for a language until the
beginning of a document, all language definition files should use \main@language
instead of \selectlanguage. This will just store the name of the language, and
the proper language will be activated at the start of the document.

The macro \ProvidesLanguage should be used to identify the language
definition files. Its syntax is similar to the syntax of the ITEX command
\ProvidesPackage.

The macro \LdfInit performs a couple of standard checks that must be made
at the beginning of a language definition file, such as checking the category code
of the @-sign, preventing the .1df file from being processed twice, etc.

The macro \1df@quit does work needed if a .1df file was processed earlier.
This includes resetting the category code of the @Q-sign, preparing the language to
be activated at \begin{document} time, and ending the input stream.

The macro \1df@finish does work needed at the end of each .1df file. This
includes resetting the category code of the @-sign, loading a local configuration
file, and preparing the language to be activated at \begin{document} time.

After processing a language definition file, ITEX can be instructed to load
a local configuration file. This file can, for instance, be used to add strings to
\captions(lang) to support local document classes. The user will be informed
that this configuration file has been loaded. This macro is called by \1df@finish.

This command takes three arguments, a font encoding and two font family
names. It creates a font description file for the first font in the given encoding.
This . £d file will instruct ITEX to use a font from the second family when a font
from the first family in the given encoding seems to be needed.

6.1 Support for active characters

In quite a number of language definition files, active characters are introduced. To
facilitate this, some support macros are provided.

The internal macro \initiate@active@char is used in language definition files
to instruct ITEX to give a character the category code ‘active’. When a character
has been made active it will remain that way until the end of the document. Its
definition may vary.

The command \bbl@activate is used to change the way an active character
expands. \bbl@activate ‘switches on’ the active behaviour of the character.
\bbl@deactivate lets the active character expand to its former (mostly) non-
active self.

The macro \declare@shorthand is used to define the various shorthands. It
takes three arguments: the name for the collection of shorthands this definition

12

\bbl@add@special
\bbl@remove@special

\babel@save

\babel@savevariable

\addto

\allowhyphens

\set@low@box

\save@sf@q

\bbl@frenchspacing
\bbl@nonfrenchspacing

belongs to; the character (sequence) that makes up the shorthand, i.e. ~ or "a;
and the code to be executed when the shorthand is encountered.

The TEXbook states: “Plain TEX includes a macro called \dospecials that
is essentially a set macro, representing the set of all characters that have a spe-
cial category code.” [1, p. 380] It is used to set text ‘verbatim’. To make this
work if more characters get a special category code, you have to add this char-
acter to the macro \dospecial. KTEX adds another macro called \@sanitize
representing the same character set, but without the curly braces. The macros
\bbl@add@special(char) and \bbl@remove@special(char) add and remove the
character (char) to these two sets.

6.2 Support for saving macro definitions

Language definition files may want to redefine macros that already exist. Therefor
a mechanism for saving (and restoring) the original definition of those macros is
provided. We provide two macros for this'.

To save the current meaning of any control sequence, the macro \babel@save
is provided. It takes one argument, (csname), the control sequence for which the
meaning has to be saved.

A second macro is provided to save the current value of a variable. In this
context, anything that is allowed after the \the primitive is considered to be a
variable. The macro takes one argument, the (variable).

The effect of the preceding macros is to append a piece of code to the current
definition of \originalTeX. When \originalTeX is expanded, this code restores
the previous definition of the control sequence or the previous value of the variable.

6.3 Support for extending macros

The macro \addto{(control sequence)}{(TEX code)} can be used to extend the
definition of a macro. The macro need not be defined. This macro can, for
instance, be used in adding instructions to a macro like \extrasenglish.

6.4 Macros common to a number of languages

In a couple of European languages compound words are used. This means that
when TEX has to hyphenate such a compound word, it only does so at the ‘-’ that
is used in such words. To allow hyphenation in the rest of such a compound word,
the macro \allowhyphens can be used.

For some languages, quotes need to be lowered to the baseline. For this pur-
pose the macro \set@low@box is available. It takes one argument and puts that
argument in an \hbox, at the baseline. The result is available in \box0 for further
processing.

Sometimes it is necessary to preserve the \spacefactor. For this purpose
the macro \save@sf@q is available. It takes one argument, saves the current
spacefactor, executes the argument, and restores the spacefactor.

The commands \bbl@frenchspacing and \bbl@nonfrenchspacing can be
used to properly switch French spacing on and off.

7 Compatibility with german.sty

The file german. sty has been one of the sources of inspiration for the babel sys-
tem. Because of this I wanted to include german.sty in the babel system. To
be able to do that I had to allow for one incompatibility: in the definition of the
macro \selectlanguage in german.sty the argument is used as the (number)
for an \ifcase. So in this case a call to \selectlanguage might look like
\selectlanguage{\german}.

1This mechanism was introduced by Bernd Raichle.

13

\ProvidesLanguage

In the definition of the macro \selectlanguage in babel.def the argument
is used as a part of other macronames, so a call to \selectlanguage now looks
like \selectlanguage{german}. Notice the absence of the escape character. As
of version 3.1a of babel both syntaxes are allowed.

All other features of the original german.sty have been copied into a new file,
called germanb.sty”.

Although the babel system was developed to be used with KTEX, some of the
features implemented in the language definition files might be needed by plain
TEX users. Care has been taken that all files in the system can be processed by

plain TEX.

8 Compatibility with ngerman.sty

When used with the options ngerman or naustrian, babel will provide all features of
the package ngerman. There is however one exception: The commands for special
hyphenation of double consonants ("ff etc.) and ck ("ck), which are no longer
required with the new German orthography, are undefined. With the ngerman
package, however, these commands will generate appropriate warning messages
only.

9 Compatibility with the french package

It has been reported to me that the package french by Bernard Gaulle
(gaulle@idris.fr) works together with babel. On the other hand, it seems not
to work well together with a lot of other packages. Therefore I have decided to no
longer load french.1df by default. Instead, when you want to use the package by
Bernard Gaulle, you will have to request it specifically, by passing either frenchle
or frenchpro as an option to babel.

10 Identification

The file babel.sty® is meant for INTFX 2¢, therefor we make sure that the format
file used is the right one.

The identification code for each file is something that was introduced in BETEX 2¢.
When the command \ProvidesFile does not exist, a dummy definition is
provided temporarily. For use in the language definition file the command
\ProvidesLanguage is defined by babel.

10.1 (*!package)

10.2 \ifx\ProvidesFile\@undefined

10.3 \def\ProvidesFile#1[#2 #3 #4]{J

10.4 \wlog{File: #1 #4 #3 <#2>})

10.5 (*kernel & patterns)

10.6 \toks8{Babel <#3> and hyphenation patterns for }J
10.7 (/kernel & patterns)

10.8 \let\ProvidesFile\Q@undefined

10.9 }

As an alternative for \ProvidesFile we define \ProvidesLanguage here to be
used in the language definition files.

10.10 (*kernel)
10.11 \def\ProvidesLanguage#1[#2 #3 #4]{}

10.12 \wlog{Language: #1 #4 #3 <#2>})
10.13 }
10.14 \else

2The ‘b’ is added to the name to distinguish the file from Partls’ file.
3The file described in this section is called babel.dtx, has version number v3.8m and was last
revised on 2008/07/08.

14

In this case we save the original definition of \ProvidesFile in \bbl@tempa and
restore it after we have stored the version of the file in \toks8.
10.15 (*kernel & patterns)

10.16 \let\bbl@tempa\ProvidesFile
10.17 \def\ProvidesFile#1[#2 #3 #41{J,

10.18 \toks8{Babel <#3> and hyphenation patterns for },
10.19 \bbl@tempa#1 [#2 #3 #41)
10.20 \let\ProvidesFile\bbl@tempa}

10.21 (/kernel & patterns)
When \ProvidesFile is defined we give \ProvidesLanguage a similar definition.

10.22 \def\ProvidesLanguage#1{},

10.23 \begingroup

10.24 \catcode‘\ 10 7

10.25 \@makeother\/7

10.26 \@ifnextchar[}]

10.27 {\@provideslanguage{#1}}{\@provideslanguage{#1}[]}}
10.28 \def\@provideslanguage#1[#2]{}

10.29 \wlog{Language: #1 #2}),

10.30 \expandafter\xdef\csname ver@#1.1df\endcsname{#2}},
10.31 \endgroup}

10.32 (/kernel)

10.33 \fi

10.34 (/!package)

Identify each file that is produced from this source file.

10.35
10.36
10.37
10.38

+package)\ProvidesPackage{babel}
+core)\ProvidesFile{babel.def}

+kernel & patterns)\ProvidesFile{hyphen.cfg}
+kernel&!patterns)\ProvidesFile{switch.def}
10.39 (+driver&!user)\ProvidesFile{babel.drv}

10.40 (+driver & user)\ProvidesFile{user.drv}

10.41 [2008/07/08 v3.8m 7%

10.42 (+package) The Babel package]

10.43 (+core) Babel common definitions]
10.44 (+kernel) Babel language switching mechanism]
10.45 (+driver)]

o~~~ o~~~

o~ o~~~

11 The Package File

In order to make use of the features of IATEX 2¢, the babel system contains a
package file, babel.sty. This file is loaded by the \usepackage command and
defines all the language options known in the babel system. It also takes care of a
number of compatibility issues with other packages.

11.1 Language options

11.1 (*package)
11.2 \ifx\LdfInit\@undefined\input babel.def\relax\fi

For all the languages supported we need to declare an option.
11.3 \DeclareOption{acadian}{\input{frenchb.1df}}
11.4 \DeclareOption{albanian}{\input{albanian.1df}}
11.5 \DeclareOption{afrikaans}{\input{dutch.1df}}
11.6 \DeclareOption{american}{\input{english.1df}}
11.7 \DeclareOption{australian}{\input{english.1df}}

Austrian is really a dialect of German.
11.8 \DeclareOption{austrian}{\input{germanb.1df}}

11.9 \DeclareOption{bahasa}{\input{bahasai.ldf}}
11.10 \DeclareOption{indonesian}{\input{bahasai.ldf}}
11.11 \DeclareOption{indon}{\input{bahasai.ldf}}

15

1
1
1
1
1
1

=

.12 \DeclareOption{bahasai}{\input{bahasai.ldf}}
.13 \DeclareOption{malay}{\input{bahasam.1df}}
.14 \DeclareOption{meyalu}{\input{bahasam.1df}}
.15 \DeclareOption{bahasam}{\input{bahasam.1df}}
.16 \DeclareOption{basque}{\input{basque.1df}}
.17 \DeclareOption{brazil}{\input{portuges.1df}}

e e e

1
1

—

.18 \DeclareOption{brazilian}{\input{portuges.1df}}
.19 \DeclareOption{breton}{\input{breton.1df}}

=

11.20 \DeclareOption{british}{\input{english.1df}}
11.21 \DeclareOption{bulgarian}{\input{bulgarian.1df}}
11.22 \DeclareOption{canadian}{\input{english.1df}}
11.23 \DeclareOption{canadien}{\input{frenchb.1df}}
11.24 \DeclareOption{catalan}{\input{catalan.1df}}
11.25 \DeclareOption{croatian}{\input{croatian.1df}}
11.26 \DeclareOption{czech}{\input{czech.1df}}

11.27 \DeclareOption{danish}{\input{danish.1df}}

11.28 \DeclareOption{dutch}{\input{dutch.1df}}

11.29 \DeclareOption{english}{\input{english.1df}}
11.30 \DeclareOption{esperanto}{\input{esperanto.1ldf}}
11.31 \DeclareOption{estonian}{\input{estonian.1df}}
11.32 \DeclareOption{finnish}{\input{finnish.1df}}

The babel support or French used to be stored in francais.ldf; therefor the
¥TEX2.09 option used to be francais. The hyphenation patterns may be loaded as
either ‘french’ or as ‘francais’.

11.33 \DeclareOption{francais}{\input{frenchb.1df}}

11.34 \DeclareOption{frenchb}{\input{frenchb.1df}}

With KTEX2: we can now also use the option french and still call the file
frenchb.1df.

11.35 \DeclareOption{french}{\input{frenchb.1df}}}

11.36 \DeclareOption{galician}{\input{galician.1df}}

11.37 \DeclareOption{german}{\input{germanb.1df}}

11.38 \DeclareOption{germanb}{\input{germanb.1df}}

11.39 \DeclareOption{greek}{\input{greek.1df}}
11.40 \DeclareOption{polutonikogreek}{%

11.41 \input{greek.1ldf}},

11.42 \languageattribute{greek}{polutonikol}}

11.43 \DeclareOption{hebrew}{%
11.44 \input{rlbabel.defl}},
11.45 \input{hebrew.ldf}}

hungarian is just a synonym for magyar
11.46 \DeclareOption{hungarian}{\input{magyar.1df}}
11.47 \DeclareOption{icelandic}{\input{icelandic.1df}}
11.48 \DeclareOption{interlingua}{\input{interlingua.ldf}}
11.49 \DeclareOption{irish}{\input{irish.1df}}
11.50 \DeclareOption{italian}{\input{italian.1df}}
11.51 \DeclareOption{latin}{\input{latin.1df}}
11.52 \DeclareOption{lowersorbian}{\input{lsorbian.1df}}
11.53 %~ ~A\DeclareOption{kannada}{\input{kannada.1ldf}}
11.54 \DeclareOption{magyar}{\input{magyar.1df}}
11.55 %~ ~A\DeclareOption{nagari}{\input{nagari.1ldf}}

‘New’ German orthography, including Austrian variant:
11.56 \DeclareOption{naustrian}{\input{ngermanb.1df}}
11.57 \DeclareOption{newzealand}{\input{english.1df}}
11.58 \DeclareOption{ngerman}{\input{ngermanb.1df}}
11.59 \DeclareOption{norsk}{\input{norsk.1df}}

11.60 \DeclareOption{samin}{\input{samin.1df}}

For Norwegian two spelling variants are provided.
11.61 \DeclareOption{nynorsk}{\input{norsk.1df}}

16

11.62 \DeclareOption{polish}{\input{polish.1df}}

11.63 \DeclareOption{portuges}{\input{portuges.1ldf}}
11.64 \DeclareOption{portuguese}{\input{portuges.1ldf}+}
11.65 \DeclareOption{romanian}{\input{romanian.1df}}
11.66 \DeclareOption{russian}{\input{russianb.1df}}

11.67 %~ ~A\DeclareOption{sanskrit}{\input{sanskrit.1df}}
11.68 \DeclareOption{scottish}{\input{scottish.1df}}
11.69 \DeclareOption{serbian}{\input{serbian.1df}}

11.70 \DeclareOption{slovak}{\input{slovak.1ldf}}

11.71 \DeclareOption{slovene}{\input{slovene.1df}}

11.72 \DeclareOption{spanish}{\input{spanish.1df}}

11.73 \DeclareOption{swedish}{\input{swedish.1df}}

11.74 %~~A\DeclareOption{tamil}{\input{tamil.1ldf}}

11.75 \DeclareOption{turkish}{\input{turkish.1df}}

11.76 \DeclareOption{ukrainian}{\input{ukraineb.1ldf}}
11.77 \DeclareOption{uppersorbian}{\input{usorbian.1df}}
11.78 \DeclareOption{welsh}{\input{welsh.1df}}

11.79 \DeclareOption{UKenglish}{\input{english.1df}}
11.80 \DeclareOption{USenglish}{\input{english.1df}}

For all those languages for which the option name is the same as the name of
the language specific file we specify a default option, which tries to load the file
specified. If this doesn’t succeed an error is signalled.

11.81 \DeclareOption*{%
11.82 \InputIfFileExists{\CurrentOption.ldf}{}{%

11.83 \PackageError{babel}{/

11.84 Language definition file \CurrentOption.ldf not found}{%
11.85 Maybe you misspelled the language option?}}%

11.86 }

Another way to extend the list of ‘known’ options for babel is to create the file
bblopts.cfg in which one can add option declarations.

11.87 \InputIfFileExists{bblopts.cfg}{%
11.88 \typeout{Hikkskskskskskkokkokkkokkokkkokkokkokok koo kokkok ™~ I,

11.89 * Local config file bblopts.cfg used~"~J%
11.90 *}%
1191 H}

Apart from all the language options we also have a few options that influence
the behaviour of language definition files.

The following options don’t do anything themselves, they are just defined in
order to make it possible for language definition files to check if one of them was
specified by the user.

11.92 \DeclareOption{activeacute}{}
11.93 \DeclareOption{activegrave}{}

The next option tells babel to leave shorthand characters active at the end of
processing the package. This is not the default as it can cause problems with
other packages, but for those who want to use the shorthand characters in the
preamble of their documents this can help.

11.94 \DeclareOption{KeepShorthandsActive}{}

The options have to be processed in the order in which the user specified them:
11.95 \ProcessOptions*

In order to catch the case where the user forgot to specify a language we check
whether \bbl@main@language, has become defined. If not, no language has been
loaded and an error message is displayed.

11.96 \ifx\bbl@main@language\Qundefined

11.97 \PackageError{babel}{%

11.98 You haven’t specified a language option}{’

11.99 You need to specify a language, either as a global

11.100 option\MessageBreak

11.101 or as an optional argument to the \string\usepackage\space
11.102 command; \MessageBreak

17

11.103 You shouldn’t try to proceed from here, type x to quit.}

To prevent undefined command errors when the user insists on continuing we load
babel.def here. He should expect more errors though.

11.104 \input{babel.def}

11.105 \fi

\substitutefontfamily The command \substitutefontfamily creates an .fd file on the fly. The first
argument is an encoding mnemonic, the second and third arguments are font
family names.

11.106 \def\substitutefontfamily#1#2#3{/

11.107 \lowercase{\immediate\openout15=#1#2.fd\relax}/,
11.108 \immediate\writel5{Y%

11.109 \string\ProvidesFile{#1#2.£d}/

11.110 [\the\year/\two@digits{\the\month}/\two@digits{\the\day}
11.111 \space generated font description file]~~J

11.112 \string\DeclareFontFamily{#1}{#2}{}~~J

11.113 \string\DeclareFontShape{#1}{#2}{m}{n}{<->ssub * #3/m/n}{}~"~J
11.114 \string\DeclareFontShape{#1}{#2}{m}{it}{<->ssub * #3/m/it}{}~"J
11.115 \string\DeclareFontShape{#1}{#2}Hm}{s1}{<->ssub * #3/m/s1}{}~"J
11.116 \string\DeclareFontShape{#1}{#2}{m}{sc}{<->ssub * #3/m/sc}{}~~J
11.117 \string\DeclareFontShape{#1}{#2}{b}{n}{<->ssub * #3/bx/n}{}~~J
11.118 \string\DeclareFontShape{#1}{#2}b}{it}{<->ssub * #3/bx/it}{}~~J
11.119 \string\DeclareFontShape{#1}{#2}{b}{s1}{<->ssub * #3/bx/s1}{}~"J
11.120 \string\DeclareFontShape{#1}{#2}{b}{sc}{<->ssub * #3/bx/sc}H{}~"J

11.121 Y%
11.122 \closeout15
11.123 }

This command should only be used in the preamble of a document.

11.124 \Q@onlypreamble\substitutefontfamily

11.125 (/package)

12 The Kernel of Babel

The kernel of the babel system is stored in either hyphen.cfg or switch.def and
babel.def. The file hyphen.cfg is a file that can be loaded into the format,
which is necessary when you want to be able to switch hyphenation patterns.
The file babel.def contains some TEX code that can be read in at run time.
When babel.def is loaded it checks if hyphen.cfg is in the format; if not the file
switch.def is loaded.

Because plain TEX users might want to use some of the features of the babel
system too, care has to be taken that plain TEX can process the files. For this
reason the current format will have to be checked in a number of places. Some
of the code below is common to plain TEX and KTEX, some of it is for the BTEX
case only.

When the command \AtBeginDocument doesn’t exist we assume that we are
dealing with a plain-based format. In that case the file plain.def is needed.

12.1 (*kernel | core)
12.2 \ifx\AtBeginDocument\Qundefined

But we need to use the second part of plain.def (when we load it from
switch.def) which we can do by defining \adddialect.

12.3 (kernel&!patterns) \def\adddialect{}
12.4 \input plain.def\relax
12.5 \fi
12.6 (/kernel | core)
Check the presence of the command \iflanguage, if it is undefined read the
file switch.def.

12.7 (*core)

18

\latinencoding

\latintext

\textlatin

12.8 \ifx\iflanguage\@undefined
12.9 \input switch.def\relax
12.10 \fi
12.11 (/core)

12.1 Encoding issues (part 1)

The first thing we need to do is to determine, at \begin{document}, which latin
fontencoding to use.

When text is being typeset in an encoding other than ‘latin’ (0T1 or T1), it would
be nice to still have Roman numerals come out in the Latin encoding. So we first
assume that the current encoding at the end of processing the package is the Latin
encoding.

12.12 (*core)
12.13 \AtEndOfPackage{\edef\latinencoding{\cf@encoding}}

But this might be overruled with a later loading of the package fontenc. Therefor
we check at the execution of \begin{document} whether it was loaded with the
T1 option. The normal way to do this (using \@ifpackageloaded) is disabled for
this package. Now we have to revert to parsing the internal macro \@filelist
which contains all the filenames loaded.

12.14 \AtBeginDocument{}

12.15 \gdef\latinencoding{0T1}

12.16 \ifx\cf@encoding\bbl@t@one

12.17 \xdef\latinencoding{\bbl@tQonel}y,

12.18 \else

12.19 \@ifl@aded{def}{tlenc}{\xdef\latinencoding{\bbl@t@one}}{1}/

12.20 \fi

1221}

Then we can define the command \latintext which is a declarative switch to a
latin font-encoding.

12.22 \DeclareRobustCommand{\latintext}{%

12.23 \fontencoding{\latinencoding}\selectfont

12.24 \def\encodingdefault{\latinencoding}}

This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

12.25 \ifx\Qundefined\DeclareTextFontCommand

12.26 \DeclareRobustCommand{\textlatin}[1]{\leavevmode{\latintext #1}}

12.27 \else

12.28 \DeclareTextFontCommand{\textlatin}{\latintext}

12.29 \fi

12.30 (/core)

We also need to redefine a number of commands to ensure that the right font
encoding is used, but this can’t be done before babel.def is loaded.

12.2 Multiple languages

With TEX version 3.0 it has become possible to load hyphenation patterns for more
than one language. This means that some extra administration has to be taken
care of. The user has to know for which languages patterns have been loaded, and
what values of \language have been used.

Some discussion has been going on in the TEX world about how to use
\language. Some have suggested to set a fixed standard, i.e., patterns for each
language should always be loaded in the same location. It has also been suggested
to use the 150 list for this purpose. Others have pointed out that the 1S0 list
contains more than 256 languages, which have not been numbered consecutively.

19

\language

\last@language

\addlanguage

I think the best way to use \language, is to use it dynamically. This code
implements an algorithm to do so. It uses an external file in which the person who
maintains a TEX environment has to record for which languages he has hyphen-
ation patterns and in which files these are stored*. When hyphenation exceptions
are stored in a separate file this can be indicated by naming that file after the file
with the hyphenation patterns.

This “configuration file” can contain empty lines and comments, as well as
lines which start with an equals (=) sign. Such a line will instruct BTEX that the
hyphenation patterns just processed have to be known under an alternative name.
Here is an example:

% File : language.dat

% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations

=british

dutch hyphen.dutch exceptions.dutch 7 Nederlands
german hyphen.ger

As the file switch.def needs to be read only once, we check whether it was
read before. If it was, the command \iflanguage is already defined, so we can
stop processing.

12.31 (*kernel)

12.32 (*Ipatterns)

12.33 \expandafter\ifx\csname iflanguage\endcsname\relax \else
12.34 \expandafter\endinput

12.35 \fi

12.36 (/!patterns)

Plain TEX version 3.0 provides the primitive \language that is used to store
the current language. When used with a pre-3.0 version this function has to be
implemented by allocating a counter.

12.37 \ifx\language\Qundefined

12.38 \csname newcount\endcsname\language

12.39 \fi

Another counter is used to store the last language defined. For pre-3.0 formats an
extra counter has to be allocated,

12.40 \ifx\newlanguage\@undefined
12.41 \csname newcount\endcsname\last@language

plain TEX version 3.0 uses \count 19 for this purpose.
12.42 \else

12.43 \countdef\last@language=19
12.44 \fi

To add languages to TEX’s memory plain TEX version 3.0 supplies \newlanguage,
in a pre-3.0 environment a similar macro has to be provided. For both cases a
new macro is defined here, because the original \newlanguage was defined to be
\outer.

For a format based on plain version 2.x, the definition of \newlanguage can
not be copied because \count 19 is used for other purposes in these formats.
Therefor \addlanguage is defined using a definition based on the macros used to
define \newlanguage in plain TEX version 3.0.

12.45 \ifx\newlanguage\Qundefined
12.46 \def\addlanguage#1{J,
12.47 \global\advance\last@language \Gne

4This is because different operating systems sometimes use very different file-naming conven-
tions.

20

\adddialect

\iflanguage

\selectlanguage

12.48 \ifnum\last@language<\@cclvi

12.49 \else

12.50 \errmessage{No room for a new \string\language!l}J
12.51 \fi

12.52 \global\chardef#1\last@language

12.53 \wlog{\string#1l = \string\language\the\last@language}}

For formats based on plain version 3.0 the definition of \newlanguage can be
simply copied, removing \outer.

12.54 \else
12.55 \def\addlanguage{\alloc@9\language\chardef\@cclvi}
12.56 \fi

The macro \adddialect can be used to add the name of a dialect or variant
language, for which an already defined hyphenation table can be used.

12.57 \def\adddialect#1#2{%

12.58 \global\chardef#1#2\relax

12.59 \wlog{\string#1 = a dialect from \string\language#2}}

Users might want to test (in a private package for instance) which language is
currently active. For this we provide a test macro, \iflanguage, that has three
arguments. It checks whether the first argument is a known language. If so, it
compares the first argument with the value of \language. Then, depending on
the result of the comparison, it executes either the second or the third argument.

12.60 \def\iflanguage#1{/
12.61 \expandafter\ifx\csname 10@#1\endcsname\relax

12.62 \@nolanerr{#1}/,

12.63 \else

12.64 \bbl@afterfi{\ifnum\csname 1@#1\endcsname=\language
12.65 \expandafter\@firstoftwo

12.66 \else

12.67 \expandafter\@secondoftwo

12.68 \fi}}

12.69 \fi}

The macro \selectlanguage checks whether the language is already defined
before it performs its actual task, which is to update \language and activate
language-specific definitions.

To allow the call of \selectlanguage either with a control sequence name or
with a simple string as argument, we have to use a trick to delete the optional
escape character.

To convert a control sequence to a string, we use the \string primitive. Next
we have to look at the first character of this string and compare it with the escape
character. Because this escape character can be changed by setting the internal
integer \escapechar to a character number, we have to compare this number with
the character of the string. To do this we have to use TEX’s backquote notation
to specify the character as a number.

If the first character of the \string’ed argument is the current escape char-
acter, the comparison has stripped this character and the rest in the ‘then’ part
consists of the rest of the control sequence name. Otherwise we know that either
the argument is not a control sequence or \escapechar is set to a value outside
of the character range 0-255.

If the user gives an empty argument, we provide a default argument for
\string. This argument should expand to nothing.

12.70 \edef\selectlanguage{’,

12.71 \noexpand\protect

12.72 \expandafter\noexpand\csname selectlanguage \endcsname
1273}

21

\bbl@pop@language

\bbl@language®@stack

\bbl@push@language
\bbl@pop@language

\bbl@pop@lang

Because the command \selectlanguage could be used in a moving argument it
expands to \protect\selectlanguage . Therefor, we have to make sure that a
macro \protect exists. If it doesn’t it is \let to \relax.

12.74 \ifx\@undefined\protect\let\protect\relax\fi

As ITEX 2.09 writes to files expanded whereas IXTEX 2¢ takes care not to expand
the arguments of \write statements we need to be a bit clever about the way we
add information to .aux files. Therefor we introduce the macro \xstring which
should expand to the right amount of \string’s.

12.75 \ifx\documentclass\Qundefined

12.76 \def\xstring{\string\string\string}

12.77 \else

12.78 \let\xstring\string

12.79 \fi

Since version 3.5 babel writes entries to the auxiliary files in order to typeset

table of contents etc. in the correct language environment.

But when the language change happens inside a group the end of the group
doesn’t write anything to the auxiliary files. Therefor we need TEX’s aftergroup
mechanism to help us. The command \aftergroup stores the token immediately
following it to be executed when the current group is closed. So we define a
temporary control sequence \bbl@pop@language to be executed at the end of the
group. It calls \bbl@set@language with the name of the current language as its
argument.

The previous solution works for one level of nesting groups, but as soon as
more levels are used it is no longer adequate. For that case we need to keep
track of the nested languages using a stack mechanism. This stack is called
\bbl@language@stack and initially empty.

12.80 \xdef\bbl@language@stack{}

When using a stack we need a mechanism to push an element on the stack and to
retrieve the information afterwards.

The stack is simply a list of languagenames, separated with a ‘+’ sign; the push
function can be simple:

12.81 \def\bbl@push@language{’

12.82 \xdef\bbl@language@stack{\languagename+\bbl@language@stackl}’,

12.83 }
Retrieving information from the stack is a little bit less simple, as we need to
remove the element from the stack while storing it in the macro \languagename.
For this we first define a helper function.

This macro stores its first element (which is delimited by the ‘+’-sign) in
\languagename and stores the rest of the string (delimited by ‘-’) in its third
argument.
12.84 \def\bbl@pop@lang#1+#2-#3{%
12.85 \def\languagename{#1}\xdef#3{#2}J
12.86 }

The reason for the somewhat weird arrangement of arguments to the helper func-
tion is the fact it is called in the following way:

12.87 \def\bbl@pop@language{’

12.88 \expandafter\bbl@pop@lang\bbl@language@stack-\bbl@language@stack
This means that before \bbl@pop@lang is executed TEX first erpands the stack,
stored in \bbl@language@stack. The result of that is that the argument string of
\bbl@pop@lang contains one or more language names, each followed by a ‘+’-sign
(zero language names won’t occur as this macro will only be called after something
has been pushed on the stack) followed by the ‘-’-sign and finally the reference to
the stack.

12.89 $$

22

\bbl@set@language

12.90 \expandafter\bbl@set@language\expandafter{\languagename},

1291 }
Once the name of the previous language is retrieved from the stack, it is fed to
\bbl@set@language to do the actual work of switching everything that needs
switching.

12.92 \expandafter\def\csname selectlanguage \endcsname#1{J
12.93 \bbl@push@language

12.94 \aftergroup\bbl@pop@language

12.95 \bbl@set@language{#1}}

The macro \bbl@set@language takes care of switching the language environment
and of writing entries on the auxiliary files.

12.96 \def\bbl@set@language#1{

12.97 \edef\languagename{’,

12.98 \ifnum\escapechar=\expandafter‘\string#1\Qempty

12.99 \else \string#1\@empty\£fil}V

12.100 \select@language{\languagenamel}’,
We also write a command to change the current language in the auxiliary files.

12.101 \if@filesw

12.102 \protected@urite\Qauxout{}{\string\select@language{\languagename}}/,
12.103 \addtocontents{toc}{\xstring\select@language{\languagenamel}}%
12.104 \addtocontents{lof}{\xstring\select@language{\languagename}}
12.105 \addtocontents{lot}{\xstring\select@language{\languagenamel}}/,

12.106 \fi}

First, check if the user asks for a known language. If so, update the value of
\language and call \originalTeX to bring TEX in a certain pre-defined state.

12.107 \def\select@language#1{/,
12.108 \expandafter\ifx\csname 1@#1\endcsname\relax

12.109 \@nolanerr{#1}%

12.110 \else

12.111 \expandafter\ifx\csname date#1\endcsname\relax
12.112 \@noopterr{#1}%

12.113 \else

12.114 \bbl@patterns{\languagename}y,

12.115 \originalTeX

The name of the language is stored in the control sequence \languagename. The
contents of this control sequence could be tested in the following way:

\edef\tmp{\string english}
\ifx\languagename\tmp

\else

.

The construction with \string is necessary because \languagename returns the
name with characters of category code 12 (other). Then we have to redefine
\originalTeX to compensate for the things that have been activated. To save
memory space for the macro definition of \originalTeX, we construct the control
sequence name for the \noextras(lang) command at definition time by expanding
the \csname primitive.

12.116 \expandafter\def\expandafter\originalTeX
12.117 \expandafter{\csname noextras#1\endcsname
12.118 \let\originalTeX\Qempty}
12.119 \languageshorthands{none},

12.120 \babel@beginsave

23

otherlanguage

otherlanguagex*

\foreignlanguage

Now activate the language-specific definitions. This is done by constructing
the names of three macros by concatenating three words with the argument of
\selectlanguage, and calling these macros.

12.121 \csname captions#1\endcsname
12.122 \csname date#1\endcsname
12.123 \csname extras#1\endcsname\relax

The switching of the values of \lefthyphenmin and \righthyphenmin is some-
what different. First we save their current values, then we check if \(lang)hyphenmins
is defined. If it is not, we set default values (2 and 3), otherwise the values in
\(lang)hyphenmins will be used.

12.124 \babel@savevariable\lefthyphenmin

12.125 \babel@savevariable\righthyphenmin

12.126 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.127 \set@hyphenmins\tw0\thr@@\relax

12.128 \else

12.129 \expandafter\expandafter\expandafter\set@hyphenmins
12.130 \csname #lhyphenmins\endcsname\relax

12.131 \fi

12.132 \fi

12.133 \fi}

The otherlanguage environment can be used as an alternative to using the
\selectlanguage declarative command. When you are typesetting a document
which mixes left-to-right and right-to-left typesetting you have to use this envi-
ronment in order to let things work as you expect them to.

The first thing this environment does is store the name of the language in
\languagename; it then calls \selectlanguage to switch on everything that is
needed for this language The \ignorespaces command is necessary to hide the
environment when it is entered in horizontal mode.

12.134 \long\def\otherlanguage#1{/,

12.135 \csname selectlanguage \endcsname{#1}%
12.136 \ignorespaces

12.137 }

The \endotherlanguage part of the environment calls \originalTeX to restore
(most of) the settings and tries to hide itself when it is called in horizontal mode.
12.138 \long\def\endotherlanguage{%
12.139 \originalTeX

12.140 \global\@ignoretrue\ignorespaces
12.141 }

The otherlanguage environment is meant to be used when a large part of text from
a different language needs to be typeset, but without changing the translation of
words such as ‘figure’.
This environment makes use of \foreign@language.

12.142 \expandafter\def\csname otherlanguage*\endcsname#1{/

12.143 \foreign@language{#11}J,

12.144 3}
At the end of the environment we need to switch off the extra definitions. The
grouping mechanism of the environment will take care of resetting the correct
hyphenation rules.

12.145 \expandafter\def\csname endotherlanguage*\endcsname{J,

12.146 \csname noextras\languagename\endcsname

12.147 }

The \foreignlanguage command is another substitute for the \selectlanguage
command. This command takes two arguments, the first argument is the name of
the language to use for typesetting the text specified in the second argument.
Unlike \selectlanguage this command doesn’t switch everything, it only
switches the hyphenation rules and the extra definitions for the language specified.

24

It does this within a group and assumes the \extras(lang) command doesn’t make
any \global changes. The coding is very similar to part of \selectlanguage.
12.148 \def\foreignlanguage{\protect\csname foreignlanguage \endcsname}

12.149 \expandafter\def\csname foreignlanguage \endcsname#1#2{%
12.150 \begingroup

12.151 \originalTeX

12.152 \foreign@language{#1}/

12.153 #2,

12.154 \csname noextras#1\endcsname
12.155 \endgroup

12.156 }

\foreign@language This macro does the work for \foreignlanguage and the otherlanguage* environ-
ment.

12.157 \def\foreign@language#1{/
First we need to store the name of the language and check that it is a known
language.

12.158 \def\languagename{#1}%

12.159 \expandafter\ifx\csname 1@#1\endcsname\relax
12.160 \@nolanerr{#1}%

12.161 \else

If it is we can select the proper hyphenation table and switch on the extra defini-
tions for this language.

12.162 \bbl@patterns{\languagename}y,
12.163 \languageshorthands{none}’,

Then we set the left- and right hyphenmin variables.

12.164 \csname extras#l\endcsname

12.165 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.166 \set@hyphenmins\tw@\thr@@\relax

12.167 \else

12.168 \expandafter\expandafter\expandafter\set@hyphenmins
12.169 \csname #lhyphenmins\endcsname\relax

12.170 \fi

12.171 \fi

12172}

\bblepatterns This macro selects the hyphenation patterns by changing the \language regis-
ter. If special hyphenation patterns are available specifically for the current font
encoding, use them instead of the default.

12.173 \def\bbl@patterns#1{%
12.174 \language=\expandafter\ifx\csname 1@#1:\f@encoding\endcsname\relax

12.175 \csname 1@#1\endcsname

12.176 \else

12.177 \csname 1@#1:\f@encoding\endcsname
12.178 \fi\relax

12.179 }

hyphenrules The environment hyphenrules can be used to select just the hyphenation rules.
This environment does not change \languagename and when the hyphenation
rules specified were not loaded it has no effect.

12.180 \def\hyphenrules#1{/,
12.181 \expandafter\ifx\csname 1@#1\endcsname\@undefined

12.182 \@nolanerr{#1}/,

12.183 \else

12.184 \bbl@patterns{#1}%

12.185 \languageshorthands{none}},

12.186 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.187 \set@hyphenmins\tw@\thr@@\relax

12.188 \else

25

\providehyphenmins

\set@hyphenmins

\LdfInit

12.189 \expandafter\expandafter\expandafter\set@hyphenmins

12.190 \csname #lhyphenmins\endcsname\relax
12.191 \fi

12,192 \fi

12.193 }

12.194 \def\endhyphenrules{}

The macro \providehyphenmins should be used in the language definition files
to provide a default setting for the hyphenation parameters \lefthyphenmin and
\righthyphenmin. If the macro \(lang)hyphenmins is already defined this com-
mand has no effect.

12.195 \def \providehyphenmins#1#2{J

12.196 \expandafter\ifx\csname #lhyphenmins\endcsname\relax

12.197 \@namedef{#1hyphenmins}{#23}/,

12.198 \fi}

This macro sets the values of \lefthyphenmin and \righthyphenmin. It expects
two values as its argument.

12.199 \def\set@hyphenmins#1#2{\1lefthyphenmin#i\righthyphenmin#2}

This macro is defined in two versions. The first version is to be part of the ‘kernel’
of babel, ie. the part that is loaded in the format; the second version is defined
in babel.def. The version in the format just checks the category code of the
ampersand and then loads babel.def.

12.200 \def\LdfInit{%

12.201 \chardef\atcatcode=\catcode‘\@

12.202 \catcode‘\@=11\relax

12.203 \input babel.def\relax

The category code of the ampersand is restored and the macro calls itself again
with the new definition from babel.def
12.204 \catcode‘\@=\atcatcode \let\atcatcode\relax

12.205 \LdfInit}
12.206 (/kernel)

The second version of this macro takes two arguments. The first argument is the
name of the language that will be defined in the language definition file; the second
argument is either a control sequence or a string from which a control sequence
should be constructed. The existence of the control sequence indicates that the
file has been processed before.

At the start of processing a language definition file we always check the category
code of the ampersand. We make sure that it is a ‘letter’ during the processing of
the file.

12.207 (*core)

12.208 \def\LdAfInit#1#2{%

12.209 \chardef\atcatcode=\catcode‘\Q
12.210 \catcode‘\@=11\relax

Another character that needs to have the correct category code during processing
of language definition files is the equals sign, ‘=’, because it is sometimes used in
constructions with the \let primitive. Therefor we store its current catcode and
restore it later on.

12.211 \chardef\eqcatcode=\catcode‘\=
12.212 \catcode‘\==12\relax

Now we check whether we should perhaps stop the processing of this file. To do
this we first need to check whether the second argument that is passed to \LdfInit
is a control sequence. We do that by looking at the first token after passing #2
through string. When it is equal to \@backslashchar we are dealing with a
control sequence which we can compare with \@undefined.

12.213 \let\bbl@tempa\relax

12.214 \expandafter\if\expandafter\@backslashchar

26

12.215 \expandafter\Qcar\string#2\@nil

12.216 \ifx#2\Qundefined

12.217 \else
If so, we call \1df@quit (but after the end of this \if construction) to set the
main language, restore the category code of the @-sign and call \endinput.

12.218 \def\bbletempa{\ldfQquit{#1}}

12.219 \fi

12.220 \else

When #2 was not a control sequence we construct one and compare it with \relax.

12.221 \expandafter\ifx\csname#2\endcsname\relax
12.222 \else

12.223 \def\bbl@tempa{\1df@quit{#1}}

12.224 \fi

12.225 \fi

12.226 \bbl@tempa
Finally we check \originalTeX.
12.227 \ifx\originalTeX\@undefined

12.228 \let\originalTeX\@empty
12.229 \else
12.230 \originalTeX

12.231 \fi}

\ldfequit This macro interrupts the processing of a language definition file.
12.232 \def\ldfQquit#1{/,
12.233 \expandafter\main@language\expandafter{#1}%
12.234 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.235 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12.236 \endinput
12.237 }

\ldfefinish This macro takes one argument. It is the name of the language that was defined
in the language definition file.

We load the local configuration file if one is present, we set the main language
(taking into account that the argument might be a control sequence that needs to
be expanded) and reset the category code of the @-sign.

12.238 \def\1df@finish#1{J,

12.239 \loadlocalcfg{#1}%

12.240 \expandafter\main@language\expandafter{#11}/
12.241 \catcode‘\@=\atcatcode \let\atcatcode\relax
12.242 \catcode‘\==\eqcatcode \let\eqcatcode\relax
12.243 }

After the preamble of the document the commands \LdfInit, \1df@quit and
\1df@finish are no longer needed. Therefor they are turned into warning mes-
sages in BTEX.

12.244 \Q@onlypreamble\LdfInit

12.245 \Q@onlypreamble\1ldf@quit
12.246 \Qonlypreamble\1df@finish

\main@language This command should be used in the various language definition files. It stores its
\bbl@main@language argument in \bbl@main@language; to be used to switch to the correct language
at the beginning of the document.
12.247 \def\main@language#1{/
12.248 \def\bbl@main@language{#11}}
12.249 \let\languagename\bbl@main@language
12.250 \bbl@patterns{\languagename}y,
12.251 }

27

The default is to use English as the main language.

12.252 \ifx\1@english\@undefined

12.253 \let\l@english\z@

12.254 \fi

12.255 \main@language{english}
We also have to make sure that some code gets executed at the beginning of the
document.

12.256 \AtBeginDocument{/,

12.257 \expandafter\selectlanguage\expandafter{\bbl@main@languagel}}

12.258 (/core)

\originalTeX The macro\originalTeX should be known to TEX at this moment. As it has to
be expandable we \let it to \@empty instead of \relax.
12.259 (*kernel)
12.260 \ifx\originalTeX\@undefined\let\originalTeX\Q@empty\fi
Because this part of the code can be included in a format, we make sure that the
macro which initialises the save mechanism, \babel@beginsave, is not considered
to be undefined.

12.261 \ifx\babel@beginsave\Qundefined\let\babel@beginsave\relax\fi

\@nolanerr The babel package will signal an error when a documents tries to select a language
\@nopatterns that hasn’t been defined earlier. When a user selects a language for which no
hyphenation patterns were loaded into the format he will be given a warning
about that fact. We revert to the patterns for \language=0 in that case. In most

formats that will be (US)english, but it might also be empty.

\@noopterr When the package was loaded without options not everything will work as ex-
pected. An error message is issued in that case.
When the format knows about \PackageError it must be ITEX 2¢, so we can
safely use its error handling interface. Otherwise we’ll have to ‘keep it simple’.
12.262 \ifx\PackageError\Qundefined
12.263 \def\@nolanerr#1{}

12.264 \errhelp{Your command will be ignored, type <return> to proceedl}’
12.265 \errmessage{You haven’t defined the language #1\space yet}}

12.266 \def\@nopatterns#1{/,

12.267 \message{No hyphenation patterns were loaded forlJ,

12.268 \message{the language ‘#1’}}

12.269 \message{I will use the patterns loaded for \string\language=0
12.270 instead}’}

12.271 \def\@noopterr#1{/

12.272 \errmessage{The option #1 was not specified in \string\usepackage}
12.273 \errhelp{You may continue, but expect unexpected resultsl}}

12.274 \def\Qactivated#1{%

12.275 \wlog{Package babel Info: Making #1 an active character}}

12.276 \else
12.277 \newcommand*{\@nolanerr}[1]1{%

12.278 \PackageError{babell}/,

12.279 {You haven’t defined the language #1\space yetl}%
12.280 {Your command will be ignored, type <return> to proceed}}
12.281 \newcommand*{\@nopatterns}[1]{%

12.282 \PackageWarningNoLine{babel}}

12.283 {No hyphenation patterns were loaded for\MessageBreak
12.284 the language ‘#1’\MessageBreak

12.285 I will use the patterns loaded for \string\language=0
12.286 instead}}

12.287 \newcommand*{\@noopterr}[1]{%

12.288 \PackageError{babell}},

12.289 {You haven’t loaded the option #1\space yetl}/
12.290 {You may proceed, but expect unexpected resultsl}}

12.291 \newcommand*{\@activated}[1]{%

28

\process@line

12.292 \PackageInfo{babel}{%
12.293 Making #1 an active character}}
12.204 \fi

The following code is meant to be read by iniTEX because it should instruct
TEX to read hyphenation patterns. To this end the docstrip option patterns
can be used to include this code in the file hyphen.cfg.

12.295 (*patterns)

Each line in the file language .dat is processed by \process@line after it is read.
The first thing this macro does is to check whether the line starts with =. When
the first token of a line is an =, the macro \process@synonymn is called; otherwise
the macro \process@language will continue.

12.296 \def\process@line#1#2 #3/{,
12.297 \ifx=#1

12.298 \process@synonym#2 /

12.299 \else

12.300 \process@language#1#2 #3/7,
12.301 \fi

12.302 }

\process@synonym This macro takes care of the lines which start with an =. It needs an empty token

\process@language

register to begin with.
12.303 \toks@{}

12.304 \def\process@synonym#1 /{}
12.305 \ifnum\last@language=\mCne

When no languages have been loaded yet, the name following the = will be a
synonym for hyphenation register 0.

12.306 \expandafter\chardef\csname 10#1\endcsnameO\relax

12.307 \wlog{\string\1@#1=\string\languageO}
As no hyphenation patterns are read in yet, we can not yet set the hyphenmin
parameters. Therefor a command to do so is stored in a token register and executed
when the first pattern file has been processed.

12.308 \toks@\expandafter{\the\toks@
12.309 \expandafter\let\csname #1lhyphenmins\expandafter\endcsname
12.310 \csname\languagename hyphenmins\endcsnamel}j,

12.311 \else

Otherwise the name will be a synonym for the language loaded last.

12.312 \expandafter\chardef\csname 10#1\endcsname\last@language
12.313 \wlog{\string\l@#1=\string\language\the\last@language}
We also need to copy the hyphenmin parameters for the synonym.
12.314 \expandafter\let\csname #1hyphenmins\expandafter\endcsname
12.315 \csname\languagename hyphenmins\endcsname
12316 \fi
12.317 }
The macro \process@language is used to process a non-empty line from the ‘con-

figuration file’. It has three arguments, each delimited by white space. The third
argument is optional, so a / character is expected to delimit the last argument.
The first argument is the ‘name’ of a language; the second is the name of the
file that contains the patterns. The optional third argument is the name of a file
containing hyphenation exceptions.
The first thing to do is call \addlanguage to allocate a pattern register and

to make that register ‘active’.

12.318 \def\process@language#1 #2 #3/{),

12.319 \expandafter\addlanguage\csname 1@#1\endcsname

12.320 \expandafter\language\csname 1@#1\endcsname

12.321 \def\languagename{#1}},

29

Then the ‘name’ of the language that will be loaded now is added to the token
register \toks8. and finally the pattern file is read.

12.322 \global\toks8\expandafter{\the\toks8#1, }/
For some hyphenation patterns it is needed to load them with a specific font
encoding selected. This can be specified in the file language.dat by adding for
instance ‘:T1’ to the name of the language. The macro \bbl@get@enc extracts
the font encoding from the language name and stores it in \bbl@hyph@enc.

12.323 \begingroup

12.324 \bbl@get@enc#1:\00Q

12.325 \ifx\bbl@hyph@enc\Q@empty

12.326 \else

12.327 \fontencoding{\bbl@hyph@enc}\selectfont
12.328 \fi

Some pattern files contain assignments to \1lefthyphenmin and \righthyphenmin.
TEX does not keep track of these assignments. Therefor we try to detect such as-
signments and store them in the \(lang)hyphenmins macro. When no assignments
were made we provide a default setting.

12.329 \lefthyphenmin\m@ne

Some pattern files contain changes to the \lccode en \uccode arrays. Such
changes should remain local to the language; therefor we process the pattern file
in a group; the \patterns command acts globally so its effect will be remembered.

12.330 \input #2\relax

Now we globally store the settings of \lefthyphenmin and \righthyphenmin and
close the group.

12.331 \ifnum\lefthyphenmin=\m@ne

12.332 \else

12.333 \expandafter\xdef\csname #1hyphenmins\endcsname{7,
12.334 \the\lefthyphenmin\the\righthyphenmin}y,

12.335 \fi

12.336 \endgroup

If the counter \language is still equal to zero we set the hyphenmin parameters
to the values for the language loaded on pattern register 0.

12.337 \ifnum\the\language=\z@

12.338 \expandafter\ifx\csname #lhyphenmins\endcsname\relax
12.339 \set@hyphenmins\tw@\thr@@\relax

12.340 \else

12.341 \expandafter\expandafter\expandafter\set@hyphenmins
12.342 \csname #1hyphenmins\endcsname

12.343 \fi

Now execute the contents of token register zero as it may contain commands
which set the hyphenmin parameters for synonyms that were defined before the
first pattern file is read in.

12.344 \the\toks@
12.345 \fi

Empty the token register after use.

12.346 \toks@{}/
When the hyphenation patterns have been processed we need to see if a file with
hyphenation exceptions needs to be read. This is the case when the third argument
is not empty and when it does not contain a space token.

12.347 \def\bbl@tempa{#3}],

12.348 \ifx\bbl@tempa\Q@empty
12.349 \else

12.350 \ifx\bbl@tempa\space
12.351 \else
12.352 \input #3\relax

30

\bbl@get@enc
\bbl@hyphenc

\readconfigfile

12.353 \fi

12.354 \fi
12.355 }
The macro \bbl@get@enc extracts the font encoding from the language name and

stores it in \bbl@hyph@enc. It uses delimited arguments to achieve this.
12.356 \def\bbl@get@enc#1:#2\00e{},
First store both arguments in temporary macros,

12.357 \def\bbl@tempa{#1}/

12.358 \def\bbl@tempb{#2}],
then, if the second argument was empty, no font encoding was specified and we’re
done.

12.359 \ifx\bbl@tempb\Qempty

12.360 \let\bbl@hyphQ@enc\Qempty
12.361 \else

But if the second argument was not empty it will now have a superfluous colon
attached to it which we need to remove. This done by feeding it to \bbl@get@enc.
The string that we are after will then be in the first argument and be stored in
\bbl@tempa.

12.362 \bbl@get@enc#2\@0Q

12.363 \edef \bbl@hyph@enc{\bbl@tempal/,

12.364 \fi}

The configuration file can now be opened for reading.
12.365 \openinl = language.dat

See if the file exists, if not, use the default hyphenation file hyphen.tex. The
user will be informed about this.

12.366 \ifeofl

12.367 \message{I couldn’t find the file language.dat, \space
12.368 I will try the file hyphen.tex}

12.369 \input hyphen.tex\relax

12.370 \def\1l@english{0}

12.371 \def\languagename{english}},

12.372 \else

Pattern registers are allocated using count register \last@language. Its initial
value is 0. The definition of the macro \newlanguage is such that it first incre-
ments the count register and then defines the language. In order to have the first
patterns loaded in pattern register number 0 we initialize \last@language with
the value —1.

12.373 \last@language\m@One
We now read lines from the file until the end is found
12.374 \loop

While reading from the input, it is useful to switch off recognition of the end-
of-line character. This saves us stripping off spaces from the contents of the control
sequence.

12.375 \endlinechar\m@ne
12.376 \readl to \bbl@line
12.377 \endlinechar‘\~"M

Empty lines are skipped.

12.378 \ifx\bbl@line\Qempty
12.379 \else

31

\bbl@add@special

Now we add a space and a / character to the end of \bbl@line. This is needed
to be able to recognize the third, optional, argument of \process@language later
on.

12.380 \edef\bbl@line{\bbl@line\space/}),

12.381 \expandafter\process@line\bbl@line
12.382 \ifx\bbl@defaultlanguage\@undefined
12.383 \let\bbl@defaultlanguage\languagename
12.384 \fi

12.385 \fi

Check for the end of the file. To avoid a new if control sequence we create
the necessary \iftrue or \iffalse with the help of \csname. But there is one
complication with this approach: when skipping the loop...repeat TEX has to
read \if/\fi pairs. So we have to insert a ‘dummy’ \iftrue.

12.386 \iftrue \csname fi\endcsname
12.387 \csname if\ifeofl false\else true\fi\endcsname
12.388 \repeat

Reactivate the default patterns,

12.389 \language=0
12.390 \let\languagename\bbl@defaultlanguage
12.391 \let\bbl@defaultlanguage\@undefined
12.392 \fi

and close the configuration file.
12.393 \closeinl

Also remove some macros from memory
12.394 \let\process@language\@undefined
12.395 \let\process@synonym\@undefined
12.396 \let\process@line\@undefined
12.397 \let\bbl@tempa\@undefined
12.398 \let\bbl@tempb\Qundefined
12.399 \let\bbl@eq@\@undefined
12.400 \let\bbl@line\@undefined
12.401 \let\bbl@get@enc\Qundefined

We add a message about the fact that babel is loaded in the format and with

which language patterns to the \everyjob register.
12.402 \ifx\addto@hook\@undefined
12.403 \else
12.404 \expandafter\addto@hook\expandafter\everyjob\expandafter{y,
12.405 \expandafter\typeout\expandafter{\the\toks8 loaded.}}
12.406 \fi

Here the code for iniTEX ends.

12.407 {/patterns)
12.408 (/kernel)

12.3 Support for active characters

The macro \bbl@add@special is used to add a new character (or single character
control sequence) to the macro \dospecials (and \@sanitize if IXTEX is used).
To keep all changes local, we begin a new group. Then we redefine the macros

\do and \@makeother to add themselves and the given character without expan-
sion.

12.409 (*core | shorthands)

12.410 \def\bblO@add@special#1{\begingroup

12.411 \def\do{\noexpand\do\noexpand}%

12.412 \def\@makeother{\noexpand\@makeother\noexpandl},
To add the character to the macros, we expand the original macros with the
additional character inside the redefinition of the macros. Because \@sanitize
can be undefined, we put the definition inside a conditional.

32

\bbl@remove@special

\initiate@active@char

\bbl@afterelse
\bbl@afterfi

12.413 \edef\x{\endgroup

12.414 \def\noexpand\dospecials{\dospecials\do#1}}

12.415 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.416 \def\noexpand\@sanitize{\@sanitize\@makeother#1}J,
12.417 \£i}

The macro \x contains at this moment the following:

\endgroup\def\dospecials{old contents \do(char)}.

If \@sanitize is defined, it contains an additional definition of this macro.
The last thing we have to do, is the expansion of \x. Then \endgroup is executed,
which restores the old meaning of \x, \do and \@makeother. After the group is
closed, the new definition of \dospecials (and \@sanitize) is assigned.

12.418 \x}

The companion of the former macro is \bbl@remove@special. It is used to remove
a character from the set macros \dospecials and \@sanitize.

To keep all changes local, we begin a new group. Then we define a help macro
\x, which expands to empty if the characters match, otherwise it expands to its
nonexpandable input. Because TEX inserts a \relax, if the corresponding \else
or \fi is scanned before the comparison is evaluated, we provide a ‘stop sign’
which should expand to nothing.

12.419 \def\bbl@remove@special#1{\begingroup
12.420 \def \x##1##2{\ifnum‘#1=‘##2\noexpand\Q@empty
12.421 \else\noexpand##1\noexpand##2\fil}},

With the help of this macro we define \do and \make@other.

12.422 \def\do{\x\do}/

12.423 \def\@makeother{\x\@makeotherl}y,
The rest of the work is similar to \bbl@add@special.
12.424 \edef\x{\endgroup
12.425 \def\noexpand\dospecials{\dospecials}
12.426 \expandafter\ifx\csname @sanitize\endcsname\relax \else
12.427 \def\noexpand\@sanitize{\@sanitize}%
12.428 \£i}
12429 \x}

12.4 Shorthands

A language definition file can call this macro to make a character active. This
macro takes one argument, the character that is to be made active. When the
character was already active this macro does nothing. Otherwise, this macro
defines the control sequence \normal@char{char) to expand to the character in its
‘normal state’ and it defines the active character to expand to \normal@char(char)
by default ({char) being the character to be made active). Later its definition can
be changed to expand to \active@char(char) by calling \bbl@activate{(char)}.

For example, to make the double quote character active one could have the
following line in a language definition file:

\initiate@active@char{"}

Because the code that is used in the handling of active characters may need to
look ahead, we take extra care to ‘throw’ it over the \else and \fi parts of an
\if-statement®. These macros will break if another \if...\fi statement appears
in one of the arguments.

12.430 \long\def\bblOafterelse#1\else#2\fi{\fi#1}
12.431 \long\def\bbloafterfi#1\fi{\fi#1}

5This code is based on code presented in TUGboat vol. 12, no2, June 1991 in “An expansion
Power Lemma” by Sonja Maus.

33

\peek@token

\bbl@test@token

To prevent error messages when a shorthand, which normally takes an argument,
sees a \par, or }, or similar tokens, we need to be able to ‘peek’ at what is coming
up next in the input stream. Depending on the category code of the token that
is seen, we need to either continue the code for the active character, or insert
the non-active version of that character in the output. The macro \peek@token
therefore takes two arguments, with which it constructs the control sequence to
expand next. It \let’s \bbl@nexta and \bbl@nextb to the two possible macros.
This is necessary for \bbl@test@token to take the right decision.

12.432 %\def \peek@token#1#2{/,

12.433 % \expandafter\let\expandafter\bbl@nexta\csname #1\string#2\endcsname

12.434 % \expandafter\let\expandafter\bbl@nextb

12.435 % \csname system@active\string#2\endcsname

12.436 % \futurelet\bbl@token\bbl@test@token}

When the result of peeking at the next token has yielded a token with category
‘letter’, ‘other’ or ‘active’ it is safe to proceed with evaluating the code for the
shorthand. When a token is found with any other category code proceeding is
unsafe and therefor the original shorthand character is inserted in the output. The
macro that calls \bbl@test@token needs to setup \bbl@nexta and \bbl@nextb
in order to achieve this.

12.437 %\def\bbl@test@token{,

12.438 % \let\bbl@next\bbl@nexta

12.439 % \ifcat\noexpand\bbl@token a,

12.440 % \else

12.441 % \ifcat\noexpand\bbl@token=/

12.442 % \else

12.443 % \ifcat\noexpand\bbl@token\noexpand\bbl@next
12.444 % \else

12.445 % \let\bbl@next\bbl@nextb

12.446 % \fi

12.447 % \fi
12.448 % \fi
12.449 % \bbl@next}

The macro \initiate®@active@char takes all the necessary actions to make
its argument a shorthand character. The real work is performed once for each
character.

12.450 \def\initiate@active@char#1{%

12.451 \expandafter\ifx\csname active@char\string##1\endcsname\relax

12.452 \bbl@afterfi{\@initiate@active@char{#1}}/,

12.453 \fi}
Note that the definition of \@initiate®@active@char needs an active character,
for this the ~ is used. Some of the changes we need, do not have to become
available later on, so we do it inside a group.

12.454 \begingroup

12.455 \catcode‘\™\active

12.456 \def\x{\endgroup

12.457 \def\@initiate@active@char##1{J
If the character is already active we provide the default expansion under this
shorthand mechanism.

12.458 \ifcat\noexpand##1\noexpand~\relax

12.459 \@ifundefined{normal@char\string##1}{/%

12.460 \expandafter\let\csname normal@char\string##1\endcsname##17
12.461 \expandafter\gdef

12.462 \expandafter##17

12.463 \expandafter{%

12.464 \expandafter\active@prefix\expandafter##1,

12.465 \csname normal@char\string##1\endcsname}}{}%

12.466 \else

34

Otherwise we write a message in the transcript file,
12.467 \Q@activated{##1}/,

and define \normal@char(char) to expand to the character in its default state.

12.468 \@namedef{normal@char\string##1}{##1}%
If we are making the right quote active we need to change \pr@m@s as well.
12.469 \ifx##1°%,
12.470 \let\prim@s\bbl@prim@s
Also, make sure that a single > in math mode ‘does the right thing’.
12.471 \@namedef{normal@char\string##1}{J,
12.472 \textormath{##1}{~\bgroup\prim@sl}}/
12.473 \fi

If we are using the caret as a shorthand character special care should be taken
to make sure math still works. Therefor an extra level of expansion is introduced
with a check for math mode on the upper level.

12.474 \ifx##1~Y

12.475 \gdef\bbl@act@caret{%

12.476 \ifmmode

12.477 \csname normal@char\string~\endcsname

12.478 \else

12.479 \bbl@afterfi

12.480 {\if@safe@actives

12.481 \bbl@afterelse\csname normal@char\string##1\endcsname
12.482 \else

12.483 \bbl@afterfi\csname user@active\string##1\endcsname
12.484 \£i}%

12.485 \fi}

12.486 \fi

To prevent problems with the loading of other packages after babel we reset the
catcode of the character at the end of the package.

12.487 \@ifpackagewith{babel}{KeepShorthandsActive}{}{%
12.488 \edef\bbl@tempa{\catcode‘\noexpand##1\the\catcode ‘##1}J,
12.489 \expandafter\AtEndOfPackage\expandafter{\bbl@tempal}}’

Now we set the lowercase code of the ~ equal to that of the character to be made
active and execute the rest of the code inside a \lowercase ‘environment’.

12.490 \@tempcnta=\lccode‘\~
12.491 \lccode‘~=“##1
12.492 \lowercase{’

Make the character active and add it to \dospecials and \@sanitize.

12.493 \catcode‘~\active
12.494 \expandafter\bbl@add@special
12.495 \csname \string##1\endcsname

Also re-activate it again at \begin{document}.

12.496 \AtBeginDocument{’
12.497 \catcode ‘##1\active

We also need to make sure that the shorthands are active during the processing
of the .aux file. Otherwise some citations may give unexpected results in the
printout when a shorthand was used in the optional argument of \bibitem for
example.

12.498 \if@filesw

12.499 \immediate\write\@mainaux{%

12.500 \string\catcode‘##1\string\activel},
12.501 \fi}¥

Define the character to expand to

\active@prefix (char) \normal@char(char)

35

(where \active@char(char) is one control sequence!).

12.502 \expandafter\gdef

12.503 \expandafter~Y

12.504 \expandafter{’

12.505 \expandafter\active@prefix\expandafter##1/,
12.506 \csname normal@char\string##1\endcsnamel}}%
12.507 \lccode‘\~\@tempcnta

12.508 \fi

For the active caret we first expand to \bbl@act@caret in order to be able to
handle math mode correctly.

12.509 \ifx##1~Y
12.510 \@namedef{active@char\string##1}{\bblOact@caretl}},
12.511 \else

We define the first level expansion of \active@char(char) to check the status of
the @safe@actives flag. If it is set to true we expand to the ‘normal’ version of
this character, otherwise we call \@active@char(char).

12.512 \@namedef{active@char\string##1}{/

12.513 \if@safe@actives

12.514 \bbl@afterelse\csname normal@char\string##1\endcsname
12.515 \else

12.516 \bbl@afterfi\csname user@active\string##1\endcsname
12.517 \fil}%

12.518 \fi

The next level of the code checks whether a user has defined a shorthand for
himself with this character. First we check for a single character shorthand. If
that doesn’t exist we check for a shorthand with an argument.

12.519 \@namedef{userQactive\string##1}{J,

12.520 \expandafter\ifx

12.521 \csname \user@group @sh@\string##10@\endcsname

12.522 \relax

12.523 \bbl@afterelse\bbl@sh@select\user@group##1},

12.524 {user@active@arg\string##1}{language@active\string##1}/,
12.525 \else

12.526 \bbl@afterfilcsname \user@group Qsh@\string##10\endcsname
12.527 \fi}%

When there is also no user-level shorthand with an argument we will check whether
there is a language defined shorthand for this active character. Before the next
token is absorbed as argument we need to make sure that this is safe. Therefor
\peek@token is called to decide that.

12.528 \long\@namedef{user@active@arg\string##1}####1{J
12.529 \expandafter\ifx

12.530 \csname \user@group @sh@\string##1@\string####10\endcsname
12.531 \relax

12.532 \bblQafterelse

12.533 \csname language@active\string##1\endcsname####1,
12.534 \else

12.535 \bbl@afterfi

12.536 \csname \user@group Qsh@\string##10\string####10},
12.537 \endcsname

12.538 \fi}%

In order to do the right thing when a shorthand with an argument is used by itself
at the end of the line we provide a definition for the case of an empty argument.
For that case we let the shorthand character expand to its non-active self.

12.539 \@namedef{\user@group @sh@\string##1@e}{/

12.540 \csname normal@char\string##1\endcsname}

Like the shorthands that can be defined by the user, a language definition file

can also define shorthands with and without an argument, so we need two more
macros to check if they exist.

36

12.541 \@namedef{language@active\string##1}{/%

12.542 \expandafter\ifx

12.543 \csname \language@group @sh@\string##1@\endcsname

12.544 \relax

12.545 \bbl@afterelse\bblO@sh@select\language@group##1/,

12.546 {language@active@arg\string##1}{system@active\string##1}J
12.547 \else

12.548 \bbl@afterfi

12.549 \csname \language@group @sh@\string##1@\endcsname

12.550 \£i}%

12.551 \long\@namedef{language@activeQarg\string##1}####1{/,

12.552 \expandafter\ifx

12.553 \csname \language@group @sh@\string##10\string####10\endcsname
12.554 \relax

12.555 \bbl@afterelse

12.556 \csname system@active\string##1\endcsname####17,

12.557 \else

12.558 \bbl@afterfi

12.559 \csname \language@group @sh@\string##1Q\string####10},
12.560 \endcsname

12.561 \fi}%

And the same goes for the system level.

12.562 \@namedef{system@active\string##1}{/
12.563 \expandafter\ifx
12.564 \csname \system@group @sh@\string##10\endcsname
12.565 \relax
12.566 \bbl@afterelse\bblO@sh@select\systemQ@group##1/
12.567 {system@active@arg\string##1}{normal@char\string##1}J
12.568 \else
12.569 \bbl@afterfi\csname \system@group @sh@\string##10\endcsname
12.570 \fil}%
When no shorthands were found the ‘normal’ version of the active character is
inserted.
12.571 \long\@namedef{system@activeQarg\string##1####1{}
12.572 \expandafter\ifx
12.573 \csname \system@group @sh@\string##10@\string####10\endcsname
12.574 \relax
12.575 \bbl@afterelse\csname normal@char\string##1\endcsname####17,
12.576 \else
12.577 \bbl@afterfi
12.578 \csname \system@group @sh@\string##1@\string##i##10\endcsname
12.579 \fi}V

When a shorthand combination such as ’>’ ends up in a heading TEX would see
\protect’\protect’. To prevent this from happening a shorthand needs to be
defined at user level.

12.580 \@namedef{user@sh@\string##10\string\protect@}{J
12.581 \csname user@active\string##1\endcsnamely,
12.582 Yh

12.583 Nx

\bble@sh@select This command helps the shorthand supporting macros to select how to proceed.
Note that this macro needs to be expandable as do all the shorthand macros in
order for them to work in expansion-only environments such as the argument of
\hyphenation.

This macro expects the name of a group of shorthands in its first argument
and a shorthand character in its second argument. It will expand to either
\bbl@firstcs or \bbl@scndcs. Hence two more arguments need to follow it.

12.584 \def\bbl@sh@select#1#2{},

37

12.585 \expandafter\ifx\csname#10sh@\string#2@sel\endcsname\relax

12.586 \bbl@afterelse\bbl@scndcs

12.587 \else

12.588 \bbl@afterfi\csname#10sh@\string#20sel\endcsname
12.589 \fi

12.590 }

\active@prefix The command \active@prefix which is used in the expansion of active charac-
ters has a function similar to \0T1-cmd in that it \protects the active character
whenever \protect is not \@typeset@protect.

12.591 \def\active@prefix#1{J,

12.592 \ifx\protect\@typeset@protect

12.593 \else
When \protect is set to \@Qunexpandable@protect we make sure that the active
character is als not expanded by inserting \noexpand in front of it. The \@gobble
is needed to remove a token such as \activechar: (when the double colon was
the active character to be dealt with).

12.594 \ifx\protect\@unexpandable@protect

12.595 \bbl@afterelse\bbl@afterfi\noexpand#1\Qgobble
12.596 \else

12.597 \bbl@afterfi\bbl@afterfi\protect#1\Q@gobble
12.598 \fi

12.599 \fi}

\if@safe@actives In some circumstances it is necessary to be able to change the expansion of an
active character on the fly. For this purpose the switch @safe@actives is avail-
able. The setting of this switch should be checked in the first level expansion of
\active@char(char).

12.600 \newif\if@safe@actives
12.601 \@safe@activesfalse

\bbl@restore@actives When the output routine kicks in while the active characters were made “safe” this
must be undone in the headers to prevent unexpected typeset results. For this
situation we define a command to make them “unsafe” again.

12.602 \def\bbl@restore@actives{\if@safe@actives\@safe@activesfalse\fi}

\bbleactivate This macro takes one argument, like \initiate@active@char. The macro is used
to change the definition of an active character to expand to \active@char(char)
instead of \normal@char(char).

12.603 \def\bbl@activate#1{}%

12.604 \expandafter\def
12.605 \expandafter#l\expandafter{}

12.606 \expandafter\active@prefix
12.607 \expandafter#i\csname active@char\string#1\endcsnamel}
12.608 }

\bbledeactivate This macro takes one argument, like \bbl@activate. The macro doesn’t
really make a character non-active; it changes its definition to expand to
\normal@char(char).

12.609 \def\bbl@deactivate#1{%
12.610 \expandafter\def
12.611 \expandafter#1l\expandafter{),

12.612 \expandafter\active@prefix
12.613 \expandafter#l\csname normal@char\string#1\endcsnamely,
12.614 }

\bblefirstcs These macros have two arguments. They use one of their arguments to build a
\bbl@scndcs control sequence from.

12.615 \def\bbl@firstcs#1#2{\csname#1\endcsname}
12.616 \def\bbl@scndcs#1#2{\csname#2\endcsname}

38

\declare@shorthand The command \declare@shorthand is used to declare a shorthand on a certain
level. It takes three arguments:

1. a name for the collection of shorthands, i.e. ‘system’, or ‘dutch’;
2. the character (sequence) that makes up the shorthand, i.e. ~ or "a;

3. the code to be executed when the shorthand is encountered.

12.617 \def\declare@shorthand#1#2{\@decl@short{#1}#2\@nil}
12.618 \def\@decl@short#1#2#3\Cnil#4{%

12.619 \def\bbl@tempa{#3}/

12.620 \ifx\bbl@tempa\C@empty

12.621 \expandafter\let\csname #10@sh@\string#2@sel\endcsname\bbl@scndcs
12.622 \@namedef{#10sh@\string#20}{#4}

12.623 \else

12.624 \expandafter\let\csname #10@sh@\string#2@sel\endcsname\bblOfirstcs
12.625 \@namedef{#1@sh@\string#20\string#30}{#4}/,

12.626 \fi}

\textormath Some of the shorthands that will be declared by the language definition files
have to be usable in both text and mathmode. To achieve this the helper macro
\textormath is provided.

12.627 \def\textormath#1#2{},
12.628 \ifmmode

12.629 \bbl@afterelse#2},
12.630 \else
12.631 \bbleafterfi#1,

12.632 \fi}

\user@group The current concept of ‘shorthands’ supports three levels or groups of shorthands.
\language@group For each level the name of the level or group is stored in a macro. The default is
\system@group to have a user group; use language group ‘english’ and have a system group called
‘system’.
12.633 \def\user@group{user}
12.634 \def\language@group{english}
12.635 \def\system@group{system}

\useshorthands This is the user level command to tell IXTEX that user level shorthands will be used
in the document. It takes one argument, the character that starts a shorthand.

12.636 \def\useshorthands#1{%

First note that this is user level.
12.637 \def\user@group{userl}y,

Then initialize the character for use as a shorthand character.
12.638 \initiate@active@char{#1}/,

Now that TEX has seen the character its category code is fixed, but for the actions
of \bbl@activate to succeed we need it to be active. Hence the trick with the
\lccode to circumvent this.

12.639 \@tempcntallccode‘\~

12.640 \lccode‘~=‘#1%

12.641 \lowercase{\catcode‘~\active\bbl@activate{"}}%
12.642 \lccode‘\~\Q@tempcnta}

\defineshorthand Currently we only support one group of user level shorthands, called ‘user’.
12.643 \def\defineshorthand{\declare@shorthand{user}}

\languageshorthands A user level command to change the language from which shorthands are used.
12.644 \def\languageshorthands#1{\def\language@group{#1}}

39

\aliasshorthand
12.645 \def\aliasshorthand#1#2{/
First the new shorthand needs to be initialized,

12.646 \expandafter\ifx\csname active@char\string#2\endcsname\relax

12.647 \ifx\document\@notprerr
12.648 \@notshorthand{#2}

12.649 \else

12.650 \initiate@active@char{#2}}

Then we need to use the \lccode trick to make the new shorthand behave like
the old one. Therefore we save the current \1lccode of the ~-character and restore
it later. Then we \let the new shorthand character be equal to the original.

12.651 \@tempcntal\lccode‘\~
12.652 \lccode‘~=*#2Y
12.653 \lowercase{\let~#1}J,
12.654 \lccode‘\~\@tempcnta
12.655 \fi
12.656 \fi
12.657 }
\@notshorthand
12.658 \def\@notshorthand#1{/
12.659 \PackageError{babel}{%
12.660 The character ‘\string #1’ should be made
12.661 a shorthand character;\MessageBreak
12.662 add the command \string\useshorthands\string{#1\string} to
12.663 the preamble.\MessageBreak
12.664 I will ignore your instruction}{}%
12.665 }

\shorthandon The first level definition of these macros just passes the argument on to
\shorthandoff \bbl@switch@sh, adding \@nil at the end to denote the end of the list of char-
acters.

12.666 \newcommand*\shorthandon[1]{\bbl@switch@sh{on}#1\@nil}
12.667 \newcommand*\shorthandoff [1] {\bbl@switch@sh{off}#1\@nil}

\bble@switch@sh The macro \bbl@switch@sh takes the list of characters apart one by one and
subsequently switches the category code of the shorthand character according to
the first argument of \bbl@switch@sh.

12.668 \def\bbl@switch@sh#1#2#3\@nil{}
But before any of this switching takes place we make sure that the character we
are dealing with is known as a shorthand character. If it is, a macro such as
\active@char" should exist.

12.669 \@ifundefined{active@char\string#2}{%

12.670 \PackageError{babel}{%

12.671 The character ’\string #2’ is not a shorthand character
12.672 in \languagenamel}{’

12.673 Maybe you made a typing mistake?\MessageBreak

12.674 I will ignore your instruction}}{’

12.675 \csname bbl@switch@sh@#1\endcsname#2}/

Now that, as the first character in the list has been taken care of, we pass the rest
of the list back to \bbl@switch@sh.

12.676 \ifx#3\Q@empty\else
12.677 \bbl@afterfi\bbl@switch@sh{#1}#3\@nil
12.678 \fi}

\bbl@switch@sh@off All that is left to do is define the actual switching macros. Switching off is easy,
we just set the category code to ‘other’ (12).

12.679 \def\bbl@switch@sh@off#1{\catcode‘#112\relax}

40

\bbl@switch@sh@n But switching the shorthand character back on is a bit more tricky. It involves

\bbl@prim@s
\bbl@premes

making sure that we have an active character to begin with when the macro is
being defined. It also needs the use of \lowercase and \lccode trickery to get
everything to work out as expected. And to keep things local that need to remain
local a group is opened, which is closed as soon as \x gets executed.

12.680 \begingroup

12.681 \catcode‘\™\active

12.682 \def\x{\endgroup

12.683 \def\bbl@switch@shQon##1{%
12.684 \begingroup

12.685 \lccode‘~=“##1%

12.686 \lowercase{\endgroup
12.687 \catcode‘~\active
12.688 jyA

12.689 %

12.690 }

The next operation makes the above definition effective.

12.691 \x
12.692 %

To prevent problems with constructs such as \char"01A when the double quote
is made active, we define a shorthand on system level.

12.693 \declare@shorthand{system}{"}{\csname normal@char\string"\endcsname}

When the right quote is made active we need to take care of handling it cor-
rectly in mathmode. Therefore we define a shorthand at system level to make it
expand to a non-active right quote in textmode, but expand to its original defini-
tion in mathmode. (Note that the right quote is ‘active’ in mathmode because of
its mathcode.)

12.694 \declare@shorthand{system}{’}{%
12.695 \textormath{\csname normal@char\string’\endcsnamel},
12.696 {\sp\bgroup\prim@s}}

When the left quote is made active we need to take care of handling it correctly
when it is followed by for instance an open brace token. Therefore we define a
shorthand at system level to make it expand to a non-active left quote.

12.697 \declare@shorthand{system}{‘}{\csname normal@char\string‘\endcsname}

One of the internal macros that are involved in substituting \prime for each right
quote in mathmode is \prim@s. This checks if the next character is a right quote.
When the right quote is active, the definition of this macro needs to be adapted
to look for an active right quote.

12.698 \def\bblOprim@s{%

12.699 \prime\futurelet\@let@token\bblOprem@s}

12.700 \begingroup

12.701 \catcode‘\’\active\let’\relax

12.702 \def\x{\endgroup

12.703 \def\bbl@pr@m@s{%

12.704 \ifx’\@let@token
12.705 \expandafter\pr@ees
12.706 \else

12.707 \ifx~\@let@token
12.708 \expandafter\expandafter\expandafter\preoot
12.709 \else

12.710 \egroup

12.711 \fi

12.712 \fi}¥

12.713 }

12.714 \x

12.715 {/core | shorthands)

41

Normally the ~ is active and expands to \penalty\@M\,. When it is written
to the .aux file it is written expanded. To prevent that and to be able to use
the character ~ as a start character for a shorthand, it is redefined here as a one
character shorthand on system level.

12.716 (*core)

12.717 \initiate®@active@char{~}

12.718 \declare@shorthand{system}{ }{\leavevmode\nobreak\ }
12.719 \bbl@activate{~}

\0T1dgpos The position of the double quote character is different for the OT1 and T1 encod-
\Tldgpos ings. It will later be selected using the \f@encoding macro. Therefor we define
two macros here to store the position of the character in these encodings.

12.720 \expandafter\def\csname 0Tldgpos\endcsname{127}
12.721 \expandafter\def\csname Tldqpos\endcsname{4}

When the macro \f@encoding is undefined (as it is in plain TEX) we define it here
to expand to 0T1

12.722 \ifx\f@encoding\@undefined
12.723 \def\f@encoding{0T1}
12.724 \fi

12.5 Language attributes

Language attributes provide a means to give the user control over which features
of the language definition files he wants to enable.

\languageattribute The macro \languageattribute checks whether its arguments are valid and then
activates the selected language attribute.

12.725 \newcommand\languageattribute [2]{%
First check whether the language is known.

12.726 \expandafter\ifx\csname 1@#1\endcsname\relax

12.727 \@nolanerr{#1}/,

12.728 \else
Than process each attribute in the list.

12.729 \@for\bbl@attr:=#2\do{%
We want to make sure that each attribute is selected only once; therefor we store
the already selected attributes in \bbl@known®@attribs. When that control se-
quence is not yet defined this attribute is certainly not selected before.

12.730 \ifx\bbl@known@attribs\@undefined
12.731 \in@false
12.732 \else

Now we need to see if the attribute occurs in the list of already selected attributes.

12.733 \edef\bbl@tempa{\noexpand\in@{,#1-\bbl@attr, }%
12.734 {,\bbl@known@attribs,}}%
12.735 \bbl@tempa
12.736 \fi
When the attribute was in the list we issue a warning; this might not be the users
intention.
12.737 \ifin@
12.738 \PackageWarning{Babell}{/
12.739 You have more than once selected the attribute
12.740 ’\bbl@attr’\MessageBreak for language #11}/,
12.741 \else

When we end up here the attribute is not selected before. So, we add it to the list
of selected attributes and execute the associated TEX-code.

12.742 \edef\bbl@tempa{’
12.743 \noexpand\bbl@add@list\noexpand\bbl@known@attribs{#1-\bblOattr}}%
12.744 \bbl@tempa

42

12.745 \edef\bbl@tempa{#1-\bbl@attr}y

12.746 \expandafter\bbl@ifknown@ttrib\expandafter{\bbl@tempa}\bbl@attributes
12.747 {\csname#1@attr@\bbl@attr\endcsname},

12.748 {\eattrerr{#1}{\bbleattr}}/,

12.749 \fi

12.750 }

12.751 \fi}

This command should only be used in the preamble of a document.
12.752 \@onlypreamble\languageattribute

The error text to be issued when an unknown attribute is selected.
12.753 \newcommand*{\@attrerr}[2]{%

12.754 \PackageError{babel}y,
12.755 {The attribute #2 is unknown for language #1.1}J
12.756 {Your command will be ignored, type <return> to proceed}}

\bbl@declare@ttribute This command adds the new language/attribute combination to the list of known

attributes.

12.757 \def\bbl@declare@ttribute#1#2#3{%

12.758 \bbl@add@list\bbl@attributes{#1-#2}%
Then it defines a control sequence to be executed when the attribute is used in a
document. The result of this should be that the macro \extras. .. for the current
language is extended, otherwise the attribute will not work as its code is removed
from memory at \begin{document}.

12.759 \expandafter\def\csname#1Qattr@#2\endcsname{#3}/,
12.760 }

\bbl@ifattributeset This internal macro has 4 arguments. It can be used to interpret TEX code based
on whether a certain attribute was set. This command should appear inside the
argument to \AtBeginDocument because the attributes are set in the document
preamble, after babel is loaded.

The first argument is the language, the second argument the attribute being
checked, and the third and fourth arguments are the true and false clauses.
12.761 \def\bbl@ifattributeset#1#2#3#4{J,
First we need to find out if any attributes were set; if not we’re done.
12.762 \ifx\bbl@known@attribs\@undefined
12.763 \in@false
12.764 \else

The we need to check the list of known attributes.

12.765 \edef\bbl@tempa{\noexpand\in@{,#1-#2,}},
12.766 {,\bbl@known@attribs,}}%

12.767 \bbl@tempa

12.768 \fi

When we’re this far \ifin@ has a value indicating if the attribute in question was
set or not. Just to be safe the code to be executed is ‘thrown over the \fi’.

12.769 \ifin®@

12.770 \bbl@afterelse#3Y%
12.771 \else

12.772 \bbl@afterfi#4j,
12.773 \fi

12.774 }

\bbleaddelist This internal macro adds its second argument to a comma separated list in its
first argument. When the list is not defined yet (or empty), it will be initiated
12.775 \def\bbl@add@list#1#2{},
12.776 ~ \ifx#1\Q@undefined
12.777 \def#1{#2}/,
12.778 \else
12.779 \ifx#1\Qempty

43

\bbl@ifknown@ttrib

\bbl@clear@ttribs

\babel@savecnt
\babel@beginsave

12.780 \def#1{#2}%

12.781 \else
12.782 \edef#1{#1,#2}},
12.783 \fi
12.784 \fi
12.785 }
An internal macro to check whether a given language/attribute is known. The

macro takes 4 arguments, the language/attribute, the attribute list, the TEX-code
to be executed when the attribute is known and the TEX-code to be executed
otherwise.

12.786 \def\bbl@ifknown@ttrib#1#2{%

We first assume the attribute is unknown.
12.787 \let\bbl@tempa\@secondoftwo

Then we loop over the list of known attributes, trying to find a match.
12.788 \@for\bbl@tempb:=#2\do{%

12.789 \expandafter\in@\expandafter{\expandafter,\bbl@tempb, }{,#1,}%
12.790 \ifin@
When a match is found the definition of \bbl@tempa is changed.
12.791 \let\bbl@tempa\@firstoftwo
12.792 \else
12.793 \£i}%

Finally we execute \bbl@tempa.

12.794 \bbl@tempa
12.795 }

This macro removes all the attribute code from KTEX’s memory at \begin{document}

time (if any is present).
12.796 \def\bbl@clear@ttribs{%
12.797 \ifx\bbl@attributes\@undefined\else

12.798 \@for\bbl@tempa:=\bbl@attributes\do{}
12.799 \expandafter\bbl@clear@ttrib\bblO@tempa.
12.800 Yh

12.801 \let\bbl@attributes\@undefined

12.802 \fi

12.803 }

12.804 \def\bbl@clear@ttrib#1-#2.{%
12.805 \expandafter\let\csname#1Qattr@#2\endcsname\Oundefined}
12.806 \AtBeginDocument{\bbl@clear@ttribs}

12.6 Support for saving macro definitions

To save the meaning of control sequences using \babel@save, we use temporary
control sequences. To save hash table entries for these control sequences, we don’t
use the name of the control sequence to be saved to construct the temporary
name. Instead we simply use the value of a counter, which is reset to zero each
time we begin to save new values. This works well because we release the saved
meanings before we begin to save a new set of control sequence meanings (see
\selectlanguage and \originalTeX).

The initialization of a new save cycle: reset the counter to zero.
12.807 \def\babel@beginsave{\babel@savecnt\zQ}
Before it’s forgotten, allocate the counter and initialize all.

12.808 \newcount\babel@savecnt
12.809 \babel@beginsave

44

\babel@save

\babel@savevariable

\bbl@frenchspacing
\bbl@nonfrenchspacing

\addto

The macro \babel@save(csname) saves the current meaning of the control se-
quence (csname) to \originalTeX’. To do this, we let the current meaning to a
temporary control sequence, the restore commands are appended to \originalTeX
and the counter is incremented.

12.810 \def\babel@save#1{J,

12.811 \expandafter\let\csname babel@\number\babel@savecnt\endcsname #1\relax

12.812 \begingroup

12.813 \toks@\expandafter{\originalTeX \let#1=1}J,

12.814 \edef\x{\endgroup

12.815 \def\noexpand\originalTeX{\the\toks@ \expandafter\noexpand
12.816 \csname babel@\number\babel@savecnt\endcsname\relax}}/,
12.817 \x

12.818 \advance\babel@savecnt\@ne}

The macro \babel@savevariable(variable) saves the value of the variable.
(variable) can be anything allowed after the \the primitive.

12.819 \def\babel@savevariable#1{\begingroup

12.820 \toks@\expandafter{\originalTeX #1=1}J,
12.821 \edef\x{\endgroup
12.822 \def\noexpand\originalTeX{\the\toks@ \the#1l\relaxl}}/,
12.823 \x}
Some languages need to have \frenchspacing in effect. Others don’t want that.

The command \bbl@frenchspacing switches it on when it isn’t already in effect
and \bbl@nonfrenchspacing switches it off if necessary.

12.824 \def\bbl@frenchspacing{%
12.825 \ifnum\the\sfcode‘\.=\@Cm

12.826 \let\bbl@nonfrenchspacing\relax

12.827 \else

12.828 \frenchspacing

12.829 \let\bbl@nonfrenchspacing\nonfrenchspacing

12.830 \fi}
12.831 \let\bbl@nonfrenchspacing\nonfrenchspacing

12.7 Support for extending macros

For each language four control sequences have to be defined that control the
language-specific definitions. To be able to add something to these macro once
they have been defined the macro \addto is introduced. It takes two arguments,
a (control sequence) and TEX-code to be added to the (control sequence).
If the (control sequence) has not been defined before it is defined now.

12.832 \def\addto#1#2{/,

12.833 \ifx#1\@undefined

12.834 \def#1{#2}7,

12.835 \else

The control sequence could also expand to \relax, in which case a circular defi-
nition results. The net result is a stack overflow.

12.836 \ifx#1\relax
12.837 \def#1{#2}%
12.838 \else

Otherwise the replacement text for the (control sequence) is expanded and stored
in a token register, together with the TEX-code to be added. Finally the {control
sequence) is redefined, using the contents of the token register.

12.839 {\toks@\expandafter{#1#2}J
12.840 \xdef#1{\the\toks@}1}¥
12.841 \fi

12.842 \fi

12.843 }

6\originalTeX has to be expandable, i.e. you shouldn’t let it to \relax.

45

12.8 Macros common to a number of languages

\allowhyphens This macro makes hyphenation possible. Basically its definition is nothing more
than \nobreak \hskip Opt plus Opt’.
12.844 \def\bbl@t@one{T1}
12.845 \def\allowhyphens{’
12.846 \ifx\cf@encoding\bbl@tQone\else\bbl@allowhyphens\fi}
12.847 \def\bbl@allowhyphens{\nobreak\hskip\z@skip}

\set@low@box The following macro is used to lower quotes to the same level as the comma. It
prepares its argument in box register 0.
12.848 \def\set@low@box#1{\setbox\tw@\hbox{,}\setbox\z@\hbox{#1}Y
12.849 \dimen\z@\ht\z@ \advance\dimen\z@ -\ht\tw@}
12.850 \setbox\z@\hbox{\lower\dimen\z@ \box\z@}\ht\z@\ht\tw@ \dp\z@\dp\tw@}

\save@sf@q The macro \save@sf@q is used to save and reset the current space factor.
12.851 \def\save@sf@q #1{\leavevmode
12.852 \begingroup
12.853 \edef\@SF{\spacefactor \the\spacefactor}#1\@SF
12.854 \endgroup
12.855 }

\bbledisc For some languages the macro \bbl@disc is used to ease the insertion of discre-
tionaries for letters that behave ‘abnormally’ at a breakpoint.

12.856 \def\bbl@disc#1#2{/
12.857 \nobreak\discretionary{#2-}{}{#1}\allowhyphens}

12.9 Making glyphs available

The file babel.dtx® makes a number of glyphs available that either do not exist
in the 0T1 encoding and have to be ‘faked’, or that are not accessible through
Tlenc.def.

12.10 Quotation marks

\quotedblbase In the T1 encoding the opening double quote at the baseline is available as a
separate character, accessible via \quotedblbase. In the 0T1 encoding it is not
available, therefor we make it available by lowering the normal open quote char-
acter to the baseline.

12.858 \ProvideTextCommand{\quotedblbase}{0T1}{}
12.859 \save@sf@q{\set@low@box{\textquotedblright\/}%

12.860 \box\z@\kern-.04em\allowhyphens}}
Make sure that when an encoding other than 0T1 or T1 is used this glyph can still
be typeset.

12.861 \ProvideTextCommandDefault{\quotedblbase}{%
12.862 \UseTextSymbol{0T1}{\quotedblbase}}

\quotesinglbase We also need the single quote character at the baseline.

12.863 \ProvideTextCommand{\quotesinglbase}{0T1}{%

12.864 \save@sf@q{\set@low@box{\textquoteright\/}%

12.865 \box\z@\kern- .04em\allowhyphens}}
Make sure that when an encoding other than 0T1 or T1 is used this glyph can still
be typeset.

12.866 \ProvideTextCommandDefault{\quotesinglbase}{’,

12.867 \UseTextSymbol{0T1}{\quotesinglbasel}}

"TEX begins and ends a word for hyphenation at a glue node. The penalty prevents a linebreak
at this glue node.

8The file described in this section has version number v3.8m, and was last revised on
2008/07/08.

46

\guillemotleft The guillemet characters are not available in 0T1 encoding. They are faked.

\guillemotrightis g63 \ProvideTextCommand{\guillemotleft}{0T1}{%
12.869 \ifmmode

12.870 \11

12.871 \else

12.872 \save@sf@q{\nobreak

12.873 \raise.2ex\hbox{$\scriptscriptstyle\11l$}\allowhyphens},

12.874 \fi}
12.875 \ProvideTextCommand{\guillemotright}{0T1}{%
12.876 \ifmmode

12.877 \gg

12.878 \else

12.879 \save@sf@q{\nobreak

12.880 \raise.2ex\hbox{$\scriptscriptstyle\gg$}\allowhyphens}y,

12.881 \fi}
Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.882 \ProvideTextCommandDefault{\guillemotleft}{/

12.883 \UseTextSymbol{0T1}{\guillemotleft}}

12.884 \ProvideTextCommandDefault{\guillemotright}{’
12.885 \UseTextSymbol{0T1}{\guillemotright}}

\guilsinglleft The single guillemets are not available in 0T1 encoding. They are faked.

\guilsinglrightis sg6 \ProvideTextCommand{\guilsinglleft}{0T1}{%
12.887 \ifmmode

12.888 <%

12.889 \else

12.890 \save@sf@q{\nobreak

12.891 \raise.2ex\hbox{$\scriptscriptstyle<$}\allowhyphensl}y

12.892 \fi}
12.893 \ProvideTextCommand{\guilsinglright}{0T1}{%
12.894 \ifmmode

12.895 >h

12.896 \else

12.897 \save@sf@q{\nobreak

12.898 \raise.2ex\hbox{$\scriptscriptstyle>$}\allowhyphensl}/,

12.899 \fi}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.900 \ProvideTextCommandDefault{\guilsinglleft}{%

12.901 \UseTextSymbol{0T1}{\guilsinglleft}}

12.902 \ProvideTextCommandDefault{\guilsinglright}{/,

12.903 \UseTextSymbol{0T1}{\guilsinglright}}

12.11 Letters

\ij The dutch language uses the letter ‘ij’. It is available in T1 encoded fonts, but not
\IJ in the OT1 encoded fonts. Therefor we fake it for the 0T1 encoding.

12.904 \DeclareTextCommand{\ij}{OT1}{%

12.905 \allowhyphens i\kern-0.02em j\allowhyphens}
12.906 \DeclareTextCommand{\IJ}{0T1}{%

12.907 \allowhyphens I\kern-0.02em J\allowhyphens}
12.908 \DeclareTextCommand{\ij}{T1}{\char188}

12.909 \DeclareTextCommand{\IJ}{T1}{\char1563}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.910 \ProvideTextCommandDefault{\ij}{%

12.911 \UseTextSymbol{0T1}{\ij}}

12.912 \ProvideTextCommandDefault{\IJ}{/

12.913 \UseTextSymbol{0T1}{\IJ}}

47

\dj The croatian language needs the letters \dj and \DJ; they are available in the T1
\DJ encoding, but not in the 0T1 encoding by default.
Some code to construct these glyphs for the 0T1 encoding was made available
to me by Stipcevic Mario, (stipcevic@olimp.irb.hr).

12.914 \def\crrtic@{\hrule heightO.lex widthO.3em}

12.915 \def\crttic@{\hrule heightO.lex widthO.33em}

12.916 %

12.917 \def\ddje{%

12.918 \setbox0\hbox{d}\dimen@=\htO

12.919 \advance\dimen@lex

12.920 \dimen@.45\dimen@

12.921 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen®@

12.922 \advance\dimen@ii.b5ex

12.923 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crrtic@}}}}
12.924 \def\DDJe{%

12.925 \setboxO\hbox{D}\dimen®@=.55\ht0

12.926 \dimen@ii\expandafter\rem@pt\the\fontdimen\@ne\font\dimen@

12.927 \advance\dimen@ii.15ex % correction for the dash position
12.928 \advance\dimen@ii-.15\fontdimen7\font % correction for cmtt font
12.929 \dimen\thr@@\expandafter\rem@pt\the\fontdimen7\font\dimen®@

12.930 \leavevmode\rlap{\raise\dimen@\hbox{\kern\dimen@ii\vbox{\crttic@}}}}
12.931 %

12.932 \DeclareTextCommand{\dj}{0T1}{\ddje 4}

12.933 \DeclareTextCommand{\DJ}{0T1}{\DDJ@ D}

Make sure that when an encoding other than 0T1 or T1 is used these glyphs can
still be typeset.

12.934 \ProvideTextCommandDefault{\dj}{/%

12.935 \UseTextSymbol{0T1}{\dj}}

12.936 \ProvideTextCommandDefault{\DJ}{%
12.937 \UseTextSymbol{0T1}{\DJ}}

\8S For the T1 encoding \SS is defined and selects a specific glyph from the font, but
for other encodings it is not available. Therefor we make it available here.

12.938 \DeclareTextCommand{\SS}{0T1}{SS}
12.939 \ProvideTextCommandDefault{\SS}{\UseTextSymbol{0T1}{\SS}}

12.12 Shorthands for quotation marks

Shorthands are provided for a number of different quotation marks, which make
them usable both outside and inside mathmode.

\glq The ‘german’ single quotes.

\8Trq12.940 \ProvideTextCommand{\glq}{0T1}{%
12.941 \textormath{\quotesinglbase}{\mbox{\quotesinglbasel}}}
12.942 \ProvideTextCommand{\glq}{T1}{%
12.943 \textormath{\quotesinglbase}{\mbox{\quotesinglbase}}}
12.944 \ProvideTextCommandDefault{\glq}{\UseTextSymbol{0T1}\glq}

The definition of \grq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

12.945 \ProvideTextCommand{\grq}{T1}{%

12.946 \textormath{\textquoteleft}{\mbox{\textquoteleft}}}
12.947 \ProvideTextCommand{\grq}{0T1}{%

12.948 \save@sf@q{\kern-.0125emj,

12.949 \textormath{\textquoteleft}{\mbox{\textquoteleft}}/,
12.950 \kern.O7em\relax}}

12.951 \ProvideTextCommandDefault{\grq}{\UseTextSymbol{0T1}\grq}

\glqq The ‘german’ double quotes.

\8rqa12.952 \ProvideTextCommand{\glqq}{0T1}{%
12.953 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

48

12.954 \ProvideTextCommand{\glqq}{T1}{%
12.955 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
12.956 \ProvideTextCommandDefault{\glqq}{\UseTextSymbol{0T1}\glqq}

The definition of \grqq depends on the fontencoding. With T1 encoding no extra
kerning is needed.

12.957 \ProvideTextCommand{\grqg}{T1}{%

12.958 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
12.959 \ProvideTextCommand{\grqq}{0T1}{%

12.960 \save@sf@q{\kern-.07em},

12.961 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}’
12.962 \kern.O7em\relax}}

12.963 \ProvideTextCommandDefault{\grqq}{\UseTextSymbol{0T1}\grqq}

\flq The ‘french’ single guillemets.

\fIQ12964\ProvideTextCommand{\flq}{UTl}{%
12.965 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.966 \ProvideTextCommand{\f1q}{T1}{%
12.967 \textormath{\guilsinglleft}{\mbox{\guilsinglleft}}}
12.968 \ProvideTextCommandDefault{\f1q}{\UseTextSymbol{0T1}\f1lq}

12.969 \ProvideTextCommand{\frq}{0T1}{%

12.970 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.971 \ProvideTextCommand{\frq}{T1}{%

12.972 \textormath{\guilsinglright}{\mbox{\guilsinglright}}}
12.973 \ProvideTextCommandDefault{\frq}{\UseTextSymbol{0T1}\frq}

\flqq The ‘french’ double guillemets.
\frqqi2.974 \ProvideTextCommand{\f1qq}{0T1}{%
12.975 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.976 \ProvideTextCommand{\f1qq}{T1}{%
12.977 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
12.978 \ProvideTextCommandDefault{\f1qq}{\UseTextSymbol{0T1}\flqq}

12.979 \ProvideTextCommand{\frqq}{0T1}{%

12.980 \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.981 \ProvideTextCommand{\frqq}{T1}{%

12.982 \textormath{\guillemotright}{\mbox{\guillemotright}}}
12.983 \ProvideTextCommandDefault{\frqq}{\UseTextSymbol{0T1}\frqq}

12.13 Umlauts and trema’s

The command \" needs to have a different effect for different languages. For
German for instance, the ‘umlaut’ should be positioned lower than the default
position for placing it over the letters a, o, u, A, O and U. When placed over an
e, i, E or I it can retain its normal position. For Dutch the same glyph is always
placed in the lower position.

\umlauthigh To be able to provide both positions of \" we provide two commands to switch
\umlautlow the positioning, the default will be \umlauthigh (the normal positioning).

12.984 \def\umlauthigh{%

12.985 \def\bblQumlauta##1{\leavevmode\bgroup’

12.986 \expandafter\accent\csname\f@encoding dgpos\endcsname
12.987 ##1\allowhyphens\egroup}’

12.988 \let\bbl@umlaute\bbl@umlauta}

12.989 \def\umlautlow{%

12.990 \def\bbl@umlauta{\protect\lowerQumlaut}}

12.991 \def\umlautelow{’,

12.992 \def\bblQumlaute{\protect\lowerQumlautl}}

12.993 \umlauthigh

\lower@umlaut The command \lower@umlaut is used to position the \" closer the the letter.

49

We want the umlaut character lowered, nearer to the letter. To do this we

need an extra (dimen) register.

12.994 \expandafter\ifx\csname U@D\endcsname\relax

12.995 \csname newdimen\endcsname\U@D

12.996 \fi
The following code fools TEX’s make_accent procedure about the current x-height
of the font to force another placement of the umlaut character.

12.997 \def\lower@umlaut#1{},
First we have to save the current x-height of the font, because we’ll change this
font dimension and this is always done globally.

12.998 \leavevmode\bgroup

12.999 \U@D 1ex,
Then we compute the new x-height in such a way that the umlaut character is
lowered to the base character. The value of .45ex depends on the METAFONT
parameters with which the fonts were built. (Just try out, which value will look

best.)
12.1000 {\setbox\z@\hbox{%
12.1001 \expandafter\char\csname\f@encoding dgpos\endcsnamel}y,
12.1002 \dimen@ -.45ex\advance\dimen@\ht\z@

If the new x-height is too low, it is not changed.
12.1003 \ifdim lex<\dimen@ \fontdimen5\font\dimen@ \fil}%

Finally we call the \accent primitive, reset the old x-height and insert the base
character in the argument.
12.1004 \expandafter\accent\csname\f@encoding dgqpos\endcsname

12.1005 \fontdimen5\font\U@D #1Y
12.1006 \egroup}

For all vowels we declare \" to be a composite command which uses
\bbl@umlauta or \bbl@umlaute to position the umlaut character. We need to
be sure that these definitions override the ones that are provided when the pack-
age fontenc with option OT1 is used. Therefor these declarations are postponed
until the beginning of the document.

12.1007 \AtBeginDocument{%

12.1008 \DeclareTextCompositeCommand{\"}{0T1}{a}{\bbl@umlauta{a}l}’,
12.1009 \DeclareTextCompositeCommand{\"}{0T1}{e}{\bbl@umlaute{e}}%
12.1010 \DeclareTextCompositeCommand{\"}{0T1}{i}{\bbl@umlaute{\i}}%
12.1011 \DeclareTextCompositeCommand{\"}{0T1}{\i}{\bbl@umlaute{\i}}%
12.1012 \DeclareTextCompositeCommand{\"}{0T1}{o}{\bblOumlauta{o}}%
12.1013 \DeclareTextCompositeCommand{\"}{0T1}{u}{\bbl@umlauta{ul}}’
12.1014 \DeclareTextCompositeCommand{\"}{0T1}{A}{\bblOumlauta{A}}/
12.1015 \DeclareTextCompositeCommand{\"}{0T1}{E}{\bblOumlaute{E}}/
12.1016 \DeclareTextCompositeCommand{\"}{0T1}{I}{\bbl@umlaute{I}}%
12.1017 \DeclareTextCompositeCommand{\"}{0T1}{0}{\bblOumlauta{0}}7%
12.1018 \DeclareTextCompositeCommand{\"}{0T1}{U}{\bblOumlauta{U}}%
12.1019 }

12.14 The redefinition of the style commands

The rest of the code in this file can only be processed by ETEX, so we check the
current format. If it is plain TEX, processing should stop here. But, because of the
need to limit the scope of the definition of \format, a macro that is used locally in
the following \if statement, this comparison is done inside a group. To prevent
TEX from complaining about an unclosed group, the processing of the command
\endinput is deferred until after the group is closed. This is accomplished by the
command \aftergroup.

12.1020 {\def\format{lplain}
12.1021 \ifx\fmtname\format

50

12.1022 \else

12.1023 \def\format{LaTeX2e}
12.1024 \ifx\fmtname\format
12.1025 \else

12.1026 \aftergroup\endinput
12.1027 \fi

12.1028 \fi}

Now that we’re sure that the code is seen by KTEX only, we have to find out
what the main (primary) document style is because we want to redefine some
macros. This is only necessary for releases of I#TEX dated before December 1991.
Therefor this part of the code can optionally be included in babel.def by speci-
fying the docstrip option names.

12.1029 (*names)

\doc@style

The standard styles can be distinguished by checking whether some macros are
defined. In table 1 an overview is given of the macros that can be used for this
purpose.

article : both the \chapter and \opening macros are unde-
fined

report and book : the \chapter macro is defined and the \opening is
undefined

letter : the \chapter macro is undefined and the \opening
is defined

Table 1: How to determine the main document style

The macros that have to be redefined for the report and book document styles
happen to be the same, so there is no need to distinguish between those two styles.

First a parameter \doc@style is defined to identify the current document style.
This parameter might have been defined by a document style that already uses
macros instead of hard-wired texts, such as artikell.sty [(], so the existence of
\doc@style is checked. If this macro is undefined, i.e., if the document style is
unknown and could therefore contain hard-wired texts, \doc@style is defined to
the default value ‘0.

12.1030 \ifx\@undefined\doc@style
12.1031 \def\doc@style{O}}

This parameter is defined in the following if construction (see table 1):

12.1032 \ifx\@undefined\opening

12.1033 \ifx\Qundefined\chapter
12.1034 \def\doc@style{1}}
12.1035 \else

12.1036 \def\doc@style{2}}
12.1037 \fi

12.1038 \else

12.1039 \def\doc@style{3}

12.1040 \fi}
12.1041 \fi}

12.14.1 Redefinition of macros

Now here comes the real work: we start to redefine things and replace hard-wired
texts by macros. These redefinitions should be carried out conditionally, in case
it has already been done.

For the figure and table environments we have in all styles:

12.1042 \@ifundefined{figurename}{\def\fnum@figure{\figurename{} \thefigure}}{}
12.1043 \@ifundefined{tablename}{\def\fnum@table{\tablename{} \thetable}}{}

51

12

12
12
12

12

12.
12.
12.
12.
12.
12.
.1056 \@ifundefined{listtablenamel}},
12.
12.
12.

12

12.
12.
12.

12

12.

12

12.
12.
12.
12.
12.
12.

12

12.
12.
12.
12.

12

12.
12.
12.
12.

12

12.

12

12.
12.

12
1

[

The rest of the macros have to be

.1044 \ifcase \doc@style\relax
12.

1045 \or

This means that babel .def is read after the article style, where no \chapter

and \opening commands are defined”.

First we have the \tableofcontents, \listoffigures and \listoftables:

1046 \@ifundefined{contentsname}};

1048 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}7

1053 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}J

1055

1057 {\def\listoftables{\section*{\listtablename\@ukboth
1058 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}J
1059 \@starttoc{lot}}}{}

Then the \thebibliography and \theindex environments.

1060 \@ifundefined{refname}},

The abstract environment:

1078 \@ifundefined{abstractname}};

1086 \fi}H}

And last but not least, the macro \part:

.1087 \@ifundefined{partname}7,
.1088 {\def\@part [#1]#2{\ifnum \c@secnumdepth >\m@ne
12.
12.
12.

1089 \refstepcounter{part}y,
1090 \addcontentsline{toc}{part}{\thepart
1091 \hspace{lem}#1}\else

9A fact that was pointed out to me by Nico Poppelier and was already used in Piet van

Oostrum’s document style option nl.

treated differently for each style. When
\doc@style still has its default value nothing needs to be done.

1047 {\def\tableofcontents{\section*{\contentsname\@mkboth
.1049 \@starttoc{toc}}}{}

1050

1051 \@ifundefined{listfigurenamel}j,

1052 {\def\listoffigures{\section*{\listfigurename\@ukboth
1054 \@starttoc{lof}}}{}

1061 {\def\thebibliography#1{\section*{\refname
1062 \@mkboth{\uppercase{\refname}}{\uppercase{\refname}}}7
.1063 \list{[\arabic{enumi}]}{\settowidth\labelwidth{ [#1]}}
1064 \leftmargin\labelwidth
.1065 \advance\leftmargin\labelsep
1066 \usecounter{enumi}}/,
1067 \def\newblock{\hskip.11lem plus.33em minus.07em}},
1068 \sloppy\clubpenalty4000\widowpenalty\clubpenalty
1069 \sfcode‘\.=1000\relax}}{}
1070
1071 \@ifundefined{indexnamel}},
.1072 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
1073 \columnseprule \z@
1074 \columnsep 35pt\twocolumn[\section*{\indexname}]7,
1075 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}7/,
1076 \thispagestyle{plain}/,
.1077 \parskip\z@ plus.3pt\parindent\z@\let\item\@idxitem}}{}

1079 {\def\abstract{\if@twocolumn

1080 \section*{\abstractname}/,

1081 \else \small

.1082 \begin{centerl}y

1083 {\bf \abstractname\vspace{-.5em}\vspace{\z@}}/
.1084 \end{center}},

1085 \quotation

52

12

12

12
12

12

12
12

12.

12.

12

12.

12

12.
12.
12.
12.
12.
12.

12

12.
12.
12.
12.

12

12.
12.
12.
12.
12.
12.

12

12.
12.
12.

12.
12.
12.
12.

12

12.
12.
12.
12.
12.
12.
12.

1092 \addcontentsline{toc}Hpart}{#1}\fi

.1093 {\parindent\z@ \raggedright
12.
12.
12.
12.

1094 \ifnum \c@secnumdepth >\m@ne

1095 \Large \bf \partname{} \thepart
1096 \par \nobreak

1097 \fi

1098 \huge \bf

1099 #2\markboth{}{}\par}/

.1100 \nobreak

1101 \vskip 3ex\@afterheading},

1102 H}

This is all that needs to be done for the article style.
1103 \or

The next case is formed by the two styles book and report. Basically we have
to do the same as for the article style, except now we must also change the
\chapter command.

The tables of contents, figures and tables:

1104 \@ifundefined{contentsname}};

.1105 {\def\tableofcontents{\@restonecolfalse

1106 \if@twocolumn\@restonecoltrue\onecolumn

.1107 \fi\chapter*{\contentsname\@unkboth

1108 {\uppercase{\contentsname}}{\uppercase{\contentsname}}}7
1109 \@starttoc{toc})

1110 \csname if@restonecol\endcsname\twocolumn

1111 \csname fi\endcsname}}{}

1112

1113 \@ifundefined{listfigurename},

1114 {\def\listoffigures{\@restonecolfalse

1115 \if@twocolumn\@restonecoltrue\onecolumn

1116 \fi\chapter*{\listfigurename\@ukboth

1117 {\uppercase{\listfigurename}}{\uppercase{\listfigurename}}}/
1118 \@starttoc{lof}),

1119 \csname if@restonecol\endcsname\twocolumn

1120 \csname fi\endcsname}}{}

1121

1122 \@ifundefined{listtablename}},

1123 {\def\listoftables{\@restonecolfalse

1124 \if@twocolumn\@restonecoltrue\onecolumn

1125 \fi\chapter*{\listtablename\@mkboth

1126 {\uppercase{\listtablename}}{\uppercase{\listtablename}}}},
1127 \@starttoc{lot})

1128 \csname if@restonecol\endcsname\twocolumn

1129 \csname fi\endcsname}}{}

Again, the bibliography and index environments; notice that in this case we
use \bibname instead of \refname as in the definitions for the article style. The
reason for this is that in the article document style the term ‘References’ is used
in the definition of \thebibliography. In the report and book document styles
the term ‘Bibliography’ is used.

1130 \@ifundefined{bibname}/

1131 {\def\thebibliography#1{\chapter*{\bibname

1132 \@mkboth{\uppercase{\bibname}}{\uppercase{\bibname}}}7},
1133 \list{[\arabic{enumi}] }H \settowidth\labelwidth{ [#1]}],
1134 \leftmargin\labelwidth \advance\leftmargin\labelsep
1135 \usecounter{enumi}}/

1136 \def\newblock{\hskip.1lem plus.33em minus.07em}},

1137 \sloppy\clubpenalty4000\widowpenalty\clubpenalty

1138 \sfcode‘\.=1000\relax}}{}

1139

1140 \@ifundefined{indexnamel}},

1141 {\def\theindex{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi

53

12.1142 \columnseprule \z@

12.1143 \columnsep 35pt\twocolumn[\@makeschapterhead{\indexname}]},
12.1144 \@mkboth{\uppercase{\indexname}}{\uppercase{\indexname}}}
12.1145 \thispagestyle{plain}),

12.1146 \parskip\z@ plus.3pt\parindent\z@ \let\item\@idxitem}}{}

Here is the abstract environment:

12.1147 \@ifundefined{abstractname}};

12.1148 {\def\abstract{\titlepage
12.1149 \null\vfil

12.1150 \begin{center}y

12.1151 {\bf \abstractnamel}},
12.1152 \end{center}}}{}

And last but not least the \chapter, \appendix and \part macros.

12.1153 \@ifundefined{chaptername}{\def\@chapapp{\chaptername}}{}
12.1154 %
12.1155 \@ifundefined{appendixname}/,

12.1156 {\def\appendix{\par

12.1157 \setcounter{chapter}{0}},

12.1158 \setcounter{section}{0}}

12.1159 \def\@chapapp{\appendixname}y,

12.1160 \def\thechapter{\Alph{chapter}}}}{}
12.1161 %

12.1162 \@ifundefined{partnamel}/,

12.1163 {\def\@part [#1]#2{\ifnum \c@secnumdepth >-2\relax
12.1164 \refstepcounter{part}},

12.1165 \addcontentsline{toc}{part}{\thepart
12.1166 \hspace{lem}#1}\else

12.1167 \addcontentsline{tocHpart H{#1}\fi
12.1168 \markboth{}{}/

12.1169 {\centering

12.1170 \ifnum \c@secnumdepth >-2\relax

12.1171 \huge\bf \partname{} \thepart

12.1172 \par

12.1173 \vskip 20pt \fi

12.1174 \Huge \bf

12.1175 #1\par}\@endpart}}{}}

12.1176 \or

Now we address the case where babel.def is read after the letter style.
The letter document style defines the macro \opening and some other macros
that are specific to letter. This means that we have to redefine other macros,
compared to the previous two cases.

First two macros for the material at the end of a letter, the \cc and \encl
macros.

12.1177 \@ifundefined{ccnamel}/,

12.1178 {\def\cc#1{\par\noindent

12.1179 \parbox [t]{\textwidth}}

12.1180 {\@hangfrom{\rm \ccname : }\ignorespaces #1\strut}\par}}{}
12.1181

12.1182 \@ifundefined{enclname}},

12.1183 {\def\encl#1{\par\noindent

12.1184 \parbox [t]{\textwidth}

12.1185 {\@hangfrom{\rm \enclname : }\ignorespaces #1\strut}\par}}{}

The last thing we have to do here is to redefine the headings pagestyle:
12.1186 \@ifundefined{headtonamel}};

12.1187 {\def\ps@headings{/

12.1188 \def\@oddhead{\sl \headtoname{} \ignorespaces\toname \hfil
12.1189 \@date \hfil \pagename{} \thepagel}’

12.1190 \def\@oddfoot{}}}{}

54

This was the last of the four standard document styles, so if \doc@style has
another value we do nothing and just close the if construction.

12.1191 \fi

Here ends the code that can be optionally included when a version of IXTEX is in
use that is dated before December 1991.

12.1192 (/names)
12.1193 (/core)

12.15 Cross referencing macros

The ETEX book states:

The key argument is any sequence of letters, digits, and punctuation
symbols; upper- and lowercase letters are regarded as different.

When the above quote should still be true when a document is typeset in a lan-
guage that has active characters, special care has to be taken of the category
codes of these characters when they appear in an argument of the cross referenc-
ing macros.

When a cross referencing command processes its argument, all tokens in this
argument should be character tokens with category ‘letter’ or ‘other’.

The only way to accomplish this in most cases is to use the trick described in
the TEXbook [1] (Appendix D, page 382). The primitive \meaning applied to a
token expands to the current meaning of this token. For example, ‘\meaning\A’
with \A defined as ‘\def\A#1{\B}’ expands to the characters ‘macro:#1->\B’ with
all category codes set to ‘other’ or ‘space’.

\bbl@redefine To redefine a command, we save the old meaning of the macro. Then we redefine
it to call the original macro with the ‘sanitized’ argument. The reason why we do
it this way is that we don’t want to redefine the IATEX macros completely in case
their definitions change (they have changed in the past).

Because we need to redefine a number of commands we define the command
\bbl@redefine which takes care of this. It creates a new control sequence,
\org@. ..

12.1194 (*core | shorthands)

12.1195 \def\bbl@redefine#1{%

12.1196 \edef\bbl@tempa{\expandafter\Q@gobble\string#1}%
12.1197 \expandafter\let\csname org@\bbl@tempa\endcsname#l
12.1198 \expandafter\def\csname\bbl@tempa\endcsname}

This command should only be used in the preamble of the document.
12.1199 \@onlypreamble\bblOredefine

\bbl@redefine@long This version of \babel@redefine can be used to redefine \long commands such
as \ifthenelse.
12.1200 \def\bblOredefine@long#1{%
12.1201 \edef\bbl@tempa{\expandafter\@gobble\string#1}/,
12.1202 \expandafter\let\csname org@\bbl@tempa\endcsname#l
12.1203 \expandafter\long\expandafter\def\csname\bbl@tempa\endcsname}
12.1204 \@onlypreamble\bbl@redefine@long

\bbl@redefinerobust For commands that are redefined, but which might be robust we need a slightly
more intelligent macro. A robust command foo is defined to expand to
\protect\fooy. So it is necessary to check whether \foo, exists.
12.1205 \def\bbl@redefinerobust#1{/,
12.1206 \edef\bbl@tempa{\expandafter\@gobble\string#1}%
12.1207 \expandafter\ifx\csname \bbl@tempa\space\endcsname\relax

12.1208 \expandafter\let\csname org@\bbl@tempa\endcsname#1
12.1209 \expandafter\edef\csname\bbl@tempa\endcsname{\noexpand\protect
12.1210 \expandafter\noexpand\csname\bbl@tempa\space\endcsnamel}y,

55

12.1211 \else

12.1212 \expandafter\let\csname org@\bbl@tempa\expandafter\endcsname
12.1213 \csname\bbl@tempa\space\endcsname

12.1214 \fi

The result of the code above is that the command that is being redefined is always
robust afterwards. Therefor all we need to do now is define \foo,,.

12.1215 \expandafter\def\csname\bbl@tempa\space\endcsname}
This command should only be used in the preamble of the document.
12.1216 \@onlypreamble\bbl@redefinerobust

\newlabel The macro \label writes a line with a \newlabel command into the .aux file to
define labels.

12.1217 %\bbl@redefine\newlabel#1#2{}
12.1218 % \@safe@activestrue\org@newlabel{#1}{#2}\@safe@activesfalse}

\@newl@bel We need to change the definition of the I¥TEX-internal macro \@newl@bel. This
is needed because we need to make sure that shorthand characters expand to their
non-active version.

12.1219 \def\@newl@bel#1#2#3{%

First we open a new group to keep the changed setting of \protect local and then
we set the @safe@actives switch to true to make sure that any shorthand that
appears in any of the arguments immediately expands to its non-active self.

12.1220 {%

12.1221 \@safe@activestrue

12.1222 \@ifundefined{#10@#2}}

12.1223 \relax

12.1224 {h

12.1225 \gdef \@multiplelabels {%

12.1226 \@latex@warning@no@line{There were multiply-defined labels}}/,
12.1227 \@latex@warning@no@line{Label ‘#2’ multiply defined}’
12.1228 Y

12.1229 \global\@namedef{#10#2}{#3}/,

12.1230 Y

12.1231 }

\@testdef An internal IXTEX macro used to test if the labels that have been written on the
.aux file have changed. It is called by the \enddocument macro. This macro needs
to be completely rewritten, using \meaning. The reason for this is that in some
cases the expansion of \#1@#2 contains the same characters as the #3; but the
character codes differ. Therefor IXTEX keeps reporting that the labels may have
changed.

12.1232 \CheckCommand*\@testdef [3]{/,

12.1233 \def\reserved@a{#3}/,

12.1234 \expandafter \ifx \csname #1Q@#2\endcsname \reserved®a

12.1235 \else

12.1236 \@tempswatrue

121237 \fi}
Now that we made sure that \@testdef still has the same definition we can rewrite
it. First we make the shorthands ‘safe’.

12.1238 \def\@testdef #1#2#3{%

12.1239 \@safe@activestrue

Then we use \bbl@tempa as an ‘alias’ for the macro that contains the label which
is being checked.

12.1240 \expandafter\let\expandafter\bbl@tempa\csname #1@#2\endcsname
Then we define \bbl@tempb just as \@newl@bel does it.

12.1241 \def\bbl@tempb{#3}%
12.1242 \@safe@activesfalse

56

When the label is defined we replace the definition of \bbl@tempa by its meaning.
12.1243 \ifx\bbl@tempa\relax
12.1244 \else
12.1245 \edef\bbl@tempa{\expandafter\strip@prefix\meaning\bbl@tempaly,
12.1246 \fi

We do the same for \bbl@tempb.
12.1247 \edef\bbl@tempb{\expandafter\strip@prefix\meaning\bbl@tempb}y

If the label didn’t change, \bbl@tempa and \bbl@tempb should be identical macros.
12.1248 \ifx \bbl@tempa \bbl@tempb
12.1249 \else

12.1250 \Q@tempswatrue
12.1251 \fi}

\ref The same holds for the macro \ref that references a label and \pageref to refer-
\pageref ence a page. So we redefine \ref and \pageref. While we change these macros,
we make them robust as well (if they weren’t already) to prevent problems if they
should become expanded at the wrong moment.
12.1252 \bbl@redefinerobust\ref#1{/,
12.1253 \@safe@activestrue\org@ref{#1}\@safeQactivesfalse}
12.1254 \bbl@redef inerobust\pageref#1{%
12.1255 \@safe@activestrue\org@pageref{#1}\@safeQactivesfalse}

\@citex The macro used to cite from a bibliography, \cite, uses an internal macro,
\@citex. It is this internal macro that picks up the argument(s), so we rede-
fine this internal macro and leave \cite alone. The first argument is used for
typesetting, so the shorthands need only be deactivated in the second argument.

12.1256 \bbl@redefine\@citex [#1]#2{/,

12.1257 \@safe®@activestrue\edef\Q@tempa{#2}\@safe@activesfalse
12.1258 \org@@citex[#1]{\@tempa}}

Unfortunately, the packages natbib and cite need a different definition of
\@citex... To begin with, natbib has a definition for \@citex with three ar-
guments... We only know that a package is loaded when \begin{document} is
executed, so we need to postpone the different redefinition.

12.1259 \AtBeginDocument{¥%
12.1260 \@ifpackageloaded{natbibl}{/,

Notice that we use \def here instead of \bbl@redefine because \org@@citex is
already defined and we don’t want to overwrite that definition (it would result in
parameter stack overflow because of a circular definition).

12.1261 \def\@citex [#1] [#2]#3{%

12.1262 \@safe@activestrue\edef\@tempa{#3}\@safe@activesfalse

12.1263 \org@@citex [#1] [#2] {\Ctempa}}/

12.1264 }1}}

The package cite has a definition of \@citex where the shorthands need to be
turned off in both arguments.

12.1265 \AtBeginDocument{%

12.1266 \@ifpackageloaded{cite}{’

12.1267 \def\@citex [#1]#2{%

12.1268 \@safe@activestrue\org@dcitex [#1]{#2}\0safeQactivesfalsel}

12.1269 H3r

\nocite The macro \nocite which is used to instruct BiBTEX to extract uncited references
from the database.

12.1270 \bbl@redefine\nocite#1{}%
12.1271 \@safe@activestrue\org@nocite{#1}\@safe@activesfalse}

\bibcite The macro that is used in the .aux file to define citation labels. When packages
such as natbib or cite are not loaded its second argument is used to typeset the
citation label. In that case, this second argument can contain active characters

o7

but is used in an environment where \@safe@activestrue is in effect. This switch

needs to be reset inside the \hbox which contains the citation label. In order to

determine during .aux file processing which definition of \bibcite is needed we

define \bibcite in such a way that it redefines itself with the proper definition.
12.1272 \bbl@redefine\bibcite{y,

We call \bbl@cite@choice to select the proper definition for \bibcite. This new

definition is then activated.

12.1273 \bbl@cite@choice
12.1274 \bibcite}

\bbl@bibcite The macro \bbl@bibcite holds the definition of \bibcite needed when neither
natbib nor cite is loaded.

12.1275 \def\bbl@bibcite#1#2{%
12.1276 \org@bibcite{#1}{\@safeQactivesfalse#2}}

\bbl@cite@choice The macro \bbl@cite@choice determines which definition of \bibcite is needed.
12.1277 \def\bbl@cite@choice{%
First we give \bibcite its default definition.
12.1278 \global\let\bibcite\bbl@bibcite
Then, when natbib is loaded we restore the original definition of \bibcite .
12.1279 \@ifpackageloaded{natbib}{\global\let\bibcite\org@bibcite}{}%
For cite we do the same.
12.1280 \@ifpackageloaded{cite}{\global\let\bibcite\org@bibcite}{}%
Make sure this only happens once.

12.1281 \globalllet\bbl@cite@choice\relax
12.1282 }
When a document is run for the first time, no .aux file is available, and
\bibcite will not yet be properly defined. In this case, this has to happen before
the document starts.

12.1283 \AtBeginDocument{\bbl@cite@choice}

\@bibitem One of the two internal KTEX macros called by \bibitem that write the citation
label on the .aux file.

12.1284 \bblOredefine\@bibitem#1{%
12.1285 \@safe®@activestrue\org@@bibitem{#1}\@safe@activesfalse}

12.16 marks

\markright Because the output routine is asynchronous, we must pass the current language
attribute to the head lines, together with the text that is put into them. To achieve
this we need to adapt the definition of \markright and \markboth somewhat.

12.1286 \bbl@redefine\markright#1{%
First of all we temporarily store the language switching command, using an ex-
panded definition in order to get the current value of \languagename.

12.1287 \edef\bbl@tempb{\noexpand\protect

12.1288 \noexpand\foreignlanguage{\languagenamel}}/,
Then, we check whether the argument is empty; if it is, we just make sure the
scratch token register is empty.

12.1289 \def\bblQarg{#11}/,
12.1200 \ifx\bbl@arg\@empty
12.1291 \toks@{}Y%

12.1292 \else

58

Next, we store the argument to \markright in the scratch token register, together
with the expansion of \bbl@tempb (containing the language switching command)
as defined before. This way these commands will not be expanded by using \edef
later on, and we make sure that the text is typeset using the correct language set-
tings. While doing so, we make sure that active characters that may end up in the
mark are not disabled by the output routine kicking in while \@safe@activestrue

is in effect.
12.1293 \expandafter\toks@\expandafter{y
12.1294 \bbl@tempb{\protect\bbl@restore@actives#1}}%

12.1205 \fi
Then we define a temporary control sequence using \edef.
12.1296 \edef\bbl@tempa{’,

When \bbl@tempa is executed, only \languagename will be expanded, because of
the way the token register was filled.

12.1297 \noexpand\org@markright{\the\toks@}}/,
12.1298 \bbl@tempa
12.1299 }

\markboth The definition of \markboth is equivalent to that of \markright, except that we
\@mkboth need two token registers. The documentclasses report and book define and set
the headings for the page. While doing so they also store a copy of \markboth in
\@mkboth. Therefor we need to check whether \@mkboth has already been set. If

so we neeed to do that again with the new definition of \makrboth.

12.1300 \ifx\@mkboth\markboth

12.1301 \def\bbl@tempc{\let\@mkboth\markboth}
12.1302 \else

12.1303 \def\bbl@tempc{}

12.1304 \fi

Now we can start the new definition of \markboth

12.1305 \bbl@redefine\markboth#1#2{J,

12.1306 \edef\bbl@tempb{\noexpand\protect

12.1307 \noexpand\foreignlanguage{\languagenamel}}%
12.1308 \def\bbl@arg{#1}},

12.1309 \ifx\bbl@arg\Qempty

12.1310 \toks@{}%

12.1311 \else

12.1312 \expandafter\toks@\expandafter{)

12.1313 \bbl@tempb{\protect\bblOrestore@actives#1}}/,
121314 \fi

12.1315 \def\bblQarg{#21}/,

12.1316 \ifx\bbl@arg\Qempty

12.1317 \toks8{}

12.1318 \else

12.1319 \expandafter\toks8\expandafter{/,

12.1320 \bbl@tempb{\protect\bbl@restoreQactives#2}1}/,

12.1321 \fi
12.1322 \edef\bbl@tempai{’,

12.1323 \noexpand\org@markboth{\the\toks@}{\the\toks8}1}/
12.1324 \bbl@tempa
12.1325 }

and copy it to \@mkboth if necesary.
12.1326 \bbl@tempc

12.1327 (/core | shorthands)
12.17 Encoding issues (part 2)

\TeX Because documents may use font encodings other than one of the latin encodings,
\LaTeX we make sure that the logos of TEX and KTEX always come out in the right
encoding.

59

12.1328 (*core)

12.1329 \bbl@redefine\TeX{\textlatin{\org@TeX}}
12.1330 \bbl@redefine\LaTeX{\textlatin{\org@LaTeX}}
12.1331 (/core)

12.18 Preventing clashes with other packages
12.18.1 ifthen

\ifthenelse Sometimes a document writer wants to create a special effect depending on the
page a certain fragment of text appears on. This can be achieved by the following
piece of code:

\ifthenelse{\isodd{\pageref{some:label}}}
{code for odd pages}
{code for even pages}

In order for this to work the argument of \isodd needs to be fully expandable.
With the above redefinition of \pageref it is not in the case of this example. To
overcome that, we add some code to the definition of \ifthenelse to make things
work.
The first thing we need to do is check if the package ifthen is loaded. This

should be done at \begin{document} time.

12.1332 (*package)

12.1333 \AtBeginDocument{%

12.1334¢ \@ifpackageloaded{ifthen}{/
Then we can redefine \ifthenelse:

12.1335 \bbl@redefine@long\ifthenelse#1#2#3{Y,

We want to revert the definition of \pageref to its original definition for the
duration of \ifthenelse, so we first need to store its current meaning.

12.1336 \let\bbl@tempa\pageref

12.1337 \let\pageref\org@pageref
Then we can set the \@safe@actives switch and call the original \ifthenelse.
In order to be able to use shorthands in the second and third arguments of
\ifthenelse the resetting of the switch and the definition of \pageref happens
inside those arguments.

12.1338 \@safe@activestrue

12.1339 \org@ifthenelse{#1}{%
12.1340 \let\pageref\bbl@tempa
12.1341 \@safe@activesfalse
12.1342 #23{%

12.1343 \let\pageref\bbl@tempa
12.1344 \@safe@activesfalse
12.1345 #3}%

12.1346 Y

When the package wasn’t loaded we do nothing.

12.1347 H3¥%
12.1348 }

12.18.2 varioref

\@evpageref When the package varioref is in use we need to modify its internal command
\vrefpagenum \@@vpageref in order to prevent problems when an active character ends up in
\Ref the argument of \vref.
12.1349 \AtBeginDocument{%
12.1350 \@ifpackageloaded{varioref}{%
12.1351 \bbl@redefine\QQvpageref#1 [#2]#3{}
12.1352 \@safe@activestrue

60

12.1353 \org@@@vpageref {#1} [#2] {#3}V,
12.1354 \@safe@activesfalsel},

The same needs to happen for \vrefpagenum.

12.1355 \bbl@redefine\vrefpagenum#i#2{J,
12.1356 \@safe@activestrue

12.1357 \org@vrefpagenum{#1}{#2}/
12.1358 \@safe@activesfalsel}’

The package varioref defines \Ref to be a robust command wich uppercases
the first character of the reference text. In order to be able to do that it needs
to access the exandable form of \ref. So we employ a little trick here. We
redefine the (internal) command \Ref,, to call \org@ref instead of \ref. The
disadvantgage of this solution is that whenever the derfinition of \Ref changes,
this definition needs to be updated as well.

12.1359 \expandafter\def\csname Ref \endcsname#1{%

12.1360 \protected@edef\@tempa{\org@ref{#1}}\expandafter\MakeUppercase\@tempa}
12.1361 HY%

12.1362 }

12.18.3 hhline

\hhline Delaying the activation of the shorthand characters has introduced a problem with
the hhline package. The reason is that it uses the ‘.’ character which is made
active by the french support in babel. Therefor we need to reload the package
when the ‘:” is an active character.

So at \begin{document} we check whether hhline is loaded.
12.1363 \AtBeginDocument{Y
12.1364 \@ifpackageloaded{hhline}j,

Then we check whether the expansion of \normal@char: is not equal to \relax.
12.1365 {\expandafter\ifx\csname normal@char\string:\endcsname\relax
12.1366 \else
In that case we simply reload the package. Note that this happens after the
category code of the @-sign has been changed to other, so we need to temporarily
change it to letter again.

12.1367 \makeatletter

12.1368 \def\@currname{hhline}\input{hhline.sty}\makeatother
12.1369 \fi}%

12.1370 {3}

12.18.4 hyperref

\pdfstringdefDisableCommands Although a number of interworking problems between babel and hyperref are
tackled by hyperref itself we need to take care of correctly handling the shorthand
characters. When they get expanded inside a bookmark a warning will appear in
the log file which can be prevented. This is done by informing hyperref that it
should the shorthands as defined on the system level rather than at the user level.

12.1371 \AtBeginDocument{Y
12.1372 \@ifundefined{pdfstringdefDisableCommands}

12.1373 %

12.1374 {\pdfstringdefDisableCommands{’
12.1375 \languageshorthands{system}}/,
12.1376 Yh

12.1377 }

12.18.5 General

\FOREIGNLANGUAGE The package fancyhdr treats the running head and fout lines somewhat dif-
ferently as the standard classes. A symptom of this is that the command

61

\foreignlanguage which babel adds to the marks can end up inside the ar-
gument of \MakeUppercase. To prevent unexpected results we need to define
\FOREIGNLANGUAGE here.

12.1378 \DeclareRobustCommand{\FOREIGNLANGUAGE} [1]{%

12.1379 \lowercase{\foreignlanguage{#1}}}
12.1380 (/package)

\nfss@catcodes IATEX’s font selection scheme sometimes wants to read font definition files in the
middle of processing the document. In order to guard against any characters
having the wrong \catcodes it always calls \nfss@catcodes before loading a file.
Unfortunately, the characters " and ’ are not dealt with. Therefor we have to add
them until XTEX does that herself.

12.1381 (*core | shorthands)

12.1382 \ifx\nfss@catcodes\@undefined
12.1383 \else

12.1384 \addto\nfss@catcodes{%

12.1385 \@makeother\’%
12.1386 \@makeother\"%
12.1387 }

12.1388 \fi

12.1389 (/core | shorthands)

13 Local Language Configuration

\loadlocalcfg At some sites it may be necessary to add site-specific actions to a language defini-
tion file. This can be done by creating a file with the same name as the language
definition file, but with the extension .cfg. For instance the file norsk.cfg will
be loaded when the language definition file norsk.1df is loaded.

13.1 (*core)
For plain-based formats we don’t want to override the definition of \loadlocalcfg
from plain.def.

13.2 \ifx\loadlocalcfg\@undefined
13.3 \def\loadlocalcfg#1{}

13.4 \InputIfFileExists{#1.cfg}

13.5 L\ typeout {kkxskksskorskkskskokskokkkokskkkkkskdkkkokkkkkkkkk ™~ JY
13.6 * Local config file #1.cfg used~"J%

13.7 *}

13.8 }

13.9 {3}

13.10 \fi

Just to be compatible with IATEX 2.09 we add a few more lines of code:

13.11 \ifx\@unexpandable@protect\@undefined
13.12 \def\Qunexpandable@protect{\noexpand\protect\noexpand}
13.13 \long\def \protectedQurite#1#2#3{/

13.14 \begingroup

13.15 \let\thepage\relax

13.16 #2,

13.17 \let\protect\@unexpandable@protect
13.18 \edef\reserved@a{\write#1{#3}}%
13.19 \reserved@a

13.20 \endgroup

13.21 \if@nobreak\ifvmode\nobreak\fi\fi
13.22 }

13.23 \fi

13.24 (/core)

62

14 Driver files for the documented source code

Since babel version 3.4 all source files that are part of the babel system can be
typeset separately. But to typeset them all in one document, the file babel.drv
can be used. If you only want the information on how to use the babel system
and what goodies are provided by the language-specific files, you can run the file

user.drv through ITEX to get a user guide.

14.1 (*driver)
14.2 \documentclass{ltxdoc}
14.3 \usepackage{url,tlenc,supertabular}
14.4 \usepackage [icelandic,english]{babel}
14.5 \DoNotIndex{\!,\’,\,,\.,\=,\:,\5,\7,\/,\ 7, \ ¢, \aM}
14.6 \DoNotIndex{\@, \@ne, \@m, \@afterheading, \@date, \@endpart}
14.7 \DoNotIndex{\@hangfrom, \@idxitem, \@makeschapterhead, \@mkboth}
14.8 \DoNotIndex{\@oddfoot,\@oddhead, \@restonecolfalse, \@restonecoltrue}
14.9 \DoNotIndex{\@starttoc,\@unused}
14.10 \DoNotIndex{\accent,\active}
14.11 \DoNotIndex{\addcontentsline, \advance, \Alph, \arabic}
14.12 \DoNotIndex{\baselineskip, \begin, \begingroup, \bf, \box, \c@secnumdepth}
14.13 \DoNotIndex{\catcode, \centering, \char, \chardef,\clubpenalty}
14.14 \DoNotIndex{\columnsep, \columnseprule, \crcr, \csname}
14.15 \DoNotIndex{\day, \def,\dimen,\discretionary,\divide,\dp, \do}
14.16 \DoNotIndex{\edef,\else, \Qempty, \end, \endgroup, \endcsname, \endinput}
14.17 \DoNotIndex{\errhelp, \errmessage, \expandafter,\fi,\filedate}
14.18 \DoNotIndex{\fileversion, \fmtname, \fnum@figure, \fnum@table,\fontdimen}
14.19 \DoNotIndex{\gdef,\global}
14.20 \DoNotIndex{\hbox,\hidewidth,\hfil,\hskip, \hspace, \ht, \Huge, \huge}
14.21 \DoNotIndex{\ialign,\if@twocolumn,\ifcase,\ifcat,\ifhmode, \ifmmode}
14.22 \DoNotIndex{\ifnum, \ifx,\immediate,\ignorespaces, \input,\item}
14.23 \DoNotIndex{\kern}
14.24 \DoNotIndex{\labelsep, \Large, \large, \labelwidth,\lccode,\leftmargin}
14.25 \DoNotIndex{\lineskip, \leavevmode,\let,\list,\11,\long, \lower}
14.26 \DoNotIndex{\m@ne, \mathchar, \mathaccent, \markboth, \month,\multiply}
14.27 \DoNotIndex{\newblock, \newbox, \newcount, \newdimen, \newif, \newwrite}
14.28 \DoNotIndex{\nobreak, \noexpand, \noindent, \null, \number}
14.29 \DoNotIndex{\onecolumn, \or}
14.30 \DoNotIndex{\p@,par, \parbox,\parindent,\parskip,\penalty}
14.31 \DoNotIndex{\protect, \ps@headings}
14.32 \DoNotIndex{\quotation}
14.33 \DoNotIndex{\raggedright,\raise, \refstepcounter, \relax,\rm, \setbox}
14.34 \DoNotIndex{\section, \setcounter,\settowidth, \scriptscriptstyle}
14.35 \DoNotIndex{\sfcode,\sl, \sloppy,\small, \space, \spacefactor, \strut}
14.36 \DoNotIndex{\string}
14.37 \DoNotIndex{\textwidth, \the, \thechapter, \thefigure, \thepage, \thepart}
14.38 \DoNotIndex{\thetable,\thispagestyle,\titlepage, \tracingmacros}
14.39 \DoNotIndex{\tw@, \twocolumn, \typeout, \uppercase, \usecounter}
14.40 \DoNotIndex{\vbox,\vfil, \vskip, \vspace, \vss}
14.41 \DoNotIndex{\widowpenalty, \write, \xdef,\year,\z@,\z0@skip}

Here \d1qq is defined so that an example of "’ can be given.

14.42 \makeatletter

14.43 \gdef\d1lqq{{\setbox\tw@=\hbox{, }\setbox\z@=\hbox{’’1}/
14.44 \dimen\z@=\ht\z@ \advance\dimen\z@-\ht\tw@

14.45 \setbox\z@=\hbox{\lower\dimen\z@\box\z@}\ht\z@=\ht\tw@
14.46 \dp\z@=\dp\tw@ \box\z@\kern-.04em}}

The code lines are numbered within sections,

14.47 (*luser)

14.48 \@addtoreset{CodelineNo}{section}

14.49 \renewcommand\theCodelineNo{},

14.50 \reset@font\scriptsize\thesection. \arabic{CodelineNo}}

63

which should also be visible in the index; hence this redefinition of a macro from
doc.sty.

14.51 \renewcommand\codeline@wrindex[1]{\if@filesw

14.52 \immediate\write\@indexfile
14.53 {\string\indexentry{#1}J
14.54 {\number\c@section. \number\c@CodelineNo}}\fi}

The glossary environment is used or the change log, but its definition needs
changing for this document.

14.55 \renewenvironment{theglossary}{J,

14.56 \glossary@prologue/,
14.57 \GlossaryParms \let\item\@idxitem \ignorespaces}y
1458 {}

14.59 (/luser)
14.60 \makeatother
A few shorthands used in the documentation
14.61 \font\manual=logol0 7 font used for the METAFONT logo, etc.
14.62 \newcommand*\MF{{\manual META}\-{\manual FONT}}
14.63 \newcommand*\TeXhax{\TeX hax}
14.64 \newcommand*\babel{\textsf{babel}}
14.65 \newcommand*\Babel{\textsf{Babel}}
14.66 \newcommand*\m[1] {\mbox{\langle\it#1\/\rangle}}
14.67 \newcommand*\langvar{\m{lang}}

Some more definitions needed in the documentation.

14.68 % \newcommand*\note [1] {\textbf{#1}}
14.69 \newcommand*\note [1]{}

14.70 \newcommand*\bs1l{\protect\bslash}
14.71 \newcommand*\Lopt [1]{\textsf{#1}}
14.72 \newcommand*\Lenv [1]{\textsf{#1}}
14.73 \newcommand*\file[1]{\texttt{#1}}
14.74 \newcommand*\cls [1]{\texttt{#1}}
14.75 \newcommand*\pkg [1] {\texttt{#1}}
14.76 \newcommand*\langdeffile [1]{/
14.77 (-user) \clearpage

14.78 \DocInput{#1}}

When a full index should be generated uncomment the line with \EnableCrossrefs.
Beware, processing may take some time. Use \DisableCrossrefs when the index
is ready.

14.79 % \EnableCrossrefs
14.80 \DisableCrossrefs

Inlude the change log.
14.81 (-user) \RecordChanges
The index should use the linenumbers of the code.
14.82 (-user) \CodelineIndex
Set everything in \MacroFont instead of \AltMacroFont
14.83 \setcounter{StandardModuleDepth}{1}
For the user guide we only want the description parts of all the files.
14.84 (+user)\OnlyDescription
Here starts the document

14.85 \begin{document}
14.86 \DocInput{babel.dtx}

All the language definition files.

14.87 (4user) \clearpage

14.88 \langdeffile{esperanto.dtx}
14.89 \langdeffile{interlingua.dtx}
14.90 %

14.91 \langdeffile{dutch.dtx}

64

14.92 \1langdeffile{english.dtx}
14.93 \langdeffile{germanb.dtx}
14.94 \langdeffile{ngermanb.dtx}
14.95 %
14.96 \langdeffile{breton.dtx}
14.97 \langdeffile{welsh.dtx}
14.98 \langdeffile{irish.dtx}
14.99 \langdeffile{scottish.dtx}
14.100 %
14.101 \langdeffile{greek.dtx}
14.102 %
14.103 \langdeffile{frenchb.dtx}
14.104 \langdeffile{italian.dtx}
14.105 \langdeffile{latin.dtx}
14.106 \langdeffile{portuges.dtx}
14.107 \langdeffile{spanish.dtx}
14.108 \langdeffile{catalan.dtx}
14.109 \langdeffile{galician.dtx}
14.110 \langdeffile{basque.dtx}
14.111 \langdeffile{romanian.dtx}
14.112 %
14.113 \langdeffile{danish.dtx}
14.114 \langdeffile{icelandic.dtx}
14.115 \langdeffile{norsk.dtx}
14.116 \langdeffile{swedish.dtx}
14.117 \langdeffile{samin.dtx}
14.118 ¥
14.119 \langdeffile{finnish.dtx}
14.120 \langdeffile{magyar.dtx}
14.121 \langdeffile{estonian.dtx}
14.122 %
14.123 \langdeffile{albanian.dtx}
14.124 \langdeffile{croatian.dtx}
14.125 \langdeffile{czech.dtx}
14.126 \langdeffile{polish.dtx}
14.127 \langdeffile{serbian.dtx}
14.128 \langdeffile{slovak.dtx}
14.129 \langdeffile{slovene.dtx}
14.130 \langdeffile{russianb.dtx}
14.131 \langdeffile{bulgarian.dtx}
14.132 \langdeffile{ukraineb.dtx}
14.133 %
14.134 \langdeffile{lsorbian.dtx}
14.135 \langdeffile{usorbian.dtx}
14.136 \langdeffile{turkish.dtx}
14.137 %
14.138 \langdeffile{hebrew.dtx}
14.139 \DocInput{hebinp.dtx}
14.140 \DocInput{hebrew.fdd}
14.141 \DocInput{heb209.dtx}
14.142 \langdeffile{bahasa.dtx}
14.143 \langdeffile{bahasam.dtx}
14.144 %\langdeffile{sanskrit.dtx}
14.145 %\langdeffile{kannada.dtx}
14.146 %\langdeffile{nagari.dtx}
14.147 %\langdeffile{tamil.dtx}
14.148 \clearpage
14.149 \DocInput{bbplain.dtx}

Finally print the index and change log (not for the user guide).

14.150 (*luser)
14.151 \clearpage
14.152 \def\filename{index}

65

14.153 \PrintIndex

14.154 \clearpage

14.155 \def\filename{changes}
14.156 \PrintChanges

14.157 {/luser)

14.158 \end{document}

14.159 (/driver)

66

15 Conclusion

A system of document options has been presented that enable the user of I¥TEX
to adapt the standard document classes of IMTEX to the language he or she prefers
to use. These options offer the possibility of switching between languages in one
document. The basic interface consists of using one option, which is the same for
all standard document classes.

In some cases the language definition files provide macros that can be useful to
plain TEX users as well as to I¥TEX users. The babel system has been implemented
so that it can be used by both groups of users.

16 Acknowledgements

I would like to thank all who volunteered as (-testers for their time. I would like to
mention Julio Sanchez who supplied the option file for the Spanish language and
Maurizio Codogno who supplied the option file for the Italian language. Michel
Goossens supplied contributions for most of the other languages. Nico Poppelier
helped polish the text of the documentation and supplied parts of the macros for
the Dutch language. Paul Wackers and Werenfried Spit helped find and repair
bugs.

During the further development of the babel system I received much help from
Bernd Raichle, for which I am grateful.

17 References

[1] Donald E. Knuth, The TgXbook, Addison-Wesley, 1986.

[2] Leslie Lamport, ETEX, A document preparation System, Addison-Wesley,
1986.

[3] K.F. Treebus. Tekstwijzer, een gids voor het grafisch verwerken van tekst. SDU
Uitgeverij (’s-Gravenhage, 1988). A Dutch book on layout design and typog-
raphy.

[4] Hubert Partl, German TgX, TUGboat 9 (1988) #1, p. 70-72.
[5] Leslie Lamport, in: TeXhax Digest, Volume 89, #13, 17 February 1989.

[6] Johannes Braams, Victor Eijkhout and Nico Poppelier, The development of
national BTEX styles, TUGboat 10 (1989) #3, p. 401-406.

[7] Joachim Schrod, International BTEX is ready to use, TUGboat 11 (1990) #1,
p- 87-90.

67

\captionsesperanto

18 The Esperanto language

The file esperanto.dtx'® defines all the language-specific macros for the Es-
peranto language.

For this language the character
given of its purpose.

is made active. In table 2 an overview is

¢ gives ¢ with hyphenation in the rest of the word al-
lowed, this works for ¢, C, g, G, H, J, s, S, z, Z
~h prevents h from becoming too tall

~j gives]

~u gives 1, with hyphenation in the rest of the word
allowed

~U gives U, with hyphenation in the rest of the word
allowed

~| inserts a \discretionary{-}{}{}

Table 2: The functions of the active character for Esperanto.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

18.1 (*code)
18.2 \LdfInit{esperanto}\captionsesperanto

When this file is read as an option, i.e. by the \usepackage command,
esperanto will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \1@esperanto to see whether we have to do some-
thing here.

18.3 \ifx\1l@esperanto\Qundefined
18.4 \@nopatterns{Esperanto}
18.5 \adddialect\l@esperantoO\fi

The next step consists of defining commands to switch to the Esperanto lan-
guage. The reason for this is that a user might want to switch back and forth
between languages.

The macro \captionsesperanto defines all strings used in the four standard
documentclasses provided with ETEX.

18.6 \addto\captionsesperanto{’

18.7 \def\prefacename{Anta\u{ul}parolo}y,
18.8 \def\refname{Cita\~\j{}oj}%

18.9 \def\abstractname{Resumol}y,

18.10 \def\bibname{Bibliografiol}

18.11 \def\chaptername{{\~C}apitro}’

18.12 \def\appendixname{Apendico}’

18.13 \def\contentsname{Enhavol}J,

18.14 \def\listfigurename{Listo de figuroj}/
18.15 \def\listtablename{Listo de tabelojl}’
18.16 \def\indexname{Indekso}/

18.17 \def\figurename{Figuro}j,

18.18 \def\tablename{Tabelol}},

18.19 \def\partname{Partol}/,

18.20 \def\enclname{Aldono(j)}%

18.21 \def\ccname{Kopie all}j,

18.22 \def\headtoname{Al}},

18.23 \def\pagename{Pa\~gol}/,

18.24 \def\subjectname{Temo}’

18.25 \def\seename{vidu}} a~u: vd.

10The file described in this section has version number ? and was last revised on ?. A con-
tribution was made by Ruiz-Altaba Marti (ruizaltb@cernvm.cern.ch). Code from the file
esperant.sty by Jorg Knappen (knappen@vkpmzd.kph.uni-mainz.de) was included.

68

\dateesperanto

\extrasesperanto
\noextrasesperanto

\Esper
\esper

18.26 \def\alsoname{vidu anka\u{u}}’% a~u vd. anka\uf{u}
18.27 \def\proofname{Pruvol}

18.28 \def\glossaryname{Glosaro}/

18.29 }

The macro \dateesperanto redefines the command \today to produce Esperanto
dates.

18.30 \def\dateesperanto{/
18.31 \def\today{\number\day{--a}~de~\ifcase\month\or

18.32 januaro\or februaro\or marto\or aprilo\or majo\or junio\or
18.33 julio\or a\u{ul}gusto\or septembro\or oktobro\or novembro\or
18.34 decembro\fi,\space \number\year}}
The macro \extrasesperanto performs all the extra definitions needed for the

Esperanto language. The macro \noextrasesperanto is used to cancel the actions

of \extrasesperanto.
For Esperanto the

definition may vary.

character is made active. This is done once, later on its

18.35 \initiate®@active@char{~}

Because the character ~ is used in math mode with quite a different purpose we
need to add an extra level of evaluation to the definition of the active ~. It checks
whether math mode is active; if so the shorthand mechanism is bypassed by a
direct call of \normal@char~.

18.36 \addto\extrasesperanto{\languageshorthands{esperanto}}

18.37 \addto\extrasesperanto{\bbl@activate{~}}

18.38 \addto\noextrasesperanto{\bbl@deactivate{~}}

In order to prevent problems with the active ~ we add a shorthand on system
level which expands to a ‘normal ~.
18.39 \declare@shorthand{system}{~}{\csname normal@char\string~\endcsname}
And here are the uses of the active ~:

18.40 \declare@shorthand{esperanto}{~c}{\~{c}\allowhyphens}

18.41 \declare@shorthand{esperanto}{~C}H\"{C}\allowhyphens}

18.42 \declare@shorthand{esperanto}{~g}{\~{g}\allowhyphens}

18.43 \declare@shorthand{esperanto}{~G}{\~{G}\allowhyphens}

18.44 \declare@shorthand{esperanto}{~h}{h\1lap{\~{}}\allowhyphens}
18.45 \declare@shorthand{esperanto}{"H}{\~{H}\allowhyphens}

18.46 \declare@shorthand{esperanto}{~j}{\~"{\j}\allowhyphens}

18.47 \declare@shorthand{esperanto}{~J}H\~{J}\allowhyphens}

18.48 \declare@shorthand{esperanto}{~s}{\"{s}\allowhyphens}

18.49 \declare@shorthand{esperanto}{~S}{\~{S}\allowhyphens}

18.50 \declare@shorthand{esperanto}{~u}{\u u\allowhyphens}

18.51 \declare@shorthand{esperanto}{~U}{\u U\allowhyphens}

18.52 \declare@shorthand{esperanto}{~|}{\discretionary{-}{}{}\allowhyphens}

In esperant.sty Jorg Knappen provides the macros \esper and \Esper that can
be used instead of \alph and \Alph. These macros are available in this file as
well.
Their definition takes place in two steps. First the toplevel.
18.53 \def \esper#1{\@esper{\@nameuse{cO#1}}}
18.54 \def \Esper#1{\Q@Esper{\@nameuse{c@#1}}}
Then the second level.
18.55 \def \Q@esper#1{/
18.56 \ifcase#1\or alor b\or c\or \~cl\or d\or e\or flor g\or \~“g\or
18.57 h\or h\1llap{\~{}}\or ilor j\or \~"\j\or k\or 1\or m\or n\or o\or
18.58 plor r\or s\or \~s\or t\or ulor \u{ul\or v\or z\else\@ctrerr\fi}
18.59 \def\Q@Esper#1{%
18.60 \ifcase#1\or A\or B\or C\or \"C\or D\or E\or F\or G\or \"G\or
18.61 H\or \~H\or I\or J\or \~J\or K\or L\or M\or N\or O\or
18.62 P\or R\or S\or \~S\or T\or U\lor \u{Ul\or V\or Z\else\@ctrerr\fi}

69

\hodiau In esperant.sty Jorg Knappen provides two alternative macros for \today,
\hodiaun \hodiau and \hodiaun. The second macro produces an accusative version of
the date in Esperanto.

18.63 \addto\dateesperanto{\def\hodiau{la \today}}

18.64 \def\hodiaun{la \number\day --an~de~\ifcase\month\or

18.65 januaro\or februaro\or marto\or aprilolor majo\or junio\or

18.66 julio\or a\u{ul}gusto\or septembro\or oktobro\or novembro\or

18.67 decembro\fi, \space \number\year}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

18.68 \1df@f inish{esperanto}
18.69 (/code)

70

19 The Interlingua language

The file interlingua.dtx!! defines all the language definition macros for the
Interlingua language. This file was contributed by Peter Kleiweg, kleiweg at
let.rug.nl.

Interlingua is an auxiliary language, built from the common vocabulary of
Spanish /Portuguese, English, Italian and French, with some normalisation of
spelling. The grammar is very easy, more similar to English’s than to neolatin
languages. The site http://www.interlingua.com is mostly written in interlin-
gua (as is http://interlingua.altervista.org), in case you want to read some
sample of it.

You can have a look at the grammar at http://www.geocities.com/linguablau

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

19.1 (*code)
19.2 \LdfInit{interlingua}{captionsinterlingua}

When this file is read as an option, i.e. by the \usepackage command,
interlingua could be an ‘unknown’ language in which case we have to make
it known. So we check for the existence of \1@interlingua to see whether we
have to do something here.

19.3 \ifx\undefined\1l@interlingua
19.4 \@nopatterns{Interlingua}
19.5 \adddialect\l@interlinguaO\fi

The next step consists of defining commands to switch to (and from) the In-
terlingua language.

\interlinguahyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

19.6 \providehyphenmins{interlingua}{\tw@\tw@}

\captionsinterlingua The macro \captionsinterlingua defines all strings used in the four standard
documentclasses provided with EXTEX.

19.7 \def\captionsinterlingua{%

19.8 \def\prefacename{Prefaciol},
19.9 \def\refname{Referentias}
19.10 \def\abstractname{Summariol}y
19.11 \def\bibname{Bibliographial’
19.12 \def\chaptername{Capitulo}’
19.13 \def\appendixname{Appendicel}’,
19.14 \def\contentsname{Contento}y
19.15 \def\listfigurename{Lista de figuras}’
19.16 \def\listtablename{Lista de tabellasl}y,
19.17 \def\indexname{Indicel}

19.18 \def\figurename{Figural}j,

19.19 \def\tablename{Tabellal},

19.20 \def\partname{Partel}/,

19.21 \def\enclname{Incluso}’

19.22 \def\ccname{Copial}l/

19.23 \def\headtoname{A}%

19.24 \def\pagename{Pagina},

19.25 \def\seename{videl}/,

19.26 \def\alsoname{vide etiam}},
19.27 \def\proofname{Provaly,

19.28 \def\glossaryname{Glossariol}},
19.29 }

\dateinterlingua The macro \dateinterlingua redefines the command \today to produce Inter-
lingua dates.

" The file described in this section has version number v1.6 and was last revised on 2005,/03/30.

71

http://www.interlingua.com
http://interlingua.altervista.org
http://www.geocities.com/linguablau

\extrasinterlingua
\noextrasinterlingua

19.30 \def\dateinterlingua{’
19.31 \def\today{le~\number\day\space de \ifcase\month\or

19.32 januario\or februariolor martio\or aprillor maio\or junio\or
19.33 juliolor augusto\or septembre\or octobre\or novembre\or

19.34 decembre\fi

19.35 \space \number\yearl}}

The macro \extrasinterlingua will perform all the extra definitions needed for
the Interlingua language. The macro \noextrasinterlingua is used to cancel
the actions of \extrasinterlingua. For the moment these macros are empty but
they are defined for compatibility with the other language definition files.

19.36 \addto\extrasinterlingua{}
19.37 \addto\noextrasinterlingua{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

19.38 \1ldf@finish{interlingua}
19.39 (/code)

72

20 The Dutch language

The file dutch.dtx'? defines all the language-specific macros for the Dutch lan-
guage and the ‘Afrikaans’ version'® of it.

For this language the character " is made active. In table 3 an overview is
given of its purpose. One of the reasons for this is that in the Dutch language
a word with a dieresis can be hyphenated just before the letter with the umlaut,
but the dieresis has to disappear if the word is broken between the previous letter
and the accented letter.

In [3] the quoting conventions for the Dutch language are discussed. The
preferred convention is the single-quote Anglo-American convention, i.e. ‘This is
a quote’. An alternative is the slightly old-fashioned Dutch method with initial
double quotes lowered to the baseline, ,, This is a quote”, which should be typed as
"‘This is a quote"’.

"a \"a which hyphenates as -a; also implemented for
the other letters.

"y puts a negative kern between i and j

"Y puts a negative kern between I and J

"| disable ligature at this position.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"~ to produce a hyphencharcter without the following
\discretionary{}{}{}.

"" to produce an invisible ‘breakpoint’.

"¢ lowered double left quotes (see example below).

"> normal double right quotes.

\- like the old \-, but allowing hyphenation in the rest
of the word.

Table 3: The extra definitions made by dutch.1ldf

20.1 % \changes{dutch-3.8a}{1996/10/04}{made check dependant on
20.2 % \cs{CurrentOption}}

20.3 %
20.4 % The macro |\LdfInit| takes care of preventing that this file is
20.5 % loaded more than once, checking the category code of the

20.6 % \texttt{@} sign, etc.

20.7 % \changes{dutch-3.8a}{1996/10/30}{Now use \cs{LdfInit} to perform
20.8 % initial checks}

20.9 % \begin{macrocode}

20.10 (*code)

20.11 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, dutch
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@dutch or 1@afrikaans to see whether we have to do
something here.

First we try to establish with which option we are being processed.

20.12 \def\bbl@tempa{dutch}
20.13 \ifx\CurrentOption\bbl@tempa

If it is dutch then we first check if the Dutch hyphenation patterns wer loaded,
20.14 \ifx\l@dutch\undefined

if no we issue a warning and make dutch a ‘dialect’ of either the hyphenation
patterns that were loaded in slot 0 or of ‘afrikaans’ when it is available.

12The file described in this section has version number v3.8i, and was last revised on
2005/03/30.
Bcontributed by Stoffel Lombard (1lombc@b31pc87.up.ac.za)

73

20.15 \@nopatterns{Dutch}
20.16 \ifx\l@afrikaans\undefined
20.17 \adddialect\1l@dutchO
20.18 \else
20.19 \adddialect\1l@dutch\l@afrikaans
20.20 \fi
20.21 \fi
The next step consists of defining commands to switch to (and from) the Dutch
language.

\captionsdutch The macro \captionsdutch defines all strings used in the four standard document
classes provided with XTEX.

20.22
20.23
20.24
20.25
20.26
20.27
20.28
20.29
20.30
20.31
20.32
20.33
20.34
20.35
20.36
20.37
20.38
20.39
20.40
20.41
20.42
20.43
20.44
20.45
20.46
20.47
20.48

\begingroup
\catcode‘\"\active
\def\x{\endgroup
\def\captionsdutch{%
\def\prefacename{Voorwoord}
\def\refname{Referenties}y,
\def\abstractname{Samenvatting}/
\def\bibname{Bibliografiel},
\def\chaptername{Hoofdstuk}/
\def\appendixname{B"ylage}%
\def\contentsname{Inhoudsopgavel}
\def\listfigurename{L"yst van figurenl},
\def\listtablename{L"yst van tabellen},
\def\indexname{Index}’
\def\figurename{Figuurl}y,
\def\tablename{Tabel},
\def\partname{Deel}%
\def\enclname{B"ylage (n)}%
\def\ccname{cc}y,
\def\headtoname{Aan}
\def\pagename{Paginalj,
\def\seename{zie}%
\def\alsoname{zie ook}’
\def\proofname{Bew"ys}/
\def\glossaryname{Verklarende Woordenl"yst}%
}
N\x

\datedutch The macro \datedutch redefines the command \today to produce Dutch dates.

20.49
20.50
20.51
20.52
20.53
20.54

\def\datedutch{’
\def\today{\number\day~\ifcase\month\or
januarilor februarilor maart\or aprillor meilor junilor
julilor augustus\or september\or oktober\or november\or
december\fi
\space \number\yearl}}

When the option with which this file is being process was not dutch we assume

it was afrikaans. We perform a similar check on the availability of the hyphenation

paterns.
20.55 \else
20.56 \ifx\l@afrikaans\undefined
20.57 \@nopatterns{Afrikaans}
20.58 \ifx\1l@dutch\undefined
20.59 \adddialect\1l@afrikaansO
20.60 \else
20.61 \adddialect\l@afrikaans\1l@dutch
20.62 \fi
20.63 \fi

74

\captionsafrikaans Now is the time to define the words for ‘Afrikaans’.
20.64 \def\captionsafrikaans{’

20.65 \def\prefacename{Voorwoordl}y,

20.66 \def\refname{Verwysings}%

20.67 \def\abstractname{Samevatting}’
20.68 \def\bibname{Bibliografie}/,

20.69 \def\chaptername{Hoofstuk}%

20.70 \def\appendixname{Bylae}%

20.71 \def\contentsname{Inhoudsopgawel
20.72 \def\listfigurename{Lys van figure}},
20.73 \def\listtablename{Lys van tabellel}},
20.74 \def\indexname{Inhoud}’

20.75 \def\figurename{Figuur}%

20.76 \def\tablename{Tabel},

20.77 \def\partname{Deell}y,

20.78 \def\enclname{Bylae(n)}/

20.79 \def\ccname{a.a.}’

20.80 \def\headtoname{Aan}y

20.81 \def\pagename{Bladsy}%

20.82 \def\seename{sien}y,

20.83 \def\alsoname{sien ook}

20.84 \def\proofname{Bewys}/

20.85 }

\dateafrikaans Here is the ‘Afrikaans’ version of the date macro.

20.86 \def\dateafrikaans{%
20.87 \def\today{\number\day~\ifcase\month\or

20.88 Januarie\or Februarie\or Maart\or Aprillor Meilor Junie\or
20.89 Julie\or Augustus\or September\or Oktober\or November\or
20.90 Desember\fi

20.91 \space \number\yearl}}

20.92 \fi

\extrasdutch The macros \extrasdutch and \captionsafrikaans will perform all the ex-

\extrasafrikaans tra definitions needed for the Dutch language. The macros \noextrasdutch

\noextrasdutch and noextrasafrikaans is used to cancel the actions of \extrasdutch and
\noextrasafrikaans \captionsafrikaans.

For Dutch the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the dutch group of shorthands should
be used.

20.93 \initiate@active@char{"}
Both version of the language use the same set of shorthand definitions althoug the
‘ij” is not used in Afrikaans.

20.94 \@namedef{extras\CurrentOption}{\languageshorthands{dutch}}

20.95 \expandafter\addto\csname extras\CurrentOption\endcsname{%
20.96 \bbl@activate{"}}
The ‘umlaut’ character should be positioned lower on all vowels in Dutch texts.

20.97 \expandafter\addto\csname extras\CurrentOption\endcsname{%
20.98 \umlautlow\umlautelow}

20.99 \@namedef{noextras\CurrentOption}{/

20.100 \umlauthigh}

\dutchhyphenmins The dutch hyphenation patterns can be used with \lefthyphenmin set to 2 and
\afrikaanshyphenmins \righthyphenmin set to 3.

20.101 \providehyphenmins{\CurrentOption}{\tw@\three}

\@trema In the Dutch language vowels with a trema are treated specially. If a hyphenation
occurs before a vowel-plus-trema, the trema should disappear. To be able to do

75

this we could first define the hyphenation break behaviour for the five vowels, both
lowercase and uppercase, in terms of \discretionary. But this results in a large
\if-construct in the definition of the active ". Because we think a user should not
use " when he really means something like * > we chose not to distinguish between
vowels and consonants. Therefore we have one macro \@trema which specifies the
hyphenation break behaviour for all letters.

20.102 \def\@trema#1{\allowhyphens\discretionary{-}{#1}{\"{#1}}\allowhyphens}

Now we can define the doublequote macros: the tremas,

20.103 \declare@shorthand{dutch}{"a}{\textormath{\@trema a}{\ddot al}}
20.104 \declare@shorthand{dutch}{"e}{\textormath{\@trema e}{\ddot el}}
20.105 \declare@shorthand{dutch}{"i}{\textormath

20.106 {\allowhyphens\discretionary{-}i}{\"{\i}}\allowhyphens}/,
20.107 {\ddot \imathl}}

20.108 \declare@shorthand{dutch}{"o}{\textormath{\@trema o}{\ddot ol}}
20.109 \declare@shorthand{dutch}{"u}{\textormath{\@trema u}{\ddot ul}}

dutch quotes,
20.110 \declare@shorthand{dutch}{" ‘}{/
20.111 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
20.112 \declare@shorthand{dutch}{" ’}{/
20.113 \textormath{\textquotedblright}{\mbox{\textquotedblright}}}
and some additional commands:
20.114 \declare@shorthand{dutch}{"-}{\nobreak-\bbl@allowhyphens}
20.115 \declare@shorthand{dutch}{"“}{\textormath{\leavevmode\hbox{-}}{-}}
20.116 \declare@shorthand{dutch}{" |}/
20.117 \textormath{\discretionary{-}{}{\kern.03em}}{}}
20.118 \declare@shorthand{dutch}{""}{\hskip\z@skip}
20.119 \declare@shorthand{dutch}{ "y} \textormath{\ij{}}{\ddot y}}
20.120 \declare@shorthand{dutch}{"Y}{\textormath{\IJ{}}{\ddot Y}}

To enable hyphenation in two words, written together but separated by a slash,
as in ‘uitdrukking/opmerking’ we define the command "/.

20.121 \declare@shorthand{dutch}{"/}{\textormath
20.122 {\bbl@allowhyphens\discretionary{/}{}{/}\bbl@allowhyphens}{}}

\- All that is left now is the redefinition of \-. The new version of \- should indicate
an extra hyphenation position, while allowing other hyphenation positions to be
generated automatically. The standard behaviour of TEX in this respect is very
unfortunate for languages such as Dutch and German, where long compound words
are quite normal and all one needs is a means to indicate an extra hyphenation
position on top of the ones that TEX can generate from the hyphenation patterns.

20.123 \expandafter\addto\csname extras\CurrentOption\endcsname{}

20.124 \babel@save\-}

20.125 \expandafter\addto\csname extras\CurrentOption\endcsname{/,

20.126 \def\-{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

20.127 \1df@f inish\CurrentOption
20.128 (/code)

76

21 The English language

The file english.dtx'* defines all the language definition macros for the English
language as well as for the American and Australian version of this language. For
the Australian version the British hyphenation patterns will be used, if available,
for the Canadian variant the American patterns are selected.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

21.1 (*code)
21.2 \Ldf Init\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, english
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@english to see whether we have to do something
here.

We allow for the british english patterns to be loaded as either ‘british’, or
‘UKenglish’. When neither of those is known we try to define \1@english as an
alias for \1@american or \1@USenglish.

21.3 \ifx\1l@english\Q@undefined
21.4 \ifx\1@UKenglish\@undefined

21.5 \ifx\1@british\@undefined

21.6 \ifx\1l@american\@undefined

21.7 \ifx\1@USenglish\@undefined

21.8 \ifx\1l@canadian\@undefined

21.9 \ifx\1@australian\@undefined
21.10 \ifx\1l@newzealand\@undefined
21.11 \@nopatterns{English}
21.12 \adddialect\1@englishO
21.13 \else

21.14 \let\1l@english\l@newzealand
21.15 \fi

21.16 \else

21.17 \let\1l@english\l@australian
21.18 \fi

21.19 \else

21.20 \let\1l@english\l@canadian
21.21 \fi

21.22 \else

21.23 \let\1l@english\1@USenglish

21.24 \fi

21.25 \else

21.26 \let\1l@english\l@american

21.27 \fi

21.28 \else

21.29 \let\1@english\1@british

21.30 \fi

21.31 \else

21.32 \let\1@english\1@UKenglish

21.33 \fi

21.34 \fi

Because we allow ‘british’ to be used as the babel option we need to make sure
that it will be recognised by \selectlanguage. In the code above we have made
sure that \1@english was defined. Now we want to make sure that \1@british
and \1QUKenglish are defined as well. When either of them is we make them
equal to each other, when neither is we fall back to the default, \1@english.
21.35 \ifx\1@british\@undefined
21.36 \ifx\1QUKenglish\@undefined

14The file described in this section has version number v3.30 and was last revised on
2005/03/30

7

\englishhyphenmins

21.37 \adddialect\1@british\1@english

21.38 \adddialect\1@UKenglish\1l@english
21.39 \else

21.40 \let\1@british\1@UKenglish

2141 \fi

21.42 \else

21.43 \let\1l@UKenglish\1l@british

21.44 \fi

‘American’ is a version of ‘English’ which can have its own hyphenation patterns.
The default english patterns are in fact for american english. We allow for the
patterns to be loaded as ‘english’ ‘american’ or ‘USenglish’.

21.45 \ifx\1l@american\@undefined

21.46 \ifx\1@USenglish\@undefined

When the patterns are not know as ‘american’ or ‘USenglish’ we add a “dialect”.

21.47 \adddialect\l@american\1l@english
21.48 \else

21.49 \let\1l@american\1@USenglish

21.50 \fi

21.51 \else

Make sure that USenglish is known, even if the patterns were loaded as ‘american’.

21.52 \ifx\1@USenglish\@undefined

21.53 \let\1@USenglish\l@american
21.54 \fi
21.55 \fi

‘Canadian’ english spelling is a hybrid of British and American spelling. Al-
though so far no special ‘translations’ have been reported we allow this file to be
loaded by the option candian as well.

21.56 \ifx\1@canadian\@undefined
21.57 \adddialect\l@canadian\l@american
21.58 \fi

‘Australian’ and ‘New Zealand’ english spelling seem to be the same as British
spelling. Although so far no special ‘translations’ have been reported we allow
this file to be loaded by the options australian and newzealand as well.

21.59 \ifx\1l@australian\@undefined

21.60 \adddialect\l@australian\1@british
21.61 \fi

21.62 \ifx\1l@newzealand\@undefined

21.63 \adddialect\l@newzealand\1@british
21.64 \fi

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

21.65 \providehyphenmins{\CurrentOption}{\tw@\thred}

The next step consists of defining commands to switch to (and from) the En-
glish language.

\captionsenglish The macro \captionsenglish defines all strings used in the four standard docu-

ment classes provided with A TEX.

21.66 \@namedef{captions\CurrentOption}{%
21.67 \def\prefacename{Prefacel/,

21.68 \def\refname{References}/,

21.69 \def\abstractname{Abstractl}’

21.70 \def\bibname{Bibliography}%

21.71 \def\chaptername{Chapterl}/,

21.72 \def\appendixname{Appendix}/

21.73 \def\contentsname{Contents}’

21.74 \def\listfigurename{List of Figures},

78

21.75 \def\listtablename{List of Tables}}
21.76 \def\indexname{Index}/

21.77 \def\figurename{Figure}’
21.78 \def\tablename{Tablel},

21.79 \def\partname{Part}/,

21.80 \def\enclname{encl}/,

21.81 \def\ccname{ccl}’

21.82 \def\headtoname{To}/,

21.83 \def\pagename{Pagel/

21.84 \def\seename{seelV

21.85 \def\alsoname{see alsol}%
21.86 \def\proofname{Proofl}y,

21.87 \def\glossaryname{Glossaryl}/,
21.88 }

\dateenglish In order to define \today correctly we need to know whether it should be ‘en-
glish’, ‘australian’, or ‘american’. We can find this out by checking the value of
\CurrentOption.

21.89 \def\bbl@tempa{british}

21.90 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{UK}\fi
21.91 \def\bbl@tempa{UKenglish}

21.92 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{UK}\fi
21.93 \def\bbl@tempa{american}

21.94 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{US}\fi
21.95 \def\bbl@tempa{USenglish}

21.96 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{USI\fi
21.97 \def\bbl@tempa{canadian}

21.98 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{USI\fi
21.99 \def\bbl@tempa{australian}

21.100 \ifx\CurrentOption\bbl@tempa\def\bbl@tempb{AU}\fi
21.101 \def\bbl@tempa{newzealand}

21.102 \ifx\CurrentOption\bbl@tempa\def\bblO@tempb{AUI\fi

The macro \dateenglish redefines the command \today to produce English
dates.

21.103 \def\bbl@tempa{UK}
21.104 \ifx\bbl@tempa\bbl@tempb
21.105 \@namedef{date\CurrentOption}{%

21.106 \def\today{\ifcase\day\or

21.107 1st\or 2nd\or 3rd\or 4th\or 5th\or

21.108 6th\or 7th\or 8th\or 9th\or 10th\or

21.109 11th\or 12th\or 13th\or 14th\or 15th\or

21.110 16th\or 17th\or 18th\or 19th\or 20th\or

21.111 21st\or 22nd\or 23rd\or 24th\or 25th\or

21.112 26th\or 27th\or 28th\or 29th\or 30th\or

21.113 31st\fi~\ifcase\month\or

21.114 January\or February\or March\or Aprillor May\or June\or
21.115 July\or August\or September\or October\or November\or
21.116 December\fi\space \number\year}}

\dateaustralian Now, test for ‘australian’ or ‘american’.
21.117 \else
The macro \dateaustralian redefines the command \today to produce Aus-
tralian resp. New Zealand dates.

21.118 \def\bbl@tempa{AU}
21.119 \ifx\bbl@tempa\bbl@tempb

21.120 \@namedef{date\CurrentOption}{%

21.121 \def\today{\number\day~\ifcase\month\or

21.122 January\or February\or March\or Aprillor May\or June\or
21.123 July\or August\or September\or October\or November\or
21.124 December\fi\space \number\year}}

79

\dateamerican The macro \dateamerican redefines the command \today to produce American

dates.
21.125 \else
21.126 \@namedef{date\CurrentOption}{%
21.127 \def\today{\ifcase\month\or
21.128 January\or February\or March\or Aprillor May\or June\or
21.129 July\or August\or September\or October\or November\or
21.130 December\fi \space\number\day, \number\yearl}}
21.131 \fi
21.132 \fi

\extrasenglish The macro \extrasenglish will perform all the extra definitions needed for the
\noextrasenglish FEnglish language. The macro \noextrasenglish is used to cancel the actions of
\extrasenglish. For the moment these macros are empty but they are defined

for compatibility with the other language definition files.

21.133 \@namedef{extras\CurrentOption}{}
21.134 \@namedef{noextras\CurrentOption}{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

21.135 \1df@f inish\CurrentOption
21.136 (/code)

80

22 The German language

The file germanb.dtx'® defines all the language definition macros for the German
language as well as for the Austrian dialect of this language'.

For this language the character " is made active. In table 4 an overview is given
of its purpose. One of the reasons for this is that in the German language some
character combinations change when a word is broken between the combination.
Also the vertical placement of the umlaut can be controlled this way. The quotes

"a \"a, also implemented for the other lowercase and
uppercase vowels.

"s to produce the German £ (like \ss{}).

"z to produce the German § (like \ss{}).

"ck for ck to be hyphenated as k-k.

"ff for £f to be hyphenated as £f-£, this is also imple-
mented for I, m, n, p, r and t

"S for SS to be \uppercase{"s}.

"Z for SZ to be \uppercase{"z}.

" disable ligature at this position.

"— an explicit hyphen sign, allowing hyphenation in the
rest of the word.

e like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"~ for a compound word mark without a breakpoint.

"= for a compound word mark with a breakpoint, allow-
ing hyphenation in the composing words.

"¢ for German left double quotes (looks like ,,).

" for German right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 4: The extra definitions made by german.1df

in table 4 can also be typeset by using the commands in table 5.

\glqq for German left double quotes (looks like ,,).
\grqq for German right double quotes (looks like *).
\glq for German left single quotes (looks like ,).
\grq for German right single quotes (looks like).
\flqq for French left double quotes (similar to <<).
\frqq for French right double quotes (similar to >>).
\flq for (French) left single quotes (similar to <).
\frq for (French) right single quotes (similar to >).
\dq the original quotes character (").

Table 5: More commands which produce quotes, defined by german.1df

When this file was read through the option germanb we make it behave as if
german was specified.

22.1 \def\bbl@tempa{germanb}

22.2 \ifx\CurrentOption\bbl@tempa
22.3 \def\CurrentOption{german}
22.4 \ifx\l@german\@undefined
22.5 \@nopatterns{German}

15The file described in this section has version number v2.6m and was last revised on
2008/06/01.
16 This file is a re-implementation of Hubert Partl’s german.sty version 2.5b, see [4].

81

\captionsgerman
\captionsaustrian

\dategerman

22.6 \adddialect\1@germanO
227 \fi

22.8 \let\1l@germanb\l@german
22.9 \AtBeginDocument{},

22.10 \let\captionsgermanb\captionsgerman
22.11 \let\dategermanb\dategerman

22.12 \let\extrasgermanb\extrasgerman
22.13 \let\noextrasgermanb\noextrasgerman
22.14 }

22.15 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

22.16 (*code)
22.17 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command, german
will be an ‘unknown’ language, so we have to make it known. So we check for the
existence of \1@german to see whether we have to do something here.

22.18 \ifx\1@german\Q@undefined
22.19 \@nopatterns{German}
22.20 \adddialect\1l@germanO
22.21 \fi

For the Austrian version of these definitions we just add another language.
22.22 \adddialect\l@austrian\1@german

The next step consists of defining commands to switch to (and from) the Ger-
man language.

Either the macro \captionsgerman or the macro \captionsaustrian will define
all strings used in the four standard document classes provided with IATEX.

22.23 \@namedef{captions\CurrentOption}{/

22.24 \def\prefacename{Vorwort}/,

22.25 \def\refname{Literaturl}y

22.26 \def\abstractname{Zusammenfassung}/

22.27 \def\bibname{Literaturverzeichnis}

22.28 \def\chaptername{Kapitell}/,

22.29 \def\appendixname{Anhang}/,

22.30 \def\contentsname{Inhaltsverzeichnis}}, % oder nur: Inhalt
22.31 \def\listfigurename{Abbildungsverzeichnis},
22.32 \def\listtablename{Tabellenverzeichnis}/,
22.33 \def\indexname{Index}%

22.34 \def\figurename{Abbildung}’

22.35 \def\tablename{Tabellel}/, % oder: Tafel
22.36 \def\partname{Teill},

22.37 \def\enclname{Anlage(n)}% % oder: Beilage(n)
22.38 \def\ccname{Verteiler}y, % oder: Kopien an

22.39 \def\headtoname{An},

22.40 \def\pagename{Seitel}},

22.41 \def\seename{siehel},

22.42 \def\alsoname{siehe auch}y
22.43 \def\proofname{Beweis}},
22.44 \def\glossaryname{Glossar}’
22.45 }

The macro \dategerman redefines the command \today to produce German dates.

22.46 \def\month@german{\ifcase\month\or

22.47 Januar\or Februar\or M\"arz\or Aprillor Mailor Junilor

22.48 Julilor August\or September\or Oktober\or November\or Dezember\fi}
22.49 \def\dategerman{\def\today{\number\day. “\month@german

22.50 \space\number\year}}

82

\dateaustrian

\extrasgerman
\extrasaustrian
\noextrasgerman

\noextrasaustrian

The macro \dateaustrian redefines the command \today to produce Austrian
version of the German dates.

22.51 \def\dateaustrian{\def\today{\number\day.~\ifnuml=\month
22.52 J\"anner\else \month@german\fi \space\number\year}}

Either the macro \extrasgerman or the macros \extrasaustrian will per-
form all the extra definitions needed for the German language. The macro
\noextrasgerman is used to cancel the actions of \extrasgerman.
For German (as well as for Dutch) the " character is made active. This is done

once, later on its definition may vary.

22.53 \initiate@active@char{"}

22.54 \@namedef{extras\CurrentOption}{%

22.55 \languageshorthands{german}}

22.56 \expandafter\addto\csname extras\CurrentOption\endcsname{%

22.57 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
22.58 \addto\noextrasgerman{\bbl@deactivate{"}}

In order for TEX to be able to hyphenate German words which contain ‘f’
(in the OT1 position ~~Y) we have to give the character a nonzero \lccode (see
Appendix H, the TgXbook).
22.59 \expandafter\addto\csname extras\CurrentOption\endcsname{%
22.60 \babel@savevariable{\lccode25}},
22.61 \lccode25=25}
The umlaut accent macro \" is changed to lower the umlaut dots. The redefi-
nition is done with the help of \umlautlow.
22.62 \expandafter\addto\csname extras\CurrentOption\endcsname{7

22.63 \babel@save\"\umlautlow}
22.64 \@namedef{noextras\CurrentOption}{\umlauthigh}

The german hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

22.65 \providehyphenmins{\CurrentOption}{\tw@\tw@}
For German texts we need to make sure that \frenchspacing is turned on.

22.66 \expandafter\addto\csname extras\CurrentOption\endcsname{7

22.67 \bbl@frenchspacing}

22.68 \expandafter\addto\csname noextras\CurrentOption\endcsname{’
22.69 \bbl@nonfrenchspacing}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 4.

To be able to define the function of ", we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math

accent \" can now be typed as ".

22.70 \begingroup \catcode‘\"12
22.71 \def\x{\endgroup

22.72 \def\@SS{\mathchar"7019 }
22.73 \def\dq{"}}

22.74 \x

Now we can define the doublequote macros: the umlauts,

22.75 \declare@shorthand{german}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
22.76 \declare@shorthand{german}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
22.77 \declare@shorthand{german}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u}}
22.78 \declare@shorthand{german}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
22.79 \declare@shorthand{german}{"0}{\textormath{\"{0}\allowhyphens}{\ddot 0}}
22.80 \declare@shorthand{german}{"U}{\textormath{\"{U}allowhyphens}{\ddot U}}

83

tremas,

22.81 \declare@shorthand{german}{"e}{\textormath{\"{e}}{\ddot e}}
22.82 \declare@shorthand{german}{"E}{\textormath{\"{E}}{\ddot E}}
22.83 \declare@shorthand{german}{"i}{\textormath{\"{\1i}}%

22.84 {\ddot\imath}}

22.85 \declare@shorthand{german}{"I}{\textormath{\"{I}}{\ddot I}}

german es-zet (sharp s),

22.86 \declare@shorthand{german}{"s}{\textormath{\ss}{\@SS{}}}
22.87 \declare@shorthand{german}{"S}{\SS}
22.88 \declare@shorthand{german}{"z}{\textormath{\ss}{\@Ss{}}}
22.89 \declare@shorthand{german}{"Z}{SZ}

german and french quotes,

22.90 \declare@shorthand{german}{" ‘}{\glqq}
22.91 \declare@shorthand{german}{"’}{\graq}
22.92 \declare@shorthand{german}{"<}{\flqq}
22.93 \declare@shorthand{german}{">}{\frqq}

discretionary commands

22.94 \declare@shorthand{german}{"c}{\textormath{\bbl@disc ck}{c}}

22.95 \declare@shorthand{german}{"C}{\textormath{\bbl@disc CK}{C}}

22.96 \declare@shorthand{german}{"F}{\textormath{\bbl@disc F{FF}}{F}}
22.97 \declare@shorthand{german}{"1}{\textormath{\bbl@disc 1{11}}{1}}
22.98 \declare@shorthand{german}{"L}{\textormath{\bbl@disc L{LL}}{L}}
22.99 \declare@shorthand{german}{"m}{\textormath{\bbl@disc m{mm}}{m}}
22.100 \declare@shorthand{german}{"M}{\textormath{\bbl@disc M{MM}}{M}}
22.101 \declare@shorthand{german}{"n}{\textormath{\bbl@disc n{nn}}{n}}
22.102 \declare@shorthand{german}{"N}{\textormath{\bbl@disc N{NN}}{N}}
22.103 \declare@shorthand{german}{"p}{\textormath{\bbl@disc p{pp}}{p}}
22.104 \declare@shorthand{german}{"P}{\textormath{\bbl@disc P{PP}}{P}}
22.105 \declare@shorthand{german}{"r}{\textormath{\bbl@disc r{rr}}{r}}
22.106 \declare@shorthand{german}{"R}{\textormath{\bbl@disc R{RR}}{R}}
22.107 \declare@shorthand{german}{"t}{\textormath{\bbl@disc t{tt}}{t}}
22.108 \declare@shorthand{german}{"T}{\textormath{\bbl@disc T{TT}}{T}}

We need to treat "f a bit differently in order to preserve the ff-ligature.

22.109 \declare@shorthand{german}{"f}{\textormath{\bbl@discff}{£f}}
22.110 \def\bbl@discff{\penalty\QM
22.111 \afterassignment\bbl@insertff \let\bbl@nextff= }
22.112 \def\bbl@insertff{},
22.113 \if f\bbl@nextff
22.114 \expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi
22.115 {\relax\discretionary{ff-}{f}{ff}\allowhyphens}{f\bbl@nextff}}
22.116 \let\bbl@nextff=f

and some additional commands:
22.117 \declare@shorthand{german}{"-}{\nobreak\-\bbl@allowhyphens}
22.118 \declare@shorthand{german}{" | }{%
22.119 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}%
22.120 \allowhyphens}{}}
22.121 \declare@shorthand{german}{""}{\hskip\z@skip}
22.122 \declare@shorthand{german}{"~“}{\textormath{\leavevmode\hbox{-}}{-}}
22.123 \declare@shorthand{german}{"=}{\penalty\@M-\hskip\z@skip}

\mdgon All that’s left to do now is to define a couple of commands for reasons of compat-
\mdqoff ibility with german.sty.
\cko2 124 \def\mdqon{\shorthandon{"}}
22.125 \def\mdqoff{\shorthandoff{"}}
22.126 \def\ck{\allowhyphens\discretionary{k-}{k}{ck}\allowhyphens}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

84

22.127 \1df@f inish\CurrentOption
22.128 (/code)

85

\captionsngerman
\captionsnaustrian

23 The German language — new orthography

The file ngermanb.dtx'” defines all the language definition macros for the German
language with the ‘new orthography’ introduced in August 1998. This includes
also the Austrian dialect of this language.

As with the ‘traditional’ German orthography, the character " is made active,
and the commands in table 4 can be used, except for "ck and "ff etc., which are
no longer required.

The internal language names are ngerman and naustrian.

When this file was read through the option ngermanb we make it behave as if
ngerman was specified.

23.1 \def\bbl@tempa{ngermanb}

23.2 \ifx\CurrentOption\bbl@tempa
23.3 \def\CurrentOption{ngerman}
23.4 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

23.5 (*code)
23.6 \Ldf Init\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command, ngerman
will be an ‘unknown’ language, so we have to make it known. So we check for the
existence of \1@ngerman to see whether we have to do something here.

23.7 \ifx\1lOngerman\Qundefined
23.8 \@nopatterns{ngerman}

23.9 \adddialect\l@ngermanO
23.10 \fi

For the Austrian version of these definitions we just add another language.
23.11 \adddialect\1l@naustrian\1l@ngerman

The next step consists of defining commands to switch to (and from) the Ger-
man language.

Either the macro \captionsngerman or the macro \captionsnaustrian will de-
fine all strings used in the four standard document classes provided with IATEX.

23.12 \@namedef{captions\CurrentOption}{%

23.13 \def\prefacename{Vorwort}y,

23.14 \def\refname{Literatur},

23.15 \def\abstractname{Zusammenfassung}/,

23.16 \def\bibname{Literaturverzeichnis}%

23.17 \def\chaptername{Kapitell}y,

23.18 \def\appendixname{Anhang}/,

23.19 \def\contentsname{Inhaltsverzeichnis}}, % oder nur: Inhalt
23.20 \def\listfigurename{Abbildungsverzeichnis}/
23.21 \def\listtablename{Tabellenverzeichnis},
23.22 \def\indexname{Index}%

23.23 \def\figurename{Abbildung}’

23.24 \def\tablename{Tabellel}’ % oder: Tafel
23.25 \def\partname{Teill}),

23.26 \def\enclname{Anlage(n)}’ % oder: Beilage(n)
23.27 \def\ccname{Verteiler}, % oder: Kopien an

23.28 \def\headtoname{An}%

23.29 \def\pagename{Seitel}

23.30 \def\seename{siehel},

23.31 \def\alsoname{siehe auch}y,
23.32 \def\proofname{Beweis}}
23.33 \def\glossaryname{Glossarl},
23.34 1}

17The file described in this section has version number v2.6n and was last revised on
2008,/07/06.

86

\datengerman

\dateanustrian

\extrasngerman
\extrasnaustrian
\noextrasngerman

\noextrasnaustrian

\dq

The macro \datengerman redefines the command \today to produce German
dates.
23.35 \def \month@ngerman{\ifcase\month\or
23.36 Januar\or Februar\or M\"arz\or Aprillor Mailor Juni\or
23.37 Julilor August\or September\or Oktober\or November\or Dezember\fi}
23.38 \def\datengerman{\def\today{\number\day. ~\month@ngerman
23.39 \space\number\year}}

The macro \datenaustrian redefines the command \today to produce Austrian
version of the German dates.

23.40 \def\datenaustrian{\def\today{\number\day. “\ifnumi=\month
23.41 J\"anner\else \month@ngerman\fi \space\number\year}}

Either the macro \extrasngerman or the macros \extrasnaustrian will per-
form all the extra definitions needed for the German language. The macro
\noextrasngerman is used to cancel the actions of \extrasngerman.
For German (as well as for Dutch) the " character is made active. This is done

once, later on its definition may vary.

23.42 \initiate@active@char{"}

23.43 \@namedef{extras\CurrentOption}{/

23.44 \languageshorthands{ngerman}}

23.45 \expandafter\addto\csname extras\CurrentOption\endcsname{7

23.46 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
23.47 \addto\noextrasngerman{\bbl@deactivate{"}}

In order for TEX to be able to hyphenate German words which contain ‘f’
(in the OT1 position ~~Y) we have to give the character a nonzero \lccode (see
Appendix H, the TgXbook).
23.48 \expandafter\addto\csname extras\CurrentOption\endcsname{7

23.49 \babel@savevariable{\lccode25},
23.50 \lccode25=25}

The umlaut accent macro \" is changed to lower the umlaut dots. The redefi-
nition is done with the help of \umlautlow.
23.51 \expandafter\addto\csname extras\CurrentOption\endcsname{%
23.52 \babel@save\"\umlautlow}
23.53 \@namedef{noextras\CurrentOption}{\umlauthigh}

The current version of the ‘new’ German hyphenation patterns (dehyphn.tex is
to be used with \lefthyphenmin and \righthyphenmin set to 2.

23.54 \providehyphenmins{\CurrentOption}{\tw@\tw@}
For German texts we need to make sure that \frenchspacing is turned on.

23.55 \expandafter\addto\csname extras\CurrentOption\endcsname{’,

23.56 \bbl@frenchspacing}

23.57 \expandafter\addto\csname noextras\CurrentOption\endcsname{’
23.58 \bbl@nonfrenchspacing}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 4.

To be able to define the function of ", we first define a couple of ‘support’
macros.

We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

23.59 \begingroup \catcode‘\"12

23.60 \def\x{\endgroup

23.61 \def\@SS{\mathchar"7019 }

23.62 \def\dq{"}}

23.63 \x

87

\mdgon
\mdqof f

Now we can define the doublequote macros: the umlauts,

23.64 \declare@shorthand{ngerman}{"a}{\textormath{\"{a}\allowhyphens}{\ddot al}}
23.65 \declare@shorthand{ngerman}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
23.66 \declare@shorthand{ngerman}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u}}
23.67 \declare@shorthand{ngerman}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
23.68 \declare@shorthand{ngerman}{"0}{\textormath{\"{0}\allowhyphens}{\ddot 0}}
23.69 \declare@shorthand{ngerman}{"U}\textormath{\"{U} allowhyphens}{\ddot U}}

tremas,

23.70 \declare@shorthand{ngerman}{"e}{\textormath{\"{e}}{\ddot e}}
23.71 \declare@shorthand{ngerman}{"E}{\textormath{\"{E}}{\ddot E}}
23.72 \declare@shorthand{ngerman}{"i}{\textormath{\"{\i}}%

23.73 {\ddot\imath}}

23.74 \declare@shorthand{ngerman}{ "I} \textormath{\"{I}}{\ddot I}}

german es-zet (sharp s),
23.75 \declare@shorthand{ngerman}{"s}{\textormath{\ss}{\@SS{}}}
23.76 \declare@shorthand{ngerman}{"S}{\SS}

23.77 \declare@shorthand{ngerman}{"z}{\textormath{\ss}{\@SS{}}}
23.78 \declare@shorthand{ngerman}{"Z}{SZ}

german and french quotes,
23.79 \declare@shorthand{ngerman}{" ‘}{\glqq}
23.80 \declare@shorthand{ngerman}{"’}{\grqq}

23.81 \declare@shorthand{ngerman}{"<}{\flqq}
23.82 \declare@shorthand{ngerman}{">}{\frqq}
and some additional commands:
23.83 \declare@shorthand{ngerman}{"-}{\nobreak\-\bbl@allowhyphens}
23.84 \declare@shorthand{ngerman}{" | }{/
23.85 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}/
23.86 \allowhyphens}{}}
23.87 \declare@shorthand{ngerman}{""}{\hskip\z@skip}
23.88 \declare@shorthand{ngerman}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
23.89 \declare@shorthand{ngerman}{"=}{\penalty\@M-\hskip\z@skip}

All that’s left to do now is to define a couple of commands for reasons of compat-
ibility with german.sty.

23.90 \def\mdgon{\shorthandon{"}}

23.91 \def\mdqoff{\shorthandoff{"}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

23.92 \1df@finish\CurrentOption
23.93 (/code)

88

\captionsbreton

\datebreton

24 The Breton language

The file breton.dtx'® defines all the language-specific macros for the Breton lan-
guage.

There are not really typographic rules for the Breton language. It is a local
language (it’s one of the celtic languages) which is spoken in Brittany (West of
France). So we have a synthesis between french typographic rules and english
typographic rules. The characters :, ;, ! and ? are made active in order to get a
whitespace automatically before these characters.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

24.1 (*code)
24.2 \LdfInit{breton}\captionsbreton

When this file is read as an option, i.e. by the \usepackage command, breton
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@breton to see whether we have to do something here.

24.3 \ifx\1@breton\@undefined
24.4 \@nopatterns{Breton}
24.5 \adddialect\1@bretonO\fi

The next step consists of defining commands to switch to the English language.
The reason for this is that a user might want to switch back and forth between
languages.

The macro \captionsbreton defines all strings used in the four standard docu-
ment classes provided with TEX.

24.6 \addto\captionsbreton{
24.7 \def\prefacename{Rakskridl}
24.8 \def\refname{Daveenno\ ‘u}}
24.9 \def\abstractname{Dvierra\~n}/,
24.10 \def\bibname{Lennadurezhl}y,
24.11 \def\chaptername{Pennad}/,
24.12 \def\appendixname{Stagadenn},
24.13 \def\contentsname{Taolenn},
24.14 \def\listfigurename{Listenn ar Figurenno\‘ul/,
24.15 \def\listtablename{Listenn an taolenno\‘ul}’
24.16 \def\indexname{Menegerl,
24.17 \def\figurename{Figurenn}y,
24.18 \def\tablename{Taolenn},
24.19 \def\partname{Lodenn},
24.20 \def\enclname{Diello\‘u kevret}}
24.21 \def\ccname{Eilskrid dal}’
24.22 \def\headtoname{evit}
24.23 \def\pagename{Pajenn}/,
24.24 \def\seename{Gwelout},
24.25 \def\alsoname{Gwelout ivezl}%
24.26 \def\proofname{Proof}), <-- needs translation
24.27 \def\glossaryname{Glossaryl}), <-- Needs translation
24.28 }

The macro \datebreton redefines the command \today to produce Breton dates.

24.29 \def\datebreton{’
24.30 \def\today{\ifnum\day=1\relax 1\/$~{\rm a\tilde{n}}$\else

24.31 \number\day\fi \space a\space viz\space\ifcase\month\or

24.32 Genver\or C’hwevrer\or Meurzh\or Ebrel\or Mae\or Mezheven\or
24.33 Gouere\or Eost\or Gwengolo\or Here\or Dulor Kerzu\fi

24.34 \space\number\year}}

18The file described in this section has version number v1.0h and was last revised on
2005/03/29.

89

\extrasbreton
\noextrasbreton

\breton@sh@;@

\breton@sh@: @
\breton@sh@!@

The macro \extrasbreton will perform all the extra definitions needed for the
Breton language. The macro \noextrasbreton is used to cancel the actions of
\extrasbreton.
The category code of the characters :, ;, ! and 7 is made \active to insert

a little white space.

24.35 \initiate@active@char{:}

24.36 \initiate@active@char{;}

24.37 \initiate@active@char{!}

24.38 \initiate@active@char{?}

We specify that the breton group of shorthands should be used.
24.39 \addto\extrasbreton{\languageshorthands{breton}}
These characters are ‘turned on’ once, later their definition may vary.

24.40 \addto\extrasbreton{/,

24.41 \bbl@activate{:}\bbl@activate{;}%

24.42 \bbl@activate{!}\bbl@activate{?}}
Don’t forget to turn the shorthands off again.

24.43 \addto\noextrasbreton{’

24.44 \bbl@deactivate{:}\bbl@deactivated{;}%

24.45 \bbl@deactivate{!}\bbl@deactivate{?}}

The last thing \extrasbreton needs to do is to make sure that \frenchspacing
is in effect. If this is not the case the execution of \noextrasbreton will switch
it of again.

24.46 \addto\extrasbreton{\bbl@frenchspacing}
24.47 \addto\noextrasbreton{\bbl@nonfrenchspacing}

We have to reduce the amount of white space before ;, : and ! when the user types
a space in front of these characters. This should only happen outside mathmode,
hence the test with \ifmmode.

24.48 \declare@shorthand{breton}{; }{%

24.49 \ifmmode
24.50 \string;\space
24.51 \else\relax

In horizontal mode we check for the presence of a ‘space’ and replace it by a
\thinspace.

24.52 \ifhmode

24.53 \ifdim\lastskip>\z@

24.54 \unskip\penalty\@M\thinspace
24.55 \fi

24.56 \fi

24.57 \string;\space

24.58 \£i}%

Because these definitions are very similar only one is displayed in a way that the
definition can be easily checked.

24.59 \declare@shorthand{breton}{:}{/

24.60 \ifmmode\string:\space

24.61 \else\relax

24.62 \ifhmode

24.63 \ifdim\lastskip>\z@\unskip\penalty\@M\thinspace\fi
24.64 \fi

24.65 \string:\space

24.66 \fi}

24.67 \declare@shorthand{breton}{!}{%
24.68 \ifmmode\string!\space
24.69 \else\relax

24.70 \ifhmode
24.71 \ifdim\lastskip>\z@\unskip\penalty\@M\thinspace\fi
24.72 \fi

90

\breton@sh@?7@

24.73 \string!\space
24.74 \fi}

For the question mark something different has to be done. In this case the amount
of white space that replaces the space character depends on the dimensions of the
font.

24.75 \declare@shorthand{breton}{?}{’%
24.76 \ifmmode

24.77 \string?\space

24.78 \else\relax

24.79 \ifhmode

24.80 \ifdim\lastskip>\z@
24.81 \unskip

24.82 \kern\fontdimen2\font
24.83 \kern-1.4\fontdimen3\font
24.84 \fi

24.85 \fi

24.86 \string?\space

24.87 \fi}

All that is left to do now is provide the breton user with some extra utilities.
Some definitions for special characters.

24.88 \DeclareTextSymbol{\at}{0T1}{64}
24.89 \DeclareTextSymbol{\at}{T1}{64}
24.90 \DeclareTextSymbolDefault{\at}{0T1}
24.91 \DeclareTextSymbol{\boi}{0T1}{92}
24.92 \DeclareTextSymbol{\boi}{T1}{16}
24.93 \DeclareTextSymbolDefault{\boi}{0T1}
24.94 \DeclareTextSymbol{\circonflexe}{0T1}{94}
24.95 \DeclareTextSymbol{\circonflexe}{T1}{2}
24.96 \DeclareTextSymbolDefault{\circonflexe}{0T1}
24.97 \DeclareTextSymbol{\tild}{0T1}{126}
24.98 \DeclareTextSymbol{\tild}{T1}{3}
24.99 \DeclareTextSymbolDefault{\tild}{0T1}
24.100 \DeclareTextSymbol{\degre}{0T1}{23}
24.101 \DeclareTextSymbol{\degre}{T1}{6}
24.102 \DeclareTextSymbolDefault{\degre}{0T1}

The following macros are used in the redefinition of \~ and \" to handle the
letter i.

24.103 \AtBeginDocument{Y
24.104 \DeclareTextCompositeCommand{\~}{0T1}{i}{\"\i}
24.105 \DeclareTextCompositeCommand{\"}{OT1}{i}{\"\i}}

And some more macros for numbering.
24.106 \def\kentan{1\/${}~{\rm a\tilde{n}}$}
24.107 \def\eil{2\/${}~{\rm 1}$}

24.108 \def\re{\/${}~{\rm re}$}
24.109 \def\trede{3\re}

24.110 \def\pevare{4\re}

24.111 \def\vet{\/${}~{\rm vet}$}
24.112 \def \pempvet{5\vet}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

24.113 \1df@finish{breton}
24.114 (/code)

91

\welshhyphenmins

\captionswelsh

\datewelsh

25 The Welsh language

The file welsh.dtx'? defines all the language definition macros for the Welsh
language.

For this language currently no special definitions are needed or available.

The macro \1df@init takes care of preventing that this file is loaded more
than once, checking the category code of the @ sign, etc.

25.1 (*code)
25.2 \LdfInit{welsh}{captionswelsh}

When this file is read as an option, i.e. by the \usepackage command, welsh
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@welsh to see whether we have to do something here.

25.3 \ifx\undefined\1@welsh
25.4 \@nopatterns{welsh}
25.5 \adddialect\1l@welshO\fi

The next step consists of defining commands to switch to (and from) the Welsh
language.

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

25.6 \providehyphenmins{\CurrentOption}{\tw@\three}

The macro \captionswelsh defines all strings used in the four standard docu-
mentclasses provided with IATEX.

25.7 \def\captionswelsh{},
25.8 \def\prefacename{Rhagair}j,
25.9 \def\refname{Cyfeiriadau}’
25.10 \def\abstractname{Crynodebl}/
25.11 \def\bibname{Llyfryddiaethl}%
25.12 \def\chaptername{Pennod}/
25.13 \def\appendixname{Atodiad}/,
25.14 \def\contentsname{Cynnwys}/,
25.15 \def\listfigurename{Rhestr Ddarluniaul’,
25.16 \def\listtablename{Rhestr Dablaul/,
25.17 \def\indexname{Mynegailj,
25.18 \def\figurename{Darlun}/,
25.19 \def\tablename{Taflenl}’
25.20 \def\partname{Rhan},
25.21 \def\enclname{amgae\"edig}’
25.22 \def\ccname{cop\"\i aul/,
25.23 \def\headtoname{At}), % ‘at’ on letters meaning ‘to (a person)’
25.24 % ‘to (a place)’ is ‘i’ in Welsh
25.25 \def\pagename{tudalen}/
25.26 \def\seename{gwelerl}/,
25.27 \def\alsoname{gweler hefyd}J,
25.28 \def\proofname{Prawf}’
25.29 \def\glossaryname{Rhestr termaul},
25.30 }

The macro \datewelsh redefines the command \today to produce welsh dates.

25.31 \def\datewelsh{’
25.32 \def\today{\ifnum\day=1\relax 1\/$~{\mathrm{a\tilde{n}}}$\else

25.33 \number\day\fi\space\ifcase\month\or
25.34 Ionawr\or Chwefror\or Mawrth\or Ebrill\or
25.35 Mailor Mehefin\or Gorffennaf\or Awst\or

25.36 Medi\or Hydref\or Tachwedd\or Rhagfyr\fi
25.37 \space\number\year}}

19The file described in this section has version number v1.0d and was last revised on
2005/03/31.

92

\extraswelsh
\noextraswelsh

The macro \extraswelsh will perform all the extra definitions needed for the
welsh language. The macro \noextraswelsh is used to cancel the actions of
\extraswelsh. For the moment these macros are empty but they are defined for
compatibility with the other language definition files.

25.38 \addto\extraswelsh{}
25.39 \addto\noextraswelsh{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

25.40 \1df@finish{welsh}
25.41 (/code)

93

\irishhyphenmins

\captionsirish

\dateirish

26 The Irish language

The file irish.dtx?" defines all the language definition macros for the Irish lan-
guage.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

26.1 (*code)
26.2 \LdfInit{irish}\captionsirish

When this file is read as an option, i.e. by the \usepackage command, irish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@irish to see whether we have to do something here.

26.3 \ifx\1@irish\@undefined
26.4 \@nopatterns{irish}
26.5 \adddialect\1@irishO\fi

The next step consists of defining commands to switch to (and from) the Irish
language.

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

26.6 \providehyphenmins{\CurrentOption}{\tw@\throe}

The macro \captionsirish defines all strings used in the four standard docu-
mentclasses provided with IATEX.

26.7 \addto\captionsirish{’
26.8 \def\prefacename{R\’eamhr\’aly, <-- also "Brollach"
26.9 \def\refname{Tagairt\’{\i}}%
26.10 \def\abstractname{Achoimrel},
26.11 \def\bibname{Leabharliostaly
26.12 \def\chaptername{Caibidil}},
26.13 \def\appendixname{Aguis\’{\i}n}/
26.14 \def\contentsname{Cl\’ar \’Abhair}j
26.15 \def\listfigurename{L\’ear\’aid\’{\i}}%
26.16 \def\listtablename{T\’abla\’{\i}}/,
26.17 \def\indexname{Inn\’eacs}’
26.18 \def\figurename{L\’ear\’aid}%
26.19 \def\tablename{T\’ablal,
26.20 \def\partname{Cuidl}’
26.21 \def\enclname{faoi iamh},
26.22 \def\ccname{cc}’ abrv. ‘c\’oip chuig’
26.23 \def\headtoname{Gol}%
26.24 \def\pagename{Leathanach}y,
26.25 \def\seename{f\’eachl},
26.26 \def\alsoname{f\’each freisin}j,
26.27 \def\proofname{Cruth\’unas}/,
26.28 \def\glossaryname{Glossaryl}), <-- Needs translation
26.29 }

The macro \dateirish redefines the command \today to produce Irish dates.

26.30 \def\dateirish{’
26.31 \def\today{%

26.32 \number\day\space \ifcase\month\or
26.33 Ean\’air\or Feabhralor M\’artalor Aibre\’an\or
26.34 Bealtaine\or Meitheamh\or I\’uillor L\’unasa\or

26.35 Me\’an F\’omhair\or Deireadh F\’omhair\or
26.36 M\’{\i} na Samhnalor M\’{\i} na Nollag\fi
26.37 \space \number\yearl}}

20The file described in this section has version number v1.0h and was last revised on
2005/03/30. A contribution was made by Marion Gunn.

94

\extrasirish
\noextrasirish

The macro \extrasirish will perform all the extra definitions needed for the
Irish language. The macro \noextrasirish is used to cancel the actions of
\extrasirish. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

26.38 \addto\extrasirish{}
26.39 \addto\noextrasirish{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

26.40 \1df@finish{irish}
26.41 (/code)

95

\captionsscottish

27 The Scottish language

The file scottish.dtx?! defines all the language definition macros for the Scottish
language.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

27.1 (*code)
27.2 \LdfInit{scottish}\captionsscottish

When this file is read as an option, i.e. by the \usepackage command,
scottish could be an ‘unknown’ language in which case we have to make it
known. So we check for the existence of \1@scottish to see whether we have to
do something here.

27.3 \ifx\1@scottish\@undefined
27.4 \@nopatterns{scottish}
27.5 \adddialect\1l@scottishO\fi

The next step consists of defining commands to switch to (and from) the Scottish
language.

The macro \captionsscottish defines all strings used in the four standard doc-
umentclasses provided with ETEX.

27.6 \addto\captionsscottish{’,

277 \def\prefacename{Preface}’, <-- needs translation
27.8 \def\refname{Iomraidh},

27.9 \def\abstractname{Br\‘{\i}ghl}V

27.10 \def\bibname{Leabhraichean},

27.11 \def\chaptername{Caibideill}},

27.12 \def\appendixname{Ath-sgr‘{\i}obhadh},
27.13 \def\contentsname{Cl\‘ar-obrach}/,

27.14 \def\listfigurename{Liosta Dhealbh 1}/
27.15 \def\listtablename{Liosta Chl\‘ar}%
27.16 \def\indexname{Cl\‘ar-innse}/

27.17 \def\figurename{Dealbh}’

27.18 \def\tablename{Cl\‘ar}y,

27.19 \def\partname{Cuid}%

27.20 \def\enclname{a-staigh}’

27.21 \def\ccname{lethbhreac gul/,

27.22 \def\headtoname{gul}%

27.23 \def\pagename{t.d.}/ abrv. ‘taobh duilleag’
27.24 \def\seename{seel}/ <-- needs translation

27.25 \def\alsoname{see alsol}/, <-- needs translation

27.26 \def\proofname{Proof}’ <-- needs translation

27.27 \def\glossaryname{Glossaryl}/ <-- Needs translation
27.28 }

\datescottish The macro \datescottish redefines the command \today to produce Scottish

dates.

27.29 \def\datescottish{%
27.30 \def\today{%

27.31 \number\day\space \ifcase\month\or

27.32 am Faoilteach\or an Gearran\or am M\‘art\or an Giblean\or
27.33 an C\‘eitean\or an t-\‘Og mhios\or an t-Iuchar\or

27.34 L\‘unasdal\or an Sultuine\or an D\‘amhar\or

27.35 an t-Samhainn\or an Dubhlachd\fi

27.36 \space \number\yearl}}

\extrasscottish The macro \extrasscottish will perform all the extra definitions needed for the
\noextrasscottish Scottish language. The macro \noextrasscottish is used to cancel the actions of

21The file described in this section has version number v1.0g and was last revised on
2005/03/31. A contribution was made by Fraser Grant (FRASERQCERNVM).

96

\extrasscottish. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

27.37 \addto\extrasscottish{}
27.38 \addto\noextrasscottish{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

27.39 \1df@finish{scottish}
27.40 (/code)

97

\greektext
\latintext
\textgreek
\textlatin

\textol

28 The Greek language

The file greek.dtx?? defines all the language definition macros for the Greek
language, i.e., as it used today with only one accent, and the attribute moAvTovké
(“Polutoniko”) for typesetting greek text with all accents. This separation arose
out of the need to simplify things, for only very few people will be really interested
to typeset polytonic Greek text.

The commands \greektext and \latintext can be used to switch to greek
or latin fonts. These are declarations.

The commands \textgreek and \textlatin both take one argument which is
then typeset using the requested font encoding. The command \greekol switches
to the greek outline font family, while the command \textol typests a short text
in outline font. A number of extra greek characters are made available through the
added text commands \stigma, \qoppa, \sampi, \ddigamma, \Digamma, \euro,
\permill, and \vardigamma.

28.1 Typing conventions

Entering greek text can be quite difficult because of the many diacritical signs that
need to be added for various purposes. The fonts that are used to typeset Greek
make this a lot easier by offering a lot of ligatures. But in order for this to work,
some characters need to be considered as letters. These characters are <, >, =, ¢,
> " and |. Therefore their \1ccode is changed when Greek is in effect. In order
to let \uppercase give correct results, the \uccode of these characters is set to a
non-existing character to make them disappear. Of course not all characters are
needed when typesetting “modern” povoroviké. In that case we only need the 2
and " symbols which are treated in the proper way.

28.2 Greek numbering

The Greek alphabetical numbering system, like the Roman one, is still used in
everyday life for short enumerations. Unfortunately most Greeks don’t know how
to write Greek numbers bigger than 20 or 30. Nevertheless, in official editions of
the last century and beginning of this century this numbering system was also used
for dates and numbers in the range of several thousands. Nowadays this numbering
system is primary used by the Eastern Orthodox Church and by certain scholars.
It is hence necessary to be able to typeset any Greek numeral up to 999 999. Here
are the conventions:

e There is no Greek numeral for any number less than or equal to 0.

e Numbers from 1 to 9 are denoted by letters alpha, beta, gamma, delta,
epsilon, stigma, zeta, eta, theta, followed by a mark similar to the math-
ematical symbol “prime”. (Nowadays instead of letter stigma the digraph
sigma tau is used for number 6. Mainly because the letter stigma is not
always available, so people opt to write down the first two letters of its name
as an alternative. In our implementation we produce the letter stigma, not
the digraph sigma tau.)

e Decades from 10 to 90 are denoted by letters iota, kappa, lambda, mu, nu,
xi, omikron, pi, qoppa, again followed by the numeric mark. The qoppa used
for this purpose has a special zig-zag form, which doesn’t resemble at all the
original ‘q’-like qoppa.

e Hundreds from 100 to 900 are denoted by letters rho, sigma, tau, upsilon,
phi, chi, psi, omega, sampi, followed by the numeric mark.

22The file described in this section has version number v1.31 and was last revised on
2005/03/30. The original author is Apostolos Syropoulos (apostolo@platon.ee.duth.gr), code
from kdgreek.sty by David Kastrup dak@neuroinformatik.ruhr-uni-bochum.de was used to
enhance the support for typesetting greek texts.

98

\greeknumeral

\Greeknumeral

e Any number between 1 and 999 is obtained by a group of letters denoting
the hundreds decades and units, followed by a numeric mark.

e To denote thousands one uses the same method, but this time the mark is
placed in front of the letter, and under the baseline (it is inverted by 180
degrees). When a group of letters denoting thousands is followed by a group
of letters denoting a number under 1000, then both marks are used.

Using these conventions one obtains numbers up to 999999. The command
\greeknumeral makes it possible to typeset Greek numerals. There is also an
“uppercase” version of this macro: \Greeknumeral.

Another system which was in wide use only in Athens, could express any
positive number. This system is implemented in package athnum.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

28.1 (*code)

28.2 \LdfInit\CurrentOption{captions\CurrentOption}

When the option polutonikogreek was used, redefine \CurrentOption to prevent
problems later on.

28.3 \gdef\CurrentOption{greekl}%

When this file is read as an option, i.e. by the \usepackage command, greek
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@greek to see whether we have to do something here.

28.4 \ifx\l@greek\Qundefined
28.5 \@nopatterns{greek}
28.6 \adddialect\l@greekO\fi

Now we declare the polutoniko language attribute.
28.7 \bbl@declare@ttribute{greek}{polutoniko}{’

This code adds the expansion of \extraspolutonikogreek to \extrasgreek and
changes the definition of \today for Greek to produce polytonic month names.

28.8 \expandafter\addto\expandafter\extrasgreek
28.9 \expandafter{\extraspolutonikogreek}
28.10 \let\captionsgreek\captionspolutonikogreek
28.11 \let\gr@month\gr@c@month

We need to take some extra precautions in order not to break older documents
which still use the old polutonikogreek option.

28.12 \let\l@polutonikogreek\l@greek

28.13 \let\datepolutonikogreek\dategreek

28.14 \let\extraspolutonikogreek\extrasgreek

28.15 \let\noextraspolutonikogreek\noextrasgreek

28.16 }

Typesetting Greek texts implies that a special set of fonts needs to be used.

The current support for greek uses the cb fonts created by Claudio Beccari?®.
The cb fonts provide all sorts of font combinations. In order to use these fonts we
define the Local GReek encoding (LGR, see the file greek.fdd). We make sure

that this encoding is known to EXTEX, and if it isn’t we abort.
28.17 \InputIfFileExists{lgrenc.def}{’
28.18 \message{Loading the definitions for the Greek font encodingl}}{J
28.19 \errhelp{I can’t find the lgrenc.def file for the Greek fonts}/
28.20 \errmessage{Since I do not know what the LGR encoding means~~J

28.21 I can’t typeset Greek.""J
28.22 I stop here, while you get a suitable lgrenc.def file}\@@end
28.23 }

Now we define two commands that offer the possibility to switch between Greek
and Roman encodings.

23 Apostolos Syropoulos wishes to thank him for his patience, collaboration, cooments and
suggestions.

99

\greektext The command \greektext will switch from Latin font encoding to the Greek font
encoding. This assumes that the ‘normal’ font encoding is a Latin one. This
command is a declaration, for shorter pieces of text the command \textgreek
should be used.

28.24 \DeclareRobustCommand{\greektext}{%
28.25 \fontencoding{LGR}\selectfont
28.26 \def\encodingdefault{LGR}}

\textgreek This command takes an argument which is then typeset using the requested font
encoding. In order to avoid many encoding switches it operates in a local scope.

28.27 \DeclareRobustCommand{\textgreek} [1]{\leavevmode{\greektext #1}}

\textol A last aspect of the set of fonts provided with this version of support for typesetting
Greek texts is that it contains an outline family. In order to make it available we
define the command \textol.

28.28 \def\outlfamily{\usefont{LGR}{cmro}{m}{n}}
28.29 \DeclareTextFontCommand{\textol}{\outlfamily}

The next step consists in defining commands to switch to (and from) the Greek
language.

\greekhyphenmins This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

28.30 %, Yannis Haralambous has suggested this value
28.31 \providehyphenmins{\CurrentOption}{\@ne\@ne}

\captionsgreek The macro \captionsgreek defines all strings used in the four standard document
classes provided with BTEX.

28.32 \addto\captionsgreek{’

28.33 \def\prefacename{Pr’ologos}/,
28.34 \def\refname{Anafor’es},

28.35 \def\abstractname{Per’ilhyh},
28.36 \def\bibname{Bibliograf’ial}}
28.37 \def\chaptername{Kef’alaiol}/,
28.38 \def\appendixname{Par’arthmal},
28.39 \def\contentsname{Perieq’omenal}’,
28.40 \def\listfigurename{Kat’alogos Sqghm’atwnl}’,
28.41 \def\listtablename{Kat’alogos Pin’akwn},
28.42 \def\indexname{Euret’hrio}}

28.43 \def\figurename{Sq’hma}’

28.44 \def\tablename{P’inakas}/,

28.45 \def\partname{M’eros}’%

28.46 \def\enclname{Sunhmm’enaly,

28.47 \def\ccname{Koinopo’ihsh}/,

28.48 \def\headtoname{Pros}

28.49 \def\pagename{Sel’idal/

28.50 \def\seename{bl’epel}’

28.51 \def\alsoname{bl’epe ep’ishs},
28.52 \def\proofname{Ap’odeixh}y

28.53 \def\glossaryname{Glwss’aril}/,
28.54 }

\captionspolutonikogreek For texts written in the molvrTorvkd (polytonic greek) the translations are the
same as above, but some words are spelled differently. For now we just add extra
definitions to \captionsgreek in order to override the earlier definitions.

28.55 \let\captionspolutonikogreek\captionsgreek
28.56 \addto\captionspolutonikogreek{’

28.57 \def\refname{>Anafor‘es}’,

28.58 \def\indexname{E<uret’hriol}’

100

\grémonth
\dategreek

\gr@cOgreek

\Grtoday

\extrasgreek
\noextrasgreek

\gr@ill@value

\anw@true
\anw@false
\anw@print

\greeknumeral

28.59 \def\figurename{Sq~hmal}’

28.60 \def\headtoname{Pr‘os},

28.61 \def\alsoname{bl’epe >ep’ishs}}
28.62 \def\proofname{>Ap’odeixh},
28.63 }

The macro \dategreek redefines the command \today to produce greek dates.
The name of the month is now produced by the macro \gr@month since it is needed
in the definition of the macro \Grtoday.

28.64 \def\gr@month{%
28.65 \ifcase\month\or

28.66 Ianouar’ioul\or Febrouar’ioulor Mart’ioulor April’iou\or
28.67 Ma’"iou\or Ioun’ioulor Ioul’ioulor Augo’ustoulor
28.68 Septembr’ioul\or Oktwbr’iou\or Noembr’ioulor Dekembr’iou\fi}

28.69 \def\dategreek{},
28.70 \def\today{\number\day \space \gr@month\space \number\year}}

28.71 \def\gr@c@month{y
28.72 \ifcase\month\or >Ianouar’iou\or

28.73 Febrouar’iou\or Mart’ioul\or >April’ioulor Ma"’iou\or
28.74 >Ioun’ioul\or >Ioul’ioulor A>ugo’ustoulor Septembr’iou\or
28.75 >0ktwbr’iou\or Noembr’iou\or Dekembr’iou\fi}
The macro \Grtoday produces the current date, only that the month and the day

are shown as greek numerals instead of arabic as it is usually the case.
28.76 \def\Grtoday{’,
28.77 \expandafter\Greeknumeral\expandafter{\the\day}\space
28.78 \gr@c@month \space
28.79 \expandafter\Greeknumeral\expandafter{\the\yearl}}

The macro \extrasgreek will perform all the extra definitions needed for the
Greek language. The macro \noextrasgreek is used to cancel the actions of
\extrasgreek. For the moment these macros switch the fontencoding used and
the definition of the internal macros \@alph and \@Alph because in Greek we do
use the Greek numerals.

28.80 \addto\extrasgreek{\greektext}
28.81 \addto\noextrasgreek{\latintext}

When the argument of \greeknumeral has a value outside of the acceptable
bounds (0 < z < 999999) a warning will be issued (and nothing will be printed).

28.82 \def\gr@ill@value#1{%
28.83 \PackageWarning{babel}{Illegal value (#1) for greeknumerall}}

When a a large number with three trailing zero’s is to be printed those zeros and
the numeric mark need to be discarded. As each ‘digit’ is processed by a separate
macro and because the processing needs to be expandable we need some helper
macros that help remember to not print the numeric mark (\anwtonos).

The command \anw@false switches the printing of the numeric mark off by
making \anw@print expand to nothing. The command \anw@true (re)enables the
printing of the numeric marc. These macro’s need to be robust in order to prevent
improper expansion during writing to files or during \uppercase.

28.84 \DeclareRobustCommand\anw@false{Y

28.85 \DeclareRobustCommand\anw@print{}}

28.86 \DeclareRobustCommand\anw@true{’,

28.87 \DeclareRobustCommand\anw@print{\anwtonos}}
28.88 \anw@true

The command \greeknumeral needs to be fully expandable in order to get the
right information in auxiliary files. Therefore we use a big \if-construction to
check the value of the argument and start the parsing at the right level.

28.89 \def\greeknumeral#1{J,

101

If the value is negative or zero nothing is printed and a warning is issued.

28.90 \ifnum#1<\@ne\space\gr@ill@value{#1}%
28.91 \else

28.92 \ifnum#1<10\expandafter\grénum@i\number#1%

28.93 \else

28.94 \ifnum#1<100\expandafter\gr@num@ii\number#1

28.95 \else
We use the available shorthands for 1.000 (\@m) and 10.000 (\@M) to save a few
tokens.

28.96 \ifnum#1<\Om\expandafter\gr@num@iii\number#1y,

28.97 \else

28.98 \ifnum#1<\@M\expandafter\gr@num@iv\number#1y

28.99 \else

28.100 \1fnum#1<100000\expandafter\grénum@v\number#1y,

28.101 \else

28.102 \ifnum#1<1000000\expandafter\grnum@vi\number#17

28.103 \else

If the value is too large, nothing is printed and a warning is issued.
28.104 \space\gr@ill@value{#1}/,
28.105 \fi
28.106 \fi
28.107 \fi
28.108 \fi
28.109 \fi
28.110 \fi
28.111 \fi
28.112 }

\Greeknumeral The command \Greeknumeral prints uppercase greek numerals. The parsing is
performed by the macro \greeknumeral.

28.113 \def\Greeknumeral#1{/,
28.114 \expandafter\MakeUppercase\expandafter{\greeknumeral{#1}}}

\greek@alph In the previous release of this language definition the commands \greek@aplh and
\greek@Alph \greek@Alph were kept just for reasons of compatibility. Here again they become
meaningful macros. They are definited in a way that even page numbering with
greek numerals is possible. Since the macros \@alph and \@Alph will lose their
original meaning while the Greek option is active, we must save their original
value. macros \@alph
28.115 \let\latin®@alph\@alph
28.116 \let\latin@Alph\@Alph
Then we define the Greek versions; the additional \expandafters are needed
in order to make sure the table of contents will be correct, e.g., when we have
appendixes.

28.117 \def \greek@alph#1{\expandafter\greeknumeral\expandafter{\the#1}}

28.118 \def \greek@Alph#1{\expandafter\Greeknumeral\expandafter{\the#1}}
Now we can set up the switching.

28.119 \addto\extrasgreek{

28.120 \let\@alph\greek@alph

28.121 \let\@Alph\greek@Alph}

28.122 \addto\noextrasgreek{’,

28.123 \let\@alph\latin®@alph

28.124 \let\@Alph\latin@Alph}

\greek@roman To prevent roman numerals being typeset in greek letters we need to adopt the

\greek@Roman internal I#TEX commands \@roman and \@Roman. Note that this may cause
errors where roman ends up in a situation where it needs to be expanded;
problems are known to exist with the AMS document classes.

102

28.125 \let\latin@roman\@roman

28.126 \let\latinORoman\@Roman

28.127 \def\greek@roman#1{\textlatin{\latin@roman{#1}}}
28.128 \def \greek@Roman#1{\textlatin{\latinORoman{#1}}}
28.129 \addto\extrasgreek{’

28.130 \let\@roman\greek@roman

28.131 \let\@Roman\greekORoman}

28.132 \addto\noextrasgreek{’

28.133 \let\@roman\latin@roman

28.134 \let\@Roman\latin@Roman}

\greek@amp The greek fonts do not contain an ampersand, so the NTEX command \& dosn’t
\ltx@amp give the expected result if we do not do something about it.

28.135 \let\1txQamp\&

28.136 \def\greek@amp{\textlatin{\1ltxQampl}}
28.137 \addto\extrasgreek{\let\&\greek@amp}
28.138 \addto\noextrasgreek{\let\&\1txQamp}

What is left now is the definition of a set of macros to produce the various
digits.

\gr@num@i As there is no representation for 0 in this system the zeros are simply discarded.
\grénum@ii When we have a large number with three trailing zero’s also the numeric mark
\grénum@iii is discarded. Therefore these macros need to pass the information to each other

about the (non-)translation of a zero.

28.139 \def \gr@num@i#1{/

28.140 \ifcase#1\or alor b\or g\or d\or e\or \stigma\or z\or hlor j\fi
28.141 \ifnum#1=\z@\else\anw@true\fi\anwlprint}

28.142 \def \gr@num@ii#1{y

28.143 \ifcase#1\or ilor k\or 1l\or m\or n\or x\or o\or p\or \qoppa\fi
28.144 \ifnum#1=\z0@\else\anw@true\fi\grOnumoi}

28.145 \def\grOnum@iii#1{/

28.146 \ifcase#1\or r\or sv\or t\or ulor flor g\or y\or w\or \sampi\fi
28.147 \ifnum#1=\z@\anw@false\else\anw@true\fi\gr@num@ii}

\grenum@iv The first three ‘digits’ always have the numeric mark, except when one is discarded
\grénum@v because it’s value is zero.

\gronum@vi.

\greek@tilde

28.148 \def\grOnum@iv#1{J

28.149 \ifnum#1=\z0Q\else\katwtonos\fi

28.150 \ifcase#1\or alor b\or g\or d\or e\or \stigmalor z\or h\or j\fi
28.151 \grOnum@iii}

28.152 \def \gr@num@v#1{/,

28.153 \ifnum#1=\z0@\else\katwtonos\fi

28.154 \ifcase#1\or ilor k\or 1l\or m\or n\or x\or o\or p\or \qoppa\fi
28.155 \gr@num@iv}

28.156 \def\grenum@vi#1{y

28.157 \katwtonos

28.158 \ifcase#1\or r\or svlor t\or ulor flor g\or y\or w\or \sampi\fi
28.159 \gr@num@v}

In greek typesetting we need a number of characters with more than one accent. In
the underlying family of fonts (the cb fonts) this is solved using Knuth’s ligature
mechanism. Characters we need to have ligatures with are the tilde, the acute
and grave accent characters, the rough and smooth breathings, the subscript,
and the double quote character. In text input the ~ is normaly used to produce
an unbreakable space. The command \~ normally produces a tilde accent. For
polytonic Greek we change the definition of \~ to produce the tilde character itself,
making sure it has category code 12.

28.160 \begingroup

28.161 \@ifundefined{active@char\string!}{}{\catcode‘!=12\relax}

28.162 \catcode‘\"=12

103

28.163 \lccode‘\!=‘\~

28.164 \lowercase{\def\x{\endgroup
28.165 \def\greek@tilde{!}}\x}
28.166 \addto\extraspolutonikogreek{’
28.167 \babel@save\~\let\~\greek@tilde}

In order to get correct hyphenation we need to set the lower case code of a number
of characters. The ‘v’ character has a special usage for the cb fonts: in fact this
ligature mechanism detects the end of a word and assures that a final sigma is
typeset with the proper sign wich is different from that of an initial or medial
sigma; the ‘v ’after an isolated sigma fools the ligature mechanism in order to
typeset o in place of ¢. Because of this we make sure its lowercase code is not
changed. For “modern” greek we have to deal only with > and " and so things are
easy.

28.168 \addto\extrasgreek{

28.169 \babel@savevariable{\lccode‘v}\lccode‘v="‘v}

28.170 \babel@savevariable{\lccode‘\’}\lccode‘\’=\"%

28.171 \babel@savevariable{\lccode‘\"}\lccode‘\"=\"}

28.172 \addto\extraspolutonikogreek{’

28.173 \babel@savevariable{\lccode‘\<}\1lccode‘\<=‘\<%

28.174 \babel@savevariable{\lccode‘\>}\lccode‘\>=\>}

28.175 \babel@savevariable{\lccode‘\~}\1lccode‘\~=\"Y%

28.176 \babel@savevariable{\lccode‘\|}\lccode‘\|[=\1%

28.177 \babel@savevariable{\lccode‘\‘}\lccode‘\‘=“\‘}

And in order to get rid of all accents and breathings when a string is \uppercased
we also change a number of uppercase codes.

28.178 \addto\extrasgreek{/,

28.179 \babel@savevariable{\uccode‘\"}\uccode‘\"=\"¥%

28.180 \babel@savevariable{\uccode‘\’}\uccode‘\’=159} %% 159 == ~~9f

28.181 \addto\extraspolutonikogreek{’,

28.182 \babel@savevariable{\uccode‘\~}\uccode‘\~"=159%

28.183 \babel@savevariable{\uccode‘\>}\uccode‘\>=159%

28.184 \babel@savevariable{\uccode‘\<}\uccode‘\<=159%

28.185 \babel@savevariable{\uccode‘\|}\uccode‘\[=\1%

28.186 \babel@savevariable{\uccode‘\‘}\uccode‘\‘=159}

For this to work we make the character ~~9f a shorthand that expands to nothing.
In order for this to work we need to make a character look like ~~9f in TEX’s eyes.
The trick is to have another character and assign it a different lowercase code.
The execute the macros needed in a \lowercase environment. Usually the tile
~ character is used for such purposes. Before we do this we save it’s original
lowercase code to restore it once we’re done.

28.187 \@tempcnta=\1lccode‘\~

28.188 \1lccode ‘\"=159

28.189 \lowercase{%

28.190 \initiate@active@char{~}%

28.191 \declare@shorthand{greek}{ " }{}}

28.192 \1lccode‘\~"=\@tempcnta

We can also make the tilde character itself expand to a tilde with category code
12 to make the typing of texts easier.

28.193 \addto\extraspolutonikogreek{\languageshorthands{greek}}/
28.194 \declare@shorthand{greek}{~}{\greek@tilde}

We now define a few symbols which are used in the typesetting of greek nu-
merals, as well as some other symbols which are usefull, such as the evpw symbol,
etc.

28.195 \DeclareTextCommand{\anwtonos}{LGR}{\char"FE\relax}
28.196 \DeclareTextCommand{\katwtonos}{LGR}{\char"FF\relax}
28.197 \DeclareTextCommand{\qoppa}{LGR}{\char"12\relax}
28.198 \DeclareTextCommand{\stigma}{LGR}{\char"06\relax}

104

28.199 \DeclareTextCommand{\sampi}{LGR}{\char"1B\relax}
28.200 \DeclareTextCommand{\Digamma}{LGR}{\char"C3\relax}
28.201 \DeclareTextCommand{\ddigamma}{LGR}{\char"93\relax}
28.202 \DeclareTextCommand{\vardigamma}{LGR}{\char"07\relax}
28.203 \DeclareTextCommand{\euro}{LGR}{\char"18\relax}

28.204 \DeclareTextCommand{\permill1}{LGR}{\char"19\relax}

Since the ~ cannot be used to produce an unbreakable white space we must
redefine at least the commands \fnum@figure and \fnum@table so they do not
produce a ~ instead of white space.

28.205 %\def\fnum@figure{\figurename\nobreakspace\thefigure}
28.206 %\def\fnum@table{\tablename\nobreakspace\thetable}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

28.207 \1df@f inish{\CurrentOption}
28.208 (/code)

105

29 The French language

The file frenchb.dtx?*, defines all the language definition macros for the French
language.

Customisation for the French language is achieved following the book “Lexique
des régles typographiques en usage & 'Imprimerie nationale” troisiéme édition
(1994), ISBN-2-11-081075-0.

First version released: 1.1 (1996,/05/31) as part of babel-3.6beta.

frenchb has been improved using helpful suggestions from many people,
mainly from Jacques André, Michel Bovani, Thierry Bouche, and Vincent Jalby.
Thanks to all of them!

This new version (2.x) has been designed to be used with WTEX2: and
PlainTEX formats only. IXTEX-2.09 is no longer supported. Changes between
version 1.6 and 7 are listed in subsection 29.4 p. 110.

An extensive documentation is available in French here:

http://daniel.flipo.free.fr/frenchb

29.1 Basic interface

In a multilingual document, some typographic rules are language dependent, i.e.
spaces before ‘double punctuation’ (: ; ! ?) in French, others concern the general
layout (i.e. layout of lists, footnotes, indentation of first paragraphs of sections)
and should apply to the whole document.

Starting with version 2.2, frenchb behaves differently according to babel’s
main language defined as the last option?® at babel’s loading. When French is not
babel’s main language, frenchb no longer alters the global layout of the document
(even in parts where French is the current language): the layout of lists, footnotes,
indentation of first paragraphs of sections are not customised by frenchb.

When French is loaded as the last option of babel, frenchb makes the following
changes to the global layout, both in French and in all other languages>®:

1. the first paragraph of each section is indented (IATEX only);

2. the default items in itemize environment are set to ‘-’ instead of ‘e’, and all
vertical spacing and glue is deleted; it is possible to change ‘-’ to something
else (“— for instance) using \frenchbsetup{};

3. vertical spacing in general IXTEX lists is shortened;
4. footnotes are displayed “a la frangaise”.

Regarding local typography, the command \selectlanguage{french} switches
to the French language?®”, with the following effects:

1. French hyphenation patterns are made active;

2. ‘double punctuation’ (: ; ! ?) is made active®® for correct spacing in French;
3. \today prints the date in French;

4. the caption names are translated into French (IXTEX only);

5. the space after \dots is removed in French.

Some commands are provided in frenchb to make typesetting easier:

24The file described in this section has version number ? and was last revised on ?.

25Tts name is kept in \bbl@main@language.

26 For each item, hooks are provided to reset standard IATEX settings or to emulate the behavior
of former versions of frenchb (see command \frenchbsetup{}, section 29.2).

27 \selectlanguage{francais} and \selectlanguage{frenchb} are kept for backward com-
patibility but should no longer be used.

28 Actually, they are active in the whole document, only their expansions differ in French and
outside French.

106

. French quotation marks can be entered using the commands \og and \fg
which work in IXTEX 2cand PlainTEX, their appearance depending on what
is available to draw them; even if you use KTEX 2¢ and T1l-encoding, you
should refrain from entering them as <<“French quotation marks™>>: \og
and \fg provide better horizontal spacing. \og and \fg can be used outside
French, they typeset then English quotes “ and ”.

. A command \up is provided to typeset superscripts like M\up{me} (abbre-
viation for “Madame”), 1\up{er} (for “premier”). Other commands are also
provided for ordinals: \ier, \iere, \iers, \ieres, \ieme, \iemes (3\iemes
prints 3°%).

. Family names should be typeset in small capitals and never be hyphenated,
the macro \bsc (boxed small caps) does this, e.g., Leslie~\bsc{Lamport}
will produce Leslie LAMPORT. Note that composed names (such as Dupont-
Durant) may now be hyphenated on explicit hyphens, this differs from
frenchb v.1.x.

. Commands \primo, \secundo, \tertio and \quarto print 1°, 2° 3° 4°.
\FrenchEnumerate{6} prints 6°.

. Abbreviations for “Numéro(s)” and “numeéro(s)” (N° N° n® and n°) are
obtained via the commands \No, \Nos, \no, \nos.

. Two commands are provided to typeset the symbol for “degré”: \degre prints
the raw character and \degres should be used to typeset temperatures (e.g.,
“20~\degres C” with an unbreakable space), or for alcohols’ strengths (e.g.,
“45\degres” with no space in French).

. In math mode the comma has to be surrounded with braces to avoid a
spurious space being inserted after it, in decimal numbers for instance (see
the TEXbook p. 134). The command \DecimalMathComma makes the comma
be an ordinary character in French only (no space added); as a counterpart,
if \DecimalMathComma is active, an explicit space has to be added in lists
and intervals: $[0,\ 11$, $(x,\ y)$. \StandardMathComma switches back
to the standard behaviour of the comma.

. A command \nombre was provided in 1.x versions to easily format numbers
in slices of three digits separated either by a comma in English or with a
space in French; \nombre is now mapped to \numprint from numprint.sty,
see numprint.pdf for more information.

. frenchb has been designed to take advantage of the xspace package if
present: adding \usepackage{xspacel} in the preamble will force macros
like \fg, \ier, \ieme, \dots, ..., to respect the spaces you type after them,
for instance typing ‘1\ier juin’ will print ‘1°" juin’ (no need for a forced
space after 1\ier).

29.2 Customisation

Up to version 1.6, customisation of frenchb was achieved by entering commands in
frenchb.cfg. This possibility remains for compatibility, but should not longer be
used. Version 2.0 introduces a new command \frenchbsetup{} using the keyval
syntax which should make it easier to choose among the many options available.
The command \frenchbsetup{} is to appear in the preamble only (after loading

babel).

\frenchbsetup{ShowOptions} prints all available options to the .log file, it

is just meant as a remainder of the list of offered options. As usual with keyval
syntax, boolean options (as ShowOptions) can be entered as ShowOptions=true
or just ShowOptions, the ‘=true’ part can be omitted.

107

The other options are listed below. Their default value is shown between
brackets, sometimes followed be a ‘*’. The ‘*’ means that the default shown applies
when frenchb is loaded as the last option of babel —babel’s main language—, and
is toggled otherwise:

StandardLayout=true [falsex] forces frenchb not to interfere with the
layout: no action on any kind of lists, first paragraphs of sections are not
indented (as in English), no action on footnotes. This option replaces the
former command \StandardLayout. It can be used to avoid conflicts with
classes or packages which customise lists or footnotes.

GlobalLayoutFrench=false [truex] can be used, when French is the main
language, to emulate what prior versions of frenchb (pre-2.2) did: lists, and
first paragraphs of sections will be displayed the standard way in other lan-
guages than French, and “a la francaise” in French. Note that the layout
of footnotes is language independent anyway (see below FrenchFootnotes
and AutoSpaceFootnotes). This option replaces the former command
\FrenchLayout.

ReduceListSpacing=false [truex]; frenchb normally reduces the values
of the vertical spaces used in the environment list in French; setting this
option to false reverts to the standard settings of 1ist. This option replaces
the former command \FrenchListSpacingfalse.

CompactItemize=false [truex]; frenchb normally redefines the itemize
environment to suppresse any vertical space between items of itemize
lists in French; setting this option to false reverts to the standard
settings of itemize lists. This option replaces the former command
\FrenchItemizeSpacingfalse.

StandardItemLabels=true [false*] when set to true this option stops
frenchb from changing the labels in itemize lists in French.

ItemLabels=\textemdash, \textbullet, \ding{43}, ..., [\textendashx*];
when StandardItemLabels=false (the default), this option enables to
choose the label used in itemize lists for all levels. The next three op-
tions do the same but each one for one level only. Note that the example
\ding{43} requires \usepackage{pifont}.

ItemLabeli=\textemdash, \textbullet, \ding{43}, ...,[\textendashx]
ItemLabelii=\textemdash, \textbullet, \ding{43}, ..., [\textendashx*]
ItemLabeliii=\textemdash, \textbullet, \ding{43}, ..., [\textendashx]
ItemLabeliv=\textemdash, \textbullet, \ding{43}, ..., [\textendashx*]

StandardLists=true [falsex*] forbids frenchb to customise any kind of
list. Do activate the option StandardLists when using classes or pack-
ages that customise lists too (enumitem, paralist, ...) to avoid con-
flicts. This option is just a shorthand for ReduceListSpacing=false and
CompactItemize=false and StandardItemLabels=true.

IndentFirst=false [truex*]; frenchb normally forces indentation of the
first paragraph of sections. When this option is set to false, the first para-
graph of will look the same in French and in English (not indented).

FrenchFootnotes=false [truex] reverts to the standard layout of foot-
notes. By default frenchb typesets leading numbers as ‘1. ' instead
of ‘¥, but has no effect on footnotes numbered with symbols (as in the
\thanks command). The former commands \StandardFootnotes and
\FrenchFootnotes are still there, \StandardFootnotes can be useful when
some footnotes are numbered with letters (inside minipages for instance).

108

e AutoSpaceFootnotes=false [true*] ; by default frenchb adds a thin
space in the running text before the number or symbol calling the foot-
note. Making this option false reverts to the standard setting (no space
added).

e FrenchSuperscripts=false [true] ; then \up=\textsuperscript (op-
tion added in version 2.1). Should only be made false to recompile older
documents. By default \up now relies on \fup designed to produce better
looking superscripts.

e AutoSpacePunctuation=false [truel; in French, the user should input a
space before the four characters ‘:;!?’ but as many people forget about it
(even among native French writers!), the default behaviour of frenchb is to
automatically add a \thinspace before ‘;” ‘1" ‘?” and a normal (unbreakable)
space before ‘:” (this is recommended by the French Imprimerie nationale).
This is convenient in most cases but can lead to addition of spurious spaces
in URLs or in MS-DOS paths but only if they are no typed using \texttt or
verbatim mode. When the current font is a monospaced (typewriter) font,
AutoSpacePunctuation is locally switched to false, no spurious space is
added in that case, so the default behaviour of of frenchb in that area should
be fine in most circumstances.

Choosing AutoSpacePunctuation=false will ensure that a proper space will
be added before ‘:;!?’ if and only if a (normal) space has been typed in.
Those who are unsure about their typing in this area should stick to the
default option and type \string; \string: \string! \string? instead of
; ¢ ! 7 in case an unwanted space is added by frenchb.

e ThinColonSpace=true [false] changes the normal (unbreakable) space
added before the colon ‘> to a thin space, so that the same amount of
space is added before any of the four double punctuation characters. The
default setting is supported by the French Imprimerie nationale.

e LowercaseSuperscripts=false [true] ; by default frenchb inhibits the
uppercasing of superscripts (for instance when they are moved to page head-
ers). Making this option false will disable this behaviour (not recom-
mended).

e PartNameFull=false [true]; when true, frenchb numbers the title of
\part{} commands as “‘Premiére partie”, “Deuxiéme partie” and so on. With
some classes which change the\part{} command (AMS and SMF classes do
s0), you will get “Premiére partie I”, “Deuxiéme partie II” instead; when this
occurs, this option should be set to false, part titles will then be printed
as “Partie I”, “Partie II”.

e SuppressWarning=true [false]; when true frenchb issues no warnings if
\@makecaption has been redefined or if the bigfoot package is in use.

e og=«, fg=»; when guillemets characters are available on the keyboard
(through a compose key for instance), it is nice to use them instead of typing
\og and \fg. This option tells frenchb which characters are opening and
closing French guillemets (they depend on the input encoding), then you can
type either « guillemets », or «guillemets» (with or without spaces), to
get properly typeset French quotes. This option requires inputenc to be
loaded with the proper encoding, it works with 8-bits encodings (latinl,
latin9, ansinew, applemac,...) and multi-byte encodings (utf8 and utf8x).

29.3 Hyphenation checks

Once you have built your format, a good precaution would be to perform some
basic tests about hyphenation in French. For ITEX 2¢ I suggest this:

109

e run the following file, with the encoding suitable for your machine (my-
encoding will be latinl for UNIX machines, ansinew for PCs running Win-
dows, applemac or latini for Macintoshs, or utf8...

%%t Test file for French hyphenation.
\documentclass{article}

\usepackage [my-encoding]l {inputenc}
\usepackage [T1]{fontenc} % Use LM fonts

\usepackage{lmodern} % for French
\usepackage [frenchb] {babel}
\begin{document}

\showhyphens{signal container \’ev\’enement alg\‘ebre}
\showhyphens{signal container événement algébre}
\end{document}

e check the hyphenations proposed by TEX in your log-file; in French you
should get with both 7-bit and 8-bit encodings
si-gnal contai-ner évé-ne-ment al-gébre.
Do not care about how accented characters are displayed in the log-file, what
matters is the position of the ‘-’ hyphen signs only.

If they are all correct, your installation (probably) works fine, if one (or more) is
(are) wrong, ask a local wizard to see what’s going wrong and perform the test
again (or e-mail me about what happens).

Frequent mismatches:

e you get sig-nal con-tainer, this probably means that the hyphenation
patterns you are using are for US-English, not for French;

e you get no hyphen at all in évé-ne-ment, this probably means that you
are using CM fonts and the macro \accent to produce accented charac-
ters. Using 8-bits fonts with built-in accented characters avoids this kind of
mismatch.

Options’ order — Please remember that options are read in the order they ap-
pear inside the \frenchbsetup command. Someone wishing that frenchb leaves
the layout of lists and footnotes untouched but caring for indentation of first para-
graph of sections could choose \frenchbsetup{StandardLayout,IndentFirst}
and get the expected layout. Choosing \frenchbsetup{IndentFirst,StandardLayout}
would not lead to the expected result: option IndentFirst would be overwritten
by StandardLayout.

29.4 Changes
What’s new in version 2.07

Here is the list of all changes:

e Support for BTEX-2.09 and for BTEX 2 in compatibility mode has been
dropped. This version is meant for BTEX 2 and Plain based formats (like
bplain). IATEX 2¢ formats based on mlTEX are no longer supported either
(plenty of good 8-bits fonts are available now, so T1 encoding should be
preferred for typesetting in French). A warning is issued when OT1 encoding
is in use at the \begin{document}.

e Customisation should now be handled by command \frenchbsetup{},
frenchb.cfg (kept for compatibility) should no longer be used. See sec-
tion 29.2 for the list of available options.

e Captions in figures and table have changed in French: former abbreviations
“Fig.” and “Tab.” have been replaced by full names “Figure” and “Table”. If

110

this leads to formatting problems in captions, you can add the following two
commands to your preamble (after loading babel) to get the former captions
\addto\captionsfrench{\def\figurename{{\scshape Fig.}}}
\addto\captionsfrench{\def\tablename{{\scshape Tab.l}}}.

e The \nombre command is now provided by the numprint package which has
to be loaded after babel with the option autolanguage if number formatting
should depend on the current language.

e The \bsc command no longer uses an \hbox to stop hyphenation of names
but a \kernOpt instead. This change enables microtype to fine tune the
length of the argument of \bsc; as a side-effect, compound names like
Dupont-Durand can now be hyphenated on explicit hyphens. You can get
back to the former behaviour of \bsc by adding
\renewcommand*{\bsc}[1]{\leavevmode\hbox{\scshape #1}}
to the preamble of your document.

e Footnotes are now displayed “a la francgaise” for the whole document, except
with an explicit
\frenchbsetup{AutoSpaceFootnotes=false,FrenchFootnotes=false}.
Add this command if you want standard footnotes. It is still pos-
sible to revert locally to the standard layout of footnotes by adding
\StandardFootnotes (inside a minipage environment for instance).

What’s new in version 2.17

New command \fup to typeset better looking superscripts. Former command \up
is now defined as \fup, but an option \frenchbsetup{FrenchSuperscripts=false}
is provided for backward compatibility. \fup was designed using ideas from
Jacques André, Thierry Bouche and René Fritz, thanks to them!

What’s new in version 2.27

Starting with version 2.2a, frenchb alters the layout of lists, footnotes, and the
indentation of first paragraphs of sections) only if French is the “main language”
(i.e. babel’s last language option). The layout is global for the whole document:
lists, etc. look the same in French and in other languages, everything is typeset “a
la francaise” if French is the “main language”, otherwise frenchb doesn’t change
anything regarding lists, footnotes, and indentation of paragraphs.

What’s new in version 2.37

Starting with version 2.3a, frenchb no longer inserts spaces automatically before
;17" when a typewriter font is in use; this was suggested by Yannis Haralambous
to prevent spurious spaces in computer source code or expressions like C:/foo,
http://foo.bar, etc. An option (OriginalTypewriter) is provided to get back
to the former behaviour of frenchb.

Another probably invisible change: lowercase conversion in \up{} is now
achieved by the KXTEX command \MakeLowercase instead of TEX’s \lowercase
command. This prevents error messages when diacritics are used inside \up{}
(diacritics should never be used in superscripts though!).

What’s new in version 2.47

A new option SuppressWarning has been added (desactivated by default) to sup-
press warnings if \@makecaption has been redefined or if the bigfoot package is
in use.

French hyphenation patterns are now coded in Unicode, see file hyph-fr.tex.
Extra code has been added to deal with hyphenation of the French “apostrophe”
with XeTeX and LuaTeX engines.

111

\ifLaTeXe

Better compatibility with the enumitem package.
When typewriter fonts are in use (hence in verbatim mode) no space is added
after ‘«’ and before ‘»’ when they are entered as characters (see \frenchbsetup).

What’s new in version 2.57

The main change is that active characters are no longer used in French with (re-
cent) XeTgX-based engines (they still are with TEX-based engines). All the func-
tionalities (automatic insertion of missing spaces before : ;1?7 or bare replacement
of typed spaces with suitable unbreabable ones, tuning of the spaces width) re-
main available and the user interface is unchanged. The use of active characters is
replaced by the \XeTeXinterchartoks mechanism (as in package polyglossia).

A new command \NoAutoSpacing has been added. It should be used inside a
group instead of \shorthandoff{;:!?} whenever active characters or automatic
spacing of French punctuation or quote characters conflict with other packages; it
is designed to work with TEX- and XeTgX-based engines.

Bug correction: frenchb.1ldf no longer messes up \frenchspacing and
\nonfrenchspacing in other languages.

29.5 File frenchb.cfg

frenchb.cfg is now a dummy file just kept for compatibility with previous ver-
sions.

29.1 Yototo oo ToToToto o o oo T ToToto o o o o T To To o 1o o oo o T To To o 1o o oo o T To o o 1o oo o o T To o 2 o oo o o T To o o o oo o oo
29.2 %hhhhhhh’h WARNING: THIS FILE SHOULD NO LONGER BE USED %%A%%%hhihd
29.3 %% If you want to customise frenchb, please DO NOT hack into the code!
29.4 %% Do no put any code in this file either, please use the new command
29.5 %% \frenchbsetup{} with the proper options to customise frenchb.

29.6 %hh

29.7 %% Add \frenchbsetup{ShowOptions} to your preamble to see the list of
29.8 %/ available options and/or read the documentation.

29.9 Yokl lololololololololofolo ool oo o o T T o o Tl T T T T T T o o o o T o Jo T o Jo T o T o o o o o o o o o oo

29.6 Initial setup

While this file was read through the option frenchb we make it behave as if french
was specified.

29.10 \def\CurrentOption{french}
The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

29.11 \LdfInit\CurrentOption\datefrench

No support is provided for late INTEX-2.09: issue a warning and exit if KTEX-2.09
is in use. Plain is still supported.

29.12 \newif\ifLaTeXe

29.13 \let\bbl@tempa\relax

29.14 \ifx\magnification\@undefined

29.15 \ifx\@compatibilitytrue\@undefined

29.16 \PackageError{frenchb.1df}

29.17 {LaTeX-2.09 format is no longer supported.\MessageBreak
29.18 Aborting here}

29.19 {Please upgrade to LaTeX2e!}

29.20 \let\bbl@tempa\endinput

29.21 \else

29.22 \LaTeXetrue

2023 \fi

29.24 \fi

29.25 \bbl@tempa

112

Check if hyphenation patterns for the French language have been loaded in
language.dat; we allow for the names ‘french’, ‘francais’, ‘canadien’ or ‘acadian’.
The latter two are both names used in Canada for variants of French that are in
use in that country.

29.26 \ifx\1@french\@undefined
29.27 \ifx\l@francais\@undefined

29.28 \ifx\1@canadien\@undefined
29.29 \ifx\1l@acadian\@undefined
29.30 \@nopatterns{French}
29.31 \adddialect\1@frenchO
29.32 \else

29.33 \let\1l@french\l@acadian
29.34 \fi

29.35 \else

29.36 \let\1l@french\l@canadien
29.37 \fi

29.38 \else

29.39 \let\1l@french\1l@francais
29.40 \fi

29.41 \fi

Now \l@french is always defined.

The internal name for the French language is french; francais and frenchb
are synonymous for french: first let both names use the same hyphenation pat-
terns. Later we will have to set aliases for \captionsfrench, \datefrench,
\extrasfrench and \noextrasfrench. As French uses the standard values of
\lefthyphenmin (2) and \righthyphenmin (3), no special setting is required here.

29.42 \ifx\1@francais\@undefined
29.43 \let\l@francais\l@french
29.44 \fi

29.45 \ifx\1@frenchb\@undefined
29.46 \let\l@frenchb\l@french
29.47 \fi

When this language definition file was loaded for one of the Canadian versions of
French we need to make sure that a suitable hyphenation pattern register will be

found by TEX.
29.48 \ifx\1@canadien\@undefined
29.49 \let\l@canadien\l@french
29.50 \fi
29.51 \ifx\1@acadian\@undefined
29.52 \let\l@acadian\l@french
29.53 \fi

This language definition can be loaded for different variants of the French
language. The ‘key’ babel macros are only defined once, using ‘french’ as the
language name, but frenchb and francais are synonymous.

29.54 \def\datefrancais{\datefrench}

29.55 \def\datefrenchb{\datefrench}

29.56 \def\extrasfrancais{\extrasfrench}
29.57 \def\extrasfrenchb{\extrasfrench}

29.58 \def\noextrasfrancais{\noextrasfrench}
29.59 \def\noextrasfrenchb{\noextrasfrench}

\extrasfrench The macro \extrasfrench will perform all the extra definitions needed for the
\noextrasfrench French language. The macro \noextrasfrench is used to cancel the actions of
\extrasfrench.
In French, character “apostrophe” is a letter in expressions like 1’ambulance
(French hyphenation patterns provide entries for this kind of words). This means
that the \1ccode of “apostrophe” has to be non null in French for proper hyphen-
ation of those expressions, and has to be reset to null when exiting French.

113

French hyphenation patterns are now coded in Unicode, see file hyph-fr.tex.
XeTeX and LuaTeX engines require some extra code to deal with the French
“apostrophe”. Let’s define a new ‘if’ \FBunicode which will be true for XeTeX
and LuaTeX engines and false for 8-bits engines.

29.60 \newif\ifFBunicode

29.61 \begingroup\expandafter\expandafter\expandafter\endgroup
29.62 \expandafter\ifx\csname luatexversion\endcsname\relax
29.63 \else

29.64 \FBunicodetrue

29.65 \fi

29.66 \begingroup\expandafter\expandafter\expandafter\endgroup
29.67 \expandafter\ifx\csname XeTeXrevision\endcsname\relax

29.68 \else

29.69 \FBunicodetrue

29.70 \fi

29.71 \@namedef{extras\CurrentOption}{\lccode‘\’=¢\"

29.72 \ifFBunicode\lccode"2019="2019\fi}
29.73 \@namedef{noextras\CurrentOption}{\lccode‘\’=0

29.74 \ifFBunicode\lccode"2019=0\fi}

One more thing \extrasfrench needs to do is to make sure that “Frenchspac-
ing” is in effect. \noextrasfrench will switch “Frenchspacing” off again if neces-
sary.

29.75 \addto\extrasfrench{\bbl@frenchspacing}
29.76 \addto\noextrasfrench{\bbl@nonfrenchspacing}

29.7 Punctuation

As long as no better solution is available, the ‘double punctuation’ characters (;
! 7 and :) have to be made \active for an automatic control of the amount of
space to insert before them. XeTgX provides an alternative to active characters
and LuaTEX will hopefully do so as well in the (near?) future.
Before doing so, we have to save the standard definition of \@makecaption
(which includes two ’:”) to compare it later to its definition at the \begin{document}.
29.77 \long\def\STD@makecaption#1#2{/,
29.78 \vskip\abovecaptionskip
29.79 \sbox\Q@tempboxa{#1: #2}J,
29.80 \ifdim \wd\@tempboxa >\hsize

29.81 #1: #2\par

29.82 \else

29.83 \global \@minipagefalse

29.84 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}},
29.85 \fi

29.86 \vskip\belowcaptionskip}

According to the I.N. specifications, the ‘.’ requires a normal space before
it, but some people prefer a \thinspace (just like the other three). We define
\Fcolonspace to hold the required amount of space (user customisable). In case
some users are not satisfied with \thinspace’s width, it is also customisable.

29.87 \newcommand*{\Fcolonspace}{\space}
29.88 \newcommand*{\Fthinspace}{\thinspace}

Check the availability of \XeTeXinterchartokenstate and decide whether the
‘double punctuation’ characters (; ! ? and :) have to be made \active or not.

29.89 \newif\ifFB@active@punct \FB@active@puncttrue

29.90 \newif\ifFB@xetex@punct

29.91 \begingroup\expandafter\expandafter\expandafter\endgroup

29.92 \expandafter\ifx\csname XeTeXinterchartokenstate\endcsname\relax
29.93 \else

29.94 \FB@xetex@puncttrue\FBQactive@punctfalse

29.95 \fi

114

If \XeTeXinterchartokenstate is available, we use the “inter char” mechanism
(as in polyglossia, see gloss-french.1df) to provide correct spacing in French
before the four characters ; ! 7 and : and for French quotes (« and »).

Tt is assumed that for every character used in French text-mode (except spaces),
\XeTeXcharclass value is 0 before entering French. \XeTeXcharclass value for
spaces is assumed to be 255. Otherwise, the spacing before the ‘double punctua-
tion’ characters will not be correct.

We switch \XeTeXinterchartokenstate to 1 and change the \XeTeXcharclass
values of ; ! 7 : (] « and » when entering French. Special care is taken to restore
them to their inital values when leaving French.

29.96 \newif \ifFBAutoSpaceGuill \FBAutoSpaceGuilltrue

29.97 \ifFB@xetex@punct

29.98 \PackageInfo{frenchb.1df}{No need for active punctuation characters

29.99 \MessageBreak with this version of XeTeX! reported}
We will need the following code (borrowed from zhsusefulmacros.sty) for loops:

29.100 \@ifundefined{@for}{’

29.101 \def\@nnil{\@nill}},

29.102 \def\@empty{}%

29.103 \def\@fornoop#1\@e#2#3{}%

29.104 \long\def\@for#1:=#2\do#3{%

29.105 \expandafter\def\expandafter\@fortmp\expandafter{#2}J

29.106 \ifx\@fortmp\Qempty \else

29.107 \expandafter\@forloop#2,\@nil, \@nil\@@#1{#3}\fi}}

29.108 \long\def\@forloop#1,#2, #3\00#4#5{\def#4{#1}\ifx #4\@nnil \else
29.109 #5\def#4{#2}\ifx #4\Onnil \else#5\Q@iforloop #3\QO#A{#5}\fi\fil}},
29.110 \long\def\@iforloop#1, #2\0@#3#4{\def#3{#1}\ifx #3\@nnil

29.111 \expandafter\@fornoop \else

29.112 #4\relax\expandafter\Q@iforloop\fi#2\Q0#3{#4}}%

29.113 \def\@tfor#l:={\@tfer#l 1}/,

29.114 \long\def\@tfOr#1#2\do#3{\def\@fortmp{#2}\ifx\@fortmp\space\else
29.115 \@tforloop#2\@nil\@nil\@@#1{#3}\fil}},

29.116 \long\def\@tforloop#1#2\@o#3#4{\def#3{#1}\ifx #3\@nnil

29.117 \expandafter\@fornoop \else

29.118 #4\relax\expandafter\Q@tforloop\fi#2\Q0#3{#4}1}%

29.119 HY%
New character classes,
29.120 \newcount\FB@interchartokenstateORI
29.121 \newXeTeXintercharclass\FB@punctthick
29.122 \newXeTeXintercharclass\FB@punctthin
29.123 \newXeTeXintercharclass\FB@punctnul
29.124 \newXeTeXintercharclass\FB@punctguilo
29.125 \newXeTeXintercharclass\FB@punctguilf
We define a command to store the \XeTeXcharclass values which will be modified
for French (as a comma separated list) and a command to retrieve them.
29.126 % \newcommand*{\FB@charclassesORI}{}
29.127 \def\FB@charclassesORI{}
29.128 \def\empty{}
29.129 \def\FB@parse#1,#2\endparse{\def\FBQclass{#1}%
29.130 \def\FB@charclassesORI{#2}}/

The following command will be executed when entering French, it first saves the
values to be modified, then fits them to our needs. It also redefines \shorthandoff
and \shorthandon (locally) to avoid error messages with XeTeX-based engines.

29.131 \newcommand*{\FB@xetex@punct@french}{%

Saving must not be repeated if saved values are already in.

29.132 \ifx\FB@charclassesORI\empty

29.133 \FB@interchartokenstateORI=\XeTeXinterchartokenstate
29.134 \@for\FB@char:={‘\:, ‘\;, ‘\!, ‘\?7,‘\[, *\(,"00AB, "00BB}\do
29.135 {\edef\FB@charclassesORI{\FB@charclassesORIY,

115

29.136 \the\XeTeXcharclass\FB@char, }}%

29.137 \let\shorthandonORI\shorthandon
29.138 \let\shorthandoffORI\shorthandoff
29.139 \fi

Set the classes and interactions between classes.

29.140 \XeTeXinterchartokenstate=1

29.141 \XeTeXcharclass ‘\: = \FB@punctthick

29.142 \XeTeXinterchartoks \z@ \FB@punctthick = {}%

29.143 \ifhmode\FDP@colonspace\fil}/,

29.144 \XeTeXinterchartoks \FB@punctguilf \FB@punctthick = {J

29.145 \FDP@colonspacel},

29.146 \XeTeXinterchartoks 255 \FB@punctthick = {%

29.147 \ifhmode\unskip\penalty\@M\Fcolonspace\fil}},

29.148 \@for\FB@char:={\;, ‘\!, ‘\?}\do

29.149 {\XeTeXcharclass\FB@char=\FB@punctthin}j,

29.150 \XeTeXinterchartoks \z@ \FB@punctthin = {%

29.151 \ifhmode\FDP@thinspace\fil}},

29.152 \XeTeXinterchartoks \FB@punctguilf \FB@punctthin = {J,

29.153 \FDP@thinspacel}/,

29.154 \XeTeXinterchartoks 255 \FB@punctthin = {J,

29.155 \ifhmode\unskip\penalty\@M\Fthinspace\fi}/,
This avoids spurious spaces in (1), (777), etc.

29.156 \@for\FB@char:={‘\[, ‘\(}\do

29.157 {\XeTeXcharclass\FB@char=\FB@punctnull}’

29.158 \XeTeXinterchartoks \FB@punctnul \FB@punctthin = {1}

29.159 \XeTeXcharclass"OOAB = \FB@punctguilo

29.160 \XeTeXinterchartoks \FB@punctguilo \z@ = {%

29.161 \ifFBAutoSpaceGuill\FBguill@spacing\fi}%

29.162 \XeTeXinterchartoks \FB@punctguilo 255 = {}

29.163 \1fFBAutoSpaceGuill\FBguill@spacing\ignorespaces\fil}J,

29.164 \XeTeXcharclass"00BB = \FB@punctguilf

29.165 \XeTeXinterchartoks \z@ \FB@punctguilf = {}

29.166 \1fFBAutoSpaceGuill\FBguill@spacing\fi}},

29.167 \XeTeXinterchartoks \FBOpunctthin \FB@punctguilf = {%

29.168 \1fFBAutoSpaceGuill\FBguill@spacing\fi}}

29.169 \XeTeXinterchartoks 255 \FB@punctguilf = {%

29.170 \ifFBAutoSpaceGuill\unskip\FBguill@spacing\fi}}
With Xe(La)TeX, French defines no active shorthands.

29.171 \def\shorthandoff##1{J,

29.172 \PackageWarning{frenchb.ldf}{\protect\shorthandoff{;:!7} is

29.173 helpless with XeTeX,\MessageBreak use \protect\NoAutoSpacing

29.174 \space *inside a group* instead;\MessageBreak reported}/,

29.175 Yh

29.176 \def\shorthandon##1{}/

29177}

The following command will be executed when leaving French for restor-
ing values and commands modified in French. When French is not the main
language, \noextrasfrench is executed ‘AtBeginDocument’, so the test on
\FB@charclassesORI is mandatory.

29.178 \newcommand*{\FB@xetex@punct@nonfrench}{’

29.179 \ifx\FB@charclassesORI\empty

29.180 \else

29.181 \@for\FB@char:={‘\:, “\;, ‘\!,‘\?7,‘\[, ‘\(,"00AB, "00BB}\do
29.182 {\expandafter\FBOparse\FBQ@charclassesORI\endparse
29.183 \XeTeXcharclass\FB@char=\FB@class}

29.184 \def\FB@charclassesORI{}%

29.185 \XeTeXinterchartokenstate=\FB@interchartokenstateORI
29.186 \let\shorthandon\shorthandonORI

29.187 \let\shorthandoff\shorthandoffORI

29.188 \fi

116

29.189

29.190 \addto\extrasfrench{\FBOxetex@punct@french}
29.191 \addto\noextrasfrench{\FB@xetex@punct@nonfrench}
29.192 \fi

Otherwise we need to make the four characters ; ! 7 and : ‘active’ and provide
their definitions.
29.193 \ifFBQactive@punct
29.194 \initiate@active@char{:}%
29.195 \initiate@active@char{;}%
29.196 \initiate@active@char{!}Y%
29.197 \initiate@active@char{?}%

We first tune the amount of space before ; ! ? and :. This should only happen
in horizontal mode, hence the test \ifhmode.

In horizontal mode, if a space has been typed before ‘; we remove it and
put an unbreakable \thinspace instead. If no space has been typed, we add
\FDP@thinspace which will be defined, up to the user’s wishes, as an automatic
added thin space, or as \@empty.

29.198 \declare@shorthand{french}{;}{%

29.199 \ifhmode

29.200 \ifdim\lastskip>\z@

29.201 \unskip\penalty\@M\Fthinspace
29.202 \else

29.203 \FDP@thinspace

29.204 \fi

29.205 \fi

Now we can insert a ; character.
29.206 \string;}

The next three definitions are very similar.
29.207 \declare@shorthand{french}{!}{%

29.208 \ifhmode

29.209 \ifdim\lastskip>\z@

29.210 \unskip\penalty\@M\Fthinspace
29.211 \else

29.212 \FDP@thinspace

29.213 \fi

29.214 \fi

29.215 \string!}

29.216 \declare@shorthand{french}{7}{%

29.217 \ifhmode

29.218 \ifdim\lastskip>\z@

29.219 \unskip\penalty\@M\Fthinspace
29.220 \else

29.221 \FDP@thinspace

29.222 \fi

29.223 \fi

29.224 \string?}

29.225 \declare@shorthand{french}{:}{%

29.226 \ifhmode

29.227 \ifdim\lastskip>\z@

29.228 \unskip\penalty\@M\Fcolonspace
29.229 \else

29.230 \FDP@colonspace

29.231 \fi

29.232 \fi

29.233 \string:}

When the active characters appear in an environment where their French be-
haviour is not wanted they should give an ‘expected’ result. Therefore we define
shorthands at system level as well.

29.234 \declare@shorthand{system}{:}{\string:}

117

29.235 \declare@shorthand{system}{!}{\string!'}
29.236 \declare@shorthand{system}{?}{\string?}
29.237 \declare@shorthand{system}{;}{\string;}
29.238 %1}

We specify that the French group of shorthands should be used when switching
to French.

29.239 \addto\extrasfrench{/,

29.240 \languageshorthands{french}
These characters are ‘turned on’ once, later their definition may vary. Don’t
misunderstand the following code: they keep being active all along the document,
even when leaving French.

29.241 \bbl@activate{:}\bbl@activate{;}%
29.242 \bbl@activate{!}\bbl@activate{?}}
29.243 }

29.244 \addto\noextrasfrench{,

29.245 \bbl@deactivate{:}\bbl@deactivate{;}%
29.246 \bbl@deactivate{!}\bbl@deactivate{7}}
29.247 \fi

A new ‘if’ \FBAutoSpacePunctuation needs to be defined now.

29.248 \newif\ifFBAutoSpacePunctuation \FBAutoSpacePunctuationtrue

\AutoSpaceBeforeFDP \FDP@thinspace and \FDP@colonspace are defined as unbreakable spaces by
\NoAutoSpaceBeforeFDP \autospace@beforeFDP or as \@empty by \noautospace@beforeFDP (internal
commands), user commands \AutoSpaceBeforeFDP and \NoAutoSpaceBeforeFDP
do the same and take care of the flag \ifFBAutoSpacePunctuation in BTEX. Set

the default now for Plain (done later for BTEX).

29.249 \def \autospace@beforeFDP{},

29.250 \def\FDP@thinspace{\penalty\@M\Fthinspacel}/,
29.251 \def \FDP@colonspace{\penalty\@M\Fcolonspacel}}
29.252 \def \noautospace@beforeFDP{\1let\FDPQ@thinspace\Q@empty
29.253 \let\FDP@colonspace\@empty}
29.254 \ifLaTeXe

29.255 \def\AutoSpaceBeforeFDP{\autospace@beforeFDP

29.256 \FBAutoSpacePunctuationtrue}
29.257 \def \NoAutoSpaceBeforeFDP{\noautospace@beforeFDP
29.258 \FBAutoSpacePunctuationfalse}
29.259 \else

29.260 \let\AutoSpaceBeforeFDP\autospace@beforeFDP

29.261 \let\NoAutoSpaceBeforeFDP\noautospace@beforeFDP
29.262 \fi

29.263 \AutoSpaceBeforeFDP

In BMTEX 2 \ttfamily (and hence \texttt) will be redefined ‘AtBeginDocu-
ment’ as \ttfamilyFB so that no space is added before the four ; : ! 7 charac-
ters, even if AutoSpacePunctuation is true. \rmfamily and \sffamily need to
be redefined also (\ttfamily is not always used inside a group, its effect can be
cancelled by \rmfamily or \sffamily).

These redefinitions can be canceled if necessary, for instance to recompile older
documents, see option OriginalTypewriter below.

To be consistent with what is done for ‘double punctuation’ characters,
\ttfamilyFB also switches off insertion of spaces inside French guillemets when
they are typed in as characters with the ‘og’/‘fg’ option in \frenchbsetup{}. This
is also a workaround for the weird behaviour of these characters in verbatim mode.

29.264 \ifLaTeXe

29.265 \let\ttfamilyORI\ttfamily

29.266 \let\rmfamilyORI\rmfamily

29.267 \let\sffamilyORI\sffamily

29.268 \DeclareRobustCommand\ttfamilyFB{}
29.269 \FBAutoSpaceGuillfalse

118

29.270 \noautospace@beforeFDP\ttfamilyORI}%

29.271 \DeclareRobustCommand\rmfamilyFB{},

29.272 \FBAutoSpaceGuilltrue

29.273 \ifFBAutoSpacePunctuation

29.274 \autospace@beforeFDP\rmfamilyORI
29.275 \else

29.276 \noautospace@beforeFDP\rmfamilyORI
29.277 \fi}%

29.278 \DeclareRobustCommand\sffamilyFB{},

29.279 \FBAutoSpaceGuilltrue

29.280 \ifFBAutoSpacePunctuation

29.281 \autospace@beforeFDP\sffamilyORI
29.282 \else

29.283 \noautospace@beforeFDP\sffamilyORI
29.284 \fi}%

29.285 \fi

\NoAutoSpacing

The following command will switch off active punctuation characters (if any)
and disable automatic spacing for French quote characters. It is engine indepen-
dent (works for TEX and XeTEX based engines) and is meant to be used inside a

group.

29.286 \newcommand*{\NoAutoSpacing}{\FBAutoSpaceGuillfalse
29.287 \ifFB@active@punct\shorthandoff{;:!?}\fi
29.288 \ifFB@xetex@punct\XeTeXinterchartokenstate=0\fi}

\og
\fg

29.8 Commands for French quotation marks

The top macros for quotation marks will be called \og (“ouvrez guillemets”) and
\fg (“fermez guillemets”). Another option for typesetting quotes in multilingual
texts is to use the package csquotes.sty and its command \enquote.

29.289 \newcommand*{\og}{\@empty}
29.290 \newcommand*{\fg}{\Cempty}

\guillemotleft
\guillemotright
\textquoteddblleft
\textquoteddblright

IATEX users are supposed to use 8-bit output encodings (T1, LY1,...) to typeset
French, those who still stick to OT1 should call aeguill.sty or a similar package.
In both cases the commands \guillemotleft and \guillemotright will print the
French opening and closing quote characters from the output font. For XeLaTeX,
\guillemotleft and \guillemotright are defined by package xunicode.sty.
We will check ‘AtBeginDocument’ that the proper output encodings are in use
(see end of section 29.18).

We give the following definitions for non-LaTeX users only as a fall-back, they
are welcome to change them for anything better.

29.291 \ifLaTeXe
29.292 \else
29.293 \ifFBunicode

29.294 \def\guillemotleft{\char"0OAB}

29.295 \def\guillemotright{\char"00BB}

29.296 \def\textquotedblleft{\char"201C}

29.297 \def\textquotedblright{\char"201D}

29.298 \else

29.299 \def\guillemotleft{\leavevmode\raise0.25ex

29.300 \hbox{$\scriptscriptstyle\11$}}
29.301 \def\guillemotright{\raise0.25ex

29.302 \hbox{$\scriptscriptstyle\gg$}}
29.303 \def\textquotedblleft{‘‘}

29.304 \def\textquotedblright{’’}

29.305 \fi

29.306 \let\xspace\relax

29.307 \fi

119

The next step is to provide correct spacing after \guillemotleft and be-
fore \guillemotright: a space precedes and follows quotation marks but no
line break is allowed neither after the opening one, nor before the closing one.
\FBguill@spacing which does the spacing, has been fine tuned by Thierry
Bouche. French quotes (including spacing) are printed by \FB@og and \FB@fg,
the expansion of the top level commands \og and \og is different in and outside
French. We'll try to be smart to users of David Carlisle’s xspace package: if this
package is loaded there will be no need for {} or \ to get a space after \fg,
otherwise \xspace will be defined as \relax (done at the end of this file).

29.308 \newcommand*{\FBguill@spacing}{\penalty\@M\hskip.8\fontdimen2\font

29.309 plus.3\fontdimen3\font

29.310 minus.8\fontdimen4\font}

29.311 \DeclareRobustCommand*{\FB@og}{\leavevmode\guillemotleft

29.312 \ifFBOxetex@punct\else\FBguill@spacing\fi}
29.313 \DeclareRobustCommand*{\FB@fg}{\ifdim\lastskip>\z@\unskip\fi

29.314 \ifFB@xetex@punct\else\FBguill@spacing\fi
29.315 \guillemotright\xspace}

The top level definitions for French quotation marks are switched on and off
through the \extrasfrench \noextrasfrench mechanism. Outside French, \og
and \fg will typeset standard English opening and closing double quotes.

29.316 \ifLaTeXe
29.317 \def\bbl@frenchguillemets{\renewcommand*{\og}{\FB@ogl}/

29.318 \renewcommand*{\fg}{\FB@fg}}

29.319 \def\bbl@nonfrenchguillemets{\renewcommand*{\og}{\textquotedblleft}’
29.320 \renewcommand*{\fg}{\ifdim\lastskip>\z@\unskip\fi

29.321 \textquotedblright}}

29.322 \else
29.323 \def\bbl@frenchguillemets{\let\og\FBQog

29.324 \let\fg\FB@fg}

29.325 \def\bbl@nonfrenchguillemets{\def\og{\textquotedblleft}/

29.326 \def\fg{\ifdim\lastskip>\z@\unskip\fi\textquotedblright}}
29.327 \fi

29.328 \addto\extrasfrench{\bbl@frenchguillemets}
29.329 \addto\noextrasfrench{\bbl@nonfrenchguillemets}

29.9 Date in French

\datefrench The macro \datefrench redefines the command \today to produce French dates.

\up
\fup

29.330 \@namedef{date\CurrentOption}{J
29.331 \def\today{{\number\day}\ifnuml=\day {\ier}\fi \space

29.332 \ifcase\month

29.333 \or janvier\or f{\FBeacutel}vrier\or mars\or avril\or mailor
29.334 juinl\or juillet\or ao{\FBucirconflexe}t\or septembre\or
29.335 octobre\or novembre\or d{\FBeacute}cembre\fi

29.336 \space \number\year}}

29.10 Extra utilities

Let’s provide the French user with some extra utilities.

\up eases the typesetting of superscripts like ‘1°"’. Up to version 2.0 of frenchb
\up was just a shortcut for \textsuperscript in BTEX 2¢, but several users com-
plained that \textsuperscript typesets superscripts too high and too big, so we
now define \fup as an attempt to produce better looking superscripts. \up is de-
fined as \fup but can be redefined by \frenchbsetup{FrenchSuperscripts=false}
as \textsuperscript for compatibility with previous versions.

When a font has built-in superscripts, the best thing to do is to just use them,
otherwise \fup has to simulate superscripts by scaling and raising ordinary letters.
Scaling is done using package scalefnt which will be loaded at the end of babel’s

120

loading (frenchb being an option of babel, it cannot load a package while being
read).

29.337 \newif \ifFB@poorman
29.338 \newdimen\FB@Mht
29.339 \ifLaTeXe

29.340

\AtEndOfPackage{\RequirePackage{scalefnt}}

\FB@up@fake holds the definition of fake superscripts. The scaling ratio is 0.65,
raising is computed to put the top of lower case letters (like ‘m’) just under the
top of upper case letters (like ‘M’), precisely 12% down. The chosen settings look
correct for most fonts, but can be tuned by the end-user if necessary by changing
\FBsupR and \FBsupS commands.

\FB@lc is defined as \MakeLowercase to inhibit the uppercasing of super-
scripts (this may happen in page headers with the standard classes but is wrong);
\FB@1c can be redefined to do nothing by option LowercaseSuperscripts=false

of \frenchbsetup{}.

29.341 \newcommand*{\FBsupR}{-0.12}

29.342 \newcommand*{\FBsupS}{0.65}

29.343 \newcommand*{\FB@lc}[1]{\MakeLowercase{#1}}

29.344 \DeclareRobustCommand*{\FBQup@fake} [1]{%

29.345 \settoheight{\FBE@Mht}{M}%

29.346 \addtolength{\FB@Mht}{\FBsupR \FB@Mht}%

29.347 \addtolength{\FB@Mht}{-\FBsupS ex}/,

29.348 \raisebox{\FB@Mht}{\scalefont{\FBsupS}{\FB@lc{#1}}1}%
29.349 }

The only packages I currently know to take advantage of real superscripts are
a) xltxtra used in conjunction with XeLaTeX and OpenType fonts having the
font feature "VerticalPosition=Superior’ (x1txtra defines \realsuperscript and
\fakesuperscript) and b) fourier (from version 1.6) when Expert Utopia fonts
are available.

\FB@up checks whether the current font is a Typel ‘Expert’ (or ‘Pro’) font
with real superscripts or not (the code works currently only with fourier-1.6
but could work with any Expert Typel font with built-in superscripts, see below),
and decides to use real or fake superscripts. It works as follows: the content of
\f@family (family name of the current font) is split by \FB@split into two pieces,
the first three characters (‘fut’ for Fourier, ‘ppl’ for Adobe’s Palatino, . ..) stored
in \FB@firstthree and the rest stored in \FB@suffix which is expected to be ‘x’

or ‘j’ for expert fonts.

29.350 \def\FB@split#1#2#3#4\@nil{\def\FB@firstthree{#1#2#31}/,
29.351 \def\FB@suffix{#4}}

29.352 \def\FB@x{x}

29.353 \def\FBej{j}

29.354 \DeclareRobustCommand*{\FB@up} [1]{%

29.355 \bgroup \FB@poormantrue

29.356 \expandafter\FBOsplit\f@family\@nil

Then \FB@Qup looks for a . £d file named t1fut-sup.£fd (Fourier) or t1ppl-sup.fd
(Palatino), etc. supposed to define the subfamily (fut-sup or ppl-sup, etc.)
giving access to the built-in superscripts. If the .fd file is not found by
\IfFileExists, \FB@up falls back on fake superscripts, otherwise \FB@suffix
is checked to decide whether to use fake or real superscripts.

29.357 \edef\reserved@a{\lowercase{),

29.358 \noexpand\IfFileExists{\f@encoding\FB@firstthree -sup.fd}}}/
29.359 \reserved@a

29.360 {\ifx\FB@suffix\FB@x \FB@poormanfalse\fi

29.361 \ifx\FB@suffix\FB@j \FB@poormanfalse\fi

29.362 \ifFB@poorman \FBQupQfake{#1}/,

29.363 \else \FBQup@real{#1}/,

29.364 \£i}%

29.365 {\FB@up@fake{#1}}%

121

29.366 \egroup}
\FB@up@real just picks up the superscripts from the subfamily (and forces lower-

case).
29.367 \newcommand*{\FB@up@reall} [1]{\bgroup
29.368 \fontfamily{\FB@firstthree -sup}\selectfont \FB@lc{#1}\egroup}

\fup is now defined as \FB@up unless \realsuperscript is defined (occurs with
XeLaTeX calling x1txtra.sty).

29.369 \DeclareRobustCommand*{\fup}[1]{%

29.370 \@ifundefined{realsuperscriptl}’

29.371 {\FBQup{#1}\let\realsuperscript\undefined}
29.372 {\bgroup\let\fakesuperscript\FBCup@fake
29.373 \realsuperscript{\FB@lc{#1}}\egroup}}

Temporary definition of \up, redefined ‘AtBeginDocument’as \fup or \textsuperscript
later on while processing the options of \frenchbsetup{}.

29.374 \providecommand*{\up}{\relax}
Poor man’s definition of \up for Plain.

29.375 \else
29.376 \providecommand*{\up}[1]{\leavevmode\raiselex\hbox{\sevenrm #13}}
29.377 \fi

\ieme Some handy macros for those who don’t know how to abbreviate ordinals:
\ierzg 378 \def\ieme{\up{\lowercase{e}}\xspace?}
\iere29.379 \def\iemes{\up{\lowercase{es}}\xspace}
\iemes29.380 \def\ier{\up{\lowercase{er}}\xspace}
\iers29.381 \def\iers{\up{\lowercase{ers}}\xspace}
\ieres29-382 \def\iere{\up{\lowercase{re}}\xspace}
29.383 \def \ieres{\up{\lowercase{res}}\xspace}

\No And some more macros relying on \up for numbering, first two support macros.
\no29.384 \newcommand*{\FrenchEnumerate} [1]{Y%

\Nos29.385 #1\up{\lowercase{o}}\kern+.3em}
\nos29.386 \newcommand*{\FrenchPopularEnumerate}[1]{%
\primo29.387 #1\up{\lowercase{o}}) \kern+. 3em}
\fprimo) Typing \primo should result in ‘1°

29.388 \def \primo{\FrenchEnumeratel}
29.389 \def\secundo{\FrenchEnumerate2}
29.390 \def\tertio{\FrenchEnumerate3}
29.391 \def\quarto{\FrenchEnumerate4}

while typing \fprimo) gives ‘1°) .
29.392 \def\fprimo) {\FrenchPopularEnumeratel}
29.393 \def \fsecundo) {\FrenchPopularEnumerate2}
29.394 \def\ftertio) {\FrenchPopularEnumerate3}
29.395 \def\fquarto){\FrenchPopularEnumerate4}

Let’s provide four macros for the common abbreviations of “Numéro”.
29.396 \DeclareRobustCommand*{\No}{N\up{\lowercase{o}}\kern+.2em}
29.397 \DeclareRobustCommand*{\no}{n\up{\lowercase{o}}\kern+.2em}
29.398 \DeclareRobustCommand*{\Nos}{N\up{\lowercase{os}}\kern+.2em}
29.399 \DeclareRobustCommand*{\nos}{n\up{\lowercase{os}}\kern+.2em}

\bsc As family names should be written in small capitals and never be hyphenated, we

provide a command (its name comes from Boxed Small Caps) to input them easily.
Note that this command has changed with version 2 of frenchb: a \kernOpt is
used instead of \hbox because \hbox would break microtype’s font expansion; as
a (positive?) side effect, composed names (such as Dupont-Durand) can now be
hyphenated on explicit hyphens. Usage: Jean™\bsc{Duchemin}.

29.400 \DeclareRobustCommand*{\bsc}[1]{\leavevmode\begingroup\kernOpt

29.401 \scshape #1\endgroup}

29.402 \ifLaTeXe\else\let\scshape\relax\fi

122

\degres

Some definitions for special characters. We won’t define \tilde as a Text
Symbol not to conflict with the macro \tilde for math mode and use the name
\tild instead. Note that \boi may not be used in math mode, its name in math
mode is \backslash. \degre can be accessed by the command \r{} for ring
accent.

29.403 \ifLaTeXe

29.404 \DeclareTextSymbol{\at}{T1}{64}

29.405 \DeclareTextSymbol{\circonflexe}{T1}{94}
29.406 \DeclareTextSymbol{\tild}{T1}{126}

29.407 \DeclareTextSymbolDefault{\at}{T1}

29.408 \DeclareTextSymbolDefault{\circonflexe}{T1}
29.409 \DeclareTextSymbolDefault{\tild}{T1}

29.410 \DeclareRobustCommand*{\boi}{\textbackslash}
29.411 \DeclareRobustCommand*{\degre}{\r{}}

29.412 \else

29.413 \def\T@one{T1}

29.414 \ifx\f@encoding\T@one

29.415 \newcommand*{\degre}{\char6}

20.416 \else

29.417 \newcommand*{\degre}{\char23}

29.418 \fi

29.419 \newcommand*{\at}{\char64}

29.420 \newcommand*{\circonflexe}{\char94}

29.421 \newcommand*{\tild}{\char126}

29.422 \newcommand*{\boi}{\backslash}

29.423 \fi

French dates and captions make use of four non-ascii characters (3, &, & and @).
This is fine except for (plain) XeTeX (\accent commands are not implemented),
so we define four new commands to deal with this issue; we also redefine \degre

(it is an accent in LaTeX).

29.424 \newcommand*{\FBagrave}{\‘a}

29.425 \newcommand*{\FBegrave}{\‘e}

29.426 \newcommand*{\FBeacute}{\’e}

29.427 \newcommand*{\FBucirconflexe}{\~u}
29.428 \ifFBunicode

29.429 \ifLaTeXe
29.430 \else
29.431 \def\degre{\char"00B0O}
29.432 \def\FBagrave{\char"0OEO}
29.433 \def\FBegrave{\char"0OE8}
29.434 \def\FBeacute{\char"00E9}
29.435 \def\FBucirconflexe{\char"00FB}
20.436 \fi
29.437 \fi
We now define a macro \degres for typesetting the abbreviation for ‘degrees’

(as in ‘degrees Celsius’). As the bounding box of the character ‘degree’ has very
different widths in CM/EC and PostScript fonts, we fix the width of the bounding
box of \degres to 0.3 em, this lets the symbol ‘degree’ stick to the preceding (e.g.,
45\degres) or following character (e.g., 20~\degres C).

If the TEX Companion fonts are available (textcomp.sty), we pick up
\textdegree from them instead of using emulating ‘degrees’ from the \r{} accent.
Otherwise we overwrite the (poor) definition of \textdegree given in latinl.def,
applemac.def etc. (called by inputenc.sty) by our definition of \degres. We
also advice the user (once only) to use TS1-encoding.

29.438 \ifLaTeXe

29.439 \newcommand*{\degres}{\degre}

29.440 \def\Warning@degree@TSone{’

29.441 \PackageWarning{frenchb.1ldf}{}

29.442 Degrees would look better in TSl-encoding:

123

29.443 \MessageBreak add \protect

29.444 \usepackage{textcomp} to the preamble.

29.445 \MessageBreak Degrees used}}

29.446 \ifFBunicode\global\let\Warning@degree@TSone\relax\fi

29.447 \AtBeginDocument{\expandafter\ifx\csname MQ@TS1\endcsname\relax

29.448 \DeclareRobustCommand*{\degres}{/

29.449 \leavevmode\hbox to 0.3em{\hss\degre\hss}’
29.450 \Warning@degree@TSone

29.451 \global\let\Warning@degree@TSone\relax}/
29.452 \let\textdegree\degres

29.453 \else

29.454 \DeclareRobustCommand*{\degres}{/

29.455 \hbox{\UseTextSymbol{TS1}{\textdegree}}1}
29.456 \fi}

29.457 \else

29.458 \newcommand*{\degres}{/

29.459 \leavevmode\hbox to 0.3em{\hss\degre\hss}}
29.460 \fi

29.11 Formatting numbers

\DecimalMathComma As mentioned in the TEXbook p. 134, the comma is of type \mathpunct in

\StandardMathComma math mode: it is automatically followed by a space. This is convenient in lists
and intervals but unpleasant when the comma is used as a decimal separator
in French: it has to be entered as {,}. \DecimalMathComma makes the comma
be an ordinary character (of type \mathord) in French only (no space added);
\StandardMathComma switches back to the standard behaviour of the comma.

29.461 \newcount\std@mcc

29.462 \newcount\dec@mcc

29.463 \std@mcc=\mathcode‘\,

29.464 \dec@mcc=\std@mcc

29.465 \@tempcnta=\stdOmcc

29.466 \divide\@tempcnta by "1000

29.467 \multiply\@tempcnta by "1000

29.468 \advance\dec@mcc by -\@tempcnta

29.469 \newcommand*{\DecimalMathComma}{\iflanguage{french}’
29.470 {\mathcode‘\,=\dec@mcc}{}%
29.471 \addto\extrasfrench{\mathcode‘\,=\dec@mcc}}

29.472 \newcommand*{\StandardMathComma}{\mathcode‘\,=\std@mcc
29.473 \addto\extrasfrench{\mathcode‘\,=\std@mcc}}

29.474 \addto\noextrasfrench{\mathcode‘\,=\std@mcc}

\nombre The command \nombre is now borrowed from numprint.sty for ITEX 2c. There
is no point to maintain the former tricky code when a package is dedicated to
do the same job and more. For Plain based formats, \nombre no longer formats
numbers, it prints them as is and issues a warning about the change.

Fake command \nombre for Plain based formats, warning users of frenchb
v.1.x. of the change.
29.475 \newcommand*{\nombre} [1] {{#1}\message{’
29.476 *x* \noexpand\nombre no longer formats numbers\string! ***}1}J,

The next definitions only make sense for ITEX 2-. Let’s cleanup and exit if
the format in Plain based.

29.477 \let\FBstop@here\relax

29.478 \def\FBclean@on@exit{\let\ifLaTeXe\undefined
29.479 \let\LaTeXetrue\undefined
29.480 \let\LaTeXefalse\undefined}
29.481 \ifx\magnification\Qundefined

29.482 \else

29.483 \def\FBstop@here{\let\STDOmakecaption\relax
29.484 \FBclean@on@exit

124

29.485 \1df@quit\CurrentOption\endinput}
29.486 \fi
29.487 \FBstop@here

What follows now is for ITEX 2 only. We redefine \nombre for BTEX 2:. A
warning is issued at the first call of \nombre if \numprint is not defined, suggest-
ing what to do. The package numprint is not loaded automatically by frenchb
because of possible options conflict.

29.488 \renewcommand*{\nombre} [1] {\Warning@nombre\numprint{#1}}
29.489 \newcommand*{\Warning@nombre}{/,
29.490 \@ifundefined{numprint}y,

29.491 {\PackageWarning{frenchb.1ldf}{%

29.492 \protect\nombre\space now relies on package numprint.sty,
29.493 \MessageBreak add \protect

29.494 \usepackage [autolanguage] {numprint}\MessageBreak
29.495 to your preamble *after* loading babel, \MessageBreak
29.496 see file numprint.pdf for other options.\MessageBreak
29.497 \protect\nombre\space called}’

29.498 \global\let\Warning@nombre\relax

29.499 \global\let\numprint\undefined

29.500 H3%

29.501 }

29.502 \newcommand*{\ThinSpaceInFrenchNumbers}{}
29.503 \PackageWarning{frenchb.1df}{J

29.504 Type \protect\frenchbsetup{ThinSpaceInFrenchNumbers}
29.505 \MessageBreak Command \protect\ThinSpaceInFrenchNumbers\space
29.506 is no longer\MessageBreak defined in frenchb v.2,}}

29.12 Caption names

The next step consists of defining the French equivalents for the KXTEX caption
names.

\captionsfrench Let’s first define \captionsfrench which sets all strings used in the four standard
document classes provided with EXTEX.

29.507 \@namedef{captions\CurrentOption}{%

29.508 \def\refname{R{\FBeacute}f{\FBeacute}rences}j,
29.509 \def\abstractname{R{\FBeacute}sum{\FBeacute}}’
29.510 \def\bibname{Bibliographie}y,

29.511 \def\prefacename{Pr{\FBeacute}facel}y,

29.512 \def\chaptername{Chapitrel}/

29.513 \def\appendixname{Annexe}y,

29.514 \def\contentsname{Table des mati{\FBegravel}res}
29.515 \def\listfigurename{Table des figures}/,

29.516 \def\listtablename{Liste des tableaux}/,

29.517 \def\indexname{Index}/

29.518 \def\figurename{{\scshape Figure}}/

29.519 \def\tablename{{\scshape Table}}/

“Premiére partie” instead of “Part I17.

29.520 \def\partname{\protect\Q@Fpt partiel}
29.521 \def\@Fpt{{\ifcase\value{part}\or Premi{\FBegrave}re\or

29.522 Deuxi{\FBegravelme\or Troisi{\FBegravel}me\or

29.523 Quatri{\FBegrave}me\or Cinqui{\FBegravel}me\or

29.524 Sixi{\FBegrave}me\or Septi{\FBegrave}me\or Huiti{\FBegravel}me\or
29.525 Neuvi{\FBegravelme\or Dixi{\FBegrave}me\or Onzi{\FBegrave}me\or
29.526 Douzi{\FBegrave}me\or Treizi{\FBegravel}me\or

29.527 Quatorzi{\FBegrave}me\or Quinzi{\FBegravel}me\or

29.528 Seizi{\FBegrave}me\or Dix-septi{\FBegravel}me\or

29.529 Dix-huiti{\FBegrave}me\or Dix-neuvi{\FBegravel}me\or

29.530 Vingti{\FBegrave}me\fi}\space\def\thepart{}1}/

125

29.531 \def\pagename{pagel}’,

29.532 \def\seename{voirl}y,

29.533 \def\alsoname{voir aussil}

29.534 \def\enclname{P.~J. }J

29.535 \def\ccname{Copie {\FBagrave} 1}/

29.536 \def\headtoname{}}

29.537 \def\proofname{D{\FBeacute}monstration}
29.538 \def\glossaryname{Glossairel},

20.539 }

As some users who choose frenchb or francais as option of babel, might
customise \captionsfrenchb or \captionsfrancais in the preamble, we merge
their changes at the \begin{document} when they do so. The other variants of
French (canadien, acadian) are defined by checking if the relevant option was used
and then adding one extra level of expansion.

29.540 \AtBeginDocument{\let\captions@French\captionsfrench

29.541 \@ifundefined{captionsfrenchbl}y

29.542 {\let\captions@Frenchb\relax}/

29.543 {\let\captions@Frenchb\captionsfrenchb},
29.544 \@ifundefined{captionsfrancais}y,

29.545 {\let\captions@Francais\relax}/

29.546 {\let\captions@Francais\captionsfrancais},
29.547 \def\captionsfrench{\captions@French

29.548 \captions@Francais\captions@Frenchb}
29.549 \def\captionsfrancais{\captionsfrench}y,
29.550 \def\captionsfrenchb{\captionsfrench},

29.551 \iflanguage{french}{\captionsfrench}{}%
29.552 }

29.553 \@ifpackagewith{babel}{canadien}{}
29.554 \def\captionscanadien{\captionsfrench},
29.555 \def\datecanadien{\datefrench}y,

29.556 \def\extrascanadien{\extrasfrench}/,
29.557 \def\noextrascanadien{\noextrasfrench}/,
29.558 }{}

29.559 \@ifpackagewith{babel}{acadian}{}

29.560 \def\captionsacadian{\captionsfrench}y,
29.561 \def\dateacadian{\datefrench},

29.562 \def\extrasacadian{\extrasfrench},
29.563 \def\noextrasacadian{\noextrasfrench}/,

20564 }}

\CaptionSeparator

Let’s consider now captions in figures and tables. In French, captions in figures
and tables should be printed with endash (‘—’) instead of the standard ‘:’.

The standard definition of \@makecaption (e.g., the one provided in article.cls,
report.cls, book.cls which is frozen for WTEX 2¢ according to Frank Mittelbach),
has been saved in \STD@makecaption before making ‘:’ active (see section 29.7).
‘AtBeginDocument’ we compare it to its current definition (some classes like
koma-script classes, AMS classes, ua-thesis.cls...change it). If they are iden-
tical, frenchb just adds a hook called \CaptionSeparator to \@makecaption,
\CaptionSeparator defaults to ‘: ’ as in the standard \@makecaption, and will
be changed to ¢ —’ in French. If the definitions differ, frenchb doesn’t overwrite
the changes, but prints a message in the .log file.

29.565 \newcommand{\FBWarning} [2] {\PackageWarning{#1}{#2}}
29.566 \def\CaptionSeparator{\string:\space}

29.567 \long\def \FBOmakecaption#1#2{J

29.568 \vskip\abovecaptionskip

29.569 \sbox\@tempboxa{#1\CaptionSeparator #2}}

29.570 \ifdim \wd\@tempboxa >\hsize

29.571 #1\CaptionSeparator #2\par
20.572 \else
29.573 \global \@minipagefalse

126

29.574 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}},
29575 \fi

29.576 \vskip\belowcaptionskip}

29.577 \AtBeginDocument{/

29.578 \ifx\Omakecaption\STD@makecaption

29.579 \global\let\@makecaption\FB@makecaption

20.580 \else

29.581 \@ifundefined{@makecaptionl}y

29.582 {\let\@makecaption\undefined}’

29.583 {\FBWarning{frenchb.1df}%

29.584 {The definition of \protect\@makecaption\space

29.585 has been changed,\MessageBreak

29.586 frenchb will NOT customise it;\MessageBreak reportedl}
29.587 Yh

29.588 \fi

29.589 \let\FB@makecaption\relax

29.590 \let\STDOmakecaption\relax

29.591 }

29.592 \addto\extrasfrench{’%

29.593 \def\CaptionSeparator{\space\textendash\space}}
29.594 \addto\noextrasfrench{y,

29.595 \def\CaptionSeparator{\string:\space}}

29.13 French lists

\1listFB Vertical spacing in general lists should be shorter in French texts than the defaults
\1listORI provided by ITEX. Note that the easy way, just changing values of vertical spacing
parameters when entering French and restoring them to their defaults on exit
would not work; as most lists are based on \1list we will define a variant of \1ist

(\1istFB) to be used in French.

The amount of vertical space before and after a list is given by \topsep +
\parskip (+ \partopsep if the list starts a new paragraph). IMHO, \parskip
should be added only when the list starts a new paragraph, so I subtract \parskip
from \topsep and add it back to \partopsep; this will normally make no difference
because \parskip’s default value is Opt, but will be noticeable when \parskip is
not null.

\endlist is not redefined, but \endlistORI is provided for the users who
prefer to define their own lists from the original command, they can code:
\begin{1listORI}{}{} \end{1listORI}

29.596 \let\1istORI\1list
29.597 \let\endlistORI\endlist
29.598 \def \FB@listsettings{%

29.599 \setlength{\itemsep}{0.4ex plus 0.2ex minus 0.2ex}}
29.600 \setlength{\parsep}{0.4ex plus 0.2ex minus 0.2ex}}
29.601 \setlength{\topsep}{0.8ex plus 0.4ex minus 0.4ex}%
29.602 \setlength{\partopsep}{0.4ex plus 0.2ex minus 0.2ex}%

\parskip is of type ‘skip’, its mean value only (not the glue) should be subtracted
from \topsep and added to \partopsep, so convert \parskip to a ‘dimen’ using

\@tempdima.
29.603 \@tempdima=\parskip
29.604 \addtolength{\topsep}{-\@tempdimaly
29.605 \addtolength{\partopsep}{\@tempdima}}%

29.606 \def\1istFB#1#2{\1istORI{#1}{\FB@listsett ings #2339,
29.607 \let\endlistFB\endlist

\itemizeFB Let’s now consider French itemize lists. They differ from those provided by the
\itemizeORI standard KXTEX 2¢ classes:
\bbl@frenchlabelitems

\bblenonfrenchlabelitems e vertical spacing between items, before and after the list, should be null with

no glue added;

127

e the item labels of a first level list should be vertically aligned on the para-
graph’s first character (i.e. at \parindent from the left margin);

e the ‘e’ is never used in French itemize-lists, a long dash ‘-~ is preferred for all
levels. The item label used in French is stored in \FrenchLabelItem}, it de-
faults to ‘~" and can be changed using \frenchbsetup{} (see section 29.18).

29.608 \newcommand*{\FrenchLabelItem}{\textendash}
29.609 \newcommand*{\Frlabelitemi}{\FrenchLabelItem}
29.610 \newcommand*{\Frlabelitemii}{\FrenchLabelItem}
29.611 \newcommand*{\Frlabelitemiii}{\FrenchLabelItem}
29.612 \newcommand*{\Frlabelitemiv}{\FrenchLabelItem}

\bbl@frenchlabelitems saves current itemize labels and changes them to their
value in French. This code should never be executed twice in a row, so we
need a new flag that will be set and reset by \bbl@nonfrenchlabelitems and
\bbl@frenchlabelitems.

29.613 \newif\ifFB@enterFrench \FB@enterFrenchtrue

29.614 \def\bbl@frenchlabelitems{/,

29.615 \ifFB@enterFrench

29.616 \let\@1tiORI\labelitemi

29.617 \let\@1tiiORI\labelitemii
29.618 \let\@ltiiiORI\labelitemiii
29.619 \let\@ltivORI\labelitemiv
29.620 \let\labelitemi\Frlabelitemi
29.621 \let\labelitemii\Frlabelitemii
29.622 \let\labelitemiii\Frlabelitemiii
29.623 \let\labelitemiv\Frlabelitemiv
29.624 \FB@enterFrenchfalse

29.625 \fi

29.626 }

29.627 \let\itemizeORI\itemize

29.628 \let\enditemizeORI\enditemize
29.629 \let\enditemizeFB\enditemize
29.630 \def\itemizeFB{%

29.631 \ifnum \@itemdepth >\thr@@\@toodeep\else

29.632 \advance\@itemdepth\@ne

29.633 \edef\@itemitem{labelitem\romannumeral\the\@itemdepthl}’
29.634 \expandafter

29.635 \1istORI

29.636 \csname\@itemitem\endcsname

29.637 {\settowidth{\labelwidth}{\csname\@itemitem\endcsname}’
29.638 \setlength{\leftmargin}{\labelwidth}%

29.639 \addtolength{\leftmargin}{\labelsepl}/,

29.640 \ifnum\@listdepth=0

29.641 \setlength{\itemindent}{\parindent}/

29.642 \else

29.643 \addtolength{\leftmargin}{\parindent}%

29.644 \fi

29.645 \setlength{\itemsep}{\z@3}7

29.646 \setlength{\parsep}{\z@}%

29.647 \setlength{\topsep}{\z@}%

29.648 \setlength{\partopsep}{\z@}%

\parskip is of type ‘skip’, its mean value only (not the glue) should be subtracted
from \topsep and added to \partopsep, so convert \parskip to a ‘dimen’ using
\@tempdima.

29.649 \@tempdima=\parskip

29.650 \addtolength{\topsep}{-\@tempdimal}’
29.651 \addtolength{\partopsep}{\@tempdimal}}%
29.652 \fi}

The user’s changes in labelitems are saved when leaving French for further use
when switching back to French. This code should never be executed twice in a

128

\bbl@frenchindent
\bbl@nonfrenchindent

row (toggle with \bbl@frenchlabelitems).

29.653 \def\bbl@nonfrenchlabelitems{’
29.654 \ifFB@enterFrench
29.655 \else

29.656 \let\Frlabelitemi\labelitemi
29.657 \let\Frlabelitemii\labelitemii
29.658 \let\Frlabelitemiii\labelitemiii
29.659 \let\Frlabelitemiv\labelitemiv
29.660 \let\labelitemi\@ltiORI

29.661 \let\labelitemii\@1tiiORI
29.662 \let\labelitemiii\@1tiiiORI
29.663 \let\labelitemiv\@1tivORI
29.664 \FB@enterFrenchtrue

29.665 \fi

29.666 }

29.14 French indentation of sections

In French the first paragraph of each section should be indented, this is another
difference with US-English. This is controlled by the flag \if@afterindent.

We will need to save the value of the flag \if@afterindent ‘AtBeginDocument’
before eventually changing its value.

29.667 \def\bbl@frenchindent{\let\@afterindentfalse\@afterindenttrue

29.668 \@afterindenttrue}
29.669 \def\bbl@nonfrenchindent{\let\@afterindentfalse\@aifORI
29.670 \@afterindentfalse}

29.15 Formatting footnotes

The bigfoot package deeply changes the way footnotes are handled. When
bigfoot is loaded, we just warn the user that frenchb will drop the customi-
sation of footnotes.

The layout of footnotes is controlled by two flags \ifFBAutoSpaceFootnotes
and \ifFBFrenchFootnotes which are set by options of \frenchbsetup{} (see
section 29.18). Notice that the layout of footnotes does not depend on the current
language (just think of two footnotes on the same page looking different because
one was called in a French part, the other one in English!).

When \ifFBAutoSpaceFootnotes is true, \@footnotemark (whose definition
is saved at the \begin{document} in order to include any customisation that
packages might have done) is redefined to add a thin space before the number or
symbol calling a footnote (any space typed in is removed first). This has no effect
on the layout of the footnote itself.

29.671 \AtBeginDocument{\@ifpackageloaded{bigfootl}/

29.672 {\FBWarning{frenchb.1df}%

29.673 {bigfoot package in use.\MessageBreak

29.674 frenchb will NOT customise footnotes;\MessageBreak
29.675 reported}}’

29.676 {\let\@footnotemarkORI\@footnotemark

29.677 \def\@footnotemarkFB{\leavevmode\unskip\unkern
29.678 \,\@footnotemarkORI},
29.679 \ifFBAutoSpaceFootnotes

29.680 \let\@footnotemark\@footnotemarkFB

29.681 \fi}%

29.682 X

We then define \@makefntextFB, a variant of \@makefntext which is responsi-
ble for the layout of footnotes, to match the specifications of the French ‘Imprimerie
Nationale’: footnotes will be indented by \parindentFFN, numbers (if any) type-
set on the baseline (instead of superscripts) and followed by a dot and an half
quad space. Whenever symbols are used to number footnotes (as in \thanks for

129

instance), we switch back to the standard layout (the French layout of footnotes
is meant for footnotes numbered by Arabic or Roman digits).

The value of \parindentFFN will be redefined at the \begin{document}, as
the maximum of \parindent and 1.5em wunless it has been set in the preamble
(the weird value 10in is just for testing whether \parindentFFN has been set or
not).

29.683 \newcommand*{\dotFFN}{.}

29.684 \newcommand*{\kernFFN}{\kern .5em}

29.685 \newdimen\parindentFFN

29.686 \parindentFFN=10in

29.687 \def\ftnISsymbol{\@fnsymbol\c@footnotel}

29.688 \long\def\OmakefntextFB#1{\ifx\thefootnote\ftnISsymbol

29.689 \@makefntextORI{#1}},

29.690 \else

29.691 \parindent=\parindentFFN

29.692 \rule\z@\footnotesep

29.693 \setbox\@tempboxa\hbox{\@thefnmark}’
29.694 \ifdim\wd\@tempboxa>\z@

29.695 \1llap{\@thefnmark}\dotFFN\kernFFN
29.696 \fi #1

29.697 \£i}V

We save the standard definition of \@makefntext at the \begin{document},
and then redefine \@makefntext according to the value of flag \ifFBFrenchFootnotes
(true or false).

29.698 \AtBeginDocument{\@ifpackageloaded{bigfoot}{}/

29.699 {\ifdim\parindentFFN<10in

29.700 \else

29.701 \parindentFFN=\parindent
29.702 \ifdim\parindentFFN<1.5em\parindentFFN=1.5em\fi
29.703 \fi

29.704 \let\@makefntextORI\@makefntext
29.705 \long\def\@makefntext#1{%

29.706 \ifFBFrenchFootnotes

29.707 \@makefntextFB{#1}/

29.708 \else

29.709 \@makefntextORI{#1}Y
29.710 \fi}¥%

29.711 hyA

29.712 }

For compatibility reasons, we provide definitions for the commands dealing
with the layout of footnotes in frenchb version 1.6. \frenchbsetup{} (see in sec-
tion 29.18) should be preferred for setting these options. \StandardFootnotes
may still be used locally (in minipages for instance), that’s why the test
\ifFBFrenchFootnotes is done inside \@makefntext.

29.713 \newcommand*{\AddThinSpaceBeforeFootnotes}{\FBAutoSpaceFootnotestrue}
29.714 \newcommand*{\FrenchFootnotes}{\FBFrenchFootnotestrue}
29.715 \newcommand*{\StandardFootnotes}{\FBFrenchFootnotesfalse}

29.16 Global layout

In multilingual documents, some typographic rules must depend on the current
language (e.g., hyphenation, typesetting of numbers, spacing before double punc-
tuation. ..), others should, IMHO, be kept global to the document: especially the
layout of lists (see 29.13) and footnotes (see 29.15), and the indentation of the
first paragraph of sections (see 29.14).

From version 2.2 on, if frenchb is babel’s “main language” (i.e. last language
option at babel’s loading), frenchb customises the layout (i.e. lists, indentation of
the first paragraphs of sections and footnotes) in the whole document regardless

130

\FrenchLayout
\StandardLayout

\FBtextellipsis

the current language. On the other hand, if frenchb is not babel’s “main language”,
it leaves the layout unchanged both in French and in other languages.

The former commands \FrenchLayout and \StandardLayout are kept for com-
patibility reasons but should no longer be used.

29.716 \newcommand*{\FrenchLayout}{%

29.717 \FBGlobalLayoutFrenchtrue

29.718 \PackageWarning{frenchb.1df}},

29.719 {\protect\FrenchLayout\space is obsolete. Please use\MessageBreak

29.720 \protect\frenchbsetup{GlobalLayoutFrench} instead.}/,

29.721 }

29.722 \newcommand*{\StandardLayout}{/
29.723 \FBReduceListSpacingfalse
29.724 \FBCompactItemizefalse

29.725 \FBStandardItemLabelstrue
29.726 \FBIndentFirstfalse

29.727 \FBFrenchFootnotesfalse

29.728 \FBAutoSpaceFootnotesfalse
29.729 \PackageWarning{frenchb.1df}/,

29.730 {\protect\StandardLayout\space is obsolete. Please use\MessageBreak
29.731 \protect\frenchbsetup{StandardLayout} instead.}%
29.732 }

29.733 \@onlypreamble\FrenchLayout
29.734 \@onlypreamble\StandardLayout

29.17 Dots...

ETEX 2¢’s standard definition of \dots in text-mode is \textellipsis which
includes a \kern at the end; this space is not wanted in some cases (before a
closing brace for instance) and \kern breaks hyphenation of the next word. We
define \FBtextellipsis for French (in TEX 2¢ only).

The \if construction in the IXTEX 2¢ definition of \dots doesn’t allow the use
of xspace (xspace is always followed by a \fi), so we use the AMS-I¥TEX con-
struction of \dots; this has to be done ‘AtBeginDocument’ not to be overwritten
when amsmath. sty is loaded after babel.

LY1 has a ready made character for \textellipsis, it should be used in
French too (pointed out by Bruno Voisin).

29.735 \DeclareTextSymbol{\FBtextellipsis}{LY1}{133}
29.736 \DeclareTextCommandDefault{\FBtextellipsis}{/,
29.737 .\kern\fontdimen3\font.\kern\fontdimen3\font.\xspace}

\Mdots@ and \Tdots@ORI hold the definitions of \dots in Math and Text mode.
They default to those of amsmath-2.0, and will revert to standard B TEX definitions
‘AtBeginDocument’, if amsmath has not been loaded. \Mdots@ doesn’t change
when switching from/to French, while \Tdots@ is \FBtextellipsis in French
and \Tdots@ORI otherwise.

29.738 \newcommand*{\Tdots@ORI}{\@xp\textellipsis}

29.739 \newcommand*{\Tdots@}{\Tdots@ORI}

29.740 \newcommand*{\Mdots@}{\@xp\mdots@}

29.741 \AtBeginDocument{\DeclareRobustCommand*{\dots}{\relax

29.742 \csname\ifmmode M\else T\fi dots@\endcsname},
29.743 \@ifundefined{@xp}{\let\@xp\relax}{}/

29.744 \@ifundefined{mdots@}{\let\Tdots@ORI\textellipsis
29.745 \let\Mdots@\mathellipsis
29.746 \let\mdots@\undefined}{}}

29.747 \def\bbl@frenchdots{\let\Tdots@\FBtextellipsis}
29.748 \def\bbl@nonfrenchdots{\let\Tdots@\Tdots@ORI}
29.749 \addto\extrasfrench{\bbl@frenchdots}

29.750 \addto\noextrasfrench{\bbl@nonfrenchdots}

131

29.18 Setup options: keyval stuff

We first define a collection of conditionals with their defaults (true or false).

29.751 \newif\ifFBStandardLayout \FBStandardLayouttrue

29.752 \newif \ifFBGlobalLayoutFrench \FBGlobalLayoutFrenchfalse
29.753 \newif\ifFBReduceListSpacing \FBReduceListSpacingfalse
29.754 \newif\ifFBCompactItemize \FBCompactItemizefalse

29.755 \newif\ifFBStandardItemLabels \FBStandardItemLabelstrue
29.756 \newif \ifFBStandardLists \FBStandardListstrue

29.757 \newif \ifFBIndentFirst \FBIndentFirstfalse

29.758 \newif\ifFBFrenchFootnotes \FBFrenchFootnotesfalse
29.759 \newif\ifFBAutoSpaceFootnotes \FBAutoSpaceFootnotesfalse
29.760 \newif\ifFBOriginalTypewriter \FBOriginalTypewriterfalse
29.761 \newif\ifFBThinColonSpace \FBThinColonSpacefalse

29.762 \newif\ifFBThinSpaceInFrenchNumbers \FBThinSpaceInFrenchNumbersfalse
29.763 \newif\ifFBFrenchSuperscripts \FBFrenchSuperscriptstrue
29.764 \newif\ifFBLowercaseSuperscripts \FBLowercaseSuperscriptstrue
29.765 \newif \ifFBPartNameFull \FBPartNameFulltrue

29.766 \newif \ifFBSuppressWarning \FBSuppressWarningfalse
29.767 \newif \ifFBShowOptions \FBShowOptionsfalse

The defaults values of these flags have been set so that frenchb does not
change anything regarding the global layout. \bbl@main@language (set by the last
option of babel) controls the global layout of the document. We check the current
language ‘AtEndOfPackage’ (it is \bbl@main@language); if it is French, the values
of some flags have to be changed to ensure a French looking layout for the whole
document (even in parts written in languages other than French); the end-user
will then be able to customise the values of all these flags with \frenchbsetup{}.

29.768 \AtEndOfPackage{/
29.769 \iflanguage{french}{\FBReduceListSpacingtrue

29.770 \FBCompactItemizetrue
29.771 \FBStandardItemLabelsfalse
29.772 \FBIndentFirsttrue
29.773 \FBFrenchFootnotestrue
29.774 \FBAutoSpaceFootnotestrue
29.775 \FBGlobalLayoutFrenchtruel},
29.776 {3
29.777 }
From version 2.0 on, all setup options are handled by one command \frenchbsetup

\frenchbsetup

using the keyval syntax. Let’s now define this command which reads and sets the
options to be processed later (at \begin{document}) by \FBprocess@options. It
can only be called in the preamble.

29.778 \newcommand*{\frenchbsetup} [1]{%
29.779 \setkeys{FB}{#11}/,

20.780 }

29.781 \@onlypreamble\frenchbsetup

frenchb being an option of babel, it cannot load a package (keyval) while
frenchb.1df is read, so we defer the loading of keyval and the options setup
at the end of babel’s loading.

StandardLayout resets the layout in French to the standard layout defined
par the INTEX class and packages loaded. It deals with lists, indentation of first
paragraphs of sections and footnotes. Other keys, entered after StandardLayout
in \frenchbsetup, can overrule some of the StandardLayout settings.

When French is the main language, GloballLayoutFrench forces the layout in
French and (as far as possible) outside French to meet the French typographic
standards.

29.782 \AtEndOfPackage{%
29.783 \RequirePackage{keyvall}y,
29.784 \define@key{FB}{StandardLayout}[truel’

132

29.785
29.786
29.787
29.788
29.789
29.790
29.791
29.792
29.793
29.794
29.795
29.796
29.797
29.798
29.799
29.800
29.801
29.802
29.803
29.804
29.805
29.806
29.807
29.808
29.809
29.810
29.811
29.812
29.813
29.814
29.815
29.816
29.817
29.818
29.819
29.820
29.821
29.822
29.823
29.824
29.825
29.826
29.827
29.828
29.829
29.830
29.831
29.832
29.833
29.834
29.835
29.836
29.837
29.838
29.839
29.840
29.841
29.842
29.843
29.844
29.845
29.846

{\csname FBStandardLayout#1\endcsname
\ifFBStandardLayout
\FBReduceListSpacingfalse
\FBCompactItemizefalse
\FBStandardItemLabelstrue
\FBIndentFirstfalse
\FBFrenchFootnotesfalse
\FBAutoSpaceFootnotesfalse
\FBGlobalLayoutFrenchfalse
\else
\FBReduceListSpacingtrue
\FBCompactItemizetrue
\FBStandardItemLabelsfalse
\FBIndentFirsttrue
\FBFrenchFootnotestrue
\FBAutoSpaceFootnotestrue
\fi}%
\define@key{FB}{GlobalLayoutFrench} [truel’
{\csname FBGlobalLayoutFrench#1\endcsname
\ifFBGloballLayoutFrench
\iflanguage{french}j,
{\FBReduceListSpacingtrue
\FBCompactItemizetrue
\FBStandardItemLabelsfalse
\FBIndentFirsttrue
\FBFrenchFootnotestrue
\FBAutoSpaceFootnotestruel}/,
{\PackageWarning{frenchb.1df}/
{Option ‘GlobalLayoutFrench’ skipped:
\MessageBreak French is *not*
babel’s last option.\MessageBreakl}/,
\FBGlobalLayoutFrenchfalse},
\£i}%
\define@key{FB}{ReduceListSpacing} [truel’
{\csname FBReduceListSpacing#1\endcsname}
\define@key{FB}{CompactItemize}[truel’
{\csname FBCompactItemize#1\endcsnamel/,
\define@key{FB}{StandardItemLabels} [truel’
{\csname FBStandardItemLabels#1\endcsnamel},
\define@key{FB}{ItemLabels}{’,
\renewcommand*{\FrenchLabelItem}{#1}}%
\define@key{FB}{ItemLabeli}{%
\renewcommand*{\Frlabelitemi}{#1}}%
\define@key{FB}{ItemLabelii}{%
\renewcommand*{\Frlabelitemii}{#1}}%
\define@key{FB}{ItemLabeliiil}{%
\renewcommand*{\Frlabelitemiiil}{#1}}%
\define@key{FB}{ItemLabeliv}{}
\renewcommand*{\Frlabelitemiv}{#1}}%
\define@key{FB}{StandardLists} [truel?
{\csname FBStandardLists#1\endcsname
\ifFBStandardLists
\FBReduceListSpacingfalse
\FBCompactItemizefalse
\FBStandardItemLabelstrue
\else
\FBReduceListSpacingtrue
\FBCompactItemizetrue
\FBStandardItemLabelsfalse
\£i}%
\define@key{FB}{IndentFirst} [truel¥
{\csname FBIndentFirst#1\endcsname}y,

133

29.847 \define@key{FB}{FrenchFootnotes} [truel¥

29.848 {\csname FBFrenchFootnotes#1\endcsname}j,
29.849 \define@key{FB}{AutoSpaceFootnotes} [truel’

29.850 {\csname FBAutoSpaceFootnotes#1\endcsnamel},
29.851 \define@key{FB}{AutoSpacePunctuation}[truel’,

29.852 {\csname FBAutoSpacePunctuation#l\endcsname},
29.853 \define@key{FB}{0OriginalTypewriter}[truel’

29.854 {\csname FBOriginalTypewriter#1\endcsname},
29.855 \define@key{FB}{ThinColonSpace} [truel’

29.856 {\csname FBThinColonSpace#1\endcsnamel}y

29.857 \define@key{FB}{ThinSpaceInFrenchNumbers} [truel¥

29.858 {\csname FBThinSpaceInFrenchNumbers#1\endcsname}y,
29.859 \define@key{FB}{FrenchSuperscripts}[truel’

29.860 {\csname FBFrenchSuperscripts#1\endcsname}
29.861 \define@key{FB}{LowercaseSuperscripts}[truel’

29.862 {\csname FBLowercaseSuperscripts#1\endcsname}
29.863 \define@key{FB}{PartNameFull} [truel¥

29.864 {\csname FBPartNameFull#1\endcsnamel,

29.865 \define@key{FB}{SuppressWarning} [truel’

29.866 {\csname FBSuppressWarning#1\endcsname

29.867 \1fFBSuppressWarning

29.868 \renewcommand{\FBWarning} [2] {\relax}/,
29.869 \else

29.870 \renewcommand{\FBWarning} [2]{/

29.871 \PackageWarning{##1}{##2}}/,
29.872 \fi}

29.873 \define@key{FB}{ShowOptions}[truel’

29.874 {\csname FBShowOptions#1\endcsnamely,

Inputing French quotes as single characters when they are available on the key-
board (through a compose key for instance) is more comfortable than typing
\og and \fg. The purpose of the following code is to map the French quote
characters to \og\ignorespaces and {\fg} respectively when the current lan-
guage is French, and to \guillemotleft and \guillemotright otherwise (think
of German quotes); thus correct unbreakable spaces will be added automatically
to French quotes. The quote characters typed in depend on the input encoding, it
can be single-byte (latinl, latin9, applemac,...) or multi-bytes (utf-8, utf8x). We
first check whether XeTeX is used or not, if not the package inputenc has to be
loaded before the \begin{document} with the proper coding option, so we check

if \DeclareInputText is defined.

29.875 \define@key{FB}{og}{%

29.876 \newcommand*{\FB@Qog}{/

29.877 \iflanguage{french}y,

29.878 {\ifFBAutoSpaceGuill\FBQog\ignorespaces
29.879 \else\guillemotleft

29.880 \fi}%

29.881 {\guillemotleftl}}/,

29.882 \@ifundefined{XeTeXrevision}’

29.883 {\AtBeginDocument

29.884 {\@ifundefined{DeclareInputText}/

29.885 {\PackageWarning{frenchb.1df}’

29.886 {Option ‘og’ requires package inputenc.\MessageBreak}}
29.887 \let\DeclareInputText\undefined

29.888 Y

29.889 {\@ifundefined{uc@dclcl}y,

if \uc@dclc is undefined, utf8x is not loaded. ..

29.890

{\@ifundefined{DeclareUnicodeCharacterl},

if \DeclareUnicodeCharacter is undefined, utf8 is not loaded either, we as-
sume 8-bit character input encoding. Package MULEenc.sty (from CJK) defines
\mule@def to map characters to control sequences.

134

29.891 {\@tempcnta‘#1\relax

29.892 \@ifundefined{mule@def},

29.893 {\DeclareInputText{\the\@tempcnta}{\FBQ@Qogl}/
29.894 \let\mule@def\undefinedl}

29.895 {\mule@def{11}{{\FB@Qog}}}/

29.896 \let\DeclareUnicodeCharacter\undefined

29.897 hyA

utf8 loaded, use \DeclareUnicodeCharacter,

29.898 {\DeclareUnicodeCharacter{00AB}{\FB@Qogl}}%
29.899 \let\uc@dclc\undefined
29.900 jyA
utf8x loaded, use \uc@dclc,
29.901 {\uc@dclc{171}{default}{\FB0Qog}}%
29.902 hyA
29.903 i
29.904 \let\XeTeXrevision\undefined
29.905 Y
XeTeX in use,
29.906 {\ifFB@xetex@punct

XeTeXinterchartokenstate is defined, nothing to do here, see subsection 29.7.
29.907 \else

then an old XeTeX in use, the following trick for defining the active quote character
is borrowed from inputenc.dtx.

29.908 \catcode‘#1=\active
29.909 \bgroup

29.910 \uccode‘\~‘#1
29.911 \uppercase{’,
29.912 \egroup

29.913 \def~%

29.914 }H\FBe@og}’

29.915 \fi

29.916 o

29.917 Y

Same code for the closing quote.
29.918 \define@key{FB}{fg}{/

29.919 \newcommand*{\FB@Qfg}{/

29.920 \iflanguage{french}/,

29.921 {\ifFBAutoSpaceGuill\FBQfg

29.922 \else\guillemotright

20.923 \fi}%

29.924 {\guillemotright}}’

29.925 \@ifundefined{XeTeXrevision}y,

29.926 {\AtBeginDocument

29.927 {\@ifundefined{DeclareInputText}/

29.928 {\PackageWarning{frenchb.1df}%

29.929 {Option ‘fg’ requires package inputenc.\MessageBreak}}
29.930 \let\DeclareInputText\undefined

29.931 Y

29.932 {\@ifundefined{uc@dclc},

29.933 {\@ifundefined{DeclareUnicodeCharacter},

29.934 {\@tempcnta‘#1\relax

29.935 \@ifundefined{mule@def},

29.936 {\DeclareInputText{\the\@tempcnta}{{\FBe@fg}1}7
29.937 \let\mule@def\undefined

29.938 Yh

29.939 {\mule@def{27}{{\FBe@fg}}}’

29.940 \let\DeclareUnicodeCharacter\undefined
20.941 Y

29.942 {\DeclareUnicodeCharacter{00BB}{{\FB@@fg}}/

135

29.943
29.944
29.945
29.946
29.947
29.948
29.949
29.950
29.951
29.952
29.953
29.954
29.955
29.956
29.957
29.958
29.959
29.960
29.961
29.962

29.963 }

Yh

Y
\let\uc@dclc\undefined
Y
{\uc@dclc{187}{default}{{\FBOQfg}}}/
Y
Y
\let\XeTeXrevision\undefined
Y
{\ifFB@xetex@punct
\else
\catcode‘#1=\active
\bgroup
\uccode‘\~‘#1%
\uppercase{’,
\egroup
\def~%
HA{\FBoefg}}%
\fi
Y

\FBprocess@options \FBprocess@options processes the options, it is called once at \begin{document}.

29.964 \newcommand*{\FBprocess@options}{/

Nothing has to be done here for StandardLayout and StandardLists (the in-
volved flags have already been set in \frenchbsetup{} or before (at babel’s End-

OfPackage).
The next three options deal with the layout of lists in French.
ReducelListSpacing reduces the vertical spaces between list items in French

(done by changing \1ist to \1istFB). When GloballayoutFrench is true (the
default), the same is done outside French except for languages that force a different

setting.

29.965
29.966
29.967
29.968
29.969
29.970
29.971
29.972
29.973
29.974
29.975
29.976
29.977
29.978
29.979
29.980

\ifFBReducelListSpacing

\addto\extrasfrench{\let\1list\1istFB

\let\endlist\endlistFB}

\addto\noextrasfrench{\ifFBGlobalLayoutFrench

\else

\let\1list\1listFB

\let\endlist\endlistFB
\else

\let\1list\1listORI

\let\endlist\endlistORI
\fi}V

\addto\extrasfrench{\let\1list\1istORI

\let\endlist\endlistORI}%

\addto\noextrasfrench{\let\list\1istORI

\fi

CompactItemize suppresses the vertical spacing between list items in French
(done by changing \itemize to \itemizeFB). When GlobalLayoutFrench is true

\let\endlist\endlistORI}%

the same is done outside French.

29.981
29.982
29.983
29.984
29.985
29.986
29.987
29.988
29.989

\@ifpackageloaded{enumitem}{’
\FBCompactItemizefalse
\FBWarning{frenchb.1df}},

{Setting CompactItemize=false for compatibility\MessageBreak

with enumitem package,}}V

{3%

\ifFBCompactItemize

\addto\extrasfrench{\let\itemize\itemizeFB

\let\enditemize\enditemizeFB}J

136

29.990 \addto\noextrasfrench{\ifFBGlobalLayoutFrench

29.991 \let\itemize\itemizeFB
29.992 \let\enditemize\enditemizeFB
29.993 \else
29.994 \let\itemize\itemizeORI
29.995 \let\enditemize\enditemizeORI
29.996 \fi}¥%
29.997 \else
29.998 \addto\extrasfrench{\let\itemize\itemizeORI
29.999 \let\enditemize\enditemizeORI},
29.1000 \addto\noextrasfrench{\let\itemize\itemizeORI
29.1001 \let\enditemize\enditemizeORI},

29.1002 \fi

StandardItemLabels resets labelitems in French to their standard values set
by the BTEX class and packages loaded. When GlobalLayoutFrench is true la-
belitems are identical inside and outside French.

29.1003 \ifFBStandardItemLabels

29.1004 \addto\extrasfrench{\bbl@nonfrenchlabelitems}/,
29.1005 \addto\noextrasfrench{\bbl@nonfrenchlabelitems},
29.1006 \else

29.1007 \addto\extrasfrench{\bbl@frenchlabelitems},
29.1008 \addto\noextrasfrench{\ifFBGloballLayoutFrench
29.1009 \bbl@frenchlabelitems
29.1010 \else

29.1011 \bbl@nonfrenchlabelitems
29.1012 \fi}%

29.1013 \fi

IndentFirst forces the first paragraphs of sections to be indented just like the
other ones in French. When GlobalLayoutFrench is true, the same is done outside
French except for languages that force a different setting. \bbl@uonfrenchindent
has been designed to be smart with other languages (like Spanish) who also indent
every first paragraphs of sections (see section 29.14).

29.1014 \ifFBIndentFirst

29.1015 \addto\extrasfrench{\bbl@frenchindent}’,

29.1016 \addto\noextrasfrench{\ifFBGlobalLayoutFrench
29.1017 \bbl@frenchindent
29.1018 \else

29.1019 \bbl@nonfrenchindent
29.1020 \fi}%

29.1021 \else

29.1022 \addto\extrasfrench{\bbl@nonfrenchindent}
29.1023 \addto\noextrasfrench{\bbl@nonfrenchindent}Y

29.1024 \fi

The layout of footnotes is handled at the \begin{document} depending on the
values of flags FrenchFootnotes and AutoSpaceFootnotes (see section 29.15),
nothing has to be done here for footnotes.

AutoSpacePunctuation adds an unbreakable space (in French only) before the
four active characters (:;!7) even if none has been typed before them.

29.1025 \ifFBAutoSpacePunctuation

29.1026 \autospace@beforeFDP
29.1027 \else
29.1028 \noautospace@beforeFDP

29.1029 \fi
When OriginalTypewriter is set to false (the default), \ttfamily, \rmfamily
and \sffamily are redefined as \ttfamilyFB, \rmfamilyFB and \sffamilyFB re-
spectively to prevent addition of automatic spaces before the four active characters
in computer code.

29.1030 \ifFBOriginalTypewriter
29.1031 \else

137

29.1032 \let\ttfamily\ttfamilyFB
29.1033 \let\rmfamily\rmfamilyFB
29.1034 \let\sffamily\sffamilyFB
29.1035 \fi
ThinColonSpace changes the normal unbreakable space typeset in French be-
fore ¢’ to a thin space.
29.1036 \ifFBThinColonSpace\renewcommand*{\Fcolonspace}{\Fthinspace}\fi

When true, ThinSpaceInFrenchNumbers redefines numprint.sty’s command
\npstylefrench to set \npthousandsep to \, (thinspace) instead of ~ (de-
fault) . This option has no effect if package numprint.sty is not loaded with
‘autolanguage’. Asold versions of numprint.sty did not define \npstylefrench,
we have to provide this command.

29.1037 \@ifpackageloaded{numprint}/,
29.1038 {\ifnprt@autolanguage

29.1039 \providecommand*{\npstylefrench}{}%
29.1040 \ifFBThinSpaceInFrenchNumbers

29.1041 \renewcommand*\npstylefrench{/
29.1042 \npthousandsep{\, }%

29.1043 \npdecimalsign{,}%

29.1044 \npproductsign{\cdot}},

20.1045 \npunitseparator{\,}%

29.1046 \npdegreeseparator{}%

29.1047 \nppercentseparator{\nprt@unitsep}’%
29.1048 Yh

29.1049 \else

29.1050 \renewcommand*\npstylefrench{/
29.1051 \npthousandsep{~1}/

29.1052 \npdecimalsign{,}%

29.1053 \npproductsign{\cdot}%

29.1054 \npunitseparator{\,}%

29.1055 \npdegreeseparator{}’

29.1056 \nppercentseparator{\nprt@unitsepl}/
29.1057 Yh

29.1058 \fi

29.1059 \npaddtolanguage{french}{french}%

29.1060 \fi}{}%

FrenchSuperscripts: if true \up=\fup, else \up=\textsuperscript. Any-
way \up*=\FB@up@fake. The star-form \up*{} is provided for fonts that lack
some superior letters: Adobe Jenson Pro and Utopia Expert have no “g superior”
for instance.

29.1061 \ifFBFrenchSuperscripts

29.1062 \DeclareRobustCommand*{\up}{\@ifstar{\FBCup@fake}{\fup}}’%
29.1063 \else

29.1064 \DeclareRobustCommand*{\up}{\@ifstar{\FBOup@fakel}

29.1065 {\textsuperscript}}/
29.1066 \fi

LowercaseSuperscripts: if true let \FB@lc be \lowercase, else \FB@lc is
redefined to do nothing.

29.1067 \ifFBLowercaseSuperscripts

29.1068 \else

29.1069 \renewcommand*{\FBQ1lc} [1] {##11}7,
29.1070 \fi

PartNameFull: if false, redefine \partname.

29.1071 \ifFBPartNameFull
29.1072 \else\addto\captionsfrench{\def\partname{Partie}}\fi

ShowOptions: if true, print the list of all options to the .log file.

29.1073 \ifFBShowOptions
29.1074 \GenericWarning{* }{/%

138

29.1075 * x*x* List of possible options for frenchb ****\MessageBreak

29.1076 [Default values between brackets when frenchb is loaded *LAST*]7
29.1077 \MessageBreak

29.1078 ShowOptions=true [false]\MessageBreak

29.1079 StandardLayout=true [false]\MessageBreak

29.1080 GlobalLayoutFrench=false [true]\MessageBreak

29.1081 StandardLists=true [false]\MessageBreak

29.1082 IndentFirst=false [true]\MessageBreak

29.1083 ReduceListSpacing=false [true]\MessageBreak

29.1084 CompactItemize=false [true]\MessageBreak

29.1085 StandardItemLabels=true [false]\MessageBreak

29.1086 ItemLabels=\textemdash, \textbullet,

29.1087 \protect\ding{43},... [\textendash]\MessageBreak
29.1088 ItemLabeli=\textemdash, \textbullet,

29.1089 \protect\ding{43}, ... [\textendash]\MessageBreak
29.1090 ItemLabelii=\textemdash, \textbullet,

29.1091 \protect\ding{43},... [\textendash]\MessageBreak
29.1092 ItemLabeliii=\textemdash, \textbullet,

29.1093 \protect\ding{43},... [\textendash]\MessageBreak
29.1094 ItemLabeliv=\textemdash, \textbullet,

29.1095 \protect\ding{43}, ... [\textendash]\MessageBreak
29.1096 FrenchFootnotes=false [true]\MessageBreak

29.1097 AutoSpaceFootnotes=false [true]\MessageBreak

29.1098 AutoSpacePunctuation=false [true]\MessageBreak
29.1099 OriginalTypewriter=true [false]\MessageBreak

29.1100 ThinColonSpace=true [false]\MessageBreak

29.1101 ThinSpaceInFrenchNumbers=true [false]\MessageBreak
29.1102 FrenchSuperscripts=false [true]\MessageBreak

29.1103 LowercaseSuperscripts=false [true]\MessageBreak
29.1104 PartNameFull=false [true]\MessageBreak

29.1105 SuppressWarning=true [false]\MessageBreak

29.1106 og= <left quote character>, fg= <right quote character>
29.1107 \MessageBreak

29.1108 Sk KRR KKK KKK KRR SRR SRR KKK Kk
29.1109 \MessageBreak\protect\frenchbsetup{ShowOptions}}
29.1110 \fi

29.1111 }

At \begin{document} we save again the value of \if@afterindent and defi-
nitions of the ‘list’ and ‘itemize’ environments and the values of labelitems so that
all changes made in the preamble are taken into account in languages other than
French and in French with the StandardLayout option. We also have to provide
an \xspace command in case the xspace. sty package is not loaded.

29.1112 \AtBeginDocument{’,

29.1113 \ifx\@afterindentfalse\@afterindenttrue
29.1114 \let\@aifORI\@afterindenttrue
29.1115 \else \let\@aifORI\@afterindentfalse
29.1116 \fi

29.1117 \let\1listORI\list

29.1118 \let\endlistORI\endlist

29.1119 \let\itemizeORI\itemize

29.1120 \let\enditemizeORI\enditemize

29.1121 \let\@1tiORI\labelitemi

29.1122 \let\@1tiiORI\labelitemii

29.1123 \let\@ltiiiORI\labelitemiii

29.1124 \let\@1tivORI\labelitemiv

29.1125 \providecommand*{\xspace}{\relax}’

Let’s redefine some commands in hyperref’s bookmarks.

29.1126 \@ifundefined{pdfstringdefDisableCommands}{1}/
29.1127 {\pdfstringdefDisableCommands{%
29.1128 \let\up\relax

139

29.1129 \def\ieme{e\xspacel}},

29.1130 \def\iemes{es\xspacel,

29.1131 \def\ier{er\xspacel}/

29.1132 \def\iers{ers\xspacelj,

29.1133 \def\iere{re\xspacel}

29.1134 \def\ieres{res\xspace}l’

29.1135 \def\FrenchEnumerate#1{#1\degre\spacel/,
29.1136 \def\FrenchPopularEnumerate#1{#1\degre) \spacel,
29.1137 \def\No{N\degre\space}’

29.1138 \def\no{n\degre\spacel’,

29.1139 \def\Nos{N\degre\spacel,

29.1140 \def\nos{n\degre\spacel,

29.1141 \def\og{\guillemotleft\space}l

29.1142 \def\fg{\space\guillemotright}

29.1143 \let\bsc\textsc

29.1144 \let\degres\degre

29.1145 Y

29.1146 \let\pdfstringdefDisableCommands\undefined}/,

It is time to process the options set with \frenchboptions{}. Then we need

to execute either \extrasfrench and \captionsfrench or \noextrasfrench
according to the current language at the \begin{document} (these three com-
mands have been updated by \FBprocess@options). But, when French is
the main language, \extrasfrench is executed again now (French has been
switched on ‘AtBeginDocument’ some time before). This is harmless, ex-
cept for \bbl@frenchspacing which will redefine \bbl@uonfrenchspacing to
\relax, this will be wrong if the user switches to English. When French
is mot the main language, \noextrasfrench executes \bbl@uonfrenchspacing
(=\nonfrenchspacing), thus eventually overwriting a \frenchspacing command
issued by the main language (German, Spanish, etc.). So we have to define
\bbl@nonfrenchspacing as \relax here and restore it’s meaning afterwards.

29.1147 \FBprocess@Qoptions

29.1148 \let\bbl@nonfrenchspacingORI\bbl@nonfrenchspacing

29.1149 \let\bbl@nonfrenchspacing\relax

29.1150 \iflanguage{french}{\extrasfrench\captionsfrench}{\noextrasfrench},
29.1151 \let\bbl@nonfrenchspacing\bbl@nonfrenchspacingORI

Some warnings are issued when output font encodings are not properly set. With
XeLaTeX, fontspec.sty and xunicode.sty should be loaded; with (pdf)ATEX,
a warning is issued when OT1 encoding is in use at the \begin{document}. Mind
that \encodingdefault is defined as ‘long’, defining \FBOTone with \newcommand*
would fail!

29.1152 \@ifundefined{XeTeXrevisionl},

29.1153 {\begingroup \newcommand{\FBOTone}{0T1}%

29.1154 \ifx\encodingdefault\FBOTone

29.1155 \PackageWarning{frenchb.1df}},

29.1156 {0T1 encoding should not be used for French.
29.1157 \MessageBreak

29.1158 Add \protect\usepackage[T1]{fontenc} to the
29.1159 preamble\MessageBreak of your document,},
29.1160 \fi

29.1161 \endgroup

29.1162 \let\XeTeXrevision\undefined

29.1163 Y

29.1164 {\@ifundefined{DeclareUTFcharacterl}

29.1165 {\PackageWarning{frenchb.1df}%

29.1166 {Add \protect\usepackage{xltxtra} to the\MessageBreak
29.1167 preamble of your document,}%

29.1168 \let\DeclareUTFcharacter\undefined}

29.1169 {3

29.1170 Yh

29.1171 }

140

29.19 Clean up and exit

Load frenchb.cfg (should do nothing, just for compatibility).

29.1172 \loadlocalcfg{frenchb}
Final cleaning. The macro \1df@quit takes care for setting the main language
to be switched on at \begin{document} and resetting the category code of @
to its original value. The config file searched for has to be frenchb.cfg, and
\CurrentOption has been set to ‘french’, so \1df@finish\CurrentOption cannot
be used: we first load frenchb.cfg, then call \1df@quit\CurrentOption.

29.1173 \FBclean@on@exit
29.1174 \1df@quit\CurrentOption

141

30

The Italian language

The file italian.dtx?’ defines all the language-specific macros for the Italian
language.
The features of this language definition file are the following:

1.

The Italian hyphenation is invoked, provided that file ithyph.tex was
loaded when the IATEX 2¢ format was built; in case it was not, read the
information coming with your distribution of the TEX software, and the
babel documentation.

. The language dependent fixed words to be inserted by such commands as

\chapter, \caption, \tableofcontents, etc. are redefined in accordance
with the Italian typographical practice.

Since Italian can be easily hyphenated and Italian practice allows to break
a word before the last two letters, hyphenation parameters have been
set accordingly, but a very high demerit value has been set in order to
avoid word breaks in the penultimate line of a paragraph. Specifically the
\clubpenalty, and the \widowpenalty are set to rather high values and
\finalhyphendemerits is set to such a high value that hyphenation is pro-
hibited between the last two lines of a paragraph. In orer to make it consis-
tent, also \@clubpenalty is set to the same value; actualy the latter value
is the reset value after every sectioning command, so that after the first
section, \clubpenalty is reset to the low default value. Thanks to Enrico
Gregorio for spotting this serious bug.

Some language specific shortcuts have been defined so as to allow etymolog-
ical hyphenation, specifically " inserts a break point in any word boundary
that the typesetter chooses, provided it is not followed by and accented let-
ter (very unlikely in Italian, where compulsory accents fall only on the last
and ending vowel of a word, but may take place with compound words that
include foreign roots), and "| when the desired break point falls before an
accented letter.

The shortcut "" introduces the raised (English) opening double quotes; this
shortcut proves its usefulness when one reminds that the Italian keyboard
misses the backtick key, and the backtick on a Windows based platform may
be obtained only by pressing the A1t key while inputting the numerical code
0096; very, very annoying!

The shortcuts "< and "> insert the French guillemots, sometimes used in
Italian typography; with the T1 font encoding the ligatures << and >> should
insert such signs directly, but not all the virtual fonts that claim to follow
the T1 font encoding actually contain the guillemots; with the OT1 encoding
the guillemots are not available and must be faked in some way. By using
the "< and "> shortcuts (even with the T1 encoding) the necessary tests
are performed and in case the suitable glyphs are taken from other fonts
normally available with any good, modern IATEX distribution.

Three new specific commands \unit, \ped, and \ap are introduced so as
to enable the correct composition of technical mathematics according to the
ISO 31/XI recommendations. \unit does not get redefined if the babel pack-
age is loaded after the package units.sty whose homonymous command
plays a different role and follows a different syntax.

29The file described in this section has version number v1.2t and was last revised on
2008/03/14. The original author is Maurizio Codogno, (mau@beatles.cselt.stet.it). It has
been largely revised by Johannes Braams and Claudio Beccari

142

\captionsitalian

For this language a limited number of shortcuts has been defined, table 6,
some of which are used to overcome certain limitations of the Italian keyboard; in
section 30.3 there are other comments and hints in order to overcome some other
keyboard limitations.

" inserts a compound word mark where hyphenation
is legal; it allows etymological hyphenation which is
recommended for technical terms, chemical names
and the like; it does not work if the next character is
represented with a control sequence or is an accented
character.

"| the same as the above without the limitation on char-
acters represented with control sequences or accented
ones.

""" inserts open quotes “.

"< inserts open guillemots.

"> inserts closed guillemots.

"/ equivalent to \slash

Table 6: Shortcuts for the Italian language

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

30.1 (*code)
30.2 \LdfInit{italian}{captionsitalian},

When this file is read as an option, i.e. by the \usepackage command, italian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@italian to see whether we have to do something
here.

30.3 \ifx\1l@italian\@undefined
30.4 \@nopatterns{Italian}y,
30.5 \adddialect\1@italianO\fi

The next step consists of defining commands to switch to (and from) the Italian
language.

The macro \captionsitalian defines all strings used in the four standard docu-
ment classes provided with ETEX.

30.6 \addto\captionsitalian{’

30.7 \def\prefacename{Prefazionel}/

30.8 \def\refname{Riferimenti bibliograficil}¥%
30.9 \def\abstractname{Sommario},

30.10 \def\bibname{Bibliografialj,

30.11 \def\chaptername{Capitolo}’,

30.12 \def\appendixname{Appendicel}’

30.13 \def\contentsname{Indicel}’

30.14 \def\listfigurename{Elenco delle figurel}
30.15 \def\listtablename{Elenco delle tabellel}},
30.16 \def\indexname{Indice analiticol}%

30.17 \def\figurename{Figura}

30.18 \def\tablename{Tabellal,

30.19 \def\partname{Partel}/,

30.20 \def\enclname{Allegati}’

30.21 \def\ccname{e"p."c.}%

30.22 \def\headtoname{Perlj,

30.23 \def\pagename{Pag.}% % in Italian the abbreviation is preferred
30.24 \def\seename{vedil},

30.25 \def\alsoname{vedi anchel}}

30.26 \def\proofname{Dimostrazione}’

30.27 \def\glossaryname{Glossario}’

30.28 Yh

143

\dateitalian

\italianhyphenmins

\extrasitalian
\noextrasitalian

The macro \dateitalian redefines the command \today to produce Italian dates.

30.29 \def\dateitalian{%
30.30 \def\today{\number\day~\ifcase\month\or

30.31 gennaio\or febbraio\or marzo\or aprile\or maggio\or giugno\or
30.32 luglio\or agosto\or settembre\or ottobre\or novembre\or
30.33 dicembre\fi\space \number\yearl}}/

The italian hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

30.34 \providehyphenmins{\CurrentOption}{\tw@\tw@}

Lower the chance that clubs or widows occur.
30.35 \addto\extrasitalian{%
30.36 \babel@savevariable\clubpenalty
30.37 \babel@savevariable\widowpenalty
30.38 \babel@savevariable\@clubpenalty
30.39 \clubpenalty3000\widowpenalty3000\@clubpenalty\clubpenalty}/

Never ever break a word between the last two lines of a paragraph in italian
texts.
30.40 \addto\extrasitalian{’

30.41 \babel@savevariable\finalhyphendemerits
30.42 \finalhyphendemerits50000000}7%

In order to enable the hyphenation of words such as “nell’altezza” we give the ’
a non-zero lower case code. When we do that TEX finds the following hyphenation
points nel-1’al-tez-za instead of none.
30.43 \addto\extrasitalian{’
30.44 \lccode’=¢’}},
30.45 \addto\noextrasitalian{%
30.46 \lccode‘’=0}}

30.1 Support for etymological hyphenation

In his article on Italian hyphenation [I] Beccari pointed out that the Italian lan-
guage gets hyphenated on a phonetic basis, although etymological hyphenation
is allowed; this is in contrast with what happens in Latin, for example, where
etymological hyphenation is always used. Since the patterns for both languages
would become too complicated in order to cope with etymological hyphenation,
in his paper Beccari proposed the definition of an active character ‘_’ such that it
could insert a “soft” discretionary hyphen at the compound word boundary. For
several reasons that idea and the specific active character proved to be unpractical
and was abandoned.

This problem is so important with the majority of the European languages, that
babel from the very beginning developed the tradition of making the " character
active so as to perform several actions that turned useful with every language.
One of these actions consisted in defining the shortcut "| that was extensively
used in German and in many other languages in order to insert a discretionary
hyphen such that hyphenation would not be precluded in the rest of the word as
it happens with the standard TEX command \-.

Meanwhile the ec fonts with the double Cork encoding (thus formerly called
the dc fonts) have become more or less standard and are widely used by virtually
all Europeans that write languages with many special national characters; by so
doing they avoid the use of the \accent primitive which would be required with
the standard cm fonts; with the latter fonts the primitive command \accent is such
that hyphenation becomes almost impossible, in any case strongly impeached.

The ec fonts contain a special character, named “compound word mark”, that
occupies position 23 in the font scheme and may be input with the sequence ~~W.

144

\it@cwm

\it@cwm

Up to now, apparently, this special character has never been used in a practical
way for the typesetting of languages rich of compound words; also it has never
been inserted in the hyphenation pattern files of any language. Beccari modified
his pattern file ithyph.tex v4.8b for Italian so as to contain five new patterns
that involve ~~W, and he tried to give the babel active character " a new shortcut
definition, so as to allow the insertion of the “compound word mark” in the proper
place within any word where two semantic fragments join up. With such facility
for marking the compound word boundaries, etymological hyphenation becomes
possible even if the patterns know nothing about etymology (but the typeset-
ter hopefully does!). In Italian such etymological hyphenation is desirable with
technical terms, chemical names, and the like.

Even this solution proved to be inconvenient on certain UN*X platforms, so
Beccari resorted to another approach that uses the babel active character " and
relies on the category code of the character that follows ".

30.47 \initiate@active@char{"}}
30.48 \addto\extrasitalian{\bbl@activate{"}\languageshorthands{italian}}/,

The active character " is now defined for language italian so as to perform
different actions in math mode compared to text mode; specifically in math mode
a double quote is inserted so as to produce a double prime sign, while in text mode
the temporary macro \it@next is defined so as to defer any further action until
the next token category code has been tested.

30.49 \declare@shorthand{italian}{"}{%

30.50 \ifmmode

30.51 \def\it@next{’’}}

30.52 \else

30.53 \def\it@next{\futurelet\it@temp\it@cwm}%

30.54 \fi

30.55 \it@next

30.56 }%

The \it@next service control sequence is such that upon its execution a temporary
variable \it@temp is made equivalent to the next token in the input list without
actually removing it. Such temporary token is then tested by the macro \it@cwm
and if it is found to be a letter token, then it introduces a compound word separator
control sequence \it@allowhyphens whose expansion introduces a discretionary
hyphen and an unbreakable space; in case the token is not a letter, then it is
tested against |12: if so a compound word separator is inserted and the | token is
removed, otherwise another test is performed so as to see if another double quote
sign follows: in this case a double open quote mark is inserted, otherwise two
other tests are performed so as to see if guillemets have to be inserted, otherwise
nothing is done. The double quote shortcut for inserting a double open quote sign
is useful for people who are inputting Italian text by means of an Italian keyboard
that unfortunately misses the grave or backtick key. By this shortcut "" becomes
equivalent to ¢ ¢ for inserting raised open high double quotes.

30.57 \def\it@0cwm{\nobreak\discretionary{-}{}{}\nobreak\hskip\z@skip}

30.58 \def\it@Qocap#1{\it@ocap}\def\it@Accap#1{\it@ccapl}/

30.59 \DeclareRobustCommand*{\it@cwm}{\let\it@@next\relax

30.60 \ifcat\noexpand\itQ@temp aj,

30.61 \def\it@@next{\it@C@cwm},

30.62 \else

30.63 \if\noexpand\it@temp \stringl|¥

30.64 \def\it@@next{\it@@cwm\@gobble}},
30.65 \else

30.66 \if\noexpand\itQ@temp \string<j
30.67 \def\it@@next{\it@ocapl}%

30.68 \else

30.69 \if\noexpand\it@temp \string>’
30.70 \def\it@@next{\it@Qccapl}’

145

30.71 \else

30.72 \if\noexpand\it@temp\string/J

30.73 \def\it@@next{\slash\@gobble}},
30.74 \else

30.75 \ifx\it@temp"’,

30.76 \def\it@@next{‘‘\@gobblel}’,
30.77 \fi

30.78 \fi

30.79 \fi

30.80 \fi

30.81 \fi

30.82 \fi

30.83 \it@@nextl}V

By this definition of " if one types macro"istruzione the possible break points
become ma-cro-istru-zio-ne, while without the " mark they would be ma-croi-stru-
zio-ne, according to the phonetic rules such that the macro prefix is not taken as a
unit. A chemical name such as des"clor"fenir"amina"cloridrato is breakable
as des-clor-fe-nir-ami-na-clo-ri-dra-to instead of de-sclor-fe-ni-ra-mi-na-...

In other language description files a shortcut is defined so as to allow a break
point without actually inserting any hyphen sign; examples are given such as
entrada/salida; actually if one wants to allow a breakpoint after the slash, it is
much clearer to type \slash instead of / and ITEX does everything by itself;
here the shortcut "/ was introduced to stand for \slash so that one can type
input"/output and allow a line break after the slash. This shortcut works only
for the slash, since in Italian such constructs are extremely rare.

Attention: the expansion of " takes place before the actual expansion of OT1
or T1 accented sequences such as \ ‘{a}; therefore this etymological hyphenation
facility works as it should only when the semantic word fragments do not start
with an accented letter; this in Italian is always avoidable, because compulsory
accents fall only on the last vowel, but it may be necessary to mark a compound
word where one or more components come from a foreign language and contain
diacritical marks according to the spelling rules of that language. In this case
the special shorthand "| may be used that performs exactly as " normally does,
except that the | sign is removed from the token input list: kilo" |[{\"o}rsted
gets hyphenated as ki-lo-6r-sted.

30.2 Facilities required by the ISO 31/XI regulations

The ISO 31/XI regulations require that units of measure are typeset in upright
font in any circumstance, math or text, and that in text mode they are separated
from the numerical indication of the measure with an unbreakable (thin) space.
The command \unit that was defined for achieving this goal happened to conflict
with the homonymous command defined by the package units.sty; we therefore
need to test if that package has already been loaded so as to avoid conflicts; we
assume that if the user loads that package, s/he wants to use that package facilities
and command syntax.

The same regulations require also that super and subscripts (apices and
pedices) are in upright font, not in math italics, when they represent “adjectives”
or appositions to mathematical or physical variables that do not represent count-
able or measurable entities such as, for example, Viax or Vs for a maximum or
a root mean square voltage, compared to V; or Vp as the i-th voltage in a set,
or a voltage that depends on the thermodynamic temperature T. See [2] for a
complete description of the ISO regulations in connection with typesetting.

More rarely it happens to use superscripts that are not mathematical variables,
such as the notation AT to denote the transpose of matrix A; text superscripts are
useful also as ordinals or in old fashioned abbreviations in text mode; for example
the feminine ordinal 1* or the old fashioned obsolete abbreviation F'"! for Fratelli

146

\unit

\ap

in company names (compare with “Bros.” for brothers in American English); text
subscripts are mostly used in logos.

First we define the new (internal) commands \bbl@unit, \bbl@ap, and \bbl@ped
as robust ones.

\ped 30.84 \@ifpackageloaded{units}{}{%

30.85 \DeclareRobustCommand*{\bbl@unit}[1]{%

30.86 \textormath{\, \mbox{#1}}{\, \mathrm{#1}}}%

30.87 Yh

30.88 \DeclareRobustCommand*{\bbl@apl}[1]{%

30.89 \textormath{#1}{"{\mathrm{#13}}}3}/
30.90 \DeclareRobustCommand*{\bbl@ped} [1]{%

30.91 \textormath{$_{\mbox{\fontsize\sf@size\z@

30.92 \selectfont#1}}$}{_\mathrm{#1}}}%

Then we can use \let to define the user level commands, but in case the macros
already have a different meaning before entering in Italian mode typesetting, we
first memorize their meaning so as to restore them on exit.

30.93 \@ifpackageloaded{units}{}{/
30.94 \addto\extrasitalian{,
30.95 \babel@save\unit\let\unit\bbl@unit}}
30.96 Yh
30.97 \addto\extrasitalian{’
30.98 \babel@save\ap\let\ap\bbl@ap
30.99 \babel@save\ped\let\ped\bbl@ped
30.100 }%

30.3 Accents

Most of the other language description files introduce a number of shortcuts for
inserting accents and other language specific diacritical marks in a more comfort-
able way compared with the lengthy standard TEX conventions. When an Italian
keyboard is being used on a Windows based platform, it exhibits such limitations
that up to now no convenient shortcuts have been developed; the reason lies in the
fact that the Italian keyboard lacks the grave accent (also known as “backtick”),
which is compulsory on all accented vowels except the ‘e’, but, on the opposite, it
carries the keys with all the accented lowercase vowels; the keyboard lacks also the
tie ~ (tilde) key, while the curly braces require pressing three keys simultaneously.

The best solution Italians have found so far is to use a smart editor that accepts
shortcut definitions such that, for example, by striking " (one gets directly { on the
screen and the same sign is saved into the .tex file; the same smart editor should
be capable of translating the accented characters into the standard TEX sequences
when writing a file to disk (for the sake of file portability), and to transform the
standard TEX sequences into the corresponding signs when loading a .tex file
from disk to memory. Such smart editors do exist and can be downloaded from
the CTAN archives.

For what concerns the missing backtick key, which is used also for inputting the
open quotes, it must be noticed that the shortcut "" described above completely
solves the problem for double raised open quotes; according to the traditions of
particular publishing houses, since there are no compulsory regulations on the
matter, the French guillemets may be used; in this case the T1 font encoding
solves the problem by means of its built in ligatures << and >>. But...

30.4 Caporali or French double quotes

Although the T1 font encoding ligatures solve the problem, there are some cir-
cumstances where even the T1 font encoding cannot be used, either because the
author/typesetter wants to use the OT1 encoding, or because s/he uses a font set
that does not comply completely with the T1 font encoding; some virtual fonts,

147

\LtxSymbCaporali
\it@ocap
\it@ccap

for example, are supposed to implement the double Cork font encoding but actu-
ally miss some glyphs; one such virtual font set is given by the ae virtual fonts,
because they are supposed to implement such double font encoding simply using
the cm fonts, of which the type 1 PostScript version exists and is freely available.
Since guillemets (in Italian caporali) do not exist in any cm latin font, their glyphs
must be substituted with something else that approaches them.

Since in French typesetting guillemets are compulsory, the French language
definition file resorts to a clever font substitution; such file exploits the ITEX 2¢
font selection machinery so as to get the guillemets from the Cyrillic fonts, because
it suffices to locally change the default encoding. There are several sets of Cyrillic
fonts, but the ones that obey the OT2 font encoding are generally distributed
with all recent implementations of the TEX software; they are part of the American
Mathematical Society fonts and come both as METAFONT source files and Type 1
PostScript .pfb files. The availability of such fonts should be guaranteed by the
presence of the 0T2cmr.fd font description file. Actually the presence of this file
does not guarantee the completeness of your TEX implementation; should ETEX
complain about a missing Cyrillic .tfm file (that kind of file that contains the
font metric parameters) and/or about missing Cyrillic (.mf) files, then your TEX
system is incomplete and you should download such fonts from the CTAN archives.
Temporarily you may issue the command \LtxSymbCaporali so as to approximate
the missing glyphs with the IXTEX symbol fonts. In some case warning messages
are issued so as to inform the typesetter about the necessity of resorting to some
poor man solution.

In spite of these alternate fonts, we must avoid invoking unusual fonts if the
available encoding allows to use built in caporali. As far as I know (CB) the only
T1-encoded font families that miss the guillemets are the AE ones; we therefore
first test if the default encoding id the T1 one and in this case if the AE families
are the default ones; in order for this to work properly it is necessary to load these
optional packages before babel. If the T1 encoding is not the default one when the
Italian language is specified, then some substitutions must be done.

We define some macros for substituting the default guillemets; first the emulation
by means of the IATEX symbols; each one of these macro sets actually redefines the
control sequences \it@ocap and \it@ccap that are the ones effectively activated
by the shortcuts "< and ">.

30.101 \def\LtxSymbCaporali{},

30.102 \DeclareRobustCommand*{\it@ocap}{\mbox{%

30.103 \fontencoding{U}\fontfamily{lasy}\selectfont (\kern-0.20em(}%
30.104 \ignorespacesl}/

30.105 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi
30.106 \mbox{%

30.107 \fontencoding{U}\ fontfamily{lasy}\selectfont)\kern-0.20em)}1}/
30.108 }%

Then the substitution with any specific font that contains such glyphs; it might
be the CBgreek fonts, the Cyrillic one, the super-cm ones, the lm ones, or any
other the user might prefer (the code is adapted from the one that appears in the
frenchb.1d file; thanks to Daniel Flipo). By default if the user did not select
the T1 encoding, the existence of the CBgreek fonts is tested; if they exist the
guillemets are taken from this font, and since its families are a superset of the
default CM ones and they apply also to typeset slides with the standard class
slides. If the CBgreek fonts are not found, then the existence of the Cyrillic
ones is tested, although this choice is not suited for typesetting slides; otherwise
the poor man solution of the ITEX special symbols is used. In any case the user
can force the use of the Cyrillic guillemets substitution by issuing the declaration
\CyrillicCaporali just before the \begin{document} statement; in alternative
the user can specify with

\CaporaliFrom{(encoding)}{{family)} {opening number)}{(closing number)}

148

the encoding and family of the font s/he prefers, and the slot numbers of the
opening and closing guillemets respectively. For example if the T1-encoded Latin
Modern fonts are desired the specific command should be

\CaporaliFrom{T1}{1mr}{19}{20}

These user choices might be necessary for assuring the correct typesetting with
fonts that contain the required glyphs and are available also in PostScript form so
as to use them directly with pdflatex, for example.

30.109 \def \CaporaliFrom#1#2#3#4{%

30.110 \DeclareFontEncoding{#1}{}{}/

30.111 \DeclareTextCommand{\it@ocap}{T1}{%

30.112 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespacesl}}/,
30.113 \DeclareTextCommand{\it@ccap}{T1}{\ifdim\lastskip>\z@\unskip\£fi%
30.114 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}1}/,

30.115 \DeclareTextCommand{\it@ocap}{0T1}{%

30.116 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespaces}}/
30.117 \DeclareTextCommand{\it@ccap}{0T1}{\ifdim\lastskip>\z@\unskip\fi%,
30.118 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}

Then we set a boolean variable and test the default family; if such family has a
name that starts with the letters “ae” then we have no built in guillemets; of course
if the AE font family is chosen after the babel package is loaded, the test does not
perform as required.

30.119 \def\getQae#1#2#3!{\def\bblCae{#1#2}}%

30.120 \def\Q@ifT@one@noCap{\expandafter\get@ae\f@family!y

30.121 \def\bbl@temp{ae}\ifx\bblOae\bbl@temp\expandafter\@firstoftwo\else

30.122 \expandafter\@secondoftwo\fi}},

We set another couple of boolean variables for testing the existence of the CBgreek
or the Cyrillic fonts

30.123 \newif \if@CBgreekEncKnown

30.124 \IfFileExists{lgrcmr.£fd}/,

30.125 {\eCBgreekEncKnowntrue}{\@CBgreekEncKnownfalse}

30.126 \newif\if@CyrEncKnown

30.127 \IfFileExists{ot2cmr.fd}/

30.128 {\eCyrEncKnowntrue}{\@CyrEncKnownfalsel}/,

\CBgreekCaporali Next we define the macros \CBgreekCaporali, \T@unoCaporali, and \CyrillicCaporali;
\CyrillicCaporali with the latter one we test the loaded class, and if it’s s1lides nothing gets done. In
\Te@unoCaporali any case each one of these declarations, if used, must be specified in the preamble.

30.129 \def\CBgreekCaporali{\@ifclassloaded{slides}{/

30.130 \IfFileExists{lgrlcmss.fd}{\DeclareFontEncoding{LGR}{}{}%
30.131 \DeclareRobustCommand*{\it@ccap}’%

30.132 {\ifdim\lastskip>\z@\unskip\fi

30.133 {\fontencoding{LGR}\selectfont))}}/
30.134 \DeclareRobustCommand*{\it@ocap}’%

30.135 {{\fontencoding{LGR}\selectfont ((}\ignorespaces}}’
30.136 {\LtxSymbCaporali}}/,

30.137 {\DeclareFontEncoding{LGR}{}{}/

30.138 \DeclareRobustCommand*{\it@ccapl}’

30.139 {\ifdim\lastskip>\z@\unskip

30.140 \fi{\fontencoding{LGR}\selectfont))}}%

30.141 \DeclareRobustCommand*{\it@ocapl}’

30.142 {{\fontencoding{LGR}\selectfont ((}\ignorespaces}}%
30.143 Yh

30.144 \def\CyrillicCaporali{\@ifclassloaded{slides}{\relax}/

30.145 {\DeclareFontEncoding{0T2}{}{}%

30.146 \DeclareRobustCommand*{\it@ccapl}’

30.147 {\ifdim\lastskip>\z@\unskip\fi

30.148 {\fontencoding{0T2}\selectfont\char62\relax}}/
30.149 \DeclareRobustCommand*{\it@ocapl}’

30.150 {{\fontencoding{0T2}\selectfont\char60\relax}\ignorespaces}}1}}

149

30.151 \@onlypreamble{\CBgreekCaporali}\@onlypreamble{\CyrillicCaporalily,
30.152 \def\T@unoCaporali{\DeclareRobustCommand*{\itQ@ocap}{<<\ignorespaces}y,
30.153 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi>>}1}},

Now we can do some real setting; first we start testing the encoding; if the encoding
is T1 we test if the font family is the AE one; if so, we further test for other
possibilities

30.154 \ifx\cf@encoding\bbl@t@one

30.155 \@ifT@one@noCap{’

30.156 \1if@CBgreekEncKnown
30.157 \CBgreekCaporali
30.158 \else

30.159 \if@CyrEncKnown
30.160 \CyrilicCaporali
30.161 \else

30.162 \LtxSymbCaporali
30.163 \fi

30.164 \£i}%

30.165 {\T@unoCaporali}’

But if the default encoding is not the T1 one, then the substitutions must be
performed.

30.166 \else

30.167 \1f@CBgreekEncKnown
30.168 \CBgreekCaporali
30.169 \else

30.170 \1f@CyrEncKnown
30.171 \CyrilicCaporali
30.172 \else

30.173 \LtxSymbCaporali
30.174 \fi

30.175 \fi

30.176 \fi

30.5 Finishing commands

The macro \1df@finish takes care of looking for a configuration file, setting the
main language to be switched on at \begin{document} and resetting the category
code of @ to its original value.

30.177 \1df@finish{italian}%
30.178 (/code)

30.6 References

[1] Beccari C., “Computer Aided Hyphenation for Italian and Modern Latin”,
TUGboat vol. 13, n. 1, pp. 23-33 (1992).

[2] Beccari C., “Typesetting mathematics for science and technology according to
ISO 31/XI”, TUGboat vol. 18, n. 1, pp. 39-48 (1997).

150

31 The Latin language

The file latin.dtx" defines all the language-specific macros for the Latin lan-
guage both in modern and medieval spelling.

For this language the \clubpenalty, \widowpenalty are set to rather high
values and \finalhyphendemerits is set to such a high value that hyphenation
is prohibited between the last two lines of a paragraph.

For this language two “styles” of typesetting are implemented: ‘“regular” or
modern-spelling Latin, and medieval Latin. The medieval Latin specific com-
mands can be activated by means of the language attribute medieval; the me-
dieval spelling differs from the modern one by the systematic use of the lower case
‘u’ also where in modern spelling the letter ‘v’ is used; when typesetting with
capital letters, on the opposite, the letter "V’ is used also in place of 'U’. Medieval
spelling also includes the ligatures \ae (2), \oe (ce), \AE (X&), and \OE ((E) that
are not used in modern spelling, nor were used in the classical times.

Furthermore a third typesetting style withprosodicmarks is defined in order to
use special shortcuts for inserting breves and macrons when typesetting grammars,
dictionaries, teaching texts, and the like, where prosodic marks are important for
the complete information on the words or the verses. The shortcuts, listed in
table 7 and described in section 32, may interfere with other packages; therefore
by default this third style is off and no interference is introduced. If this third style
is used and interference is experienced, there are special commands for turning on
and off the specific short hand commands of this style.

For what concerns babel and typesetting with IXTEX, the differences between
the two styles of spelling reveal themselves in the strings used to name for example
the “Preface” that becomes “Praefatio” or “Preefatio” respectively. Hyphenation
rules are also different, but the hyphenation pattern file lahyph.tex takes care of
both versions of the language. Needless to say that such patterns must be loaded
in the WTEX format by running initex (or whatever the name if the initializer)
on latex.ltx.

The name strings for chapters, figures, tables, etcetera, are suggested by prof.
Raffaella Tabacco, a classicist of the University of Turin, Italy, to whom we address
our warmest thanks. The names suggested by Krzysztof Konrad Zelechowski,
when different, are used as the names for the medieval variety, since he made a
word and spelling choice more suited for this variety.

For this language some shortcuts are defined according to table 7; all of them
are supposed to work with both spelling styles, except where the opposite is ex-
plicitly stated.

i inserts the breve accent as 1; valid also for the other
lowercase vowels, but it does not operate on the me-
dieval ligatures & and ce.

=a inserts the macron accent as a; valid also for the

other lowercase vowels, but it does not operate on

the medieval ligatures & and ce.

inserts a compound word mark where hyphenation is

legal; the next character must not be a medieval lig-

ature & or ce, nor an accented letter (foreign names).

"] same as above, but operates also when the next char-

acter is a medieval ligature or an accented letter.

Table 7: Shortcuts defined for the Latin language. The characters ~ and = are
active only when the language attribute withprosodicmarks has been declared,
otherwise they are disabled; see section 32 for more details.

30The file described in this section has version number v2.01 and was last revised on 2008/07/06.
The original author is Claudio Beccari with contributions by Krzysztof Konrad Zelechowski,
(kkz@alfa.mimuw.edu.pl)

151

\captionslatin

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

31.1 (*code)
31.2 \LdfInit{latin}{captionslatin}

When this file is read as an option, i.e. by the \usepackage command, latin
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@latin to see whether we have to do something here.

31.3 \ifx\1l@latin\@undefined
31.4 \@nopatterns{Latin}
31.5 \adddialect\1@latinO\fi

Now we declare the medieval language attribute.

31.6 \bbl@declare@ttribute{latin}{medievall}{%

31.7 \addto\captionslatin{\def\prefacename{Pr{\ae}fatiol}}%
31.8 \def\november{Nouembrisl}y,

31.9 \expandafter\addto\expandafter\extraslatin

31.10 \expandafter{\extrasmedievallatin}¥

31.11 }

The third typesetting style withprosodicmarks is defined here

31.12 \bbl@declare@ttribute{latin}{withprosodicmarks}{/
31.13 \expandafter\addto\expandafter\extraslatin

31.14 \expandafter{\extraswithprosodicmarks}/,
3115}

It must be remembered that the medieval and the withprosodicmarks styles
may be used together.

The next step consists of defining commands to switch to (and from) the Latin
language?!.

The macro \captionslatin defines all strings used in the four standard document
classes provided with ETEX.

31.16 \@namedef{captionslatin}{%

31.17 \def\prefacename{Praefatiol}j,

31.18 \def\refname{Conspectus libroruml}y,

31.19 \def\abstractname{Summarium}¥

31.20 \def\bibname{Conspectus librorum}j,

31.21 \def\chaptername{Caputl/,

31.22 \def\appendixname{Additamentum}’

31.23 \def\contentsname{Index}/

31.24 \def\listfigurename{Conspectus descriptionuml}y,

31.25 \def\listtablename{Conspectus tabularum}

31.26 \def\indexname{Index rerum notabilium}y,

31.27 \def\figurename{Descriptiol}’

31.28 \def\tablename{Tabula}}

31.29 \def\partname{Pars}y,

31.30 \def\enclname{Addunturl}), Or " Additur" ? Or simply Add.?
31.31 \def\ccname{Exemplarl}y, Use the recipient’s dative

31.32 \def\headtoname{\ignorespaces}’ Use the recipient’s dative
31.33 \def\pagename{Chartal,

31.34 \def\seename{cfr.}/,

31.35 \def\alsoname{cfr.}) R.Tabacco never saw "cfr. atque" or similar forms
31.36 \def\proofname{Demonstratiol}y,

31.37 \def\glossaryname{Glossarium}}

3138 }

In the above definitions there are some points that might change in the future or
that require a minimum of attention from the typesetter.

31Most of these names were kindly suggested by Raffaella Tabacco.

152

\datelatin

\romandate

\latinhyphenmins

\extraslatin
\noextraslatin

1. the \enclname is translated by a passive verb, that literally means “(they)
are being added”; if just one enclosure is joined to the document, the plural
passive is not suited any more; nevertheless a generic plural passive might be
incorrect but suited for most circumstances. On the opposite “Additur”, the
corresponding singular passive, might be more correct with one enclosure
and less suited in general: what about the abbreviation “Add.” that works
in both cases, but certainly is less elegant?

2. The \headtoname is empty and gobbles the possible following space; in prac-
tice the typesetter should use the dative of the recipient’s name; since nowa-
days not all such names can be translated into Latin, they might result
indeclinable. The clever use of an appellative by the typesetter such as
“Domino” or “Dominae” might solve the problem, but the header might get
too impressive. The typesetter must make a decision on his own.

3. The same holds true for the copy recipient’s name in the “Cc” field of
\ccname.

The macro \datelatin redefines the command \today to produce Latin dates;
the choice of faked small caps Latin numerals is arbitrary and may be changed in
the future. For medieval latin the spelling of ‘Novembris’ should be Nouembris.
This is taken care of by using a control sequence which can be redefined when the
attribute ‘medieval’ is selected.

31.39 \def\datelatin{%

31.40 \def\november{Novembris}/

31.41 \def\today{%

31.42 {\check@mathfonts\fontsize\sf@size\z@\math@fontsfalse\selectfont
31.43 \uppercase\expandafter{\romannumeral\day}}~\ifcase\month\or
31.44 Tanuariilor Februariilor Martiilor Aprilis\or Maiilor Iuniilor
31.45 Tuliilor Augustilor Septembris\or Octobris\or \november\or

31.46 Decembris\fi

31.47 \space{\uppercase\expandafter{\romannumeral\year}}}}

Thomas Martin Widmann (viralbus@daimi.au.dk) developed a macro originally
named \latindate (but to be renamed \romandate so as not to conflict with the
standard babel conventions) that should compute and translate the current date
into a date ab urbe condita with days numbered according to the kalendae and idus;
for the moment this is a placeholder for Thomas’ macro, waiting for a self standing
one that keeps local all the intermediate data, counters, etc. If he succeeds, here
is the place to add his macro.

The Latin hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

31.48 \providehyphenmins{\CurrentOption}{\tw@\tw@}

Lower the chance that clubs or widows occur.
31.49 \addto\extraslatin{%
31.50 \babel@savevariable\clubpenalty
31.51 \babel@savevariable\@clubpenalty
31.52 \babel@savevariable\widowpenalty
31.53 \clubpenalty3000\@clubpenalty3000\widowpenalty3000}

Never ever break a word between the last two lines of a paragraph in latin texts.

31.54 \addto\extraslatin{}
31.55 \babel@savevariable\finalhyphendemerits
31.56 \finalhyphendemerits50000000}

With medieval Latin we need the suitable correspondence between upper case
V and lower case u, since in that spelling there is only one sign, and the u shape
is the (uncial) version of the capital V. Everything else is identical with Latin.

31.57 \addto\extrasmedievallatin{¥

153

\SetLatinLigatures

31.58 \babel@savevariable{\lccode‘\V}%
31.59 \babel@savevariable{\uccode‘\ul}%
31.60 \lccode‘\V=‘\u \uccode‘\u=‘\V}

We need also the lccodes for & and oe; since they occupy different positions in
the OT1 TEX-fontencoding compared to the T1 one, we must save the lc- and the
uccodes for both encodings, but we specify the new lc- and uccodes separately as it
appears natural not to change encoding while typesetting the same language. The
encoding is assumed to be set before starting to use the Latin language, so that if
Latin is the default language, the font encoding must be chosen before requiring
the babel package with the latin option, in any case before any \selectlanguage
or \foreignlanguage command.

All this fuss is made in order to allow the use of the medieval ligatures & and ce
while typesetting with the medieval spelling; I have my doubts that the medieval
spelling should be used at all in modern books, reports, and the like; the uncial ‘u’
shape of the lower case ‘v’ and the above ligatures were fancy styles of the copyists
who were able to write faster with those rounded glyphs; with typesetting there
is no question of handling a quill penn. .. Since my (CB) opinion may be wrong, I
managed to set up the instruments and it is up to the typesetter to use them or
not.

31.61 \addto\extrasmedievallatin{%

31.62 \babel@savevariable{\lccode‘\~"e6}} T1 \ae
31.63 \babel@savevariable{\uccode‘\~"e6}% T1 \ae
31.64 \babel@savevariable{\lccode‘\~~c6}} T1 \AE
31.65 \babel@savevariable{\lccode‘\~"f7}} T1 \oe
31.66 \babel@savevariable{\uccode‘\""£f7}% T1 \OE
31.67 \babel@savevariable{\lccode‘\~~d7}} T1 \OE
31.68 \babel@savevariable{\lccode‘\~~1a}} 0T1 \ae
31.69 \babel@savevariable{\uccode‘\~~1al}% 0T1 \ae
31.70 \babel@savevariable{\lccode‘\~~1d}% 0T1 \AE
31.71 \babel@savevariable{\lccode‘\~~1b}}% 0T1 \oe
31.72 \babel@savevariable{\uccode‘\~~1b}}, 0T1 \OE
31.73 \babel@savevariable{\lccode‘\~~1e}} 0T1 \OE
31.74 \SetLatinLigatures}

31.75 \providecommand\SetLatinLigatures{),

31.76 \def\@tempA{T1}\ifx\@tempA\f@encoding

31.77 \catcode‘\~~e6=11 \lccode‘\~"eb6=‘\""e6 \uccode‘\""e6=‘\""c6 % \ae
31.78 \catcode‘\""c6=11 \lccode‘\""c6=‘\""e6 % \AE
31.79 \catcode‘\~~f7=11 \lccode‘\~~£f7=\""£f7 \uccode‘\~"£f7=‘\""d7 % \oe

31.80 \catcode‘\~~d7=11 \lccode‘\~~d7=‘\""£f7 % \OE

31.81 \else

31.82 \catcode‘\~~1a=11 \lccode‘\~"~1a=‘\""1a \uccode‘\~~1a=‘\""1d % \ae
31.83 \catcode‘\~~1d=11 \lccode‘\~"1d=‘\""1la % \AE (~"])

31.84 \catcode‘\"~1b=11 \lccode‘\"~1b=‘\""1b \uccode‘\~~1b=‘\""1le % \oe

31.85 \catcode‘\~~1le=11 \lccode‘\""1e=‘\""1b % \OE (~~")
31.86 \fi

31.87 \let\@tempA\@undefined

31.88 }

With the above definitions we are sure that \MakeUppercase works properly
and \MakeUppercase{C{\ae}sar} correctly ‘yields ‘CAESAR”; correspondingly
\MakeUppercase{Heluetia} correctly yields “HELVETIA”.

32 Latin shortcuts

For writing dictionaries or didactic texts (in modern spelling only) we defined a
third language attribute, or a third typesetting style, a couple of other active char-
acters are defined: ~ for marking a vowel with the breve sign, and = for marking a
vowel with the macro sign. Please take notice that neither the OT1 font encoding,

154

\ProsodicMarksOn
\ProsodicMarksOff

\ProsodicMarks

nor the T'1 one for most vowels, contain directly the marked vowels, therefore hy-
phenation of words containing these “accents” may become problematic; for this
reason the above active characters not only introduce the required accent, but also
an unbreakable zero skip that in practice does not introduce a discretionary break,
but allows breaks in the rest of the word.

It must be remarked that the active characters ~ and = may have other mean-
ings in other contexts. For example the equals sign is used by the graphic ex-
tensions for specifying keyword options for handling the graphic elements to be
included in the document. At the same time, as mentioned in the previous para-
graph, diacritical marking in Latin is used only for typesetting certain kind of
documents, such as grammars and dictionaries. It is reasonable that the breve
and macron active characters are switched on and off at will, and in particular
that they are off by default if the attribute withprosodicmarks has not been set.

We begin by adding to the normal typesetting style the definitions of the new
commands \ProsodicMarksOn and \ProsodicMarksOff that should produce error
messages when the third style is not declared:

32.1 \addto\extraslatin{\def\ProsodicMarksOn{’

32.2 \GenericError{(latin)\@spaces\@spaces\@spaces\@spacesl}/,

32.3 {Latin language error: \string\ProsodicMarksOn\space

32.4 is defined by setting the\MessageBreak

32.5 language attribute to ‘withprosodicmarks’\MessageBreak
32.6 If you continue you are likely to encounter\MessageBreak
32.7 fatal errors that I can’t recoverl)

32.8 {See the Latin language description in the babel

32.9 documentation for explanation}{\@ehd}}}

32.10 \addto\extraslatin{\let\ProsodicMarksOff\relax}

Then we temporarily set the caret and the equals sign to active characters so
that they can receive their definitions. But first we store their current category
codes to restore them later on.

32.11 \@tempcnta=\catcode‘\=
32.12 \@tempcntb=\catcode‘\~
32.13 \catcode‘\= \active
32.14 \catcode‘\~ \active

Now we can add the necessary declarations to the macros that are being activated
when the Latin language and its typesetting styles are declared:

32.15 \addto\extraslatin{\languageshorthands{latin}}/

32.16 \addto\extraswithprosodicmarks{\bbl@activate{~}1}/

32.17 \addto\extraswithprosodicmarks{\bbl@activate{=}1}/

32.18 \addto\noextraswithprosodicmarks{\bbl@deactivate{~}}%

32.19 \addto\noextraswithprosodicmarks{\bbl@deactivate{=}1}/,

32.20 \addto\extraswithprosodicmarks{\ProsodicMarks}

Next we define the defining macro for the active characters

32.21 \def\ProsodicMarks{%

32.22 \def\ProsodicMarksOn{\catcode‘\~ \active\catcode‘\= \activel}%

32.23 \def\ProsodicMarksOff{\catcode‘\~ 7\catcode‘\= 12\relax}/,
Notice that with the above redefinitions of the commands \ProsodicMarksOn and
\ProsodicMarksOff, the operation of the newly defined shortcuts may be switched
on and off at will, so that even if a picture has to be inserted in the document by
means of the commands and keyword options of the graphicx package, it suffices
to switch them off before invoking the picture including command, and switched
on again afterwards; or, even better, since the picture very likely is being inserted
within a figure environment, it suffices to switch them off within the environment,
being conscious that their deactivation remains local to the environment.

32.24 \initiate@active@char{~}%

32.25 \initiate@active@char{=}}

32.26 \declare@shorthand{latin}{~a}{%

155

\LatinMarksOn
\LatinMarksOff

32.27 \textormath{\u{a}\bbl@allowhyphens}{\hat{a}}}%
32.28 \declare@shorthand{latin}{~e}{%

32.29 \textormath{\u{e}\bbl@allowhyphens}{\hat{e}}}%
32.30 \declare@shorthand{latin}{~i}{%

32.31 \textormath{\u{\i}\bbl@allowhyphens}{\hat{\imath}}}/
32.32 \declare@shorthand{latin}{~o}{%

32.33 \textormath{\u{o}\bbl@allowhyphens}{\hat{o}}}%
32.34 \declare@shorthand{latin}{~u}{%

32.35 \textormath{\u{u}\bbl@allowhyphens}{\hat{u}}}%
32.36 %

32.37 \declare@shorthand{latin}{=a}{%

32.38 \textormath{\={a}\bbl@allowhyphens}{\bar{a}}}%
32.39 \declare@shorthand{latin}{=e}{/

32.40 \textormath{\={e}\bbl@allowhyphens}{\bar{e}}}%
32.41 \declare@shorthand{latin}{=i}{%

32.42 \textormath{\={\i}\bbl@allowhyphens}{\bar{\imath}}1}%
32.43 \declare@shorthand{latin}{=o}{%

32.44 \textormath{\={o}\bbl@allowhyphens}{\bar{o}}}%
32.45 \declare@shorthand{latin}{=u}{/%

32.46 \textormath{\={u}\bbl@allowhyphens}{\bar{u}}}%
32.47 }

Notice that the short hand definitions are given only for lower case letters; it
would not be difficult to extend the set of definitions to upper case letters, but it
appears of very little use in view of the kind of documents where prosodic marks
are supposed to be used. Nevertheless in those rare cases when it’s required to
set some uppercase letters with their prosodic marks, it is always possible to
use the standard EIEX commands such as \u{I} for typesetting I, or \={A} for
typesetting A.
Finally we restore the caret and equals sign initial default category codes.
32.48 \catcode ‘\= \@tempcnta
32.49 \catcode‘\~ \@tempcntb

so as to avoid conflicts with other packages or other babel options.

We define two new commands so as to switch on and off the breve and macron
shortcuts.

32.50 \addto\extraswithprosodicmarks{\let\LatinMarksOn\ProsodicMarksOn}
32.51 \addto\extraswithprosodicmarks{\let\LatinMarksOff\ProsodicMarksOff}

It must be understood that by using the above prosodic marks, line breaking
is somewhat impeached; since such prosodic marks are used almost exclusively in
dictionaries, grammars, and poems (only in school textbooks), this shouldn’t be
of any importance for what concerns the quality of typesetting.

33 Etymological hyphenation

In order to deal in a clean way with prefixes and compound words to be divided
etymologically, the active character " is given a special definition so as to behave
as a discretionary break with hyphenation allowed after it. Most of the code for
dealing with the active " is already contained in the core of babel, but we are
going to use it as a single character shorthand for Latin.
33.1 \initiate@active@char{"}/,
33.2 \addto\extraslatin{\bblQactivate{"}%
33.3 }

A temporary macro is defined so as to take different actions in math mode and
text mode: specifically in the former case the macro inserts a double quote as it
should in math mode, otherwise another delayed macro comes into action.

33.4 \declare@shorthand{latin}{"}{%
33.5 \ifmmode

156

33.6 \def\1t@@next{’’}}

33.7 \else
33.8 \def\1t@@next{\futurelet\1t@temp\1lt@cwm}/,
33.9 \fi

33.10 \1t@@next

33.11 }%

In text mode the \1t@next control sequence is such that upon its execution a
temporary variable \1t@temp is made equivalent to the next token in the input list
without actually removing it. Such temporary token is then tested by the macro
\1t@cwm and if it is found to be a letter token, then it introduces a compound
word separator control sequence \1t@allowhyphens whose expansion introduces
a discretionary hyphen and an unbreakable space; in case the token is not a letter,
the token is tested again to find if it is the character |, in which case it is gobbled
and a discretionary break is introduced.

33.12 \def\1t@allowhyphens{\nobreak\discretionary{-}{}{}\nobreak\hskip\z@skip}

33.13 \newcommand*{\1t@cwm}{\let\1t@noxt\relax

33.14 \ifcat\noexpand\1ltQ@temp aJ

33.15 \let\1t@noxt\1lt@allowhyphens

33.16 \else

33.17 \if\noexpand\1t@temp\stringl’

33.18 \def\1lt@next{\1lt@allowhyphens\@gobble}%
33.19 \fi

33.20 \fi

33.21 \1t@n@xt}/

Attention: the category code comparison does not work if the temporary
control sequence \1t@temp has been let equal to an implicit character, such as
\ae; therefore this etymological hyphenation facility does not work with medieval
Latin spelling when " immediately precedes a ligature. In order to overcome
this drawback the shorthand "| may be used in such cases; it behaves exactly
as ", but it does not test the implicit character control sequence. An input
such as super"|{\ae}quitas®® gets hyphenated as su-per-zqui-tas instead of
su-pe-rz-qui-tas.

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

33.22 \1df@finish{latin}
33.23 (/code)

32This word does not exist in “regular” Latin, and it is used just as an example.

157

34 The Portuguese language

The file portuges.dtx®® defines all the language-specific macros for the Por-
tuguese language as well as for the Brasilian version of this language.

For this language the character " is made active. In table 8 an overview is
given of its purpose.

"| disable ligature at this position.

"~ an explicit hyphen sign, allowing hyphenation in the
rest of the word.

" like "-, but producing no hyphen sign (for words that
should break at some sign such as “entrada/salida.”

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

\- like the old \-, but allowing hyphenation in the rest
of the word.

Table 8: The extra definitions made by portuges.ldf

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.
34.1 (*code)

34.2 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command,
portuges will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \1@portuges to see whether we have to do some-
thing here. Since it is possible to load this file with any of the following four
options to babel: portuges, portuguese, brazil and brazilian we also allow that the
hyphenation patterns are loaded under any of these four names. We just have to
find out which one was used.

34.3 \ifx\1l@portuges\Qundefined
34.4 \ifx\l@portuguese\Q@undefined

34.5 \ifx\1@brazil\@undefined
34.6 \ifx\1@brazilian\@undefined
34.7 \@nopatterns{Portuguese}
34.8 \adddialect\1l@portuges0
34.9 \else
34.10 \let\1l@portuges\1l@brazilian
34.11 \fi
34.12 \else
34.13 \let\1l@portuges\1l@brazil
34.14 \fi
34.15 \else
34.16 \let\1l@portuges\l@portuguese
34.17 \fi
34.18 \fi

By now \1@portuges is defined. When the language definition file was loaded
under a different name we make sure that the hyphenation patterns can be found.
34.19 \expandafter\ifx\csname 1@\CurrentOption\endcsname\relax
34.20 \expandafter\let\csname 1@\CurrentOption\endcsname\l@portuges
34.21 \fi

Now we have to decide whether this language definition file was loaded for
Portuguese or Brasilian use. This can be done by checking the contents of
\CurrentOption. When it doesn’t contain either ‘portuges’ or ‘portuguese’ we
make \bbl@tempb empty.

33The file described in this section has version number v1.2q and was last revised on
2008/03/18. Contributions were made by Jose Pedro Ramalhete (JRAMALHE@CERNVM or
Jose-Pedro_Ramalhete@MACMAIL) and Arnaldo Viegas de Lima arnaldo@VNET.IBM.COM.

158

\captionsportuges

\dateportuges

34.22 \def\bblO@tempa{portuguese}
34.23 \ifx\CurrentOption\bbl@tempa
34.24 \let\bbl@tempb\Cempty

34.25 \else

34.26 \def\bbl@tempa{portuges}
34.27 \ifx\CurrentOption\bbl@tempa

34.28 \let\bbl@tempb\Q@empty
34.29 \else

34.30 \def\bbl@tempb{brazil}
3431 \fi

34.32 \fi

34.33 \1fx\bbl@tempb\Q@empty

The next step consists of defining commands to switch to (and from) the Por-
tuguese language.

The macro \captionsportuges defines all strings used in the four standard doc-
umentclasses provided with ITEX.

34.34 \@namedef{captions\CurrentOption}{%

34.35 \def\prefacename{Pref\’acio}’
34.36 \def\refname{Refer\~encias}y,
34.37 \def\abstractname{Resumol}y,

34.38 \def\bibname{Bibliografia}%

34.39 \def\chaptername{Cap\’{\i}tulo}’
34.40 \def \appendixname{Ap\~endice},

Some discussion took place around the correct translations for ‘Table of Contents’
and ‘Index’. the translations differ for Portuguese and Brasilian based the follow-
ing history:

The whole issue is that some books without a real index at the end
misused the term ‘Indice’ as table of contents. Then, what happens is
that some books apeared with ‘Indice’ at the begining and a ‘Indice
Remissivo’ at the end. Remissivo is a redundant word in this case,
but was introduced to make up the difference. So in Brasil people
started using ‘Suméario’ and ‘Indice Remissivo’. In Portugal this seems
not to be very common, therefore we chose ‘Indice’ instead of ‘Indice

Remissivo’.
34.41 \def\contentsname{Conte\’udo}},
34.42 \def\listfigurename{Lista de Figurasl}y
34.43 \def\listtablename{Lista de Tabelas}V
34.44 \def\indexname{\’Indicel}},
34.45 \def\figurename{Figuraly,
34.46 \def\tablename{Tabelal},
34.47 \def\partname{Partel}/,
34.48 \def\enclname{Anexo}/,
34.49 \def\ccname{Com c\’opia al}l%
34.50 \def\headtoname{Para},
34.51 \def\pagename{P\’agina}¥%
34.52 \def\seename{verl}y,
34.53 \def\alsoname{ver tamb\’em}%

An alternate term for ‘Proof’ could be ‘Prova’.

34.54 \def\proofname{Demonstra\c{c}\~ao}%
34.55 \def\glossaryname{Gloss\’ario}/
34.56 }
The macro \dateportuges redefines the command \today to produce Portuguese

dates.

34.57 \@namedef{date\CurrentOption}{%
34.58 \def\today{\number\day\space de\space\ifcase\month\or
34.59 Janeiro\or Fevereiro\or Mar\c{c}o\or Abrillor Maio\or Junho\or

159

\captionsbrazil

\datebrazil

\portugeshyphenmins

\extrasportuges
\noextrasportuges

34.60 Julho\or Agosto\or Setembro\or Outubro\or Novembro\or Dezembro}
34.61 \fi

34.62 \space de\space\number\year}}

34.63 \else

For the Brasilian version of these definitions we just add a “dialect”.

34.64 \expandafter
34.65 \adddialect\csname 1@\CurrentOption\endcsname\l@portuges

The “captions” are different for both versions of the language, so we define the
macro \captionsbrazil here.

34.66 \@namedef{captions\CurrentOption}{/

34.67 \def\prefacename{Pref\’acio},

34.68 \def\refname{Refer\~encias}/,

34.69 \def\abstractname{Resumol}7

34.70 \def\bibname{Refer\~encias Bibliogr\’aficasl}’
34.71 \def\chaptername{Cap\’{\i}tulo}%

34.72 \def \appendixname{Ap\~endice},

34.73 \def\contentsname{Sum\’ariol}%

34.74 \def\listfigurename{Lista de Figurasl}),
34.75 \def\listtablename{Lista de Tabelas}/,
34.76 \def\indexname{\’Indice Remissivol}/,
34.77 \def\figurename{Figuraly,

34.78 \def\tablename{Tabelal},

34.79 \def\partname{Partel}/,

34.80 \def\enclname{Anexo}’

34.81 \def\ccname{C\’opia paraly,

34.82 \def\headtoname{Para}l

34.83 \def\pagename{P\’aginaly,

34.84 \def\seename{vejaly

34.85 \def\alsoname{veja tamb\’em}/,

34.86 \def \proofname{Demonstra\c{c}\~ao}%
34.87 \def\glossaryname{Gloss\’ario}/

34.88 }

The macro \datebrazil redefines the command \today to produce Brasilian
dates, for which the names of the months are not capitalized.

34.89 \@namedef{date\CurrentOption}{%

34.90 \def\today{\number\day\space de\space\ifcase\month\or

34.91 janeiro\or fevereiro\or mar\c{c}o\or abrill\or maiol\or junho\or
34.92 julho\or agosto\or setembro\or outubro\or novembro\or dezembro
34.93 \fi

34.94 \space de\space\number\year}}

34.95 \fi

Set correct values for \lefthyphenmin and \righthyphenmin.
34.96 \providehyphenmins{\CurrentOption}{\tw@\threae}

The macro \extrasportuges will perform all the extra definitions needed for the
Portuguese language. The macro \noextrasportuges is used to cancel the actions
of \extrasportuges.

For Portuguese the " character is made active. This is done once, later on
its definition may vary. Other languages in the same document may also use the
" character for shorthands; we specify that the portuguese group of shorthands
should be used.

34.97 \initiate@active@char{"}
34.98 \@namedef{extras\CurrentOption}{\languageshorthands{portuges}}
34.99 \expandafter\addto\csname extras\CurrentOption\endcsname{
34.100 \bblQ@activate{"}}

Don’t forget to turn the shorthands off again.

34.101 \addto\noextrasportuges{\bbl@deactivate{"}}

160

First we define access to the guillemets for quotations,

34.102 \declare@shorthand{portuges}{"<}{/%

34.103 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
34.104 \declare@shorthand{portuges}{">}{/

34.105 \textormath{\guillemotright}{\mbox{\guillemotrightl}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behave a little different from \-.

34.106 \declare@shorthand{portuges}{"-}{\nobreak-\bbl@allowhyphens}
34.107 \declare@shorthand{portuges}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.

34.108 \declare@shorthand{portuges}{" |}{/%
34.109 \textormath{\discretionary{-}{}{\kern.03em}}{}}

\- All that is left now is the redefinition of \-. The new version of \- should indicate
an extra hyphenation position, while allowing other hyphenation positions to be
generated automatically. The standard behaviour of TEX in this respect is very
unfortunate for languages such as Dutch and German, where long compound words
are quite normal and all one needs is a means to indicate an extra hyphenation
position on top of the ones that TEX can generate from the hyphenation patterns.

34.110 \expandafter\addto\csname extras\CurrentOption\endcsname{J,
34.111 \babel@save\-}

34.112 \expandafter\addto\csname extras\CurrentOption\endcsname{7,
34.113 \def\-{\allowhyphens\discretionary{-}{}{}\allowhyphens}}

\ord We also provide an easy way to typeset ordinals, both in the male (\ord or \ro)
\ro and the female (orda or \ra) form.
\ordagy 114 \def\ord{$~{\rm o}$}
\rag4.115 \def\orda{$~{\rm a}$}
34.116 \let\ro\ord\let\ra\orda

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

34.117 \1df@finish\CurrentOption
34.118 (/code)

161

35 The Spanish language

The file spanish.dtx?® defines all the language-specific macros for the Spanish
language.

Spanish support is implemented following mainly the guidelines given by José
Martinez de Sousa. You may get the the full documentation (more comprehensive,
but regrettably only in Spanish) by typesetting spanish.dtx directly. There are
examples and some additional features documented in the Spanish version only.
Cross-references in this section point to that document.

Features This style provides:

e Translations following the International I#TEX conventions, as well as
\today.

e Shorthands listed in Table 9. Examples in subsection 3.4 are illustrative.
Notice that "~ has a special meaning in spanish different to other languages,
and is used mainly in linguistic contexts.

‘a Acute accented a. Works for e, i, o, u, too (both
lowercase and uppercase).

’n 0 (uppercase t00).

"i 1 (uppercase t00).

"u il (uppercase t00).

"a "o Ordinal numbers (uppercase "A, "0 to0).

"er "ER Ordinal 1.°" 1.7%

"c ¢ (uppercase t00).

"rr rr, but -r when hyphenated.

"y An old ligature for “et” (like the English &).

"— Like \-, but allowing hyphenation in the rest the
word.

"= Like -, but allowing hyphenation in the rest the
word.

" The hyphen is repeated at the very beginning of the
next line if the word is hyphenated at this point.

" Like "- but producing no hyphen sign.

~- Like "- but with no break after the hyphen. Works

for en-dashes (*--) and em-dashes (7---). "+, "+-
and "+-- are synonymous.

"/ A slash slightly lowered, if necessary.

" Disable ligatures at this point.

"< Left guillemets.

"> Right guillemets.

<< >> \begin{quoting} and \end{quoting}. (See below.)
"¢ and "’ are synonymous.

" " Opening question and exlamation marks (;j) aligned

on the baseline, useful for all-caps headings, etc.

Table 9: Extra definitions made by file spanish.1df

e \frenchspacing.
e In math mode, a dot followed by a digit is replaced by a decimal comma.

e Spanish ordinals and abbreviations with the \sptext{(tezt)} command as,
for instance, 1\sptext{er}. The preceptive dot is included.

34The file described in this section has version number v5.0k and was last revised on
2011/10/06. The maintainer from v4.0 on is Javier Bezos (http://www.tex-tipografia.com).
Previous versions were made by Julio Sanchez. The English documentation has been improved
by JosACAT Luis Rivera; thanks to him it is now a lot clearer.

162

Accented (lim, max, min, mod) and spaced (arc cos, etc.) functions.

e \dotlessi is provided for use in math mode.

A quoting environment and a related pair of shorthands << and >>. Useful
for traditional spanish multi-paragraph quoting.

e There is a small space before the percent \% sign.
e \1sc provides lowercase small caps. (See subsection 3.10.)

e Ellipsis is best typed as ... or, within a sentence, as \...

If spanish is the main language, the command \layoutspanish is added to
the main group, modifying the standard classes throughout the whole document
in the following way:

e Paragraphs are set with \indentfirst.

e Both enumerate and itemize are adapted to Spanish rules.
e Both \alph and \Alph include 7 after n.

e Symbol footmarks are one, two, three, etc., asterisks.

e 0OT1 guillemets are generated with two lasy symbols instead of small \11
and \gg.

e \roman is redefined to write small caps Roman numerals, since lowercase
Roman numerals are discouraged (see below).

e There is a dot after section numbers in titles, headings, and toc.

A subset of these features is implemented for Plain TEX (accesible with the
command \input spanish.sty). Most significantly, \1sc, the quoting environ-
ment, and features provided by \layoutspanish are missing.

Customization Beginning with version 5.0, customization is made following
two paths: via options or via commands; these options and commands override
the layout for Spanish documents at different levels: options are meant for use at
the preamble only, while commands may be used in the configuration file or at
document level.

Global options control the overall appearance of the document, and may be
set on the {babel} call, right after calling spanish, or shortly before the call to
{babel}, to ensure their proper loading at runtime. Thus, the following calls are
roughly equivalent:

\usepackagel...,spanish,es-nosectiondot,es-nodecimaldot,...]{babel}

\def\spanishoptions{es-nosectiondot,es-nodecimaldot}
\usepackagel...,spanish,...]{babel}

Some global options are built upon lower level options, and may be used as
shorthand for more global customizations. Table 10 gives an overview of the
global options constructed this way. Most of these options are self-explanatory:
they disable the changes made to the basic XTEX layout by spanish. es-lcroman
however, and a few others, need a bit of explanation, and they may be described
as follows:

163

Basic Options es-minimal es-sloppy es-noshorthands
es-noindentfirst
es-nosectiondot

es-nolists
es-noquoting
es-notilde
es-nodecimaldot
es-nolayout
es-ucroman

SRR Nl
Rl

o T B i i

>

es-lcroman

Table 10: Spanish Customization Options

e Traditional Spanish typography discourages the use of lowercase Roman
numerals; instead, a smallcaps variant is implemented. However, since
Makeindex seems to choke on the code implementing lowercase Roman
numerals (via the \lsc macro), two workarounds are implemented: the
es-ucroman option converts all Roman numerals to uppercase, and the
es-1lcroman option turns all Roman numerals to lowercase; the former should
be preferred over the latter. Three macros control local changes to Roman
numbers: \spanishscroman, \spanishucroman, and \spanishlcroman.

e The es-preindex option calls the romanidx.sty package automatically
to fix index entries in smallcaps roman form. An additional macro,
\spanishindexchars{({encap)}{(openrange)}{{closerange)} determines the

characters delimiting index entries. Defaults are \spanishindexchars{|} (}{)}.

e The es-tilden option restores the old tilde ~ shorthand for fi. This short-
hand is however strongly deprecated.

e The es-nolayout option disables layout changes in the document when
spanish is the main language. These changes affect enumerated and item-
ized lists, enumerations (alphabetic order excludes 1), and symbolic foot-
notes.

e The es-noshorthands disables the shorthand mechanism completely: nei-
ther " nor > nor < nor > nor ~ nor . work at all.

e The es-noquoting option disables the macros << and >> calling the quoting
environment; the alternative macros "¢ and "’ are still available.

e The es-uppernames option makes uppercase versions of captions for chapter,
tablename, etc.

e The es-tabla option changes “cuadro” for “tabla” in captions.

Finally, the Spanish 5 series begins the implementation of national variations
of Spanish typography, beginning with Mexico. Thus the global options mexico
and mexico-com are adapted to practices spread in Mexico, and perhaps Central
America, the Caribbean, and some countries in South America.>®

Many of the global options are implemented via macros, which may be included
in the configuration file spanish.cfg, in the preamble, after the call to babel,
and in the body of the document. These macros are the following.

e The macros \spanishdashitems and \spanishsignitems change the values
of itemized lists to a series of dashes or an alternative series of symbols,
respectively.

35The main difference is that mexico disables the decimaldot mechanism, while mexico-com
keeps it enabled; both change the quoting environment, disabling the use of guillemets.

164

\lquoti "<

\rquoti ">
\lquotii ¢
\rquotii ?
\lquotiii ¢
\rquotiii ’

Table 11: Default quoting signs set for the quoting environment.

The command \deactivatequoting deactivates the << and >> shorthands
if you want to use < and > in numerical comparisons and some AMSTEX
commands.

You may kill the space in spaced operators with \unspacedoperators.
You may kill the accents on accented operators with \unaccentedoperators.

The command \decimalpoint resets the decimal separator to its default
(dot) value, while \spanishdecimal{({symbol)} allows for an arbitrary defi-
nition.

\spanishplainpercent prevents the addition of a thinspace before the per-
cent sign in texts. This might be useful for parenthesized percent signs in
tables, etc.

The macros \spanishdatedel and \spanishdatede control the if the article
is given in years (del or de).

The macro \spanishreverseddate sets the date of the format “Month Day
del Year”.

The macro \Today gives months in uppercase.

The macros \spanishcaption change the value of the caption automatically
(no need to add an \addto).

The command \spanishdeactivate{(characters)} disables the shorthand
characters listed in the argument. Elegible characters are the set .2>"~<>.
These shorthand characters may be globally deactivated for Spanish adding
this command to \shorthandsspanish.

Extras are divided in groups controlled by the commands \textspanish,
\mathspanish, \shorthandsspanish y \layoutspanish; their values may
be cancelled typing \renewcommand{(command)}{}, or changed at will
(check the Spanish documentation or the code for details).

The command \spanishoperators{({operators)} defines command names
for operators in Spanish. There is no standard name for some of them,
so they may be created or changed at will. For instance, the com-
mand \renewcommand{\spanishoperators}{arc\,ctg m\acute{i}n} cre-
ates commands for these functions. The command \, adds thinspaces at the
appropriate places for spaced operators (like \arcctg in this case), and the
command \acute{(letter)} adds an accent to the letter included in the def-
inition (thus, m\acute{i}n defines the accented function \min (min); please
notice that \dotlessi is not necessary).

The commands \lquoti{(string)} \rquoti{(string)} \lquotii{(string)}
\rquotii{(string)} \lquotiii{(string)} \rquotiii{(string)} set the quot-
ing signs in the quoting environment, nested from outside in. They may be
\renewed at will. Default values are shown in table 11.

165

e The command \selectspanish* is obsolete: if spanish is the main
language, all its features are available right after loading babel. The
es-delayed option is provided to restore the previous behavior and macros
for backwards compatibility.

35.1 The Code
This file is for both BTEX 2¢ and Plain formats.

35.1 (*code)
35.2 \ProvidesLanguage{spanish.1df}

35.3 [2011/10/06 v5.0k Spanish support from the babel system]
35.4 \LdfInit{spanish}\captionsspanish
35.5

35.6 \edef\es@savedcatcodes{),
35.7 \catcode‘\noexpand\~=\the\catcode‘\~
35.8 \catcode‘\noexpand\"=\the\catcode‘\"
35.9 \catcode‘\noexpand\:=\the\catcode‘\:}
35.10 \catcode‘\“=\active
35.11 \catcode‘\"=12
35.12 \catcode‘\:=12
35.13
35.14 \ifx\undefined\1l@spanish
35.15 \@nopatterns{Spanish}
35.16 \adddialect\1@spanishO
35.17 \fi
35.18
35.19 \def\es@sdef#1{\babel@save#1\def#1}
35.20 \def\es@sDRC#1{\babel@save#1\DeclareRobustCommandx*#1}
35.21
35.22 \@ifundefined{documentclass}
35.23 {\let\ifes@latex\iffalse}
35.24 {\let\ifes@latex\iftrue}

Package options for spanish. To avoid error messages dummy options are
created on the fly when neccessary.

35.25 \ifes@latex

35.26

35.27 \@ifundefined{spanishoptions}{}

35.28 {\PassOptionsToPackage{\spanishoptions}{babell}}

35.29

35.30 \def\es@genoption#1#2#3{%

35.31 \DeclareOption{#1}{}/

35.32 \@ifpackagewith{babell}{#11}/,

35.33 {\def\es@a{#1}

35.34 \expandafter\let\expandafter\es@b\csname opt@babel.sty\endcsname
35.35 \addto\es@b{,#2}%

35.36 \expandafter\let\csname opt@babel.sty\endcsname\es@b
35.37 \AtEndOfPackage{#3}1}/

3538 {}}

35.39

35.40 \es@genoption{es-minimall}

35.41 {es-ucroman,es-noindentfirst,es-nosectiondot,es-noenumerate,?
35.42 es-noitemize,es-noquoting,es-notilde,es-nodecimaldot}
35.43 {\spanishplainpercent

35.44 \let\es@operators\relax}

35.45 \es@genoption{es-nolists}

35.46 {es-noenumerate,es-noitemize}{}

35.47 \es@genoption{es-sloppy}

35.48 {es-nolayout,es-noshorthands}{}

35.49 \es@genoption{es-noshorthands}

35.50 {es-noquoting,es-nodecimaldot,es-notilde}{}

35.51 \es@genoption{mexico}

166

35.52 {mexico-com,es-nodecimaldot}{}

35.53 \es@genoption{mexico-com}

35.54 {es-tabla,es-noquoting}

35.55 {\def\lquoti{‘‘}\def\rquoti{’’}%

35.56 \def\lquotii{‘}\def\rquotii{’}}

35.57 \def\lquotiii{\guillemotleft{}}%

35.58 \def\rquotiii{\guillemotright{}}}

35.59

35.60 \def\es@ifoption#1#2#3{}

35.61 \DeclareOption{es-#1}{}%

35.62 \Q@ifpackagewith{babel}{es-#1}{#2}{#3}}%

35.63

35.64 \def\es@optlayout#1#2{\es@ifoption{#1}{}{\addto\layoutspanish{#2}}}
35.65

35.66 \else

35.67

35.68 \def\esQ@ifoption#1#2#3{\@namedef{spanish#1}{#2}}
35.69

35.70 \fi

35.71

35.72 \let\es@uclc\@secondoftwo

35.73 \es@ifoption{uppernames}{\let\es@uclc\@firstoftwol}{}
35.74

35.75 \def\es@tablename{Ccuadro}

35.76 \es@ifoption{tabla}{\def\es@tablename{Ttabla}}{}
35.77 \es@ifoption{cuadro}{\def\es@tablename{Ccuadro}}{}

Captions follow a two step schema, so that, say, \refname is defined as
\spanishrefname which in turn contains the string to be printed. The final defi-
nition of \captionsspanish is built below.

35.78 \def\captionsspanish{’
35.79 \es@a{preface}{Prefacio}’
35.80 \es@a{ref}{Referencias}y
35.81 \es@af{abstract}{Resumen}y
35.82 \es@a{bib}{Bibliograf\’{\i}al}’
35.83 \es@a{chapter}{Cap\’{\i}tulo}},
35.84 \es@a{appendix}{Ap\’{e}ndicel},
35.85 \es@a{listfigure}{\’{I}ndice de \es@uclc Ffiguras}’
35.86 \es@a{listtable}{\’{I}ndice de \expandafter\es@uclc\es@tablename s}/,
35.87 \es@a{index}{\’{I}ndice \es@uclc Aalfab\’{e}ticol}’
35.88 \es@a{figure}{Figural}
35.89 \es@a{table}{\expandafter\@firstoftwo\es@tablenamely,
35.90 \es@a{part}{Partel}V
35.91 \es@a{encl}{Adjuntol}/
35.92 \es@a{cc}{Copia al}%
35.93 \es@a{headto}{A}}
35.94 \es@a{page}{p\’{al}ginaly,
35.95 \es@a{see}{v\’{e}asel’
35.96 \es@a{also}{v\’{e}ase tambi\’{e}nl}/
35.97 \es@a{proof}{Demostraci\’{otn}/,
35.98 \es@a{glossary}{Glosariol}’
35.99 \@ifundefined{chapter}
35.100 {\es@a{contents}{\’Indice}}%
35.101 {\es@a{contents}{\’Indice \es@uclc Ggenerall}l}}
35.102
35.103 \def \es@a#1{\@namedef{spanish#inamel}}
35.104 \captionsspanish
35.105 \def\esQ@a#1#2{%
35.106 \def\expandafter\noexpand\csname#lname\endcsname
35.107 {\expandafter\noexpand\csname spanish#lname\endcsnamel}}
35.108 \edef\captionsspanish{\captionsspanish}

Now two macros for dates (upper and lowercase).

167

35.109 \def\es@month#1{%

35.110 \expandafter#1\ifcase\month\or Eenero\or Ffebrero\or
35.111 Mmarzo\or Aabrillor Mmayo\or Jjunio\or Jjulio\or Aagosto\or
35.112 Sseptiembre\or Ooctubre\or Nnoviembre\or Ddiciembre\fi}
35.113

35.114 \def\es@today#1{/

35.115 \ifcase\es@datefmt

35.116 \the\day~de \es@month#1,

35.117 \else

35.118 \es@month#1~\the\day

35.119 \fi

35.120 \ de\ifnum\year>1999\es@yearl\fi~\the\year}

35.121

35.122 \def\datespanish{/,

35.123 \def\today{\es@today\@secondoftwo}’

35.124 \def\Today{\es@today\@firstoftwol}}

35.125 \newcount\es@datefmt

35.126 \def\spanishreverseddate{\es@datefmt\@ne}

35.127 \def\spanishdatedel{\def\es@yearl{1}}

35.128 \def\spanishdatede{\let\es@yearl\Qemptyl}

35.129 \spanishdatede

The basic macros to select the language in the preamble or the config file. Use
of \selectlanguage should be avoided at this early stage because the active chars
are not yet active. \selectspanish makes them active.

35.130 \def\selectspanish{},

35.131 \def\selectspanish{%

35.132 \def\selectspanish{’

35.133 \PackageWarning{spanish}{Extra \string\selectspanish ignored}}%
35.134 \es@select}}

35.135 \@onlypreamble\selectspanish
35.136 \def\es@select{Y

35.137 \let\es@select\@undefined
35.138 \selectlanguage{spanish}}
35.139

35.140 \let\es@shlist\Qempty

Instead of joining all the extras directly in \extrasspanish, we subdivide them
in three further groups.

35.141 \def \extrasspanish{J,

35.142 \textspanish

35.143 \mathspanish

35.144 \ifx\shorthandsspanish\@empty
35.145 \expandafter\spanishdeactivate\expandafter{\es@shlist}%
35.146 \languageshorthands{nonel}J,

35.147 \else

35.148 \shorthandsspanish

35.149 \fi}

35.150 \def \noextrasspanish{%

35.151 \ifx\textspanish\@empty\else

35.152 \notextspanish

35.153 \fi

35.154 \ifx\mathspanish\@empty\else

35.155 \nomathspanish

35.156 \fi

35.157 \ifx\shorthandsspanish\@empty\else
35.158 \noshorthandsspanish

35.159 \fi

35.160 \csname es@restorelist\endcsname}
35.161

35.162 \addto\textspanish{\es@sDRC\sptext{\es@sptext}}
35.163

35.164 \def\es@orddot{.}

168

The definition of \sptext is more elaborated than that of \textsuperscript.
With uppercase superscript text the scriptscriptsize is used. The mandatory dot
is already included. There are two versions, depending on the format.

35.165 \ifes@latex

35.166 \def\es@sptext#1{/,

35.167 {\es@orddot

35.168 \setbox\z@\hbox{8}\dimen@\ht\z@

35.169 \csname S@\f@size\endcsname

35.170 \edef\@tempa{\def\noexpand\Q@tempc{#11}/
35.171 \lowercase{\def\noexpand\@tempb{#1}}}\@tempa
35.172 \ifx\Q@tempb\@tempc

35.173 \fontsize\sf@size\z@

35.174 \selectfont

35.175 \advance\dimen@-1.15ex

35.176 \else

35.177 \fontsize\ssf@size\z@

35.178 \selectfont

35.179 \advance\dimen@-1.5ex

35.180 \fi

35.181 \math@fontsfalse\raise\dimen@\hbox{#1}}}
35.182 \else

35.183 \let\sptextfont\rm

35.184 \def\es@sptext#1{/,

35.185 {\es@orddot

35.186 \setbox\z0@\hbox{8}\dimen@\ht\z@

35.187 \edef\@tempa{\def\noexpand\Q@tempc{#1}%

35.188 \lowercase{\def\noexpand\@tempb{#1}}}\@tempa

35.189 \ifx\@tempb\@tempc

35.190 \advance\dimen@-0.75ex

35.191 \raise\dimen@\hbox{$\scriptstyle\sptextfont#1$}%

35.192 \else

35.193 \advance\dimen@-0.8ex

35.194 \raise\dimen@\hbox{$\scriptscriptstyle\sptextfont#1$3}J,
35.195 \fil}}

35.196 \fi

Lowercase small caps. We check if the current font has small caps. If not,
we fakes them. \selectfont in \es@lsc seems redundant, but it’s not. An
intermediate macro allows using an optimized variant for Roman numerals.

35.197 \ifes@latex

35.198 \addto\textspanish{\es@sDRC\lsc{\es@lsc}}

35.199 \def\es@lsc{\es@xlsc\MakeUppercase\MakeLowercase}

35.200 \def\es@xlsc#1#2#3{J,

35.201 \leavevmode

35.202 \hbox{%

35.203 \scshape\selectfont

35.204 \expandafter\ifx\csname\f@encoding/\f@family/\f@series

35.205 /n/\f@size\expandafter\endcsname

35.206 \csname\curr@fontshape/\f@size\endcsname

35.207 \csname S@\f@size\endcsname

35.208 \fontsize\sf@size\z@\selectfont

35.209 \PackageWarning{spanish}{Replacing ‘\curr@fontshape’ by
35.210 \MessageBreak faked small capsl}/

35.211 #1{#3}V,

35.212 \else
35.213 #2{#3}%
35.214 \fi}}
35.215 \fi

The quoting environment (not available in Plain). Overriding the default
\everypar is a bit tricky.

35.216 \newif\ifes@listquot

169

35.217

35.218 \ifes@latex

35.219 \csname newtoks\endcsname\es@quottoks

35.220 \csname newcount\endcsname\es@quotdepth

35.221 \newenvironment{quoting}

35.222 {\leavevmode

35.223 \advance\es@quotdepth\@ne

35.224 \csname lquot\romannumeral\es@quotdepth\endcsname,
35.225 \ifnum\es@quotdepth=\@ne

35.226 \es@listquotfalse

35.227 \let\es@quotpar\everypar

35.228 \let\everypar\es@quottoks

35.229 \everypar\expandafter{\the\es@quotpar}y,

35.230 \es@quotpar{\the\everypar

35.231 \ifes@listquot\global\es@listquotfalse\else\es@quotcont\fi}}
35232 \fi

35.233 \toks@\expandafter{\es@quotcontl}y,

35.234 \edef\es@quotcont{\the\toks@

35.235 \expandafter\noexpand

35.236 \csname rquot\romannumeral\es@quotdepth\endcsnamel}}
35.237 {\csname rquot\romannumeral\es@quotdepth\endcsname}
35.238 \def\lquoti{\guillemotleft{}}

35.239 \def\rquoti{\guillemotright{}}

35.240 \def\lquotii{‘‘}

35.241 \def\rquotii{’’}

35.242 \def\lquotiii{‘}

35.243 \def\rquotiii{’}

35.244 \let\es@quotcont\Q@empty

If there is a marginpar inside quoting, we don’t add the quotes. \es@listqout
stores the quotes to be used before item labels; otherwise they could appear after
the labels.

35.245 \addto\@marginparreset{\let\es@quotcont\@empty}
35.246 \DeclareRobustCommand\es@listquot{%

35.247 \csname rquot\romannumeral\es@quotdepth\endcsname
35.248 \global\es@listquottrue}

35.249 \fi

\frenchspacing, \... and \%.

35.250 \addto\textspanish{\bbl@frenchspacing}

35.251 \addto\notextspanish{\bbl@nonfrenchspacing}

35.252 \addto\textspanish{/

35.253 \let\es@save@dot\.%

35.254 \es@sDRC\.{\@ifnextchar.{\es@dots}{\es@save@dot}}}
35.255 \def \es@dots. .{\leavevmode\hbox{. . .}\spacefactor\@M}
35.256 \def \es@sppercent{\unskip\textormath{$\mOth\, $}{\,}}
35.257 \def\spanishplainpercent{\let\es@sppercent\Q@empty}
35.258 \addto\textspanish{/

35.259 \let\percentsign\%/

35.260 \es@sDRC\/,{\es@sppercent\percentsign{}}}

Now, the math group. It’s not easy to add an accent to an operator, because we
must avoid using text (that is, \mbox) where we have no control on font and size,
and at the same time we need \i, which is forbidden in math mode. \dotlessi
must be converted to uppercase if necessary in IMTEX 2¢. There are two versions,
depending on the format.

35.261 \addto\mathspanish{\es@sDRC\dotlessi{\es@dotlessi}}
35.262 \let\nomathspanish\relax

35.263

35.264 \ifes@latex

35.265 \def\es@texti{\i}

35.266 \addto\@uclclist{\dotlessi\es@texti}

170

35.267 \fi

35.268

35.269 \ifes@latex

35.270 \def\es@dotlessi{%

35.271 \ifmmode

35.272 {\ifnum\mathgroup=\m@ne

35.273 \imath

35.274 \else

35.275 \count@\escapechar \escapechar=\m@ne

35.276 \expandafter\expandafter\expandafter

35.277 \split@name\expandafter\string\the\textfont\mathgroup\@nil
35.278 \escapechar=\count@

35.279 \@ifundefined{\f@encoding\string\il}%

35.280 {\edef\f@encoding{\string?}}{}%

35.281 \expandafter\count@\the\csname\f@encoding\string\i\endcsname
35.282 \advance\count@"7000

35.283 \mathchar\count@

35.284 \£i}%

35.285 \else

35.286 \i

35.287 \fi}

35.288 \else

35.289 \def\es@dotlessi{\textormath{\i}{\mathchar"7010}}
35.290 \fi

35.291

35.292 \def\accentedoperators{’%

35.293 \def\es@opQac##1{\acute{\if i##1\dotlessil\else##1\fi}}}
35.294 \def\unaccentedoperators{/,

35.295 \def\es@opQaci##1{##1}}

35.296 \accentedoperators

35.297 \def \spacedoperators{\let\es@op@sp\,}

35.298 \def \unspacedoperators{\let\es@op@sp\Q@empty}

35.299 \spacedoperators

35.300 \addto\mathspanish{\es@operators}

35.301

35.302 \ifes@latex\else

35.303 \let\operator@font\rm

35.304 \fi

Operators are stored in \es@operators, which is included in the math group.
Since \operator@font is defined in IXTEX 2¢ only, we define it in the plain variant.

35.305 \def \es@operators{/,

35.306 \es@sdef\bmod{\nonscript\mskip-\medmuskip\mkernbmu

35.307 \mathbin{\operator@font m\es@op@ac od}\penalty900\mkern5mu
35.308 \nonscript\mskip-\medmuskipl}/,

35.309 \@ifundefined{@amsmath®@err}’

35.310 {\es@sdef\pmod##11{\allowbreak\mkernl8mu

35.311 ({\operator@font m\es@op@ac od}\,\,##11)}}%
35.312 {\es@sdef\mod##1{\allowbreak\if@display\mkerni8mu
35.313 \else\mkerni2mu\fi{\operator@font m\es@op@ac od}\,\,##1}%

35.314 \es@sdef \pmod##1{\pod{{\operator@font m\es@op@ac od}%
35.315 \mkern6mu##1}}1}%

35.316 \def\es@a##1 {J

35.317 \if“##1~J, empty? continue

35.318 \bbl@afterelse

35.319 \es@a

35.320 \else

35.321 \bbl@afterfi

35.322 {\if&##1%, &7 finish

35.323 \else

35.324 \bbl@afterfi
35.325 \begingroup
35.326 \let\,\@empty % ignore when def’ing name

171

35.327 \let\acute\@firstofone % id

35.328 \edef\es@b{\expandafter\noexpand\csname##1\endcsname}y,
35.329 \def\, {\noexpand\es@op@sp}’%

35.330 \def\acute{\noexpand\es@opacl}y

35.331 \edef\es@a{\endgroup

35.332 \noexpand\es@sdef \expandafter\noexpand\es@b{’

35.333 \mathop{\noexpand\operator@font##1}\es@c}1}/,

35.334 \es@a % restores itself

35.335 \es@a

35.336 \fil}}

35.337 \fil}%

35.338 \let\es@b\spanishoperators

35.339 \addto\es@b{ }%

35.340 \let\es@c\Qempty

35.341 \expandafter\es@a\es@b 1l\acute{i}m 1\acute{il}m\,sup

35.342 1\acute{i}m\,inf m\acute{al}x \acute{i}nf m\acute{il}n & %
35.343 \def\es@c{\nolimits}}

35.344 \expandafter\es@a\es@b sen tg arc\,sen arc\,cos arc\,tg & }
35.345 \def\spanishoperators{cotg cosec senh tgh }

Now comes the text shorthands. They are grouped in \shorthandsspanish
and this style performs some operations before the babel shortands are called. The
aims are to allow espression like $a~{x’}$ and to deactivate shorthands by making
them of category ‘other.” After providing a \’i shorthand, the new macros are
defined.

35.346 \DeclareTextCompositeCommand{\’}{0T1}{i}{\@tabacckludge’{\i}}
35.347

35.348 \def \es@set@shorthand#1{%

35.349 \expandafter\edef\csname es@savecat\string#1\endcsname
35.350 {\the\catcode‘#1}},

35.351 \initiate®@active@char{#1}%

35.352 \catcode‘#1=\csname es@savecat\string#l\endcsname\relax
35.353 \if .#1\else

35.354 \addto\es@restorelist{\es@restore{#1}}}
35.355 \addto\es@select{\shorthandon{#1}}/

35.356 \addto\shorthandsspanish{\es@activate{#1}1}/
35.357 \addto\es@shlist{#11}}

35.358 \fi}

35.359

35.360 \def \es@use@shorthand{’%

35.361 \if@safe@actives

35.362 \bblQafterelse

35.363 \string

35.364 \else

35.365 \bbl@afterfi

35.366 {\ifx\thepage\relax

35.367 \bbl@afterelse

35.368 \string

35.369 \else

35.370 \bbl@afterfi

35.371 \esQuse@sh

35.372 \fi}%

35.373 \fi}

35.374

35.375 \def\esQuse@sh#1{}

35.376 \ifx\protect\@unexpandable@protect

35.377 \bblQafterelse

35.378 \noexpand#1/,

35.379 \elsel

35.380 \bbl@afterfi

35.381 \textormath

35.382 {\csname active@char\string#1\endcsname},

172

35.383 {\csname normal@char\string#1\endcsname},

35.384 \fi}

35.385

35.386 \gdef\es@activate#1{/,

35.387 \begingroup

35.388 \lccode‘\"=‘#1

35.389 \lowercase{%

35.390 \endgroup

35.391 \def~{\es@use@shorthand~}}}

35.392

35.393 \def\spanishdeactivate#1{J,

35.394 \@tfor\Q@tempa:=#1\do{\expandafter\es@spdeactivate\Q@tempa}}
35.395

35.396 \def\esO@spdeactivate#1{/,

35.397 \if .#1%

35.398 \mathcode‘\.=\es@period@math\relax

35.399 \begingroup\lccode‘\"=‘\.\lowercase{\endgroup\let™\es@period@codel},
35.400 \else

35.401 \begingroup

35.402 \lccode‘\"=‘#1

35.403 \lowercase{’,

35.404 \endgroup

35.405 \expandafter\let\expandafter~Y

35.406 \csname normal@char\string#1\endcsname}j,

35.407 \catcode‘#1=\csname es@savecat\string#1l\endcsname\relax
35.408 \fi}

\es@restore is used in the list \es@restorelist, which in turn restores all
shorthands as defined by babel. The latter macros also has \es@quoting.

35.409 \def\es@restore#1{%
35.410 \shorthandon{#1}}
35.411 \begingroup

35.412 \lccode‘\~=‘#1
35.413 \lowercase{’

35.414 \endgroup

35.415 \bbl@deactivate{~}}}

To selectively define the shorthands we have a couple of macros, which defines
a certain combination if the first character has been activated as a shorthand. The
second one is intended for a few shorthands with an alternative form.

35.416 \def\es@declare#1{),

35.417 \@ifundefined{es@savecat\expandafter\string\@firstoftwo#1}},
35.418 {\@gobble}},

35.419 {\declare@shorthand{spanish}{#1}}}

35.420 \def\es@declarealt#1#2#3{%

35.421 \es@declare{#1}{#3}%

35.422 \es@declare{#2}{#3}}

35.423

35.424 \ifes@latex\else

35.425 \def\@tabacckludge#1{\csname\string#1\endcsname}

35.426 \fi

35.427

35.428 \@ifundefined{add@accent}{\def\add@accent#1#2{\accent#1 #2}}{}

Instead of redefining \?, we redefine the internal macro for the OT1 encoding.

35.429 \ifes@latex

35.430 \def\esQaccent#1#2#3{}

35.431 \expandafter\@text@composite

35.432 \csname 0T1\string#1\endcsname#3\@empty\Q@text@composite
35.433 {\bbl@allowhyphens\add@accent{#2}{#3}\bbl@allowhyphens
35.434 \setbox\@tempboxa\hbox{#3/

35.435 \global\mathchardef\accent@spacefactor\spacefactorl}y
35.436 \spacefactor\accent@spacefactor}}

173

35.437 \else

35.438 \def\esQaccent#1#2#3{%

35.439 \bbl@allowhyphens\add@accent{#2}{#3}\bbl@allowhyphens
35.440 \spacefactor\sfcode‘#3 }

35.441 \fi

35.442

35.443 \addto\shorthandsspanish{\languageshorthands{spanish}}/
35.444 \es@ifoption{noshorthands}{}{\es@set@shorthand{"}}

We override the default " of babel, intended for german.

35.445 \def\es@umlaut#1{/,

35.446 \bbl@allowhyphens\add@accent{127}#1\bbl@allowhyphens
35.447 \spacefactor\sfcode‘#1 }

35.448

35.449 \addto\shorthandsspanish{,

35.450 \babel@save\bbl@umlauta

35.451 \let\bbl@umlauta\es@umlaut}

35.452 \let\noshorthandsspanish\relax

35.453

35.454 \ifes@latex

35.455 \addto\shorthandsspanish{,

35.456 \expandafter\es@sdef\csname 0T1\string\~\endcsname{\es@accent\~{126}}%
35.457 \expandafter\es@sdef\csname 0T1\string\’\endcsname{\es@accent\’{19}}}
35.458 \else

35.459 \addto\shorthandsspanish{’,

35.460 \es@sdef\~{\es@accent\~{126}}/,

35.461 \es@sdef\’#1{\if#1i\es@accent\’{19}\i\else\es@accent\’{19}{#1}\fi}}
35.462 \fi

35.463

35.464 \def\es@sptext@r#1#2{\es@sptext{#1#2}}

35.465 \es@declare{"a}{\sptext{a}}

35.466 \es@declare{"A}{\sptext{A}}

35.467 \es@declare{"o}{\sptext{o}}

35.468 \es@declare{"0}{\sptext{0}}

35.469 \es@declare{"e}{\protect\es@sptextO@r{e}}

35.470 \es@declare{"E}{\protect\es@sptext@r{E}}

35.471 \es@declare{"u}{\"u}

35.472 \es@declare{"U{\"U}

35.473 \es@declare{"i}{\"{\i}}

35.474 \es@declare{"I}{\"I}

35.475 \es@declare{"c}{\c{c}}

35.476 \es@declare{"C}{\c{C}}

35.477 \es@declare{"<}{\guillemotleft{}}

35.478 \es@declare{">}{\guillemotright{}}

35.479 \def\es@chf{\char\hyphenchar\font}

35.480 \es@declare{"-}{\bbl@allowhyphens\-\bbl@allowhyphens}
35.481 \es@declare{"=}{\bbl@allowhyphens\es@chf\hskip\z@skip}
35.482 \es@declare{""}

35.483 {\bbl@allowhyphens

35.484 \discretionary{\es@chf}{\es@chf}{\es@chf}}

35.485 \bbl@allowhyphens}

35.486 \es@declare{"r}

35.487 {\bbl@allowhyphens

35.488 \discretionary{\es@chf}{}{rl}/

35.489 \bbl@allowhyphens}

35.490 \es@declare{"R}

35.491 {\bbl@allowhyphens

35.492 \discretionary{\es@chf}{}{R}%

35.493 \bbl@allowhyphens}

35.494 \es@declare{"y}

35.495 {\@ifundefined{scalebox}/,

35.496 {\ensuremath{\tau}}%

35.497 {\raisebox{lex}{\scalebox{-1}{\resizebox{.45em}{1ex}{2}}}}}

174

35.498 \es@declare{""}{\hskip\z@skip}

35.499 \es@declare{"/}

35.500 {\setbox\z@\hbox{/}%

35.501 \dimen@\ht\z@

35.502 \advance\dimen@-1lex

35.503 \advance\dimen@\dp\z@

35.504 \dimen@.31\dimen®@

35.505 \advance\dimen@-\dp\z@

35.506 \ifdim\dimen®@>Opt

35.507 \kern.Olem\lower\dimen@\box\z@\kern.03em
35.508 \else

35.509 \box\z@

35510 \fil}

35.511 \es@declare{"7}

35.512 {\setbox\z@\hbox{?7‘}/

35.513 \leavevmode\raise\dp\z@\box\z@}

35.514 \es@declare{"!}

35.515 {\setbox\z@\hbox{!‘}%

35.516 \leavevmode\raise\dp\z@\box\z@}

35.517

35.518 \def \spanishdecimal#1{\def\es@decimal{{#1}}}
35.519 \def\decimalcomma{\spanishdecimald{,}}

35.520 \def\decimalpoint{\spanishdecimal{.2}}

35.521 \decimalcomma

35.522 \es@ifoption{nodecimaldot}{}

35.523 {\AtBeginDocument{\bgroup\@fileswfalsel}},
35.524 \begingroup\lccode‘\"=‘\.\lowercase{\endgroup

35.525 \let\es@period@code~%
35.526 \es@set@shorthand{.}/
35.527 \let~\es@period@codel}’,

35.528 \AtBeginDocument{\egroupl}’

35.529 \@namedef{normal@char\string.}{/

35.530 \@ifnextchar\egroup

35.531 {\es@period@codel}’

35.532 {\csname active@char\string.\endcsname}}/,
35.533 \declare@shorthand{system}{.}{\es@period@codel}’
35.534 \addto\shorthandsspanish{J

35.535 \babel@savevariable{\mathcode‘\.}%

35.536 \edef\es@period@math{\the\mathcode‘\ .}/,
35.537 \babel@save\es@period@code

35.538 \ifnum\es@period@math="8000

35.539 \begingroup\lccode‘\"=¢\.\lowercase{\endgroup\let\es@period@code~ 1}
35.540 \else

35.541 \mathchardef\es@period@code\es@period@math\relax

35.542 \mathcode ‘\.="8000 %

35.543 \fi

35.544 \begingroup\lccode‘\"=¢\.\lowercase{\endgroup\babel@save~}%
35.545 \esQ@activate{.}}/,

35.546 \def\es@a#1l{\es@declare{.#1}{\es@decimal#1}}/

35.547 \es@al\es@a2\es@a3\es@asd\es@ab\esab\es@a7\es@a8\es0a9\esQal}
35.548

35.549

35.550 \es@ifoption{notilde}{}{\es@set@shorthand{~}}

35.551 \def\deactivatetilden{’

35.552 \expandafter\let\csname spanish@sh@\string~@n@\endcsname\relax
35.553 \expandafter\let\csname spanish@sh@\string~@N@\endcsname\relax}
35.554 \es@ifoption{tilden}

35.555 {\es@declare{ n}{\"n}J

35.556 \es@declare{ N}{\"N}}

35.557 {\let\deactivatetilden\relax}

35.558 \es@declarealt{ ™ -}{"+}{/

35.559 \leavevmode

175

35.560 \bgroup

35.561 \let\@sptoken\es@dashes 7, Changes \@ifnextchar behaviour

35.562 \@ifnextchar-%

35.563 {\es@dashes}

35.564 {\hbox{\es@chf}\egroupl}}

35.565 \def \es@dashes-{/

35.566 \@ifnextchar-%

35.567 {\bbl@allowhyphens\hbox{---}\bbl@allowhyphens\egroup\Q@gobble},
35.568 {\bbl@allowhyphens\hbox{--}\bbl@allowhyphens\egroup}}

35.569

35.570 \es@ifoption{noquoting}y,

35.571 {\let\es@quoting\relax

35.572 \let\activatequoting\relax

35.573 \let\deactivatequoting\relax}

35.574 {\@ifundefined{XML@catcodes}/,

35.575 {\es@set@shorthand{<},

35.576 \es@set@shorthand{>}}

35.577 \declare@shorthand{system}{<}{\csname normal@char\string<\endcsnamel}
35.578 \declare@shorthand{system}{>}{\csname normal@char\string>\endcsnamely,
35.579 \addto\es@restorelist{\es@quoting}y

35.580 \addto\es@select{\es@quoting}’

35.581 \ifes@latex

35.582 \AtBeginDocument{/,

35.583 \es@quoting

35.584 \if@filesw

35.585 \immediate\write\@mainaux{\string\@nameuse{es@quoting}}’,
35.586 \£i}%

35.587 \fi

35.588 \def\activatequoting{’

35.589 \shorthandon{<>}Y%

35.590 \let\es@quoting\activatequoting}
35.591 \def\deactivatequoting{’

35.592 \shorthandoff{<>}/

35.593 \let\es@quoting\deactivatequoting}}{}}
35.594

35.595 \es@declarealt{<<}{"‘}{\begin{quoting}}
35.596 \es@declarealt{>>}{"’}{\end{quoting}}

Acute accent shorthands are stored in a macro. If activeacute was set as an
option it’s executed. If not is not deleted for a possible later use in the cfg file.
In non KTEX 2¢ formats it’s always executed.

35.597 \begingroup

35.598 \catcode‘\’=12

35.599 \gdef\esQactiveacute{%

35.600 \es@set@shorthand{’}V

35.601 \def\es@a##1{\es@declare{’##1}{\Q@tabacckludge’##1}1}}
35.602 \es@a a\es@a e\es@a i\es@a o\es@a uY

35.603 \es@a A\es@a E\es@a I\es@a 0\es@a U

35.604 \es@declare{’n}{\"n}%

35.605 \es@declare{’N}{\"N}%

35.606 \es@declare{’’}{’’}}

But spanish allows two category codes for ’, so both should be taken into
account in \bbl@pr@mes.

35.607 \let\es@pr@m@s\bbl@prlmes
35.608 \def\bbl@prom@s{Y

35.609 \ifx’\@let@token

35.610 \bbl@afterelse

35.611 \preees

35.612 \else

35.613 \bbl@afterfi

35.614 \es@prom@s

35.615 \fil}%

176

35.616 \let\es@activeacute\relax}

35.617 \endgroup

35.618

35.619 \ifes@latex

35.620 \Q@ifpackagewith{babel}{activeacute}{\es@activeacute}{}
35.621 \else

35.622 \esQ@activeacute

35.623 \fi

And the customization. By default these macros only store the values and do
nothing.

35.624 \def\es@enumerate#1#2#3#4{\def \es@enum{{#1}{#2{#3}{#4}}}
35.625 \def \es@itemize#1#2#3#4{\def \es@item{{# 1 {#2{#3}{#4}}}
35.626

35.627 \ifes@latex

35.628 \es@enumerate{1l.}{a)}{1)}{a$’$}

35.629 \def\spanishdashitems{\es@itemize{---}{---}{---}{---}}
35.630 \def\spanishsymbitems{%

35.631 \es@itemize

35.632 {\leavevmode\hbox to 1.2ex

35.633 {\hss\vrule height .9ex width .7ex depth -.2ex\hss}}%
35.634 {\textbulletl}%

35.635 {$\m@th\circ$}’%

35.636 {$\m@th\diamond$}}

35.637 \def \spanishsignitems{%

35.638 \es@itemize{\textbullet},

35.639 {$\m@th\circ$}’

35.640 {$\m@th\diamond$l}’,

35.641 {$\m@th\triangleright$}}

35.642 \spanishsymbitems

35.643 \def \es@enumdef#1#2#3\0@0{},

35.644 \if#21%

35.645 \@namedef{theenum#1}{\arabic{enum#1}1}7

35.646 \else\if#2aj,

35.647 \@namedef{theenum#1}{\emph{\alph{enum#13}}1}%

35.648 \else\if#2AY

35.649 \@namedef{theenum#1}{\Alph{enum#1}}%

35.650 \else\if#2i%

35.651 \@namedef{theenum#1}{\roman{enum#13}}/

35.652 \else\if#2IY%

35.653 \@namedef{theenum#1}{\Roman{enum#13}}J

35.654 \else\if#207,

35.655 \@namedef{theenum#1}{\arabic{enum#1}\sptext{o}}%
35.656 \fi\fi\fi\fi\fi\fi

35.657 \toks@\expandafter{\csname theenum#1\endcsnamel},

35.658 \expandafter\edef\csname labelenum#l\endcsname

35.659 {\noexpand\es@listquot\the\toks@#3}}

35.660 \def\esQguillemot#1#2{/

35.661 \ifmmode#1Y,

35.662 \else

35.663 \save@sf@q{\penalty\QM

35.664 \leavevmode\hbox{\usefont{U}{lasy}{m}{n}/

35.665 \char#2 \kern-0.19em\char#2 }1}

35.666 \fi}

35.667 \def\layoutspanish{/

35.668 \let\layoutspanish\Q@empty

35.669 \DeclareTextCommand{\guillemotleft}{0T1}{\es@guillemot\11{40}}%
35.670 \DeclareTextCommand{\guillemotright}{0T1}{\es@guillemot\gg{41}1}/
35.671 \def\@fnsymbol##1,

35.672 {\ifcase##1\or*\or* *\orx*x\or **x*\or

35.673 wkxkk\orkkkkkk\else\Qctrerr\fil}y,

35.674 \def\@alph##17,

35.675 {\ifcase##1\or a\or b\or c\or d\or e\or flor g\or h\or ilor j\or

177

35.676 k\or 1\or m\or n\or \™n\or o\or p\or g\or r\or s\or t\or u\or v\or
35.677 w\or x\or y\or z\else\@ctrerr\fi}},

35.678 \def\@Alph##1J,

35.679 {\ifcase##1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or
35.680 K\or L\or M\or N\or \"N\or O\or P\or Q\or R\or S\or T\or Ulor V\or
35.681 W\or X\or Y\or Z\else\Q@ctrerr\fi}}

35.682

35.683 \es@optlayout{noenumerate}{%

35.684 \def\es@enumerate#l1#2#3#4{J,

35.685 \es@enumdef{i}#1\Q@empty\Cempty\QQ

35.686 \es@enumdef{iil}#2\Qempty\Q@empty\QQ

35.687 \es@enumdef{iii}#3\@empty\Qempty\QQ

35.688 \es@enumdef{iv}#4\Q@empty\Qempty\Q@Q}%

35.689 \def\p@enumii{\theenumil},

35.690 \def\pQenumiii{\p@enumiiltheenumii}y

35.691 \def\p@enumiv{\p@enumiii\theenumiii}y,

35.692 \expandafter\esQenumerate\esQenum}

35.693 \es@optlayout{noitemize}{%

35.694 \def\esQ@itemize#1#2#3#4{J,

35.695 \def\labelitemi{\es@listquot#1}/,

35.696 \def\labelitemii{\es@listquot#2}}

35.697 \def\labelitemiii{\es@listquot#3}/

35.698 \def\labelitemiv{\es@listquot#41}}%

35.699 \expandafter\esQitemize\es@item}

35.700 \let\esromanindex\@secondoftwo

35.701 \es@ifoption{ucroman}

35.702 {\def\es@romandef{y

35.703 \def\esromanindex##1##2{##1{\uppercase{##2}}}%

35.704 \def\@roman{\@Roman}}}

35.705 {\def\es@romandef{},

35.706 \def\esromanindex##1##2{##1{\es@scroman{##2}}}/

35.707 \def\@roman##1{\es@roman{\number##1}1}/,

35.708 \def\es@roman##1{\es@scroman{\romannumeral ##1}}%

35.709 \DeclareRobustCommand\es@scroman{\es@x1lsc\uppercase\@firstofone}}}
35.710 \es@optlayout{lcroman}{\es@romandef}

35.711 \newcommand\spanishlcroman{\def\@roman##1{\romannumeral##13}}

35.712 \newcommand\spanishucroman{\def\@roman{\O@Roman}}

35.713 \newcommand\spanishscroman{\def\@roman##1{\es@roman{\romannumeral##1}}}
35.714 \es@optlayout{noindentfirst}{’%

35.715 \let\Qafterindentfalse\@afterindenttrue

35.716 \@afterindenttrue}

35.717 \es@optlayout{nosectiondot}{’%

35.718 \def\@seccntformat#1{\csname the#1l\endcsname.\quadl}

35.719 \def\numberline#1{\hb@xt@\@tempdima{#1\if&\else.\fi\hfil}}}
35.720 \es@ifoption{nolayout}{\let\layoutspanish\relax}{}

35.721 \es@ifoption{sloppy}{\let\textspanish\relax\let\mathspanish\relax}{}
35.722 \es@ifoption{delayed}{}{\def\es@layoutspanish{\layoutspanish}}

35.723 \es@ifoption{preindex}{\AtEndOfPackage{\RequirePackage{romanidx}}}{}

We need to execute the following code when babel has been run, in order to
see if spanish is the main language.

35.724 \AtEnd0fPackage{%

35.725 \let\es@activeacute\Qundefined

35.726 \def\bbl@tempa{spanish},

35.727 \ifx\bbl@main@language\bblOtempa

35.728 \@nameuse{es@layoutspanish}’

35.729 \addto\es@select{’,

35.730 \@ifstar{\PackageError{spanish}/,

35.731 {014 syntax--use es-nolayoutl}’

35.732 {If you don’t want changes in layout\MessageBreak
35.733 use the es-nolayout package option}l}/
35734 {}}%

35.735 \AtBeginDocument{\layoutspanish},

178

35.736 \fi
35.737 \selectspanish}
35.738 \fi

After restoring the catcode of ~ and setting the minimal values for hyphenation,
the .1df is finished.

35.739 \es@savedcatcodes

35.740 \providehyphenmins{\CurrentOption}{\tw@\tw@}
35.741 \ifes@latex\else

35.742 \es@select

35.743 \fi

35.744 \1df@f inish{spanish}

35.745 \csname activatequoting\endcsname

35.746 (/code)

That’s all in the main file.

The spanish option writes a macro in the page field of Makelndex in entries
with small caps number, and they are rejected. This program is a preprocessor
which moves this macro to the entry field. It can be called from the main document
as a package or with the package option es-preindex.

35.747 (*indexes)

35.748 \makeatletter

35.749

35.750 \@ifundefined{es@idxfile}

35.751 {\def\spanishindexchars#1#2#3{J,

35.752 \edef\es@encap{‘\expandafter\noexpand\csname\string#1\endcsname}’,
35.753 \edef\es@openrangeq{ ‘ \expandafter\noexpand\csname\string#2\endcsnamel}y,
35.754 \edef\es@closerangeq{‘\expandafter\noexpand\csname\string#3\endcsname}},
35.755 \spanishindexchars{|}{(}{)}%

35.756 \ifx\documentclass\@twoclasseserror

35.757 \edef\es@idxfile{\jobnamel}y,

35.758 \AtEndDocument{’

35.759 \addto\@defaultsubs{%

35.760 \immediate\closeout\@indexfile

35.761 \input{romanidx.sty}}}%

35.762 \expandafter\endinput

35.763 \fi}{}

35.764

35.765 \newcount\es@converted

35.766 \newcount\es@processed

35.767

35.768 \def\es@split@file#1.#2\00{#1}

35.769 \def\es@split@ext#1.#2\Q0{#2}

35.770

35.771 \@ifundefined{es@idxfile}

35.772 {\typein[\answer]{~~JArchivo que convertir~~J%

35.773 (extension por omision .idx):}}
35.774 {\let\answer\es@idxfile}
35.775

35.776 \@expandtwoargs\in@{.}{\answer}

35.777 \1fin@

35.778 \edef\es@input@file{\expandafter\es@split@file\answer\@a}
35.779 \edef\es@input@ext{\expandafter\es@split@ext\answer\@Q}
35.780 \else

35.781 \edef\es@input@file{\answer}

35.782 \def\es@input@ext{idx}

35.783 \fi

35.784

35.785 \@ifundefined{es@idxfile}

35.786 {\typein[\answer]{~~JArchivo de destino~"~J%

35.787 (archivo por omision: \es@input@file.eix,~"J/

35.788 extension por omision .eix):}}

179

35.789 {\let\answer\es@idxfile}

35.790 \ifx\answer\Qempty

35.791 \edef\es@output{\es@input@file.eix}
35.792 \else

35.793 \Q@expandtwoargs\in@{.}{\answer}
35.794 \ifin@

35.795 \edef\es@output{\answer}
35.796 \else

35.797 \edef\es@output{\answer.eix}
35.798 \fi

35.799 \fi

35.800

35.801 \@ifundefined{es@idxfile}
35.802 {\typein[\answer]{%

35.803 ~~J7?Se ha usado algun esquema especial de controles~~J%
35.804 de MakeIndex para encap, open_range o close_range?”"J
35.805 [s/n] (n por omision)}}

35.806 {\def\answer{n}}

35.807

35.808 \if s\answer
35.809 \typein[\answer]{~~JCaracter para ’encap’~"J%

35.810 (\string| por omision)}

35.811 \ifx\answer\Qempty\else

35.812 \edef\es@encap{%

35.813 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
35.814 \fi

35.815 \typein[\answer]{~~JCaracter para ’open_range’~"J/

35.816 (\string(por omision)}

35.817 \ifx\answer\Qempty\else

35.818 \edef\es@openrange{’,

35.819 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
35.820 \fi

35.821 \typein[\answer]{~~JCaracter para ’close_range’~"J%

35.822 (\string) por omision)}

35.823 \ifx\answer\Qempty\else

35.824 \edef\es@closerange{’

35.825 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
35.826 \fi

35.827 \fi

35.828

35.829 \newwrite\es@indexfile

35.830 \immediate\openout\es@indexfile=\es@output
35.831

35.832 \newif\ifes@encapsulated

35.833

35.834 \def\es@scroman#1{#1}

35.835 \edef\es@slash{\expandafter\@gobble\string\\}
35.836

35.837 \def\indexentry{%

35.838 \begingroup

35.839 \@sanitize

35.840 \es@indexentryl}

35.841

35.842 \begingroup

35.843

35.844 \catcode‘\|=12 \lccode‘\|=\es@encap\relax
35.845 \catcode‘\ (=12 \lccode‘\(=\es@openrange\relax
35.846 \catcode‘\)=12 \lccode‘\)=\es@closerange\relax
35.847

35.848 \lowercaseq{

35.849 \gdef\es@indexentry#1{J

35.850 \endgroup

180

35.851 \advance\es@processed\@ne
35.852 \es@encapsulatedfalse
35.853 \es@bar@idx#1|\0@

35.854 \esQ@idxentryl}/

35.855 }

35.856

35.857 \lowercaseq{

35.858 \gdef\es@idxentry#1{/,

35.859 \in@{\es@scroman}{#1}/,
35.860 \ifin@

35.861 \advance\es@converted\@ne

35.862 \immediate\write\es@indexfile{y

35.863 \string\indexentry{\es@b|\ifes@encapsulated\es@p\fi esromanindex,
35.864 {\ifx\es@a\Qempty\else\es@slash\es@a\fi}}{#1}}/,

35.865 \else

35.866 \immediate\write\es@indexfile{},

35.867 \string\indexentry{\es@b\ifes@encapsulated|\es@p\es@a\fi}{#1}}%
35.868 \fi}

35.869 }

35.870

35.871 \lowercaseq{

35.872 \gdef\es@bar@idx#1 | #2\0@0{/,

35.873 \def\es@b{#1}\def\es@a{#2}/

35.874 \ifx\es@a\@empty\else\es@encapsulatedtrue\es@bar@eat#2\fi}
35.875 }

35.876

35.877 \lowercaseq{

35.878 \gdef\es@bar@eat#1#2|{\def\es@p{#1}\def\esQa{#2}/
35.879 \edef\es@t{(}\ifx\esOt\es@p

35.880 \else\edef\es@t{)}\ifx\esOt\es@p

35.881 \else

35.882 \edef\es@a{\es@p\es@a}\let\es@p\C@empty

35.883 \fi\fi}

35.884 }

35.885

35.886 \endgroup

35.887

35.888 \input \es@input@file.\es@input@ext

35.889

35.890 \immediate\closeout\es@indexfile

35.891

35.892 \typeout {H*kskkskkskkskkkkkkkk}

35.893 \typeout{Se ha procesado: \es@input@file.\es@input@ext }
35.894 \typeout{Lineas leidas: \the\es@processed}

35.895 \typeout{Lineas convertidas: \the\es@converted}

35.896 \typeout{Resultado en: \es@output}

35.897 \ifnum\es@converted>\z@

35.898 \typeout{Genere el indice a partir de ese archivo}
35.899 \else

35.900 \typeout{No se ha convertido nada. Se puede generar}
35.901 \typeout{el .ind directamente de \es@input@file.\es@input@ext}
35.902 \fi

35.903 \typeout {#kskkskkskkkkkkkk*k}

35.904

35.905 \@ifundefined{es@sdef}{\@0end}{}

35.906

35.907 \endinput

35.908 (/indexes)

181

36 The Catalan language

The file catalan.dtx>% defines all the language-specific macro’s for the Catalan
language.

For this language only the double quote character (") is made active by default.
In table 12 an overview is given of the new macros defined and the new meanings
of ". Additionally to that, the user can explicitly activate the acute accent or
apostrophe (?) and/or the grave accent () characters by using the activeacute and
activegrave options. In that case, the definitions shown in table 13 also become
available®”.

\1.1 geminated-l digraph (similar to 11). \L.L produces
the uppercase version.

\lgem geminated-1 digraph (similar to 1-1). \Lgem produces
the uppercase version.

\up Macro to help typing raised ordinals, like 1°*. Takes
one argument.

\- like the old \-, but allowing hyphenation in the rest
of the word.
" i with diaeresis, allowing hyphenation in the rest of

the word. Valid for the following vowels: i, u (both
lowercase and uppercase).

"c c-cedilla (¢). Valid for both uppercase and lowercase
c.

"1 geminated-1 digraph (similar to 1-1). Valid for both
uppercase and lowercase 1.

"< French left double quotes (similar to <<).

"> French right double quotes (similar to >>).

"— explicit hyphen sign, allowing hyphenation in the rest
of the word.

" disable ligature at this position.

Table 12: Extra definitions made by file catalan.1df (activated by default)

’e acute accented a, allowing hyphenation in the rest of
the word. Valid for the following vowels: e, i, o, u
(both lowercase and uppercase).

a grave accented a, allowing hyphenation in the rest
of the word. Valid for the following vowels: a, e, o
(both lowercase and uppercase).

Table 13: Extra definitions made by file catalan.1df (activated only when using
the options activeacute and activegrave)

These active accents characters behave according to their original definitions
if not followed by one of the characters indicated in that table.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.
36.1 (*code)
36.2 \Ldf Init{catalan}\captionscatalan

When this file is read as an option, i.e. by the \usepackage command, catalan
could be an ‘unknown’ language in which case we have to make it known. So we

36The file described in this section has version number v2.2p and was last revised on
2005/03/29.

37Please note that if the acute accent character is active, it is necessary to take special care of
coding apostrophes in a way which cannot be confounded with accents. Therefore, it is necessary
to type 1°{}estri instead of 1’estri.

182

\catalanhyphenmins

\captionscatalan

\datecatalan

\extrascatalan
\noextrascatalan

check for the existence of \1@catalan to see whether we have to do something
here.

36.3 \ifx\1@catalan\@undefined
36.4 \@nopatterns{Catalan}
36.5 \adddialect\l@catalanO
36.6 \fi

The next step consists of defining commands to switch to (and from) the Cata-
lan language.

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

36.7 \providehyphenmins{catalan}{\tw@\tw@}

The macro \captionscatalan defines all strings used in the four standard docu-
mentclasses provided with BTEX.

36.8 \addto\captionscatalan{¥
36.9 \def\prefacename{Pr\‘oleg}/,
36.10 \def\refname{Refer\‘encies}’,
36.11 \def\abstractname{Resum}/,
36.12 \def\bibname{Bibliografia}/
36.13 \def\chaptername{Cap\’{\i}tol}/
36.14 \def\appendixname{Ap\‘endix}/,
36.15 \def\contentsname{\’Index}%
36.16 \def\listfigurename{\’Index de figures}/
36.17 \def\listtablename{\’Index de taules}}
36.18 \def\indexname{\’Index alfab\‘etic}}
36.19 \def\figurename{Figura}l’
36.20 \def\tablename{Taulal}’
36.21 \def\partname{Part}},
36.22 \def\enclname{Adjunt}’
36.23 \def\ccname{C\‘opies al},
36.24 \def\headtoname{A}},
36.25 \def\pagename{P\‘aginalj,
36.26 \def\seename{Vegeul}’,
36.27 \def\alsoname{Vegeu tamb\’e}%
36.28 \def\proofname{Demostraci\’ol}/,
36.29 \def\glossaryname{Glossaril}
36.30 }

The macro \datecatalan redefines the command \today to produce Catalan
dates. Months are written in lowercase’®.

36.31 \def\datecatalan{},
36.32 \def\today{\number\day~\ifcase\month\or

36.33 de gener\or de febrer\or de mar\c{c}\or d’abrillor de maig\or
36.34 de juny\or de juliol\or d’agost\or de setembre\or d’octubre\or
36.35 de novembre\or de desembre\fi

36.36 \space de~\number\year}}

The macro \extrascatalan will perform all the extra definitions needed for the
Catalan language. The macro \noextrascatalan is used to cancel the actions of
\extrascatalan.

To improve hyphenation we give the grave character (’) a non-zero lower case
code; when we do that TEX will find more breakpoints in words that contain this
character in its role as apostrophe.

36.37 \addto\extrascatalan{’
36.38 \lccode‘’=‘’}

36.39 \addto\noextrascatalan{’,
36.40 \lccode‘’=0}

38This seems to be the common practice. See for example: E. Coromina, El 9 Nou: Manual
de redaccio i estil, Ed. Eumo, Vic, 1993

183

\dieresis
\textacute
\textgrave

For Catalan, some characters are made active or are redefined. In particular,
the " character receives a new meaning; this can also happen for the ’> character
and the ¢ character when the options activegrave and/or activeacute are specified.

36.41 \addto\extrascatalan{\languageshorthands{catalan}}
36.42 \initiate@active@char{"}
36.43 \addto\extrascatalan{\bblQactivate{"}}

[

Because the grave character is being used in constructs such as \catcode‘ ‘=\active
it needs to have it’s original category code” when the auxiliary file is being read.
Note that this file is read twice, once at the beginning of the document; then there
is no problem; but the second time it is read at the end of the document to check
whether any labels changes. It’s this second time round that the actived grave
character leads to error messages.

36.44 \@ifpackagewith{babel}{activegrave}{/

36.45 \AtBeginDocument{%

36.46 \if@filesw\immediate\write\@auxout{\catcode096=12}\fi}
36.47 \initiate@active@char{‘}
36.48 H7

36.49 \@ifpackagewith{babel}{activegravel}{/
36.50 \addto\extrascatalan{\bbl@activate{‘}}%
36.51 }{}

36.52 \@ifpackagewith{babel}{activeacute}{/
36.53 \initiate@active@char{’}%

36.54 }{}

36.55 \@ifpackagewith{babel}{activeacute}{%
36.56 \addto\extrascatalan{\bbl@activate{’}}%
36.57 }{}

Now make sure that the characters that have been turned into shorthanfd char-
acters expand to ‘normal’ characters outside the catalan environment.

36.58 \addto\noextrascatalan{\bbl@deactivate{"}}

36.59 \@ifpackagewith{babel}{activegravel}{/

36.60 \addto\noextrascatalan{\bbl@deactivate{‘}}}{}

36.61 \@ifpackagewith{babel}{activeacute}{’

36.62 \addto\noextrascatalan{\bbl@deactivate{’}}}{}

Apart from the active characters some other macros get a new definition.
Therefore we store the current ones to be able to restore them later. When their
current meanings are saved, we can safely redefine them.

We provide new definitions for the accent macros when one or both of the
options activegrave or activeacute were specified.

36.63 \addto\extrascatalan{/,

36.64 \babel@save\"},

36.65 \def\"{\protect\@umlaut}}’

36.66 \@ifpackagewith{babel}{activegrave}{%

36.67 \babel@save\‘J,

36.68 \addto\extrascatalan{\def\‘{\protect\@grave}}
36.60 3}

36.70 \@ifpackagewith{babel}{activeacute}{/

36.71 \babel@save\’%

36.72 \addto\extrascatalan{\def\’{\protect\@acutel}}
36.73 M}

All the code above is necessary because we need a few extra active characters.
These characters are then used as indicated in tables 12 and 13.

The original definition of \" is stored as \dieresis, because the definition of
\" might not be the default plain TEX one. If the user uses POSTSCRIPT fonts
with the Adobe font encoding the " character is not in the same position as in
Knuth’s font encoding. In this case \" will not be defined as \accent"7F 1, but
as \accent’310 #1. Something similar happens when using fonts that follow the

184

\@Qumlaut
\Q@acute
\@grave

Cork encoding. For this reason we save the definition of \" and use that in the
definition of other macros. We do likewise for \ ¢, and \’.
36.74 \let\dieresis\"

36.75 \@ifpackagewith{babel}{activegrave}{\let\textgrave\‘}{}
36.76 \@ifpackagewith{babel}{activeacute}{\let\textacute\’}{}

We check the encoding and if not using T1, we make the accents expand but
enabling hyphenation beyond the accent. If this is the case, not all break positions

will be found in words that contain accents, but this is a limitation in TEX. An
unsolved problem here is that the encoding can change at any time. The definitions
below are made in such a way that a change between two 256-char encodings
are supported, but changes between a 128-char and a 256-char encoding are not
properly supported. We check if T1 is in use. If not, we will give a warning and
proceed redefining the accent macros so that TEX at least finds the breaks that
are not too close to the accent. The warning will only be printed to the log file.

36.77 \ifx\DeclareFontShape\@undefined

36.78 \wlog{Warning: You are using an old LaTeX}

36.79 \wlog{Some word breaks will not be found.}

36.80 \def\Qumlaut#1{\allowhyphens\dieresis{#1}\allowhyphens}

36.81 \@ifpackagewith{babel}{activeacute}{%

36.82 \def\Qacute#1{\allowhyphens\textacute{#1}\allowhyphens}}{}

36.83 \@ifpackagewith{babel}{activegrave}{/

36.84 \def\@grave#1{\allowhyphens\textgrave{#1}\allowhyphens}}{}

36.85 \else

36.86 \ifx\f@encoding\bbl@t@one

36.87 \let\@umlaut\dieresis

36.88 \@ifpackagewith{babel}{activeacute}{’,

36.89 \let\@acute\textacute}{}

36.90 \@ifpackagewith{babel}{activegrave}{/

36.91 \let\@grave\textgrave}{}

36.92 \else

36.93 \wlog{Warning: You are using encoding \f@encoding\space

36.94 instead of T1.}

36.95 \wlog{Some word breaks will not be found.}

36.96 \def\Qumlaut#1{\allowhyphens\dieresis{#1}\allowhyphens}

36.97 \@ifpackagewith{babel}{activeacute}{}

36.98 \def\@acute#1{\allowhyphens\textacute{#1}\allowhyphens}}{}

36.99 \@ifpackagewith{babel}{activegravel}{/,

36.100 \def\@grave#1{\allowhyphens\textgrave{#1}\allowhyphens}}{}

36.101 \fi

36.102 \fi

If the user setup has extended fonts, the Ferguson macros are required to be
defined. We check for their existance and, if defined, expand to whatever they are
defined to. For instance, \’a would check for the existance of a \@ac@a macro. It
is assumed to expand to the code of the accented letter. If it is not defined, we
assume that no extended codes are available and expand to the original definition
but enabling hyphenation beyond the accent. This is as best as we can do. It is
better if you have extended fonts or ML-TEX because the hyphenation algorithm
can work on the whole word. The following macros are directly derived from

ML_rI‘EX'SS)

Now we can define our shorthands: the diaeresis and “ela geminada” support,

36.103 \declare@shorthand{catalan}{"i}{\textormath{\@umlaut\i}{\ddot\imath}}

39 A problem is perceived here with these macros when used in a multilingual environment
where extended hyphenation patterns are available for some but not all languages. Assume that
no extended patterns exist at some site for French and that french.sty would adopt this scheme
too. In that case, ’e in French would produce the combined accented letter, but hyphenation
around it would be suppressed. Both language options would need an independent method to
know whether they have extended patterns available. The precise impact of this problem and
the possible solutions are under study.

185

\-

36.104 \declare@shorthand{catalan}{"1}{\1gem{}}
36.105 \declare@shorthand{catalan}{"u}{\textormath{\@umlaut u}{\ddot u}}
36.106 \declare@shorthand{catalan}{"I}{\textormath{\@umlaut I}{\ddot I}}
36.107 \declare@shorthand{catalan}{"L}{\Lgem{}}
36.108 \declare@shorthand{catalan}{"U}{\textormath{\@umlaut U}{\ddot U}}

cedille,

36.109 \declare@shorthand{catalan}{"c}{\textormath{\c c}{"{\prime} c}}
36.110 \declare@shorthand{catalan}{"C}{\textormath{\c C}H{~{\prime} C}}

‘french’ quote characters,
36.111 \declare@shorthand{catalan}{"<}{%

36.112

\textormath{\guillemotleft}{\mbox{\guillemotleft}}}

36.113 \declare@shorthand{catalan}{">}{%

36.114

\textormath{\guillemotright}{\mbox{\guillemotright}}}

grave accents,

36.115 \@ifpackagewith{babel}{activegrave}{/

36.116 \declare@shorthand{catalan}{‘a}{\textormath{\@grave a}{\grave a}}
36.117 \declare@shorthand{catalan}{‘e}{\textormath{\@grave e}{\grave e}}
36.118 \declare@shorthand{catalan}{‘o}{\textormath{\@grave o}{\grave o}}
36.119 \declare@shorthand{catalan}{‘A}{\textormath{\@grave A}{\grave A}}
36.120 \declare@shorthand{catalan}{‘E}{\textormath{\@grave E}{\grave E}}
36.121 \declare@shorthand{catalan}{‘0}{\textormath{\@grave 0}{\grave 0}}
36.122 \declare@shorthand{catalan}{‘‘}{\textquotedblleft}},’’

36.123 %

acute accents,

36.124 \@ifpackagewith{babel}{activeacute}{/

36.125 \declare@shorthand{catalan}{’a}{\textormath{\@acute a}{~{\prime} a}}
36.126 \declare@shorthand{catalan}{’e}{\textormath{\@acute e}{~{\prime} e}}
36.127 \declare@shorthand{catalan}{’i}{\textormath{\@acute\i{}}{"{\prime} i}}
36.128 \declare@shorthand{catalan}{’o}{\textormath{\@acute o}{~{\prime} o}}
36.129 \declare@shorthand{catalan}{’u}{\textormath{\@acute u}{~{\prime} u}}
36.130 \declare@shorthand{catalan}{’A}{\textormath{\@acute A}{~{\prime} A}}
36.131 \declare@shorthand{catalan}{’E}{\textormath{\@acute E}{~{\prime} E}}
36.132 \declare@shorthand{catalan}{’I}{\textormath{\@acute I}{~{\prime} I}}
36.133 \declare@shorthand{catalan}{’0}{\textormath{\@acute O}{~{\prime} 0}}
36.134 \declare@shorthand{catalan}{’U}{\textormath{\@acute U} ~{\prime} U}}
36.135 \declare@shorthand{catalan}{’|}{%

36.136 \textormath{\csname normal@char\string’\endcsname}{~{\prime}}}

the acute accent,

36.137 \declare@shorthand{catalan}{’’}{%
36.138 \textormath{\textquotedblright}{\sp\bgroup\prim@s’}}
36.139 M2

and finally, some support definitions

36.140 \declare@shorthand{catalan}{"-}{\nobreak-\bbl@allowhyphens}
36.141 \declare@shorthand{catalan}{" | }{%

36.142
36.143

\textormath{\nobreak\discretionary{-}{}{\kern.03em}/,
\allowhyphens}{}}

All that is left now is the redefinition of \-. The new version of \- should in-
dicate an extra hyphenation position, while allowing other hyphenation positions
to be generated automatically. The standard behaviour of TEX in this respect
is unfortunate for Catalan but not as much as for Dutch or German, where long
compound words are quite normal and all one needs is a means to indicate an
extra hyphenation position on top of the ones that TEX can generate from the
hyphenation patterns. However, the average length of words in Catalan makes
this desirable and so it is kept here.

36.144 \addto\extrascatalan{’

36.145
36.146

\babel@save{\-1}/
\def\-{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphensl}}

186

\lgem Here we define a macro for typing the catalan “ela geminada” (geminated 1). The
\Lgem macros \1lgem and \Lgem have been chosen for its lowercase and uppercase repre-

\1.1
\L.L

sentation, respectively?’.

The code used in the actual macro used is a combination of the one proposed by
Feruglio and Fuster*! and the proposal*? from Valiente presented at the TEX Users
Group Annual Meeting in 1995. This last proposal has not been fully implemented
due to its limitation to CM fonts.

36.147 \newdimen\leftllkern \newdimen\rightllkern \newdimen\raiselldim
36.148 \def\1lgem{’,
36.149 \ifmmode

36.150 \csname normal@char\string"\endcsname 1%

36.151 \else

36.152 \leftllkern=Opt\rightllkern=0Opt\raiselldim=0pt/
36.153 \setbox0\hbox{1}\setbox1\hbox{1\/}\setbox2\hbox{.}/
36.154 \advance\raiselldim by \the\fontdimen5\the\font
36.155 \advance\raiselldim by -\ht2},

36.156 \leftllkern=-.25\wd0%

36.157 \advance\leftllkern by \wdlY

36.158 \advance\leftllkern by -\wdO}

36.159 \rightllkern=-.25\wd0%

36.160 \advance\rightllkern by -\wdl%

36.161 \advance\rightllkern by \wdOJ

36.162 \allowhyphens\discretionary{1l-}{1}/

36.163 {\hbox{1}\kern\leftllkern\raise\raiselldim\hbox{.}%
36.164 \kern\rightllkern\hbox{1}}\allowhyphens

36.165 \fi

36.166 }

36.167 \def\Lgem{%
36.168 \ifmmode

36.169 \csname normal@char\string"\endcsname L%

36.170 \else

36.171 \leftllkern=Opt\rightllkern=Opt\raiselldim=0pt%
36.172 \setbox0\hbox{L}\setbox1\hbox{L\/}\setbox2\hbox{.}%
36.173 \advance\raiselldim by .5\htO%

36.174 \advance\raiselldim by -.5\ht2}

36.175 \leftllkern=-.125\wd0%

36.176 \advance\leftllkern by \wdi’

36.177 \advance\leftllkern by -\wdO%

36.178 \rightllkern=-\wd0%

36.179 \divide\rightllkern by 6%

36.180 \advance\rightllkern by -\wdl%

36.181 \advance\rightllkern by \wd0%

36.182 \allowhyphens\discretionary{L-}{L}/

36.183 {\hbox{L}\kern\leftllkern\raise\raiselldim\hbox{.}/
36.184 \kern\rightllkern\hbox{L}}\allowhyphens

36.185 \fi

36.186 }

It seems to be the most natural way of entering the “ela geminda” to use the
sequences \1.1 and \L.L. These are not really macro’s by themselves but the
macros \1 and \L with delimited arguments. Therefor we define two macros
that check if the next character is a period. If not the “polish I” will be typeset,
otherwise a “ela geminada” will be typeset and the next two tokens will be ‘eaten’.

36.187 \AtBeginDocument{7
36.188 \let\lslash\l
36.189 \let\Lslash\L

40The macro names \11 and \LL were not taken because of the fact that \11 is already used
in mathematical mode.

41G. Valiente and R. Fuster, Typesetting Catalan Texts with TEX, TUGboat 14(3), 1993.

42@. Valiente, Modern Catalan Typographical Conventions, TUGboat 16(3), 1995.

187

36.190 \DeclareRobustCommand\1{\@ifnextchar.\bbl@l\lslash}
36.191 \DeclareRobustCommand\L{\@ifnextchar.\bbl@L\Lslash}}
36.192 \def\bblel#1#2{\1gem}
36.193 \def\bbleL#1#2{\Lgem}

\up A macro for typesetting things like 1 as proposed by Raymon Seroul*’.
36.194 \DeclareRobustCommand*{\up} [1]{#1}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

36.195 \1df@finish{catalan}
36.196 (/code)

43This macro has been borrowed from francais.dtx

188

37 This file

This file defines all the language-specific macros for the Galician language. The file
galician.dtx was translated in January 2007 by Javier A. Mugica from spanish.dtx.
It was given the version number 4.3, based on the version for spanish.dtx at those
times, that was 4.2b. The original author from v4.0 to 4.2b was Javier Bezos.
Previous versions were written by Julio Sdnchez.

I decided to make tabula rasa of all \changes logs. Only changes from spanish
4.2b to galician 4.3 and thereafter are documented. The change history for the
original spanish.dtx can be found in that file.

38 The Galcian language

Custumization is made following mainly the books on the subject by José Martinez
de Sousa and Xosé Feix6é Cid. By typesetting galician.dtx directly you will
get the full documentation (regrettably is in Galician only, but it is pretty long).
References in this part refers to that document. There are several aditional features
documented in the Galician version only.

This style provides:

e Translations following the International I#TEX conventions, as well as
\today.

e Shorthands listed in Table 14. Examples in subsection 3.4 are illustrative.
Note that "~ has a special meaning in galician different to other languages,
and is used mainly in linguistic contexts.

’a acute accented a. Also for: e, i, o, u (both lowercase
and uppercase).

’n 1 (also uppercase).

n 1 (also uppercase). Deprecated.

"u i (also uppercase).

i 1 (also uppercase).

"a Ordinal numbers (also "4, "o, "0).

"rr rr, but -r when hyphenated

"— Like \-, but allowing hyphenation in the rest the
word.

"= Like -, but allowing hyphenation in the rest the
word.

" The hyphen is repeated at the very beginning of the
next line if the word is hyphenated at this point.

"v Like "- but producing no hyphen sign.

~- Like - but with no break after the hyphen. Also for:
en-dashes (7--) and em-dashes (7---).

"/ A slash slightly lowered, if necessary.

" disable ligatures at this point.

<< Left guillemets.

>> Right guillemets.

"< \begin{quoting}. (See text.)

"> \end{quoting}. (See text.)

Table 14: Extra definitions made by file galician.1df

e \deactivatetilden deactivates the “n and ~N shorthands.
e In math mode a dot followed by a digit is replaced by a decimal comma.

e Galicians ordinals and abbeviations with \sptext as, for instance, 1\sptext{o}.
The preceptive dot is included.

189

e Accented functions: lim, méax, min, méd. You may globally omit the accents
with \unaccentedoperators. Spaced functions: arccos, etc. You may glob-
ally kill that space with \unspacedoperators. \dotlessi is provided for
use in math mode.

e A quoting environment and a related pair of shorthands << and >>. The
command \deactivatequoting deactivates these shorthand in case you
want to use < and > in some AMS commands and numerical comparisons.

o The command \selectgalician selects the galician language and its
shorthands. (Intended for the preamble.)

e \frenchspacing is used.

e \dots is redefined. It is now equal to typing tree points in a row (it preserves
the space following).

e There is a small space before \%.
e \msc provides lowercase small caps. (See subsection 3.10.)

Just in case galician is the main language, the group \layoutgalician is
activated, which modifies the standard classes through the whole document (it
cannot be deactivated) in the following way:

e Both enumerate and itemize are adapted to Galician rules.
e Both \alph and \Alph include 7 after n.
e Symbol footmarks are one, two, three, etc., asteriscs.

e 0OT1 guillemets are generated with two lasy symbols instead of small \11
and \gg.

e \roman is redefined to write small caps roman numerals, since lowercase
roman numerals are not allowed. However, Makelndez rejects entries con-
taining pages in that format. The .idx file must be preprocessed if the
document has this kind of entries with the provided romanidx.tex tool—
just TEX it and follow the instructions.

e There is a dot after section numbers in titles and toc.

This group is ignored if you write \selectgalician* in the preamble.
Some additional commands are provided to be used in the galician.cfg file:

e With \gl@activeacute acute accents are always active, overriding the de-
fault babel behaviour.

e \gl@enumerate sets the labels to be used by enumerate. The same applies
to \gl@itemize and itemize.

e \gl@operators stores the operator commands. All of them are canceled
with

\let\gl@operators\relax
The commands \deactivatequoting, \deactivatetilden and \selectgalician

may be used in this file, too.
A subset of these commands is provided for use in Plain TEX (with \input galician.sty).

190

38.1 The Code

This file provides definition for both IMTEX 2¢ and non ETEX 2¢ formats.
Identify the 1df file.

38.1 (*code)

38.2 \ProvidesLanguage{galician.1df}

38.3 [2008/07/06 v4.3c Galician support from the babel system]

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc. When this file is read as
an option, i.e. by the \usepackage command, galician will be an ‘unknown’
language in which case we have to make it known. So we check for the existence
of \10galician to see whether we have to do something here.

38.4 \LdfInit{galician}\captionsgalician
38.5 \ifx\undefined\1l@galician

38.6 \@nopatterns{Galician}

38.7 \adddialect\l@galicianO

38.8 \fi

We define some tools which will be used in that style file: (1) we make sure
that ~ is active, (2) \gl@delayed delays the expansion of the code in conditionals
(in fact, quite similar to \bbl@afterfi).

38.9 \edef\gl@savedcatcodes{/

38.10 \catcode‘\noexpand\~=\the\catcode‘\~
38.11 \catcode‘\noexpand\"=\the\catcode‘\"}
38.12 \catcode ‘\"=\active

38.13 \catcode‘\"=12

38.14 \long\def\gl@delayed#1\then#2\else#3\fi{%

38.15 #17,

38.16 \expandafter\@firstoftwo
38.17 \else

38.18 \expandafter\@secondoftwo
38.19 \fi

38.20 {#2}{#3}}

Two tests are introduced. The first one tells us if the format is BTEX 2¢, and
the second one if the format is Plain or any other. If both are false, the format is
TEX2.09.

38.21 \gl@delayed

38.22 \expandafter\ifx\csname documentclass\endcsname\relax\then
38.23 \let\ifes@LaTeXe\iffalse

38.24 \else

38.25 \let\ifes@LaTeXe\iftrue

38.26 \fi

38.27 \gl@delayed

38.28 \expandafter\ifx\csname newenvironment\endcsname\relax\then
38.29 \let\ifes@plain\iftrue

38.30 \else

38.31 \let\ifes@plain\iffalse

38.32 \fi

Translations for captions.
38.33 \addto\captionsgalician{/
38.34 \def\prefacename{Prefaciol,
38.35 \def\refname{Referencias}%
38.36 \def\abstractname{Resumol}’,
38.37 \def\bibname{Bibliograf\’{\i}aly,
38.38 \def\chaptername{Cap\’{\i}tulo}%
38.39 \def\appendixname{Ap\’endicel},
38.40 \def\listfigurename{\’Indice de figurasl}/
38.41 \def\listtablename{\’Indice de cadros}y,
38.42 \def\indexname{\’Indice alfab\’eticol}’
38.43 \def\figurename{Figuralj,
38.44 \def\tablename{Cadro},

191

38.45 \def\partname{Partel}j,

38.46 \def\enclname{Adxunto}},

38.47 \def\ccname{Copia al}},

38.48 \def\headtoname{A}/,

38.49 \def\pagename{P\’axinalj,

38.50 \def\seename{v\’exase}’

38.51 \def\alsoname{v\’exase tam\’en}/,

38.52 \def\proofname{Demostraci\’on}/,

38.53 \def\glossaryname{Glosariol}}

38.54

38.55 \expandafter\ifx\csname chapter\endcsname\relax

38.56 \addto\captionsgalician{\def\contentsname{\’Indice}}
38.57 \else

38.58 \addto\captionsgalician{\def\contentsname{\’Indice xerall}}
38.59 \fi

And the date.
38.60 \def\dategalician{’
38.61 \def\today{\the\day~de \ifcase\month\or xaneiro\or febreiro\or

38.62 marzo\or abrillor maio\or xu\“no\or xullo\or agosto\or
38.63 setembro\or outubro\or novembro\or decembro\fi
38.64 \ \ifnum\year>1999\gl@yearl\else de\fi~\the\yearl}}

38.65 \def\galiciandatedo{\def\gl@yearl{do}}
38.66 \def\galiciandatede{\def\gl@yearl{del}}
38.67 \galiciandatedo

The basic macros to select the language, in the preamble or the config file.
Use of \selectlanguage should be avoided at this early stage because the active
chars are not yet active. \selectgalician makes them active.
38.68 \def\selectgalician{J,
38.69 \def\selectgalician{y

38.70 \def\selectgalician{/

38.71 \PackageWarning{galician}{Extra \string\selectgalician ignored}}%
38.72 \gl@select}}

38.73

38.74 \@onlypreamble\selectgalician

38.75

38.76 \def\gl@select{%

38.77 \let\gl@select\Qundefined

38.78 \selectlanguage{galician}y,

38.79 \catcode‘\"\active\catcode‘\"=\active}

Instead of joining all the extras directly in \extrasgalician, we subdivide
them in three further groups.
38.80 \def\extrasgalician{’
38.81 \textgalician
38.82 \mathgalician
38.83 \ifx\shorthandsgalician\@empty

38.84 \galiciandeactivate{."’7<>}}
38.85 \languageshorthands{none}J,
38.86 \else

38.87 \shorthandsgalician

38.88 \fi}

38.89 \def\noextrasgalician{}
38.90 \ifx\textgalician\@empty\else

38.91 \notextgalician

38.92 \fi

38.93 \ifx\mathgalician\@empty\else

38.94 \nomathgalician

38.95 \fi

38.96 \ifx\shorthandsgalician\@empty\else
38.97 \noshorthandsgalician

38.98 \fi

38.99 \gl@reviveshorthands}

192

And the first of these sub-groups is defined.
38.100 \addto\textgalician{,
38.101 \babel@save\sptext
38.102 \def\sptext{\protect\gl@sptext}}

The definition of \sptext is more elaborated than that of \textsuperscript.
With uppercase superscript text the scriptscriptsize is used. The mandatory dot
is already included. There are two versions, depending on the format.

38.103 \ifes@LaTeXe #<<<<<<
38.104 \newcommand\gl@sptext[1]{}

38.105 {.\setbox\z@\hbox{8}\dimen@\ht\z@

38.106 \csname S@\f@size\endcsname

38.107 \edef\@tempa{\def\noexpand\@tempc{#1}%
38.108 \lowercase{\def\noexpand\@tempb{#1}}}\@tempa
38.109 \ifx\@tempb\@tempc

38.110 \fontsize\sf@size\z@

38.111 \selectfont

38.112 \advance\dimen@-1.15ex

38.113 \else

38.114 \fontsize\ssf@size\z@

38.115 \selectfont

38.116 \advance\dimen@-1.5ex

38.117 \fi

38.118 \math@fontsfalse\raise\dimen@\hbox{#1}}}
38.119 \else %h<<<<<<

38.120 \let\sptextfont\rm
38.121 \newcommand\gl@sptext[1]{
38.122 {.\setbox\z@\hbox{8}\dimen@\ht\z@

38.123 \edef\@tempa{\def\noexpand\@tempc{#1}%

38.124 \lowercase{\def\noexpand\@tempb{#1}}}\Q@tempa

38.125 \ifx\@tempb\@tempc

38.126 \advance\dimen@-0.75ex

38.127 \raise\dimen@\hbox{$\scriptstyle\sptextfont#1$}/

38.128 \else

38.129 \advance\dimen@-0.8ex

38.130 \raise\dimen@\hbox{$\scriptscriptstyle\sptextfont#1$1}J,
38.131 \fi}}

38.132 \fi h<<<L<L<LL

Now, lowercase small caps. First, we test if there are actual small caps for
the current font. If not, faked small caps are used. \msc tries a slightly larger
font. Javier B. wrote: “The \selectfont in \gl@lsc could seem redundant, but
it’s not”. I cannot see how it can’t be redundant (it is the last thing executed by
\scshape), but I keep it.

38.133 \ifes@LaTeXe }<<<<<<
38.134 \addto\textgalician{}

38.135 \babel@save\lsc

38.136 \def\lsc{\protect\gl@lsc}

38.137 \babel@save\msc

38.138 \def\msc{\protect\gl@mscl}}

38.139

38.140 \def\gl@@msc{\expandafter\@tempdima\f@size pt \divide\@tempdima by 200 \multiply\@ten
38.141 \edef\f@size{\strip@pt\Q@tempdima}\selectfont}
38.142 \def\gl@msc{\let\gl@do@msc\gl@@msc\lsc}

38.143 \let\gl@do@msc\relax

38.144

38.145 \def\gl@lsc#1{/

38.146 \leavevmode

38.147 \hbox{\gl@do@msc\scshape\selectfont

38.148 \expandafter\ifx\csname\f@encoding/\f@family/\f@series
38.149 /n/\f@size\expandafter\endcsname

38.150 \csname\curr@fontshape/\f@size\endcsname

38.151 \csname S@\f@size\endcsname

193

38.152 \fontsize\sf@size\z@\selectfont

38.153 \PackageInfo{galician}{Replacing undefined sc font\MessageBreak
38.154 shape by faked small capsl}/

38.155 \MakeUppercase{#1}%

38.156 \else

38.157 \MakeLowercase{#1}/,

38.158 \fi}\let\gl@do@msc\relax}

38.159 \fi Y<<<<<<

The quoting environment. This part is not available in Plain, hence the test.
Overriding the default \everypar is a bit tricky.
38.160 \newif\ifgl@listquot
38.161
38.162 \ifes@plain\else ¥<<<<<<
38.163 \csname newtoks\endcsname\gl@quottoks
38.164 \csname newcount\endcsname\gl@quotdepth

38.165

38.166 \ifx\quoting\c@undefined\def\next{\let\next\relax\newenvironment}

38.167 \else\def\next{\PackageInfo{galician}{Redefining quoting}\let\next\relax\renewenviror
38.168 \fi

38.169 \next{quoting}
38.170 {\leavevmode

38.171 \advance\gl@quotdepthl

38.172 \csname lquot\romannumerallgl@quotdepth\endcsname},
38.173 \ifnum\gl@quotdepth=\@ne

38.174 \gl@listquotfalse

38.175 \let\gl@quotpar\everypar

38.176 \let\everypar\gl@quottoks

38.177 \everypar\expandafter{\the\gl@quotparl}y,

38.178 \gl@quotpar{\the\everypar

38.179 \ifgl@listquot\global\gl@listquotfalse\else\gl@quotcont\fil}},
38.180 \fi

38.181 \toks@\expandafter{\gl@quotcontl}y

38.182 \edef\gloquotcont{\the\toks@

38.183 \expandafter\noexpand

38.184 \csname rquot\romannumeral\gl@quotdepth\endcsname}}
38.185 {\csname rquot\romannumeral\gl@quotdepth\endcsname}
38.186

38.187 \def\lquoti{\guillemotleft{}}
38.188 \def\rquoti{\guillemotright{}}
38.189 \def\lquotii{‘‘}

38.190 \def\rquotii{’’}

38.191 \def\lquotiii{‘}

38.192 \def\rquotiii{’}

38.193

38.194 \let\gl@quotcont\Qempty

If there is a margin par inside quoting, we don’t add the quotes. \gl@listqout
stores the quotes to be used before item labels; otherwise they could appear after
the labels.

38.195 \addto\@marginparreset{\let\gl@quotcont\Q@empty}

38.196

38.197 \def\gl@listquot{%

38.198 \csname rquot\romannumeral\gl@quotdepth\endcsname
38.199 \global\gl@listquottrue}

38.200 \fi 9<<<<<<

Now, the \frenchspacing, followed by \...dots and \% Instead of redefining
\ldots and \cdots, we redefine \1ldotp and \cdotp, so that this is compatible
with amsmath. In LaTeX we also redefine \textellipsis, and for plain or other

we redefine \dots.
38.201 \addto\textgalician{\bbl@frenchspacing}
38.202 \addto\notextgalician{\bbl@nonfrenchspacing}
38.203

194

38.204 \mathchardef\gl@cdot="0201
38.205 \ifes@LaTeXe Y<<<<<<
38.206 \addto\textgalician{/

38.207 \babel@save\textellipsis
38.208 \babel@save\ldotp

38.209 \babel@save\cdotp/

38.210 \def\textellipsis{\hbox{...}\spacefactor\sfcode‘.{} 1}/
38.211 \mathchardef\ldotp="013A%

38.212 \mathchardef\cdotp="0201Y%

38.213 }

38.214 \else Y<<<<<<

38.215 \addto\textgalician{/

38.216 \babel@save\dots

38.217 \babel@save\ldotp

38.218 \babel@save\cdotp

38.219 \mathchardef\ldotp="013A%

38.220 \mathchardef\cdotp="0201%

38.221 \def\dots{\ifmmode\ldots\else...\spacefactor\sfcode‘.{} \fil}J
38.222 }

38.223 \fi Y<<<<<<

38.224

38.225 \ifes@LaTeXe %<<<<<<

38.226 \addto\textgalician{’

38.227 \let\percentsign\%/%

38.228 \babel@save\%%

38.229 \def\%{\unskip\, \percentsign{}}}
38.230 \else

38.231 \addto\textgalician{’

38.232 \let\percentsign\%/

38.233 \babel@save\%%

38.234 \def\’%{\unskip\ifmmode\, \else$\m@th\,$\fi\percentsign{}}}
38.235 \fi

We follow with the math group. It’s not easy to add an accent in an operator.

The difficulty is that we must avoid using text (that is, \mbox) because we have no
control on font and size, and at time we should access \i, which is a text command
forbidden in math mode. \dotlessi must be converted to uppercase if necessary
in BTEX 2¢. There are two versions, depending on the format.

38.236 \addto\mathgalician{%

38.237 \babel@save\dotlessi

38.238 \def\dotlessi{\protect\gl@dotlessil}}

38.239

38.240 \let\nomathgalician\relax %} Unused, but called

38.241

38.242 \ifes@LaTeXe J<<<<<<

38.243 \def\gl@texti{\i}

38.244 \addto\@uclclist{\dotlessi\gl@texti}

38.245 \fi %h<<<<<<

38.246

38.247 \ifes@LaTeXe h<<<<<L<

38.248 \def\gl@dotlessi{}

38.249 \ifmmode

38.250 {\ifnum\mathgroup=\m@ne

38.251 \imath

38.252 \else

38.253 \count@\escapechar \escapechar=\m@ne

38.254 \expandafter\expandafter\expandafter

38.255 \split@name\expandafter\string\the\textfont\mathgroup\@nil
38.256 \escapechar=\count@

38.257 \@ifundefined{\f@encoding\string\il}

38.258 {\edef\f@encoding{\string?}}{}/

38.259 \expandafter\count@\the\csname\f@encoding\string\i\endcsname
38.260 \advance\count@"7000

195

38.261 \mathchar\count@
38.262 \fil}V,

38.263 \else

38.264 \i

38.265 \fi}

38.266 \else %<<<<<<
38.267 \def\gl@dotlessi{}
38.268 \ifmmode

38.269 \mathchar"7010
38.270 \else

38.271 \i

38.272 \fi}

38.273 \fi Y<<<<<<

The switches for accents and spaces in math.

38.274 \def\accentedoperators{/,

38.275
38.276

\def\gl@op@ac##i{\acute{##1}}/
\def\gl@op@i{\acute{\dotlessi}}}

38.277 \def\unaccentedoperators{y,

38.278
38.279

\def\gl@opQac##1{##1}%
\def\gl@op@i{i}}

38.280 \accentedoperators

38.281

38.282 \def \spacedoperators{\let\gl@op@sp\,}
38.283 \def \unspacedoperators{\let\gl@op@sp\Qempty}
38.284 \unspacedoperators

The operators are stored in \gl@operators, which in turn is included in the

math group. Since \operator@font is defined in BTEX 2¢ only, we need to define
them in the plain variant.
38.285 \addto\mathgalician{,

38.286 \gl@operators}

38.287

38.288 \ifes@LaTeXe\else %<<<<<<

38.289 \let\operator@font\rm

38.200 \def\@empty{}

38.291 \fi %h<<<<<<

38.292

38.293 \def\gl@operators{/

38.294 \babel@save\lim \def\lim{\mathop{\operator@font 1l\protect\gl@op@i m}1}}
38.295 \babel@save\limsup \def\limsup{\mathop{\operator@font 1\gl@op@i m\,supl}}’
38.296 \babel@save\liminf \def\liminf{\mathop{\operator@font 1\gl@op@i m\,infl}}}
38.297 \babel@save\max \def\max{\mathop{\operator@font m\gl@opQac ax}l}%

38.298 \babel@save\inf \def\inf{\mathop{\operator@font \protect\gl@op@i nf}}%
38.299 \babel@save\min \def\min{\mathop{\operator@font m\protect\gl@op@i n}}%
38.300 \babel@save\bmod

38.301 \def\bmod{Y

38.302 \nonscript\mskip-\medmuskip\mkern5muy

38.303 \mathbin{\operator@font m\gl@opQac od}\penalty900\mkern5mu,

38.304 \nonscript\mskip-\medmuskip}’%

38.305 \babel@save\pmod

38.306 \def\pmod##1{Y

38.307 \allowbreak\mkern18mu({\operator@font m\gl@op®Gac od}\,\,##1)}%

38.308 \def\gl@a##1 {J,

38.309 \gl@delayed

38.310 \if~##1~\then % is it empty? do nothing and continue

38.311 \gl@a

38.312 \else

38.313 \gl@delayed

38.314 \if&##1\then % is it &7 do nothing and finish

38.315 \else

38.316 \begingroup

38.317 \let\,\@empty % \, is ignored when def’ing the macro name

38.318 \let\acute\@firstofone % same

196

38.319 \edef\gl@b{\expandafter\noexpand\csname##1\endcsnamel}y,

38.320 \def\, {\noexpand\gl@op@spl}y,

38.321 \def\acute####1{/,

38.322 \if i####17,

38.323 \noexpand\gl@op@i

38.324 \else

38.325 \noexpand\gl@opQac#i##i#1},

38.326 \fi}%

38.327 \edef\gl@a{\endgroup

38.328 \noexpand\babel@save\expandafter\noexpand\gl@b
38.329 \def\expandafter\noexpand\gl@b{/,

38.330 \mathop{\noexpand\operator@font##1}\nolimits}}%
38.331 \gl@a 7 It restores itself

38.332 \gl@a

38.333 \fi

38.334 \£fi}

38.335 \let\gl@b\galicianoperators

38.336 \addto\gl@b{ 1}%

38.337 \expandafter\gl@a\gl@b sen tx cosec arc\,sen arc\,cos arc\,tx senh & %\, will be set to \gl
38.338 %

38.339 \babel@save\sin \let\sin\sen

38.340 \babel@save\arcsin \let\arcsin\arcsen
38.341 \babel@save\sinh \let\sinh\senh
38.342 }

38.343

38.344 \def\galicianoperators{cotx txh}

Now comes the text shorthands. They are grouped in \shorthandsgalician
and this style performs some operations before the babel shortands are called.
The goals are to allow espression like $a~{x’}$ and to deactivate the shorthands
making them of category ‘other’. After providing a \’i shorthand, the new macros
are defined.

38.345 \DeclareTextCompositeCommand{\’}{0T1}{i}{\@tabacckludge’{\i}}
38.346

38.347 \def \gl@set@shorthand#1{%

38.348 \expandafter\edef\csname gl@savecat\string#1l\endcsname
38.349 {\the\catcode‘#1}}

38.350 \initiate@active@char{#1}},

38.351 \catcode‘#1=\csname gl@savecat\string#l\endcsname\relax
38.352 \expandafter\let\csname gl@math\string#1\expandafter\endcsname
38.353 \csname normal@char\string#1\endcsname}

38.354

38.355 \def\glOuse@shorthand{’

38.356 \gl@delayed

38.357 \ifx\thepage\relax\then

38.358 \string

38.359 \else{l

38.360 \gl@delayed

38.361 \ifx\protect\Qunexpandable@protect\then
38.362 \noexpand

38.363 \else

38.364 \gl@use@sh

38.365 \fi}%

38.366 \fi}

38.367

38.368 \def\gl@text@sh#1{\csname active@char\string#1l\endcsname}
38.369 \def\gl@math@sh#1{\csname gl@math\string#1\endcsname}
38.370

38.371 \def\gl@use@sh{’

38.372 \gl@delayed

38.373 \if@safe@actives\then

38.374 \string

38.375 \else{

197

38.376 \gl@delayed

38.377 \ifmmode\then
38.378 \gl@math@sh
38.379 \else

38.380 \gl@text@sh
38.381 \fil}V

38.382 \fi}

38.383

38.384 \gdef\glO@activate#1{J

38.385 \begingroup

38.386 \lccode‘\"=‘#1

38.387 \lowercase{’,

38.388 \endgroup

38.389 \def~{\glQuse@shorthand~}}}
38.390

38.391 \def\galiciandeactivate#1{/
38.392 \@tfor\@tempa:=#1\do{\expandafter\gl@spdeactivate\@tempa}}
38.393

38.394 \def\gl@spdeactivate#1{/,
38.395 \if.#1%

38.396 \mathcode ‘\.=\gl@period@code

38.397 \else

38.398 \begingroup

38.399 \lccode‘\"=“#1

38.400 \lowercase{’

38.401 \endgroup

38.402 \expandafter\let\expandafter~

38.403 \csname normal@char\string#1\endcsnamel},
38.404 \catcode‘#1\csname gl@savecat\string#1l\endcsname\relax
38.405 \fi}

38.406

38.407 \def\gl@reviveshorthands{},
38.408 \gl@restore{"}\gl@restore{~}/
38.409 \gl@restore{<}\gl@restore{>}),
38.410 \gl@quoting}

38.411

38.412 \def\gl@restore#1{/,

38.413 \catcode‘#1=\active

38.414 \begingroup

38.415 \lccode‘\"=‘#1

38.416 \lowercase{%

38.417 \endgroup

38.418 \bbl@deactivate{~}}}

But galician allows two category codes for ’, so both should be taken into

account in \bbl@pr@mes.
38.419 \begingroup
38.420 \catcode‘\’=12
38.421 \lccode‘~=¢’ \lccode‘’=¢’
38.422 \lowercase{%
38.423 \gdef \bbl@prem@s{Y
38.424 \gl@delayed
38.425 \ifx~\Q@let@token\then
38.426 \preaees
38.427 \else

38.428 {\gl@delayed

38.429 \ifx’\@let@token\then
38.430 \preees

38.431 \else

38.432 {\glodelayed

38.433 \ifx~\@let@token\then
38.434 \preeet

38.435 \else

198

38.436 \egroup
38.437 \fi}%
38.438 \fi}%

38.439 \fi}}

38.440 \endgroup

38.441 \expandafter\ifx\csname @tabacckludge\endcsname\relax
38.442 \let\gl@tak\a

38.443 \else

38.444 \let\gl@tak\@tabacckludge

38.445 \fi

38.446

38.447 \ifes@LaTeXe %<<<<<<

38.448 \def\@tabacckludge#1{\expandafter\gl@tak\string#1}
38.449 \let\a\@tabacckludge

38.450 \else\ifes@plain 7<<<<<<

38.451 \def\@tabacckludge#1{\csname\string#1\endcsname}

38.452 \else %h<<<<L<LL

38.453 \def\Q@tabacckludge#1{\csname a\string#l\endcsname}
38.454 \fi\fi 9<<<<<<

38.455

38.456 \expandafter\ifx\csname add@accent\endcsname\relax
38.457 \def\addQ@accent#1#2{\accent#1 #2}
38.458 \fi

Instead of redefining \’, we redefine the internal macro for the OT1 encoding.
38.459 \ifes@LaTeXe <<<<<K
38.460 \def\gl@accent#1#2#3{}

38.461 \expandafter\@text@composite

38.462 \csname 0T1\string#1l\endcsname#3\Qempty\Q@textQ@composite
38.463 {\bbl@allowhyphens\add@accent{#2}{#3}\bbl@allowhyphens
38.464 \setbox\@tempboxa\hbox{#3%

38.465 \global\mathchardef\accent@spacefactor\spacefactorl}y,
38.466 \spacefactor\accent@spacefactor}t}

38.467 \else Hh<<<<

38.468 \def\gl@accent#1#2#3{}

38.469 \bbl@allowhyphens\add@accent{#2}{#3}\bbl@allowhyphens
38.470 \spacefactor\sfcode‘#3 }

38.471 \fi %h<<<<<<

The shorthands are activated in the aux file. Now, we begin the shorthands
group.
38.472 \addto\shorthandsgalician{\languageshorthands{galician}}
38.473 \let\noshorthandsgalician\relax

First, decimal comma.
38.474 \def\galiciandecimal#1{\def\gl@decimal{{#1}}}
38.475 \def\decimalcomma{\galiciandecimal{,}}
38.476 \def\decimalpoint{\galiciandecimal{.}}
38.477 \decimalcomma
38.478
38.479 \gl@set@shorthand{.}
38.480
38.481 \@namedef{gl@math\string.}{%
38.482 \@ifnextchar\egroup

38.483 {\mathchar\gl@period@code\relax}/
38.484 {\gl@text@sh.}}
38.485

38.486 \declare@shorthand{system}{.}{\mathchar\gl@period@code\relax}

38.487 \addto\shorthandsgalician{%

38.488 \mathchardef\gl@period@code\the\mathcode‘\.%
38.489 \babel@savevariable{\mathcode‘\.}%

38.490 \mathcode‘\.="8000 %

38.491 \gl@activate{.}}

199

38.492

38.493 \AtBeginDocument{}
38.494 \catcode‘\.=12
38.495 \if@filesw

38.496 \immediate\write\@mainaux{’
38.497 \string\catcode‘\string\.=12}/
38.498 \fi}

38.499

38.500 \declare@shorthand{galician}{.1}{\gl@decimall}
38.501 \declare@shorthand{galician}{.2}{\gl@decimal2}
38.502 \declare@shorthand{galician}{.3}{\gl@decimal3}
38.503 \declare@shorthand{galician}{.4}{\gl@decimal4}
38.504 \declare@shorthand{galician}{.5}{\gl@decimal5}
38.505 \declare@shorthand{galician}{.6}{\gl@decimal6}
38.506 \declare@shorthand{galician}{.7}{\gl@decimal7}
38.507 \declare@shorthand{galician}{.8}{\gl@decimal8}
38.508 \declare@shorthand{galician}{.9}{\gl@decimal9}
38.509 \declare@shorthand{galician}{.0}{\gl@decimalO}

Now accents and tools
38.510 \gl@set@shorthand{"}
38.511 \def\gl@umlaut#1{Y%
38.512 \bbl@allowhyphens\add@accent{127}#1\bbl@allowhyphens
38.513 \spacefactor\sfcode‘#1 }

We override the default " of babel, intended for german.
38.514 \ifes@LaTeXe <<<<<<
38.515 \addto\shorthandsgalician{¥%

38.516 \gl@activate{"}%

38.517 \gl@activate{~ 1}

38.518 \babel@save\bbl@umlauta

38.519 \let\bblOumlauta\gl@umlaut

38.520 \expandafter\babel@save\csname OT1\string\~\endcsname

38.521 \expandafter\def\csname 0T1\string\~\endcsname{\gl@accent\"{126}1}/
38.522 \expandafter\babel@save\csname OT1\string\’\endcsname

38.523 \expandafter\def\csname 0T1\string\’\endcsname{\gl@accent\’{19}}}
38.524 \else h<<<<<<

38.525 \addto\shorthandsgalician{%

38.526 \gl@activate{"}}

38.527 \gl@activate{ }%

38.528 \babel@save\bbl@umlauta

38.529 \let\bbl@umlauta\gl@umlaut

38.530 \babel@save\~%

38.531 \def\~{\gl@accent\~{1263}1}%

38.532 \babel@save\’7

38.533 \def\’#1{\if#1i\gl@accent\’{19}\i\else\gl@accent\’ {19} {#1}\fi}}
38.534 \fi %h<<<<<

38.535 \declare@shorthand{galician}{"a}{\protect\gl@sptext{a}}
38.536 \declare@shorthand{galician}{"A}{\protect\gl@sptext{A}}
38.537 \declare@shorthand{galician}{"o}{\protect\gl@sptext{o}}
38.538 \declare@shorthand{galician}{"0}{\protect\gl@sptext{0}}
38.539

38.540 \declare@shorthand{galician}{"u}{\"u}

38.541 \declare@shorthand{galician}{"U}{\"U}

38.542 \declare@shorthand{galician}{"i}{\"i}

38.543 \declare@shorthand{galician}{"I}{\"I}

38.544

38.545 \declare@shorthand{galician}{"<}{\begin{quoting}}

38.546 \declare@shorthand{galician}{">}{\end{quoting}}

38.547 \declare@shorthand{galician}{"-}{\bbl@allowhyphens\-\bbl@allowhyphens}
38.548 \declare@shorthand{galician}{"=1}/

38.549 {\bbl@allowhyphens\char\hyphenchar\font\hskip\z@skip}
38.550 \declare@shorthand{galician}{"~}

200

38.551 {\bbl@allowhyphens\discretionary{\char\hyphenchar\font}y,
38.552 {\char\hyphenchar\font}{\char\hyphenchar\font}\bbl@allowhyphens}
38.553 \declare@shorthand{galician}{"r}

38.554 {\bbl@allowhyphens\discretionary{\char\hyphenchar\font}j,
38.555 {}{r}\bbleallowhyphens}

38.556 \declare@shorthand{galician}{"R}

38.557 {\bbl@allowhyphens\discretionary{\char\hyphenchar\font}j,
38.558 {}{R}\bbl@allowhyphens}

38.559 \declare@shorthand{galician}{""}{\hskip\z@skip}

38.560 \declare@shorthand{galician}{"/3}

38.561 {\setbox\z@\hbox{/}%

38.562 \dimen@\ht\z@

38.563 \advance\dimen@-1lex

38.564 \advance\dimen@\dp\z@

38.565 \dimen@.31\dimen@

38.566 \advance\dimen@-\dp\z@

38.567 \ifdim\dimen@>0pt

38.568 \kern.Olem\lower\dimen@\box\z@\kern.03em
38.569 \else
38.570 \box\z@

38571 \fi}

38.572 \declare@shorthand{galician}{" 7}
38.573 {\setbox\z@\hbox{?‘}%

38.574 \leavevmode\raise\dp\z@\box\z@}
38.575 \declare@shorthand{galician}{" !}
38.576 {\setbox\z@\hbox{!‘}/

38.577 \leavevmode\raise\dp\z@\box\z@}
38.578

38.579 \gl@set@shorthand{~}

38.580 \declare@shorthand{galician}{™n}{\"n}
38.581 \declare@shorthand{galician}{ "N}{\"N}
38.582 \declare@shorthand{galician}{~-}{/
38.583 \leavevmode

38.584 \bgroup

38.585 \let\@sptoken\gl@dashes 7 This assignation changes the

38.586 \@ifnextchar- \@ifnextchar behaviour
38.587 {\gledashes}%
38.588 {\hbox{\char\hyphenchar\font}\egroup}}

38.589 \def\gl@dashes-{/

38.590 \@ifnextchar-%

38.591 {\bbleallowhyphens\hbox{---}\bbl@allowhyphens\egroup\@gobblel}y,
38.592 {\bbleallowhyphens\hbox{--}\bbl@allowhyphens\egroup}}

38.593

38.594 \def\deactivatetilden{’

38.595 \expandafter\let\csname galician@sh@\string~@n@\endcsname\relax
38.596 \expandafter\let\csname galician@sh@\string~@N@\endcsname\relax}

The shorthands for quoting.
38.597 \expandafter\ifx\csname XML@catcodes\endcsname\relax
38.598 \addto\gl@select{},

38.599 \catcode‘\<\active\catcode‘\>=\active
38.600 \gl@quoting}
38.601

38.602 \gl@set@shorthand{<}

38.603 \gl@set@shorthand{>}

38.604

38.605 \declare@shorthand{system}{<}{\csname normal@char\string<\endcsname}
38.606 \declare@shorthand{system}{>}{\csname normal@char\string>\endcsname}
38.607

38.608 \addto\shorthandsgalician{’

38.609 \gl@activate{<}}

38.610 \gl@activate{>}}

38.611 \ifes@LaTeXe %<<<<<<

201

38.612 \AtBeginDocument{%

38.613 \gl@quoting

38.614 \if@filesw

38.615 \immediate\write\@mainaux{\string\gl@quoting}’
38.616 \fi}%

38.617 \fi %H<<LLLL

38.618

38.619 \def\activatequoting{’

38.620 \catcode‘>=\active \catcode‘<=\active
38.621 \let\gl@quoting\activatequoting}
38.622 \def\deactivatequoting{/,

38.623 \catcode‘>=12 \catcode‘<=12

38.624 \let\gl@quoting\deactivatequoting}
38.625

38.626 \declare@shorthand{galician}{<<}{\guillemotleft{}}
38.627 \declare@shorthand{galician}{>>}{\guillemotright{}}
38.628 \fi

38.629

38.630 \let\gl@quoting\relax

38.631 \let\deactivatequoting\relax

38.632 \let\activatequoting\relax

The acute accents are stored in a macro. If activeacute was set as an option
it’s executed. If not is not deleted for a possible later use in the cfg file. In non
TEX 2¢ formats is always executed.

38.633 \def\gl@activeacute{%

38.634 \gl@set@shorthand{’}}

38.635 \addto\shorthandsgalician{\gl@activate{’}}/

38.636 \addto\gl@reviveshorthands{\gl@restore{’}}/,

38.637 \addto\gl@select{\catcode‘’=\activel}’,

38.638 \declare@shorthand{galician}{’a}{\@tabacckludge’a}’%
38.639 \declare@shorthand{galician}{’A}{\@tabacckludge’A}}
38.640 \declare@shorthand{galician}{’e}{\@tabacckludge’el}’
38.641 \declare@shorthand{galician}{’E}{\@tabacckludge’E}%
38.642 \declare@shorthand{galician}{’i}{\@tabacckludge’il}’,
38.643 \declare@shorthand{galician}{’I}{\@tabacckludge’I}}
38.644 \declare@shorthand{galician}{’o}{\@tabacckludge’o}%
38.645 \declare@shorthand{galician}{’0}{\@tabacckludge’0}%
38.646 \declare@shorthand{galician}{’u}{\@tabacckludge’u}’
38.647 \declare@shorthand{galician}{’U}{\@tabacckludge’U}%
38.648 \declare@shorthand{galician}{’n}{\"n}V

38.649 \declare@shorthand{galician}{’N}{\"N}%

38.650 \declare@shorthand{galician}{’’}{\textquotedblright}/
38.651 \let\gl@activeacute\relax}

38.652

38.653 \ifes@LaTeXe h<<<<<<

38.654 \@ifpackagewith{babel}{activeacute}{\gl@activeacute}{}
38.655 \else Y<<<<<<

38.656 \gl@activeacute

38.657 \fi %h<<<<<<Y,

And the customization. By default these macros only store the values and do
nothing.
38.658 \def\gl@enumerate#1#2#3#4{%
38.659 \def\gl@enum{{#1}{#2}{#3}{#4}}}
38.660
38.661 \def\gl@itemize#1#2#3#4{),
38.662 \def\gl@item{{#1}{#2}{#3}{#4}}}

The part formerly in the .11d file comes here. It performs layout adaptation
of BTEX to “orthodox” Galician rules.
38.663 \ifes@LaTeXe <<
38.664
38.665 \gl@enumerate{1l.}{a)}{1)}{a$’$}

202

38.666 \def\galiciandashitems{\gl@itemize{---}{---}{---}{---}}
38.667 \def\galiciansymbitems{/
38.668 \gl@itemize

38.669 {\leavevmode\hbox to 1.2ex

38.670 {\hss\vrule height .9ex width .7ex depth -.2ex\hss}}/
38.671 {\textbullet}},

38.672 {$\m@th\circ$}V

38.673 {$\m@th\diamond$}}

38.674 \def\galiciansignitems{%
38.675 \glQ@itemize

38.676 {\textbullet}%

38.677 {$\m@th\circ$}V

38.678 {$\m@th\diamond$}7,

38.679 {$\m@th\triangleright$}}
38.680 \galiciansymbitems

38.681

38.682 \def \gl@enumdef#1#2#3\00{Y

38.683 \if#21,

38.684 \@namedef{theenum#1}{\arabic{enum#1}}/,
38.685 \else\if#2aJ,

38.686 \@namedef{theenum#1}{\emph{\alph{enum#1}}1}7

38.687 \else\if#2AJ,

38.688 \@namedef {theenum#1}{\Alph{enum#13}}%

38.689 \else\if#2i,

38.690 \@namedef{theenum#1}{\roman{enum#13}}/

38.601 \else\if#2I%

38.692 \@namedef{theenum#1}{\Roman{enum#1}3}%

38.693 \else\if#20Y

38.694 \@namedef {theenum#i}{\arabic{enum#1}\protect\gl@sptext{o}}%

38.695 \fi\fi\fi\fi\fi\fi

38.696 \toks@\expandafter{\csname theenum#l\endcsname}
38.697 \expandafter\edef\csname labelenum#l\endcsname
38.698 {\noexpand\gl@listquot\the\toks@#3}}

38.699

38.700 \addto\layoutgalician{/

38.701 \def\gl@enumerate##1##2##3##4{)

38.702 \gl@enumdef{i}##1\Q@empty\C@empty\QQ

38.703 \gl@enumdef{ii}##2\Q@empty\Cempty\Q@

38.704 \gl@enumdef{iii}##3\C@empty\Qempty\QQ

38.705 \gl@enumdef {iv}##4\Qempty\Cempty\0@0}Y

38.706 \def\gl@itemize##1##24##3##4{),

38.707 \def\labelitemi{\gl@listquot##1}/

38.708 \def\labelitemii{\gl@listquot##2}}
38.709 \def\labelitemiii{\gl@listquot##3}/,
38.710 \def\labelitemiv{\gl@listquot##4}1}/

38.711 \def\p@enumii{\theenumil}y,

38.712 \def\p@enumiii{\theenumi\theenumii}y,

38.713 \def\pQ@enumiv{\p@enumiii\theenumiiil}y,
38.714 \expandafter\gl@enumerate\gl@enum

38.715 \expandafter\gl@itemize\gl@item

38.716 \DeclareTextCommand{\guillemotleft}{0T1}{%

38.717 \ifmmode\11l

38.718 \else

38.719 \save@sf@q{\penalty\@M

38.720 \leavevmode\hbox{\usefont{U}{lasyHm}{n}%
38.721 \char40 \kern-0.19em\char40 }1}/

38.722 \£i}%

38.723 \DeclareTextCommand{\guillemotright}{0T1}{%
38.724 \ifmmode\gg

38.725 \else

38.726 \save@sf@q{\penalty\@QM

38.727 \leavevmode\hbox{\usefont{U}{lasy}{m}{n}V

203

38.728 \char41l \kern-0.19em\char4il }}/

38.729 \fi}¥%

38.730 \def\@fnsymbol##1J,

38.731 {\ifcase##1\or*\or**\or*x*x*x\or*xx*x\or

38.732 sxxkk\or*kxx*kxx\else\Qctrerr\fil}y,

38.733 \def\@alph##1,

38.734 {\ifcase##1\or a\or b\or c\or d\or elor flor g\or h\or ilor
38.735 1\or m\or n\or \"n\or o\or p\or g\or r\or s\or t\or u\or v\or
38.736 x\or z\else\@ctrerr\fil}J,

38.737 \def\@Alph##1,

38.738 {\ifcase##1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or
38.739 L\or M\or N\or \"N\or O\or P\or Q\or R\or S\or T\or Ulor V\or
38.740 X\or Z\else\@ctrerr\fil}},

38.741 \let\@afterindentfalse\Qafterindenttrue

38.742 \@afterindenttrue

38.743 \def\@seccntformat##1{\csname the##1\endcsname.\quadl},

38.744 \def\numberline##1{\hb0xt@\Q@tempdima{##1\if&##1&\else.\fi\hfil}}}
38.745 \def\@roman##1{\protect\glOroman{\number##1}1}J

38.746 \def\gl@roman##1{\protect\glO@msc{\romannumeral##13}}/

38.747 \def\glromanindex##1##2{##1{\protect\gl@msc{##2}}}}

We need to execute the following code when babel has been run, in order to
see if galician is the main language.
38.748 \AtEndOfPackage{/
38.749 \let\gl@activeacute\@undefined
38.750 \def\bbl@tempa{galician}%
38.751 \ifx\bbl@main@language\bblQ@tempa

38.752 \AtBeginDocument{\layoutgalician}j,

38.753 \addto\gl@select{}

38.754 \@ifstar{\let\layoutgalician\relax}/

38.755 {\layoutgalician\let\layoutgalician\relax}}/
38.756 \fi

38.757 \selectgalician}

38.758

38.759 \fi Y<<<<<<

After restoring the catcode of ~ and setting the minimal values for hyphenation,
the .1df is finished.
38.760 \gl@savedcatcodes
38.761
38.762 \providehyphenmins{\CurrentOption}{\tw@\tw@}
38.763
38.764 \ifes@LaTeXe h<<<<<L<
38.765 \ldf@finish{galician}
38.766 \else Hh<<<LL
38.767 \gl@select
38.768 \ldf@finish{galician}
38.769 \csname activatequoting\endcsname
38.770 \fi %<<<LLLL
38.771
38.772 (/code)

That’s all in the main file. Now the file with custom-bib macros.
38.773 (*bblbst)
38.774 \def\bbland{e}

38.775 \def\bbleditors{directores} \def\bbleds{dirs.\@}
38.776 \def\bbleditor{director} \def\bbled{dir.\@}
38.777 \def\bbledby{dirixido por}

38.778 \def\bbledition{edici\’on} \def\bbledn{ed.\@}
38.779 \def\bbletal{e outros}

38.780 \def\bblvolume{volumen} \def\bblvol{vol.\@}

38.781 \def\bblof{de}

38.782 \def \bblnumber{n\ ’umero} \def\bblno{n\sptext{o}}

38.783 \def\bblin{en}

204

38.784 \def\bblpages{p\’axinas} \def\bblpp{p\’axs.\C}
38.785 \def\bblpage{p\’axina} \def\bblp{p\’ax.\@}
38.786 \def\bblchapter{cap\’itulo} \def\bblchap{cap.\C}
38.787 \def\bbltechreport{informe t\’ecnico}

38.788 \def\bbltechrep{inf.\@ t\’ec.\Q}

38.789 \def\bblmthesis{proxecto de fin de carreira}

38.790 \def\bblphdthesis{tesis doutoral}

38.791 \def\bblfirst {primeira} \def\bblfirsto {1\sptext{al}}
38.792 \def\bblsecond{segunda} \def\bblsecondo{2\sptext{a}}
38.793 \def\bblthird {terceira} \def\bblthirdo {3\sptext{al}}
38.794 \def\bblfourth{cuarta} \def\bblfourtho{4\sptext{al}}
38.795 \def\bblfifth {quinta} \def\bblfiftho {5\sptext{a}}

38.796 \def\bblth{\sptext{a}}

38.797 \let\bblst\bblth \let\bblnd\bblth \let\bblrd\bblth

38.798 \def\bbljan{xaneiro} \def\bblfeb{febreiro} \def\bblmar{marzo}
38.799 \def\bblapr{abril} \def\bblmay{maio} \def\bbljun{xu\~no}
38.800 \def\bbljul{xullo} \def\bblaug{agosto} \def\bblsep{setembro}
38.801 \def\bbloct{outubro}\def\bblnov{novembro}\def\bbldec{decembro}
38.802 (/bblbst)

The galician option writes a macro in the page field of Makelndez in entries
with medium caps number, and they are rejected. This program is a preprocessor
which moves this macro to the entry field.

38.803 (*indexgl)

38.804 \makeatletter

38.805

38.806 \newcount\gl@converted

38.807 \newcount\gl@processed

38.808

38.809 \def\gl@encap{‘\|}

38.810 \def\gl@openrange{‘\ (}

38.811 \def\gl@closerange{‘\)}

38.812

38.813 \def\gl@split@file#l.#2\00{#1}
38.814 \def\gl@split@ext#1.#2\00{#2}

38.815

38.816 \typein[\answer]{~~JArchivo que convertir~~J}
38.817 (extension por omision .idx):}

38.818

38.819 \@expandtwoargs\in@{.}{\answer}

38.820 \ifin@

38.821 \edef\gl@input@file{\expandafter\gl@split@file\answer\QQ}
38.822 \edef\gl@input@ext{\expandafter\gl@split@ext\answer\0Q}
38.823 \else

38.824 \edef\gl@input@file{\answer}

38.825 \def\gl@input@ext{idx}

38.826 \fi

38.827

38.828 \typein[\answer]{~~JArquivo de destino~"JJ

38.829 (arquivo por omision: \gl@input@file.eix, ~J%

38.830 extension por omision .eix):}

38.831 \ifx\answer\Q@empty

38.832 \edef\gl@output{\gl@input@file.eix}

38.833 \else

38.834 \@expandtwoargs\in@{.}{\answer}

38.835 \ifin@

38.836 \edef\gl@output{\answer}
38.837 \else

38.838 \edef\gl@output{\answer.eix}
38.839 \fi

38.840 \fi

38.841

38.842 \typein[\answer] {/

205

38.843 ~~J7Usouse algun esquema especial de controles~"J%
38.844 de MakeIndex para encap, open_range ou close_range?”"~J}
38.845 [s/n] (n por omision)}

38.846

38.847 \if s\answer

38.848 \typein[\answer]{~~JCaracter para ’encap’~"J%

38.849 (\string| por omision)}

38.850 \ifx\answer\Qempty\else

38.851 \edef\gl@encap{%

38.852 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
38.853 \fi

38.854 \typein[\answer]{~~JCaracter para ’open_range’~"J/

38.855 (\string(por omision)}

38.856 \ifx\answer\Qempty\else
38.857 \edef\gl@openrange{’

38.858 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
38.859 \fi

38.860 \typein[\answer]{~~JCaracter para ’close_range’~"J%

38.861 (\string) por omision)}

38.862 \ifx\answer\Qempty\else

38.863 \edef\gl@closerange{/

38.864 ‘\expandafter\noexpand\csname\expandafter\string\answer\endcsname}
38.865 \fi

38.866 \fi

38.867

38.868 \newwrite\gl@indexfile

38.869 \immediate\openout\gl@indexfile=\gl@output
38.870

38.871 \newif\ifgl@encapsulated

38.872

38.873 \def\gl@roman#1{\romannumeral#1l }

38.874 \edef\gl@slash{\expandafter\Q@gobble\string\\}
38.875

38.876 \def\indexentry{%

38.877 \begingroup

38.878 \@sanitize

38.879 \gl@indexentryl}

38.880

38.881 \begingroup

38.882

38.883 \catcode‘\|=12 \lccode‘\|=\gl@encap\relax
38.884 \catcode‘\ (=12 \lccode‘\(=\gl@openrange\relax
38.885 \catcode‘\)=12 \lccode‘\)=\gl@closerange\relax
38.886

38.887 \lowercaseq{

38.888 \gdef\gl@indexentry#1{J

38.889 \endgroup

38.890 \advance\gl@processed\@ne

38.891 \gl@encapsulatedfalse

38.892 \gl@bar@idx#1|\@e

38.893 \gl@idxentryl}/

38.894 }

38.895

38.896 \lowercaseq{

38.897 \gdef\gl@idxentry#1{%

38.898 \in@{\gl@roman}{#11}/,

38.899 \ifin@

38.900 \advance\gl@converted\@ne

38.901 \immediate\write\gl@indexfile{’,

38.902 \string\indexentry{\gl@b|\ifgl@encapsulated\gl@p\fi glromanindexy,
38.903 {\ifx\glea\@empty\else\gl@slash\gl@a\fi}}{#1}}%

38.904 \else

206

38.905 \immediate\write\gl@indexfile{}

38.906 \string\indexentry{\gl@b\ifgl@encapsulated|\gl@p\gl@a\fi}{#1}}%
38.907 \fi}

38.908 }

38.909

38.910 \lowercaseq{

38.911 \gdef\gl@bar@idx#1 | #2\0e{/,

38.912 \def\gl@b{#1}\def\glea{#2}}

38.913 \ifx\gl@a\@empty\else\gl@encapsulatedtrue\gl@barQeat#2\fi}
38.914 }

38.915

38.916 \lowercaseq{

38.917 \gdef\gl@bar@eat#1#2|{\def\gl@p{#1}\def\glea{#2}}
38.918 \edef\glot{(}\ifx\glet\gl@p

38.919 \else\edef\glot{)}\ifx\glot\glep

38.920 \else

38.921 \edef\gl@a{\gl@p\glOa}\let\gl@p\Qempty%

38.922 \fi\fi}

38.923 }

38.924

38.925 \endgroup

38.926

38.927 \input \gl@input@file.\gl@input@ext

38.928

38.929 \immediate\closeout\gl@indexfile

38.930

38.931 \typeout {H*kskkskkskkskkkkkkkk}

38.932 \typeout{procesouse: \gl@input@file.\gl@input®@ext }
38.933 \typeout{Li’nas lidas: \the\gl@processed}

38.934 \typeout{Li’nas convertidas: \the\gl@converted}
38.935 \typeout{Resultado en: \gl@output}

38.936 \ifnum\gl@converted>\z@

38.937 \typeout{Xenere o ’indice a partir deste arquivo}
38.938 \else

38.939 \typeout{Non se realizou ning’un tipo de conversi’on}
38.940 \typeout{P’odese xenerar o arquivo directamente~"J%
38.941 de \gl@input@file.\gl@input@ext}

38.942 \fi

38.943 \typeout{*****************}

38.944 \@Qend

38.945 (/indexgl)

207

\captionsbasque

39 The Basque language

The file basque.dtx** defines all the language definition macro’s for the Basque
language.

For this language the characters ~ and " are made active. In table 15 an
overview is given of their purpose. These active accent characters behave according

"| disable ligature at this position.

"~ an explicit hyphen sign, allowing hyphenation in the
rest of the word.

\- like the old \-, but allowing hyphenation in the rest
of the word.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

“n a n with tilde. Works for uppercase too.

Table 15: The extra definitions made by basque.ldf

to their original definitions if not followed by one of the characters indicated in
that table.

This option includes support for working with extended, 8-bit fonts, if available.
Support is based on providing an appropriate definition for the accent macros on
entry to the Basque language. This is automatically done by BTEX 2¢ or NFSS2.
If T1 encoding is chosen, and provided that adequate hyphenation patterns*® are
available. The easiest way to use the new encoding with ITEX 2¢ is to load the
package tlenc with \usepackage. This must be done before loading babel.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

39.1 (*code)
39.2 \Ldf Init{basque}\captionsbasque

When this file is read as an option, i.e. by the \usepackage command, basque
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@basque to see whether we have to do something here.

39.3 \ifx\1@basque\@undefined
39.4 \@nopatterns{Basque}
39.5 \adddialect\1l@basqueO
39.6 \fi

The next step consists of defining commands to switch to (and from) the Basque
language.

The macro \captionsbasque defines all strings used in the four standard docu-
mentclasses provided with ETEX.

39.7 \addto\captionsbasque{’

39.8 \def\prefacename{Hitzaurreal,

39.9 \def\refname{Erreferentziak}/,
39.10 \def\abstractname{Laburpenal}
39.11 \def\bibname{Bibliografialj,
39.12 \def\chaptername{Kapitulualy,
39.13 \def\appendixname{Eranskinal}’
39.14 \def\contentsname{Gaien Aurkibidealj,
39.15 \def\listfigurename{Irudien Zerrendal}%
39.16 \def\listtablename{Taulen Zerrendal/,
39.17 \def\indexname{Kontzeptuen Aurkibideal’,
39.18 \def\figurename{Irudia}’%

44The file described in this section has version number v1.0f and was last revised on 2005/03/29.
The original author is Juan M. Aguirregabiria, (wtpagagj@lg.ehu.es) and is based on the Spanish
file by Julio Sénchez, (jsanchez@gnmv.es).

450ne source for such patterns is the archive at tp.1lc.ehu.es that can be accessed by anony-
mous FTP or in http://tp.1lc.ehu.es/jma/basque.html

208

\datebasque

\extrasbasque
\noextrasbasque

\basquehyphenmins

39.19 \def\tablename{Taulal},

39.20 \def\partname{Atalal’,

39.21 \def\enclname{Erantsial}

39.22 \def\ccname{Kopialj,

39.23 \def\headtoname{Noril}%

39.24 \def\pagename{Orrial}

39.25 \def\seename{Ikusil}},

39.26 \def\alsoname{Ikusi, halaber}}
39.27 \def\proofname{Frogapenalj,
39.28 \def\glossaryname{Glosarioal}’
39.29 Y

The macro \datebasque redefines the command \today to produce Basque

39.30 \def\datebasque{’
39.31 \def\today{\number\year.eko\space\ifcase\month\or

39.32 urtarrilaren\or otsailaren\or martxoaren\or apirilaren\or
39.33 maiatzaren\or ekainaren\or uztailaren\or abuztuaren\or
39.34 irailaren\or urriaren\or azaroaren\or

39.35 abenduaren\fi~\number\day}}

The macro \extrasbasque will perform all the extra definitions needed for the
Basque language. The macro \noextrasbasque is used to cancel the actions of
\extrasbasque. For Basque, some characters are made active or are redefined. In
particular, the " character and the ~ character receive new meanings. Therefore
these characters have to be treated as ‘special’ characters.

39.36 \addto\extrasbasque{\languageshorthands{basque}}
39.37 \initiate@active@char{"}

39.38 \initiate@active@char{~}

39.39 \addto\extrasbasque{’,

39.40 \bbl@activate{"}}

39.41 \bbl@activate{~}}

Don’t forget to turn the shorthands off again.

39.42 \addto\noextrasbasque{
39.43 \bbl@deactivate{"}\bbl@deactivate{"}}
Apart from the active characters some other macros get a new definition.
Therefore we store the current one to be able to restore them later.
39.44 \addto\extrasbasque{’,
39.45 \babel@save\"}
39.46 \babel@save\~
39.47 \def\"{\protect\@umlautl}y,
39.48 \def\~"{\protect\@tilde}}

Basque hyphenation uses \lefthyphenmin and \righthyphenmin both set to 2.
39.49 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\dieresia The original definition of \" is stored as \dieresia, because the we do not know

\texttilde

what is its definition, since it depends on the encoding we are using or on special
macros that the user might have loaded. The expansion of the macro might use
the TEX \accent primitive using some particular accent that the font provides
or might check if a combined accent exists in the font. These two cases happen
with respectively OT1 and T1 encodings. For this reason we save the definition of
\" and use that in the definition of other macros. We do likewise for \?> and \~.
The present coding of this option file is incorrect in that it can break when the
encoding changes. We do not use \tilde as the macro name because it is already
defined as \mathaccent.

39.50 \let\dieresia\"

39.51 \let\texttilde\~

209

\@umlaut
\@tilde

We check the encoding and if not using T1, we make the accents expand but
enabling hyphenation beyond the accent. If this is the case, not all break positions
will be found in words that contain accents, but this is a limitation in TEX. An
unsolved problem here is that the encoding can change at any time. The definitions
below are made in such a way that a change between two 256-char encodings
are supported, but changes between a 128-char and a 256-char encoding are not
properly supported. We check if T1 is in use. If not, we will give a warning and
proceed redefining the accent macros so that TEX at least finds the breaks that
are not too close to the accent. The warning will only be printed to the log file.

39.52 \ifx\DeclareFontShape\Qundefined

39.53 \wlog{Warning: You are using an old LaTeX}

39.54 \wlog{Some word breaks will not be found.}

39.55 \def\Qumlaut#1{\allowhyphens\dieresia{#1}\allowhyphens}

39.56 \def\@tilde#1{\allowhyphens\texttilde{#1}\allowhyphens}

39.57 \else

39.58 \edef\bbl@next{T1}

39.59 \ifx\f@encoding\bblOnext

39.60 \let\@umlaut\dieresia

39.61 \let\@tilde\texttilde

39.62 \else

39.63 \wlog{Warning: You are using encoding \f@encoding\space
39.64 instead of T1.}

39.65 \wlog{Some word breaks will not be found.}

39.66 \def\Qumlaut#1{\allowhyphens\dieresia{#1}\allowhyphens}
39.67 \def\@tilde#1{\allowhyphens\texttilde{#1}\allowhyphens}
39.68 \fi

39.69 \fi

Now we can define our shorthands: the french quotes,
39.70 \declare@shorthand{basque}{"<}{%
39.71 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
39.72 \declare@shorthand{basque}{">}{%
39.73 \textormath{\guillemotright}{\mbox{\guillemotright}}}

ordinals*®,

39.74 \declare@shorthand{basque}{’’}{/%
39.75 \textormath{\textquotedblright}{\sp\bgroup\prim@s’}}

tildes,

39.76 \declare@shorthand{basque}{ " n}{\textormath{\"n}{\@tilde nl}}
39.77 \declare@shorthand{basque}{"N}{\textormath{\"N}{\@tilde N}}

and some additional commands.

The shorthand "- should be used in places where a word contains an explictit
hyphenation character. According to the Academy of the Basque language, when
a word break occurs at an explicit hyphen it must appear both at the end of the
first line and at the beginning of the second line.

39.78 \declare@shorthand{basque}{"-}{%

39.79 \nobreak\discretionary{-}{-}{-}\bbl@allowhyphens}
39.80 \declare@shorthand{basque}{" | }{/

39.81 \textormath{\nobreak\discretionary{-}{}{\kern.03em}/,
39.82 \allowhyphens}{}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

39.83 \1df@finish{basque}
39.84 (/code)

46The code for the ordinals was taken from the answer provided by Raymond Chen
(raymond@math.berkeley.edu) to a question by Joseph Gil (yogi@cs.ubc.ca) in comp.text.tex.

210

\captionsromanian

\dateromanian

\extrasromanian
\noextrasromanian

40 The Romanian language

The file romanian.dtx*” defines all the language-specific macros for the Romanian
language.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

40.1 (*code)
40.2 \LdfInit{romanian}\captionsromanian

When this file is read as an option, i.e. by the \usepackage command,
romanian will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \1@romanian to see whether we have to do some-
thing here.

40.3 \ifx\1@romanian\@undefined
40.4 \@nopatterns{Romanian}
40.5 \adddialect\1l@romanianO\fi

The next step consists of defining commands to switch to (and from) the Ro-
manian language.

The macro \captionsromanian defines all strings used in the four standard doc-
umentclasses provided with TEX.

40.6 1s
40.7 \addto\captionsromanian{
40.8 \def\prefacename{Prefa\c{tH\u{al}}%
40.9 \def\refname{Bibliografiel}y,
40.10 \def\abstractname{Rezumatl}/,
40.11 \def\bibname{Bibliografiel}J,
40.12 \def\chaptername{Capitolull},
40.13 \def\appendixname{Anexal,
40.14 \def\contentsname{Cuprins}/,
40.15 \def\listfigurename{List\uf{a} de figuril}y
40.16 \def\listtablename{List\u{a} de tabele},
40.17 \def\indexname{Glosar},
40.18 \def\figurename{Figural % sau Plan\c{s}a
40.19 \def\tablename{Tabelal}’
40.20 \def\partname{Parteal}’
40.21 \def\enclname{Anex\u{a}}), ' sau Anexe
40.22 \def\ccname{Copiel}/,
40.23 \def\headtoname{Pentrul}
40.24 \def\pagename{Paginaly,
40.25 \def\seename{Vezil}j,
40.26 \def\alsoname{Vezi de asemeneal’,
40.27 \def\proofname{Demonstra\c{t}ie} %
40.28 \def\glossaryname{Glosarl}y,
4029 }%

The macro \dateromanian redefines the command \today to produce Romanian
dates.

40.30 \def\dateromanian{¥
40.31 \def\today{\number\day~\ifcase\month\or

40.32 ianuarie\or februarie\or martie\or aprilielor mailor
40.33 iunie\or iulie\or august\or septembrielor octombrie\or
40.34 noiembrie\or decembrie\fi

40.35 \space \number\year}}

The macro \extrasromanian will perform all the extra definitions needed for the
Romanian language. The macro \noextrasromanian is used to cancel the actions

47The file described in this section has version number v1.21 and was last revised on 2005/03/31.
A contribution was made by Umstatter Horst (hhu@cernvm.cern.ch).

211

of \extrasromanian For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

40.36 \addto\extrasromanian{}
40.37 \addto\noextrasromanian{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

40.38 \1df@finish{romanian}
40.39 (/code)

212

\englishhyphenmins

\captionsdanish

41 The Danish language

The file danish.dtx*® defines all the language definition macros for the Danish
language.

For this language the character " is made active. In table 16 an overview is
given of its purpose.

"| disable ligature at this position.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

" like "-, but producing no hyphen sign (for words that
should break at some sign such as “entrada/salida.”

"¢ Jowered double left quotes (looks like ,,)

"> normal double right quotes

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

\- like the old \-, but allowing hyphenation in the rest
of the word.

Table 16: The extra definitions made by danish.1df

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

41.1 (*code)
41.2 \LdfInit{danish}\captionsdanish

When this file is read as an option, i.e. by the \usepackage command, danish
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@danish to see whether we have to do something here.

41.3 \ifx\1l@danish\Qundefined
41.4 \@nopatterns{Danish}
41.5 \adddialect\1@danishO\fi

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

41.6 \providehyphenmins{\CurrentOption}{\tw@\twe}

The next step consists of defining commands to switch to (and from) the Danish
language.

The macro \captionsdanish defines all strings used in the four standard docu-
mentclasses provided with ITEX.

41.7 \addto\captionsdanish{J

41.8 \def\prefacename{Forord}
41.9 \def\refname{Litteraturl}y,
41.10 \def\abstractname{Resum\’el}
41.11 \def\bibname{Litteratur}y,
41.12 \def\chaptername{Kapitell},
41.13 \def\appendixname{Bilagl}/,
41.14 \def\contentsname{Indhold}%
41.15 \def\listfigurename{Figurerl}y,
41.16 \def\listtablename{Tabeller}j,
41.17 \def\indexname{Indeks}/,

41.18 \def\figurename{Figur}/,

41.19 \def\tablename{Tabell}%

41.20 \def\partname{Del},

41.21 \def\enclname{Vedlagt}/,

41.22 \def\ccname{Kopi til}% or Kopi sendt til

48The file described in this section has version number v1.3r and was last revised on
2009/09/19. A contribution was made by Henning Larsen (larsen@cernvm.cern.ch)

213

41.23 \def\headtoname{Till}% in letter
41.24 \def\pagename{Sidel},

41.25 \def\seename{Sel}V

41.26 \def\alsoname{Se ogs{\aa}l}’
41.27 \def\proofname{Bevisl}y

41.28 \def\glossaryname{Gloselistel}},
41.29 }%

\datedanish The macro \datedanish redefines the command \today to produce Danish dates.

41.30 \def\datedanish{,
41.31 \def\today{\number\day. \ifcase\month\or

41.32 januar\or februar\or marts\or aprillor maj\or junilor
41.33 julilor august\or september\or oktober\or november\or december\fi
41.34 \space\number\year}}

\extrasdanish The macro \extrasdanish will perform all the extra definitions needed for the
\noextrasdanish Danish language. The macro \noextrasdanish is used to cancel the actions of

\-

\extrasdanish.
Danish typesetting requires \frenchspacing to be in effect.

41.35 \addto\extrasdanish{\bbl@frenchspacing}
41.36 \addto\noextrasdanish{\bbl@nonfrenchspacing}

For Danish the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the danish group of shorthands should
be used.

41.37 \initiate@active@char{"}
41.38 \addto\extrasdanish{\languageshorthands{danish}}
41.39 \addto\extrasdanish{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
41.40 \addto\noextrasdanish{\bbl@deactivate{"}}

First we define access to the low opening double quote and guillemets for
quotations,
41.41 \declare@shorthand{danish}{" ‘}{%
41.42 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
41.43 \declare@shorthand{danish}{"’}{%
41.44 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
41.45 \declare@shorthand{danish}{"<}{%
41.46 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
41.47 \declare@shorthand{danish}{">}{%
41.48 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define commands to be able to specify hyphenation breakpoints that
behave a little different from \-.
41.49 \declare@shorthand{danish}{"-}{\nobreak-\bbl@allowhyphens}
41.50 \declare@shorthand{danish}{""}{\hskip\z@skip}
41.51 \declare@shorthand{danish}{"“}{\textormath{\leavevmode\hbox{-}}{-}}
41.52 \declare@shorthand{danish}{"=}{\nobreak-\hskip\z@skip}
And we want to have a shorthand for disabling a ligature.
41.53 \declare@shorthand{danish}{" | }{%
41.54 \textormath{\discretionary{-}{}{\kern.03em}}{}}
To enable hyphenation in two words, written together but separated by a slash,
as in ‘uitdrukking/opmerking’ we define the command "/.

41.55 \declare@shorthand{danish}{"/}{\textormath
41.56 {\bbl@allowhyphens\discretionary{/}{}{/}\bbl@allowhyphens}{}}

All that is left now is the redefinition of \-. The new version of \- should indicate
an extra hyphenation position, while allowing other hyphenation positions to be

214

generated automatically. The standard behaviour of TEX in this respect is very
unfortunate for languages such as Dutch and German, where long compound words
are quite normal and all one needs is a means to indicate an extra hyphenation
position on top of the ones that TEX can generate from the hyphenation patterns.

41.57 \expandafter\addto\csname extras\CurrentOption\endcsname{’,

41.58 \babel@save\-}

41.59 \expandafter\addto\csname extras\CurrentOption\endcsname{’

41.60 \def\-{\bbl@allowhyphens\discretionary{-}{}{}\bbl@allowhyphens}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

41.61 \1df@finish{danish}
41.62 (/code)

215

42 The Icelandic language

42.1 Overview

The file iceland.dtx®’ defines all the language definition macros for the Icelandic
language

Customization for the Icelandic language was made following several official
and semiofficial publications [2, 3, 1, 6, 5]. These publications do not always agree
and we indicate those instances.

For this language the character " is made active. In table 17 an overview is
given of its purpose. The shorthands in table 17 can also be typeset by using the

" disable ligature at this position.

" an explicit hyphen sign, allowing hyphenation in the
rest of the word.

like ", but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

for a compound word mark without a breakpoint.

= for a compound word mark with a breakpoint, allow-
ing hyphenation in the composing words.

for Icelandic left double quotes (looks like ,,).

" for Icelandic right double quotes.

"> for Icelandic ‘french’ left double quotes (similar to
>>).

"< for Icelandic ‘french’ right double quotes (similar to
<<).

"o for old Icelandic ¢

"0 for old Icelandic Q

"5 for old Icelandic ¢

"0 for old Icelandic O

"e for old Icelandic ¢

"E for old Icelandic E

"é for old Icelandic é

"E for old Icelandic E

\tala for typesetting numbers
\grada for the ‘degree’ symbol
\gradur for ‘degrees’, e.g. 5 'C
\upp for textsuperscript

Table 17: The shorthands and extra definitions made by icelandic.1ldf

commands in table 18.

42.2 References
[1] Alpingi. Reglur um frdgang pingskjala og prentun umredna, 1988.
[2] Auglysing um greinarmerkjasetningu. Stj.tid B, nr. 133/1974, 1974.

[3] Auglysing um breyting auglysingu nr. 132/1974 um islenska stafsetningu.
Stj.tid B, nr. 261/1977, 1977.

[4] Einar Haugen, editor. First Grammatical Treatise. Longman, London, 2 edi-
tion, 1972.

[5] Stadlarad Islands og Fagrad i upplysingateekni, Reykjavik. Forstadall FS
150:1997, 1997.

[6] STRI Stadlarad Islands. SI - kerfid, 2 edition, 1994.

49The file described in this section has version number ? and was last revised on ?.

216

\ilqq for Icelandic left double quotes (looks like ,,).

\irqq for Icelandic right double quotes (looks like).

\ilq for Icelandic left single quotes (looks like ,).

\irq for Icelandic right single quotes (looks like).
\iflqq for Icelandic ‘french’ left double quotes (similar to

>>).

\ifrqq for Icelandic ‘french’ right double quotes (similar to
<<).

\ifrq for Icelandic ‘french’ right single quotes (similar to
<).

\iflg for Icelandic ‘french’ left single quotes (similar to >).

\dq the original quotes character ().

\oob for old Icelandic ¢
\Qob for old Icelandic Q
\ooob for old Icelandic ¢
\0Oob for old Icelandic O
\eob for old Icelandic ¢
\Eob for old Icelandic E
\eeob for old Icelandic é
\EEob for old Icelandic E

Table 18: Commands which produce quotes and old Icelandic diacritics, defined
by icelandic.1ldf

42.3 TgXnical details

When this file was read through the option icelandic we make it behave as if
icelandic was specified.

42.1 \def\bbl@tempa{icelandic}

42.2 \ifx\CurrentOption\bbl@tempa
42.3 \def\CurrentOption{icelandic}
42.4 \fi

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

42.5 (*code)
42.6 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e., by the \usepackage command,
icelandic will be an ‘unknown’ language, so we have to make it known. So we
check for the existence of \1@icelandic to see whether we have to do something
here.

42.7 \ifx\1@icelandic\@undefined
42.8 \@nopatterns{Icelandic}
42,9 \adddialect\l@icelandicO
42.10 \fi

\if@Two@E We will need a new ‘if” : \if@TwoQE is true if and only if KTEX 2¢ is running not in
compatibility mode. It is used in the definitions of the command \tala and \upp.
The definition is somewhat complicated, due to the fact that \if@compatibility
is not recognized as a \if in KTEX-2.09 based formats.

42.11 \newif\if@Two@E \@Two@Etrue

42.12 \def\@FIQ{\fi}

42.13 \ifx\@compatibilitytrue\Q@undefined
42.14 \@Two@Efalse \def\@FI@{\relax}
42.15 \else

42.16 \if@compatibility \@Two@Efalse \fi
42.17 \@FI@

217

\extrasicelandic
\noextrasicelandic

\captionsicelandic

\dateicelandic

The macro \extrasicelandic will perform all the extra definitions needed for the
Icelandic language. The macro \noextrasicelandic is used to cancel the actions
of \extrasicelandic.

For Icelandic the " character is made active. This is done once, later on its
definition may vary.

42.18 \initiate®@active@char{"}

42.19 \@namedef{extras\CurrentOption}{%

42.20 \languageshorthands{icelandic}}

42.21 \expandafter\addto\csname extras\CurrentOption\endcsname{’,
42.22 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.
42.23 \addto\noextrasicelandic{\bbl@deactivate{"}}

The icelandic hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

42.24 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 18.

To be able to define the function of ", we first define a couple of ‘support’
macros.

42.4 Captionnames and date

The next step consists of defining the Icelandic equivalents for the KTEX caption-
names.

The macro \captionsicelandic will define all strings used used in the four stan-
dard document classes provided with IXTEX.

42.25 \@namedef{captions\CurrentOption}{/
42.26 \def\prefacename{Form\’{a}1il}},

42.27 \def\refname{Heimildirl}},

42.28 \def\abstractname{\’{U}tdr\’{a}ttturl}’
42.29 \def\bibname{Heimildir}%

42.30 \def\chaptername{Kafli}%

42.31 \def\appendixname{Vi{\dh}aukil}y,

42.32 \def\contentsname{Efnisyfirlit}

42.33 \def\listfigurename{Myndaskr\’{a}}/
42.34 \def\listtablename{T\"{o}fluskr\’{a}}},
42.35 \def\indexname{Atri{\dhl}isor{\dh}askr\’{a}}/
42.36 \def\figurename{Mynd}%

42.37 \def\tablename{Taflal}y,

42.38 \def\partname{Hlutil}%

42.39 \def\enclname{Hj\’{a}lagt}’

42.40 \def\ccname{Samrit}/,

4241 \def\headtoname{Til:}} in letter

42.42 \def\pagename{Bla{\dh}s\’{\i}{\dh}a}%
42.43 \def\seename{Sj\’{a}}/

42.44 \def\alsoname{Sj\’{a} einnig}y,

42.45 \def\proofname{S\"{o}nnun}y,

42.46 \def\glossaryname{Or{\dh}alisti}},
42.47 '}

The macro \dateicelandic redefines the command \today to produce Icelandic
dates.

42.48 \def\dateicelandic{}
42.49 \def\today{\number\day. \ifcase\month\or

42.50 jan\’{u}ar\or febr\’{ular\or mars\or apr\’{\i}1\or ma\’{\i}\or
42.51 G\ {udn\’{A\iF\or j\’{ur1\’{\iF\or \’{a}g\’{u}st\or september\or
42.52 okt\’{o}ber\or n\’{o}vember\or desember\fi

42.53 \space\number\year}}

218

42.5 Icelandic quotation marks

\dqg We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".
42.54 \begingroup \catcode‘\"12
42.55 \def\x{\endgroup
42.56 \def\@SS{\mathchar"7019 }
42.57 \def\dq{"}}
42.58 \x

Now we can define the icelandic and icelandic ‘french’ quotes. The icelandic
‘french’ guillemets are the reverse of french guillemets. We define single icelandic
‘french’ quotes for compatibility. Shorthands are provided for a number of different
quotation marks, which make them useable both outside and inside mathmode.

42.59 \let\ilqg\grq
42.60 \let\irq\grq
42.61 \let\iflg\frq
42.62 \let\ifrq\flq
42.63 \let\ilqq\glaq
42.64 \let\irqq\grqq
42.65 \let\iflqq\frqq
42.66 \let\ifrqq\flqq

42.67 \declare@shorthand{icelandic}{" ‘}{\glqq}
42.68 \declare@shorthand{icelandic}{"’}{\grqq}
42.69 \declare@shorthand{icelandic}{">}{\frqq}
42.70 \declare@shorthand{icelandic}{"<}{\flqq}

and some additional commands:

42.71 \declare@shorthand{icelandic}{"-}{\nobreak\-\bbl@allowhyphens}

42.72 \declare@shorthand{icelandic}{" [}{%

42.73 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%

42.74 \bbl@allowhyphens}{}}

42.75 \declare@shorthand{icelandic}{""}{\hskip\z@skip}

42.76 \declare@shorthand{icelandic} "~“}{\textormath{\leavevmode\hbox{-}}{-}}
42.77 \declare@shorthand{icelandic}{"=}{\nobreak-\hskip\z@skip}

42.6 Old Icelandic

In old Icelandic some letters have special diacritical marks, described for example
in First Grammatical Treatise |1, 5]. We provide these in the T1 encoding with
the ‘ogonek’. The ogonek is placed with the letters ‘o’, and ‘O’, ‘6’ and ‘O’, ‘¢’
and ‘E’, and ‘¢’ and ‘E’. Shorthands are provided for these as well.

The following code by Leszek Holenderski lifted from polish.dtx is designed
to position the diacritics correctly for every font in every size. These macros need
a few extra dimension variables.

42.78 \newdimen\pl@left
42.79 \newdimen\pl@down
42.80 \newdimen\pl@right
42.81 \newdimen\pl@temp

\sob The macro \sob is used to put the ‘ogonek’ in the right place.

42.82 \def\sob#1#2#3#4#5{),parameters: letter and fractions hl,ho,vl,vo
42.83 \setboxO\hbox{#1}\setbox1\hbox{\k{}}\setbox2\hbox{pl}/

42.84 \pl@right=#2\wd0 \advance\pl@right by-#3\wdl

42.85 \pl@down=#5\ht1 \advance\pl@down by-#4\htO

42.86 \pl@left=\plOright \advance\pl@left by\wdl

42.87 \pl@temp=-\pl@down \advance\pl@temp by\dp2 \dpl=\pl@temp

42.88 \leavevmode

42.89 \kern\pl@right\lower\pl@down\box1\kern-\pl@left #1}

219

\oob

\Oob 42 90 \DeclareTextCommand{\oob}{T1}{\sob {o}{.85}{0}{.04}{0}}
\ooob 42.91 \DeclareTextCommand{\Oob}{T1}{\sob {0}{.7}{0}{0}{0}}
\0Oob 42.92 \DeclareTextCommand{\ooob}{T1}{\sob {6}{.85}{0}{.04}{0}}

\eob 42.93 \DeclareTextCommand{\00ob}{T1}{\sob {0}{.7}{0}{0}{0}}

\Eob 42.94 \DeclareTextCommand{\eob}{T1}{\sob {e}{1}{0}{.04}{0}}

\eeo

\EEob

b 42.95 \DeclareTextCommand{\Eob}{T1}{\sob {E}{1}{0}{.04}{03}}
42.96 \DeclareTextCommand{\eeob}{T1}{\sob {&}{1}{0}{.04}{0}}
42.97 \DeclareTextCommand{\EEob}{T1}{\sob {E}{1}{0}{.04}{0}}

42.98 \declare@shorthand{icelandic}{"o}{\oob}
42.99 \declare@shorthand{icelandic}{"0}{\0ob}

42.100 \declare@shorthand{icelandic}{"6}{\ooob}
42.101 \declare@shorthand{icelandic}{"0}{\00ob}
42.102 \declare@shorthand{icelandic}{"e}{\eob}
42.103 \declare@shorthand{icelandic}{"E}{\Eob}
42.104 \declare@shorthand{icelandic}{"é}{\eeob}
42.105 \declare@shorthand{icelandic}{"E}{\EEob}

\decimalsep
\thousandsep

42.7 Formatting numbers

This section is lifted from frenchb.dtx by D. Flipo. In English the decimal
part starts with a point and thousands should be separated by a comma: an
approximation of 10007 should be inputed as $3{,}141.592{,}653% in math-
mode and as 3,141.592,653 in text.

In Icelandic the decimal part starts with a comma and thousands should be
separated by a space [1] or by a period [5]; we have the space. The above ap-
proximation of 10007 should be inputed as $3\;141{,}592\;653% in math-mode
and as something like 37141,5927653 in text. Braces are mandatory around the
comma in math-mode, the reason is mentioned in the TEXbook p. 134: the comma
is of type \mathpunct (thus normally followed by a space) while the point is of
type \mathord (no space added).

Thierry Bouche suggested that a second type of comma, of type \mathord
would be useful in math-mode, and proposed to introduce a command (named
\decimalsep in this package), the expansion of which would depend on the current
language.

Vincent Jalby suggested a command \nombre to conveniently typeset numbers:
inputting \nombre{3141,592653} either in text or in math-mode will format this
number properly according to the current language (Icelandic or non-Icelandic).
We use \nombre to define command \tala in Icelandic.

\tala accepts an optional argument which happens to be useful with the
extension ‘dcolumn’, it specifies the decimal separator used in the source code:
\newcolumntype{d}{D{,}{\decimalsep}{-1}}

\begin{tabular}{d}\hline

3,14 \\
\tala[,]1{123,4567} \\
\tala[,]{9876,543}\\\hline

\end{tabular}

will print a column of numbers aligned on the decimal point (comma or point
depending on the current language), each slice of 3 digits being separated by a
space or a comma according to the current language.

We need a internal definition, valid in both text and math-mode, for the comma
(\@comma®@) and another one for the unbreakable fixed length space (no glue) used
in Icelandic (\f@thousandsep).

The commands \decimalsep and \thousandsep get default definitions (for
the English language) when icelandic is loaded; these definitions will be updated
when the current language is switched to or from Icelandic.

42.106 \mathchardef\m@comma="013B \def\@comma@{\ifmmode\m@comma\else,\fi}

220

42.107 \def\f@thousandsep{\ifmmode\mskip5.5mu\else\penalty\@M\kern.3em\fi}
42.108 \newcommand{\decimalsep}{.} \newcommand{\thousandsep}{\@comma®@}
42.109 \expandafter\addto\csname extras\CurrentOption\endcsname{’

42.110 \def\decimalsep{\@comma®@}y,

42.111 \def\thousandsep{\f@thousandsep}}

42.112 \expandafter\addto\csname noextras\CurrentOption\endcsname{’,
42.113 \def\decimalsep{.}/

42.114 \def\thousandsep{\@comma@}}

\tala The decimal separator used when inputing a number with \tala has to be a
comma. \tala splits the inputed number into two parts: what comes before the
first comma will be formatted by \@integerpart while the rest (if not empty) will
be formatted by \@decimalpart. Both parts, once formatted separately will be
merged together with between them, either the decimal separator \decimalsep
or (in IXTEX 2¢ only) the optional argument of \tala.

42.115 \1f@TwoQE

42.116 \newcommand{\tala}[2] [\decimalsep]{%

42.117 \def\@decimalsep{#1}\Q@tala#2\Q@empty, \Qempty,\Onil}
42.118 \else

42.119 \newcommand{\tala}[1]{%

42.120 \def\@decimalsep{\decimalsep}\Q@tala#1\Qempty, \Cempty,\@nil}
42.121 \fi

42.122 \def\Q@tala#1,#2,#3\0@nil{}

42.123 \ifx\@empty#2%

42.124 \@integerpart{#11}/,

42.125 \else

42.126 \@integerpart{#1}\@decimalsep\@decimalpart{#2}%

42.127 \fi}

The easiest bit is the decimal part: We attempt to read the first four digits of the
decimal part, if it has less than 4 digits, we just have to print them, otherwise
\thousandsep has to be appended after the third digit, and the algorithm is
applied recursively to the rest of the decimal part.

42.128 \def\@decimalpart#1{\@@decimalpart#1\Cempty\@empty\@empty}

42.129 \def\Q@decimalpart#1#2#3#4{#1#2#3,

42.130 \ifx\@empty#4%

42.131 \else

42.132 \thousandsep\expandafter\Q@@decimalpart\expandafter#4,

42133 \fi}

Formatting the integer part is more difficult because the slices of 3 digits start
from the bottom while the number is read from the top! This (tricky) code is
borrowed from David Carlisle’s comma.sty.

42.134 \def\Q@integerpart#1{\@Q@integerpart{}#1\Cempty\Qempty\Q@empty}

42.135 \def\@@integerpart#1#2#3#4{}

42.136 \ifx\@empty#2%

42.137 \@addthousandsep#1l\relax

42.138 \else

42.139 \ifx\Q@empty#37,

42.140 \@addthousandsep\@empty\Q@empty#1#2\relax
42.141 \else

42.142 \ifx\Qempty#4,

42.143 \@addthousandsep\Q@empty#1#2#3\relax
42.144 \else

42.145 \@@integerpartafterfi{#1#2#3#41}/,
42.146 \fi

42.147 \fi

42.148 \fi}

42.149 \def\@Qintegerpartafterfi#1\fi\fi\fi{\fi\fi\fi\@@integerpart{#1}}
42.150 \def\Qaddthousandsep#1#2#3#4{#1#2#3,

42.151 \if#4\relax

42.152 \else

221

\upp

\upp@size

42.153 \thousandsep\expandafter\Q@addthousandsep\expandafter#4,
42.154 \fi}

42.8 Extra utilities

We now provide the Icelandic user with some extra utilities.

\upp is for typesetting superscripts. \upp relies on

The internal macro \upp@size holds the size at which the superscript will be
typeset. The reason for this is that we have to specify it differently for different
formats.

42.155 \ifx\sevenrm\@undefined
42.156 \ifx\@ptsize\Qundefined

42.157 \let\upp@size\small
42.158 \else
42.159 \ifx\selectfont\@undefined
In this case the format is the original I#TEX-2.09:
42.160 \ifcase\@ptsize
42.161 \let\upp@size\ixpt\or
42.162 \let\upp@size\xpt\or
42.163 \let\upp@size\xipt
42.164 \fi
When \selectfont is defined we probably have NFSS available:
42.165 \else
42.166 \ifcase\@ptsize
42.167 \def\uppO@size{\fontsize\Q@ixpt{10pt}\selectfont}\or
42.168 \def\upp@size{\fontsize\@xpt{1lipt}\selectfont}\or
42.169 \def\upp@size{\fontsize\@xipt{12pt}\selectfont}
42.170 \fi
42.171 \fi
42172 \fi

42.173 \else
If we end up here it must be a plain based TEX format, so:

42.174 \let\upp@size\sevenrm
42175 \fi

Now we can define \upp. When I¥TEX 2¢ runs in compatibility mode (IATEX-2.09
emulation), \textsuperscript is also defined, but does no good job, so we give
two different definitions for \upp using \if@TwoQE.

42.176 \if@TwoQE

42.177 \DeclareRobustCommand*{\upp} [1]{#1}
42.178 \else

42.179 \DeclareRobustCommand*{\upp} [1]1{%

42.180 \leavevmode\raiselex\hbox{\upp@size#1}}

42.181 \fi

Some definitions for special characters. \grada needs a special treatment: it
is \char6 in T1-encoding and \char23 in OT1-encoding.

42.182 \ifx\fmtname\LaTeXeFmtName

42.183 \DeclareTextSymbol{\grada}{T1}{6}
42.184 \DeclareTextSymbol{\grada}{0T1}{23}
42.185 \else

42.186 \def\T@one{T1}

42.187 \ifx\f@encoding\T@one

42.188 \newcommand{\grada}{\char6}
42.189 \else

42.190 \newcommand{\grada}{\char23}
42,191 \fi

42.192 \fi

222

\gradur

Macro for typesetting the abbreviation for ‘degrees’ (as in ‘degrees Celsius’). As
the bounding box of the character ‘degree’ has very different widths in CMR/DC
and PostScript fonts, we fix the width of the bounding box of \gradur to 0.3 em,
this lets the symbol ‘degree’ stick to the preceding (e.g., 45\gradur) or following
character (e.g., 20~ \gradur C).

42.193 \DeclareRobustCommand*{\gradur}{/
42.194 \leavevmode\hbox to 0.3em{\hss\grada\hss}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

42.195 \1df@f inish\CurrentOption
42.196 (/code)

223

\norskhyphenmins

43 The Norwegian language

The file norsk.dtx®" defines all the language definition macros for the Norwegian
language as well as for an alternative variant ‘nynorsk’ of this language.

For this language the character " is made active. In table 19 an overview is
given of its purpose.

"ff for £f to be hyphenated as £f-£, this is also implemented
for b, d, f, g, 1, m, n, p, r, s, and t. (o"ppussing)

"ee Hyphenate "ee as \’e-e. (komit"een)

"— an explicit hyphen sign, allowing hyphenation in the
composing words. Use this for compound words when
the hyphenation patterns fail to hyphenate properly.
(alpin"-anlegg)

" Like "-, but inserts 0.03em space. Use it if the compound
point is spanned by a ligature. (hoff"|intriger)

"v Like "-, but producing no hyphen sign. (i""g\aa{}r)

"~ Like -, but allows no hyphenation at all. (E"~cup)

"= Like -, but allowing hyphenation in the composing words.
(marksistisk"=leninistisk)

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 19: The extra definitions made by norsk.sty

Rune Kleveland distributes a Norwegian dictionary for ispell (570000 words).
It can be found at http://www.uio.no/~runekl/dictionary.html.

This dictionary supports the spellings spi"sslede for ‘spisslede’ (hyphenated
spiss-slede) and other such words, and also suggest the spelling spi"sslede for
‘spisslede’ and ‘spissslede’.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

43.1 (*code)
43.2 \LdfInit\CurrentOption{captions\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, norsk
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@norsk to see whether we have to do something here.

43.3 \ifx\1@norsk\@undefined
43.4 \@nopatterns{Norsk}
43.5 \adddialect\1@norskO\fi

Some sets of Norwegian hyphenation patterns can be used with \lefthyphenmin
set to 1 and \righthyphenmin set to 2, but the most common set nohyph.tex
can’t. So we use \lefthyphenmin=2 by default.

43.6 \providehyphenmins{\CurrentOption}{\tw@\twe}

Now we have to decide which version of the captions should be made available.
This can be done by checking the contents of \CurrentOption.
43.7 \def\bbl@tempa{norsk}
43.8 \ifx\CurrentOption\bbl@tempa

The next step consists of defining commands to switch to (and from) the Nor-
wegian language.

50The file described in this section has version number v2.0h and was last revised on
2005/03/30. Contributions were made by Haavard Helstrup (HAAVARD@CERNVM) and Alv Kjetil
Holme (HOLMEAQCERNVM); the ‘nynorsk’ variant has been supplied by Per Steinar Iversen
iversen@vxcern.cern.ch) and Terje Engeset Petterst (TERJEEPQVSFYS1.FI.UIB.NO); the short-
hand definitions were provided by Rune Kleveland (runekl@math.uio.no).

224

\captionsnorsk The macro \captionsnorsk defines all strings used in the four standard docu-
mentclasses provided with ETEX.

43.9 \def\captionsnorsk{/

43.10 \def\prefacename{Forord}/,

43.11 \def\refname{Referanser}y,

43.12 \def\abstractname{Sammendrag}’

43.13 \def\bibname{Bibliografil}y, or Litteraturoversikt
43.14 A or Litteratur or Referanser
43.15 \def\chaptername{Kapittell}

43.16 \def\appendixname{Tilleggl}/, or Appendiks
43.17 \def\contentsname{Innhold}/,

43.18 \def\listfigurename{Figurer}), or Figurliste
43.19 \def\listtablename{Tabeller}} or Tabelliste
43.20 \def\indexname{Register}/,

43.21 \def\figurename{Figur}y,

43.22 \def\tablename{Tabelll}},

43.23 \def \partname{Del}}

43.24 \def\enclname{Vedleggl}/

43.25 \def\ccname{Kopi sendt},

43.26 \def\headtoname{Til}} in letter

43.27 \def \pagename{Sidel}/,

43.28 \def\seename{Se}’

43.29 \def\alsoname{Se ogs\aa{}}%

43.30 \def\proofname{Bevis}/

43.31 \def\glossaryname{Ordlistel}V

43.32 }

43.33 \else

For the ‘nynorsk’ version of these definitions we just add a “dialect”.

43.34 \adddialect\l@nynorsk\l@norsk

\captionsnynorsk The macro \captionsnynorsk defines all strings used in the four standard docu-
mentclasses provided with ITEX, but using a different spelling than in the com-
mand \captionsnorsk.

43.35 \def\captionsnynorsk{%

43.36
43.37
43.38
43.39
43.40
43.41
43.42
43.43
43.44
43.45
43.46
43.47
43.48
43.49
43.50
43.51
43.52
43.53
43.54
43.55
43.56
43.57
43.58
43.59 \fi

\def\prefacename{Forord}
\def\refname{Referansar}y,
\def\abstractname{Samandrag}y,
\def\bibname{Litteraturl}y or Litteraturoversyn
% or Referansar
\def\chaptername{Kapittel},
\def\appendixname{Tillegg}), or Appendiks
\def\contentsname{Innhald}/,
\def\listfigurename{Figurar}), or Figurliste
\def\listtablename{Tabellar}), or Tabelliste
\def\indexname{Register}’
\def\figurename{Figurl}’
\def\tablename{Tabell}},

\def\partname{Del}/,

\def\enclname{Vedleggl}’

\def\ccname{Kopi till}}
\def\headtoname{Til}} in letter
\def\pagename{Side}%

\def\seename{Sj\aa{}}’
\def\alsoname{Sj\aa{} \‘{o}gl}’
\def\proofname{Bevis}/,
\def\glossaryname{Ordliste}’,

}

\datenorsk The macro \datenorsk redefines the command \today to produce Norwegian

dates.

225

\extrasnorsk
\extrasnynorsk

\dq

43.60 \@namedef{date\CurrentOption}{’
43.61 \def\today{\number\day. \ifcase\month\or

43.62 januar\or februar\or mars\or aprillor mailor junilor
43.63 julilor august\or september\or oktober\or november\or desember
43.64 \fi
43.65 \space\number\year}}
The macro \extrasnorsk will perform all the extra definitions needed for the

Norwegian language. The macro \noextrasnorsk is used to cancel the actions of
\extrasnorsk.
Norwegian typesetting requires \frencspacing to be in effect.

43.66 \O@namedef{extras\CurrentOption}{\bbl@frenchspacing}
43.67 \@namedef{noextras\CurrentOption}{\bbl@nonfrenchspacing}

For Norsk the " character is made active. This is done once, later on its
definition may vary.

43.68 \initiate®@active@char{"}

43.69 \expandafter\addto\csname extras\CurrentOption\endcsname{’
43.70 \languageshorthands{norsk}}

43.71 \expandafter\addto\csname extras\CurrentOption\endcsname{’
43.72 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.

43.73 \expandafter\addto\csname noextras\CurrentOption\endcsname{%
43.74 \bbl@deactivate{"1}}

The code above is necessary because we need to define a number of shorthand
commands. These sharthand commands are then used as indicated in table 19.

To be able to define the function of ", we first define a couple of ‘support’
macros.

We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

43.75 \begingroup \catcode‘\"12
43.76 \def\x{\endgroup

43.77 \def\@SS{\mathchar"7019 }
43.78 \def\dq{"}}

43.79 \x

Now we can define the discretionary shorthand commands. The number of
words where such hyphenation is required is for each character

b d f g k 1 n p r s t
4 4 15 3 43 30 8 12 1 33 35

taken from a list of 83000 ispell-roots.

43.80 \declare@shorthand{norsk}{"b}{\textormath{\bbl@disc b{bb}}{b}}
43.81 \declare@shorthand{norsk}{"B}{\textormath{\bbl@disc B{BB}}{B}}
43.82 \declare@shorthand{norsk}{"d}{\textormath{\bbl@disc d{dd}}{d}}
43.83 \declare@shorthand{norsk}{"D}{\textormath{\bbl@disc D{DD}}{D}}
43.84 \declare@shorthand{norsk}{"e}{\textormath{\bbl@disc e{\’e}}{}}
43.85 \declare@shorthand{norsk}{"E}{\textormath{\bbl@disc E{\’E}}{}}
43.86 \declare@shorthand{norsk}{"F}{\textormath{\bbl@disc F{FF}}{F}}
43.87 \declare@shorthand{norsk}{"g}{\textormath{\bbl@disc g{gg}t}{g}t}
43.88 \declare@shorthand{norsk}{"G}{\textormath{\bbl@disc G{GG}}{G}}
43.89 \declare@shorthand{norsk}{"k}{\textormath{\bbl@disc k{kk}}{k}}
43.90 \declare@shorthand{norsk}{"K}{\textormath{\bbl@disc K{KK}}{K}}
43.91 \declare@shorthand{norsk}{"1}{\textormath{\bbl@disc 1{11}}{1}}
43.92 \declare@shorthand{norsk}{"L}{\textormath{\bbl@disc L{LL}}{L}}
43.93 \declare@shorthand{norsk}{"n}{\textormath{\bbl@disc n{nn}}{n}}
43.94 \declare@shorthand{norsk}{"N}{\textormath{\bbl@disc N{NN}}{N}}
43.95 \declare@shorthand{norsk}{"p}{\textormath{\bbl@disc p{pp}t}{p}}
43.96 \declare@shorthand{norsk}{"P}{\textormath{\bbl@disc P{PP}}{P}}

226

43.97 \declare@shorthand{norsk}{"r}{\textormath{\bbl@disc r{rr}}{r}}
43.98 \declare@shorthand{norsk}{"R}{\textormath{\bbl@disc R{RR}}{R}}
43.99 \declare@shorthand{norsk}{"s}{\textormath{\bbl@disc s{ss}}{s}}
43.100 \declare@shorthand{norsk}{"S}{\textormath{\bbl@disc S{SS}}{S}}
43.101 \declare@shorthand{norsk}{"t}{\textormath{\bbl@disc t{tt}}{t}}
43.102 \declare@shorthand{norsk}{"T}{\textormath{\bbl@disc T{TT}}{T}}

We need to treat "f a bit differently in order to preserve the ff-ligature.

43.103 \declare@shorthand{norsk}{"f}{\textormath{\bbl@discff}{f}}

43.104 \def\bbl@discff{\penalty\eM

43.105 \afterassignment\bbl@insertff \let\bbl@nextff= }

43.106 \def\bbl@insertff{},

43.107 \if f\bbl@nextff

43.108 \expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi
43.109 {\relax\discretionary{ff-}{f}{ff}\allowhyphens}{f\bbl@nextff}}
43.110 \let\bbl@nextff=f

We now define the French double quotes and some commands concerning hyphen-
ation:

43.111 \declare@shorthand{norsk}{"<}{\flqq}

43.112 \declare@shorthand{norsk}{">}{\frqq}

43.113 \declare@shorthand{norsk}{"-}{\penalty\@M\-\bbl@allowhyphens}
43.114 \declare@shorthand{norsk}{" | }{/

43.115 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}%

43.116 \allowhyphens}{}}

43.117 \declare@shorthand{norsk}{""}{\hskip\z@skip}

43.118 \declare@shorthand{norsk}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
43.119 \declare@shorthand{norsk}{"=}{\penalty\@M-\hskip\z@skip}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

43.120 \1df@f inish\CurrentOption
43.121 (/code)

227

\captionsswedish

44 The Swedish language

The file swedish.dtx’! defines all the language-specific macros for the Swedish
language. This file has borrowed heavily from finnish.dtx and germanb.dtx.

For this language the character " is made active. In table 20 an overview is
given of its purpose. The vertical placement of the "umlaut" in some letters can
be controlled this way.

"a Gives &, also implemented for "A, "o and "0.

"w, "W gives & and A.

"ff for £f to be hyphenated as ff-f. Used for com-
pound words, such as stra"ffange, which should
be hyphenated as straff-fange. This is also imple-
mented for b, d, f, g, I, m, n, p, r, s, and t.

" disable ligature at this position. This should be used
for compound words, such as “stra"ffinrdttning”,
which should not have the ligature “ffi".

" an explicit hyphen sign, allowing hyphenation in the
rest of the word, such as e. g. in “x"-axeln”.

e like " -, but producing no hyphen sign (for words that
should break at some sign such as och/""eller).

" for an explicit hyphen without a breakpoint; useful
for expressions such as “2"~3 veckor” where no line-
break is desirable.

"= an explicit hyphen sign allowing subsequent hyphen-
ation, for expressions such as “studiebidrag och
-lan”.

\- like the old \-, but allowing hyphenation in the rest
of the word.

Table 20: The extra definitions made by swedish.sty

Two variations for formatting of dates are added. \datesymd makes \today
output dates formatted as YYYY-MM-DD, which is commonly used in Sweden
today. \datesdmy formats the date as D/M YYYY, which is also very common
in Sweden. These commands should be issued after \begindocument.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

44.1 (*code)
44.2 \LdfInit{swedish}\captionsswedish

When this file is read as an option, i.e. by the \usepackage command, swedish
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@swedish to see whether we have to do something
here.

44.3 \ifx\1@swedish\@undefined
44.4 \@nopatterns{Swedish}
44.5 \adddialect\1@swedishO\fi

The next step consists of defining commands to switch to the Swedish language.
The reason for this is that a user might want to switch back and forth between
languages.

The macro \captionsswedish defines all strings used in the four standard docu-
mentclasses provided with BTEX.

51The file described in this section has version number v2.3d and was last revised on
2005/03/31. Contributions were made by Sten Hellman (HELLMAN@CERNVM.CERN.CH) and Erik
Osthols (erik_osthols@yahoo.com).

228

44.6 \addto\captionsswedish{’

44.7 \def\prefacename{F\"orordl}}

44.8 \def\refname{Referenserl}y,

44.9 \def\abstractname{Sammanfattning}’
44.10 \def\bibname{Litteraturf\"orteckning}y,
44.11 \def\chaptername{Kapitell}y,

44.12 \def\appendixname{Bilagal}’

44.13 \def\contentsname{Inneh\csname aa\endcsname 11}
44.14 \def\listfigurename{Figurer}y,

44.15 \def\listtablename{Tabeller},

44.16 \def\indexname{Sakregister},

44.17 \def\figurename{Figur}y

44.18 \def\tablename{Tabell}},

44.19 \def\partname{Dell},

44.20 \def\enclname{Bil.}},

44.21 \def\ccname{Kopia f\"or k\"annedom}%
4422 \def\headtoname{Till}), in letter
44.23 \def\pagename{Sida}’%

44.24 \def\seename{sel}’

44.25 \def\alsoname{se \"avenl}

44.26 \def\proofname{Bevisl}%
44.27 \def\glossaryname{Ordlistal}/
44.28 1}

\dateswedish The macro \dateswedish redefines the command \today to produce Swedish
dates.

44.29 \def\dateswedish{
44.30 \def\today{%

44.31 \number\day~\ifcase\month\or

44.32 januarilor februarilor mars\or aprillor maj\or juni\or
44.33 julilor augustilor september\or oktober\or november\or
44.34 december\fi

44.35 \space\number\year}}

\datesymd The macro \datesymd redefines the command \today to produce dates in the
format YYYY-MM-DD, common in Sweden.
44.36 \def\datesymd{/,

44.37 \def\today{\number\year-\two@digits\month-\two@digits\day}%
4438 }

\datesdmy The macro \datesdmy redefines the command \today to produce Swedish dates
in the format DD/MM YYYY, also common in Sweden.
44.39 \def\datesdmy{/,
44.40 \def\today{\number\day/\number\month\space\number\year}y,
4441 %}

\swedishhyphenmins The swedish hyphenation patterns can be used with \lefthyphenmin set to 2 and
\righthyphenmin set to 2.

44.42 \providehyphenmins{swedish}{\tw@\tw@}

\extrasswedish The macro \extrasswedish performs all the extra definitions needed for the
\noextrasswedish Swedish language. The macro \noextrasswedish is used to cancel the actions
of \extrasswedish.
For Swedish texts \frenchspacing should be in effect. We make sure this is
the case and reset it if necessary.

44.43 \addto\extrasswedish{\bbl@frenchspacing}
44.44 \addto\noextrasswedish{\bbl@nonfrenchspacing}

229

\dq

For Swedish the " character is made active. This is done once, later on its
definition may vary.

44.45 \initiate@active@char{"}
44.46 \addto\extrasswedish{\languageshorthands{swedish}}
44.47 \addto\extrasswedish{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
44.48 \addto\noextrasswedish{\bbl@deactivate{"}}

The “umlaut” accent macro \" is changed to lower the “umlaut” dots. The redefi-
nition is done with the help of \umlautlow.

44.49 \addto\extrasswedish{\babel@save\"\umlautlow}
44.50 \addto\noextrasswedish{\umlauthigh}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 20.

To be able to define the function of ", we first define a couple of ‘support’
macros.

We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

44.51 \begingroup \catcode‘\"12
44.52 \def\x{\endgroup

44.53 \def\@SS{\mathchar"7019 }
44.54 \def\dq{"}}

44.55 \x

Now we can define the doublequote macros: the umlauts and .

44.56 \declare@shorthand{swedish}{"w}{\textormath{{\aa}\allowhyphens}{\ddot w}}
44.57 \declare@shorthand{swedish}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
44.58 \declare@shorthand{swedish}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o}}
44.59 \declare@shorthand{swedish}{"W}{\textormath{{\AA}\allowhyphens}{\ddot W}}
44.60 \declare@shorthand{swedish}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
44.61 \declare@shorthand{swedish}{"0}{\textormath{\"{0}\allowhyphens}{\ddot 0}}

discretionary commands

44.62 \declare@shorthand{swedish}{"b}{\textormath{\bbl@disc b{bb}}{b}}
44.63 \declare@shorthand{swedish}{"B}{\textormath{\bbl@disc B{BB}}{B}}
44.64 \declare@shorthand{swedish}{"d}{\textormath{\bbl@disc d{dd}}{d}}
44.65 \declare@shorthand{swedish}{"D}{\textormath{\bbl@disc D{DD}}{D}}
44.66 \declare@shorthand{swedish}{"f}{\textormath{\bbl@disc f{ff}}{f}}
44.67 \declare@shorthand{swedish}{"F}{\textormath{\bbl@disc F{FF}}{F}}
44.68 \declare@shorthand{swedish}{"g}{\textormath{\bbledisc g{gg}tt{g}}
44.69 \declare@shorthand{swedish}{"G}{\textormath{\bbl@disc G{GG}}{G}}
44.70 \declare@shorthand{swedish}{"1}{\textormath{\bble@disc 1{11}}{1}}
44.71 \declare@shorthand{swedish}{"L}{\textormath{\bbl@disc L{LL}}{L}}
44.72 \declare@shorthand{swedish}{"m}{\textormath{\bbl@disc m{mm}}{m}}
44.73 \declare@shorthand{swedish}{"M}{\textormath{\bbl@disc M{MM}}{M}}
44.74 \declare@shorthand{swedish}{"n}{\textormath{\bbl@disc n{nn}}{n}}
44.75 \declare@shorthand{swedish}{"N}{\textormath{\bbl@disc N{NN}}{N}}
44.76 \declare@shorthand{swedish}{"p}{\textormath{\bbl@disc p{pp}+{p}+}
44.77 \declare@shorthand{swedish}{"P}{\textormath{\bbl@disc P{PP}}{P}}
44.78 \declare@shorthand{swedish}{"r}{\textormath{\bbl@disc r{rr}}{r}}
44.79 \declare@shorthand{swedish}{"R}{\textormath{\bbl@disc R{RR}}{R}}
44.80 \declare@shorthand{swedish}{"s}{\textormath{\bbl@disc s{ss}}{s}}
44.81 \declare@shorthand{swedish}{"S}{\textormath{\bbl@disc S{SS}}{S}}
44.82 \declare@shorthand{swedish}{"t}{\textormath{\bbl@disc t{tt}}{t}}
44.83 \declare@shorthand{swedish}{"T}{\textormath{\bbl@disc T{TT}}{T}}

and some additional commands:

44.84 \declare@shorthand{swedish}{"-}{\nobreak-\bbl@allowhyphens}
44.85 \declare@shorthand{swedish}{" | }{%
44.86 \textormath{\nobreak\discretionary{-}{}{\kern.03em}%

230

44.87 \bbl@allowhyphens}{}}

44.88 \declare@shorthand{swedish}{""}{\hskip\z@skip}

44.89 \declare@shorthand{swedish}{"~}{%

44.90 \textormath{\leavevmode\hbox{-}\bbl@allowhyphens}{-}}
44.91 \declare@shorthand{swedish}{"=}{\hbox{-}\allowhyphens}

Redefinition of \-. The new version of \- should indicate an extra hyphenation
position, while allowing other hyphenation positions to be generated automatically.
The standard behaviour of TEX in this respect is very unfortunate for languages
such as Dutch, Finnish, German and Swedish, where long compound words are
quite normal and all one needs is a means to indicate an extra hyphenation position
on top of the ones that TEX can generate from the hyphenation patterns.

44.92 \addto\extrasswedish{\babel@save\-}

44.93 \addto\extrasswedish{\def\-{\allowhyphens

44.94 \discretionary{-}{}{}\allowhyphens}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

44.95 \1df@finish{swedish}
44.96 (/code)

231

\saminhyphenmins

\captionssamin

45 The North Sami language

The file samin.dtx®? defines all the language definition macros for the North Sami
language.

Several Sami dialects/languages are spoken in Finland, Norway, Sweden and
on the Kola Peninsula (Russia). The alphabets differ, so there will eventually be a
need for more .dtx files for e.g. Lule and South Sami. Hence the name samin.dtx
(and not sami.dtx or the like) in the North Sami case.

There are currently no hyphenation patterns available for the North Sami
language, but you might consider using the patterns for Finnish (fi8hyph.tex),
Norwegian (nohyph.tex) or Swedish (sehyph.tex). Add a line for the samin
language to the language.dat file, and rebuild the ITEX format file. See the
documentation for your ETEX distribution.

A note on writing North Sami in IMTEX: The TI encoding and EC fonts do not
include the T WITH STROKE letter, which you will need a workaround for. My
suggestion is to place the lines

\newcommand{\tx}{\mbox{t\hspace{-.35em}-}}

\newcommand{\txx}{\mbox{T\hspace{-.5em}-}}

in the preamble of your documents. They define the commands

\txx{} for LATIN CAPITAL LETTER T WITH STROKE and

\tx{} for LATIN SMALL LETTER T WITH STROKE.

45.1 The code of samin.dtx

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

45.1 (*code)
45.2 \LdfInit{samin}{captionssamin}

When this file is read as an option, i.e. by the \usepackage command, samin
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@samin to see whether we have to do something here.

45.3 \ifx\undefined\1@samin
45.4 \@nopatterns{Samin}
455 \adddialect\1l@saminO\fi

The next step consists of defining commands to switch to (and from) the North
Sami language.

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

45.6 \providehyphenmins{samin}{\tw@\tw@}

The macro \captionssamin defines all strings used in the four standard docu-
mentclasses provided with IATEX.

45.7 \def\captionssamin{y
45.8 \def\prefacename{Ovdas\’atnil}y,
45.9 \def\refname{\v Cujuhusat},
45.10 \def\abstractname{\v Coahkk\’aigeassu}’
45.11 \def\bibname{Girjj\’ala\v svuohtal,
45.12 \def\chaptername{Kapihttall}
45.13 \def\appendixname{\v Cuovus}y,
45.14 \def\contentsname{Sisdoallu}},
45.15 \def\listfigurename{Govvosatl}’%
45.16 \def\listtablename{Tabeallat},
45.17 \def\indexname{Registtarl},
45.18 \def\figurename{Govus}y,

52The file described in this section has version number v1.0c and was last revised on
2004/02/20. It was written by Regnor Jernsletten, (Regnor.Jernsletten@sami.uit.no) or
(Regnor.Jernsletten@eunet.no).

232

\datesamin

\extrassamin
\noextrassamin

45.19 \def\tablename{Tabeallal},

45.20 \def\partname{Oassil}’

45.21 \def\enclname{Mielddus}%

45.22 \def\ccname{Kopia s\’addejuvvon}},
45.23 \def\headtoname{Vuost\’aiv\’aldil}}
45.24 \def\pagename{Siidu}}

45.25 \def\seename{geah\v cal’

45.26 \def\alsoname{geah\v ca maidd\’ailj,
45.27 \def\proofname{Duo\dj{}a\v stus}’
45.28 \def\glossaryname{S\’atnelistul’,
45.29 }

The macro \datesamin redefines the command \today to produce North Sami
dates.

45.30 \def\datesamin{’

45.31 \def\today{\ifcase\month\or

45.32 o\dj{}\dj{}ajagem\’anu\or

45.33 guovvam\’anu\or
45.34 njuk\v cam\’anu\or
45.35 cuo\ng{}om\’anu\or
45.36 miessem\’anu\or
45.37 geassem\ ’anu\or
45.38 suoidnem\’anu\or
45.39 borgem\’anu\or
45.40 \v cak\v cam\’anu\or
45.41 golggotm\’anu\or
45.42 sk\’abmam\’anu\or
45.43 juovlam\’anu\fi
45.44 \space\number\day. ~b.\space\number\yearl}y,
45.45 Y,
The macro \extrassamin will perform all the extra definitions needed for the

North Sami language. The macro \noextrassamin is used to cancel the actions
of \extrassamin. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

45.46 \addto\extrassamin{}
45.47 \addto\noextrassamin{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

45.48 \1df@finish{samin}
45.49 (/code)

233

\captionsfinnish

46 The Finnish language

The file finnish.dtx®? defines all the language definition macros for the Finnish
language.

For this language the character " is made active. In table 21 an overview is
given of its purpose.

"| disable ligature at this position.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"= an explicit hyphen sign for expressions such as
“pakastekaapit ja -arkut”.

" like "-, but producing no hyphen sign (for words that
should break at some sign such as “entrada/salida.”

"¢ lowered double left quotes (looks like ,,)

"> normal double right quotes

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

\- like the old \-, but allowing hyphenation in the rest
of the word.

Table 21: The extra definitions made by finnish.1ldf

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

46.1 (*code)
46.2 \LdfInit{finnish}\captionsfinnish

When this file is read as an option, i.e. by the \usepackage command, finnish
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@finnish to see whether we have to do something
here.

46.3 \ifx\1@finnish\@undefined
46.4 \@nopatterns{Finnish}
46.5 \adddialect\1@finnishO\fi

The next step consists of defining commands to switch to the Finnish language.
The reason for this is that a user might want to switch back and forth between
languages.

The macro \captionsfinnish defines all strings used in the four standard docu-
mentclasses provided with TEX.

46.6 \addto\captionsfinnish{’

46.7 \def\prefacename{Esipuhel},

46.8 \def\refname{Viitteet}%

46.9 \def\abstractname{Tiivistelm\"a}
46.10 \def\bibname{Kirjallisuuttal
46.11 \def\chaptername{Luku}’

46.12 \def\appendixname{Liitel}/,

46.13 \def\contentsname{Sis\"alt\"o}), /* Could be "Sis\"allys" as well */
46.14 \def\listfigurename{Kuvatl}y,

46.15 \def\listtablename{Taulukot}},

46.16 \def\indexname{Hakemistol}7

46.17 \def\figurename{Kuval’

46.18 \def\tablename{Taulukkol}/,

46.19 \def\partname{Osal

46.20 \def\enclname{Liitteetl}%

53The file described in this section has version number v1.3q and was last revised on
2007/10/20. A contribution was made by Mikko KANERVA (KANERVAQCERNVM) and Keranen
Reino (KERANEN@CERNVM).

234

\datefinnish

\extrasfinnish
\noextrasfinnish

46.21 \def\ccname{Jakelu}},

46.22 \def\headtoname{Vastaanottajal}’
46.23 \def\pagename{Sivu}’%

46.24 \def\seename{katso}},

46.25 \def\alsoname{katso my\"os}/
46.26 \def\proofname{Todistus}/

46.27 \def\glossaryname{Sanasto}/,
46.28 }%

The macro \datefinnish redefines the command \today to produce Finnish
dates.

46.29 \def\datefinnish{Y
46.30 \def\today{\number\day. \ifcase\month\or

46.31 tammikuuta\or helmikuuta\or maaliskuuta\or huhtikuuta\or
46.32 toukokuuta\or kes\"akuuta\or hein\"akuuta\or elokuuta\or
46.33 syyskuuta\or lokakuutalor marraskuutalor joulukuuta\fi
46.34 \space\number\year}}

Finnish has many long words (some of them compound, some not). For this
reason hyphenation is very often the only solution in line breaking. For this reason
the values of \hyphenpenalty, \exhyphenpenalty and \doublehyphendemerits
should be decreased. (In one of the manuals of style Matti Rintala noticed a
paragraph with ten lines, eight of which ended in a hyphen!)

Matti Rintala noticed that with these changes TEX handles Finnish very well,
although sometimes the values of \tolerance and \emergencystretch must be
increased. However, I don’t think changing these values in finnish.1df is appro-
priate, as the looseness of the font (and the line width) affect the correct choice
of these parameters.

46.35 \addto\extrasfinnish{y

46.36 \babel@savevariable\hyphenpenalty\hyphenpenalty=307

46.37 \babel@savevariable\exhyphenpenalty\exhyphenpenalty=307

46.38 \babel@savevariable\doublehyphendemerits\doublehyphendemerits=5000%
46.39 \babel@savevariable\finalhyphendemerits\finalhyphendemerits=5000%
46.40

46.41 \addto\noextrasfinnish{}

Another thing \extrasfinnish needs to do is to ensure that \frenchspacing
is in effect. If this is not the case the execution of \noextrasfinnish will switch
it of again.

46.42 \addto\extrasfinnish{\bbl@frenchspacing}
46.43 \addto\noextrasfinnish{\bbl@nonfrenchspacing}

For Finnish the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the finnish group of shorthands should
be used.

46.44 \initiate@active@char{"}

46.45 \addto\extrasfinnish{\languageshorthands{finnish}}
Don’t forget to turn the shorthands off again.

46.46 \addto\extrasfinnish{\bbl@activate{"}}

46.47 \addto\noextrasfinnish{\bbl@deactivate{"}}

The ‘umlaut’ character should be positioned lower on all vowels in Finnish
texts.

46.48 \addto\extrasfinnish{\umlautlow\umlautelow}
46.49 \addto\noextrasfinnish{\umlauthigh}

First we define access to the low opening double quote and guillemets for
quotations,

46.50 \declare@shorthand{finnish}{" ‘}{%

46.51 \textormath{\quotedblbasel}{\mbox{\quotedblbase}}}
46.52 \declare@shorthand{finnish}{"’}{J

235

\finishhyphenmins

46.53 \textormath{\textquotedblright}{\mbox{\textquotedblright}}}
46.54 \declare@shorthand{finnish}{"<}{J%

46.55 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}

46.56 \declare@shorthand{finnish}{">}{J

46.57 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behave a little different from \-.

46.58 \declare@shorthand{finnish}{"-}{\nobreak-\bbl@allowhyphens}

46.59 \declare@shorthand{finnish}{""}{\hskip\z@skip}

46.60 \declare@shorthand{finnish}{"=}{\hbox{-}\bbl@allowhyphens}
And we want to have a shorthand for disabling a ligature.

46.61 \declare@shorthand{finnish}{" | }{/
46.62 \textormath{\discretionary{-}{}{\kern.03em}}{}}

All that is left now is the redefinition of \-. The new version of \- should in-
dicate an extra hyphenation position, while allowing other hyphenation positions
to be generated automatically. The standard behaviour of TEX in this respect is
very unfortunate for languages such as Dutch, Finnish and German, where long
compound words are quite normal and all one needs is a means to indicate an
extra hyphenation position on top of the ones that TEX can generate from the
hyphenation patterns.

46.63 \addto\extrasfinnish{\babel@save\-}

46.64 \addto\extrasfinnish{\def\-{\bbl@allowhyphens

46.65 \discretionary{-}{}{}\bbl@allowhyphens}}

The finnish hyphenation patterns can be used with \lefthyphenmin set to 2 and
\righthyphenmin set to 2.

46.66 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

46.67 \1df@finish{finnish}
46.68 (/code)

236

\ontoday

\Az

\Azr

\Aref

\Azp

\Apageref

47 The Hungarian language

The file option magyar.dtx defines all the language definition macros for the
Hungarian language.

The babel support for the Hungarian language until file version 1.3i was essen-
tially changing the English document elements to Hungarian ones, but because of
the differences between these too languages this was actually unusable (‘Part T’
was transferred to ‘Rész I’ which is not usable instead of ‘I. rész’). To enhance the
typesetting facilities for Hungarian the following should be considered:

e In Hungarian documents there is a period after the part, section, subsection
etc. numbers.

e In the part, chapter, appendix name the number (or letter) goes before the
name, so ‘Part I’ translates to ‘I. rész’.

e The same is true with captions (‘Table 2.1’ goes to ‘2.1. t4blazat’).

e There is a period after the caption name instead of a colon. (‘Table 2.1
goes to ‘2.1. tablazat.”)

e There is a period at the end of the title in a run-in head (when afterskip<0
in \@startsection).

e Special hyphenation rules must be applied for the so-called long double con-
sonants (ccs, ssz,. ..).

e The opening quotation mark is like the German one (the closing is the same
as in English).

e In Hungarian figure, table, etc. referencing a definite article is also incor-
porated. The Hungarian definite articles behave like the English indefinite
ones (‘a/an’). ‘a’ is used for words beginning with a consonant and ‘az’ goes
for a vowel. Since some numbers begin with a vowel some others with a
consonant some commands should be provided for automatic definite article
generation.

Until file version 1.3i°* the special typesetting rules of the Hungarian language
mentioned above were not taken into consideration. This version (v1.4j)°° enables
babel to typeset ‘good-looking’ Hungarian texts.

The \ontoday command works like \today but produces a slightly different
date format used in expressions such as ‘on February 10th’.

The commands \Az#1 and \az#1 write the correct definite article for the ar-
gument and the argument itself (separated with a ~). The star-forms (\Az* and
\az*) produce the article only.

\Azr#1 and \azr#1 treat the argument as a label so expand it then write the
definite article for \r@#1, a non-breakable space then the label expansion. The
star-forms do not print the label expansion. \Azr (#1 and \azr (#1 are used for
equation referencing with the syntax \azr (label).

There are two aliases \Aref and \aref for \Azr and \azr, respectively.
During the preparation of a document it is not known in general, if the code
‘a\ref{label}’ or the code ‘az™\ref{label}’ is the grammatically correct one.
Writing ‘\aref{label}’ instead of the previous ones solves the problem.

\Azp#1 and \azp#1 also treat the argument as a label but use the label’s page
for definite article determination. There are star-forms giving only the definite
article without the page number.

There are aliases \Apageref and \apageref for \Azp and \azp, respec-

54That file was last revised on 1996/12/23 with a contribution by the next authors: Attila
Koppanyi (attila@cernvm.cern.ch), Arpad Biré (JZP1104@HUSZEG11.bitnet), Istvan Hamecz
(hami@ursus.bke.hu) and Dezs§ Horvath (horvath@pisa.infn.it).

551t was written by Jozsef Bérces (jozsi@docs4.mht .bme.hu) with some help from Ferenc Wettl
(wettl@math.bme.hu) and an idea from David Carlisle (david@dcarlisle.demon.co.uk).

237

\Azc

\Acite

\captionsmagyar

shortcut explanation example
¢ same as \glqq in babel, or ¢‘id\’ezet’’—> idézet”
\quotedblbase in T1 (open-
ing quotation mark, like ,,)
‘C ccs is hyphenated as cs-cs lo‘ccsan—locs-csan
‘D ddz is hyphenated as dz-dz e‘ddz\"unk—redz-dziink
g, ‘G ggy is hyphenated as gy-gy po‘ggy\’asz—pogy-gyasz

‘1, ‘L lly is hyphenated as ly-ly Kod\’a‘llyal—Kodaly-lyal
‘n, ‘N nny is hyphenated as ny-ny me ‘nnyei—>meny-nyei

‘s, ‘S ssz is hyphenated as sz-sz vi‘ssza—>visz-sza

‘t, ‘T tty is hyphenated as ty-ty po ‘ttyan—poty-tyan

‘z, ‘Z zzs is hyphenated as zs-zs ri‘zzsel—rizs-zsel

Table 22: The shortcuts defined in magyar.1df

tively. The code \apageref{label} is equivalent either to a™\pageref{label} or
to az™\pageref{label}.

\Azc and \azc work like the \cite command but (of course) they insert the
definite article. There can be several comma separated cite labels and in that
case the definite article is given for the first one. They accept \cite’s optional
argument. There are star-forms giving the definite article only.

There are aliases \Acite and \acite for \Azc and \azc, respectively.

For this language the character ¢ is made active. Table 22 shows the shortcuts.
The main reason for the activation of the ¢ character is to handle the special
hyphenation of the long double consonants.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

47.1 (*code)
47.2 \Ldf Init{magyar}{caption\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, magyar
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@magyar or \1@hungarian to see whether we have to
do something here.

47.3 \ifx\1@magyar\Qundefined

47.4 \ifx\1l@hungarian\@undefined

47.5 \@nopatterns{Magyar}

47.6 \adddialect\l@magyar0

47.7 \else

47.8 \let\1l@magyar\lGhungarian

479 \fi

47.10 \fi

The statement above makes sure that \1@magyar is always defined; if \1@hungarian
is still undefined we make it equal to \1@magyar.

47.11 \ifx\1@hungarian\@undefined

47.12 \let\lGhungarian\l@magyar

47.13 \fi

The next step consists of defining commands to switch to (and from) the Hun-
garian language.

The macro \captionsmagyar defines all strings used in the four standard docu-

ment classes provided with IATEX.

47.14 \@namedef{captions\CurrentOption}{/
47.15 \def\prefacename{EI\H osz\’0}},

For the list of references at the end of an article we have a choice between two
words, ‘Referenciak’ (a Hungarian version of the English word) and ‘Hivatkozasok’.
The latter seems to be in more widespread use.

238

\datemagyar

\ondatemagyar

\extrasmagyar
\noextrasmagyar

47.16 \def\refname{Hivatkoz\’asok}/

If you have a document with a summary instead of an abstract you might want
to replace the word ‘Kivonat’ with ‘Osszefoglalo’.

47.17 \def\abstractname{Kivonatl}

The Hungarian version of ‘Bibliography’ is ‘Bibliografia’, but a more natural word
to use is ‘Irodalomjegyzék’.

47.18 \def\bibname{Irodalomjegyz\’ekl}’

47.19 \def\chaptername{fejezet}’

47.20 \def\appendixname{F\"uggel\’ek}/,

47.21 \def\contentsname{Tartalomjegyz\’ekl}’

4722 \def\listfigurename{\’Abr\’ak jegyz\’ekel},

47.23 \def\listtablename{T\’abl\’azatok jegyz\’ekel},

47.24 \def\indexname{T\’argymutat\’ol}%

47.25 \def\figurename{\’abral}’

47.26 \def\tablename{t\’abl\’azatl}’

47.27 \def\partname{r\’esz}/

47.28 \def\enclname{Mell\’eklet}

47.29 \def\ccname{K\"orlev\’el--c\’\i mzettek}’

47.30 \def\headtoname{C\’\i mzett}}

47.31 \def\pagename{oldall}ly

47.32 \def\seename{1l\’asd}},

47.33 \def\alsoname{1l\’asd m\’eg}’

Besides the Hungarian word for Proof, ‘Bizonyitas’ we can also name Corollary
(Kovetkezmény), Theorem (Tétel) and Lemma (Lemma).
47.34 \def\proofname{Bizony\’\i t\’as}’

47.35 \def\glossaryname{Sz\’ojegyz\’ ek}
47.36 }h

The macro \datemagyar redefines the command \today to produce Hungarian
dates.

47.37 \@namedef{date\CurrentOption}{%
47.38 \def\today{%

47.39 \number\year. \nobreakspace\ifcase\month\or
47.40 janu\’ar\or febru\’ar\or m\’arcius\or

47.41 \’aprilis\or m\’ajus\or j\’unius\or

47.42 j\’ulius\or augusztus\or szeptember\or
47.43 okt\’ober\or november\or december\fi

47.44 \space\number\day.}}

The macro \ondatemagyar produces Hungarian dates which have the meaning ‘on
this day’. It does not redefine the command \today.

47.45 \@namedef{ondate\CurrentOption}{J

47.46 \number\year.\nobreakspace\ifcase\month\or
47.47 janu\’ar\or febru\’ar\or m\’arcius\or

47.48 \’aprilis\or m\’ajus\or j\’unius\or

47.49 j\’ulius\or augusztus\or szeptember\or
47.50 okt\’ober\or november\or december\fi

47.51 \space\ifcase\day\or
47.52 1-j\’en\or 2-\’an\or 3-\’an\or 4-\’en\or 5-\’en\or
47.53 6-\’an\or 7-\’en\or 8-\’an\or 9-\’en\or 10-\’en\or

47.54 11-\’en\or 12-\’en\or 13-\’an\or 14-\’en\or 15-\’en\or
47.55 16-\’an\or 17-\’en\or 18-\’an\or 19-\’en\or 20-\’an\or
47.56 21-\’en\or 22-\’en\or 23-\’an\or 24-\’en\or 25-\’en\or
47.57 26-\’an\or 27-\’en\or 28-\’an\or 29-\’en\or 30-\’an\or
47.58 31-\’en\fi}

The macro \extrasmagyar will perform all the extra definitions needed for the
Hungarian language. The macro \noextrasmagyar is used to cancel the actions
of \extrasmagyar.

47.59 \@namedef{extras\CurrentOption}{%

239

47.60 \expandafter\let\expandafter\ontoday
47.61 \csname ondate\CurrentOption\endcsname}
47.62 \@namedef{noextras\CurrentOption}{\let\ontoday\@undefined}

Now we redefine some commands included into latex.ltx. The original form
of a command is always saved with \babel@save and the changes are added to
\extrasmagyar. This ensures that the Hungarian version of a macro is alive only
if the Hungarian language is active.

\fnum@figure In figure and table captions the order of the figure/table number and \figurename
\fnum@table /\tablename must be changed. To achieve this \fnum@figure and \fnum@table
are redefined and added to \extrasmagyar.

47.63 \expandafter\addto\csname extras\CurrentOption\endcsname{’
47.64 \babel@save\fnum@figure

47.65 \def\fnum@figure{\thefigure.\nobreakspace\figurename}}
47.66 \expandafter\addto\csname extras\CurrentOption\endcsname{’
47.67 \babel@save\fnum@table

47.68 \def\fnum@table{\thetable.\nobreakspace\tablenamel}}

\@makecaption The colon in a figure/table caption must be replaced by a dot by redefining
\@makecaption.
47.69 \expandafter\addto\csname extras\CurrentOption\endcsname{’,
47.70 \babel@save\@makecaption
47.71 \def\@makecaption#1#2{},

47.72 \vskip\abovecaptionskip

47.73 \sbox\@tempboxa{#1. #21}/,

47.74 \ifdim \wd\@tempboxa >\hsize

47.75 {#1. #2\csname par\endcsname}

47.76 \else

47.77 \global \@minipagefalse

47.78 \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
47.79 \fi

47.80 \vskip\belowcaptionskipl}}

\@caption There should be a dot after the figure/table number in lof/lot, so \@caption is
redefined.

47.81 \expandafter\addto\csname extras\CurrentOption\endcsname{’
47.82 \babel@save\@caption
47.83 \long\def\Qcaption#1 [#2]#3{Y%

47.84 \csname par\endcsname

47.85 \addcontentsline{\csname ext@#1\endcsname}{#1}J,
47.86 {\protect\numberline{\csname the#1\endcsname.}{\ignorespaces #2}}J
47.87 \begingroup

47.88 \@parboxrestore

47.89 \if@minipage

47.90 \@setminipage

47.91 \fi

47.92 \normalsize

47.93 \@makecaption{\csname fnum@#1\endcsnamely,
47.94 {\ignorespaces #3}\csname par\endcsname
47.95 \endgroup}}

\@seccntformat In order to have a dot after the section number \@seccntformat is redefined.

47.96 \expandafter\addto\csname extras\CurrentOption\endcsname{’
47.97 \babel@save\@seccntformat
47.98 \def\@seccntformat#1{\csname the#1\endcsname.\quad}}

\@sect Alas, \@sect must also be redefined to have that dot in toc too. On the other
hand, we include a dot after a run-in head.

47.99 \expandafter\addto\csname extras\CurrentOption\endcsname{’
47.100 \babel@save\@sect

240

47.101 \def\@sect#1#2#3#4#5#6 [#7]1#8{%,

47.102 \ifnum #2>\c@secnumdepth

47.103 \let\@svsec\Qempty

47.104 \else

47.105 \refstepcounter{#1}%

47.106 \protected@edef\@svsec{\@seccntformat{#1}\relaxl}y,
47.107 \fi

47.108 \@tempskipa #5\relax

47.109 \ifdim \@tempskipa>\z@

47.110 \begingroup

47.111 #6{

47.112 \@hangfrom{\hskip #3\relax\@svsecl}/
47.113 \interlinepenalty \@M #8\@@parl/,
47.114 \endgroup

47.115 \csname #1lmark\endcsname{#7}%

47.116 \addcontentsline{toc}{#1}{%

47.117 \ifnum #2>\c@secnumdepth \else

47.118 \protect\numberline{\csname the#1\endcsname.}},
47.119 \fi

47.120 #7}

47.121 \else

47.122 \def\@svsechd{%

47.123 #6{\hskip #3\relax

47.124 \@svsec #8.}}

47.125 \csname #1lmark\endcsname{#7}}

47.126 \addcontentsline{toc}H#1}{/

47.127 \ifnum #2>\c@secnumdepth \else
47.128 \protect\numberline{\csname the#1\endcsname.l}/,
47.129 \fi

47.130 #7330

47.131 \fi

47.132 \@xsect{#5}}}

\@ssect In order to have that dot after a run-in head when the star form of the sectioning
commands is used, we have to redefine \@ssect.
47.133 \expandafter\addto\csname extras\CurrentOption\endcsname{7,
47.134 \babel@save\@ssect
47.135 \def\@ssect#1#2#3#4#5{),

47.136 \@tempskipa #3\relax

47.137 \ifdim \@tempskipa>\z@

47.138 \begingroup

47.139 #4{J,

47.140 \Ghangfrom{\hskip #1}%

47.141 \interlinepenalty \@M #5\@@parly,
47.142 \endgroup

47.143 \else

47.144 \def\@svsechd{#4{\hskip #1\relax #5.}1}/,
47.145 \fi

47.146 \@xsect{#3}}}

\@begintheorem Order changing and dot insertion in theorem by redefining \@begintheorem and
\@opargbegintheorem \Q@opargbegintheorem.
47.147 \expandafter\addto\csname extras\CurrentOption\endcsname{7,
47.148 \babel@save\@begintheorem
47.149 \def\@begintheorem#1#2{\trivlist
47.150 \item[\hskip \labelsep{\bfseries #2.\ #1.}]\itshapel}/
47.151 \babel@save\Qopargbegintheorem
47.152 \def\Q@opargbegintheorem#1#2#3{\trivlist
47.153 \item[\hskip \labelsep{\bfseries #2.\ #1\ (#3).}]\itshapel}}

The next step is to redefine some macros included into the class files. It is
determined which class file is loaded then the original form of the macro is saved
and the changes are added to \extrasmagyar.

241

First we check if the book.cls is loaded.
47.154 \@ifclassloaded{book}{%

\ps@headings The look of the headings is changed: we have to insert some dots and change the
order of chapter number and \chaptername.

47.155 \expandafter\addto\csname extras\CurrentOption\endcsname{’

47.156 \babel@save\ps@headings}

47157 \expandafter\addto\csname extras\CurrentOption\endcsname{’,
47.158 \if@twoside

47.159 \def\ps@headings{%

47.160 \let\@oddfoot\@empty\let\Qevenfoot\@empty

47.161 \def\@evenhead{\thepage\hfil\slshape\leftmark}/
47.162 \def\@oddhead{{\slshape\rightmark}\hfil\thepagel/,
47.163 \let\@mkboth\markboth

47.164 \def\chaptermark##1{%

47.165 \markboth {\MakeUppercase{,

47.166 \ifnum \c@secnumdepth >\m@ne

47.167 \if@mainmatter

47.168 \thechapter. \@chapapp. \ %

47.169 \fi

47.170 \fi

47.171 #1334

47.172 \def\sectionmark##1{%

47.173 \markright {\MakeUppercase{J,

47.174 \ifnum \c@secnumdepth >\z@

47.175 \thesection. \ %

47.176 \fi

47177 #1333 30

47.178 \else

47.179 \def\ps@headings{’

47.180 \let\Qoddfoot\@empty

47.181 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}/
47.182 \let\@mkboth\markboth

47.183 \def\chaptermark##1{%

47.184 \markright {\MakeUppercase{/,

47.185 \ifnum \c@secnumdepth >\m@ne

47.186 \if@mainmatter

47.187 \thechapter. \@chapapp. \ %

47.188 \fi

47.189 \fi

47.190 ##1}13110

47.191 \fi}

\@part At the beginning of a part we need eg. ‘I. rész’ instead of ‘Part I’ (in toc too). To
achieve this \@part is redefined.

47.192 \expandafter\addto\csname extras\CurrentOption\endcsname{’

47.193 \babel@save\@part

47.194 \def\@part [#1]#2{%

47.195 \ifnum \c@secnumdepth >-2\relax

47.196 \refstepcounter{part}y,

47.197 \addcontentsline{toc}{part}{\thepart.\hspace{lem}#1}/,
47.198 \else

47.199 \addcontentsline{toc}{part}{#1}/,

47.200 \fi

47.201 \markboth{}{}/,

47.202 {\centering

47.203 \interlinepenalty \@M

47.204 \normalfont

47.205 \ifnum \c@secnumdepth >-2\relax

47.206 \huge\bfseries \thepart.\nobreakspace\partname
47.207 \csname par\endcsname

47.208 \vskip 20\p@

242

47.209 \fi
47.210 \Huge \bfseries #2\csname par\endcsnamely,
47.211 \@endpart}}

\@chapter The same changes are made to chapter. First the screen typeout and the toc are
changed by redefining \@chapter.

47.212 \expandafter\addto\csname extras\CurrentOption\endcsname{’,

47.213 \babel@save\@chapter

47.214 \def\Q@chapter [#1]#2{\ifnum \c@secnumdepth >\m@ne

47.215 \if@mainmatter

47.216 \refstepcounter{chapter}

47.217 \typeout{\thechapter.\space\@chapapp.}’
47.218 \addcontentsline{toc}{chapter}/,

47.219 {\protect\numberline{\thechapter.}#1}%
47.220 \else

47.221 \addcontentsline{toc}{chapter}{#1}}

47.222 \fi

47.223 \else

47.224 \addcontentsline{toc}{chapter}{#1}},

47.225 \fi

47.226 \chaptermark{#1}/,

47.227 \addtocontents{lof}{\protect\addvspace{10\p@}}%
47.228 \addtocontents{lot}{\protect\addvspace{10\p@}}%
47.229 \if@twocolumn

47.230 \@topnewpage [\@makechapterhead{#2}]%

47.231 \else

47.232 \@makechapterhead{#2}/,

47.233 \@afterheading

47.234 \fi}}

\@makechapterhead Then the look of the chapter-start is modified by redefining \@makechapterhead.

47.235 \expandafter\addto\csname extras\CurrentOption\endcsname{’

47.236 \babel@save\@makechapterhead

47.237 \def\@makechapterhead#1{%

47.238 \vspace*{50\p@}/,

47.239 {\parindent \z@ \raggedright \normalfont

47.240 \ifnum \c@secnumdepth >\m@ne

47.241 \if@mainmatter

47.242 \huge\bfseries \thechapter.\nobreakspace\@chapapp{}
47.243 \csname par\endcsname\nobreak

47.244 \vskip 20\p@

47.245 \fi

47.246 \fi

47.247 \interlinepenalty\@M

47.248 \Huge \bfseries #1\csname par\endcsname\nobreak
47.249 \vskip 40\p@

47.250 Y4

This the end of the book class modification.
47.251 M3
Now we check if report.cls is loaded.
47.252 \@ifclassloaded{report}{}

\ps@headings First the headings are modified just in case of the book class.

47.253 \expandafter\addto\csname extras\CurrentOption\endcsname{’

47.254 \babel@save\ps@headings}

47.255 \expandafter\addto\csname extras\CurrentOption\endcsname{’,
47.256 \if@twoside

47.257 \def\ps@headings{%

47.258 \let\@oddfoot\@empty\let\@evenfoot\Q@empty

47.259 \def\@evenhead{\thepage\hfil\slshape\leftmark}/

243

47.260 \def\@oddhead{{\slshape\rightmark}\hfil\thepagel}/

47.261 \let\@mkboth\markboth

47.262 \def\chaptermark##1{J,

47.263 \markboth {\MakeUppercase{%

47.264 \ifnum \c@secnumdepth >\m@ne
47.265 \thechapter. \@chapapp. \ %
47.266 \fi

47.267 #1IHA

47.268 \def\sectionmark##1{%

47.269 \markright {\MakeUppercase{%
47.270 \ifnum \c@secnumdepth >\z@
47.271 \thesection. \ %

47.272 \fi

47.273 ##1}}}Y

47.274 \else

47.275 \def\ps@headings{%

47.276 \let\@oddfoot\Qempty

47.277 \def\@oddhead{{\slshape\rightmark}\hfil\thepagel}’
47.278 \let\@mkboth\markboth

47.279 \def\chaptermark##1{%

47.280 \markright {\MakeUppercase{’
47.281 \ifnum \c@secnumdepth >\m@ne
47.282 \thechapter. \@chapapp. \ %
47.283 \fi

47.284 ##13333%

47.285 \fi}

\@chapter Chapter-start modification with \@chapter

47.286 \expandafter\addto\csname extras\CurrentOption\endcsname{’

47.287 \babel@save\@chapter

47.288 \def\Qchapter [#1]#2{\ifnum \c@secnumdepth >\m@ne

47.289 \refstepcounter{chapter}y

47.290 \typeout{\thechapter.\space\@chapapp. 1}
47.291 \addcontentsline{toc}{chapterl}y,

47.292 {\protect\numberline{\thechapter.}#11}J,
47.293 \else

47.294 \addcontentsline{toc}{chapter}{#1}}

47.295 \fi

47.296 \chaptermark{#1}%

47.297 \addtocontents{lof}{\protect\addvspace{10\p@}}/,
47.298 \addtocontents{lot}{\protect\addvspace{10\p@}}/
47.299 \if@twocolumn

47.300 \@topnewpage [\@makechapterhead{#2}]%

47.301 \else

47.302 \@makechapterhead{#2}/,

47.303 \Q@afterheading

47.304 \fi}}

\@makechapterhead and \@makechapterhead.

47.305 \expandafter\addto\csname extras\CurrentOption\endcsname{’

47.306 \babel@save\@makechapterhead

47.307 \def\@makechapterhead#1{%

47.308 \vspace*{50\p@}/,

47.309 {\parindent \z@ \raggedright \normalfont

47.310 \ifnum \c@secnumdepth >\m@ne

47.311 \huge\bfseries \thechapter.\nobreakspace\@chapapp{}
47.312 \csname par\endcsname\nobreak

47.313 \vskip 20\p@

47.314 \fi

47.315 \interlinepenalty\@M

47.316 \Huge \bfseries #1\csname par\endcsname\nobreak
47.317 \vskip 40\p@

47.318 Y4

244

End of report class modification.
47.319 H}
Checking if article.cls is loaded.
47.320 \@ifclassloaded{article}{’

\ps@headings Changing headings by redefining \ps@headings.

47.321 \expandafter\addto\csname extras\CurrentOption\endcsname{7

47.322 \babel@save\ps@headings}

47.323 \expandafter\addto\csname extras\CurrentOption\endcsname{’
47.324 \if@twoside

47.325 \def\ps@headings{/,

47.326 \let\@oddfoot\@empty\let\@evenfoot\Qempty

47.327 \def\@evenhead{\thepage\hfil\slshape\leftmark}y,
47.328 \def\@oddhead{{\slshape\rightmark}\hfil\thepage}/
47.329 \let\@mkboth\markboth

47.330 \def\sectionmark##1{}%

47.331 \markboth {\MakeUppercase{%

47.332 \ifnum \c@secnumdepth >\z@

47.333 \thesection.\quad

47.334 \fi

47.335 #1331}

47.336 \def\subsectionmark##1{J,

47.337 \markright {%

47.338 \ifnum \c@secnumdepth >\@ne

47.339 \thesubsection.\quad

47.340 \fi

47.341 #1333

47.342 \else

47.343 \def\ps@headings{/,

47.344 \let\@oddfoot\Qempty

47.345 \def\Q@oddhead{{\slshape\rightmark}\hfil\thepagel/,
47.346 \let\@mkboth\markboth

47.347 \def\sectionmark##1{%

47.348 \markright {\MakeUppercase{%

47.349 \ifnum \c@secnumdepth >\m@ne

47.350 \thesection.\quad

47.351 \fi

47.352 ##1}3330

47.353 \fi}}

No more necessary changes specific to the article class.
47.354 H}
And now this is the turn of letter.cls.
47.355 \@ifclassloaded{letter}{%

\ps@headings In the headings the page number must be followed by a dot and then \pagename.

47.356 \expandafter\addto\csname extras\CurrentOption\endcsname{’
47.357 \babel@save\ps@headings}
47.358 \expandafter\addto\csname extras\CurrentOption\endcsname{7

47.359 \if@twoside

47.360 \def\ps@headings{’

47.361 \let\@oddfoot\@empty\let\Q@evenfoot\Q@empty

47.362 \def\@oddhead{\slshape\headtoname{:} \ignorespaces\toname
47.363 \hfil \@date

47.364 \hfil \thepage.\nobreakspace\pagename},
47.365 \let\@evenhead\@oddhead}

47.366 \else

47.367 \def\ps@headings{%

47.368 \let\@oddfoot\@empty

47.369 \def\@oddhead{\slshape\headtoname{:} \ignorespaces\toname
47.370 \hfil \@date

245

47.371 \hfil \thepage.\nobreakspace\pagenamel}}
47.372 \£i}%

End of letter class.
47.373 M}

After making the changes to the IATEX macros we define some new ones to
handle the problem with definite articles.

\az \az is a user-level command which decides if the next character is a star. \@az is
called for \az* and \az@ for \az.

47.374 \def\az{a\@ifstar{\@az}{\az@}}

\Az \Az is used at the beginning of a sentence. Otherwise it behaves the same as \az.
47.375 \def\Az{A\Q@ifstar{\@az}{\az@}}

\az@ \az@ is called if there is no star after \az or \Az. It calls \@az and writes #1
separating with a non-breakable space.

47.376 \def\az@#1{\Q@az{#1}\nobreakspace#1}

\@az This macro calls \hun@tempadef to remove the accents from the argument then
calls \@@az that determines if a ‘z’ should be written after a/A (written by
\az/\Az).

47.377 \def\Qaz#1{J,
47.378 \hunO@tempadef{relax}{relax}{#1}/

47.379 \edef\Q@tempb{\noexpand\0@az\Qtempa\hbox!}/
47.380 \@tempb}

\hun@tempadef The macro \hun@tempadef has three tasks:

e Accent removal. Accented letters confuse \@@az, the main definite article
determinator macro, so they must be changed to their non-accented coun-
terparts. Special letters must also be changed, eg. ;e — o.

e Labels must be expanded.

e To handle Roman numerals correctly, commands starting with \hun@ are
defined for labels containing Roman numbers with the Roman numerals
replaced by their Arabic representation. This macro can check if there is a
\hun@ command.

There are three arguments:

1. The primary command that should be expanded if it exists. This is usually
the \hun@ command for a label.

2. The secondary command which is used if the first one is \relax. This is
usually the original ITEX command for a label.

3. This is used if the first two is \relax. For this one no expansion is carried
out but the accents are still removed and special letters are changed.

47.381 \def \hun@tempadef#1#2#3{Y
47.382 \begingroup

47.383 \def\@safeQactivesfalse{}/,

47.384 \def\setbox ##1{}), to get rid of accents and special letters
47.385 \def\hbox ##1{}%

47.386 \def\accent ##1 ##2{##2}%

47.387 \def\add@accent ##1##2{##2}/,

47.388 \def\QtextQcomposite@x ##1##2{##2},

47.389 \def\i{iF\def\j{j}%
47.390 \def\ae{a}\def\AE{A}\def\oe{o}\def\OE{0}/
47.391 \def\ss{s}\def\L{L}/

246

47.392 \def\d{}\def\b{}\def\c{I\def\t{}%

47.393 \expandafter\ifx\csname #1\endcsname\relax
47.394 \expandafter\ifx\csname #2\endcsname\relax
47.395 \xdef\Qtempa{#3}/

47.396 \else

47.397 \xdef\@tempa{\csname #2\endcsname},
47.398 \fi

47.399 \else

47.400 \xdef\@tempa{\csname #1\endcsname}j,

47.401 \fi

47.402 \endgroupl}

The following macros are used to determine the definite article for a label’s
expansion.

\aref \aref is an alias for \azr.
47.403 \def\aref{\azr}

\Aref \Aref is an alias for \Azr.
47.404 \def\Aref{\Azr}

\azr \azr calls \@azr if the next character is a star, otherwise it calls \azr@.
47.405 \def\azr{a\@ifstar{\@azr}{\azr@}}

\Azr \Azr is the same as \azr except that it writes ‘A’ instead of ‘a’.
47.406 \def\Azr{A\@ifstar{\Qazr}{\azr@}}

\azr@ \azr@ decides if the next character is (and in that case it calls \azr@@@ which
writes an extra (for equation referencing. Otherwise \azr@@ is called.

47.407 \def\azre{\@ifnextchar ({\azreee}{\azree}}

\azr@e Calls \@azr then writes the label’s expansion preceded by a non-breakable space.
47.408 \def\azr0@#1{\Q@azr{#1}\nobreakspace\ref{#1}}

\azreee Same as \azr@@ but inserts a (between the non-breakable space and the label
expansion.

47.409 \def\azr@@Q (#1{\@azr{#1}\nobreakspace (\ref{#1}}

\@azr Calls \hun@tempadef to choose between the label’s \hun@ or original XTEX com-
mand and to expand it with accent removal and special letter substitution. Then
calls \@@az, the core macro of definite article handling.

47.410 \def\Qazr#1{%

47.411 \hun@tempadef{hun@r@#1}{re#1}{1}J
47.412 \ifx\@tempa\empty

47.413 \else

47.414 \edef\@tempb{\noexpand\@@az\expandafter\@firstoftwo\Q@tempa\hbox!1}/,
47.415 \@tempb

47416 \fi

47.417 }

The following commands are used to generate the definite article for the page
number of a label.

\apageref \apageref is an alias for \azp.
47.418 \def\apageref{\azp}

\Apageref \Apageref is an alias for \Azp.
47.419 \def\Apageref{\Azp}

\azp Checks if the next character is * and calls \@azp or \azp@.
47.420 \def\azp{a\@ifstar{\Qazp}{\azp@l}}

247

\Azp Same as \azp except that it writes ‘A’ instead of ‘a’.
47.421 \def\Azp{A\@ifstar{\Q@azp}{\azp@}}

\azp@ Calls \@azp then writes the label’s page preceded by a non-breakable space.
47.422 \def\azp@#1{\Q@azp{#1}\nobreakspace\pageref{#1}}

\@azp Calls \hun@tempadef then takes the label’s page and passes it to \@@az.

47.423 \def \Q@azp#1{%

47.424 \hunO@tempadef {hun@ro#1}{ro#1}{}/

47.425 \ifx\@tempa\empty

47.426 \else

47.427 \edef\@tempb{\noexpand\@Qaz\expandafter\@secondoftwo\@tempa\hbox !}

47.428 \@tempb
47.429 \fi
47.430 }

The following macros are used to give the definite article to citations.

\acite This is an alias for \azc.
47.431 \def\acite{\azc}

\Acite This is an alias for \Azc.
47.432 \def\Acite{\Azc}

\azc Checks if the next character is a star and calls \@azc or \azc@.
47.433 \def\azc{a\Q@ifstar{\Q@azc}{\azc@}}

\Azc Same as \azc but used at the beginning of sentences.
47.434 \def\Azc{A\Q@ifstar{\@azc}{\azc@}}

\azc@ If there is no star we accept an optional argument, just like the \cite command.
47.435 \def\azc@{\Q@ifnextchar [{\azc@@}{\azc@@[]}}

\azc@@ First calls \@azc then \cite.
47.436 \def\azcoe@[#1]#2{Y
47.437 \Q@azc{#2}\nobreakspace\def\Q@tempa{#11}7,
47.438 \ifx\@tempa\@empty\cite{#2}\else\cite [#1]{#2}\fi}

\@azc This is an auxiliary macro to get the first cite label from a comma-separated list.
47.439 \def\Q@azc#1{\@@azc#1,\hbox!}

\@@azc This one uses only the first argument, that is the first element of the comma-
separated list of cite labels. Calls \hun@tempadef to expand the cite label with
accent removal and special letter replacement. Then \@@az, the core macro, is
called.

47.440 \def\Q@Qazc#1,#2\hbox#3!{%

47.441 \hun@tempadef{hun@b@#1}{b@#1}{}/

47.442 \ifx\@tempa\empty

47.443 \else

47.444 \edef\@tempb{\noexpand\@@az\@tempa\hbox !}/
47.445 \@tempb

47.446 \fi}

\hun@number@lehgth This macro is used to count the number of digits in its argument until a non-digit
character is found or the end of the argument is reached. It must be called as
\hun@number@lehgtharg\hbox\hbox! and \count@ must be zeroed. It is called
by \@@az.

47.447 \def \hun@number@lehgth#1#2\hbox#3!{/
47.448 \ifcat\noexpand#11%

47.449 \ifnum\expandafter ‘\csname#1\endcsname>47
47.450 \ifnum\expandafter‘\csname#1\endcsname<58
47.451 \advance\count@ by \@ne

47.452 \hun@number@lehgth#2\hbox\hbox !\fi\fi\fi}

248

\hun@alph@lehgth

This is used to count the number of letters until a non-letter is found or the end of
the argument is reached. It must be called as \hun@alph@lehgtharg\hbox\hbox!
and \count®@ must be set to zero. It is called by \@@az@string.

47.453 \def \hun@alph@lehgth#1#2\hbox#3!{%
47.454 \ifcat\noexpand#1A%

47.455 \advance\count@ by \@ne
47.456 \hun@alph@lehgth#2\hbox\hbox!\fi}
\@Qaz@string This macro is called by \@@az if the argument begins with a letter. The task of

\@@az@string is to determine if the argument starts with a vowel and in that
case \let\@tempa\@tempb. After checking if the first letter is A, E, I, O, or U,
\hun@alph@lehgth is called to determine the length of the argument. If it gives
1 (that is the argument is a single-letter one or the second character is not letter)
then the letters L, M, N, R, S, X, and Y are also considered as a vowel since their
Hungarian pronounced name starts with a vowel.

47.457 \def\QQaz@string#1#2{%
47.458 \ifx#1A}

47.459 \let\@tempa\@tempb
47.460 \else\ifx#1EJ,
47.461 \let\@tempa\@tempb
47.462 \else\ifx#117,
47.463 \let\@tempa\@tempb
47.464 \else\ifx#10%
47.465 \let\@tempa\@tempb
47.466 \else\ifx#1U},
47.467 \let\@tempa\@tempb

47.468 \fi\fi\fi\fi\fi
47.469 \ifx\@tempa\@tempb
47.470 \else

47.471 \count@\z@

47.472 \hun@alph@lehgth#1#2\hbox\hbox!Y
47.473 \ifnum\count@=\@ne
47.474 \ifx#1F%

47.475 \let\@tempa\@tempb
47.476 \else\ifx#1L}

47.477 \let\@tempa\@tempb
47.478 \else\ifx#1M},

47.479 \let\@tempa\@tempb
47.480 \else\ifx#1NY,

47.481 \let\@tempa\@tempb
47.482 \else\ifx#1RJ,

47.483 \let\@tempa\@tempb
47.484 \else\ifx#18%

47.485 \let\@tempa\@tempb
47.486 \else\ifx#1XY

47.487 \let\@tempa\@tempb
47.488 \else\ifx#1Y/

47.489 \let\@tempa\@tempb
47.490 \EINFANEINEINFINFINEINFL
47.491 \fi

47.492 \fi}

\@Qaz

This macro is the core of definite article handling. It determines if the argument
needs ‘az’ or ‘a’ definite article by setting \@tempa to ‘z’ or \@empty. It sets
\@tempa to ‘z’ if

e the first character of the argument is 5; or

e the first character of the argument is 1 and the length of the number
(mod 3) =1 (one—egy, thousand—ezer, million—egymillio,. ..); or

e the first character of the argument is a, A, e, E, i, I, o, O, u, or U; or

249

e the first character of the argument is 1, L, m, M, n, N, r, R, s, S, x, X, y,or Y
and the length of the argument is 1 or the second character is a non-letter.

At the end it calls \@tempa, that is, it either typesets a ‘z’ or nothing.
47.493 \def\@Qaz#1#2\hbox#3!{/,
47.494 \let\Q@tempa\@empty
47.495 \def\@tempb{z}/
47.496 \uppercase{%

47.497 \ifx5#1%

47.498 \let\@tempa\Qtempb

47.499 \else\ifx1#1%

47.500 \count@\@ne

47.501 \hun@number@lehgth#2\hbox\hbox!%
47.502 \loop

47.503 \ifnum\count@>\thre@a@
47.504 \advance\count@-\thr@@
47.505 \repeat

47.506 \ifnum\count@=\@ne

47.507 \let\@tempa\Q@tempb
47.508 \fi

47.509 \else

47510 \@Qaz@string{#1}{#2}
47.511 \fi\fi

47512 Y%

47.513 \@tempal}

\refstepcounter \refstepcounter must be redefined in order to keep \@currentlabel unex-
panded. This is necessary to enable the \1abel command to write a \hunnewlabel
command to the aux file with the Roman numerals substituted by their Arabic
representations. Of course, the original definition of \refstepcounter is saved
and restored if the Hungarian language is switched off.

47.514 \expandafter\addto\csname extras\CurrentOption\endcsname{7,

47515 \babel@save\refstepcounter

47516 \def\refstepcounter#i{\stepcounter{#1}J,

47.517 \def\Qcurrentlabel{\csname p@#1\endcsname\csname the#1\endcsnamel}}/,
47518 }

\label \label is redefined to write another line into the aux file: \hunnewlabel{ }{ }
where the Roman numerals are replaced their Arabic representations. The original
definition of \label is saved into \old@label and it is also called by \label. On
leaving the Hungarian typesetting mode \label’s original is restored since it is
added to \noextrasmagyar.

47.519 \expandafter\addto\csname extras\CurrentOption\endcsname{J
47.520 \let\old@label\label
47.521 \def\label#1{\@bsphack

47.522 \old@label{#1}%

47.523 \begingroup

47.524 \let\romannumeral \number

47.525 \def\Q@roman##1{\number ##1},

47.526 \def\Q@Roman##1{\number ##1}J,

47.527 {\toks0={\noexpand\noexpand\noexpand\number}’,

47.528 \def\number##1{\the\toksO ##1}\xdef\tempb@{\thepage}l}’
47.529 \edef\Q@tempa##1{\noexpand\protected@urite\Q@auxout{}/,
47.530 {\noexpand\string\noexpand\hunnewlabel

47.531 {##1}{{\@currentlabel}{\tempb@}}}}%

47.532 \@tempa{#1}%

47.533 \endgroup

47.534 \@esphack},

47.535 }

47.536 \expandafter\addto\csname noextras\CurrentOption\endcsname{’
47537 \let\label\old@label
47.538 }

250

\hunnewlabel Finally, \hunnewlabel is defined. It checks if the label’s expansion (#2) differs
from that one given in the \newlabel command. If yes (that is, the label con-
tains some Roman numerals), it defines the macro \hun@r@label, otherwise it does
nothing.

47.539 \def \hunnewlabel#1#2{J,
47.540 \def\Q@tempa{#2}/
47.541 \expandafter\ifx\csname r@#1\endcsname\@tempa

47.542 \relax’, \message{No need for def: #1}%

47.543 \else

47.544 \global\expandafter\let\csname hun@r@#1\endcsname\Q@tempay,
47545 \fi

47.546 }

4

For Hungarian the ¢ character is made active.

47.547 \AtBeginDocument{/

47.548 \if@filesw\immediate\write\@auxout{\catcode096=12}\fi}
47.549 \initiate@active@char{‘}

47.550 \expandafter\addto\csname extras\CurrentOption\endcsname{’,
47.551 \languageshorthands{magyar}’

47.552 \bblQ@activate{‘}}

47.553 \expandafter\addto\csname noextras\CurrentOption\endcsname{’
47.554 \bbl@deactivate{‘}}

The character sequence ‘¢ is declared as a shorthand in order to produce the

opening quotation sign appropriate for Hungarian.
47.555 \declare@shorthand{magyar}{‘‘}{\glqq}

In Hungarian there are some long double consonants which must be hyphenated
specially. For all these long double consonants (except dzzs, that is extremely
very-very rare) a shortcut is defined.

47.556 \declare@shorthand{magyar}{‘c}{\textormath{\bbl@disc{c}{cs}}{c}}
47.557 \declare@shorthand{magyar}{‘C}{\textormath{\bbl@disc{C}{CS}}{C}}
47.558 \declare@shorthand{magyar}{‘d}{\textormath{\bbl@disc{d}{dz}}{d}}
47.559 \declare@shorthand{magyar}{‘D}{\textormath{\bbl@disc{D}{DZ}}{D}}
47.560 \declare@shorthand{magyar}{‘g}{\textormath{\bbl@disc{g}t{gy}}{g}}
47.561 \declare@shorthand{magyar}{‘G}{\textormath{\bbl@disc{G}{GY}}{G}}
47.562 \declare@shorthand{magyar}{‘1}{\textormath{\bbl@disc{1}{1y}}{1}}
47.563 \declare@shorthand{magyar}{‘L}{\textormath{\bbl@disc{L}{LY}}{L}}
47.564 \declare@shorthand{magyar}{‘n}{\textormath{\bbl@disc{n}{ny}}{n}}
47.565 \declare@shorthand{magyar}{‘N}{\textormath{\bbl@disc{N}{NY}}{N}}
47.566 \declare@shorthand{magyar}{‘s}{\textormath{\bbl@disc{s}{sz}}{s}}
47.567 \declare@shorthand{magyar}{‘S}{\textormath{\bbl@disc{S}{SZ}}{S}}
47.568 \declare@shorthand{magyar}{‘t}{\textormath{\bbledisc{t}{ty}}{t}}
47.569 \declare@shorthand{magyar}{‘T}{\textormath{\bbl@disc{TH{TY}}{T}}
47.570 \declare@shorthand{magyar}{‘z}{\textormath{\bbl@disc{z}{zs}}{z}}
47.571 \declare@shorthand{magyar}{‘Z}{\textormath{\bbledisc{Z}{ZS}}{Z}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

47.572 \1df@f inish\CurrentOption
47.573 (/code)

251

48 The Estonian language

The file estonian.dtx® defines the language definition macro’s for the Estonian
language.

This file was written as part of the TWGML project, and borrows heavily from
the babel German and Spanish language files germanb.1df and spanish.1df.

Estonian has the same umlauts as German (&, 6, 1), but in addition to this,
we have also 6, and two recent characters § and 7, so we need at least two active
characters. We shall use " and ~ to type Estonian accents on ASCII keyboards
(in the 7-bit character world). Their use is given in table 23. These active accent

o \7o, (and uppercase);

a \"a, (and uppercase);

) (and uppercase);

u \"u, (and uppercase);

s \v s, (and uppercase);

z \v z, (and uppercase);

| disable ligature at this position;

"~ like \-, but allowing hyphenation in the rest of the
word;

"¢ for Estonian low left double quotes (same as Ger-
man);

"> for Estonian right double quotes;

"< for French left double quotes (also rather popular)

"> for French right double quotes.

Table 23: The extra definitions made by estonian.1df

characters behave according to their original definitions if not followed by one of
the characters indicated in that table; the original quote character can be typed
using the macro \dq.

We support also the T1 output encoding (and Cork-encoded text input). You
can choose the T1 encoding by the command \usepackage [T1]{fontenc}. This
package must be loaded before babel. As the standard Estonian hyphenation file
eehyph.tex is in the Cork encoding, choosing this encoding will give you better
hyphenation.

As mentioned in the Spanish style file, it may happen that some packages
fail (usually in a \message). In this case you should change the order of the
\usepackage declarations or the order of the style options in \documentclass.

48.1 Implementation

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.
48.1 (*code)
48.2 \LdfInit{estonian}\captionsestonian
If Estonian is not included in the format file (does not have hyphenation pat-
terns), we shall use English hyphenation.
48.3 \ifx\1l@estonian\@undefined
48.4 \@nopatterns{Estonian}

48.5 \adddialect\l@estonianO
48.6 \fi

Now come the commands to switch to (and from) Estonian.

56The file described in this section has version number v1.0k and was last revised on
2009/03/08. The original author is Enn Saar, (saarQaai.ee).

252

\captionsestonian The macro \captionsestonian defines all strings used in the four standard doc-
umentclasses provided with ETEX.

48.7 \addto\captionsestonian{},
48.8 \def\prefacename{Sissejuhatus}/,
48.9 \def\refname{Viited}/,
48.10 \def\bibname{Kirjandusl}/
48.11 \def\appendixname{Lisal}
48.12 \def\contentsname{Sisukord}/,
48.13 \def\listfigurename{Joonised}/
48.14 \def\listtablename{Tabelid}%
48.15 \def\indexname{Indeks}/,
48.16 \def\figurename{Joonis}}
48.17 \def\tablename{Tabel},
48.18 \def\partname{Osal/,
48.19 \def\enclname{Lisa(d)}/
48.20 \def\ccname{Koopia(d)}/
48.21 \def\headtoname{}/,
48.22 \def\pagename{Lk.1}/
48.23 \def\seename{vt.}/
48.24 \def\alsoname{vt. kal}
4825 }

These captions contain accented characters.

48.26 \begingroup \catcode‘\"\active
48.27 \def\x{\endgroup

48.28 \addto\captionsestonian{y,

48.29 \def\abstractname{Kokkuv~otel}’%
48.30 \def\chaptername{Peat"ukkl}},
48.31 \def\proofname{T oestus}/,
48.32 \def\glossaryname{S~onastik}%
48.33 }3\x

\dateestonian The macro \dateestonian redefines the command \today to produce Estonian
dates.
48.34 \begingroup \catcode‘\"\active

48.35 \def\x{\endgroup
48.36 \def\month@estonian{\ifcase\month\or

48.37 jaanuar\or veebruar\or m"arts\or aprilll\or mailor juunilor
48.38 juulilor august\or september\or oktoober\or november\or
48.39 detsember\fil}}

48.40 \x

48.41 \def\dateestonian{’
48.42 \def\today{\number\day.\space\month@estonian
48.43 \space\number\year.\space a.}}

Some useful macros, copied from the spanish package (and renamed es@. .. to

et@...).
48.44 \def\et@sdef#1{\babel@save#1\def#1}
48.45

48.46 \@ifundefined{documentclass}
48.47 {\let\ifet@latex\iffalse}
48.48 {\let\ifet@latex\iftrue}

\extrasestonian The macro \extrasestonian will perform all the extra definitions needed for
\noextrasestonian FKEstonian. The macro \noextrasestonian is used to cancel the actions of
\extrasestonian. For Estonian, " is made active and has to be treated as ‘special’

(~ is active already).

48.49 \initiate@active@char{"}

48.50 \initiate@active@char{~}

48.51 \addto\extrasestonian{\languageshorthands{estonian}}
48.52 \addto\extrasestonian{\bbl@activate{"}\bbl@activate{ }}

253

\estonianhyphenmins

\et@gentilde

\et@newtilde

Estonian does not use extra spaces after sentences.

48.53 \addto\extrasestonian{\bbl@frenchspacing}
48.54 \addto\noextrasestonian{\bbl@uonfrenchspacing}

For Estonian, \lefthyphenmin and \righthyphenmin are both 2.
48.55 \providehyphenmins{\CurrentOption}{\tw@\twe}

The standard TEX accents are too high for Estonian typography, we have
to lower them (following the babel German style). For umlauts, we can use
\umlautlow in babel.ldf.

48.56 \addto\extrasestonian{\umlautlow}
48.57 \addto\noextrasestonian{\umlauthigh}

Redefine tilde (as in spanish.1df). In case of IXTEX, we redefine the internal
macro for the OT1 encoding because in case of T1, the display and hyphenation of
words containing \~o works better without redefining it (e. g. words containing
\et@gentilde are not hyphenated unless \allowhyphens is used; when copied
from Acrobat Reader, pasting an 6 generated using \et@gentilde{o} gives ~o
rather than 6; when the times package is used with T1 encoding, \et@gentilde
places the tilde through the letter o). In plain TEX there is no encoding infras-
tructure, so we just redefine \~.

48.58 \ifet@latex

48.59 \addto\extrasestonian{,

48.60 \expandafter\et@sdef\csname 0T1\string\~\endcsname{\et@gentilde}}
48.61 \else

48.62 \addto\extrasestonian{\et@sdef\~“{\et@gentildel}}

48.63 \fi

48.64 \def\et@gentilde#1{},

48.65 \if#1s\v{#1}\else\if#1S\v{#1}\else},
48.66 \if#1z\v{#1}\else\if#1Z\v{#1}\else%
48.67 \et@newtilde{#11}%

48.68 \fi\fi\fi\fi}

For a detailed explanation of the following code see the definition of \lower@umlaut
in babel.dtx.

48.69 \def\et@newtilde#1{},
48.70 \leavevmode\bgroup\U@D 1lex}

48.71 {\setbox\z0@\hbox{\char126}\dimen@ -.45ex\advance\dimen@\ht\z@
48.72 \ifdim lex<\dimen@ \fontdimen5\font\dimen@ \fil}J,
48.73 \accent126\fontdimen5\font\U@GD #1Y

48.74 \egroup}

We save the double quote character in \dq, and tilde in \til.

48.75 \begingroup \catcode‘\"12
48.76 \edef\x{\endgroup

48.77 \def\noexpand\dq{"}
48.78 \def\noexpand\til{"}}
48.79 \x

If the encoding is T'1, we have to tell TEX about our redefined accents.

48.80 \ifx\f@encoding\bbl@t@one

48.81 \DeclareTextComposite{\~}{T1}{s}{178}
48.82 \DeclareTextComposite{\“}{T1}{S}{146}
48.83 \DeclareTextComposite{\~}{T1}{z}{186}
48.84 \DeclareTextComposite{\~}{T1}{Z}{154}
48.85 \DeclareTextComposite{\"}{T1}{’>}{173}
48.86 \DeclareTextComposite{\"}{T1}{¢}{18}
48.87 \DeclareTextComposite{\"}{T1}{<}{19}
48.88 \DeclareTextComposite{\"}{T1}{>}{20}

254

If the encoding differs from T1, we expand the accents, enabling hyphenation
beyond the accent. In this case TEX will not find all possible breaks, and we have
to warn people.

48.89 \else
48.90 \wlog{Warning: Hyphenation would work better for the T1 encoding.}
48.91 \fi

Now we define the shorthands: umlauts,

48.92 \declare@shorthand{estonian}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a
48.93 \declare@shorthand{estonian}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A
48.94 \declare@shorthand{estonian}{"o}{\textormath{\"{o}\allowhyphens}{\ddot o
48.95 \declare@shorthand{estonian}{"0}{\textormath{\"{0}\allowhyphens}{\ddot O
48.96 \declare@shorthand{estonian}{"u}{\textormath{\"{u}\allowhyphens}{\ddot u
48.97 \declare@shorthand{estonian}{"U}{\textormath{\"{U}\allowhyphens}{\ddot U

German and French quotes,

48.98 \declare@shorthand{estonian}{" ‘}{%

48.99 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

48.100 \declare@shorthand{estonian}{"’}{/

48.101 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
48.102 \declare@shorthand{estonian}{"<}{%

48.103 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}

48.104 \declare@shorthand{estonian}{">}{/

48.105 \textormath{\guillemotright}{\mbox{\guillemotright}}}

tildes and carons

48.106 \declare@shorthand{estonian}{~o}{\textormath{\“{o}\allowhyphens}{\tilde
48.107 \declare@shorthand{estonian}{~0}{\textormath{\~{0}\allowhyphens}{\tilde
48.108 \declare@shorthand{estonian}{~s}{\textormath{\v{s}\allowhyphens}{\check
48.109 \declare@shorthand{estonian}{~S}{\textormath{\v{S}\allowhyphens}{\check
48.110 \declare@shorthand{estonian}{~z}{\textormath{\v{z}\allowhyphens}{\check
48.111 \declare@shorthand{estonian}{~Z}{\textormath{\v{Z}\allowhyphens}{\check

and some additional commands:
48.112 \declare@shorthand{estonian}{"-}{\nobreak\-\bbl@allowhyphens}
48.113 \declare@shorthand{estonian}{" | }{/
48.114 \textormath{\nobreak\discretionary{-}{}{\kern.03em}},
48.115 \allowhyphens}{}}

48.116 \declare@shorthand{estonian}{""}{\dq}
48.117 \declare@shorthand{estonian}{~~“}{\til}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

48.118 \1df@finish{estonian}
48.119 (/code)

255

1}
1
I
1}
13
I

o}}
0}}
s}
S}
z}}
Z}}

\captionsalbanian

49 The Albanian language

The file albanian.dtx®” defines all the language definition macros for the Alba-
nian language.

Albanian is written in a latin script, but it has 36 letters, 9 which are diletters
(dh, gj, 11, nj, rr, sh, th, xh, zh), and two extra special characters.

For this language the character " is made active. In table 24 an overview is
given of its purpose.

"¢ \"c, also implemented for the uppercase

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"| disable ligature at this position

" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"¢ for Albanian left double quotes (looks like ,,).

"> for Albanian right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 24: The extra definitions made by albanian.1ldf

Apart from defining shorthands we need to make sure that the first paragraph
of each section is intended. Furthermore the following new math operators are
defined (\tg, \ctg, \arctg, \arcctg, \sh, \ch, \th, \cth, \arsh, \arch, \arth,
\arcth, \Prob, \Expect, \Variance).

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

49.1 (*code)
49.2 \LdfInit{albanian}\captionsalbanian

When this file is read as an option, i.e. by the \usepackage command,
albanian will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \1@albanian to see whether we have to do some-
thing here.

49.3 \ifx\1@albanian\@undefined
49.4 \@nopatterns{Albanian}
49.5 \adddialect\1l@albanianO\fi

The next step consists of defining commands to switch to (and from) the Al-
banian language.

The macro \captionsalbanian defines all strings used in the four standard doc-
umentclasses provided with ETEX.

49.6 \addto\captionsalbanian{%

49.7 \def\prefacename{Parathenialy

49.8 \def\refname{Referencatl}’

49.9 \def\abstractname{P\"ermbledhjaly,
49.10 \def\bibname{Bibliografial¥
49.11 \def\chaptername{Kapitullil}
49.12 \def\appendixname{Shtesal/

49.13 \def\contentsname{P\"ermbajtal}’
49.14 \def\listfigurename{Figurat}y,
49.15 \def\listtablename{Tabelat}},
49.16 \def\indexname{Indeksil}%

49.17 \def\figurename{Figural}’

49.18 \def\tablename{Tabelal},

49.19 \def\partname{Pjesal}’

57The file described in this section has version number v1.0c and was last revised on 2007,/10,/20

256

49.20 \def\enclname{Lidhja}%

49.21 \def\ccname{Kopjal¥

49.22 \def\headtoname{P\"er}/,

49.23 \def\pagename{Faqgel}/

49.24 \def\seename{shiko}},

49.25 \def\alsoname{shiko dhel},

49.26 \def\proofname{V\"ertetim}},

49.27 \def\glossaryname{P\"erhasja e Fjal\"evel/
49.28 }%

\datealbanian The macro \datealbanian redefines the command \today to produce Albanian
dates.

49.29 \def\datealbanian{/
49.30 \def\today{\number\day~\ifcase\month\or

49.31 Janar\or Shkurt\or Mars\or Prill\or Maj\or
49.32 Qershor\or Korrik\or Gusht\or Shtator\or Tetor\or N\"entor\or
49.33 Dhjetor\fi \space \number\yearl}}

\extrasalbanian The macro \extrasalbanian will perform all the extra definitions needed for the
\noextrasalbanian Albanian language. The macro \noextrasalbanian is used to cancel the actions
of \extrasalbanian.

For Albanian the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the albanian group of shorthands should
be used.

49.34 \initiate@active@char{"}
49.35 \addto\extrasalbanian{\languageshorthands{albanian}}
49.36 \addto\extrasalbanian{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
49.37 \addto\noextrasalbanian{\bbl@deactivate{"}}

First we define shorthands to facilitate the occurence of letters such as ¢.
49.38 \declare@shorthand{albanian}{"c}{\textormath{\v c}{\check c}}
49.39 \declare@shorthand{albanian}{"e}{\textormath{\v e}{\check e}}

49.40 \declare@shorthand{albanian}{"C}{\textormath{\v C}{\check C}}
49.41 \declare@shorthand{albanian}{"E}{\textormath{\v E}{\check E}}

Then we define access to two forms of quotation marks, similar to the german
and french quotation marks.

49.42 \declare@shorthand{albanian}{" }{/

49.43 \textormath{\quotedblbase{}}{\mbox{\quotedblbase}}}

49.44 \declare@shorthand{albanian}{"’}{%

49.45 \textormath{\textquotedblleft{}}{\mbox{\textquotedblleft}}}
49.46 \declare@shorthand{albanian}{"<}{/

49.47 \textormath{\guillemotleft{}}{\mbox{\guillemotleft}}}
49.48 \declare@shorthand{albanian}{">}{%

49.49 \textormath{\guillemotright{}}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behave a little different from \-.

49.50 \declare@shorthand{albanian}{"-}{\nobreak-\bbl@allowhyphens}
49.51 \declare@shorthand{albanian}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.

49.52 \declare@shorthand{albanian}{" | }{%
49.53 \textormath{\discretionary{-}{}{\kern.03em}}{}}

\bblefrenchindent In albanian the first paragraph of each section should be indented. Add this code
\bbl@nonfrenchindent only in IETEX.
49.54 \ifx\fmtname plain \else
49.55 \let\@aifORI\@afterindentfalse
49.56 \def\bbl@frenchindent{\let\Q@afterindentfalse\Q@afterindenttrue

257

49.57 \@afterindenttrue}

49.58 \def\bbl@nonfrenchindent{\let\@afterindentfalse\@aifORI
49.59 \@afterindentfalse}

49.60 \addto\extrasalbanian{\bbl@frenchindent}

49.61 \addto\noextrasalbanian{\bbl@nonfrenchindent}

49.62 \fi

\mathalbanian Some math functions in Albanian math books have other names: e.g. sinh in
Albanian is written as sh etc. So we define a number of new math operators.

49.63 \def\sh{\mathop{\operator@font sh}\nolimits} J same as \sinh
49.64 \def\ch{\mathop{\operator@font ch}\nolimits} % same as \cosh
49.65 \def\th{\mathop{\operator@font th}\nolimits} % same as \tanh
49.66 \def\cth{\mathop{\operator@font cth}\nolimits} % same as \coth
49.67 \def\arsh{\mathop{\operator@font arsh}\nolimits}

49.68 \def\arch{\mathop{\operator@font arch}\nolimits}

49.69 \def\arth{\mathop{\operator@font arth}\nolimits}

49.70 \def\arcth{\mathop{\operator@font arcth}\nolimits}

49.71 \def\tg{\mathop{\operator@font tg}\nolimits} % same as \tan
49.72 \def\ctg{\mathop{\operator@font ctg}\nolimits} % same as \cot
49.73 \def\arctg{\mathop{\operator@font arctg}\nolimits} % same as \arctan
49.74 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

49.75 \def \Prob{\mathop{\mathsf P\hskipOpt}\nolimits}

49.76 \def\Expect{\mathop{\mathsf E\hskipOpt}\nolimits}

49.77 \def\Variance{\mathop{\mathsf D\hskipOpt}\nolimits}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

49.78 \1df@finish{albanian}
49.79 (/code)

258

\captionscroatian

\datecroatian

\extrascroatian
\noextrascroatian

50 The Croatian language

The file croatian.dtx"® defines all the language definition macros for the Croatian
language.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

50.1 (*code)
50.2 \LdfInit{croatian}\captionscroatian

When this file is read as an option, i.e. by the \usepackage command,
croatian will be an ‘unknown’ language in which case we have to make it known.
So we check for the existence of \1@croatian to see whether we have to do some-
thing here.

50.3 \ifx\1l@croatian\@undefined
50.4 \@nopatterns{Croatian}
50.5 \adddialect\l@croatianO\fi

The next step consists of defining commands to switch to (and from) the Croa-
tian language.

The macro \captionscroatian defines all strings used in the four standard doc-
umentclasses provided with ITEX.

50.6 \addto\captionscroatian{’,

50.7 \def\prefacename{Predgovor}
50.8 \def\refname{Literaturaly,

50.9 \def\abstractname{Sa\v{z}etakl}}
50.10 \def\bibname{Bibliografijal}y,
50.11 \def\chaptername{Poglavljel}y,
50.12 \def\appendixname{Dodatak},
50.13 \def\contentsname{Sadr\v{z}aj}%
50.14 \def\listfigurename{Popis slikal}’
50.15 \def\listtablename{Popis tablicalj,
50.16 \def\indexname{Indeks}%

50.17 \def\figurename{Slikal}%

50.18 \def\tablename{Tablical’

50.19 \def\partname{Dio}},

50.20 \def\enclname{Prilozil}}

50.21 \def\ccname{Kopijel}%

50.22 \def\headtoname{Primal}

50.23 \def\pagename{Stranicalj,

50.24 \def\seename{Vidjetil}%

50.25 \def\alsoname{Vidjeti i}}

50.26 \def\proofname{Dokaz},

50.27 \def\glossaryname{Kazalol}/,

50.28 Y

The macro \datecroatian redefines the command \today to produce Croatian
dates.

50.29 \def\datecroatian{,
50.30 \def\today{\number\day. \ifcase\month\or

50.31 sije\v{cInja\or velja\v{c}e\or o\v{z}ujka\or travnjalor svibnja\or
50.32 lipnja\or srpnjal\or kolovoza\or rujnalor listopadalor studenog\or
50.33 prosinca\fi \space \number\year.}}

The macro \extrascroatian will perform all the extra definitions needed for the
Croatian language. The macro \noextrascroatian is used to cancel the actions of
\extrascroatian. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

58The file described in this section has version number v1.31 and was last revised on 2005/03/29.
A contribution was made by Alan Pai¢ (paica@cernvm.cern.ch).

259

50.34 \addto\extrascroatian{}
50.35 \addto\noextrascroatian{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

50.36 \1df@finish{croatian}
50.37 {/code)

260

51 The Czech Language

The file czech.dtx”® defines all the language definition macros for the Czech
language. It is meant as a replacement of CSITEX, the most-widely used standard
for typesetting Czech documents in TEX.

51.1 Usage

For this language \frenchspacing is set.

Additionally, two macros are defined \q and \w for easy access to two accents
are defined.

The command \q is used with the letters (t, d, 1, and L) and adds a > to them
to simulate a ‘hook’ that should be there. The result looks like . The command
\w is used to put the ring-accent which appears in angstrgm over the letters u and
U.

51.2 Compatibility

Great care has been taken to ensure backward compatibility with CSITEX. In
particular, documents which load this file with \usepackage{czech} should pro-
duce identical output with no modifications to the source. Additionally, all the
CSETEX options are recognized:

IL2, T1, OT1
These options set the default font encoding. Please note that their
use is deprecated. You should use the fontenc package to select font
encoding.

split, nosplit
These options control whether hyphenated words are automatically split
according to Czech typesetting rules. With the split option “je-li” is
hyphenated as “je-/-1i”. The nosplit option disables this behavior.

The use of this option is strongly discouraged, as it breaks too many
common things—hyphens cannot be used in labels, negative arguments
to TEX primitives will not work in horizontal mode (use \minus as a
workaround), and there are a few other peculiarities with using this
mode.

nocaptions
This option was used in CSETEX to set up Czech/Slovak typesetting
rules, but leave the original captions and dates. The recommended way
to achieve this is to use English as the main language of the document
and use the environment otherlanguage* for Czech text.

olduv There are two version of \uv. The older one allows the use of \verb
inside the quotes but breaks any respective kerning with the quotes (like
that in Cg fonts). The newer one honors the kerning in the font but does
not allow \verb inside the quotes.

The new version is used by default in IZTEX 2¢ and the old version is
used with plain TEX. You may use olduv to override the default in

IATEX 2¢.

cstex This option was used to include the commands \csprimeson and
\csprimesoff. Since these commands are always included now, it has
been removed and the empty definition lasts for compatibility.

59The file described in this section has version number v3.la and was last revised on
2008/07/06. It was rewritten by Petr Tesarik (babel@tesarici.cz).

261

51.3 Implementation

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.
51.1 (*code)
51.2 \Ldf Init\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, czech
might be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@czech to see whether we have to do something here.

51.3 \ifx\1@czech\Qundefined
51.4 \@nopatterns{Czech}
51.5 \adddialect\1@czechO\fi

We need to define these macros early in the process.

51.6 \def\cs@iltw@{IL2}
51.7 \newif\ifcs@splithyphens
51.8 \cs@splithyphensfalse

If Babel is not loaded, we provide compatibility with CSIATEX. However, if
macro \@ifpackageloaded is not defined, we assume to be loaded from plain
and provide compatibility with csplain. Of course, this does not work well with
ETEX 2.09, but I doubt anyone will ever want to use this file with I TEX 2.09.

51.9 \ifx\Q@ifpackageloaded\@undefined

51.10 \let\cs@compat@plain\relax

51.11 \message{csplain compatibility mode}

51.12 \else

51.13 \@ifpackageloaded{babel}{}{/

51.14 \let\cs@compat@latex\relax

51.15 \message{cslatex compatibility model}}

51.16 \fi

51.17 \ifx\cs@compat@latex\relax

51.18 \ProvidesPackage{czech}[2008/07/06 v3.la CSTeX Czech stylel

Declare CSETEX options (see also the descriptions on page 261).

51.19 \DeclareOption{IL2}{\def\encodingdefault{IL2}}

51.20 \DeclareOption {T1}{\def\encodingdefault {T1}}

51.21 \DeclareOption{0T1}{\def\encodingdefault{0T1}}

51.22 \DeclareOption{nosplit}{\cs@splithyphensfalse}

51.23 \DeclareOption{split}{\cs@splithyphenstrue}

51.24 \DeclareOption{nocaptions}{\let\cs@nocaptions=\relax}
51.25 \DeclareOption{olduv}{\let\cs@olduv=\relax}

51.26 \DeclareOption{cstex}{\relax}

Make IL2 encoding the default. This can be overriden with the other font
encoding options.
51.27 \ExecuteOptions{\cs@iltw@}
Now, process the user-supplied options.
51.28 \ProcessOptions
Standard I#TEX 2¢ does not include the IL2 encoding in the format. The
encoding can be loaded later using the fontenc package, but CSITEX included IL2

by default. This means existing documents for CSETEX do not load that package,
so load the encoding ourselves in compatibility mode.

51.29 \ifx\encodingdefault\cs@iltw@
51.30 \input il2enc.def
51.31 \fi

Restore the definition of \CurrentOption, clobbered by processing the options.

51.32 \def\CurrentOption{czech}
51.33 \fi

262

\captionsczech

\dateczech

\extrasczech
\noextrasczech

\sq
\dq

The next step consists of defining commands to switch to (and from) the Czech
language.

The macro \captionsczech defines all strings used in the four standard docu-
mentclasses provided with ETEX.

51.34 \@namedef{captions\CurrentOption}{/
51.35 \def\prefacename{P\v{r}edmluvalj,
51.36 \def\refname{Referencel/,

51.37 \def\abstractname{Abstrakt}’

51.38 \def\bibname{Literatural},

51.39 \def\chaptername{Kapitola}/,

51.40 \def\appendixname{P\v{r}\’{\i}lohalj,
51.41 \def\contentsname{Obsahl}/

51.42 \def\listfigurename{Seznam obr\’azk\r{u}}/
51.43 \def\listtablename{Seznam tabulek},
51.44 \def\indexname{Rejst\v{r}\’{\i}k}/
51.45 \def\figurename{Obr\’azek}/,

51.46 \def\tablename{Tabulkal,

51.47 \def\partname{\v{C}\’ast}/

51.48 \def\enclname{P\v{r}\’{\i}lohal}/,
51.49 \def\ccname{Na v\v{e}dom\’{\i}}},
51.50 \def\headtoname{Komu},

51.51 \def\pagename{Stranal}’

51.52 \def\seename{viz}%

51.53 \def\alsoname{viz tak\’el}}

51.54 \def\proofname{D\r{u}kaz}/,

51.55 \def\glossaryname{Slovn\’{\i}k}%
51.56 }%h

The macro \dateczech redefines the command \today to produce Czech dates.

CSETEX allows line break between the day and the month. However, this
behavior has been agreed upon to be a bad thing by the csTeX mailing list in
December 2005 and has not been adopted.

51.57 \@namedef{date\CurrentOption}{/
51.58 \def\today{\number\day. \ifcase\month\or ledna\or \’unora\or

51.59 b\v{r}tezna\or dubnalor kv\v{e}tnalor \v{cl}ervnal\or \v{clervence\or
51.60 srpna\or z\’a\v{r}\’\i\or \v{r}\’{\i}jna\or listopadu\or
51.61 prosince\fi \space\number\yearl}}

The macro \extrasczech will perform all the extra definitions needed for the
Czech language. The macro \noextrasczech is used to cancel the actions of
\extrasczech. This means saving the meaning of two one-letter control sequences
before defining them.
For Czech texts \frenchspacing should be in effect. Language group for

shorthands is also set here.

51.62 \expandafter\addto\csname extras\CurrentOption\endcsname{7

51.63 \bbl@frenchspacing

51.64 \languageshorthands{czech}}

51.65 \expandafter\addto\csname noextras\CurrentOption\endcsname{’

51.66 \bbl@nonfrenchspacing}

51.67 \expandafter\addto\csname extras\CurrentOption\endcsname{7
51.68 \babel@save\q\let\q\v
51.69 \babel@save\w\let\w\r}

We save the original single and double quote characters in \sq and \dq to make
them available later.

51.70 \begingroup\catcode‘\"=12\catcode‘\’=12

51.71 \def\x{\endgroup

51.72 \def\sq{’}

51.73 \def\dq{"}}

51.74 \x

263

\v

\lcaron
\Lcaron

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin.

51.75 \providehyphenmins{\CurrentOption}{\tw@\throe}

ITEX’s normal \v accent places a caron over the letter that follows it (6). This is
not what we want for the letters d, t, 1 and L; for those the accent should change
shape. This is acheived by the following.

51.76 \AtBeginDocument{%

51.77 \DeclareTextCompositeCommand{\v}{0T1}{t}{/%

51.78 t\kern-.23em\raise.24ex\hbox{’}}

51.79 \DeclareTextCompositeCommand{\v}{0T1}{d}{%

51.80 d\kern-.13em\raise.24ex\hbox{’}}

51.81 \DeclareTextCompositeCommand{\v}{0T1}{1}{\1lcaron{}}
51.82 \DeclareTextCompositeCommand{\v}{0T1}{L}{\Lcaron{}}}

For the letters 1 and L we want to disinguish between normal fonts and monospaced
fonts.
51.83 \def\lcaron{’

51.84 \setboxO0\hbox{M}\setbox\tw@\hbox{i}},
51.85 \ifdim\wd0>\wd\tw@\relax

51.86 1\kern-.13em\raise.24ex\hbox{’}\kern-.11em}
51.87 \else
51.88 1\raise.45ex\hbox to\z@{\kern-.35em ’\hss}
51.89 \fi}

51.90 \def\Lcaron{%

51.91 \setboxO\hbox{M}\setbox\tw@\hbox{i}},

51.92 \ifdim\wdO0>\wd\tw@\relax

51.93 L\raise.24ex\hbox to\z@{\kern-.28em’\hss}/,
51.94 \else

51.95 L\raise.45ex\hbox to\z@{\kern-.40em ’\hss})
51.96 \fi}

Initialize active quotes. CSIYTEX provides a way of converting English-style
quotes into Czech-style ones. Both single and double quotes are affected, i.e.
“‘text’’ is converted to something like ,,text‘¢ and ‘text’ is converted to
,text¢. This conversion can be switched on and off with \csprimeson and
\csprimesoff.%0

These quotes present various troubles, e.g. the kerning is broken, apostrophes
are converted to closing single quote, some primitives are broken (most notably
the \catcode ‘\(char) syntax will not work any more), and writing them to .aux
files cannot be handled correctly. For these reasons, these commands are only
available in CSETEX compatibility mode.

51.97 \1ifx\cs@compat@latex\relax
51.98 \let\cs@ltxprim@s\prim@s
51.99 \def\csprimeson{/,

51.100 \catcode‘\“\active \catcode‘\’\active \let\prim@s\bbl@prim@s}
51.101 \def\csprimesoff{},
51.102 \catcode‘\‘12 \catcode‘\’12 \let\prim@s\cs@ltxprim@s}

51.103 \begingroup\catcode‘\‘\active
51.104 \def\x{\endgroup

51.105 \def ‘{\futurelet\cs@next\cs@openquote}
51.106 \def\cs@openquote{’

51.107 \ifx‘\cs@next \expandafter\cs@opendq
51.108 \else \expandafter\clq

51.109 \£i}%

51.110 F\x

51.111 \begingroup\catcode‘\’\active
51.112 \def\x{\endgroup

60By the way, the names of these macros are misleading, because the handling of primes in
math mode is rather marginal, the most important thing being the handling of quotes. ..

264

51.113 \def ’{\textormath{\futurelet\cs@next\cs@closequote}

51.114 {~\bgroup\prim@s}}
51.115 \def\cs@closequote{’

51.116 \ifx’\cs@next \expandafter\cs@closedq
51.117 \else \expandafter\crq

51.118 \£i}%

51.119 F\x

51.120 \def\cs@opendq{\clgq\let\cs@next= }
51.121 \def\cs@closedg{\crqg\let\cs@next= }

The way I recommend for typesetting quotes in Czech documents is to use
shorthands similar to those used in German.

51.122 \else
51.123 \initiate@active@char{"}
51.124 \expandafter\addto\csname extras\CurrentOption\endcsname{7

51.125 \bbl@activate{"}}
51.126 \expandafter\addto\csname noextras\CurrentOption\endcsname{’,
51.127 \bbl@deactivate{"}}

51.128 \declare@shorthand{czech}{" ‘}{\clqq}

51.129 \declare@shorthand{czech}{"’}{\crqq}

51.130 \declare@shorthand{czech}{"<}{\flqq}

51.131 \declare@shorthand{czech}{">}{\frqq}

51.132 \declare@shorthand{czech}{"=}{\cs@splithyphen}
51.133 \fi

\clgq This is the CS opening quote, which is similar to the German quote (\glqq) but

the kerning is different.

For the OT1 encoding, the quote is constructed from the right double quote
(i.e. the “Opening quotes” character) by moving it down to the baseline and
shifting it to the right, or to the left if italic correction is positive.

For T1, the “German Opening quotes” is used. It is moved to the right and
the total width is enlarged. This is done in an attempt to minimize the difference
between the OT1 and T1 versions.

51.134 \ProvideTextCommand{\c1qq}{0T1}{%

51.135 \set@low@box{\textquotedblright}y,

51.136 \setbox\@ne=\hbox{1\/}\dimen\@ne=\wd\@ne

51.137 \setbox\@ne=\hbox{l}\advance\dimen\@ne-\wd\Gne

51.138 \leavevmode

51.139 \ifdim\dimen\@ne>\z@\kern-.lem\box\z@\kern.lem

51.140 \else\kern. lem\box\z@\kern-.1lem\fi\allowhyphens}

51.141 \ProvideTextCommand{\clqq}{T1}

51.142 {\kern.lem\quotedblbase\kern-.0158em\relax}

51.143 \ProvideTextCommandDefault{\clqq}{\UseTextSymbol{0T1}\clqq}

\crqq For OT1, the CS closing quote is basically the same as \grqq, only the
\textormath macro is not used, because as far as I know, \grqq does not work
in math mode anyway.

For T1, the character is slightly wider and shifted to the right to match its
OT1 counterpart.

51.144 \ProvideTextCommand{\crqq}{0T1}

51.145 {\save@sf@q{\nobreak\kern-.07em\textquotedblleft\kern.07em}}
51.146 \ProvideTextCommand{\crqq}{T1}

51.147 {\save@sf@q{\nobreak\kern.0OB6em\textquotedblleft\kern.024em}}
51.148 \ProvideTextCommandDefault{\crqq}{\UseTextSymbol{0T1}\crqq}

\clq Single CS quotes are similar to double quotes (see the discussion above).

\er6L149\ProvideTextCommand{\clq}{UTl}
51.150 {\set@low@box{\textquoteright}\box\z@\kern.04em\allowhyphens}
51.151 \ProvideTextCommand{\c1q}{T1}
51.152 {\quotesinglbase\kern-.0428em\relax}
51.153 \ProvideTextCommandDefault{\clq}{\UseTextSymbol{0T1}\clq}

265

51.154 \ProvideTextCommand{\crq}{0T1}

51.155 {\save@sf@q{\nobreak\textquoteleft\kern.17em}}

51.156 \ProvideTextCommand{\crq}{T1}

51.157 {\save@sf@q{\nobreak\textquoteleft\kern.17em}}

51.158 \ProvideTextCommandDefault{\crq}{\UseTextSymbol{0T1}\crq}

\uv There are two versions of \uv. The older one opens a group and uses \aftergroup

to typeset the closing quotes. This version allows using \verb inside the quotes,
because the enclosed text is not passed as an argument, but unfortunately it breaks
any kerning with the quotes. Although the kerning with the opening quote could
be fixed, the kerning with the closing quote cannot.

The newer version is defined as a command with one parameter. It preserves
kerning but since the quoted text is passed as an argument, it cannot contain
\verb.

Decide which version of \uv should be used. For sake of compatibility, we use
the older version with plain TEX and the newer version with ITEX 2¢.

51.159 \ifx\cs@compat@plain\@undefined\else\let\cs@olduv=\relax\fi
51.160 \ifx\cs@olduv\@undefined

51.161 \DeclareRobustCommand\uv[1]{{\leavevmode\clqq#1\crqq}t}
51.162 \else

51.163 \DeclareRobustCommand\uv{\bgroup\aftergroup\closequotes

51.164 \leavevmode\clqqg\let\cs@next=1}
51.165 \def\closequotes{\unskip\crqq\relax}
51.166 \fi

\cs@wordlen Declare a counter to hold the length of the word after the hyphen.

51.167 \newcount\cs@wordlen

\cs@hyphen Store the original hyphen in a macro. Ditto for the ligatures.

\cs@endashy, ; ¢, \begingroup\catcode‘\-12

\cs@emdashs; 169 \def\x{\endgroup
51.170 \def\cs@hyphen{-}
51.171 \def\cs@endash{--}
51.172 \def\cs@emdash{---}

\cs@boxhyphen Provide a non-breakable hyphen to be used when a compound word is too short

to be split, i.e. the second part is shorter than \righthyphenmin.
51.173 \def\cs@boxhyphen{\hbox{-}}

\cs@splithyphen The macro \cs@splithyphen inserts a split hyphen, while allowing both parts of

the compound word to be hyphenated at other places too.
51.174 \def\cs@splithyphen{\kern\z@

51.175 \discretionary{-}{\char\hyphenchar\the\font}{-}\nobreak\hskip\z@}

51.176 }\x

- To minimize the effects of activating the hyphen character, the active definition
expands to the non-active character in all cases where hyphenation cannot occur,
i.e. if not typesetting (check \protect), not in horizontal mode, or in inner

horizontal mode.

51.177 \initiate@active@char{-}
51.178 \declare@shorthand{czech}{-}{%
51.179 \ifx\protect\@typeset@protect

51.180 \ifhmode

51.181 \ifinner

51.182 \bbl@afterelse\bbl@afterelse\bbl@afterelse\cs@hyphen
51.183 \else

51.184 \bbl@afterfi\bbl@afterelse\bblO@afterelse\cs@firsthyphen
51.185 \fi

51.186 \else

51.187 \bbl@afterfi\bbl@afterelse\cs@hyphen

266

51.188 \fi
51.189 \else
51.190 \bbl@afterfi\cs@hyphen
51.191 \fi}

\cs@firsthyphen If we encounter a hyphen, check whether it is followed by a second or a third
\cs@firsthyph@n hyphen and if so, insert the corresponding ligature.
\cs@secondhyphen If we don’t find a hyphen, the token found will be placed in \cs@token for
\cs@secondhyphen further analysis, and it will also stay in the input.

51.192 \begingroup\catcode‘\-\active

51.193 \def\x{\endgroup

51.194 \def\cs@firsthyphen{\futurelet\cs@token\cs@firsthyphOn}
51.195 \def\cs@firsthyph@n{’

51.196 \ifx -\cs@token

51.197 \bbl@afterelse\cs@secondhyphen
51.198 \else

51.199 \bbl@afterfi\cs@checkhyphen
51.200 \fi}

51.201 \def\cs@secondhyphen ##1{J

51.202 \futurelet\cs@token\cs@secondhyph@n}
51.203 \def\cs@secondhyph@n{’

51.204 \ifx -\cs@token

51.205 \bbl@afterelse\cs@emdash\@gobble
51.206 \else

51.207 \bbl@afterfi\cs@endash

51.208 \fi}

51.209 F\x

\cs@checkhyphen Check that hyphenation is enabled, and if so, start analyzing the rest of the
word, i.e. initialize \cs@word and \cs@wordlen and start processing input with
\cs@scanword.

51.210 \def \cs@checkhyphen{%
51.211 \ifnum\expandafter\hyphenchar\the\font="*\-

51.212 \def\cs@word{}\cs@wordlen\z@
51.213 \bbl@afterelse\cs@scanword
51.214 \else

51.215 \cs@hyphen

51.216 \fi}

\cs@scanword Each token is first analyzed with \cs@scanword, which expands the token and
\cs@continuescan passes the first token of the result to \cs@gett@ken. If the expanded token is not
\cs@gettoken identical to the unexpanded one, presume that it might be expanded further and
\cs@gett@ken pass it back to \cs@scanword until you get an unexpandable token. Then analyze
it in \cs@examinetoken.
The \cs@continuescan macro does the same thing as \cs@scanword, but it
does not require the first token to be in \cs@token already.

51.217 \def\cs@scanword{\let\cs@lasttoken= \cs@token\expandafter\cs@gettoken}
51.218 \def\cs@continuescan{\let\cs@lasttoken\@Qundefined\expandafter\cs@gettoken}
51.219 \def\cs@gettoken{\futurelet\csQtoken\cs@gett@ken}

51.220 \def\cs@gett@ken{y

51.221 \ifx\cs@token\cs@lasttoken \def\cs@next{\cs@examinetokenl}y,

51.222 \else \def\cs@next{\cs@scanword}

51.223 \fi \cs@next}

cs@examinetoken Examine the token in \cs@token:

e If it is a letter (catcode 11) or other (catcode 12), add it to \cs@word with
\cs@addparam.

e If it is the \char primitive, add it with \cs@expandchar.

e If the token starts or ends a group, ignore it with \cs@ignoretoken.

267

e Otherwise analyze the meaning of the token with \cs@checkchardef to
detect primitives defined with \chardef.

51.224 \def\cs@examinetoken{’,
51.225 \ifcat A\cs@token

51.226 \def\cs@next{\cs@addparam}’

51.227 \else\ifcat O\cs@token

51.228 \def\cs@next{\cs@addparam},

51.229 \else\ifx\char\cs@token

51.230 \def\cs@next{\afterassignment\cs@expandchar\let\cs@token= }J
51.231 \else\ifx\bgroup\cs@token

51.232 \def\cs@next{\cs@ignoretoken\bgroupl}y

51.233 \else\ifx\egroup\cs@token

51.234 \def\cs@next{\cs@ignoretoken\egroup}ty,

51.235 \else\ifx\begingroup\cs@token

51.236 \def\cs@next{\cs@ignoretoken\begingroupl}

51.237 \else\ifx\endgroup\cs@token

51.238 \def\cs@next{\cs@ignoretoken\endgroup}

51.239 \else

51.240 \def\cs@next{\expandafter\expandafter\expandafter\cs@checkchardef
51.241 \expandafter\meaning\expandafter\cs@token\string\char\end}/

51.242 \fi\fi\fi\fi\fi\fi\fi\cs@next}

\cs@checkchardef Check the meaning of a token and if it is a primitive defined with \chardef, pass
it to \\@examinechar as if it were a \char sequence. Otherwise, there are no
more word characters, so do the final actions in \cs@nosplit.

51.243 \expandafter\def\expandafter\cs@checkchardef
51.244 \expandafter#\expandafterl\string\char#2\end{/,

51.245 \def\cs@token{#1}%

51.246 \ifx\cs@token\Qempty

51.247 \def\cs@next{\afterassignment\cs@examinechar\let\cs@token= 1}
51.248 \else

51.249 \def\cs@next{\cs@nosplit}}

51.250 \fi \cs@next}

\cs@ignoretoken Add a token to \cs@word but do not update the \cs@wordlen counter. This is
mainly useful for group starting and ending primitives, which need to be preserved,
but do not affect the word boundary.

51.251 \def\cs@ignoretoken#1{%
51.252 \edef\cs@word{\cs@word#1}}
51.253 \afterassignment\cs@continuescan\let\cs@token= }

cs@addparam Add a token to \cs@word and check its lccode. Note that this macro can only be
used for tokens which can be passed as a parameter.

51.254 \def\cs@addparam#1{Y
51.255 \edef\cs@word{\cs@word#1}/,
51.256 \cs@checkcode{\lccode‘#1}}

\cs@expandchar Add a \char sequence to \cs@word and check its lccode. The charcode is first
\cs@examinechar parsed in \cs@expandchar and then the resulting \chardef-defined sequence is
analyzed in \cs@examinechar.

51.257 \def\cs@expandchar{\afterassignment\cs@examinechar\chardef\cs@token=}
51.258 \def \cs@examinechar{%

51.259 \edef\cs@word{\cs@word\char\the\cs@token\spacel}’

51.260 \cs@checkcode{\lccode\cs@token}}

\cs@checkcode Check the lccode of a character. If it is zero, it does not count to the current
word, so finish it with \cs@nosplit. Otherwise update the \cs@wordlen counter
and go on scanning the word with \cs@continuescan. When enough characters
are gathered in \cs@word to allow word break, insert the split hyphen and finish.

268

51.261 \def\cs@checkcode#1{}
51.262 \ifnumO=#1

51.263 \def\cs@next{\cs@nosplitl}y,

51.264 \else

51.265 \advance\cs@wordlen\@ne

51.266 \ifnum\righthyphenmin>\the\cs@wordlen
51.267 \def\cs@next{\cs@continuescan},
51.268 \else

51.269 \cs@splithyphen

51.270 \def\cs@next{\cs@word}}

51.271 \fi

51.272 \fi \cs@next}

\cs@nosplit Insert a non-breakable hyphen followed by the saved word.
51.273 \def\cs@nosplit{\cs@boxhyphen\cs@word}

\cs@hyphen The \minus sequence can be used where the active hyphen does not work, e.g. in
arguments to TEX primitives in outer horizontal mode.

51.274 \let\minus\cs@hyphen

\standardhyphens These macros control whether split hyphens are allowed in Czech and/or Slovak
\splithyphens texts. You may use them in any language, but the split hyphen is only activated
for Czech and Slovak.

51.275 \def \standardhyphens{\cs@splithyphensfalse\cs@deactivatehyphens}
51.276 \def\splithyphens{\cs@splithyphenstrue\cs@activatehyphens}

\cs@splitattr Now we declare the split language attribute. This is similar to the split package
option of cslatex, but it only affects Czech, not Slovak.

51.277 \def\cs@splitattr{\babel@save\ifcs@splithyphens\splithyphens}
51.278 \bbl@declare@ttribute{czech}{split}{/
51.279 \addto\extrasczech{\cs@splitattr}}

\cs@activatehyphens These macros are defined as \relax by default to prevent activating/deactivating
\cs@deactivatehyphens the hyphen character. They are redefined when the language is switched to
Czech/Slovak. At that moment the hyphen is also activated if split hyphens were
requested with \splithyphens.
When the language is de-activated, de-activate the hyphen and restore the
bogus definitions of these macros.

51.280 \let\cs@activatehyphens\relax

51.281 \let\cs@deactivatehyphens\relax

51.282 \expandafter\addto\csname extras\CurrentOption\endcsname{7,
51.283 \def\cs@activatehyphens{\bbl@activate{-}}%

51.284 \def\cs@deactivatehyphens{\bbl@deactivate{-}1}%

51.285 \ifcs@splithyphens\cs@activatehyphens\fi}

51.286 \expandafter\addto\csname noextras\CurrentOption\endcsname{’,
51.287 \cs@deactivatehyphens

51.288 \let\cs@activatehyphens\relax

51.289 \let\cs@deactivatehyphens\relax}

\cs@looseness One of the most common situations where an active hyphen will not work properly
\looseness is the \looseness primitive. Change its definition so that it deactivates the
hyphen if needed.

51.290 \let\cs@looseness\looseness

51.291 \def\looseness{%

51.292 \ifcs@splithyphens

51.293 \cs@deactivatehyphens\afterassignment\csQactivatehyphens \fi
51.294 \cs@looseness}

269

\cs@selectlanguage
\cs@main@language

\cs@tempdisable

Specifying the nocaptions option means that captions and dates are not rede-
fined by default, but they can be switched on later with \captionsczech and/or
\dateczech.

We mimic this behavior by redefining \selectlanguage. This macro is called
once at the beginning of the document to set the main language of the document.
If this is \cs@main@language, it disables the macros for setting captions and date.
In any case, it restores the original definition of \selectlanguage and expands
it.

The definition of \selectlanguage can be shared between Czech and Slovak;
the actual language is stored in \cs@main@language.

51.295 \ifx\cs@nocaptions\Qundefined\else
51.296 \edef\cs@main@language{\CurrentOption}
51.297 \ifx\cs@origselect\Qundefined

51.298 \let\cs@origselect=\selectlanguage
51.299 \def\selectlanguage{’
51.300 \let\selectlanguage\cs@origselect
51.301 \ifx\bbl@main@language\cs@main@language
51.302 \expandafter\cs@selectlanguage
51.303 \else
51.304 \expandafter\selectlanguage
51.305 \fi}
51.306 \def\cs@selectlanguage{’
51.307 \cs@tempdisable{captionsl}y
51.308 \cs@tempdisable{date}’
51.309 \selectlanguage}
\cs@tempdisable disables a language setup macro temporarily, i.e. the macro
with the name of (#1)\bbl@main@language just restores the original definition
and purges the saved macro from memory.
51.310 \def\cs@tempdisable#1{}
51.311 \def\Q@tempa{cs@#1}/,
51.312 \def\@tempb{#1\bbl@main@language}’
51.313 \expandafter\expandafter\expandafter\let
51.314 \expandafter \csname\expandafter \Q@tempa \expandafter\endcsname
51.315 \csname \@tempb \endcsname
51.316 \expandafter\edef\csname \@tempb \endcsname{},
51.317 \let \expandafter\noexpand \csname \Q@tempb \endcsname
51.318 \expandafter\noexpand \csname \@tempa \endcsname
51.319 \let \expandafter\noexpand\csname \Q@tempa \endcsname
51.320 \noexpand\Qundefined}}
These macros are not needed, once the initialization is over.
51.321 \@onlypreamble\cs@main@language
51.322 \@onlypreamble\cs@origselect
51.323 \@onlypreamble\cs@selectlanguage
51.324 \@onlypreamble\cs@tempdisable
51.325 \fi
51.326 \fi

The encoding of mathematical fonts should be changed to IL2. This allows to
use accented letter in some font families. Besides, documents do not use CM fonts
if there are equivalents in CS-fonts, so there is no need to have both bitmaps of
CM-font and CS-font.

\@font@warning and \@font@info are temporarily redefined to avoid annoy-
ing font warnings.

51.327 \ifx\cs@compat@plain\Qundefined

51.328 \ifx\cs@check@enc\@undefined\else

51.329 \def\cs@check@encq{

51.330 \ifx\encodingdefault\cs@iltw@

51.331 \let\cs@warn\@font@warning \let\@font@warning\@gobble

270

51.332 \let\cs@info\@font@info \let\@font@info\@gobble
51.333 \SetSymbolFont{operators}{normal}{\cs@iltw@}{cmr}{m}{n}
51.334 \SetSymbolFont{operators}{bold}{\cs@iltw@}{cmr}{bx}{n}
51.335 \SetMathAlphabet\mathbf{normal}{\cs@iltw@}{cmr}{bx}{n}
51.336 \SetMathAlphabet\mathit{normal}{\cs@iltw@}{cmr}{m}{it}
51.337 \SetMathAlphabet\mathrm{normal}{\cs@iltw@}{cmr}{m}{n}
51.338 \SetMathAlphabet\mathsf{normal}{\cs@iltw@}{cmss}{m}{n}
51.339 \SetMathAlphabet\mathtt{normal}{\cs@iltw@}{cmtt}{m}{n}
51.340 \SetMathAlphabet\mathbf{bold}{\cs@iltw@}{cmr}{bx}{n}
51.341 \SetMathAlphabet\mathit{bold}{\cs@iltw@}{cmr}{bx}{it}
51.342 \SetMathAlphabet\mathrm{bold}{\cs@iltw@}{cmr}{bx}{n}
51.343 \SetMathAlphabet\mathsf{bold}{\cs@iltw@}{cmss}{bx}{n}
51.344 \SetMathAlphabet\mathtt{bold}{\cs@iltw@}{cmtt}{m}{n}
51.345 \let\@font@warning\cs@warn \let\cs@warn\Qundefined
51.346 \let\@font@info\cs@info \let\cs@info\Qundefined
51.347 \fi

51.348 \let\cs@check@enc\@undefined}

51.349 \AtBeginDocument{\cs@check@enc}

51.350 \fi

51.351 \fi

cs@undoiltw@ The thing is that KTEX 2z core only supports the T1 encoding and does not
bother changing the uc/lc/sfcodes when encoding is switched. :(However, the IL2
encoding does change these codes, so if encoding is switched back from IL2, we
must also undo the effect of this change to be compatible with IXTEX 2¢. OK, this
is not the right™ solution but it works. Cheers to Petr Ol3ak.

51.352 \def\cs@undoiltw@{%

51.353
51.354
51.355
51.356
51.357
51.358
51.359
51.360
51.361
51.362
51.363
51.364

\uccode158=208 \lccode158=158 \sfcodel158=1000
\sfcode159=1000

\uccode165=133 \lccodel165=165 \sfcodel65=1000
\uccode169=137 \lccodel1l69=169 \sfcodel69=1000
\uccode171=139 \lccodel171=171 \sfcodel71=1000
\uccode174=142 \lccodel74=174 \sfcodel74=1000
\uccode181=149

\uccode185=153

\uccode187=155

\uccode190=0 \lccodel90=0

\uccode254=222 \lccode254=254 \sfcode254=1000
\uccode255=223 \lccode255=255 \sfcode255=1000}

@@enc@update Redefine the IATEX 2¢ internal function \@@enc@update to change the encodings
correctly.

51.365 \ifx\cs@enc@update\Qundefined
51.366 \1fx\@@enc@update\Qundefined\else

51.367
51.368
51.369
51.370
51.371
51.372
51.373
51.374
51.375
51.376
51.377
51.378
51.379
51.380

\let\cs@enc@update\@Qenc@update
\def\@@enc@update{\ifx\cf@encoding\cs@iltw@\cs@undoiltw@\fi
\cs@enc@update
\expandafter\ifnum\csname 1@\languagename\endcsname=\the\language
\expandafter\ifx
\csname l@\languagename:\f@encoding\endcsname\relax
\else
\expandafter\expandafter\expandafter\let
\expandafter\csname
\expandafter l\expandafter @\expandafter\languagename
\expandafter\endcsname\csname 1l@\languagename:\f@encoding\endcsname
\fi
\language=\csname 1@\languagename\endcsname\relax

\fi}

51.381 \fi\fi

The macro \1df@finish takes care of looking for a configuration file, setting

the main language to be switched on at \begin{document} and resetting the

271

category code of @ to its original value.

51.382 \1df@f inish\CurrentOption
51.383 (/code)

272

\captionspolish

52 The Polish language

The file polish.dtx%! defines all the language-specific macros for the Polish lan-
guage.

For this language the character " is made active. In table 25 an overview is
given of its purpose.

"a or \aob, for tailed-a (like g)

"A or \Aob, for tailed-A (like A)

"e or \eob, for tailed-e (like ¢)

"E or \Eob, for tailed-E (like E)

"c or \’c, for accented ¢ (like ¢), same with uppercase
letters and n,o,s

"1 or \1pb{}, for | with stroke (like 1)

"L or \Lpb{}, for L with stroke (like L)

"r or \zkb{}, for pointed z (like), cf. pronounciation

"R or \Zkb{}, for pointed Z (like Z)

"z or \’z, for accented z

"Z or \’Z, for accented Z

"| disable ligature at this position.

"- an explicit hyphen sign, allowing hyphenation in the
rest of the word.

" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"¢ for German left double quotes (looks like ,,).

"> for German right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 25: The extra definitions made by polish.sty

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

52.1 (*code)
52.2 \LdfInit{polish}\captionspolish

When this file is read as an option, i.e. by the \usepackage command, polish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@polish to see whether we have to do something here.

52.3 \1ifx\1@polish\@undefined
52.4 \@nopatterns{Polish}
52.5 \adddialect\1@polishO\fi

The next step consists of defining commands to switch to (and from) the Polish
language.

The macro \captionspolish defines all strings used in the four standard docu-
mentclasses provided with IATEX.

52.6 \addto\captionspolish{

52.7 \def\prefacename{Przedmowa}y,

52.8 \def\refname{Literaturaly,

52.9 \def\abstractname{Streszczeniel},

52.10 \def\bibname{Bibliografia}/

52.11 \def\chaptername{Rozdzia\1l}J,

52.12 \def\appendixname{Dodatek},

52.13 \def\contentsname{Spis tre\’scil}¥%
52.14 \def\listfigurename{Spis rysunk\’owl}}
52.15 \def\listtablename{Spis tabliclj,

61The file described in this section has version number v1.21 and was last revised on 2005/03/31.

273

\datepolish

\extraspolish
\noextraspolish

\sob

52.16 \def\indexname{Indeks}%

52.17 \def\figurename{Rysunek}/,

52.18 \def\tablename{Tablical/,

52.19 \def\partname{Cz\eob{}\’s\’c}/
52.20 \def\enclname{Za\l\aob{}cznik}}
52.21 \def\ccname{Kopie:1}%

52.22 \def\headtoname{Do}%

52.23 \def\pagename{Stronalj,

52.24 \def\seename{Por\’ownaj}/

52.25 \def\alsoname{Por\’ownaj tak\.zel}J,
52.26 \def\proofname{Dow\’od}/,

52.27 \def\glossaryname{Glossaryl}), <-- Needs translation
52.28 }

The macro \datepolish redefines the command \today to produce Polish dates.

52.29 \def\datepolish{J

52.30 \def\today{\number\day~\ifcase\month\or

52.31 stycznialor lutego\or marca\or kwietnialor maja\or czerwcalor lipca\or
52.32 sierpnialor wrze\’snia\or pa\’zdziernikalor listopadalor grudnia\fi
52.33 \space\number\year}

52.34 }

The macro \extraspolish will perform all the extra definitions needed for the
Polish language. The macro \noextraspolish is used to cancel the actions of
\extraspolish.

For Polish the " character is made active. This is done once, later on its
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the polish group of shorthands should
be used.

52.35 \initiate@active@char{"}
52.36 \addto\extraspolish{\languageshorthands{polish}}
52.37 \addto\extraspolish{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
52.38 \addto\noextraspolish{\bbl@deactivate{"}}

The code above is necessary because we need an extra active character. This
character is then used as indicated in table 25.

If you have problems at the end of a word with a linebreak, use the other version
without hyphenation tricks. Some TeX wizard may produce a better solution with
forcasting another token to decide whether the character after the double quote is
the last in a word. Do it and let us know.

In Polish texts some letters get special diacritical marks. Leszek Holenderski
designed the following code to position the diacritics correctly for every font in
every size. These macros need a few extra dimension variables.

52.39 \newdimen\pl@left
52.40 \newdimen\pl@down
52.41 \newdimen\pl@right
52.42 \newdimen\pl@temp

The macro \sob is used to put the ‘ogonek’ in the right place.

52.43 \def \sob#1#2#3#4#5{)parameters: letter and fractions hl,ho,vl,vo
52.44 \setboxO\hbox{#1}\setbox1\hbox{$_\mathchar’454$}\setbox2\hbox{p}/
52.45 \pl@right=#2\wd0 \advance\pl@right by-#3\wdl

52.46 \pl@down=#5\ht1 \advance\pl@down by-#4\htO

52.47 \pl@left=\pl@right \advance\pl@left by\wd1l

52.48 \pl@temp=-\pl@down \advance\pl@temp by\dp2 \dpl=\pl@temp

52.49 \leavevmode

52.50 \kern\pl@right\lower\pl@down\boxi\kern-\pl@left #1}

274

\aob The ogonek is placed with the letters ‘a’; ‘A’; ‘¢’, and ‘E’.

\Aob 52 51 \DeclareTextCommand{\aob}{0T1}{\sob a{.66}{.203{0}{.90}}
\eob 52.52 \DeclareTextCommand{\Aob}{0T1}{\sob A{.80}{.50}{0}{.90}}
\Eob 52.53 \DeclareTextCommand{\eob}{0T1}{\sob e{.50}{.35}{0}{.93}}

52.54 \DeclareTextCommand{\Eob}{0T1}{\sob E{.60}{.35}{0}{.90}}

For the 'new’ T1 encoding we can provide simpler definitions.

52.55 \DeclareTextCommand{\aob}{T1}{\k a}
52.56 \DeclareTextCommand{\Aob}{T1}{\k A}
52.57 \DeclareTextCommand{\eob}{T1}{\k e}
52.58 \DeclareTextCommand{\Eob}{T1}{\k E}

Construct the characters by default from the OT1 encoding.

52.59 \ProvideTextCommandDefault{\aob}{\UseTextSymbol{0T1}{\aobl}}
52.60 \ProvideTextCommandDefault{\Aob}{\UseTextSymbol{0T1}{\Aob}}
52.61 \ProvideTextCommandDefault{\eob}{\UseTextSymbol{0T1}{\eob}}
52.62 \ProvideTextCommandDefault{\Eob}{\UseTextSymbol{0T1}{\Eobl}}

\spb The macro \spb is used to put the ‘poprzeczka’ in the right place.

52.63 \def \spb#1#2#3#4#5{%

52.64 \setboxO\hbox{#1}\setbox1\hbox{\char’023}/,

52.65 \plO@right=#2\wd0 \advance\pl@right by-#3\wdl

52.66 \pl@down=#5\ht1 \advance\pl@down by-#4\htO

52.67 \pl@left=\pl@right \advance\pl@left by\wdl

52.68 \htl=\pl@down \dpl=-\pl@down

52.69 \leavevmode

52.70 \kern\pl@right\lower\pl@down\boxi\kern-\pl@left #1}

\skb The macro \skb is used to put the ‘kropka’ in the right place.

52.71 \def \skb#1#2#3#4#5{),

52.72 \setboxO\hbox{#1}\setbox1\hbox{\char’056}/

52.73 \pl@right=#2\wd0 \advance\pl@right by-#3\wdl

52.74 \pl@down=#5\ht1 \advance\pl@down by-#4\htO

52.75 \pl@left=\pl@right \advance\pl@left by\wdl

52.76 \leavevmode

52.77 \kern\pl@right\lower\pl@down\box1l\kern-\pl@left #1}

\textpl For the ‘poprzeczka’ and the ‘kropka’ in text fonts we don’t need any special
coding, but we can (almost) use what is already available.

52.78 \def\textpl{%

52.79 \def\1lpb{\plll}%
52.80 \def\Lpb{\pLLL}}
52.81 \def\zkb{\.z}/
52.82 \def\Zkb{\.Z}}

Initially we assume that typesetting is done with text fonts.
52.83 \textpl

52.84 \1et\111=\1 \let\LLL=\L
52.85 \def\p111{\111}
52.86 \def\pLLL{\LLL}

\telepl But for the ‘teletype’ font in ‘OT1’ encoding we have to take some special actions,
involving the macros defined above.

52.87 \def\telepl{/

52.88 \def\1lpb{\spb 1{.45}{.5}{.4}{.8}}%
52.89 \def\Lpb{\spb L{.23}{.5}{.4}{.8}}%
52.90 \def\zkb{\skb z{.5}{.5}{1.2}{0}}%
52.91 \def\Zkb{\skb Z{.5}{.5}{1.1}{0}}}

To activate these codes the font changing commands as they are defined in
IXTEX are modified. The same is done for plain TEX’s font changing commands.

275

When \selectfont is undefined the current format is spposed to be either
plain (based) or KTEX 2.09.

52.92 \ifx\selectfont\@undefined

52.93 \ifx\prm\@undefined \addto\rm{\textpl}\else \addto\prm{\textpl}\fi
52.94 \ifx\pit\@undefined \addto\it{\textpl}\else \addto\pit{\textpl}\fi
52.95 \ifx\pbf\@undefined \addto\bf{\textpl}\else \addto\pbf{\textpl}\fi
52.96 \ifx\psl\@undefined \addto\sl{\textpll}\else \addto\psl{\textpl}\fi
52.97 \ifx\psf\@undefined \else \addto\psf{\textpl}\fi
52.98 \ifx\psc\@undefined \else \addto\psc{\textpl}\fi
52.99 \ifx\ptt\Qundefined \addto\tt{\telepl}\else \addto\ptt{\telepl}\fi
52.100 \else

When \selectfont exists we assume IXTEX 2¢.

52.101 \expandafter\addto\csname selectfont \endcsname{’

52.102 \csname\f@encoding @pl\endcsname}

52.103 \fi
Currently we support the OT1 and T1 encodings. For T1 we don’t have to make a
difference between typewriter fonts and other fonts, they all have the same glyphs.

52.104 \expandafter\let\csname T1@pl\endcsname\textpl
For OT1 we need to check the current font family, stored in \f@family. Un-
fortunately we need a hack as \ttdefault is defined as a \long macro, while
\f@family is not.

52.105 \expandafter\def\csname 0T1@pl\endcsname{’,

52.106 \long\edef\curr@family{\f@family}%
52.107 \ifx\curr@family\ttdefault

52.108 \telepl
52.109 \else
52.110 \textpl

52.111 \fi}

\dqg We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ".

52.112 \begingroup \catcode‘\"12
52.113 \def\x{\endgroup

52.114 \def\dq{"}}

52.115 \x

Now we can define the doublequote macros for diacritics,

52.116 \declare@shorthand{polish}{"a}{\textormath{\aob}{\ddot al}}
52.117 \declare@shorthand{polish}{"A}{\textormath{\Aob}{\ddot A}}
52.118 \declare@shorthand{polish}{"c}{\textormath{\’c}{\acute c}}
52.119 \declare@shorthand{polish}{"C}{\textormath{\’C}{\acute C}}
52.120 \declare@shorthand{polish}{"e}{\textormath{\eob}{\ddot el}}
52.121 \declare@shorthand{polish}{"E}{\textormath{\Eob}{\ddot E}}
52.122 \declare@shorthand{polish}{"1}{\textormath{\1pb}{\ddot 13}}
52.123 \declare@shorthand{polish}{"L}{\textormath{\Lpb}{\ddot L1}}
52.124 \declare@shorthand{polish}{"n}{\textormath{\’n}{\acute n}}
52.125 \declare@shorthand{polish}{"N}{\textormath{\’N}{\acute N}}
52.126 \declare@shorthand{polish}{"o}{\textormath{\’o}{\acute o}}
52.127 \declare@shorthand{polish}{"0}{\textormath{\’0}{\acute 0}}
52.128 \declare@shorthand{polish}{"s}{\textormath{\’s}{\acute s}}
52.129 \declare@shorthand{polish}{"S}{\textormath{\’S}{\acute S}}

\polishrz The command \polishrz defines the shorthands "r, "z and "x to produce pointed
\polishzx 1z, accented z and "x. This is the default as these shorthands were defined by this
language definition file for quite some time.

52.130 \newcommand*{\polishrz}{J

52.131 \declare@shorthand{polish}{"r}{\textormath{\zkb}{\ddot r}1}%

52.132 \declare@shorthand{polish}{"R}{\textormath{\Zkb}{\ddot R}}%

52.133 \declare@shorthand{polish}{"z}{\textormath{\’z}{\acute z}}%

52.134 \declare@shorthand{polish}{"Z}{\textormath{\’Z}{\acute Z}1}/

276

52.135 \declare@shorthand{polish}{"x}{\dq x}%
52.136 \declare@shorthand{polish}{"X}{\dq X1}%
52.137 }

52.138 \polishrz

The command \polishzx switches to a different set of shorthands, "z, "x and "r
to produce pointed z, accented z and "r; a different shorthand notation also in
use.

52.139 \newcommand*{\polishzx}{/

52.140 \declare@shorthand{polish}{"z}{\textormath{\zkb}{\ddot z}1}%
52.141 \declare@shorthand{polish}{"Z}{\textormath{\Zkb}{\ddot Z}}%
52.142 \declare@shorthand{polish}{"x}{\textormath{\’z}{\acute x}}%
52.143 \declare@shorthand{polish}{"X}{\textormath{\’Z}{\acute X}1}%
52.144 \declare@shorthand{polish}{"r}{\dq r}/%

52.145 \declare@shorthand{polish}{"R}{\dq R}’

52.146 }

Then we define access to two forms of quotation marks, similar to the german
and french quotation marks.
52.147 \declare@shorthand{polish}{" ‘}{%
52.148 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}
52.149 \declare@shorthand{polish}{"’}{%
52.150 \textormath{\textquotedblright}{\mbox{\textquotedblright}}}
52.151 \declare@shorthand{polish}{"<}{/%
52.152 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}
52.153 \declare@shorthand{polish}{">}{%
52.154 \textormath{\guillemotright}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behavew a little different from \-.

52.155 \declare@shorthand{polish}{"-}{\nobreak-\bbl@allowhyphens}

52.156 \declare@shorthand{polish}{""}{\hskip\z@skip}
And we want to have a shorthand for disabling a ligature.

52.157 \declare@shorthand{polish}{" [}{%
52.158 \textormath{\discretionary{-}{}{\kern.03em}}{}}

\mdgon All that’s left to do now is to define a couple of commands for reasons of compat-
\mdqoff ibility with polish.tex.

52.159 \def\mdqon{\shorthandon{"}}
52.160 \def\mdqoff{\shorthandoff{"}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

52.161 \1df@finish{polish}
52.162 (/code)

277

\captionsserbian

53 The Serbocroatian language

The file serbian.dtx%? defines all the language definition macros for the Serbian
language, typeset in a latin script. In a future version support for typesetting in
a cyrillic script may be added.

For this language the character " is made active. In table 26 an overview is
given of its purpose. One of the reasons for this is that in the Serbian language
some special characters are used.

"¢ \"c, also implemented for the lowercase and upper-
case s and z.

"d \dj, also implemented for "D

"~ an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"| disable ligature at this position

" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"¢ for Serbian left double quotes (looks like ,,).

"> for Serbian right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 26: The extra definitions made by serbian.ldf

Apart from defining shorthands we need to make sure taht the first paragraph
of each section is intended. Furthermore the following new math operators are
defined (\tg, \ctg, \arctg, \arcctg, \sh, \ch, \th, \cth, \arsh, \arch, \arth,
\arcth, \Prob, \Expect, \Variance).

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

53.1 (*code)
53.2 \LdfInit{serbian}\captionsserbian

When this file is read as an option, i.e. by the \usepackage command, serbian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@serbian to see whether we have to do something
here.

53.3 \ifx\1l@serbian\@undefined
53.4 \@nopatterns{Serbian}
53.5 \adddialect\1l@serbianO\fi

The next step consists of defining commands to switch to (and from) the Ser-
bocroatian language.

The macro \captionsserbian defines all strings used in the four standard docu-
mentclasses provided with ETEX.

53.6 \addto\captionsserbian{¥

53.7 \def\prefacename{Predgovor}/

53.8 \def\refname{Literaturaly,

53.9 \def\abstractname{Sa\v{z}etakl}}
53.10 \def\bibname{Bibliografijal}}
53.11 \def\chaptername{Glaval/,

53.12 \def\appendixname{Dodatak},
53.13 \def\contentsname{Sadr\v{z}aj}/
53.14 \def\listfigurename{Slike}%
53.15 \def\listtablename{Tabelel},
53.16 \def\indexname{Indeks}/,

62The file described in this section has version number v1.0d and was last revised on
2005/03/31. A contribution was made by Dejan Muhamedagi¢ (dejan@yunix.com).

278

\dateserbian

\extrasserbian
\noextrasserbian

53.17
53.18
53.19
53.20
53.21
53.22
53.23
53.24
53.25
53.26
53.27
53.28

\def\figurename{Slikal}
\def\tablename{Tabela}}

\def \partname{Deo}/,
\def\enclname{Prilozil}},
\def\ccname{Kopijel}’
\def\headtoname{Primaly,
\def\pagename{Stranal}’,
\def\seename{Vidi}},
\def\alsoname{Vidi tako\dj e}’
\def\proofname{Dokaz}’,
\def\glossaryname{Glossary}}), <-- Needs translation

Yh

The macro \dateserbian redefines the command \today to produce Serbocroat-
ian dates.
53.29 \def\dateserbian{¥

53.30
53.31
53.32
53.33

\def\today{\number\day .~\ifcase\month\or
januar\or februar\or mart\or aprillor maj\or
junilor julilor avgust\or septembar\or oktobar\or novembar\or
decembar\fi \space \number\year}}

The macro \extrasserbian will perform all the extra definitions needed for the
Serbocroatian language. The macro \noextrasserbian is used to cancel the ac-
tions of \extrasserbian.

For Serbian the " character is made active. This is done once, later on its

definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the serbian group of shorthands should
be used.

53.34 \initiate@active@char{"}
53.35 \addto\extrasserbian{\languageshorthands{serbian}}
53.36 \addto\extrasserbian{\bbl@activate{"}}

Don’t forget to turn the shorthands off again.
53.37 \addto\noextrasserbian{\bbl@deactivate{"}}

First we define shorthands to facilitate the occurence of letters such as ¢.

53.38 \declare@shorthand{serbian}{"c}{\textormath{\v c}{\check c}}
53.39 \declare@shorthand{serbian}{"d}{\textormath{\dj}{\dj}}%%

53.40 \declare@shorthand{serbian}{"s}{\textormath{\v s}{\check s}}
53.41 \declare@shorthand{serbian}{"z}{\textormath{\v z}{\check z}}
53.42 \declare@shorthand{serbian}{"C}{\textormath{\v C}{\check C}}
53.43 \declare@shorthand{serbian}{"D}{\textormath{\DJ}{\DJ}}%%

53.44 \declare@shorthand{serbian}{"S}{\textormath{\v S}{\check S}}
53.45 \declare@shorthand{serbian}{"Z}{\textormath{\v Z}{\check Z}}

Then we define access to two forms of quotation marks, similar to the german

and french quotation marks.
53.46 \declare@shorthand{serbian}{" ‘}{%

53.47

\textormath{\quotedblbase{}}{\mbox{\quotedblbase}}}

53.48 \declare@shorthand{serbian}{"’}{%

53.49

\textormath{\textquotedblleft{}}{\mbox{\textquotedblleft}}}

53.50 \declare@shorthand{serbian}{"<}{%

53.51

\textormath{\guillemotleft{}}{\mbox{\guillemotleft}}}

53.52 \declare@shorthand{serbian}{">}{%

53.53

\textormath{\guillemotright{}}{\mbox{\guillemotright}}}

then we define two shorthands to be able to specify hyphenation breakpoints that
behave a little different from \-.

53.54 \declare@shorthand{serbian}{"-}{\nobreak-\bbl@allowhyphens}
53.55 \declare@shorthand{serbian}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.
53.56 \declare@shorthand{serbian}{" |}{%

53.57

\textormath{\discretionary{-}{}{\kern.03em}}{}}

279

\bblefrenchindent In Serbian the first paragraph of each section should be indented. Add this code
\bbl@nonfrenchindent only in BTEX.
53.58 \ifx\fmtname plain \else

53.59 \let\@aifORI\@afterindentfalse
53.60 \def\bbl@frenchindent{\let\@afterindentfalse\@afterindenttrue

53.61 \@afterindenttrue}
53.62 \def\bbl@nonfrenchindent{\let\@afterindentfalse\@aifORI
53.63 \@afterindentfalse}

53.64 \addto\extrasserbian{\bbl@frenchindent}
53.65 \addto\noextrasserbian{\bbl@nonfrenchindent}
53.66 \fi

\mathserbian Some math functions in Serbian math books have other names: e.g. sinh in
Serbian is written as sh etc. So we define a number of new math operators.

53.67 \def\sh{\mathop{\operator@font sh}\nolimits} % same as \sinh
53.68 \def\ch{\mathop{\operator@font ch}\nolimits} % same as \cosh
53.69 \def\th{\mathop{\operator@font th}\nolimits} % same as \tanh
53.70 \def\cth{\mathop{\operator@font cth}\nolimits} % same as \coth
53.71 \def\arsh{\mathop{\operator@font arsh}\nolimits}

53.72 \def\arch{\mathop{\operator@font arch}\nolimits}

53.73 \def\arth{\mathop{\operator@font arth}\nolimits}

53.74 \def\arcth{\mathop{\operator@font arcth}\nolimits}

53.75 \def\tg{\mathop{\operator@font tg}\nolimits} % same as \tan
53.76 \def\ctg{\mathop{\operator@font ctgl\nolimits} % same as \cot
53.77 \def\arctg{\mathop{\operator@font arctg}\nolimits} J same as \arctan
53.78 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

53.79 \def\Prob{\mathop{\mathsf P\hskipOpt}\nolimits}

53.80 \def\Expect{\mathop{\mathsf E\hskipOpt}\nolimits}

53.81 \def\Variance{\mathop{\mathsf D\hskipOpt}\nolimits}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

53.82 \1df@finish{serbian}
53.83 (/code)

280

54 The Slovak language

The file slovak.dtx%® defines all the language-specific macros for the Slovak lan-
guage.

For this language the macro \q is defined. It was used with the letters (t, 4, 1,
and L) and adds a ? to them to simulate a ‘hook’ that should be there. The result
looks like t. Since the the T1 font encoding has the corresponding characters it
is mapped to \v. Therefore we recommend using T1 font encoding. If you don’t
want to use this encoding, please, feel free to redefine \q in your file. I think babel
will honour this ;-).

For this language the characters ", > and ~ are made active. In table 27 an
overview is given of its purpose. Also the vertical placement of the umlaut can be
controlled this way.

"a \"a, also implemented for the other lowercase and
uppercase vowels.

~d \q d, also implemented for 1, t and L.

¢ \v c, also implemented for C, D, N, n, T, Z and z.

o \~o, also implemented for O.

’a \’a, also implemented for the other lowercase and
uppercase 1, r, y and vowels.

"| disable ligature at this position.

"~ an explicit hyphen sign, allowing hyphenation in the
rest of the word.

" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"~ for a compound word mark without a breakpoint.

"= for a compound word mark with a breakpoint, allow-
ing hyphenation in the composing words.

"¢ for German left double quotes (looks like ,,).

"> for German right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 27: The extra definitions made by slovak.1ldf

The quotes in table 27 can also be typeset by using the commands in table 28.

\glqq for German left double quotes (looks like ,,).
\grqq for German right double quotes (looks like *).
\glq for German left single quotes (looks like ,).
\grq for German right single quotes (looks like ‘).
\flqq for French left double quotes (similar to <<).
\frqq for French right double quotes (similar to >>).
\flq for (French) left single quotes (similar to <).
\frq for (French) right single quotes (similar to >).
\dq the original quotes character (").

\sq the original single quote (?).

Table 28: More commands which produce quotes, defined by slovak.1ldf

63The file described in this section has version number v3.la and was last revised on
2008/07/06. It was originally written by Jana Chlebikova (chlebik@euromath.dk) and modi-
fied by Tobias Schlemmer (Tobias.Schlemmer@web.de). It was then rewritten by Petr Tesarik
(babel@tesarici.cz).

281

54.1 Compatibility

Great care has been taken to ensure backward compatibility with CSIATEX. In par-
ticular, documents which load this file with \usepackage{slovak} should produce
identical output with no modifications to the source. Additionally, all the CSIATEX
options are recognized:

IL2, T1, OT1
These options set the default font encoding. Please note that their
use is deprecated. You should use the fontenc package to select font
encoding.

split, nosplit
These options control whether hyphenated words are automatically split
according to Slovak typesetting rules. With the split option “je-li” is
hyphenated as “je-/-1i”. The nosplit option disables this behavior.

The use of this option is strongly discouraged, as it breaks too many
common things—hyphens cannot be used in labels, negative arguments
to TEX primitives will not work in horizontal mode (use \minus as a
workaround), and there are a few other peculiarities with using this
mode.

nocaptions
This option was used in CSETEX to set up Czech/Slovak typesetting
rules, but leave the original captions and dates. The recommended way
to achieve this is to use English as the main language of the document
and use the environment otherlanguage* for Czech text.

olduv There are two version of \uv. The older one allows the use of \verb
inside the quotes but breaks any respective kerning with the quotes (like
that in Cg fonts). The newer one honors the kerning in the font but does
not allow \verb inside the quotes.

The new version is used by default in IATEX 2¢ and the old version is
used with plain TEX. You may use olduv to override the default in

ATEX 2.

cstex This option was used to include the commands \csprimeson and
\csprimesoff. Since these commands are always included now, it has
been removed and the empty definition lasts for compatibility.

54.2 Implementation

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.
54.1 (*code)
54.2 \LdfInit\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, slovak
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@slovak to see whether we have to do something here.

54.3 \ifx\1@slovak\@undefined
54.4 \@nopatterns{Slovak}
54.5 \adddialect\1@slovakO\fi

We need to define these macros early in the process.

54.6 \def\cs@iltw@{IL2}
54.7 \newif\ifcs@splithyphens
54.8 \cs@splithyphensfalse

282

If Babel is not loaded, we provide compatibility with CSIATEX. However, if
macro \@ifpackageloaded is not defined, we assume to be loaded from plain

and provide compatibility with csplain. Of course, this does not work well with
IXTEX 2.09, but I doubt anyone will ever want to use this file with I TEX 2.09.

54.9 \ifx\@ifpackageloaded\@undefined

54.10 \let\cs@compat@plain\relax

54.11 \message{csplain compatibility mode}
54.12 \else

54.13 \@ifpackageloaded{babel}{}{/

54.14 \let\cs@compat@latex\relax
54.15 \message{cslatex compatibility mode}}
54.16 \fi

54.17 \ifx\cs@compat@latex\relax
54.18 \ProvidesPackage{slovak}[2008/07/06 v3.la CSTeX Slovak style]

Declare CSETEX options (see also the descriptions on page 282).

54.19 \DeclareOption{IL2}{\def\encodingdefault{IL2}}

54.20 \DeclareOption {T1}{\def\encodingdefault {T1}}

54.21 \DeclareOption{0T1}{\def\encodingdefault{0T1}}

54.22 \DeclareOption{nosplit}{\cs@splithyphensfalse}

54.23 \DeclareOption{split}{\cs@splithyphenstrue}

54.24 \DeclareOption{nocaptions}{\let\cs@nocaptions=\relax}
54.25 \DeclareOption{olduv}{\let\cs@olduv=\relax}

54.26 \DeclareOption{cstex}{\relax}

Make IL2 encoding the default. This can be overriden with the other font
encoding options.

54.27 \ExecuteOptions{\cs@iltw@}
Now, process the user-supplied options.
54.28 \ProcessOptions

Standard I#TEX 2¢ does not include the IL2 encoding in the format. The
encoding can be loaded later using the fontenc package, but CSIATEX included IL2
by default. This means existing documents for CSTEX do not load that package,
so load the encoding ourselves in compatibility mode.

54.29 \ifx\encodingdefault\cs@iltw@
54.30 \input il2enc.def
54.31 \fi

Restore the definition of \CurrentOption, clobbered by processing the options.

54.32 \def\CurrentOption{slovak}
54.33 \fi

The next step consists of defining commands to switch to (and from) the Slovak
language.

\captionsslovak The macro \captionsslovak defines all strings used in the four standard docu-
mentclasses provided with ITEX.

54.34 \@namedef{captions\CurrentOption}{%
54.35 \def\prefacename{Predhovor}

54.36 \def\refname{Literat\’ural}’

54.37 \def\abstractname{Abstraktl}’

54.38 \def\bibname{Literat\’ural}lj,

54.39 \def\chaptername{Kapitola}/,

54.40 \def\appendixname{Dodatok}/

54.41 \def\contentsname{Obsah},

54.42 \def\listfigurename{Zoznam obr\’azkov}}
54.43 \def\listtablename{Zoznam tabuliekl}7
54.44 \def\indexname{Register},

54.45 \def\figurename{Obr.}J

54.46 \def\tablename{Tabu\v{l}kal}’

54.47 \def\partname{\v{Cl}as\v{t}}%

283

54.48 \def\enclname{Pr\’{\i}lohal}’,
54.49 \def\ccname{cc.}%

54.50 \def\headtoname{Prel}},

54.51 \def\pagename{Str.}/

54.52 \def\seename{vi\v{d}}/

54.53 \def\alsoname{vi\v{d} tie\v{z}}%
54.54 \def\proofname{D\~okaz}/,

54.55 \def\glossaryname{Slovn\’{\i}k}J,
54.56 }h

\dateslovak The macro \dateslovak redefines the command \today to produce Slovak dates.

54.57 \@namedef{date\CurrentOption}{%
54.58 \def\today{\number\day. \ifcase\month\or

54.59 janu\’aral\or febru\’aral\or marcalor apr\’{\i}la\or m\’ajal\or
54.60 j\’una\or j\’ulalor augusta\or septembra\or okt\’obra\or
54.61 novembra\or decembra\fi

54.62 \space \number\yearl}}

\extrasslovak The macro \extrasslovak will perform all the extra definitions needed for the
\noextrasslovak Slovak language. The macro \noextrasslovak is used to cancel the actions of
\extrasslovak.
For Slovak texts \frenchspacing should be in effect. Language group for
shorthands is also set here.

54.63 \expandafter\addto\csname extras\CurrentOption\endcsname{’,
54.64 \bbl@frenchspacing

54.65 \languageshorthands{slovakl}}

54.66 \expandafter\addto\csname noextras\CurrentOption\endcsname{’
54.67 \bbl@nonfrenchspacing}

54.68 \expandafter\addto\csname extras\CurrentOption\endcsname{7
54.69 \babel@save\q\let\q\v}

For Slovak three characters are used to define shorthands, they need to be
made active.

54.70 \ifx\cs@compat@latex\relax\else

54.71 \initiate®@active@char{~}

54.72 \addto\extrasslovak{\bbl@activate{~}}

54.73 \addto\noextrasslovak{\bbl@deactivate{~}}

54.74 \initiate®@active@char{"}

54.75 \addto\extrasslovak{\bbl@activate{"}\umlautlow}

54.76 \addto\noextrasslovak{\bbl@deactivate{"}\umlauthigh}
54.77 \initiate@active@char{’}

54.78 \@ifpackagewith{babel}{activeacute}{/

54.79 \addto\extrasslovak{\bbl@activate{’}}

54.80 \addto\noextrasslovak{\bbl@deactivate{’}}/
54.81 Hr

54.82 \fi

\sq We save the original single and double quote characters in \sq and \dq to make
\dq them available later. The math accent \" can now be typed as ".

54.83 \begingroup\catcode‘\"=12\catcode‘\’=12

54.84 \def\x{\endgroup

54.85 \def\sq{’}

54.86 \def\dq{"}}

54.87 \x

The slovak hyphenation patterns should be used with \1efthyphenmin set to 2
and \righthyphenmin set to 3.

54.88 \providehyphenmins{\CurrentOption}{\tw@\throe}

284

In order to prevent problems with the active ~ we add a shorthand on system
level which expands to a ‘normal ~.

54.89 \ifx\cs@compat@latex\relax\else
54.90 \declare@shorthand{system}{~}{\csname normal@char\string~\endcsname}

Now we can define the doublequote macros: the umlauts,

54.91 \declare@shorthand{slovak}{"a}{\textormath{\"{a}\allowhyphens}{\ddot al}}
54.92 \declare@shorthand{slovak}{"o}{\textormath{\"{o}\allowhyphens}{\ddot ol}}
54.93 \declare@shorthand{slovak}{"u}{\textormath{\"{u}\allowhyphens}{\ddot ul}}
54.94 \declare@shorthand{slovak}{"A}{\textormath{\"{A}\allowhyphens}{\ddot A}}
54.95 \declare@shorthand{slovak}{"0}{\textormath{\"{0}\allowhyphens}{\ddot 0}}
54.96 \declare@shorthand{slovak}{"U}{\textormath{\"{U}\allowhyphens}{\ddot U}}

tremas,

54.97 \declare@shorthand{slovak}{"e}{\textormath{\"{e}\allowhyphens}{\ddot el}}
54.98 \declare@shorthand{slovak}{"E}{\textormath{\"{E}\allowhyphens}{\ddot E}}
54.99 \declare@shorthand{slovak}{"i}{\textormath{\"{\i}\allowhyphens}y,

54.100 {\ddot\imath}}

54.101 \declare@shorthand{slovak}{"I}{\textormath{\"{I}\allowhyphens}{\ddot I}}

other slovak characters

54.102 \declare@shorthand{slovak}{"c}{\textormath{\v{c}\allowhyphens}{\check{c}}}
54.103 \declare@shorthand{slovak}{~d}{\textormath{\q{d}\allowhyphens}{\check{d}}}
54.104 \declare@shorthand{slovak}{"1}{\textormath{\q{1}\allowhyphens}{\check{1}}}
54.105 \declare@shorthand{slovak}{ "n}{\textormath{\v{n}\allowhyphens}{\check{n}}}
54.106 \declare@shorthand{slovak}{~o}{\textormath{\~{o}\allowhyphens}{\hat{o}}}

54.107 \declare@shorthand{slovak}{"s}{\textormath{\v{s}\allowhyphens}{\check{s}}}
54.108 \declare@shorthand{slovak}{"t}{\textormath{\q{t}\allowhyphens}{\check{t}}}
54.109 \declare@shorthand{slovak}{~z}{\textormath{\v{z}\allowhyphens}{\check{z}}}
54.110 \declare@shorthand{slovak}{"C}{\textormath{\v{C}\allowhyphens}{\check{C}}}
54.111 \declare@shorthand{slovak}{"D}{\textormath{\v{D}\allowhyphens}{\check{D}}}
54.112 \declare@shorthand{slovak}{"L}{\textormath{\q{L}\allowhyphens}{\check{L}}}
54.113 \declare@shorthand{slovak}{"N}{\textormath{\v{N}\allowhyphens}{\check{N}}}
54.114 \declare@shorthand{slovak}{"0}{\textormath{\~{0}\allowhyphens}{\hat{0}}}

54.115 \declare@shorthand{slovak}{~S}{\textormath{\v{S}\allowhyphens}{\check{S}}}
54.116 \declare@shorthand{slovak}{"T}{\textormath{\v{T}\allowhyphens}{\check{T}}}
54.117 \declare@shorthand{slovak}{~Z}{\textormath{\v{Z}\allowhyphens}{\check{Z}}}

acute accents,
54.118 \@ifpackagewith{babel}{activeacute}{/

54.119 \declare@shorthand{slovak}{’a}{\textormath{\’a\allowhyphens}{~{\prime}a}}
54.120 \declare@shorthand{slovak}{’e}{\textormath{\’e\allowhyphens}{~{\prime}e}}
54.121 \declare@shorthand{slovak}{’i}{\textormath{\’\i{}\allowhyphens}{~{\prime}i}}
54.122 \declare@shorthand{slovak}{’1}{\textormath{\’1\allowhyphens}{~{\prime}1}}
54.123 \declare@shorthand{slovak}{’o}{\textormath{\’o\allowhyphens}{~{\prime}o}}
54.124 \declare@shorthand{slovak}{’r}{\textormath{\’r\allowhyphens}{~{\prime}r}}
54.125 \declare@shorthand{slovak}{’u}{\textormath{\’u\allowhyphens}{~{\prime}u}}
54.126 \declare@shorthand{slovak}{’y}{\textormath{\’y\allowhyphens}{~{\prime}y}}
54.127 \declare@shorthand{slovak}{’A}{\textormath{\’A\allowhyphens}{~{\prime}A}}
54.128 \declare@shorthand{slovak}{’E}{\textormath{\’E\allowhyphens}{~{\prime}E}}
54.129 \declare@shorthand{slovak}{’I}{\textormath{\’I\allowhyphens}{~{\prime}I}}
54.130 \declare@shorthand{slovak}{’L}{\textormath{\’L\allowhyphens}{~{\prime}1}}
54.131 \declare@shorthand{slovak}{’0}{\textormath{\’0\allowhyphens}{~{\prime}0}}
54.132 \declare@shorthand{slovak}{’R}{\textormath{\’R\allowhyphens}{~{\prime}R}}
54.133 \declare@shorthand{slovak}{’U}{\textormath{\’U\allowhyphens}{~{\prime}U}}
54.134 \declare@shorthand{slovak}{’Y}{\textormath{\’Y\allowhyphens}{~{\prime}Y}}
54.135 \declare@shorthand{slovak}{’’}{/

54.136 \textormath{\textquotedblright}{\sp\bgroup\prim@s’}}

54.137 H?

54.138

and some additional commands:

54.139 \declare@shorthand{slovak}{"-}{\nobreak\-\bbl@allowhyphens}
54.140 \declare@shorthand{slovak}{"|}{/%

285

54.141 \textormath{\penalty\@M\discretionary{-}{}{\kern.03em}/

54.142 \bbl@allowhyphens}{}}

54.143 \declare@shorthand{slovak}{""}{\hskip\z@skip}

54.144 \declare@shorthand{slovak}{"~“}{\textormath{\leavevmode\hbox{-}}{-}}
54.145 \declare@shorthand{slovak}{"=}{\cs@splithyphen}

54.146 \fi

\v I¥TEX’s normal \v accent places a caron over the letter that follows it (6). This is
not what we want for the letters d, t, | and L; for those the accent should change
shape. This is acheived by the following.

54.147 \AtBeginDocument{/

54.148 \DeclareTextCompositeCommand{\v}{0T1}{t}{%

54.149 t\kern-.23em\raise.24ex\hbox{’}}

54.150 \DeclareTextCompositeCommand{\v}{0T1}{d}{%

54.151 d\kern-.13em\raise.24ex\hbox{’}}

54.152 \DeclareTextCompositeCommand{\v}{0T1}{1}{\1lcaron{}}
54.153 \DeclareTextCompositeCommand{\v}{0T1}{L}{\Lcaron{}}}

\lcaron For the letters 1 and L we want to disinguish between normal fonts and monospaced
\Lcaron fonts.

54.154 \def\lcaron{/

54.155 \setboxO\hbox{M}\setbox\tw@\hbox{i}/

54.156 \ifdim\wdO>\wd\tw@\relax

54.157 1\kern-.13em\raise.24ex\hbox{’}\kern-.11em}
54.158 \else

54.159 1\raise.45ex\hbox to\z@{\kern-.35em ’\hss}
54.160 \fi}

54.161 \def\Lcaron{}

54.162 \setbox0\hbox{M}\setbox\tw@\hbox{il}%

54.163 \ifdim\wd0>\wd\tw@\relax

54.164 L\raise.24ex\hbox to\z@{\kern-.28em’\hss}/,
54.165 \else

54.166 L\raise.45ex\hbox to\z@{\kern-.40em ’\hss})
54.167 \fi}

Initialize active quotes. CSETEX provides a way of converting English-style
quotes into Slovak-style ones. Both single and double quotes are affected, i.e.
“‘text’’ is converted to something like ,,text‘‘ and ‘text’ is converted to
,text¢. This conversion can be switched on and off with \csprimeson and
\csprimesoff.6*

These quotes present various troubles, e.g. the kerning is broken, apostrophes
are converted to closing single quote, some primitives are broken (most notably
the \catcode ‘\(char) syntax will not work any more), and writing them to .aux
files cannot be handled correctly. For these reasons, these commands are only
available in CSETEX compatibility mode.

54.168 \ifx\cs@compat@latex\relax
54.169 \let\cs@ltxprim@s\prim@s
54.170 \def\csprimeson{’,

54.171 \catcode‘‘\active \catcode‘’\active \let\prim@s\bbl@prim@s}
54.172 \def\csprimesoff{},
54.173 \catcode‘ ‘12 \catcode’12 \let\prim@s\cs@ltxprim@s}

54.174 \begingroup\catcode‘‘\active
54.175 \def\x{\endgroup

54.176 \def ‘{\futurelet\cs@next\cs@openquote}
54.177 \def\cs@openquote{’

54.178 \ifx‘\cs@next \expandafter\cs@opendq
54.179 \else \expandafter\clq

54.180 \fil}%

54.181 F\x

64By the way, the names of these macros are misleading, because the handling of primes in
math mode is rather marginal, the most important thing being the handling of quotes. ..

286

54.182 \begingroup\catcode‘’\active
54.183 \def\x{\endgroup

54.184 \def’{\textormath{\futurelet\cs@next\cs@closequote}
54.185 {~\bgroup\prim@s}}

54.186 \def\cs@closequote{%

54.187 \ifx’\cs@next \expandafter\cs@closedq

54.188 \else \expandafter\crq

54.189 \£i}

54.190 F\x

54.191 \def\cs@opendg{\clqg\let\cs@next= }
54.192 \def\cs@closedq{\crqq\let\csOnext= }

The way I recommend for typesetting quotes in Slovak documents is to use
shorthands similar to those used in German.

54.193 \else

54.194 \declare@shorthand{slovak}{"‘}{\clqq}
54.195 \declare@shorthand{slovak}{"’}{\crqq}
54.196 \declare@shorthand{slovak}{"<}{\flqq}
54.197 \declare@shorthand{slovak}{">}{\frqq}
54.198 \fi

\clgq This is the CS opening quote, which is similar to the German quote (\glqq) but

the kerning is different.

For the OT1 encoding, the quote is constructed from the right double quote
(i.e. the “Opening quotes” character) by moving it down to the baseline and
shifting it to the right, or to the left if italic correction is positive.

For T1, the “German Opening quotes” is used. It is moved to the right and
the total width is enlarged. This is done in an attempt to minimize the difference
between the OT1 and T1 versions.

54.199 \ProvideTextCommand{\clqq}{0T1}{}%

54.200 \set@low@box{\textquotedblrightl}y,

54.201 \setbox\@ne=\hbox{1\/}\dimen\@ne=\wd\@ne

54.202 \setbox\@ne=\hbox{1l}\advance\dimen\@ne-\wd\Gne

54.203 \leavevmode

54.204 \ifdim\dimen\@ne>\z@\kern-.lem\box\z@\kern.lem

54.205 \else\kern.lem\box\z@\kern-.lem\fi\allowhyphens}

54.206 \ProvideTextCommand{\clqq}{T1}

54.207 {\kern.lem\quotedblbase\kern-.0158em\relax}

54.208 \ProvideTextCommandDefault{\clqq}{\UseTextSymbol{0T1}\clqq}

\crqq For OT1, the CS closing quote is basically the same as \grqq, only the
\textormath macro is not used, because as far as I know, \grqq does not work
in math mode anyway.

For T1, the character is slightly wider and shifted to the right to match its
OT1 counterpart.

54.209 \ProvideTextCommand{\crqq}{0T1}

54.210 {\save@sf@q{\nobreak\kern-.07em\textquotedblleft\kern.07em}}
54.211 \ProvideTextCommand{\crqq}{T1}

54.212 {\save@sf@q{\nobreak\kern.O6em\textquotedblleft\kern.024em}}
54.213 \ProvideTextCommandDefault{\crqq}{\UseTextSymbol{0T1}\crqq}

\clg Single CS quotes are similar to double quotes (see the discussion above).

\Crds 914 \ProvideTextCommand{\c1q}{0T1}
54.215 {\set@low@box{\textquoteright}\box\z@\kern.04em\allowhyphens}
54.216 \ProvideTextCommand{\c1lq}{T1}
54.217 {\quotesinglbase\kern-.0428em\relax}
54.218 \ProvideTextCommandDefault{\clq}{\UseTextSymbol{0T1}\clq}
54.219 \ProvideTextCommand{\crq}{0T1}
54.220 {\save@sf@q{\nobreak\textquoteleft\kern.17em}}
54.221 \ProvideTextCommand{\crq}{T1}
54.222 {\save@sf@q{\nobreak\textquoteleft\kern.17em}}
54.223 \ProvideTextCommandDefault{\crq}{\UseTextSymbol{0T1}\crq}

287

\uv

There are two versions of \uv. The older one opens a group and uses \aftergroup
to typeset the closing quotes. This version allows using \verb inside the quotes,
because the enclosed text is not passed as an argument, but unfortunately it breaks
any kerning with the quotes. Although the kerning with the opening quote could
be fixed, the kerning with the closing quote cannot.

The newer version is defined as a command with one parameter. It preserves
kerning but since the quoted text is passed as an argument, it cannot contain
\verb.

Decide which version of \uv should be used. For sake of compatibility, we use
the older version with plain TEX and the newer version with BTEX 2¢.

54.224 \ifx\cs@compat@plain\@undefined\else\let\cs@olduv=\relax\fi
54.225 \ifx\cs@olduv\@undefined

54.226 \DeclareRobustCommand\uv[1]{{\leavevmode\clqq#1\crqq}t}
54.227 \else

54.228 \DeclareRobustCommand\uv{\bgroup\aftergroup\closequotes
54.229 \leavevmode\clqg\let\cs@next=1}

54.230 \def\closequotes{\unskip\crqq\relax}

54.231 \fi

\cs@wordlen

Declare a counter to hold the length of the word after the hyphen.

54.232 \newcount\cs@wordlen

\cs@hyphen
\cs@endash,

Store the original hyphen in a macro. Ditto for the ligatures.

54.233 \begingroup\catcode‘\-12

\cs@emdashs, 534 \def\x{\endgroup
54.235 \def\cs@hyphen{-}
54.236 \def\cs@endash{--}
54.237 \def\cs@emdash{---}

\cs@boxhyphen

Provide a non-breakable hyphen to be used when a compound word is too short
to be split, i.e. the second part is shorter than \righthyphenmin.

54.238 \def\cs@boxhyphen{\hbox{-}}

\cs@splithyphen

The macro \cs@splithyphen inserts a split hyphen, while allowing both parts of
the compound word to be hyphenated at other places too.

54.239 \def\cs@splithyphen{\kern\z@
54.240 \discretionary{-}{\char\hyphenchar\the\font}{-}\nobreak\hskip\z@}
54.241 F\x

To minimize the effects of activating the hyphen character, the active definition
expands to the non-active character in all cases where hyphenation cannot occur,
ie. if not typesetting (check \protect), not in horizontal mode, or in inner
horizontal mode.

54.242 \initiate@active@char{-}
54.243 \declare@shorthand{slovak}{-}{%
54.244 \ifx\protect\@typeset@protect

54.245 \ifhmode

54.246 \ifinner

54.247 \bbl@afterelse\bbl@afterelse\bbl@afterelse\cs@hyphen
54.248 \else

54.249 \bbl@afterfi\bbl@afterelse\bblQ@afterelse\cs@firsthyphen
54.250 \fi

54.251 \else

54.252 \bbl@afterfi\bbl@afterelse\cs@hyphen

54.253 \fi

54.254 \else

54.255 \bbl@afterfi\csGhyphen

54.256 \fi}

288

\cs@firsthyphen If we encounter a hyphen, check whether it is followed by a second or a third
\cs@firsthyphen hyphen and if so, insert the corresponding ligature.
\cs@secondhyphen If we don’t find a hyphen, the token found will be placed in \cs@token for
\cs@secondhyphen further analysis, and it will also stay in the input.

54.257 \begingroup\catcode‘\-\active

54.258 \def\x{\endgroup

54.259 \def\cs@firsthyphen{\futurelet\cs@token\cs@firsthyphOn}
54.260 \def\cs@firsthyph@n{’

54.261 \ifx -\cs@token

54.262 \bbl@afterelse\cs@secondhyphen
54.263 \else

54.264 \bbl@afterfi\cs@checkhyphen
54.265 \fi}

54.266 \def\cs@secondhyphen ##1{J,

54.267 \futurelet\cs@token\cs@secondhyph@n}
54.268 \def\cs@secondhyph@n{’

54.269 \ifx -\cs@token

54.270 \bbl@afterelse\cs@emdash\@gobble
54.271 \else

54.272 \bbl@afterfi\cs@endash

54.273 \fi}

54.274 F\x

\cs@checkhyphen Check that hyphenation is enabled, and if so, start analyzing the rest of the
word, i.e. initialize \cs@word and \cs@wordlen and start processing input with
\cs@scanword.

54.275 \def\cs@checkhyphen{/
54.276 \ifnum\expandafter\hyphenchar\the\font=‘\-

54.277 \def\cs@word{}\cs@wordlen\z@
54.278 \bbl@afterelse\cs@scanword
54.279 \else

54.280 \cs@hyphen

54.281 \fi}

\cs@scanword Fach token is first analyzed with \cs@scanword, which expands the token and
\cs@continuescan passes the first token of the result to \cs@gett@ken. If the expanded token is not
\cs@gettoken identical to the unexpanded one, presume that it might be expanded further and
\cs@gett@ken pass it back to \cs@scanword until you get an unexpandable token. Then analyze
it in \cs@examinetoken.
The \cs@continuescan macro does the same thing as \cs@scanword, but it
does not require the first token to be in \cs@token already.

54.282 \def\cs@scanword{\let\cs@lasttoken= \cs@token\expandafter\csQgettoken}
54.283 \def\cs@continuescan{\let\cs@lasttoken\@undefined\expandafter\cs@gettoken}
54.284 \def\cs@gettoken{\futurelet\cs@token\csOgett@ken}

54.285 \def\cs@gett@kend{’,

54.286 \ifx\cs@token\cs@lasttoken \def\cs@next{\cs@examinetokenl}y,

54.287 \else \def\cs@next{\cs@scanwordl}y,

54.288 \fi \cs@next}

cs@examinetoken Examine the token in \cs@token:

e If it is a letter (catcode 11) or other (catcode 12), add it to \cs@word with
\cs@addparam.

e If it is the \char primitive, add it with \cs@expandchar.
o If the token starts or ends a group, ignore it with \cs@ignoretoken.

e Otherwise analyze the meaning of the token with \cs@checkchardef to
detect primitives defined with \chardef.

289

54.289 \def\cs@examinetoken{’,
54.290 \ifcat A\cs@token

54.291 \def\cs@next{\cs@addparam}/

54.292 \else\ifcat O\cs@token

54.293 \def\cs@next{\cs@addparam}/,

54.294 \else\ifx\char\cs@token

54.295 \def\cs@next{\afterassignment\cs@expandchar\let\cs@token= 1}J
54.296 \else\ifx\bgroup\cs@token

54.297 \def\cs@next{\cs@ignoretoken\bgroupl}/

54.298 \else\ifx\egroup\cs@token

54.299 \def\cs@next{\cs@ignoretoken\egroup}y,

54.300 \else\ifx\begingroup\cs@token

54.301 \def\cs@next{\cs@ignoretoken\begingroupl}

54.302 \else\ifx\endgroup\cs@token

54.303 \def\cs@next{\cs@ignoretoken\endgroup}

54.304 \else

54.305 \def\cs@next{\expandafter\expandafter\expandafter\cs@checkchardef
54.306 \expandafter\meaning\expandafter\cs@token\string\char\end}/

54.307 \fi\fi\fi\fi\fi\fi\fi\cs@next}

\cs@checkchardef Check the meaning of a token and if it is a primitive defined with \chardef, pass
it to \\@examinechar as if it were a \char sequence. Otherwise, there are no
more word characters, so do the final actions in \cs@nosplit.

54.308 \expandafter\def\expandafter\cs@checkchardef
54.309 \expandafter#\expandafterl\string\char#2\end{/

54.310 \def\cs@token{#1}%

54.311 \ifx\cs@token\Qempty

54.312 \def\cs@next{\afterassignment\cs@examinechar\let\cs@token= 1}
54.313 \else

54.314 \def\cs@next{\cs@nosplit}’,

54.315 \fi \cs@next}

\cs@ignoretoken Add a token to \cs@word but do not update the \cs@wordlen counter. This is
mainly useful for group starting and ending primitives, which need to be preserved,
but do not affect the word boundary.

54.316 \def\cs@ignoretoken#1{}
54.317 \edef\cs@word{\cs@word#1}}
54.318 \afterassignment\cs@continuescan\let\cs@token= }

cs@addparam Add a token to \cs@word and check its lccode. Note that this macro can only be
used for tokens which can be passed as a parameter.

54.319 \def\cs@addparam#1{Y
54.320 \edef\cs@word{\cs@word#1}/,
54.321 \cs@checkcode{\lccode‘#1}}

\cs@expandchar Add a \char sequence to \cs@word and check its lccode. The charcode is first
\cs@examinechar parsed in \cs@expandchar and then the resulting \chardef-defined sequence is
analyzed in \cs@examinechar.

54.322 \def\cs@expandchar{\afterassignment\cs@examinechar\chardef\cs@token=}
54.323 \def \cs@examinechar{%

54.324 \edef\cs@word{\cs@word\char\the\csQtoken\spacely,

54.325 \cs@checkcode{\lccode\cs@token}}

\cs@checkcode Check the lccode of a character. If it is zero, it does not count to the current
word, so finish it with \cs@nosplit. Otherwise update the \cs@wordlen counter
and go on scanning the word with \cs@continuescan. When enough characters
are gathered in \cs@word to allow word break, insert the split hyphen and finish.

54.326 \def\cs@checkcode#1{%
54.327 \ifnumO=#1
54.328 \def\cs@next{\cs@nosplitl}}

290

54.329 \else

54.330 \advance\cs@wordlen\@ne

54.331 \ifnum\righthyphenmin>\the\cs@wordlen
54.332 \def\cs@next{\cs@continuescan},
54.333 \else

54.334 \cs@splithyphen

54.335 \def\cs@next{\cs@word}}

54.336 \fi

54.337 \fi \cs@next}

\cs@nosplit Insert a non-breakable hyphen followed by the saved word.
54.338 \def\cs@nosplit{\cs@boxhyphen\cs@word}

\cs@hyphen The \minus sequence can be used where the active hyphen does not work, e.g. in
arguments to TEX primitives in outer horizontal mode.

54.339 \let\minus\cs@hyphen

\standardhyphens These macros control whether split hyphens are allowed in Czech and/or Slovak
\splithyphens texts. You may use them in any language, but the split hyphen is only activated
for Czech and Slovak.

54.340 \def\standardhyphens{\cs@splithyphensfalse\cs@deactivatehyphens}
54.341 \def\splithyphens{\cs@splithyphenstrue\cs@activatehyphens}

\cs@splitattr Now we declare the split language attribute. This is similar to the split package
option of cslatex, but it only affects Slovak, not Czech.

54.342 \def\cs@splitattr{\babel@save\ifcs@splithyphens\splithyphens}
54.343 \bbl@declare@ttribute{slovak}{split}{/%
54.344 \addto\extrasslovak{\cs@splitattr}}

\cs@activatehyphens These macros are defined as \relax by default to prevent activating/deactivating
\cs@deactivatehyphens the hyphen character. They are redefined when the language is switched to
Czech/Slovak. At that moment the hyphen is also activated if split hyphens were
requested with \splithyphens.
When the language is de-activated, de-activate the hyphen and restore the
bogus definitions of these macros.

54.345 \let\cs@activatehyphens\relax

54.346 \let\cs@deactivatehyphens\relax

54.347 \expandafter\addto\csname extras\CurrentOption\endcsname{7,
54.348 \def\cs@activatehyphens{\bbl@activate{-}}%

54.349 \def\cs@deactivatehyphens{\bbl@deactivate{-}1}%

54.350 \ifcs@splithyphens\cs@activatehyphens\fi}

54.351 \expandafter\addto\csname noextras\CurrentOption\endcsname{’,
54.352 \cs@deactivatehyphens

54.353 \let\cs@activatehyphens\relax

54.354 \let\cs@deactivatehyphens\relax}

\cs@looseness One of the most common situations where an active hyphen will not work properly
\looseness is the \looseness primitive. Change its definition so that it deactivates the
hyphen if needed.

54.355 \let\cs@looseness\looseness

54.356 \def\looseness{/,

54.357 \ifcs@splithyphens

54.358 \cs@deactivatehyphens\afterassignment\cs@activatehyphens \fi
54.359 \cs@looseness}

\cs@selectlanguage Specifying the nocaptions option means that captions and dates are not rede-

\cs@main@language fined by default, but they can be switched on later with \captionsslovak and/or
\dateslovak.

We mimic this behavior by redefining \selectlanguage. This macro is called

once at the beginning of the document to set the main language of the document.

291

If this is \cs@main@language, it disables the macros for setting captions and date.
In any case, it restores the original definition of \selectlanguage and expands
it.

The definition of \selectlanguage can be shared between Czech and Slovak;
the actual language is stored in \cs@main@language.

54.360 \1fx\cs@nocaptions\Qundefined\else
54.361 \edef\cs@main@language{\CurrentOption}
54.362 \ifx\cs@origselect\@undefined

54.363 \let\cs@origselect=\selectlanguage
54.364 \def\selectlanguage{’

54.365 \let\selectlanguage\cs@origselect
54.366 \ifx\bbl@main@language\cs@main@language
54.367 \expandafter\cs@selectlanguage
54.368 \else

54.369 \expandafter\selectlanguage
54.370 \fi}

54.371 \def\cs@selectlanguage{’

54.372 \cs@tempdisable{captionsl}

54.373 \cs@tempdisable{date}’

54.374 \selectlanguage}

\cs@tempdisable \cs@tempdisable disables a language setup macro temporarily, i.e. the macro
with the name of (#1)\bbl@main@language just restores the original definition
and purges the saved macro from memory.

54.375 \def\cs@tempdisable#1{}

54.376 \def\@tempa{cs@#1}/,

54.377 \def\@tempb{#1\bbl@main@language}’

54.378 \expandafter\expandafter\expandafter\let

54.379 \expandafter \csname\expandafter \Q@tempa \expandafter\endcsname
54.380 \csname \Q@tempb \endcsname

54.381 \expandafter\edef\csname \@tempb \endcsname{,

54.382 \let \expandafter\noexpand \csname \Q@tempb \endcsname
54.383 \expandafter\noexpand \csname \@tempa \endcsname
54.384 \let \expandafter\noexpand\csname \Q@tempa \endcsname
54.385 \noexpand\Qundefined}}

These macros are not needed, once the initialization is over.

54.386 \@onlypreamble\cs@main@language
54.387 \@onlypreamble\cs@origselect
54.388 \@onlypreamble\cs@selectlanguage
54.389 \@onlypreamble\cs@tempdisable
54.390 \fi

54.391 \fi

The encoding of mathematical fonts should be changed to IL2. This allows to
use accented letter in some font families. Besides, documents do not use CM fonts
if there are equivalents in CS-fonts, so there is no need to have both bitmaps of
CM-font and CS-font.

\@font@warning and \@font@info are temporarily redefined to avoid annoy-
ing font warnings.

54.392 \ifx\cs@compat@plain\@undefined
54.393 \ifx\cs@check@enc\@undefined\else
54.394 \def\cs@check@encq{

54.395 \ifx\encodingdefault\cs@iltw@

54.396 \let\cs@warn\@font@warning \let\@font@warning\@gobble
54.397 \let\cs@info\@font@info \let\@font@info\@gobble
54.398 \SetSymbolFont{operators}{normal}{\cs@iltw@}{cmr{m}{n}
54.399 \SetSymbolFont{operators}{bold}{\cs@iltw@}{cmr}{bx}{n}
54.400 \SetMathAlphabet\mathbf{normal}{\cs@iltw@}{cmr}{bx}{n}
54.401 \SetMathAlphabet\mathit{normal}{\cs@iltw@}{cmr}{m}{it}

292

54.402 \SetMathAlphabet\mathrm{normal}{\cs@iltw@}{cmr}{m}{n}
54.403 \SetMathAlphabet\mathsf{normal}{\cs@iltw@}{cmss}{m}{n}
54.404 \SetMathAlphabet\mathtt{normal}{\cs@iltw@}{cmtt}{m}{n}
54.405 \SetMathAlphabet\mathbf{bold}{\cs@iltw@}{cmr}{bx}{n}
54.406 \SetMathAlphabet\mathit{bold}{\cs@iltw@}{cmr}{bx}{it}
54.407 \SetMathAlphabet\mathrm{bold}{\cs@iltw@}{cmr}{bx}{n}
54.408 \SetMathAlphabet\mathsf{bold}{\cs@iltw@}{cmss}{bx}{n}
54.409 \SetMathAlphabet\mathtt{bold}{\cs@iltw@}{cmtt}{m}{n}
54.410 \let\@font@warning\cs@warn \let\cs@warn\@undefined
54.411 \let\@font@info\cs@info \let\cs@info\@undefined
54.412 \fi

54.413 \let\cs@check@enc\@undefined}

54.414 \AtBeginDocument{\cs@check@enc}

54.415 \fi

54.416 \fi

cs@undoiltw@ The thing is that IXTEX 2¢ core only supports the T1 encoding and does not
bother changing the uc/lc/sfcodes when encoding is switched. :(However, the IL2
encoding does change these codes, so if encoding is switched back from IL2, we
must also undo the effect of this change to be compatible with HTEX 2¢. OK, this
is not the right™ solution but it works. Cheers to Petr Ol3k.

54.417 \def\cs@undoiltw@{%

54.418
54.419
54.420
54.421
54.422
54.423
54.424
54.425
54.426
54.427
54.428
54.429

\uccode158=208 \lccode158=158 \sfcodel158=1000
\sfcode159=1000

\uccode165=133 \lccodel165=165 \sfcodel65=1000
\uccode169=137 \lccodel1l69=169 \sfcodel69=1000
\uccode171=139 \lccodel171=171 \sfcodel71=1000
\uccode174=142 \lccodel74=174 \sfcodel74=1000
\uccode181=149

\uccode185=153

\uccode187=155

\uccode190=0 \lccodel90=0

\uccode254=222 \lccode254=254 \sfcode254=1000
\uccode255=223 \lccode255=255 \sfcode255=1000}

@@enc@update Redefine the IWTEX 2¢ internal function \@@enc@update to change the encodings
correctly.

54.430 \ifx\cs@enc@update\@undefined
54.431 \ifx\@Q@enc@update\Qundefined\else

54.432
54.433
54.434
54.435
54.436
54.437
54.438
54.439
54.440
54.441
54.442
54.443
54.444
54.445

\let\cs@enc@update\@@enc@update
\def\@@enc@update{\ifx\cf@encoding\cs@iltw@\cs@undoiltw@\fi
\cs@enc@update
\expandafter\ifnum\csname 1@\languagename\endcsname=\the\language
\expandafter\ifx
\csname 1@\languagename:\f@encoding\endcsname\relax
\else
\expandafter\expandafter\expandafter\let
\expandafter\csname
\expandafter l\expandafter @\expandafter\languagename
\expandafter\endcsname\csname 1l@\languagename:\f@encoding\endcsname
\fi
\language=\csname 1@\languagename\endcsname\relax

\fi}

54.446 \fi\fi

The macro \1df@finish takes care of looking for a configuration file, setting

the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

54.447 \1df@f inish\CurrentOption
54.448 (/code)

293

\captionsslovene

55 The Slovenian language

The file slovene.dtx®" defines all the language-specific macros for the Slovenian
language.

For this language the character " is made active. In table 29 an overview is
given of its purpose. One of the reasons for this is that in the Slovene language
some special characters are used.

"¢ \"c, also implemented for the lowercase and upper-
case s and z.

"~ an explicit hyphen sign, allowing hyphenation in the
rest of the word.

" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y).

"¢ for Slovene left double quotes (looks like ,,).

"> for Slovene right double quotes.

"< for French left double quotes (similar to <<).

"> for French right double quotes (similar to >>).

Table 29: The extra definitions made by slovene.1ldf

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

55.1 (*code)
55.2 \Ldf Init{slovene}\captionsslovene

When this file is read as an option, i.e. by the \usepackage command, slovene
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@slovene to see whether we have to do something
here.

55.3 \ifx\1@slovene\@undefined
55.4 \@nopatterns{Slovene}
55.5 \adddialect\1@sloveneO\fi

The next step consists of defining commands to switch to the Slovenian lan-
guage. The reason for this is that a user might want to switch back and forth
between languages.

The macro \captionsslovene defines all strings used in the four standard docu-
mentclasses provided with ETEX.

55.6 \addto\captionsslovene{’
55.7 \def\prefacename{Predgovorl}y,
55.8 \def\refname{Literatural}’%
55.9 \def\abstractname{Povzetek},
55.10 \def\bibname{Literatural},
55.11 \def\chaptername{Poglavje}/,
55.12 \def\appendixname{Dodatek}/,
55.13 \def\contentsname{Kazalol}/,
55.14 \def\listfigurename{Slike}J,
55.15 \def\listtablename{Tabelel},
55.16 \def\indexname{Stvarno kazalol}}, used to be Indeks
55.17 \def\figurename{Slikal}},
55.18 \def\tablename{Tabelal}
55.19 \def\partname{Del},
55.20 \def\enclname{Prilogel/,
55.21 \def\ccname{Kopijel}%
55.22 \def\headtoname{Prejmel},

65The file described in this section has version number v1.2m and was last revised on
2005/03/31. Contributions were made by Danilo Zavrtanik, University of Ljubljana (YU) and
Leon Zlajpah (leon.zlajpah@ijs.si).

294

\dateslovene

\extrasslovene
\noextrasslovene

55.23
55.24
55.25
55.26
55.27
55.28

The macro \dateslovene redefines the command \today to produce Slovenian

\def\pagename{Stran}y,
\def\seename{glej}%
\def\alsoname{glej tudil}%
\def\proofname{Dokaz}/,
\def\glossaryname{Glossary}/ <--
Y

dates.

55.29 \def\dateslovene{’
\def\today{\number\day.“\ifcase\month\or
januar\or februar\or marec\or aprillor maj\or junij\or

55.30
55.31
55.32
55.33

The macro \extrasslovene performs all the extra definitions needed for the Slove-
nian language. The macro \noextrasslovene is used to cancel the actions of

julij\or avgust\or september\or oktober\or november\or december\fi

\space \number\year}}

\extrasslovene.

For Slovene the " character is made active.
definition may vary. Other languages in the same document may also use the "
character for shorthands; we specify that the slovenian group of shorthands should

be used.

55.34 \initiate@active@char{"}
55.35 \addto\extrasslovene{\languageshorthands{slovene}}
55.36 \addto\extrasslovene{\bbl@activate{"}}

Needs translation

Don’t forget to turn the shorthands off again.
55.37 \addto\noextrasslovene{\bbl@deactivate{"}}

First we define shorthands to facilitate the occurence

55.38 \declare@shorthand{slovene}{"c}{\textormath{\v c}{\check
55.39 \declare@shorthand{slovene}{"s}{\textormath{\v s}{\check
55.40 \declare@shorthand{slovene}{"z}{\textormath{\v z}{\check
55.41 \declare@shorthand{slovene}{"C}{\textormath{\v C}{\check
55.42 \declare@shorthand{slovene}{"S}{\textormath{\v S}{\check
55.43 \declare@shorthand{slovene}{"Z}{\textormath{\v Z}{\check

and french quotation marks.

55.44 \declare@shorthand{slovene}{" ‘}{%
\textormath{\quotedblbase}{\mbox{\quotedblbase}}}
55.46 \declare@shorthand{slovene}{"’}{%
\textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
55.48 \declare@shorthand{slovene}{"<}{%
\textormath{\guillemotleft}{\mbox{\guillemotleft}}}
55.50 \declare@shorthand{slovene}{">}{/%
\textormath{\guillemotright}{\mbox{\guillemotright}}}

55.45

55.47

55.49

55.51

then we define two shorthands to be able to specify hyphenation breakpoints that

behavew a little different from \-.

55.52 \declare@shorthand{slovene}{"-}{\nobreak-\bbl@allowhyphens}
55.53 \declare@shorthand{slovene}{""}{\hskip\z@skip}

And we want to have a shorthand for disabling a ligature.
55.54 \declare@shorthand{slovene}{" | }{%

55.55

category code of @ to its original value.

55.56 \1df@finish{slovene}
55.57 (/code)

\textormath{\discretionary{-}{}{\kern.03em}}{}}

295

This is done once, later on its

of letters such as ¢.

c}}
st}
z}}
C}}
S}}
Z}}

Then we define access to two forms of quotation marks, similar to the german

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the

56 The Russian language

The file russianb.dtx% defines all the language-specific macros for the Russian
language. It needs the file cyrcod for success documentation with Russian encod-
ings (see below).

For this language the character " is made active. In table 30 an overview is
given of its purpose.

" disable ligature at this position.

"— an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"-—- Cyrillic emdash in plain text.

"--~ Cyrillic emdash in compound names (surnames).

"--* Cyrillic emdash for denoting direct speech.

o like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y or some other signs
as “disable/enable”).

" for a compound word mark without a breakpoint.

"= for a compound word mark with a breakpoint, allow-
ing hyphenation in the composing words.

", thinspace for initials with a breakpoint in following
surname.

e for German left double quotes (looks like ,,).

" for German right double quotes (looks like *).

"< for French left double quotes (looks like <<).

"> for French right double quotes (looks like >>).

Table 30: The extra definitions made by russianb

The quotes in table 30 can also be typeset by using the commands in table 31.

\cdash--- Cyrillic emdash in plain text.

\cdash--~ Cyrillic emdash in compound names (surnames).
\cdash--* Cyrillic emdash for denoting direct speech.
\glqq for German left double quotes (looks like ,,).
\grqq for German right double quotes (looks like).
\flqq for French left double quotes (looks like <<).
\frqq for French right double quotes (looks like >>).
\dq the original quotes character ().

Table 31: More commands which produce quotes, defined by babel

The French quotes are also available as ligatures ‘<<’ and ‘>>’ in 8-bit Cyrillic
font encodings (LCY, X2, T2*) and as ‘<’ and ‘>’ characters in 7-bit Cyrillic font
encodings (0T2 and LWN).

The quotation marks traditionally used in Russian were borrowed from other
languages (e.g., French and German) so they keep their original names.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

56.1 (*code)
56.2 \Ldf Init{russian}{captionsrussian}

When this file is read as an option, i.e., by the \usepackage command,
russianb will be an ‘unknown’ language, in which case we have to make it known.

66 The file described in this section has version number ? and was last revised on ?. This file was
initially derived from the original version of german.sty, which has some definitions for Russian.
Later the definitions from russian.sty version 1.0b (for WTEX 2.09), russian.sty version v2.5¢
(for N TEX 2¢) and francais.sty version 4.5¢ and germanb.sty version 2.5¢ were added.

296

\latinencoding

So we check for the existence of \1@russian to see whether we have to do some-
thing here.

56.3 \ifx\1@russian\@undefined
56.4 \@nopatterns{Russian}
56.5 \adddialect\1l@russianO
56.6 \fi

We need to know the encoding for text that is supposed to be which is active at
the end of the babel package. If the fontenc package is loaded later, then...too
bad!

56.7 \let\latinencoding\cf@encoding

The user may choose between different available Cyrillic encodings—e.g., X2,
LCY, or LWN. Hopefully, X2 will eventually replace the two latter encodings (LCY
and LWN). If the user wants to use another font encoding than the default (T24),
he has to load the corresponding file before russianb.sty. This may be done in
the following way:

% override the default X2 encoding used in Babel
\usepackage [LCY,0T1]{fontenc}
\usepackage [english,russian] {babel}

Note: for the Russian language, the T2A encoding is better than X2, because
X2 does not contain Latin letters, and users should be very careful to switch the
language every time they want to typeset a Latin word inside a Russian phrase or
vice versa.

We parse the \cdp@list containing the encodings known to IXTEX in the order
they were loaded. We set the \cyrillicencoding to the last loaded encoding in
the list of supported Cyrillic encodings: 0T2, LWN, LCY, X2, T2C, T2B, T2A, if any.

56.8 \def\reservedQa#1#2{},

56.9 \edef\reserved@b{#11}J

56.10 \edef\reserved@c{#2}/,

56.11 \ifx\reserved@b\reserved@c
56.12 \let\cyrillicencoding\reserved@c
56.13 \fi}

56.14 \def\cdp@elt#1#2#3#4{Y,

56.15 \reserved@a{#1}{0T2}/

56.16 \reserved@a{#1}{LWN}/,

56.17 \reserved@a{#1}{LCY})

56.18 \reserved@a{#1}{X2}/

56.19 \reserved@a{#1}{T2C}/

56.20 \reserved@a{#1}{T2B}/

56.21 \reserved@a{#1}{T2A}}

56.22 \cdp@list

Now, if \cyrillicencoding is undefined, then the user did not load any of
supported encodings. So, we have to set \cyrillicencoding to some default
value. We test the presence of the encoding definition files in the order from
less preferable to more preferable encodings. We use the lowercase names (i.e.,
lcyenc.def instead of LCYenc.def).

56.23 \ifx\cyrillicencoding\undefined

56.24 \IfFileExists{ot2enc.def}{\def\cyrillicencoding{0T2}}\relax
56.25 \IfFileExists{lwnenc.def}{\def\cyrillicencoding{LWN}}\relax
56.26 \IfFileExists{lcyenc.def}{\def\cyrillicencoding{LCY}}\relax
56.27 \IfFileExists{x2enc.def}{\def\cyrillicencoding{X2}}\relax
56.28 \IfFileExists{t2cenc.def}{\def\cyrillicencoding{T2C}}\relax
56.29 \IfFileExists{t2benc.def}{\def\cyrillicencoding{T2B}}\relax
56.30 \IfFileExists{t2aenc.def}{\def\cyrillicencoding{T2A}}\relax

297

If \cyrillicencoding is still undefined, then the user seems not to have a
properly installed distribution. A fatal error.

56.31 \ifx\cyrillicencoding\undefined

56.32 \PackageError{babel}/,

56.33 {No Cyrillic encoding definition files were foundl}

56.34 {Your installation is incomplete.\MessageBreak

56.35 You need at least one of the following files:\MessageBreak
56.36 \space\space

56.37 x2enc.def, t2aenc.def, t2benc.def, t2cenc.def,\MessageBreak
56.38 \space\space

56.39 lcyenc.def, lwnenc.def, ot2enc.def.},

56.40 \else

We avoid \usepackage[\cyrillicencoding]{fontenc} because we don’t
want to force the switch of \encodingdefault.

56.41 \lowercase
56.42 \expandafter{\expandafter\input\cyrillicencoding enc.def\relax}/,
56.43 \fi
56.44 \fi
\PackageInfo{babell}

{Using ‘\cyrillicencoding’ as a default Cyrillic encodingl}’

56.45 \DeclareRobustCommand{\Russian}{%

56.46 \fontencoding\cyrillicencoding\selectfont
56.47 \let\encodingdefault\cyrillicencoding

56.48 \expandafter\set@hyphenmins\russianhyphenmins
56.49 \language\l@russian}j,

56.50 \DeclareRobustCommand{\English}{%

56.51 \fontencoding\latinencoding\selectfont

56.52 \let\encodingdefault\latinencoding

56.53 \expandafter\set@hyphenmins\englishhyphenmins
56.54 \language\lQenglish}

56.55 \let\Rus\Russian

56.56 \1let\Eng\English

56.57 \let\cyrillictext\Russian

56.58 \let\cyr\Russian

Since the X2 encoding does not contain Latin letters, we should make some
redefinitions of ITEX macros which implicitly produce Latin letters.

56.59 \expandafter\ifx\csname TO@X2\endcsname\relax\else

We put \latinencoding in braces to avoid problems with \@alph inside mini-
pages (e.g., footnotes inside minipages) where \@alph is expanded and we get for
example ‘\fontencoding 0T1’ (\fontencoding is robust).

56.60 \def\@alph#1{{\fontencoding{\latinencoding}\selectfont
56.61 \ifcase#1\or

56.62 al\or b\or c\or d\or e\or flor g\or h\or
56.63 ilor j\or k\or 1l\or m\or n\or o\or p\or
56.64 g\or r\or s\or t\or ulor v\or w\or x\or
56.65 y\or z\else\@ctrerr\fi}}J,

56.66 ~ \def\@Alph#1{{\fontencoding{\latinencodingl}\selectfont
56.67 \ifcase#1\or

56.68 A\or B\or C\or D\or E\or F\or G\or H\or
56.69 I\Nor J\or K\or L\or M\or N\or O\or P\or
56.70 Q\or R\or S\or T\or Ulor V\or W\or X\or
56.71 Y\or Z\else\@ctrerr\fi}}/

Unfortunately, the commands \AA and \aa are not encoding dependent in
KTEX (unlike e.g., \oe or \DH). They are defined as \r{A} and \r{a}. This leads
to unpredictable results when the font encoding does not contain the Latin letters
‘A’ and ‘a’ (like X2).

298

\cyrillictext
\latintext

56.72 \DeclareTextSymbolDefault{\AA}{OT1}
56.73 \DeclareTextSymbolDefault{\aa}{0T1}
56.74 \DeclareTextCommand{\aa}{0T1}{\r a}
56.75 \DeclareTextCommand{\AA}{OT1}{\r A}
56.76 \fi

The following block redefines the character class of uppercase Greek letters
and some accents, if it is equal to 7 (variable family), to avoid incorrect results if
the font encoding in some math family does not contain these characters in places
of OT1 encoding. The code was taken from amsmath.dtx. See comments and

further explanation there.

56.77 %
56.78 %
56.79 %
56.80 %
56.81 %
56.82 %
56.83 %
56.84 %
56.85 %
56.86 %
56.87 %
56.88 %
56.89 %
56.90 %

\begingroup\catcode‘\"=12
% uppercase greek letters:
\def\@tempa#1{\expandafter\@tempb\meaning#l\relax\relax\relax\relax
"0000\@nil#1}
\def\Qtempb#1"#2#3#4#5#6\0nil#7{}%
\ifnum"#2=7 \count@"1#3#4#5\relax
\ifnum\count@<"1000 \else \global\mathchardef#7="0#3#4#5\relax \fi
\fi}
\@tempa\Gamma\@tempa\Delta\@tempa\Theta\@tempa\Lambda\@tempa\Xi
\@tempa\Pi\Qtempa\Sigma\@tempa\Upsilon\@tempa\Phi\@tempa\Psi
\@tempa\Omega
% some accents:
\def\@tempa#1#2\0nil{\def\Q@tempc{#1}}\def\@tempb{\mathaccent}
\expandafter\@tempa\hat\relax\relax\@nil

56.91 % \ifx\@tempb\@tempc

56.92 % \def\@tempa#1\@nil{#1}%

56.93 % \def\Q@tempb#1{\afterassignment\@tempa\mathchardef\@tempc=}%
56.94 % \def\do#1"#2{}

56.95 % \def\Q@tempd#1{\expandafter\Qtempb#1\@nil

56.96 % \ifnum\@tempc>"FFF

56.97 % \xdef#1{\mathaccent"\expandafter\do\meaning\@tempc\spacel}’
56.98 % \fi}

56.99 % \@tempd\hat\@tempd\check\@tempd\tilde\@tempd\acute\@tempd\grave
56.100 % \@tempd\dot\@tempd\ddot\@tempd\breve\Q@tempd\bar

56.101 % \fi

56.102 % \endgroup

The user should use the inputenc package when any 8-bit Cyrillic font encod-

ing is used, selecting one of the Cyrillic input encodings. We do not assume any
default input encoding, so the user should explicitly call the inputenc package
by \usepackage{inputenc}. We also removed \AtBeginDocument, so inputenc

should be used before babel.
56.103 \@ifpackageloaded{inputenc}{}{/

56.104 \def\reserved@a{LWN}%

56.105 \ifx\reserved®@a\cyrillicencoding\else

56.106 \def\reserved@a{0T2}}

56.107 \ifx\reserved@a\cyrillicencoding\else

56.108 \PackageWarning{babell}%

56.109 {No input encoding specified for Russian language}
56.110 \fi\fi}

Now we define two commands that offer the possibility to switch between
Cyrillic and Roman encodings.

The command \cyrillictext will switch from Latin font encoding to the Cyrillic
font encoding, the command \latintext switches back. This assumes that the
‘normal’ font encoding is a Latin one. These commands are declarations, for
shorter peaces of text the commands \textlatin and \textcyrillic can be
used.

56.111 %\DeclareRobustCommand{\latintext}{%

56.112 %

\fontencoding{\latinencoding}\selectfont

299

56.113 % \def\encodingdefault{\latinencoding}}
56.114 \let\lat\latintext

\textcyrillic These commands take an argument which is then typeset using the requested font
\textlatin encoding.

56.115 \DeclareTextFontCommand{\textcyrillic}{\cyrillictext}
56.116 %\DeclareTextFontCommand{\textlatin}{\latintext}

We make the TEX

56.117 %\ifx\1txTeX\undefined\let\1txTeX\TeX\fi
56.118 %\ProvideTextCommandDefault{\TeX}{\textlatin{\1txTeX}}

and KTEX logos encoding independent.

56.119 %\ifx\1txLaTeX\undefined\let\1txLaTeX\LaTeX\fi
56.120 %\ProvideTextCommandDefault{\LaTeX}{\textlatin{\1txLaTeX}}

The next step consists of defining commands to switch to (and from) the Rus-
sian language.

\captionsrussian The macro \captionsrussian defines all strings used in the four standard doc-
ument classes provided with ITEX. The two commands \cyr and \lat activate
Cyrillic resp. Latin encoding.

56.121 \addto\captionsrussian{%

56.122 %, ~ FIXME: Where is the \prefacename used?

56.123 \def\prefacename{’,

56.124 {\cyr\CYRP\cyrr\cyre\cyrd\cyri\cyrs\cyrl\cyro\cyrv\cyri\cyre}}%
56.125 % {\cyr\CYRV\cyrv\cyre\cyrd\cyre\cyrn\cyri\cyre}}/

56.126 \def\refname{Y

56.127 {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk

56.128 \ \cyrl\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyrery}}%
56.129 % \def\refname{’

56.130 % {\cyr\CYRL\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}}’
56.131 \def\abstractname{/,

56.132 {\cyr\CYRA\cyrn\cyrn\cyro\cyrt\cyra\cyrc\cyri\cyrya}}’
56.133 \def\bibname{%

56.134 {\cyr\CYRL\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyral}}/
56.135 % \def\bibname{Y

56.136 % {\cyr\CYRB\cyri\cyrb\cyrl\cyri\cyro

56.137 % \cyrg\cyrr\cyra\cyrf\cyri\cyrya}t}’

56.138 % for reports according to GOST:

56.139 % \def\bibname{%

56.140 % {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk

56.141 % \ \cyri\cyrs\cyrp\cyro\cyrl\cyrsftsn\cyrz\cyro\cyrv\cyra\cyrn
56.142 % \cyrn\cyrery\cyrh\ \cyri\cyrs\cyrt\cyro\cyrch\cyrn\cyri
56.143 % \cyrk\cyro\cyrv}}/

56.144 \def\chaptername{{\cyr\CYRG\cyrl\cyra\cyrv\cyral}}/

56.145 % \@ifundefined{chapter}{}{J

56.146 % \def\chaptername{{\cyr\CYRG\cyrl\cyra\cyrv\cyral}}}’

56.147 \def\appendixname{,

56.148 {\cyr\CYRP\cyrr\cyri\cyrl\cyro\cyrzh\cyre\cyrn\cyri\cyre}}/

There are two names for the Table of Contents that are used in Russian pub-
lications. For books (and reports) the second variant is appropriate, but for pro-
ceedings the first variant is preferred:

56.149 \Q@ifundefined{thechapterl}},

56.150 {\def\contentsname{%
56.151 {\cyr\CYRS\cyro\cyrd\cyre\cyrr\cyrzh\cyra\cyrn\cyri\cyre}}}%
56.152 {\def\contentsname{’,
56.153 {\cyr\CYRO\cyrg\cyrl\cyra\cyrv\cyrl\cyre\cyrn\cyri\cyre}}}%

56.154 \def\listfigurename{’

56.155 {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk

56.156 \ \cyri\cyrl\cyrl\cyryu\cyrs\cyrt\cyrr\cyra\cyrc\cyri\cyrishrt}}%
56.157 % \def\listfigurename{’

300

56.158 % {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk

56.159 % \ \cyrr\cyri\cyrs\cyru\cyrn\cyrk\cyro\cyrv}}%

56.160 \def\listtablename{’

56.161 {\cyr\CYRS\cyrp\cyri\cyrs\cyro\cyrk

56.162 \ \cyrt\cyra\cyrb\cyrl\cyri\cyrc}}%

56.163 \def\indexname{’,

56.164 {\cyr\CYRP\cyrr\cyre\cyrd\cyrm\cyre\cyrt\cyrn\cyrery\cyrishrt
56.165 \ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl\cyrsftsn}}y,
56.166 \def\authorname{’,

56.167 {\cyr\CYRI\cyrm\cyre\cyrn\cyrn\cyro\cyrishrt

56.168 \ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl\cyrsftsn}}y,
56.160 \def\figurename{{\cyr\CYRR\cyri\cyrs.2}}%

56.170 \def\tablename{{\cyr\CYRT\cyra\cyrb\cyrl\cyri\cyrc\cyra}}’
56.171 \def\partname{{\cyr\CYRCH\cyra\cyrs\cyrt\cyrsftsn}}/

56.172 \def\enclname{{\cyr\cyrv\cyrk\cyrl.}}/

56.173 \def\ccname{{\cyr\cyri\cyrs\cyrh.}}%

56.174 % \def\ccname{{\cyr\cyri\cyrzl}}%

56.175 \def\headtoname{{\cyr\cyrv\cyrh.}2}/

56.176 % \def\headtoname{{\cyr\cyrv}}/

56.177 \def\pagename{{\cyr\cyrs.}}/

56.178 % \def\pagename{{\cyr\cyrs\cyrt\cyrr.}}%

56.179 \def\seename{{\cyr\cyrs\cyrm.3}}/

56.180 \def\alsoname{{\cyr\cyrs\cyrm.\ \cyrt\cyra\cyrk\cyrzh\cyre}}%

56.181 \def\proofname{{\cyr\CYRD\cyro\cyrk\cyra\cyrz\cyra\cyrt

56.182 \cyre\cyrl\cyrsftsn\cyrs\cyrt\cyrv\cyro}}/
56.183 \def\glossaryname{Glossaryl}) <-- Needs translation
56.184 }

\daterussian The macro \daterussian redefines the command \today to produce Russian
dates.

56.185 \def\daterussian{’
56.186 \def\today{\number\day~\ifcase\month\or

56.187 \cyrya\cyrn\cyrv\cyra\cyrr\cyrya\or
56.188 \cyrf\cyre\cyrv\cyrr\cyra\cyrl\cyrya\or
56.189 \cyrm\cyra\cyrr\cyrt\cyra\or

56.190 \cyra\cyrp\cyrr\cyre\cyrl\cyrya\or
56.191 \cyrm\cyra\cyrya\or

56.192 \cyri\cyryu\cyrn\cyrya\or

56.193 \cyri\cyryu\cyrl\cyrya\or

56.194 \cyra\cyrv\cyrg\cyru\cyrs\cyrt\cyra\or

56.195 \cyrs\cyre\cyrn\cyrt\cyrya\cyrb\cyrr\cyrya\or
56.196 \cyro\cyrk\cyrt\cyrya\cyrb\cyrr\cyrya\or

56.197 \cyrn\cyro\cyrya\cyrb\cyrr\cyrya\or
56.198 \cyrd\cyre\cyrk\cyra\cyrb\cyrr\cyrya\fi
56.199 \ \number\year~\cyrg.}}

\extrasrussian The macro \extrasrussian will perform all the extra definitions needed for the
Russian language. The macro \noextrasrussian is used to cancel the actions of
\extrasrussian.

The first action we define is to switch on the selected Cyrillic encoding whenever
we enter ‘russian’.

56.200 \addto\extrasrussian{\cyrillictext}

When the encoding definition file was processed by IKTEX the current font
encoding is stored in \latinencoding, assuming that I#TEX uses T1 or OT1 as
default. Therefore we switch back to \latinencoding whenever the Russian lan-
guage is no longer ‘active’.

56.201 \addto\noextrasrussian{\latintext}

\verbatim@font In order to get both Latin and Cyrillic letters in verbatim text we need to change
the definition of an internal IMTEX command somewhat:

301

56.202 %\def\verbatim@font{%

56.203 % \let\encodingdefault\latinencoding

56.204 % \normalfont\ttfamily

56.205 % \expandafter\def\csname\cyrillicencoding-cmd\endcsname##1##2{%
56.206 % \ifx\protect\@typeset@protect

56.207 % \begingroup\UseTextSymbol\cyrillicencoding##1\endgroup
56.208 % \else\noexpand##1\fi}}

A

The category code of the characters ‘:’, 37, ‘1’ and ‘?’ is made \active to

insert a little white space.
For Russian (as well as for German) the " character also is made active.

Note: It is very questionable whether the Russian typesetting tradition re-
quires additional spacing before those punctuation signs. Therefore, we make the
corresponding code optional. If you need it, then define the frenchpunct docstrip
option in babel.ins.

Borrowed from french. Some users dislike automatic insertion of a space before
‘double punctuation’, and prefer to decide themselves whether a space should be
added or not; so a hook \NoAutoSpaceBeforeFDP is provided: if this command is
added (in file russianb.cfg, or anywhere in a document) russianb will respect
your typing, and introduce a suitable space before ‘double punctuation’ if and
only if a space is typed in the source file before those signs.

The command \AutoSpaceBeforeFDP switches back to the default behavior of

russianb.

56.209 (*frenchpunct)

56.210 \initiate@active@char{:}
56.211 \initiate@active@char{;}
56.212 (/frenchpunct)

56.213 (*frenchpunct | spanishligs)
56.214 \initiate@active@char{!}
56.215 \initiate@active@char{?}
56.216 (/frenchpunct | spanishligs)
56.217 \initiate@active@char{"}

The code above is necessary because we need extra active characters. The

character " is used as indicated in table 30.
We specify that the Russian group of shorthands should be used.

56.218 \addto\extrasrussian{\languageshorthands{russian}}
These characters are ‘turned on’ once, later their definition may vary.

56.219 \addto\extrasrussian{}

56.220 (frenchpunct) \bbl@activate{:}\bbl@activate{;})

56.221 (frenchpunct | spanishligs) \bbl@activate{!}\bbl@activate{?}}
56.222 \bblQ@activate{"}}

56.223 \addto\noextrasrussian{’

56.224 (frenchpunct) \bbl@deactivate{:}\bbl@deactivated{;}

56.225 (frenchpunct | spanishligs) \bbl@deactivate{!}\bbl@deactivate{?}}
56.226 \bbl@deactivate{"}}

The X2 and T2* encodings do not contain spanish_shriek and spanish_query
symbols; as a consequence, the ligatures ‘7¢” and ‘! ¢’ do not work with them (these
characters are useless for Cyrillic texts anyway). But we define the shorthands to
emulate these ligatures (optionally).

We do not use \latinencoding here (but instead explicitly use 0T1) because
the user may choose T2A to be the primary encoding, but it does not contain these
characters.

56.227 (*spanishligs)

56.228 \declare@shorthand{russian}{? ‘}{\UseTextSymbol{0T1}\textquestiondown}
56.229 \declare@shorthand{russian}{! ‘}{\UseTextSymbol{0T1}\textexclamdown}
56.230 (/spanishligs)

302

\russian@sh@;@ We have to reduce the amount of white space before ;, : and !. This should only
\russian@sh@:@ happen in horizontal mode, hence the test with \ifhmode.

\russian@sho! 56.231 (*frenchpunct)

\russian@shQ@?@sq 939 \declare@shorthand{russian}{; }{}
56.233 \ifhmode

In horizontal mode we check for the presence of a ‘space’, ‘unskip’ if it exists
and place a 0.1lem kerning.

56.234 \ifdim\lastskip>\z@
56.235 \unskip\nobreak\kern. lem
56.236 \else

If no space has been typed, we add \FDP@thinspace which will be defined, up to
the user’s wishes, as an automatic added thinspace, or as \@empty.

56.237 \FDP@thinspace
56.238 \fi
56.239 \fi

Now we can insert a ‘;’ character.
56.240 \string;}
The other definitions are very similar.

56.241 \declare@shorthand{russian}{:}{},
56.242 \ifhmode

56.243 \ifdim\lastskip>\z@

56.244 \unskip\nobreak\kern. lem
56.245 \else

56.246 \FDP@thinspace

56.247 \fi

56.248 \fi

56.249 \string:}

56.250 \declare@shorthand{russian}{!}{}
56.251 \ifhmode

56.252 \ifdim\lastskip>\z@

56.253 \unskip\nobreak\kern. lem
56.254 \else

56.255 \FDP@thinspace

56.256 \fi

56.257 \fi

56.258 \string!}

56.259 \declare@shorthand{russian}{?}{J,
56.260 \ifhmode

56.261 \ifdim\lastskip>\z@

56.262 \unskip\nobreak\kern. lem
56.263 \else

56.264 \FDP@thinspace

56.265 \fi

56.266 \fi

56.267 \string?}

\AutoSpaceBeforeFDP \FDP@thinspace is defined as unbreakable spaces if \AutoSpaceBeforeFDP is
\NoAutoSpaceBeforeFDP activated or as \@empty if \NoAutoSpaceBeforeFDP is in use. The default is
\FDP@thinspace \AutoSpaceBeforeFDP.
56.268 \def \AutoSpaceBeforeFDP{},
56.269 \def\FDP@thinspace{\nobreak\kern. lem}}
56.270 \def \NoAutoSpaceBeforeFDP{\let\FDP@thinspace\Qempty}
56.271 \AutoSpaceBeforeFDP

\FDPon The next macros allow to switch on/off activeness of double punctuation signs.

\FDPoffy; o9 \def\FDPon{\bbl@activate{: }}

303

\system@sh@:@
\system@sh@!®@
\system@sh@7@
\system@shQ; Q@

56.273 \bbl@activate{;}}

56.274 \bbl@activate{?}

56.275 \bbl@activate{!}}

56.276 \def\FDPoff{\bbl@deactivate{:}/
56.277 \bbl@deactivate{;}/
56.278 \bbl@deactivate{?})
56.279 \bbl@deactivate{!}}

When the active characters appear in an environment where their Russian be-
haviour is not wanted they should give an ‘expected’ result. Therefore we define
shorthands at system level as well.

56.280 \declare@shorthand{system}{:}{\string:}
56.281 \declare@shorthand{system}{;}{\string;}
56.282 (/frenchpunct)

56.283 (*frenchpunct&!spanishligs)

56.284 \declare@shorthand{system}{!}{\string!}
56.285 \declare@shorthand{system}{ ?}{\string?}
56.286 (/frenchpunct&!spanishligs)

To be able to define the function of ‘"’, we first define a couple of ‘support’
macros.

\dqg We save the original double quote character in \dq to keep it available, the math

‘(n?

accent \" can now be typed as

56.287 \begingroup \catcode‘\"12
56.288 \def \reserved@a{\endgroup
56.289 \def\@SS{\mathchar"7019 }
56.290 \def\dq{"}}

56.291 \reserved@a

Now we can define the doublequote macros: german and french quotes. We
use definitions of these quotes made in babel.sty. The french quotes are contained
in the T2* encodings.

56.292 \declare@shorthand{russian}{"‘}{\glqq?}
56.293 \declare@shorthand{russian}{"’}{\grqq}
56.294 \declare@shorthand{russian}{"<}{\flqq}
56.295 \declare@shorthand{russian}{">}{\frqq}

Some additional commands:

56.296 \declare@shorthand{russian}{""}{\hskip\z@skip}

56.297 \declare@shorthand{russian}{"“}{\textormath{\leavevmode\hbox{-}}{-}}
56.298 \declare@shorthand{russian}{"=}{\nobreak-\hskip\z@skip}

56.299 \declare@shorthand{russian}{" |}{%

56.300 \textormath{\nobreak\discretionary{-}{}{\kern.03em}/

56.301 \allowhyphens}{}}

The next two macros for "- and "--- are somewhat different. We must check
whether the second token is a hyphen character:

56.302 \declare@shorthand{russian}{"-}{%

If the next token is ‘-’, we typeset an emdash, otherwise a hyphen sign:
56.303 \def\russian@sh@tmp{%
56.304 \if\russian@sh@next-\expandafter\russian@sh@emdash
56.305 \else\expandafter\russian@sh@hyphen\fi
56.306 }%

TEX looks for the next token after the first ‘-’: the meaning of this token is
written to \russian@sh@next and \russian@sh@tmp is called.

56.307 \futurelet\russian@sh@next\russian@sh@tmp}

304

Here are the definitions of hyphen and emdash. First the hyphen:

56.308 \def \russian@sh@hyphend{’
56.309 \nobreak\-\bbl@allowhyphens}

For the emdash definition, there are the two parameters: we must ‘eat’ two
last hyphen signs of our emdash. . .:

56.310 \def\russian@sh@emdash#1#2{\cdash-#1#2}

\cdash ... these two parameters are useful for another macro: \cdash:

56.311 %\ifx\cdash\undefined % should be defined earlier

56.312 \def\cdash#1#2#3{\def \tempx@{#3}7,

56.313 \def \tempa@{-}\def\tempb@{~}\def\tempc@{*1}7,

56.314 \ifx\tempx@\tempa®@\@Acdash\else

56.315 \ifx\tempx@\tempb@\@Bcdash\else

56.316 \ifx\tempx@\tempc@\@Ccdash\else

56.317 \errmessage{Wrong usage of cdash}\fi\fi\fi}
second parameter (or third for \cdash) shows what kind of emdash to create in
next step

"--- ordinary (plain) Cyrillic emdash inside text: an unbreakable thinspace will
be inserted before only in case of a space before the dash (it is necessary
for dashes after display maths formulae: there could be lists, enumerations
etc. started with “— where a is ...” i.e., the dash starts a line). (Firstly
there were planned rather soft rules for user: he may put a space before
the dash or not. But it is difficult to place this thinspace automatically,
i.e., by checking modes because after display formulae TEX uses horizontal
mode. Maybe there is a misunderstanding? Maybe there is another way?)
After a dash a breakable thinspace is always placed;

56.318 %, What is more grammatically: .2em or .2\fontdimen6\font 7
56.319 \def\@Acdash{\ifdim\lastskip>\z@\unskip\nobreak\hskip.2em\fi
56.320 \cyrdash\hskip.2em\ignorespaces}/

"--~ emdash in compound names or surnames (like Mendeleev—Klapeiron); this
dash has no space characters around; after the dash some space is added
\exhyphenalty

56.321 \def\@Bcdash{\leavevmode\ifdim\lastskip>\z@\unskip\fi
56.322 \nobreak\cyrdash\penalty\exhyphenpenalty\hskip\z@skip\ignorespacesl}/,

"-—* for denoting direct speech (a space like \enskip must follow the emdash);

56.323 \def\@Ccdash{\leavevmode
56.324 \nobreak\cyrdash\nobreak\hskip.35em\ignorespacesl}/
56.325 %\fi

\cyrdash Finally the macro for “body” of the Cyrillic emdash. The \cyrdash macro will
be defined in case this macro hasn’t been defined in a fontenc file. For T2* fonts,
cyrdash will be placed in the code of the English emdash thus it uses ligature ---.

56.326 % Is there an IF necessary?

56.327 \ifx\cyrdash\undefined

56.328 \def\cyrdash{\hbox to.8em{--\hss--}}
56.329 \fi

Here a really new macro—to place thinspace between initials. This macro used
instead of \, allows hyphenation in the following surname.

56.330 \declare@shorthand{russian}{",}{\nobreak\hskip.2em\ignorespaces}
\mdgon All that’s left to do now is to define a couple of commands for ".

\mdqoffss 331 \def\mdqon{\bbleactivate{"}}
56.332 \def\mdqoff{\bbl@deactivate{"}}

305

The Russian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

56.333 \providehyphenmins{\CurrentOption}{\tw@\tw@}
56.334 % temporary hack:

56.335 \ifx\englishhyphenmins\undefined

56.336 \def\englishhyphenmins{\tw@\thr@a@}

56.337 \fi

Now the action \extrasrussian has to execute is to make sure that the
command \frenchspacing is in effect. If this is not the case the execution of
\noextrasrussian will switch it off again.

56.338 \addto\extrasrussian{\bbl@frenchspacing}
56.339 \addto\noextrasrussian{\bbl@nonfrenchspacing}

Next we add a new enumeration style for Russian manuscripts with Cyrillic
letters, and later on we define some math operator names in accordance with
Russian typesetting traditions.

\Asbuk We begin by defining \Asbuk which works like \Alph, but produces (uppercase)
Cyrillic letters intead of Latin ones. The letters YO, ISHRT, HRDSN, ERY, and
SFTSN are skipped, as usual for such enumeration.

56.340 \def \Asbuk#1{\expandafter\@Asbuk\csname c@#1\endcsname}
56.341 \def\@Asbuk#1{\ifcase#1\or

56.342 \CYRA\or\CYRB\or\CYRV\or\CYRG\or\CYRD\or\CYRE\or\CYRZH\or
56.343 \CYRZ\or\CYRI\or\CYRK\or\CYRL\or\CYRM\or\CYRN\or\CYRO\or
56.344 \CYRP\or\CYRR\or\CYRS\or\CYRT\or\CYRU\or\CYRF\or\CYRH\or
56.345 \CYRC\or\CYRCH\or\CYRSH\or\CYRSHCH\or\CYREREV\or\CYRYU\or
56.346 \CYRYA\else\Q@ctrerr\fi}

\asbuk The macro \asbuk is similar to \alph; it produces lowercase Russian letters.

56.347 \def\asbuk#1{\expandafter\@asbuk\csname c@#1\endcsname}
56.348 \def \Q@asbuk#1{\ifcase#1\or

56.349 \cyra\or\cyrb\or\cyrv\or\cyrg\or\cyrd\or\cyre\or\cyrzh\or
56.350 \cyrz\or\cyrilor\cyrk\or\cyrl\or\cyrm\or\cyrn\or\cyro\or
56.351 \cyrp\or\cyrr\or\cyrs\or\cyrt\or\cyru\or\cyrf\or\cyrh\or
56.352 \cyrc\or\cyrch\or\cyrsh\or\cyrshch\or\cyrerev\or\cyryu\or
56.353 \cyrya\else\@ctrerr\fi}

Set up default Cyrillic math alphabets. To use Cyrillic letters in math mode
user should load the textmath package before loading fontenc package (or babel).
Note, that by default Cyrillic letters are taken from upright font in math mode
(unlike Latin letters).

56.354 % \RequirePackage{textmath}

56.355 \@ifundefined{sym\cyrillicencoding letters}{}{%

56.356 \SetSymbolFont{\cyrillicencoding letters}{bold}\cyrillicencoding
56.357 \rmdefault\bfdefault\updefault

56.358 \DeclareSymbolFontAlphabet\cyrmathrm{\cyrillicencoding letters}

And we need a few commands to be able to switch to different variants.

56.359 \DeclareMathAlphabet\cyrmathbf\cyrillicencoding
56.360 \rmdefault\bfdefault\updefault

56.361 \DeclareMathAlphabet\cyrmathsf\cyrillicencoding
56.362 \sfdefault\mddefault\updefault

56.363 \DeclareMathAlphabet\cyrmathit\cyrillicencoding
56.364 \rmdefault\mddefault\itdefault

56.365 \DeclareMathAlphabet\cyrmathtt\cyrillicencoding
56.366 \ttdefault\mddefault\updefault

56.367 %

56.368 \SetMathAlphabet\cyrmathsf{bold}\cyrillicencoding
56.369 \sfdefault\bfdefault\updefault

56.370 \SetMathAlphabet\cyrmathit{bold}\cyrillicencoding
56.371 \rmdefault\bfdefault\itdefault

56.372 }

306

Some math functions in Russian math books have other names: e.g., sinh in
Russian is written as sh etc. So we define a number of new math operators.
\sinh:
56.373 \def\sh{\mathop{\operator@font sh}\nolimits}
\cosh:
56.374 \def\ch{\mathop{\operator@font ch}\nolimits}
\tan:
56.375 \def\tg{\mathop{\operator@font tg}\nolimits}
\arctan:
56.376 \def\arctg{\mathop{\operator@font arctgl}\nolimits}
arcctg:
56.377 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

The following macro conflicts with \th defined in Latin 1 encoding;:
\tanh:

56.378 \addto\extrasrussian{}

56.379 \babel@save{\th}Y%

56.380 \let\ltx@th\th

56.381 \def\th{\textormath{\1txQth}J,

56.382 {\mathop{\operator@font th}\nolimits}}/,
56.383 }

\cot:
56.384 \def\ctg{\mathop{\operator@font ctg}\nolimits}

\coth:

56.385 \def\cth{\mathop{\operator@font cth}\nolimits}
\csc:
56.386 \def\cosec{\mathop{\operator@font cosec}\nolimits}
And finally some other Russian mathematical symbols:

56.387 \def \Prob{\mathop{\kern\z@\mathsf{P}}\nolimits}

56.388 \def\Variance{\mathop{\kern\z@\mathsf{D}}\nolimits}

56.389 \def\nod{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrd.}}\nolimits}
56.390 \def\nok{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrk.}}\nolimits}
56.391 \def \NOD{\mathop{\cyrmathrm{\CYRN\CYRO\CYRD}}\nolimits}
56.392 \def \NOK{\mathop{\cyrmathrm{\CYRN\CYRO\CYRK}}\nolimits}
56.393 \def\Proj{\mathop{\cyrmathrm{\CYRP\cyrr}}\nolimits}

This is for compatibility with older Russian packages.

56.394 \DeclareRobustCommand{\No}{%
56.395 \ifmmode{\nfss@text{\textnumero}}\else\textnumero\fi}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

56.396 \1df@finish{russian}
56.397 (/code)

307

57 The Bulgarian language

The file bulgarian.dtx®” provides the language-specific macros for the Bulgarian
language.

Users should take note of the vaious “cyrillic” dashes available now (see below).
These should remove many causes of headache. Also, although by default the Bul-
garian quotation marks will appear automatically when typesetting in Bulgarian,
it is better to use the new commands \"’ and \"’ which explicitly typeset them.
Note: automatic switch to Bulgarian quotation is withdrawn for the moment and
may not be reintroduced at all.

For this language the character " is made active. In table 32 an overview is
given of its purpose.

" disable ligature at this position.

"— an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"--- Cyrillic emdash in plain text.

--7 Ciyrillic emdash in compound names (surnames).

"--* Cyrillic emdash for denoting direct speech.

" like "-, but producing no hyphen sign (for compound
words with hyphen, e.g. x-""y or some other signs
as “disable/enable”).

" for a compound word mark without a breakpoint.

"= for a compound word mark with a breakpoint, allow-
ing hyphenation in the composing words.

", thinspace for initials with a breakpoint in following
surname.

ne for German left double quotes (looks like).

"o for German right double quotes (looks like ¢).

"< for French left double quotes (looks like <<).

"> for French right double quotes (looks like >>).

Table 32: The extra definitions made bybulgarian

The quotes in table 32 can also be typeset by using the commands in table 33.

\cdash--- Cyrillic emdash in plain text.

\cdash--~ Cyrillic emdash in compound names (surnames).
\cdash--* Cyrillic emdash for denoting direct speech.
\glqq for German left double quotes (looks like,,).
\grqq for German right double quotes (looks like).
\flqq for French left double quotes (looks like <<).
\frqq for French right double quotes (looks like >>).
\dq the original quotes character ().

Table 33: More commands which produce quotes, defined by babel

The French quotes are also available as ligatures ‘<<’ and ‘>>’ in 8-bit Cyrillic
font encodings (LCY, X2, T2*) and as ‘<’ and ‘>’ characters in 7-bit Cyrillic font
encodings (0T2 and LWN).

The quotation marks traditionally used in Bulgarian were borrowed from Ger-
man o they keep their original names. French quotation marks may be seen as
well in older books.

67The file described in this section has version number ? and was last revised on ?. This file
was initially derived from the August-1998 version of russianb.dtx.

It is (reasonably) backward compatible with the 1994/1996 (non-babel) bulgarian style (bul-
garia.sty) by Georgi Boshnakov—files prepared for that style should compile successfully (with
vastly improved appearance due to usage of standard fonts).

308

\latinencoding

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

57.1 (*code)
57.2 \LdfInit{bulgarian}{captionsbulgarian}

When this file is read as an option, i.e., by the \usepackage command,
bulgarian will be an ‘unknown’ language, in which case we have to make it
known. So we check for the existence of \1@bulgarian to see whether we have to
do something here.

57.3 \ifx\1@bulgarian\@undefined
57.4 \@nopatterns{Bulgarian}
57.5 \adddialect\1l@bulgarianO
57.6 \fi

We need to know the encoding for text that is supposed to be which is active at
the end of the babel package. If the fontenc package is loaded later, then .. .too
bad!

57.7 \let\latinencoding\cf@encoding

The user may choose between different available Cyrillic encodings—e.g., X2,
LCY, or LWN. If the user wants to use a font encoding other than the default (T24),
he has to load the corresponding file before bulgarian.sty. This may be done in
the following way:

\usepackage [LCY,0T1]{fontenc} %overwrite the default encoding;
\usepackage [english,bulgarian] {babel}

Note: most people would prefer the T2A to X2, because X2 does not contain
Latin letters, and users should be very careful to switch the language every time
they want to typeset a Latin word inside a Bulgarian phrase or vice versa. On
the other hand, switching the language is a good practice anyway. With a decent
text processing program it does not involve more work than switching between the
Bulgarian and English keyboard. Moreover that the far most common disruption
occurs as a result of forgetting to switch back to cyrillic keyboard.

We parse the \cdp@list containing the encodings known to ITEX in the order
they were loaded. We set the \cyrillicencoding to the last loaded encoding in
the list of supported Cyrillic encodings: 0T2, LWN, LCY, X2, T2C, T2B, T24, if any.

57.8 \def\reserved@a#1#2{},

57.9 \edef\reserved@b{#1}/,

57.10 \edef\reserved@c{#2}J,

57.11 \ifx\reserved@b\reserved@c
57.12 \let\cyrillicencoding\reserved@c
57.13 \fi}

57.14 \def\cdpQelt#1#2#3#4{/,

57.15 \reserved@a{#1}{0T2}}

57.16 \reserved@a{#1}{LWN}J,

57.17 \reserved@a{#1}{LCY})

57.18 \reserved@a{#1}{X2}%

57.19 \reserved@a{#1}{T2C}J,

57.20 \reserved@a{#1}{T2B}/

57.21 \reserved@a{#1}{T2A}}

57.22 \cdp@list

Now, if \cyrillicencoding is undefined, then the user did not load any of
supported encodings. So, we have to set \cyrillicencoding to some default
value. We test the presence of the encoding definition files in the order from
less preferable to more preferable encodings. We use the lowercase names (i.e.,
lcyenc.def instead of LCYenc.def).

57.23 \ifx\cyrillicencoding\undefined
57.24 \IfFileExists{ot2enc.def}{\def\cyrillicencoding{0T2}}\relax

309

57.25 \IfFileExists{lwnenc.def}{\def\cyrillicencoding{LWN}}\relax
57.26 \IfFileExists{lcyenc.def}{\def\cyrillicencoding{LCY}}\relax
57.27 \IfFileExists{x2enc.def}{\def\cyrillicencoding{X2}}\relax

57.28 \IfFileExists{t2cenc.def}{\def\cyrillicencoding{T2C}}\relax
57.29 \IfFileExists{t2benc.def}{\def\cyrillicencoding{T2B}}\relax
57.30 \IfFileExists{t2aenc.def}{\def\cyrillicencoding{T2A}}\relax

If \cyrillicencoding is still undefined, then the user seems not to have a
properly installed distribution. A fatal error.

57.31 \ifx\cyrillicencoding\undefined

57.32 \PackageError{babell}/,

57.33 {No Cyrillic encoding definition files were found}/

57.34 {Your installation is incomplete. \MessageBreak

57.35 You need at least one of the following files: \MessageBreak
57.36 \space\space

57.37 x2enc.def, t2aenc.def, t2benc.def, t2cenc.def, \MessageBreak
57.38 \space\space

57.39 lcyenc.def, lwnenc.def, ot2enc.def.}V,

57.40 \else

We avoid \usepackage[\cyrillicencoding]{fontenc} because we don’t
want to force the switch of \encodingdefault.

57.41 \lowercase
57.42 \expandafter{\expandafter\input\cyrillicencoding enc.def\relax}/,
57.43 \fi
57.44 \fi
\PackageInfo{babel}

{Using ‘\cyrillicencoding’ as a default Cyrillic encodingl}’

57.45 \DeclareRobustCommand{\Bulgarian}{%

57.46 \fontencoding\cyrillicencoding\selectfont

57.47 \let\encodingdefault\cyrillicencoding

57.48 \expandafter\set@hyphenmins\bulgarianhyphenmins
57.49 \language\l@bulgarian}

57.50 \DeclareRobustCommand{\English}{/

57.51 \fontencoding\latinencoding\selectfont

57.52 \let\encodingdefault\latinencoding

57.53 \expandafter\set@hyphenmins\englishhyphenmins
57.54 \language\l@english}

57.55 \let\Bul\Bulgarian

57.56 \let\Bg\Bulgarian

57.57 \let\cyrillictext\Bulgarian

57.58 \let\cyr\Bulgarian

57.59 \let\Eng\English

57.60 \def\selectenglanguage{\selectlanguage{english}}
57.61 \def\selectbglanguage{\selectlanguage{bulgarian}}

Since the X2 encoding does not contain Latin letters,we should make some
redefinitions of I¥TEX macros which implicitly produce Latin letters.

57.62 \expandafter\ifx\csname T@X2\endcsname\relax\else

We put \latinencoding in braces to avoid problems with \@alph inside mini-
pages (e.g., footnotes inside minipages) where \@alph is expanded and we get for
example ‘\fontencoding 0T1’ (\fontencoding is robust).

57.63 \def\@Alph@eng#1{{\fontencoding{\latinencoding}\selectfont

57.64 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or
57.65 K\or L\or M\or N\or O\or P\or Q\or R\or S\or T\or U\lor V\or W\or
57.66 X\or Y\or Z\else \@ctrerr\fi}}}

57.67 \def\@alph@eng#i{{\fontencoding{\latinencoding}\selectfont

57.68 \ifcase#1\or al\or b\or c\or d\or e\or flor g\or h\or ilor j\or
57.69 k\or 1\or m\or n\or o\or p\or g\or r\or s\or t\or ulor v\or w\or

310

57.70 x\or y\or z\else \Q@ctrerr\fi}}%
57.71 \1let\@Alph\@Alph@eng
57.72 \let\@alph\@alph@eng

Unfortunately, the commands \AA and \aa are not encoding dependent in
BTEX (unlike e.g., \oe or \DH). They are defined as \r{A} and \r{a}. This leads
to unpredictable results when the font encoding does not contain the Latin letters
‘A’ and ‘a’ (like X2).

57.73 \DeclareTextSymbolDefault{\AA}{0T1}
57.74 \DeclareTextSymbolDefault{\aa}{0T1}
57.75 \DeclareTextCommand{\AA}{OT1}{\r A}
57.76 \DeclareTextCommand{\aa}{0T1}{\r a}
57.77 \fi

The following block redefines the character class of uppercase Greek letters
and some accents, if it is equal to 7 (variable family), to avoid incorrect results if
the font encoding in some math family does not contain these characters in places
of OT1 encoding. The code was taken from amsmath.dtx. See comments and
further explanation there.

57.78 \begingroup\catcode‘\"=12
57.79 }, uppercase greek letters:
57.80 \def\@tempa#1{\expandafter\Q@tempb\meaning#1i\relax\relax\relax\relax
57.81 "0000\@nil#1}
57.82 \def \@tempb#1"#2#3#4#5#6\0nil#7{}
57.83 \ifnum"#2=7 \count@"1#3#4#5\relax
57.84 \ifnum\count@<"1000 \else \global\mathchardef#7="0#3#4#5\relax \fi
57.85 \fi}
57.86 \@tempa\Gamma\@tempa\Delta\@tempa\Theta\Q@tempa\Lambda\@tempa\Xi
57.87 \@tempa\Pi\Q@tempa\Sigma\@tempa\Upsilon\@tempa\Phi\@tempa\Psi
57.88 \@tempa\Omega
57.89 % some accents:
57.90 \def\Q@tempa#1#2\@nil{\def\@tempc{#1}}\def\@tempb{\mathaccent}
57.91 \expandafter\@tempa\hat\relax\relax\@nil
57.92 \ifx\@tempb\@tempc
57.93 \def\Q@tempa#1\Cnil{#1}Y
57.94 \def\@tempb#1{\afterassignment\@tempa\mathchardef\Q@tempc=1J,
57.95 \def\do#1"#2{}
57.96 \def\@tempd#1{\expandafter\@tempb#1\@Gnil
57.97 \ifnum\@tempc>"FFF
57.98 \xdef#1l{\mathaccent"\expandafter\do\meaning\@tempc\spacel/,
57.99 \fi}
57.100 \@tempd\hat\@tempd\check\@tempd\tilde\@tempd\acute\@tempd\grave
57.101 \@tempd\dot\@tempd\ddot\@tempd\breve\@tempd\bar
57.102 \fi
57.103 \endgroup

The user should use the inputenc package when any 8-bit Cyrillic font encod-
ing is used, selecting one of the Cyrillic input encodings. We do not assume any
default input encoding, so the user should explicitly call the inputenc package
by \usepackage{inputenc}. We also removed \AtBeginDocument, so inputenc
should be used before babel.

57.104 \@ifpackageloaded{inputenc}{}{/

57.105 \def \reserved@a{LWN}%

57.106 \ifx\reserved@a\cyrillicencoding\else

57.107 \def \reserved@a{0T2}

57.108 \ifx\reserved@a\cyrillicencoding\else

57.109 \PackageWarning{babell}},

57.110 {No input encoding specified for Bulgarian language}\fi\fil}

Now we define two commands that offer the possibility to switch between
Cyrillic and Roman encodings.

311

\cyrillictext The command \cyrillictext will switch from Latin font encoding to the Cyrillic
\latintext font encoding, the command \latintext switches back. This assumes that the
‘normal’ font encoding is a Latin one. These commands are declarations, for
shorter peaces of text the commands \textlatin and \textcyrillic can be
used.

We comment out \latintext since it is defined in the core of babel (babel.def).
We add the shorthand \lat for \latintext. Note that \cyrillictext has been

defined above.

57.111 % \DeclareRobustCommand{\latintext}{/
57.112 %, \fontencoding{\latinencoding}\selectfont
57.113 % \def\encodingdefault{\latinencoding}}
57.114 \let\lat\latintext

\textcyrillic These commands take an argument which is then typeset using the requested font
\textlatin encoding. \textlatin is commented out since it is defined in the core of babel.
(It is defined there with \DeclareRobustCommand instead.)

57.115 \DeclareTextFontCommand{\textcyrillic}{\cyrillictext}
57.116 % \DeclareTextFontCommand{\textlatin}{\latintext}

The next step consists of defining commands to switch to (and from) the Bul-
garian language.

\captionsbulgarian The macro \captionsbulgarian defines all strings used in the four standard

document classes provided with XTEX. The two commands \cyr and \lat activate
Cyrillic resp. Latin encoding.

57.117 \addto\captionsbulgarian{y,

57.118 \def\prefacename{J,

57.119 {\cyr\CYRP\cyrr\cyre\cyrd\cyrg\cyro\cyrv\cyro\cyrr}}/

57.120 \def\refname{}

57.121 {\cyr\CYRL\cyri\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}l}’

57.122 \def\abstractname{’

57.123 {\cyr\CYRA\cyrb\cyrs\cyrt\cyrr\cyra\cyrk\cyrt}}%

57.124 \def\bibname{%

57.125 {\cyr\CYRB\cyri\cyrb\cyrl\cyri\cyro\cyrg\cyrr\cyra\cyrf\cyri\cyrya}}’
57.126 \def\chaptername{/,

57.127 {\cyr\CYRG\cyrl\cyra\cyrv\cyral}}’

57.128 \def\appendixname{,

57.129 {\cyr\CYRP\cyrr\cyri\cyrl\cyro\cyrzh\cyre\cyrn\cyri\cyre}}/

57.130 \def\contentsname{/,

57.131 {\cyr\CYRS\cyrhrdsn\cyrd\cyrhrdsn\cyrr\cyrzh\cyra\cyrn\cyri\cyre}}’
57.132 \def\listfigurename{’

57.133 {\cyr\CYRS\cyrp\cyri\cyrs\cyrhrdsn\cyrk\ \cyrn\cyra\ \cyrf\cyri\cyrg\cyru\cyrr\cyri\cyrt

57.134 \def\listtablename{’,

57.135 {\cyr\CYRS\cyrp\cyri\cyrs\cyrhrdsn\cyrk\ \cyrn\cyra\ \cyrt\cyra\cyrb\cyrl\cyri\cyrc\cyri\

57.136 \def\indexname{%

57.137 {\cyr\CYRA\cyrz\cyrb\cyru\cyrch\cyre\cyrn\ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl}}y

57.138 \def\authorname{

57.139 {\cyr\CYRI\cyrm\cyre\cyrn\cyre\cyrn\ \cyru\cyrk\cyra\cyrz\cyra\cyrt\cyre\cyrl}}/

57.140 \def\figurename{’,

57.141 {\cyr\CYRF\cyri\cyrg\cyru\cyrr\cyra}t}’
57.142 \def\tablename{’,

57.143 {\cyr\CYRT\cyra\cyrb\cyrl\cyri\cyrc\cyral}/
57.144 \def\partname{’,

57.145 {\cyr\CYRCH\cyra\cyrs\cyrt}}/

57.146 \def\enclname{%

57.147 {\cyr\CYRP\cyrr\cyri\cyrl\cyro\cyrzh\cyre\cyrn\cyri\cyryal}}’
57.148 \def\ccname{’

57.149 {\cyr\cyrk\cyro\cyrp\cyri\cyrya}l}’

57.150 \def\headtoname{’,

57.151 {\cyr\CYRZ\cyral}}/,

57.152 \def\pagename{’

312

57.153 {\cyr\CYRS\cyrt\cyrr.}}%

57.154 \def\seename{Y,

57.155 {\cyr\cyrv\cyrzh.}}/

57.156 \def\alsoname{%

57.157 {\cyr\cyrv\cyrzh.\ \cyrs\cyrhrdsn\cyrshch\cyro\ \cyri}l}’
57.158 \def\proofname{Proof}), <-- Needs translation

57.159 \def\glossaryname{Glossaryl}) <-- Needs translation

57.160 }

\datebulgarian The macro \datebulgarian redefines the command \today to produce Bulgarian
dates. It also provides the command \todayRoman which produces the date with
the month in capital roman numerals, a popular format for dates in Bulgarian.

57.161 \def\datebulgarian{/
57.162 \def\month@bulgarian{\ifcase\month\or

57.163 \cyrya\cyrn\cyru\cyra\cyrr\cyri\or

57.164 \cyrf\cyre\cyrv\cyrr\cyru\cyra\cyrr\cyri\or
57.165 \cyrm\cyra\cyrr\cyrt\or

57.166 \cyra\cyrp\cyrr\cyri\cyrl\or

57.167 \cyrm\cyra\cyrishrt\or

57.168 \cyryu\cyrn\cyrilor

57.169 \cyryu\cyrl\cyrilor

57.170 \cyra\cyrv\cyrg\cyru\cyrs\cyrt\or

57.171 \cyrs\cyre\cyrp\cyrt\cyre\cyrm\cyrv\cyrr\cyrilor
57.172 \cyro\cyrk\cyrt\cyro\cyrm\cyrv\cyrr\cyri\or
57.173 \cyrn\cyro\cyre\cyrm\cyrv\cyrr\cyri\or

57.174 \cyrd\cyre\cyrk\cyre\cyrm\cyrv\cyrr\cyri\fil}y

57.175 \def\month@Roman{\expandafter\@Roman\monthl}y,

57.176 \def\today{\number\day~ \month@bulgarian\ \number\year~\cyrg.}’
57.177 \def\todayRoman{\number\day.\, \month@Roman.\, \number\year~\cyrg.1}%
57.178 }

\todayRoman The month is often written with roman numbers in Bulgarian dates. Here we
define date in this format:

57.179 \def \Romannumeral#1{\uppercase\expandafter{\romannumeral #1}}
57.180 \def\todayRoman{\number\day. \Romannumeral{\month}. \number\year~\cyrg.}

\extrasbulgarian The macro \extrasbulgarian will perform all the extra definitions needed for
the Bulgarian language. The macro \noextrasbulgarian is used to cancel the
actions of \extrasbulgarian.

The first action we define is to switch on the selected Cyrillic encoding whenever
we enter ‘bulgarian’.

57.181 \addto\extrasbulgarian{\cyrillictext}

When the encoding definition file was processed by ITEX the current font
encoding is stored in \latinencoding, assuming that I#TEX uses T1 or OT1 as
default. Therefore we switch back to \latinencoding whenever the Bulgarian
language is no longer ‘active’.

57.182 \addto\noextrasbulgarian{\latintext}
For Bulgarian the " character also is made active.
57.183 \initiate@active@char{"}

The code above is necessary because we need extra active characters. The
character " is used as indicated in table 32. We specify that the Bulgarian group
of shorthands should be used.

57.184 \addto\extrasbulgarian{\languageshorthands{bulgarian}}
These characters are ‘turned on’ once, later their definition may vary.

57.185 \addto\extrasbulgarian{/,
57.186 \bbl@activate{"}}
57.187 \addto\noextrasbulgarian{y,
57.188 \bbl@deactivate{"}}

313

The X2 and T2* encodings do not contain spanish_shriek and spanish_query
symbols; as a consequence, the ligatures ‘?¢” and ‘! ¢” do not work with them (these
characters are useless for Cyrillic texts anyway). But we define the shorthands to
emulate these ligatures (optionally).

We do not use \latinencoding here (but instead explicitly use 0T1) because
the user may choose T2A to be the primary encoding, but it does not contain these
characters.

57.189 (*spanishligs)

57.190 \declare@shorthand{bulgarian}{?‘}{\UseTextSymbol{0T1}\textquestiondown}
57.191 \declare@shorthand{bulgarian}{!‘}{\UseTextSymbol{0T1}\textexclamdown}
57.192 (/spanishligs)

To be able to define the function of ‘"’, we first define a couple of ‘support’
macros.

\dq We save the original double quote character in \dq to keep it available, the math
accent \"can now be typed as ‘"’.
57.193 \begingroup \catcode‘\"12
57.194 \def\reserved@a{\endgroup
57.195 \def\@SS{\mathchar"7019}
57.196 \def\dq{"}}
57.197 \reserved@a

Now we can define the doublequote macros: german and french quotes. We
use definitions of these quotes made in babel.sty. The french quotes are contained
in the T2* encodings.

57.198 \declare@shorthand{bulgarian}{" ‘}{\glaq}
57.199 \declare@shorthand{bulgarian}{"’}{\grqq}
57.200 \declare@shorthand{bulgarian}{"<}{\flqq}
57.201 \declare@shorthand{bulgarian}{">}{\frqq}

Some additional commands:

57.202 \declare@shorthand{bulgarian}{""}{\hskip\z@skip}

57.203 \declare@shorthand{bulgarian}{"~“}{\textormath{\leavevmode\hbox{-}}{-}}
57.204 \declare@shorthand{bulgarian}{"=}{\nobreak-\hskip\z@skip}

57.205 \declare@shorthand{bulgarian}{" | }{%

57.206 \textormath{\nobreak\discretionary{-}{}{\kern.03em}/,

57.207 \allowhyphens}{}}

The next two macros for "- and "--- are somewhat different. We must check
whether the second token is a hyphen character:

57.208 \declare@shorthand{bulgarian}{"-}{%

If the next token is ‘-’, we typeset an emdash, otherwise a hyphen sign:
57.209 \def\bulgarian@sh@tmp{Y
57.210 \if\bulgarian@sh@next-\expandafter\bulgarian@sh@emdash
57.211 \else\expandafter\bulgarian@sh@hyphen\fi

57.212 }%

TgEX looks for the next token after the first ‘-’: the meaning of this token is
written to \bulgarian@sh@next and \bulgarian@sh@tmp is called.

57.213 \futurelet\bulgarian@sh@next\bulgarian@sh@tmp}
Here are the definitions of hyphen and emdash. First the hyphen:
57.214 \def \bulgarian@sh@hyphen{\nobreak\-\bbl@allowhyphens}

For the emdash definition, there are the two parameters: we must ‘eat’ two
last hyphen signs of our emdash ...:

57.215 \def\bulgarian@sh@emdash#1#2{\cdash-#1#2}

314

\cdash ... these two parameters are useful for another macro: \cdash:

57.216 \ifx\cdash\undefined J should be defined earlier
57.217 \def \cdash#1#2#3{\def \tempx@{#3}7,

57.218 \def\tempa@{-}\def\tempb@{~}\def\tempc@{*1}7,
57.219 \ifx\tempx@\tempa@\Q@Acdash\else

57.220 \ifx\tempx@\tempb@\@Bcdash\else

57.221 \ifx\tempx@\tempc@\@Ccdash\else

57.222 \errmessage{Wrong usage of cdash}\fi\fi\fi}

second parameter (or third for \cdash) shows what kind of emdash to create
in next step

"-—-— ordinary (plain) Cyrillic emdash inside text: an unbreakable thinspace will
be inserted before only in case of a space before the dash (it is necessary
for dashes after display maths formulae: there could be lists, enumerations
etc. started with “—where a is ...” i.e., the dash starts a line). (Firstly
there were planned rather soft rules for user:he may put a space before
the dash or not. But it is difficult to place this thinspace automatically,
i.e., by checking modes because after display formulae TEX uses horizontal
mode. Maybe there is a misunderstanding? Maybe there is another way?)
After a dash a breakable thinspace is always placed;

57.223 % What is more grammatically: .2em or .2\fontdimen6\font?
57.224 \def\@Acdash{\ifdim\lastskip>\z@\unskip\nobreak\hskip.2em\fi
57.225 \cyrdash\hskip.2em\ignorespacesl}/

"--~ emdash in compound names or surnames (like Mendeleev—Klapeiron); this
dash has no space characters around; after the dash some space is added
\exhyphenalty

57.226 \def\@Bcdash{\leavevmode\ifdim\lastskip>\z@\unskip\fi
57.227 \nobreak\cyrdash\penalty\exhyphenpenalty\hskip\z@skip\ignorespacesl}y

"-—* for denoting direct speech (a space like \enskip must follow the emdash);

57.228 \def\@Ccdash{\leavevmode
57.229 \nobreak\cyrdash\nobreak\hskip.35em\ignorespaces}
57.230 %\fi

\cyrdash Finally the macro for “body” of the Cyrillic emdash. The \cyrdash macro will
be defined in case this macro hasn’t been defined in a fontenc file. For T2*fonts,
cyrdash will be placed in the code of the English emdash thus it uses ligature ---.

57.231 % Is there an IF necessary?
57.232 \ifx\cyrdash\undefined

57.233 \def\cyrdash{\hbox to.8em{--\hss--}}
57.234 \fi

Here a really new macro—to place thinspace between initials. This macro used
instead of \, allows hyphenation in the following surname.

57.235 \declare@shorthand{bulgarian}{",}{\nobreak\hskip.2em\ignorespaces?}
The Bulgarian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

57.236 \providehyphenmins{\CurrentOption}{\tw@\tw@}
57.237 \fi

Now the action \extrasbulgarian has to execute is to make sure that the
command \frenchspacing is in effect. If this is not the case the execution of
\noextrasbulgarian will switch it off again.

57.238 \addto\extrasbulgarian{\bbl@frenchspacing}
57.239 \addto\noextrasbulgarian{\bbl@nonfrenchspacing}

315

Make the double quotes produce the traditional quotes used in Bulgarian texts
(these are the German quotes).

57.240 %
57.241 %
57.242 %
57.243 %
57.244 %
57.245 %
57.246 %
57.247 %
57.248 Y%
57.249 %
57.250 %
57.251 %
57.252 %
57.253 %

\initiate®@active@char{‘}
\initiate@active@char{’}
\addto\extrasbulgarian{y
\bbleactivate{‘}}
\addto\extrasbulgarian{y,
\bbl@activate{’}}
\addto\noextrasbulgarian{y,
\bbl@deactivate{‘}}
\addto\noextrasbulgarian{}
\bbl@deactivate{’}}
\def\mlron{\bbl@activate{‘}\bbl@activate{’}}
\def\mlroff{\bbl@deactivate{‘}\bbl@deactivate{’}}
\declare@shorthand{bulgarian}{‘‘}{\glqq}
\declare@shorthand{bulgarian}{’’}{\grqq}

Next we add a new enumeration style for Bulgarian manuscripts with Cyril-
lic letters,and later on we define some math operator names in accordance with
Bulgarian typesetting traditions.

\@Alphebul We begin by defining \@Alph@bul which works like \@Alph, but produces (up-
percase) Cyrillic letters intead of Latin ones. The letters ISHRT, HRDSN and

SEFT

57.254 \
57.255 \
57.256 \
57.257 \
57.258 \
57.259 \
57.260
57.261
57.262
57.263
57.264
57.265
57.266
57.267 \
57.268
57.269
57.270
57.271
57.272

\@alph@bul The
lette

57.273 \
57.274
57.275
57.276
57.277
57.278
57.279
57.280
57.281 \
57.282
57.283
57.284
57.285
57.286

SN are skipped, as usual for such enumeration.

def\enumBul{\1let\@Alph\@Alph@bul \let\@alph\@alph@bul}
def\enumEng{\1let\0Alph\@AlphQeng \let\@alph\@alph®eng}
def\enumLat{\let\@Alph\@Alph@eng \let\@alph\@alph@eng}
addto\extrasbulgarian{\enumBul}

addto\noextrasbulgarian{\enumLat}

def\Q@Alph@bul#1{}

\ifcase#1\or

\CYRA\or \CYRB\or \CYRV\or \CYRG\or \CYRD\or \CYRE\or \CYRZH\or
\CYRZ\or \CYRI\or \CYRK\or \CYRL\or \CYRM\or \CYRN\or \CYRO\or
\CYRP\or \CYRR\or \CYRS\or \CYRT\or \CYRU\or \CYRF\or \CYRH\or
\CYRC\or \CYRCH\or \CYRSH\or \CYRSHCH\or \CYRYU\or \CYRYA\else
\@ctrerr\fi

}

def\@Alph@eng#1{},

\ifcase#l\or

A\or B\or C\or D\or E\or F\or G\or H\or I\or J\or K\or L\or M\or
N\or O\or P\or Q\or R\or S\or T\or Ulor V\or W\or X\or Y\or Z\else
\@ctrerr\fi

}

macro \@alph@bul is similar to \@Alph@bul; it produces lowercase Bulgarian
TS.

def\@alph@bul#1{}

\ifcase#1\or

\cyralor \cyrb\or \cyrv\or \cyrg\or \cyrd\or \cyre\or \cyrzh\or
\cyrz\or \cyrilor \cyrk\or \cyrl\or \cyrm\or \cyrn\or \cyro\or
\cyrp\or \cyrr\or \cyrs\or \cyrt\or \cyru\or \cyrflor \cyrh\or
\cyrc\or \cyrch\or \cyrsh\or \cyrshch\or \cyryulor \cyrya\else
\@ctrerr\fi

}

def\@alph@eng#1{},

\ifcase#1\or

a\or b\or c\or d\or e\or flor g\or h\or ilor j\or k\or 1l\or m\or
n\or o\or p\or g\or r\or s\or t\or ulor v\or w\or x\or y\or z\else
\@ctrerr\fi

}

316

Set up default Cyrillic math alphabets. To use Cyrillic letters in math mode
user should load the textmath package before loading fontenc package (or babel).
Note,that by default Cyrillic letters are taken from upright font in math mode

(unlike Latin letters).

57.287 % \RequirePackage{textmath}
57.288 \@ifundefined{sym\cyrillicencoding letters}{}{%

57.289 \SetSymbolFont{\cyrillicencoding letters}{bold}\cyrillicencoding

57.290 \rmdefault\bfdefault\updefault

57.291 \DeclareSymbolFontAlphabet\cyrmathrm{\cyrillicencoding letters}

And we need a few commands to be able to switch to different variants.

57.292 \DeclareMathAlphabet\cyrmathbf\cyrillicencoding
57.293 \rmdefault\bfdefault\updefault

57.294 \DeclareMathAlphabet\cyrmathsf\cyrillicencoding
57.295 \sfdefault\mddefault\updefault

57.296 \DeclareMathAlphabet\cyrmathit\cyrillicencoding
57.297 \rmdefault\mddefault\itdefault

57.298 \DeclareMathAlphabet\cyrmathtt\cyrillicencoding
57.299 \ttdefault\mddefault\updefault

57.300 \SetMathAlphabet\cyrmathsf{bold}\cyrillicencoding
57.301 \sfdefault\bfdefault\updefault

57.302 \SetMathAlphabet\cyrmathit{bold}\cyrillicencoding
57.303 \rmdefault\bfdefault\itdefault

57.304 }

Some math functions in Bulgarian math books have other names:

e.g., sinh

in Bulgarian is written as sh etc. So we define a number of new math operators.

\sinh:

57.305 \def\sh{\mathop{\operator@font sh}\nolimits}
\cosh:

57.306 \def\ch{\mathop{\operator@font ch}\nolimits}
\tan:

57.307 \def\tg{\mathop{\operator@font tg}\nolimits}
\arctan:

57.308 \def\arctg{\mathop{\operator@font arctg}\nolimits}
\arccot:

57.309 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

The following macro conflicts with \th defined in Latin 1 encoding: \tanh:

57.310 \addto\extrasrussian{’

57.311 \babel@save{\th}/,

57.312 \let\1ltx@th\th

57.313 \def\th{\textormath{\1tx@th}J,

57.314 {\mathop{\operator@font th}\nolimitsl}}
57.315 }

\cot:

57.316 \def\ctg{\mathop{\operator@font ctg}\nolimits}
\coth:

57.317 \def\cth{\mathop{\operator@font cth}\nolimits}
\csc:

57.318 \def\cosec{\mathop{\operator@font cosec}\nolimits}
This is for compatibility with older Bulgarian packages.

57.319 \DeclareRobustCommand{\No}{%
57.320 \ifmmode{\nfss@text{\textnumero}}\else\textnumero\fi}

317

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

57.321 \1df@f inish{bulgarian}
57.322 (/code)

318

58 The Ukrainian language

The file ukraineb.dtx%® defines all the language-specific macros for the Ukrainian
language. It needs the file cyrcod for success documentation with Ukrainian
encodings (see below).

For this language the character " is made active. In table 34 an overview is
given of its purpose.

" disable ligature at this position.

"— an explicit hyphen sign, allowing hyphenation in the
rest of the word.

"--- Cyrillic emdash in plain text.

"--~ Cyrillic emdash in compound names (surnames).

"--* Cyrillic emdash for denoting direct speech.

" like "-, but producing no hyphen sign (for compund
words with hyphen, e.g. x-""y or some other signs
as “disable/enable”).

" for a compound word mark without a breakpoint.

"= for a compound word mark with a breakpoint, allow-
ing hyphenation in the composing words.

", thinspace for initials with a breakpoint in following
surname.

ne for German left double quotes (looks like).

" for German right double quotes (looks like ¢).

"< for French left double quotes (looks like <<).

"> for French right double quotes (looks like >>).

Table 34: The extra definitions made by ukraineb

The quotes in table 34 (see, also table 30) can also be typeset by using the
commands in table 35 (see, also table 31).

\cdash--- Cyrillic emdash in plain text.

\cdash--~ Cyrillic emdash in compound names (surnames).
\cdash--* Cyrillic emdash for denoting direct speech.
\glqq for German left double quotes (looks like ,,).
\grqq for German right double quotes (looks like).
\flqq for French left double quotes (looks like <<).
\frqq for French right double quotes (looks like >>).
\dq the original quotes character ().

Table 35: More commands which produce quotes, defined by babel

The French quotes are also available as ligatures ‘<<’ and ‘>>’ in 8-bit Cyrillic
font encodings (LCY, X2, T2#) and as ‘<’ and ‘>’ characters in 7-bit Cyrillic font
encodings (0T2 and LWN).

The quotation marks traditionally used in Ukrainian and Russian languages
were borrowed from other languages (e.g. French and German) so they keep their
original names.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

58.1 (*code)
58.2 \Ldf Init{ukrainian}{captionsukrainian}

68 The file described in this section has version number ?. This file was derived from the
russianb.dtx version 1.1g.

319

\latinencoding

When this file is read as an option, i.e., by the \usepackage command,
ukraineb will be an ‘unknown’ language, in which case we have to make it known.
So we check for the existence of \1@ukrainian to see whether we have to do some-
thing here.

58.3 \ifx\1l@ukrainian\@undefined
58.4 \@nopatterns{Ukrainian}
58.5 \adddialect\l@ukrainianO
58.6 \fi

We need to know the encoding for text that is supposed to be which is active at
the end of the babel package. If the fontenc package is loaded later, then...too
bad!

58.7 \let\latinencoding\cf@encoding

The user may choose between different available Cyrillic encodings—e.g., X2,
LCY, or LWN. Hopefully, X2 will eventually replace the two latter encodings (LCY
and LWN). If the user wants to use another font encoding than the default (T24),
he has to load the corresponding file before ukraineb.sty. This may be done in
the following way:

% override the default X2 encoding used in Babel
\usepackage [LCY,0T1]{fontenc}
\usepackage [english,ukrainian] {babel}

Note: for the Ukrainian language, the T2A encoding is better than X2, because
X2 does not contain Latin letters, and users should be very careful to switch the
language every time they want to typeset a Latin word inside a Ukrainian phrase
or vice versa.

We parse the \cdp@list containing the encodings known to KTEX in the order
they were loaded. We set the \cyrillicencoding to the last loaded encoding in
the list of supported Cyrillic encodings: 0T2, LWN, LCY, X2, T2C, T2B, T24, if any.

58.8 \def\reserved@a#1#2{},
58.9 \edef\reserved@b{#1}/,
58.10 \edef\reserved@c{#2}J

58.11 \ifx\reserved@b\reserved@c
58.12 \let\cyrillicencoding\reserved@c
58.13 \fi}

58.14 \def\cdp@elt#1#2#3#4{/,
58.15 \reserved@a{#1}{0T2}/
58.16 \reserved@a{#1}{LWN}J,
58.17 \reserved@a{#1}{LCY}/
58.18 \reservedQa{#1}{X2}/
58.19 \reserved@a{#1}{T2C}),
58.20 \reserved@a{#1}{T2B}/
58.21 \reserved@a{#1}{T2A}}
58.22 \cdp@list

Now, if \cyrillicencoding is undefined, then the user did not load any of
supported encodings. So, we have to set \cyrillicencoding to some default
value. We test the presence of the encoding definition files in the order from
less preferable to more preferable encodings. We use the lowercase names (i.e.,
lcyenc.def instead of LCYenc.def).

58.23 \ifx\cyrillicencoding\undefined

58.24 \IfFileExists{ot2enc.def}{\def\cyrillicencoding{0T2}}\relax
58.25 \IfFileExists{lwnenc.def}{\def\cyrillicencoding{LWN}}\relax
58.26 \IfFileExists{lcyenc.def}{\def\cyrillicencoding{LCY}}\relax
58.27 \IfFileExists{x2enc.def}{\def\cyrillicencoding{X2}}\relax
58.28 \IfFileExists{t2cenc.def}{\def\cyrillicencoding{T2C}}\relax
58.29 \IfFileExists{t2benc.def}{\def\cyrillicencoding{T2B}}\relax
58.30 \IfFileExists{t2aenc.def}{\def\cyrillicencoding{T2A}}\relax

320

If \cyrillicencoding is still undefined, then the user seems not to have a
properly installed distribution. A fatal error.

58.31 \ifx\cyrillicencoding\undefined

58.32 \PackageError{babel}/,

58.33 {No Cyrillic encoding definition files were foundl}

58.34 {Your installation is incomplete.\MessageBreak

58.35 You need at least one of the following files:\MessageBreak
58.36 \space\space

58.37 x2enc.def, t2aenc.def, t2benc.def, t2cenc.def,\MessageBreak
58.38 \space\space

58.39 lcyenc.def, lwnenc.def, ot2enc.def.},

58.40 \else

We avoid \usepackage[\cyrillicencoding]{fontenc} because we don’t
want to force the switch of \encodingdefault.

58.41 \lowercase
58.42 \expandafter{\expandafter\input\cyrillicencoding enc.def\relax}/,
58.43 \fi
58.44 \fi
\PackageInfo{babell}

{Using ‘\cyrillicencoding’ as a default Cyrillic encodingl}’

58.45 \DeclareRobustCommand{\Ukrainian}{%

58.46 \fontencoding\cyrillicencoding\selectfont
58.47 \let\encodingdefault\cyrillicencoding

58.48 \expandafter\set@hyphenmins\ukrainianhyphenmins
58.49 \language\lQukrainian}j,

58.50 \DeclareRobustCommand{\English}{%

58.51 \fontencoding\latinencoding\selectfont

58.52 \let\encodingdefault\latinencoding

58.53 \expandafter\set@hyphenmins\englishhyphenmins
58.54 \language\l@english},

58.55 \let\Ukr\Ukrainian

58.56 \1let\Eng\English

58.57 \let\cyrillictext\Ukrainian

58.58 \let\cyr\Ukrainian

Since the X2 encoding does not contain Latin letters, we should make some
redefinitions of ITEX macros which implicitly produce Latin letters.

58.59 \expandafter\ifx\csname TO@X2\endcsname\relax\else

We put \latinencoding in braces to avoid problems with \@alph inside mini-
pages (e.g., footnotes inside minipages) where \@alph is expanded and we get for
example ‘\fontencoding 0T1’ (\fontencoding is robust).

58.60 \def\@alph#1{{\fontencoding{\latinencoding}\selectfont
58.61 \ifcase#1\or

58.62 al\or b\or c\or d\or e\or flor g\or h\or
58.63 ilor j\or k\or 1l\or m\or n\or o\or p\or
58.64 g\or r\or s\or t\or ulor v\or w\or x\or
58.65 y\or z\else\@ctrerr\fi}}J,

58.66 \def\@Alph#1{{\fontencoding{\latinencodingl}\selectfont
58.67 \ifcase#1\or

58.68 A\or B\or C\or D\or E\or F\or G\or H\or
58.69 I\Nor J\or K\or L\or M\or N\or O\or P\or
58.70 Q\or R\or S\or T\or Ulor V\or W\or X\or
58.71 Y\or Z\else\@ctrerr\fi}}/

Unfortunately, the commands \AA and \aa are not encoding dependent in
KTEX (unlike e.g., \oe or \DH). They are defined as \r{A} and \r{a}. This leads
to unpredictable results when the font encoding does not contain the Latin letters
‘A’ and ‘a’ (like X2).

321

58.72 \DeclareTextSymbolDefault{\AA}{OT1}
58.73 \DeclareTextSymbolDefault{\aa}{0T1}
58.74 \DeclareTextCommand{\aa}{0T1}{\r a}
58.75 \DeclareTextCommand{\AA}{OT1}{\r A}
58.76 \fi

The following block redefines the character class of uppercase Greek letters
and some accents, if it is equal to 7 (variable family), to avoid incorrect results if
the font encoding in some math family does not contain these characters in places
of OT1 encoding. The code was taken from amsmath.dtx. See comments and
further explanation there.

58.77 % \begingroup\catcode‘\"=12

58.78 % % uppercase greek letters:

58.79 % \def\@tempa#l{\expandafter\Q@tempb\meaning#i\relax\relax\relax\relax
58.80 % "0000\@nil#1}

58.81 % \def\@tempb#1"#2#3#4#5#6\0nil#7{%

58.82 % \ifnum"#2=7 \count@"1#3#4#5\relax

58.83 % \ifnum\count@<"1000 \else \global\mathchardef#7="0#3#4#5\relax \fi
58.84 % \fi}

58.85 % \@tempa\Gamma\@tempa\Delta\@tempa\Theta\@tempa\Lambda\@tempa\Xi
58.86 % \Q@tempa\Pi\@tempa\Sigma\@tempa\Upsilon\@tempa\Phi\@tempa\Psi

58.87 % \@tempa\Omega

58.88 % % some accents:

58.89 % \def\Q@tempa#1#2\0nil{\def\Q@tempc{#1}}\def\@tempb{\mathaccent}

58.90 % \expandafter\@tempa\hat\relax\relax\@nil

58.91 % \ifx\@tempb\Q@tempc

58.92 % \def\Q@tempa#1\Onil{#1}%

58.93 % \def\@tempb#1{\afterassignment\@tempa\mathchardef\@tempc=}%

58.94 % \def\do#1"#2{}

58.95 % \def\@tempd#1{\expandafter\Qtempb#1\@nil

58.96 % \ifnum\@tempc>"FFF
58.97 % \xdef#1{\mathaccent"\expandafter\do\meaning\@tempc\spacel}’
58.98 % \fi}

58.99 % \@tempd\hat\@tempd\check\@tempd\tilde\@tempd\acute\@tempd\grave

58.100 % \@tempd\dot\@tempd\ddot\@tempd\breve\Q@tempd\bar
58.101 % \fi
58.102 % \endgroup

\cyrillictext
\latintext

The user must use the inputenc package when any 8-bit Cyrillic font encoding
is used, selecting one of the Cyrillic input encodings. We do not assume any
default input encoding, so the user should explicitly call the inputenc package
by \usepackage{inputenc}. We also removed \AtBeginDocument, so inputenc
should be used before babel.

58.103 \@ifpackageloaded{inputenc}{}{/
58.104 \def\reserved@a{LWN}%
58.105 \ifx\reserved®@a\cyrillicencoding\else

58.106 \def\reserved@a{0T2}}

58.107 \ifx\reserved@a\cyrillicencoding\else

58.108 \PackageWarning{babell}%

58.109 {No input encoding specified for Ukrainian language}

58.110 \fi\fi}

Now we define two commands that offer the possibility to switch between
Cyrillic and Roman encodings.

The command \cyrillictext will switch from Latin font encoding to the Cyrillic
font encoding, the command \latintext switches back. This assumes that the
‘normal’ font encoding is a Latin one. These commands are declarations, for
shorter peaces of text the commands \textlatin and \textcyrillic can be
used.

58.111 %\DeclareRobustCommand{\latintext}{/
58.112 %, \fontencoding{\latinencodingl}\selectfont

322

58.113

%

\def\encodingdefault{\latinencoding}}

58.114 \let\lat\latintext

\textcyrillic These commands take an argument which is then typeset using the requested font
\textlatin encoding.

58.115 \DeclareTextFontCommand{\textcyrillic}{\cyrillictext}
58.116 %\DeclareTextFontCommand{\textlatin}{\latintext}

We make the TEX

58.117 %\ifx\1txTeX\undefined\let\1txTeX\TeX\fi
58.118 %\ProvideTextCommandDefault{\TeX}{\textlatin{\1txTeX}}

and IATEX logos encoding independent.

58.119 %\ifx\1txLaTeX\undefined\let\1ltxLaTeX\LaTeX\fi
58.120 %\ProvideTextCommandDefault{\LaTeX}{\textlatin{\1txLaTeX}}

The next step consists of defining commands to switch to (and from) the
Ukrainian language.

\captionsukrainian The macro \captionsukrainian defines all strings used in the four standard
document classes provided with TEX. The two commands \cyr and \lat activate
Cyrillic resp. Latin encoding.

58.121 \addto\captionsukrainian{y

58.122
58.123
58.124
58.125
58.126
58.127
58.128
58.129
58.130
58.131
58.132
58.133
58.134
58.135
58.136
58.137
58.138
58.139
58.140
58.141
58.142
58.143
58.144
58.145
58.146
58.147
58.148
58.149
58.150
58.151
58.152
58.153
58.154
58.155
58.156
58.157
58.158
58.159
58.160
58.161

%

h
h
%

%

%

%

%

%

%

\def\prefacename{{\cyr\CYRV\cyrs\cyrt\cyru\cyrp}}%
\def\prefacename{{\cyr\CYRP\cyre\cyrr\cyre\cyrd\cyrm\cyro\cyrv\cyral}}’
\def\refname{/,
{\cyr\CYRL\cyrii\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}l}’
\def\refname{%
{\cyr\CYRP\cyre\cyrr\cyre\cyrl\cyrii\cyrk
\ \cyrp\cyro\cyrs\cyri\cyrl\cyra\cyrn\cyrsftsn}}/
\def\abstractname{¥
{\cyr\CYRA\cyrn\cyro\cyrt\cyra\cyrc\cyrii\cyryal}}
\def\abstractname{{\cyr\CYRR\cyre\cyrf\cyre\cyrr\cyra\cyrt}}/
\def\bibname{%
{\cyr\CYRB\cyrii\cyrb\cyrl\cyrii\cyro\cyrgup\cyrr\cyra\cyrf\cyrii\cyrya}}’
\def\bibname{{\cyr\CYRL\cyrii\cyrt\cyre\cyrr\cyra\cyrt\cyru\cyrr\cyra}ll}’
\def\chaptername{{\cyr\CYRR\cyro\cyrz\cyrd\cyrii\cyrl}}’
\def\chaptername{{\cyr\CYRG\cyrl\cyra\cyrv\cyral}l}/
\def\appendixname{{\cyr\CYRD\cyro\cyrd\cyra\cyrt\cyro\cyrk}}%
\def\contentsname{{\cyr\CYRZ\cyrm\cyrii\cyrs\cyrt}}/
\def\listfigurename{{\cyr\CYRP\cyre\cyrr\cyre\cyrl\cyriilcyrk
\ \cyriilcyrl\cyryu\cyrs\cyrt\cyrr\cyra\cyrc\cyrii\cyrishrt}}/,
\def\listtablename{{\cyr\CYRP\cyre\cyrr\cyre\cyrl\cyrii\cyrk
\ \cyrt\cyra\cyrb\cyrl\cyri\cyrc\cyrsftsn}}’%
\def\indexname{{\cyr\CYRP\cyro\cyrk\cyra\cyrzh\cyrch\cyri\cyrk}}/
\def\authorname{{\cyr\CYRII\cyrm\cyre\cyrn\cyrn\cyri\cyrishrt
\ \cyrp\cyro\cyrk\cyra\cyrzh\cyrch\cyri\cyrk}}%
\def\figurename{{\cyr\CYRR\cyri\cyrs.2}}%
\def\figurename{\cyr\CYRR\cyri\cyrs\cyru\cyrn\cyro\cyrk}}%
\def\tablename{{\cyr\CYRT\cyra\cyrb\cyrl.}}%
\def\tablename{\cyr\CYRT\cyra\cyrb\cyrl\cyri\cyrc\cyryal}}%
\def\partname{{\cyr\CYRCH\cyra\cyrs\cyrt\cyri\cyrn\cyral}}/
\def\enclname{{\cyr\cyrv\cyrk\cyrl\cyra\cyrd\cyrk\cyra}}%
\def\ccname{{\cyr\cyrk\cyro\cyrp\cyrii\cyryal}l}/
\def\headtoname{{\cyr\CYRD\cyrol}1}/
\def\pagename{{\cyr\cyrs.}}/
\def\pagename{{\cyr\cyrs\cyrt\cyro\cyrr\cyrii\cyrn\cyrk\cyral}}’
\def\seename{{\cyr\cyrd\cyri\cyrv.}}/
\def\alsoname{{\cyr\cyrd\cyri\cyrv.\ \cyrt\cyra\cyrk\cyro\cyrzh}}
\def\proofname{{\cyr\CYRD\cyro\cyrv\cyre\cyrd\cyre\cyrn\cyrn\cyrya}l}’
\def\glossaryname{{\cyr\CYRS\cyrl\cyro\cyrv\cyrn\cyri\cyrk\ %
\cyrt\cyre\cyrr\cyrm\cyrii\cyrn\cyrii\cyrv}}y
}

323

\dateukrainian The macro \dateukrainian redefines the command \today to produce Ukrainian
dates.

58.162 \def\dateukrainian{y
58.163 \def\today{\number\day~\ifcase\month\or

58.164 \cyrs\cyriilcyrch\cyrn\cyrya\or

58.165 \cyrl\cyryu\cyrt\cyro\cyrg\cyro\or
58.166 \cyrb\cyre\cyrr\cyre\cyrz\cyrn\cyrya\or
58.167 \cyrk\cyrv\cyriilcyrt\cyrn\cyrya\or
58.168 \cyrt\cyrr\cyra\cyrv\cyrn\cyrya\or
58.169 \cyrch\cyre\cyrr\cyrv\cyrn\cyrya\or

58.170 \cyrl\cyri\cyrp\cyrn\cyrya\or

58.171 \cyrs\cyre\cyrr\cyrp\cyrn\cyrya\or

58.172 \cyrv\cyre\cyrr\cyre\cyrs\cyrn\cyrya\or

58.173 \cyrzh\cyro\cyrv\cyrt\cyrn\cyrya\or

58.174 \cyrl\cyri\cyrs\cyrt\cyro\cyrp\cyra\cyrd\cyra\or
58.175 \cyrg\cyrr\cyru\cyrd\cyrn\cyrya\fi

58.176 \space\number\year~\cyrr.}}

\extrasukrainian The macro \extrasukrainian will perform all the extra definitions needed for
the Ukrainian language. The macro \noextrasukrainian is used to cancel the
actions of \extrasukrainian.

The first action we define is to switch on the selected Cyrillic encoding whenever
we enter ‘ukrainian’.

58.177 \addto\extrasukrainian{\cyrillictext}

When the encoding definition file was processed by KTEX the current font
encoding is stored in \latinencoding, assuming that KTEX uses T1 or OT1 as
default. Therefore we switch back to \latinencoding whenever the Ukrainian
language is no longer ‘active’.

58.178 \addto\noextrasukrainian{\latintext}

Next we must allow hyphenation in the Ukrainian words with apostrophe
whenever we enter ‘ukrainian’. This solution was proposed by Vladimir Volovich
<vvv@Qvvv.vsu.ru>

58.179 \addto\extrasukrainian{\lccode‘\’=‘\"}
58.180 \addto\noextrasukrainian{\lccode‘\’=0}

\verbatim@font In order to get both Latin and Cyrillic letters in verbatim text we need to change
the definition of an internal M TEX command somewhat:

58.181 %\def\verbatim@font{Y

58.182 % \let\encodingdefault\latinencoding

58.183 % \normalfont\ttfamily

58.184 % \expandafter\def\csname\cyrillicencoding-cmd\endcsname##1##2{%
58.185 % \ifx\protect\@typeset@protect

58.186 % \begingroup\UseTextSymbol\cyrillicencoding##1\endgroup
58.187 % \else\noexpand##1\fi}}

9 [G

The category code of the characters ‘:’, 37, ‘1’ and ‘?’ is made \active to
insert a little white space.

For Ukrainian (as well as for Russian and German) the " character also is made
active.

Note: It is very questionable whether the Russian typesetting tradition re-
quires additional spacing before those punctuation signs. Therefore, we make the
corresponding code optional. If you need it, then define the frenchpunct docstrip
option in babel.ins.

Borrowed from french. Some users dislike automatic insertion of a space before
‘double punctuation’, and prefer to decide themselves whether a space should be
added or not; so a hook \NoAutoSpaceBeforeFDP is provided: if this command is
added (in file ukraineb.cfg, or anywhere in a document) ukraineb will respect

324

your typing, and introduce a suitable space before ‘double punctuation’ if and
only if a space is typed in the source file before those signs.

The command \AutoSpaceBeforeFDP switches back to the default behavior of
ukraineb.

58.188 (*frenchpunct)

58.189 \initiate@active@char{:}
58.190 \initiate@active@char{;}
58.191 (/frenchpunct)

58.192 (*frenchpunct | spanishligs)
58.193 \initiate@active@char{!}
58.194 \initiate@active@char{?}
58.195 (/frenchpunct | spanishligs)
58.196 \initiate@active@char{"}

The code above is necessary because we need extra active characters. The
character " is used as indicated in table 34.
We specify that the Ukrainian group of shorthands should be used.

58.197 \addto\extrasukrainian{\languageshorthands{ukrainian}}
These characters are ‘turned on’ once, later their definition may vary.

58.198 \addto\extrasukrainian{/

58.199 (frenchpunct) \bbl@activate{:}\bbl@activate{;})

58.200 (frenchpunct | spanishligs) \bbl@activate{!}\bbl@activate{?}}
58.201 \bbl@activate{"}}

58.202 \addto\noextrasukrainian{

58.203 (frenchpunct) \bbl@deactivate{:}\bbl@deactivated;}/

58.204 (frenchpunct | spanishligs) \bbl@deactivate{!}\bbl@deactivate{?}}
58.205 \bbl@deactivate{"}}

The X2 and T2* encodings do not contain spanish_shriek and spanish_query
symbols; as a consequence, the ligatures ‘?¢” and ‘! ¢’ do not work with them (these
characters are useless for Cyrillic texts anyway). But we define the shorthands to
emulate these ligatures (optionally).

We do not use \latinencoding here (but instead explicitly use 0T1) because
the user may choose T2A to be the primary encoding, but it does not contain these
characters.

58.206 (*spanishligs)

58.207 \declare@shorthand{ukrainian}{?‘}{\UseTextSymbol{0T1}\textquestiondown}
58.208 \declare@shorthand{ukrainian}{! ‘}{\UseTextSymbol{0T1}\textexclamdown}
58.209 (/spanishligs)

\ukrainian@sh@;@ We have to reduce the amount of white space before ;, : and !. This should only
\ukrainian@sh@:@ happen in horizontal mode, hence the test with \ifhmode.

\ukrainian@sh@!@

58.210 (*frenchpunct)

\ukrainian@sh@?@;g 5, \declare@shorthand{ukrainian}{; }H}%

58.212 \ifhmode

In horizontal mode we check for the presence of a ‘space’, ‘unskip’ if it exists
and place a 0.1em kerning.

58.213 \ifdim\lastskip>\z@
58.214 \unskip\nobreak\kern. lem
58.215 \else

If no space has been typed, we add \FDP@thinspace which will be defined, up to
the user’s wishes, as an automatic added thinspace, or as \Q@empty.

58.216 \FDP@thinspace
58.217 \fi
58.218 \fi

Now we can insert a ‘;’ character.

58.219 \string;}

325

The other definitions are very similar.

58.220 \declare@shorthand{ukrainian}{:}{/},
58.221 \ifhmode

58.222 \ifdim\lastskip>\z@

58.223 \unskip\nobreak\kern. lem
58.224 \else

58.225 \FDP@thinspace

58.226 \fi

58.227 \fi

58.228 \string:}

58.229 \declare@shorthand{ukrainian}{!}{},
58.230 \ifhmode

58.231 \ifdim\lastskip>\z@

58.232 \unskip\nobreak\kern. lem
58.233 \else

58.234 \FDP@thinspace

58.235 \fi

58.236 \fi

58.237 \string!}

58.238 \declare@shorthand{ukrainian}{?}{},
58.239 \ifhmode

58.240 \ifdim\lastskip>\z@

58.241 \unskip\nobreak\kern. lem
58.242 \else

58.243 \FDP@thinspace

58.244 \fi

58.245 \fi

58.246 \string?}

\AutoSpaceBeforeFDP \FDP@thinspace is defined as unbreakable spaces if \AutoSpaceBeforeFDP is
\NoAutoSpaceBeforeFDP activated or as \@empty if \NoAutoSpaceBeforeFDP is in use. The default is
\FDP@thinspace \AutoSpaceBeforeFDP.
58.247 \def \AutoSpaceBeforeFDP{},
58.248 \def\FDP@thinspace{\nobreak\kern. lem}}
58.249 \def \NoAutoSpaceBeforeFDP{\let\FDP@thinspace\Q@empty}
58.250 \AutoSpaceBeforeFDP

\FDPon The next macros allow to switch on/off activeness of double punctuation signs.

\FDPoffy s 251 \def\FDPon{\bblactivate{: }%

58.252 \bbl@activate{;}}

58.253 \bbl@activate{?}}

58.254 \bbl@activate{!}}

58.255 \def \FDPoff{\bbl@deactivate{:}/,
58.256 \bbl@deactivated{;}/
58.257 \bbl@deactivate{?}},
58.258 \bbl@deactivate{!}}

\system@sh@:@ When the active characters appear in an environment where their Ukrainian be-
\system@sh@!@ haviour is not wanted they should give an ‘expected’ result. Therefore we define
\system@sh@?@ shorthands at system level as well.

\systemQshQ; Q.. ., \declare@shorthand{system}{:}{\string:}

58.260 \declare@shorthand{system}{; }{\string;}
58.261 (/frenchpunct)

58.262 (*frenchpunct&!spanishligs)

58.263 \declare@shorthand{system}{!}{\string!}
58.264 \declare@shorthand{system}{?}{\string?}
58.265 (/frenchpunct&!spanishligs)

To be able to define the function of ‘"’ we first define a couple of ‘support’
macros.

326

\dqg We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ‘"’.

58.266 \begingroup \catcode‘\"12
58.267 \def\reserved@a{\endgroup
58.268 \def\@SS{\mathchar"7019 }
58.269 \def\dq{"}}

58.270 \reserved@a

Now we can define the doublequote macros: german and french quotes. We
use definitions of these quotes made in babel.sty. The french quotes are contained
in the T2* encodings.

58.271 \declare@shorthand{ukrainian}{" ‘}{\glqq}
58.272 \declare@shorthand{ukrainian}{"’}{\grqq}
58.273 \declare@shorthand{ukrainian}{"<}{\flqq}
58.274 \declare@shorthand{ukrainian}{">}{\frqq}

Some additional commands:

58.275 \declare@shorthand{ukrainian}{""}{\hskip\z@skip}

58.276 \declare@shorthand{ukrainian}{"~}{\textormath{\leavevmode\hbox{-}}{-}}
58.277 \declare@shorthand{ukrainian}{"=}{\nobreak-\hskip\z@skip}

58.278 \declare@shorthand{ukrainian}{" | }{%

58.279 \textormath{\nobreak\discretionary{-}{}{\kern.03em}/,

58.280 \allowhyphens}{}}

The next two macros for "- and "--- are somewhat different. We must check
whether the second token is a hyphen character:

58.281 \declare@shorthand{ukrainian}{"-}{%

If the next token is ‘-’, we typeset an emdash, otherwise a hyphen sign:
58.282 \def\ukrainian@sh@tmp{%
58.283 \if\ukrainian@sh@next-\expandafter\ukrainian@sh@emdash
58.284 \else\expandafter\ukrainian@sh@hyphen\fi
58.285 }h

TEX looks for the next token after the first ‘-’: the meaning of this token is
written to \ukrainian@sh@next and \ukrainian@sh@tmp is called.

58.286 \futurelet\ukrainian@sh®@next\ukrainian@sh@tmp}
Here are the definitions of hyphen and emdash. First the hyphen:

58.287 \def \ukrainian@sh@hyphen{’,
58.288 \nobreak\-\bbl@allowhyphens}

For the emdash definition, there are the two parameters: we must ‘eat’ two
last hyphen signs of our emdash...:

58.289 \def\ukrainian@sh@emdash#1#2{\cdash-#1#2}

\cdash ... these two parameters are useful for another macro: \cdash:

58.290 %\ifx\cdash\undefined % should be defined earlier
58.291 \def\cdash#1#2#3{\def \tempx@{#3}7,

58.292 \def \tempa®@{-}\def\tempb@{~}\def\tempc@{*1}7,

58.293 \ifx\tempx@\tempa@\@Acdash\else

58.294 \ifx\tempx@\tempb@\@Bcdash\else

58.295 \ifx\tempx@\tempc@\@Ccdash\else

58.296 \errmessage{Wrong usage of cdash}\fi\fi\fi}

second parameter (or third for \cdash) shows what kind of emdash to create in
next step

327

"--- ordinary (plain) Cyrillic emdash inside text: an unbreakable thinspace will
be inserted before only in case of a space before the dash (it is necessary
for dashes after display maths formulae: there could be lists, enumerations
etc. started with “— where a is ...” i.e., the dash starts a line). (Firstly
there were planned rather soft rules for user: he may put a space before
the dash or not. But it is difficult to place this thinspace automatically,
i.e., by checking modes because after display formulae TEX uses horizontal
mode. Maybe there is a misunderstanding? Maybe there is another way?)
After a dash a breakable thinspace is always placed;

58.297 % What is more grammatically: .2em or .2\fontdimen6\font ?
58.298 \def\@Acdash{\ifdim\lastskip>\z@\unskip\nobreak\hskip.2em\fi
58.299 \cyrdash\hskip.2em\ignorespaces}/,

-- emdash in compound names or surnames (like Mendeleev—Klapeiron); this
dash has no space characters around; after the dash some space is added
\exhyphenalty

58.300 \def\@Bcdash{\leavevmode\ifdim\lastskip>\z@\unskip\fi
58.301 \nobreak\cyrdash\penalty\exhyphenpenalty\hskip\z@skip\ignorespaces}y,

"-—* for denoting direct speech (a space like \enskip must follow the emdash);

58.302 \def\@Ccdash{\leavevmode
58.303 \nobreak\cyrdash\nobreak\hskip.35em\ignorespaces}
58.304 %\fi

\cyrdash Finally the macro for “body” of the Cyrillic emdash. The \cyrdash macro will
be defined in case this macro hasn’t been defined in a fontenc file. For T2* fonts,
cyrdash will be placed in the code of the English emdash thus it uses ligature ---.

58.305 % Is there an IF necessary?

58.306 \ifx\cyrdash\undefined

58.307 \def\cyrdash{\hbox to.8em{--\hss--}}
58.308 \fi

Here a really new macro—to place thinspace between initials. This macro used
instead of \, allows hyphenation in the following surname.

58.309 \declare@shorthand{ukrainian}{",}{\nobreak\hskip.2em\ignorespaces?}

\mdgon All that’s left to do now is to define a couple of commands for ".

\mdqoffsg 310 \def\mdqon{\bbl@activate{"}}
58.311 \def\mdqoff{\bbl@deactivate{"}}

The Ukrainian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.
58.312 \providehyphenmins{\CurrentOption}{\tw@\twe}
58.313 % temporary hack:
58.314 \ifx\englishhyphenmins\undefined
58.315 \def\englishhyphenmins{\tw@\thr@a@}
58.316 \fi
Now the action \extrasukrainian has to execute is to make sure that the
command \frenchspacing is in effect. If this is not the case the execution of
\noextrasukrainian will switch it off again.

58.317 \addto\extrasukrainian{\bbl@frenchspacing}
58.318 \addto\noextrasukrainian{\bbl@nonfrenchspacing}

Next we add a new enumeration style for Ukrainian manuscripts with Cyrillic
letters, and later on we define some math operator names in accordance with
Ukrainian and Russian typesetting traditions.

328

\Asbuk We begin by defining \Asbuk which works like \Alph, but produces (uppercase)
Cyrillic letters intead of Latin ones. The letters CYRGUP, and SFTSN are
skipped, as usual for such enumeration.

58.319 \def \Asbuk#1{\expandafter\@Asbuk\csname c@#1\endcsname}
58.320 \def\@Asbuk#1{\ifcase#1\or

58.321 \CYRA\or\CYRB\or\CYRV\or\CYRG\or\CYRD\or\CYRE\or\CYRIE\or
58.322 \CYRZH\or\CYRZ\or\CYRI\or\CYRII\or\CYRYI\or\CYRISHRT\or
58.323 \CYRK\or\CYRL\or\CYRM\or\CYRN\or\CYRO\or\CYRP\or\CYRR\or
58.324 \CYRS\or\CYRT\or\CYRU\or\CYRF\or\CYRH\or\CYRC\or\CYRCH\or
58.325 \CYRSH\or\CYRSHCH\or\CYRYU\or\CYRYA\else\@ctrerr\fi}

\asbuk The macro \asbuk is similar to \alph; it produces lowercase Ukrainian letters.

58.326 \def \asbuk#1{\expandafter\Q@asbuk\csname c@#1\endcsname}
58.327 \def \@asbuk#1{\ifcase#1\or

58.328 \cyralor\cyrb\or\cyrv\or\cyrg\or\cyrd\or\cyre\or\cyrie\or
58.329 \cyrzh\or\cyrz\or\cyrilor\cyriilor\cyryi\or\cyrishrt\or
58.330 \cyrk\or\cyrl\or\cyrm\or\cyrn\or\cyro\or\cyrp\or\cyrr\or
58.331 \cyrs\or\cyrt\or\cyru\or\cyrf\or\cyrh\or\cyrc\or\cyrch\or
58.332 \cyrsh\or\cyrshch\or\cyryu\or\cyrya\else\@ctrerr\fi}

Set up default Cyrillic math alphabets. The math groups for cyrillic letters are
defined in the encoding definition files. First, declare a new alphabet for symbols,
\cyrmathrm, based on the symbol font for Cyrillic letters defined in the encoding
definition file. Note, that by default Cyrillic letters are taken from upright font in
math mode (unlike Latin letters).

58.333 %\RequirePackage{textmath}

58.334 \@ifundefined{sym\cyrillicencoding letters}{}{%

58.335 \SetSymbolFont{\cyrillicencoding letters}{bold}\cyrillicencoding
58.336 \rmdefault\bfdefault\updefault

58.337 \DeclareSymbolFontAlphabet\cyrmathrm{\cyrillicencoding letters}

And we need a few commands to be able to switch to different variants.
58.338 \DeclareMathAlphabet\cyrmathbf\cyrillicencoding
58.339 \rmdefault\bfdefault\updefault
58.340 \DeclareMathAlphabet\cyrmathsf\cyrillicencoding
58.341 \sfdefault\mddefault\updefault
58.342 \DeclareMathAlphabet\cyrmathit\cyrillicencoding
58.343 \rmdefault\mddefault\itdefault
58.344 \DeclareMathAlphabet\cyrmathtt\cyrillicencoding
58.345 \ttdefault\mddefault\updefault
58.346 %
58.347 \SetMathAlphabet\cyrmathsf{bold}\cyrillicencoding
58.348 \sfdefault\bfdefault\updefault
58.349 \SetMathAlphabet\cyrmathit{bold}\cyrillicencoding
58.350 \rmdefault\bfdefault\itdefault
58.351 }
Some math functions in Ukrainian and Russian math books have other names:
e.g., sinh in Russian is written as sh etc. So we define a number of new math
operators.
\sinh:
58.352 \def \sh{\mathop{\operator@font sh}\nolimits}
\cosh:
58.353 \def\ch{\mathop{\operator@font ch}\nolimits}
\tan:
58.354 \def\tg{\mathop{\operator@font tg}\nolimits}
\arctan:
58.355 \def\arctg{\mathop{\operator@font arctgl}\nolimits}
arcctg:
58.356 \def\arcctg{\mathop{\operator@font arcctg}\nolimits}

329

The following macro conflicts with \th defined in Latin 1 encoding:
\tanh:

58.357 \addto\extrasrussian{’

58.358 \babel@save{\thl}%

58.359 \let\1ltx@th\th

58.360 \def\th{\textormath{\1tx@th}},

58.361 {\mathop{\operator@font th}\nolimits}}/,
58.362 }

\cot:
58.363 \def\ctg{\mathop{\operator@font ctg}\nolimits}

\coth:

58.364 \def\cth{\mathop{\operator@font cth}\nolimits}

\csc:
58.365 \def \cosec{\mathop{\operator@font cosec}\nolimits}

And finally some other Ukrainian and Russian mathematical symbols:

58.366 \def\Prob{\mathop{\kern\z@\mathsf{P}}\nolimits}
58.367 \def\Variance{\mathop{\kern\z@\mathsf{D}}\nolimits}
58.368 \def\nsd{\mathop{\cyrmathrm{\cyrn.\cyrs.\cyrd.}}\nolimits}
58.369 \def\nsk{\mathop{\cyrmathrm{\cyrn.\cyrs.\cyrk.}}\nolimits}
58.370 \def \NSD{\mathop{\cyrmathrm{\CYRN\CYRS\CYRD}}\nolimits}
58.371 \def \NSK{\mathop{\cyrmathrm{\CYRN\CYRS\CYRK}}\nolimits}
58.372 \def\nod{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrd.}}\nolimits} % 777777
58.373 \def\nok{\mathop{\cyrmathrm{\cyrn.\cyro.\cyrk.}}\nolimits} h 7?7777
58.374 \def\NOD{\mathop{\cyrmathrm{\CYRN\CYRO\CYRD}}\nolimits} % 777777
58.375 \def\NOK{\mathop{\cyrmathrm{\CYRN\CYRO\CYRK}}\nolimits} % 777777
58.376 \def\Proj{\mathop{\cyrmathrm{\CYRP\cyrr}}\nolimits}

This is for compatibility with older Ukrainian packages.

58.377 \DeclareRobustCommand{\No}{%
58.378 \ifmmode{\nfss@text{\textnumero}}\else\textnumero\fi}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

58.379 \1df@finish{ukrainian}
58.380 (/code)

330

\captionslsorbian

\newdatelsorbian

59 The Lower Sorbian language

The file 1sorbian.dtx® It defines all the language-specific macros for Lower Sor-
bian.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

59.1 (*code)
59.2 \Ldf Init\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command,
lsorbian will be an ‘unknown’ language, in which case we have to make it known.
So we check for the existence of \1@1lsorbian to see whether we have to do some-
thing here. As babel also knwos the option lowersorbian we have to check that as
well.

59.3 \ifx\1l@lowersorbian\@undefined
59.4 \ifx\1l@lsorbian\@undefined

59.5 \@nopatterns{Lsorbian}
59.6 \adddialect\1l@lsorbian\z@
59.7 \let\l@lowersorbian\1l@lsorbian
59.8 \else
59.9 \let\l@lowersorbian\1@lsorbian
59.10 \fi
59.11 \else
59.12 \let\l@lsorbian\l@lowersorbian
59.13 \fi

The next step consists of defining commands to switch to (and from) the Lower
Sorbian language.

The macro \captionslsorbian defines all strings used in the four standard doc-
umentclasses provided with ETEX.

59.14 \@namedef{captions\CurrentOption}{%
59.15 \def\prefacename{Zawod}/,

59.16 \def\refname{Referencyl}/,

59.17 \def\abstractname{Abstrakt}’

59.18 \def\bibname{Literatural}y,

59.19 \def\chaptername{Kapitl}/

59.20 \def\appendixname{Dodawki}/,

59.21 \def\contentsname{Wop\’simje\’sel}},
59.22 \def\listfigurename{Zapis wobrazowl}j,
59.23 \def\listtablename{Zapis tabulkowl}%
59.24 \def\indexname{Indeks}}

59.25 \def\figurename{Wobrazl}/,

59.26 \def\tablename{Tabulkal,

59.27 \def\partname{\’Z\v el}),

59.28 \def\enclname{P\’si\l ogal}’

59.29 \def\ccname{CC}/,

59.30 \def\headtoname{Komul}%

59.31 \def\pagename{Stronalj,

59.32 \def\seename{gl.}/

59.33 \def\alsoname{gl. tekel},

59.34 \def\proofname{Proof}), <-- needs translation
59.35 \def\glossaryname{Glossaryl}), <-- Needs translation
59.36 }h

The macro \newdatelsorbian redefines the command \today to produce Lower
Sorbian dates.

59.37 \@namedef{newdate\CurrentOption}{J,
59.38 \def\today{\number\day. \ifcase\month\or

69The file described in this section has version number v1.0g and was last revised on
2008/03/17. It was written by Eduard Werner (edi@kaihh.hanse.de).

331

\olddatelsorbian

\extraslsorbian
\noextraslsorbian

59.39 januara\or februaralor m\v erca\or apryla\or maja\or

59.40 junijal\or julija\or awgusta\or septembralor oktobra\or
59.41 nowembra\or decembra\fi
59.42 \space \number\year}}

The macro \olddatelsorbian redefines the command \today to produce old-style
Lower Sorbian dates.

59.43 \@namedef{olddate\CurrentOption}{/
59.44 \def\today{\number\day. \ifcase\month\or

59.45 wjelikego ro\v zka\or
59.46 ma\l ego ro\v zka\or
59.47 nal\v etnika\or

59.48 jat\v sownika\or

59.49 ro\v zownika\or

59.50 sma\v znika\or

59.51 pra\v znika\or

59.52 \v znje\’ncal\or

59.53 po\v znje\’ncalor
59.54 winowca\or

59.55 nazymnika\or

59.56 godownika\fi \space \number\year}}

The default will be the new-style dates.

59.57 \expandafter\let\csname date\CurrentOption\expandafter\endcsname
59.58 \csname newdate\CurrentOption\endcsname

The macro \extraslsorbian will perform all the extra definitions needed for the
Isorbian language. The macro \noextraslsorbian is used to cancel the actions of
\extraslsorbian. For the moment these macros are empty but they are defined
for compatibility with the other language definition files.

59.59 \@namedef{extras\CurrentOption}{}
59.60 \@namedef{noextras\CurrentOption}{}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

59.61 \1df@finish\CurrentOption
59.62 (/code)

332

\captionsusorbian

\newdateusorbian

60 The Upper Sorbian language

The file usorbian.dtx’ It defines all the language-specific macros for Upper
Sorbian.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.
60.1 (*code)

60.2 \Ldf Init\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command,
usorbian will be an ‘unknown’ language, in which case we have to make it known.
So we check for the existence of \1@usorbian to see whether we have to do some-
thing here. As babel also knwos the option uppersorbian we have to check that as
well.

60.3 \ifx\l@uppersorbian\@undefined
60.4 \ifx\l@usorbian\@undefined

60.5 \@nopatterns{Usorbian}
60.6 \adddialect\l@usorbian\z@
60.7 \let\1l@uppersorbian\l@usorbian
60.8 \else
60.9 \let\1l@uppersorbian\l@usorbian
60.10 \fi
60.11 \else
60.12 \let\l@usorbian\l@uppersorbian
60.13 \fi

The next step consists of defining commands to switch to (and from) the Upper
Sorbian language.

The macro \captionsusorbian defines all strings used in the four standard doc-
umentclasses provided with ETEX.

60.14 \@namedef{captions\CurrentOption}{%
60.15 \def\prefacename{Zawod}/,

60.16 \def\refname{Referencyl}/,

60.17 \def\abstractname{Abstrakt}’

60.18 \def\bibname{Literatural}y,

60.19 \def\chaptername{Kapitl}/

60.20 \def\appendixname{Dodawki}/,

60.21 \def\contentsname{Wobsahl}J

60.22 \def\listfigurename{Zapis wobrazowl}},
60.23 \def\listtablename{Zapis tabulkowl}%
60.24 \def\indexname{Indeks}}

60.25 \def\figurename{Wobrazl}/,

60.26 \def\tablename{Tabulkal,

60.27 \def\partname{D\’z\v ell}}

60.28 \def\enclname{P\v r\l ohal}}

60.29 \def\ccname{CC}/,

60.30 \def\headtoname{Komul}%

60.31 \def\pagename{Stronalj,

60.32 \def\seename{hl.}%

60.33 \def\alsoname{hl. te\v z}

60.34 \def\proofname{Proof}), <-- needs translation
60.35 \def\glossaryname{Glossaryl}), <-- Needs translation
60.36 Y

The macro \newdateusorbian redefines the command \today to produce Upper
Sorbian dates.

60.37 \@namedef{newdate\CurrentOption}{J,
60.38 \def\today{\number\day. \ifcase\month\or

70The file described in this section has version number v1.0k and was last revised on
2008/03/17. It was written by Eduard Werner (edi@kaihh.hanse.de).

333

\olddateusorbian

\extrasusorbian

\dq

60.39 januara\or februaralor m\v erca\or apryla\or meje\or junija\or

60.40 julija\or awgusta\or septembralor oktobra\or
60.41 nowembra\or decembra\fi
60.42 \space \number\year}}
The macro \olddateusorbian redefines the command \today to produce old-style

Upper Sorbian dates.

60.43 \@namedef{olddate\CurrentOption}{y,
60.44 \def\today{\number\day. \ifcase\month\or

60.45 wulkeho r\’o\v zkalor ma\l eho r\’o\v zkalor nal\v etnika\or
60.46 jutrownikalor r\’o\v zownikalor sma\v znika\or pra\v znika\or
60.47 \v znjenca\or po\v znjenca\or winowca\or nazymnika\or

60.48 hodownika\fi \space \number\yearl}}

The default will be the new-style dates.

60.49 \expandafter\let\csname date\CurrentOption\expandafter\endcsname
60.50 \csname newdate\CurrentOption\endcsname

The macro \extrasusorbian will perform all the extra definitions needed for
the Upper Sorbian language. It’s pirated from germanb.sty. The macro
\noextrasusorbian is used to cancel the actions of \extrasusorbian.
Because for Upper Sorbian (as well as for Dutch) the " character is made

active. This is done once, later on its definition may vary.

60.51 \initiate@active@char{"}

60.52 \@namedef{extras\CurrentOption}{\languageshorthands{usorbian}}

60.53 \expandafter\addto\csname extras\CurrentOption\endcsname{%

60.54 \bbl@activate{"}}

Don’t forget to turn the shorthands off again.

60.55 \expandafter\addto\csname extras\CurrentOption\endcsname{7
60.56 \bbl@deactivate{"}}

In order for TEX to be able to hyphenate German Upper Sorbian words which
contain ‘K’ we have to give the character a nonzero \lccode (see Appendix H, the
TEXbook). As some of the other language definitions turn the character ~ into a
shorthand we need to make sure that it has it’s orginial definition here.

60.57 \begingroup \catcode‘\"7
60.58 \def\x{\endgroup
60.59 \expandafter\addto\csname extras\CurrentOption\endcsname{’

60.60 \babel@savevariable{\lccode‘\""Y}%
60.61 \lccode‘\~"Y‘\~"Y}}
60.62 \x

The umlaut accent macro \" is changed to lower the umlaut dots. The redefinition
is done with the help of \umlautlow.

60.63 \expandafter\addto\csname extras\CurrentOption\endcsname{%

60.64 \babel@save\"\umlautlow}

60.65 \expandafter\addto\csname noextras\CurrentOption\endcsname{’

60.66 \umlauthigh}

The Upper Sorbian hyphenation patterns can be used with \lefthyphenmin and
\righthyphenmin set to 2.

60.67 \providehyphenmins{\CurrentOption}{\tw@\tw@}

We save the original double quote character in \dq to keep it available, the math
accent \" can now be typed as ". Also we store the original meaning of the
command \" for future use.

60.68 \begingroup \catcode‘\"12

60.69 \def\x{\endgroup

60.70 \def\@SS{\mathchar"7019 }

60.71 \def\dq{"}}

60.72 \x

334

Now we can define the doublequote macros: the umlauts,

60.73 \declare@shorthand{usorbian}{"a}{\textormath{\"{a}}{\ddot a}}
60.74 \declare@shorthand{usorbian}{"o}{\textormath{\"{o}}{\ddot o}}
60.75 \declare@shorthand{usorbian}{"u}{\textormath{\"{u}}{\ddot u}}
60.76 \declare@shorthand{usorbian}{"A}{\textormath{\"{A}}{\ddot A}}
60.77 \declare@shorthand{usorbian}{"0}{\textormath{\"{0}}{\ddot 0}}
60.78 \declare@shorthand{usorbian}{"U}{\textormath{\"{U}}{\ddot U}}

tremas,

60.79 \declare@shorthand{usorbian}{"e}{\textormath{\"{e}}{\ddot e}}
60.80 \declare@shorthand{usorbian}{"E}{\textormath{\"{E}}{\ddot E}}
60.81 \declare@shorthand{usorbian}{"i}{\textormath{\"{\i}}{\ddot\imath}}
60.82 \declare@shorthand{usorbian}{"I}{\textormath{\"{I}}{\ddot I}}

usorbian es-zet (sharp s),

60.83 \declare@shorthand{usorbian}{"s}{\textormath{\ss{}}{\@SS{}}}
60.84 \declare@shorthand{usorbian}{"S}{SS}

german and french quotes,

60.85 \declare@shorthand{usorbian}{" ‘}{/

60.86 \textormath{\quotedblbase}{\mbox{\quotedblbase}}}

60.87 \declare@shorthand{usorbian}{"’}{/

60.88 \textormath{\textquotedblleft}{\mbox{\textquotedblleft}}}
60.89 \declare@shorthand{usorbian}{"<}{J

60.90 \textormath{\guillemotleft}{\mbox{\guillemotleft}}}

60.91 \declare@shorthand{usorbian}{">}{/

60.92 \textormath{\guillemotright}{\mbox{\guillemotright}}}

discretionary commands

60.93 \declare@shorthand{usorbian}{"c}{\textormath{\bbl@disc ck}{c}}
60.94 \declare@shorthand{usorbian}{"C}{\textormath{\bbl@disc CK}{C}}
60.95 \declare@shorthand{usorbian}{"f}{\textormath{\bbl@disc f{ff}}{f}}
60.96 \declare@shorthand{usorbian}{"F}{\textormath{\bbl@disc F{FF}}{F}}
60.97 \declare@shorthand{usorbian}{"1}{\textormath{\bbl@disc 1{11}}{1}}
60.98 \declare@shorthand{usorbian}{"L}{\textormath{\bbl@disc L{LL}}{L}}
60.99 \declare@shorthand{usorbian}{"m}{\textormath{\bbl@disc m{mm}}{m}}
60.100 \declare@shorthand{usorbian}{"M}{\textormath{\bbl@disc M{MM}}{M}}
60.101 \declare@shorthand{usorbian}{"n}{\textormath{\bbl@disc n{nn}}{n}}
60.102 \declare@shorthand{usorbian}{"N}{\textormath{\bbl@disc N{NN}}{N}}
60.103 \declare@shorthand{usorbian}{"p}{\textormath{\bbledisc p{pp}}{p}}
60.104 \declare@shorthand{usorbian}{"P}{\textormath{\bbl@disc P{PP}}{P}}
60.105 \declare@shorthand{usorbian}{"t}{\textormath{\bbl@disc t{tt}}{t}}
60.106 \declare@shorthand{usorbian}{"T}{\textormath{\bbl@disc T{TT}}{T}}
and some additional commands:
60.107 \declare@shorthand{usorbian}{"-}{\nobreak\-\bbl@allowhyphens}
60.108 \declare@shorthand{usorbian}{" | }{%
60.109 \textormath{\nobreak\discretionary{-}{}{\kern.03em}/,
60.110 \allowhyphens}{}}
60.111 \declare@shorthand{usorbian}{""}{\hskip\z@skip}

\mdqon All that’s left to do now is to define a couple of commands for reasons of compat-
\mdqoff ibility with german.sty.
\cKg0.112 \def\mdqon{\shorthandon{"}}

60.113 \def\mdqoff{\shorthandoff{"}}
60.114 \def\ck{\allowhyphens\discretionary{k-}{k}{ck}\allowhyphens}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

60.115 \1df@f inish\CurrentOption
60.116 (/code)

335

\captionsturkish

61 The Turkish language

The file turkish.dtx’" defines all the language definition macros for the Turkish

language’?.
Turkish typographic rules specify that a little ‘white space’ should be added
before the characters ‘:’, ‘!’ and ‘=’. In order to insert this white space automat-

ically these characters are made ‘active’. Also \frenhspacing is set.
The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

61.1 (*code)
61.2 \Ldf Init{turkish}\captionsturkish

When this file is read as an option, i.e. by the \usepackage command, turkish
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@turkish to see whether we have to do something
here.

61.3 \ifx\1@turkish\@undefined
61.4 \@nopatterns{Turkish}
61.5 \adddialect\1l@turkishO\fi

The next step consists of defining commands to switch to (and from) the Turk-
ish language.

The macro \captionsturkish defines all strings used in the four standard docu-
mentclasses provided with ITEX.

61.6 \addto\captionsturkish{’

61.7 \def\prefacename{\"Ons\"oz}}

61.8 \def\refname{Kaynaklarl}y,

61.9 \def\abstractname{\"Ozet}/,

61.10 \def\bibname{Kaynak\c cal

61.11 \def\chaptername{B\"ol\"um}%

61.12 \def\appendixname{Ek}/

61.13 \def\contentsname{\.I\c cindekilerl}y,
61.14 \def\listfigurename{\c Sekil Listesil}’
61.15 \def\listtablename{Tablo Listesil},
61.16 \def\indexname{Dizin},

61.17 \def\figurename{\c Sekil}},

61.18 \def\tablename{Tablo}},

61.19 \def\partname{K\i s\i m}%

61.20 \def\enclname{\.Ili\c sik}}

61.21 \def\ccname{Di\u ger Al\i c\i lar}/
61.22 \def\headtoname{AI1\i c\i}%

61.23 \def\pagename{Sayfal’

61.24 \def\subjectname{\.Ilgili}}

61.25 \def\seename{bkz.}/

61.26 \def\alsoname{ayr\i ca bkz.}/

61.27 \def\proofname{Kan\i t}/

61.28 \def\glossaryname{Glossaryl}/) <-- Needs translation
61.29 YV,

\dateturkish The macro \dateturkish redefines the command \today to produce Turkish

dates.

61.30 \def\dateturkish{%

61.31 \def\today{\number\day~\ifcase\month\or

61.32 Ocak\or \c Subat\or Mart\or Nisan\or May\i{}s\or Haziran\or
61.33 Temmuz\or A\u gustos\or Eyl\"ul\or Ekim\or Kas\i{}m\or

61.34 Aral\i{}k\fi

"IThe file described in this section has version number v1.2m and was last revised on
2005/03/31.

"2Mustafa Burc, z6001@rziris0O1.rrz.uni-hamburg.de provided the code for this file. It is
based on the work by Pierre Mackay; Turgut Uyar, uyar@cs.itu.edu.tr supplied additional
translations in version 1.2j and later

336

\extrasturkish
\noextrasturkish

\turkish@sh@!@
\turkish@sh@=0@
\turkish@sh@:@

61.35 \space\number\year}}

The macro \extrasturkish will perform all the extra definitions needed for the
Turkish language. The macro \noextrasturkish is used to cancel the actions of
\extrasturkish.

Turkish typographic rules specify that a little ‘white space’ should be added
before the characters ‘:’, ‘!’ and ‘=’. In order to insert this white space automat-
ically these characters are made \active, so they have to be treated in a special
way.

61.36 \initiate@active@char{:}
61.37 \initiate@active@char{!}
61.38 \initiate@active@char{=}
We specify that the turkish group of shorthands should be used.
61.39 \addto\extrasturkish{\languageshorthands{turkish}}
These characters are ‘turned on’ once, later their definition may vary.

61.40 \addto\extrasturkish{’
61.41 \bbl@activate{:}\bbl@activate{!}\bbl@activate{=1}}
For Turkish texts \frenchspacing should be in effect. We make sure this is
the case and reset it if necessary.

61.42 \addto\extrasturkish{\bbl@frenchspacing}
61.43 \addto\noextrasturkish{\bbl@uonfrenchspacing}

The definitions for the three active characters were made using intermediate
macros. These are defined now. The insertion of extra ‘white space’ should only
happen outside math mode, hence the check \ifmmode in the macros.

61.44 \declare@shorthand{turkish}{: }{%
61.45 \ifmmode

61.46 \string:%

61.47 \else\relax

61.48 \ifhmode

61.49 \ifdim\lastskip>\z@

61.50 \unskip\penalty\@M\thinspace
61.51 \fi

61.52 \fi

61.53 \string:%

61.54 \fi}

61.55 \declare@shorthand{turkish}{!}{%
61.56 \ifmmode

61.57 \string!’

61.58 \else\relax

61.59 \ifhmode

61.60 \ifdim\lastskip>\z@

61.61 \unskip\penalty\@M\thinspace
61.62 \fi

61.63 \fi

61.64 \string!’

61.65 \fi}

61.66 \declare@shorthand{turkish}{=}{%
61.67 \ifmmode

61.68 \string=%

61.69 \else\relax

61.70 \ifhmode

61.71 \ifdim\lastskip>\z@

61.72 \unskip\kern\fontdimen2\font
61.73 \kern-1.4\fontdimen3\font
61.74 \fi

61.75 \fi

61.76 \string=/,

61.77 \fi}

337

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

61.78 \1df@finish{turkish}
61.79 (/code)

338

62 The Hebrew language

The file hebrew.dtx™ provides the following packages and files for Hebrew lan-
guage support:

hebrew.1df file defines all the language-specific macros for the Hebrew language.

rlbabel.def file is used by hebrew.1ldf for bidirectional versions of the major
ETEX commands and environments. It is designed to be used with other
right-to-left languages, not only with Hebrew.

hebcal.sty package defines a set of macros for computing Hebrew date from
Gregorian one.

Additional Hebrew input and font encoding definition files that should be in-
cluded and used with hebrew.1df are:

hebinp.dtx provides Hebrew input encodings, such as ISO 8859-8, MS Windows
codepage 1255 or IBM PC codepage 862 (see Section 63 on page 376).

hebrew.fdd contains Hebrew font encodings, related font definition files and
hebfont package that provides Hebrew font switching commands (see Sec-
tion 64 on page 382 for further details).

ETEX 2.09 compatibility files are included with heb209.dtx and gives possibil-
ity to compile existing WTEX 2.09 Hebrew documents with small (if any) changes
(see Section 65 on page 397 for details).

Finally, optional document class hebtech may be useful for writing theses and
dissertations in both Hebrew and English (and any other languages included with
babel). It designed to meet requirements of the Graduate School of the Technion
— Israel Institute of Technology.

As of version 2.3e hebtech is no longer distributed together with heblatex. It
should be part of a new "hebclasses” package

62.1 Acknowledgement

The following people have contributed to Hebrew package in one way or another,
knowingly or unknowingly. In alphabetical order: Irina Abramovici, Yaniv Bar-
gury, Yael Dubinsky, Sergio Fogel, Dan Haran, Rama Porrat, Michail Rozman,
Alon Ziv.

Tatiana Samoilov and Vitaly Surazhsky found a number of serious bugs in
preliminary version of Hebrew package.

A number of other people have contributed comments and information. Specific
contributions are acknowledged within the document.

I want to thank my wife, Vita, and son, Mishka, for their infinite love and
patience.

If you made a contribution and I haven’t mentioned it, don’t worry, it was an
accident. I'm sorry. Just tell me and I will add you to the next version.

62.2 The DOCSTRIP modules
The following modules are used in the implementation to direct DOCSTRIP in
generating external files:

driver produce a documentation driver file

hebrew produce Hebrew language support file
rightleft create right-to-left support file
calendar create Hebrew calendar package

A typical DOCSTRIP command file would then have entries like:
\generateFile{hebrew.1ldf}{t}{\from{hebrew.dtx}{hebrew}}

73The Hebrew language support files described in this section have version number v2.3h and
were last revised on 2005,/03/30.

339

\hebrewencoding

62.3 Hebrew language definitions

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

62.1 (*hebrew)
62.2 \LdfInit{hebrew}{captionshebrew}

When this file is read as an option, i.e., by the \usepackage command, hebrew
will be an ‘unknown’ language, in which case we have to make it known. So we
check for the existence of \1@hebrew to see whether we have to do something here.

62.3 \ifx\1@hebrew\Qundefined
62.4 \@nopatterns{Hebrew}/,
62.5 \adddialect\1l@hebrew0
62.6 \fi

FIX DOCS REGARDING 8BIT

Typesetting Hebrew texts implies that a special input and output encoding
needs to be used. Generally, the user may choose between different available
Hebrew encodings provided. The current support for Hebrew uses all available
fonts from the Hebrew University of Jerusalem encoded in ‘old-code’ 7-bit encoding
also known as Israeli Standard SI-960. We define for these fonts the Local Hebrew
Encoding LHE (see the file hebrew.fdd for more details), and the LHE encoding
definition file should be loaded by default.

Other fonts are available in windows-cp1255 (a superset of ISO-8859-8 with
nikud). For those, the encoding HE8 should be used. Such fonts are, e.g., windows’
TrueType fonts (once cnverted to Typel or MetaFont) and IBM’s Typel fonts.

However, if an user wants to use another font encoding, for example, cyrillic
encoding T2 and extended latin encoding T1, — he/she has to load the corre-
sponding file before the hebrew package. This may be done in the following way:

\usepackage [LHE,T2,T1] {fontenc}
\usepackage [hebrew,russian,english] {babel}

We make sure that the LHE encoding is known to I#TEX at end of this package.
Also note that if you want to use the encoding HE8 , you should define the
following in your document, before loading babel:

\def\HeblatexEncoding{HE8}
\def\HeblatexEncodingFile{he8enc}

62.7 \providecommand{\HeblatexEncoding}{LHE}%

62.8 \providecommand{\HeblatexEncodingFile}{lheenc}%
62.9 \newcommand{\heblatex@set@encoding}[2]{

62.10 }

62.11 \AtEndOfPackage{’

62.12 \@ifpackageloaded{fontenc}{%

62.13 \@ifl@aded{def}{’

62.14 \HeblatexEncodingFile}{\def\hebrewencoding{\HeblatexEncoding}}{}%
6215 %

62.16 \input{\HeblatexEncodingFile.def}},

62.17 \def\hebrewencoding{\HeblatexEncoding}’

62.18 }}

We also need to load inputenc package with one of the Hebrew input encodings.
By default, we set up the 8859-8 codepage. If an user wants to use many input
encodings in the same document, for example, the MS Windows Hebrew codepage
cp1255 and the standard IBM PC Russian codepage cp866, he/she has to load
the corresponding file before the hebrew package too. This may be done in the
following way:

\usepackage [cp1255,cp866] {inputenc}
\usepackage [hebrew,russian,english] {babel}

340

\hebrewhyphenmins

\captionshebrew

\slidelabel

An user can switch input encodings in the document using the command
\inputencoding, for example, to use the cp1255:

\inputencoding{cp12553}

62.19 \AtEndOfPackage{%
62.20 \Q@ifpackageloaded{inputenc}{}{\RequirePackage[8859-8]{inputenc}}}

The next step consists of defining commands to switch to (and from) the He-
brew language.

This macro is used to store the correct values of the hyphenation parameters
\lefthyphenmin and \righthyphenmin. They are set to 2.

62.21 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The macro \captionshebrew replaces all captions used in the four standard doc-
ument classes provided with ITEX 2cwith their Hebrew equivalents.

62.22 \addto\captionshebrew{’,

62.23 \def\prefacename{\Q@ensure@R{\hebmem\hebbet\hebvav\hebalefl}}/,

62.24 \def\refname{\@ensure@R{\hebresh\hebshin\hebyod\hebmem\hebtav\ %

62.25 \hebmem\hebqgof \hebvav\hebresh\hebvav\hebtav}}}

62.26 \def\abstractname{\@ensure@R{\hebtav\hebqof\hebtsadi\hebyod\hebreshl}}/
62.27 \def\bibname{\@ensure@R{\hebbet\hebyod\hebbet\heblamed\hebyod\hebvavy,
62.28 \hebgimel\hebresh\hebpe\hebyod\hebhel}1}

62.29 \def\chaptername{\Q@ensure@R{\hebpe\hebresh\hebqof}1}/,

62.30 \def\appendixname{\@ensure@R{\hebnun\hebsamekh\hebpe\hebhet}}}

62.31 \def\contentsname{\@ensure@R{/,

62.32 \hebtav\hebvav\hebkaf\hebfinalnun\ 7%

62.33 \hebayin\hebnun\hebyod\hebyod\hebnun\hebyod\hebfinalmem}1}’,
62.34 \def\listfigurename{\@ensure@R{/,

62.35 \hebresh\hebshin\hebyod\hebmem\hebtav\ %

62.36 \hebalef\hebyod\hebvav\hebresh\hebyod\hebfinalmem}}J,

62.37 \def\listtablename{\Q@ensure@R{%

62.38 \hebresh\hebshin\hebyod\hebmem\hebtav\

62.39 \hebtet\hebbet\heblamed\hebalef\hebvav\hebtavl}}%

62.40 \def\indexname{\@ensureOR{\hebmem\hebpe\hebtav\hebhet}1}}

62.41 \def\figurename{\@ensure@R{\hebalef\hebyod\hebvav\hebresh}}/,
62.42 \def\tablename{\@ensure@R{\hebtet\hebbet\heblamed\hebhel}}%
62.43 \def\partname{\@ensure@R{\hebhet\heblamed\hebqof}1}%

62.44 \def\enclname{\@ensure@R{\hebresh\hebtsadi"\hebbet}}%

62.45 \def\ccname{\@ensure@R{\hebhe\hebayin\hebtav\hebqof\hebyod/
62.46 \hebfinalmem}}%

62.47 \def\headtoname{\@ensure@R{\hebalef\heblamed}}%

62.48 \def\pagename{\@ensure@R{\hebayin\hebmem\hebvav\hebdalet}}’
62.49 \def\psname{\@ensure@R{\hebnun.\hebbet.}1}/,

62.50 \def\seename{\@ensure@R{\hebresh\hebalef\hebhe}}/,

62.51 \def\alsoname{\@ensure@R{\hebresh\hebalef\hebhe \hebgimel’,
62.52 \hebmemesof}}7

62.53 \def\proofname{\@ensure@R{\hebhe\hebvav\hebkaf\hebhet\hebhe}}
62.54 \def\glossaryname{\@ensure@L{Glossary}}), <-- Needs translation
62.55 }

Here we fix the macro slidelabel of the seminar package. Note that this still
won’t work well enough when overlays will be involved

62.56 \@ifclassloaded{seminar}{J
62.57 \def\slidelabel{\bf \if@rl\R{\hebshin\hebqof\hebfinalpe{} \theslidel}

62.58 \else\L{Slide \theslidelV
62.59 \fi}%
62.60 +{}

Here we provide an user with translation of Gregorian dates to Hebrew. In
addition, the hebcal package can be used to create Hebrew calendar dates.

341

\hebmonth The macro \hebmonth{month} produces month names in Hebrew.

62.61 \def \hebmonth#1{%
62.62 \ifcase#1\or \hebyod\hebnun\hebvav\hebalef\hebresh\or %

62.63 \hebpe\hebbet\hebresh\hebvav\hebalef\hebresh\or %

62.64 \hebmem\hebresh\hebfinaltsadilor %

62.65 \hebalef\hebpe\hebresh\hebyod\heblamed\or %

62.66 \hebmem\hebalef\hebyod\or \hebyod\hebvav\hebnun\hebyod\or %
62.67 \hebyod\hebvav\heblamed\hebyod\or %

62.68 \hebalef\hebvav\hebgimel\hebvav\hebsamekh\hebtet\or %

62.69 \hebsamekh\hebpe\hebtet\hebmem\hebbet\hebresh\or %

62.70 \hebalef\hebvav\hebgof\hebtet\hebvav\hebbet\hebresh\or %
62.71 \hebnun\hebvav\hebbet\hebmem\hebbet\hebresh\or %

62.72 \hebdalet\hebtsadi\hebmem\hebbet\hebresh\fi}

\hebdate The macro \hebdate{day}{month}{year} translates a given Gregorian date to
Hebrew.
62.73 \def\hebdate#1#2#3{%
62.74 \beginR\beginL\number#1\endL\ \hebbet\hebmonth{#2}
62.75 \beginL\number#3\endL\endR}

\hebday The macro \hebday will replace \today command when in Hebrew mode.
62.76 \def\hebday{\hebdate{\day}{\month}{\year}}

\datehebrew The macro \datehebrew redefines the command \today to produce Gregorian
dates in Hebrew. It uses the macro \hebday.

62.77 \def\datehebrew{\let\today=\hebday}

The macro \extrashebrew will perform all the extra definitions needed for the
Hebrew language. The macro \noextrashebrew is used to cancel the actions of
\extrashebrew.

\extrashebrew We switch font encoding to Hebrew and direction to right-to-left. We can-
not use the regular language switching commands (for example, \sethebrew
and \unsethebrew or \selectlanguage{hebrew}), when in restricted horizon-
tal mode, because it will result in unbalanced \beginR or \beginL primitives.
Instead, in TEX’s restricted horizontal mode, the \L{latin text} and \R{hebrew
text}, or \embox{latin text} and \hmbox{hebrew text} should be used.

Hence, we use \beginR and \beginL switching commands only when not in
restricted horizontal mode.
62.78 \addto\extrashebrew{/,
62.79 \tohebrew},
62.80 \ifhmode\ifinner\else\beginR\fi\fi}

\noextrashebrew The macro \noextrashebrew is used to cancel the actions of \extrashebrew. We
switch back to the previous font encoding and restore left-to-right direction.
62.81 \addto\noextrashebrew{/,

62.82 \fromhebrew},
62.83 \ifhmode\ifinner\else\beginL\fi\fi}

Generally, we can switch to- and from- Hebrew by means of standard babel-
defined commands, for example,

\selectlanguage{hebrew}
or

\begin{otherlanguage}{hebrew}
some Hebrew text
\end{otherlanguage}

Now we define two additional commands that offer the possibility to switch to
and from Hebrew language. These commands are backward compatible with the
previous versions of hebrew.sty.

342

\sethebrew
\unsethebrew

\hebrewtext
\nohebrewtext

\tohebrew
\fromhebrew

\@hebrew

\if@gim@apost
\if@gim@final

\hebrewnumeral
\Hebrewnumeral
\Hebrewnumeralfinal

The command \sethebrew will switch from the current font encoding to the he-
brew font encoding, and from the current direction of text to the right-to-left
mode. The command \unsethebrew switches back.

Both commands use standard right-to-left switching macros \setrllanguage{
r2l language name} and \unsetrllanguage{r2l language name}, that defined in
the rlbabel.def file.

62.84 \def\sethebrew{\setrllanguage{hebrew}}
62.85 \def\unsethebrew{\unsetrllanguage{hebrew}}

The following two commands are obsolete and work only in IMTEX2.09 compatibil-
ity mode. They are synonyms of \sethebrew and \unsethebrew defined above.
62.86 \if@compatibility
62.87 \let\hebrewtext=\sethebrew
62.88 \let\nohebrewtext=\unsethebrew
62.89 \fi

These two commands change only the current font encoding to- and from- He-
brew encoding. Their implementation uses \@torl{language name} and \@fromrl
macros defined in rlbabel.def file. Both commands may be useful only for pack-
age and class writers, not for regular users.

62.90 \def\tohebrew{\@torl{hebrew}}/,
62.91 \def\fromhebrew{\@fromrl}

Sometimes we need to preserve Hebrew mode without knowing in which environ-
ment we are located now. For these cases, the \@hebrew{hebrew text} macro will
be useful. Not that this macro is similar to the \@number and \@latin macros
defined in rlbabel.def file.

62.92 \def\@@hebrew#1{\beginR{{\tohebrew#1}}\endR}
62.93 \def\Ohebrew{\protect\@Chebrew}

62.3.1 Hebrew numerals

We provide commands to print numbers in the traditional notation using Hebrew
letters. We need commands that print a Hebrew number from a decimal input, as
well as commands to print the value of a counter as a Hebrew number.

Hebrew numbers can be written in various styles: with or without apostrophes,
and with the letters kaf, mem, nun, pe, tsadi as either final or initial forms when
they are the last letters in the sequence. We provide two flags to set the style
options.

62.94 \newif\ifO@gim@apost 7% whether we print apostrophes

62.95 \newif\if@gim@final I whether we use final or initial letters

The commands that print a Hebrew number must specify the style locally: relying
on a global style option could cause a counter to print in an inconsistent manner—
for instance, page numbers might appear in different styles if the global style option
changed mid-way through a document. The commands only allow three of the four
possible flag combinations (I do not know of a use that requires the combination
of final letters and no apostrophes —-RA).

Each command sets the style flags and calls \@hebrew@numeral. Double braces
are used in order to protect the values of \@tempcnta and \@tempcntb, which are
changed by this call; they also keep the flag assignments local (this is not important
because the global values are never used).

62.96 \newcommand*{\hebrewnumeral}[1] % no apostrophe, no final letters
62.97 {{\@gim@finalfalse\@gim@apostfalse\CGhebrew@numeral{#1}}}
62.98 \newcommand*{\Hebrewnumeral}[1] % apostrophe, no final letters

62.99 {{\@gim@finalfalse\@gim@aposttrue\Chebrew@numeral{#1}}}

62.100 \newcommand*{\Hebrewnumeralfinal}[1] % apostrophe, final letters
62.101 {{\@gim@finaltrue\@gim@aposttrue\C@hebrew@numeral{#1}}}

343

\alph Counter-printing commands are based on the above commands. The natural name
\@alph for the counter-printing commands is \alph, because Hebrew numerals are the only
\Alph way to represent numbers with Hebrew letters (kaf always means 20, never 11).
\@Alph Hebrew has no uppercase letters, hence no need for the familiar meaning of \Alph;

\Alphfinal
\@Alphfinal

\theenumii

we therefore define \alph to print counters as Hebrew numerals without apostro-
phes, and \Alph to print with apostrophes. A third form, \Alphfinal, is provided
to print with apostrophes and final letters, as is required for Hebrew year designa-
tors. The commands \alph and \Alph are defined in latex.1ltx, and we only need
to redefine the internal commands \@alph and \@Alph; for \Alphfinal we need
to provide both a wrapper and an internal command. The counter printing com-
mands are made semi-robust: without the \protect, commands like \theenumii
break (I'm not quite clear on why this happens, ~-RA); at the same time, we cannot
make the commands too robust (e.g. with \DeclareRobustCommand) because this
would enter the command name rather than its value into files like .aux, .toc
etc. The old meanings of meaning of \@alph and \@Alph are saved upon entering
Hebrew mode and restored upon exiting it.

62.102 \addto\extrashebrew{/,

62.103 \let\saved@alph=\Q@alphy

62.104 \let\saved@Alph=\@Alph/,

62.105 \renewcommand*{\@alph}[1]{\protect\hebrewnumeral{\number#13}}/,

62.106 \renewcommand*{\@Alph}[1]{\protect\Hebrewnumeral{\number#1}}%

62.107 \def\Alphfinal#1{\expandafter\@Alphfinal\csname c@#1\endcsnamely,

62.108 \providecommand*{\@Alphfinal}[1]{\protect\Hebrewnumeralfinal{\number#1}}}

62.109 \addto\noextrashebrew{/,

62.110 \let\@alph=\saved@alph},

62.111 \let\@Alph=\saved@Alph}

Note that \alph (without apostrophes) is already the appropriate choice for the
second-level enumerate label, and \Alph (with apostrophes) is an appropriate
choice for appendix; however, the default IXTEX labels need to be redefined for
appropriate cross-referencing, see below. KITEX default class files specify \Alph
for the fourth-level enumerate level, this should probably be changed. Also, the
way labels get flushed left by default looks inappropriate for Hebrew numerals, so
we should redefine \labelenumii as well as \labelenumiv (presently not imple-
mented).

Cross-references to counter labels need to be printed according to the language

\theenumiv environment in which a label was issued, not the environment in which it is called:

\label

for example, a label (1b) issued in a Latin environment should be referred to as (1b)
in a Hebrew text, and label (2dalet) issued in a Hebrew environment should be
referred to as (2dalet) in a Latin text. This was the unanimous opinion in a poll
sent to the IvriTEX list. We therefore redefine \theenumii and \theenumiv, so
that an explicit language instruction gets written to the .aux file.

62.112 \renewcommand{\theenumii}

62.113 {\if@rl\protect\hebrewnumeral{\number\c@enumiil}y

62.114 \else\protect\L{\protect\@@alph{\number\c@enumii}}\fi}

62.115 \renewcommand{\theenumiv}

62.116 {\if@rl\protect\Hebrewnumeral{\number\c@enumiv}y

62.117 \else\protect\L{\protect\Q@@Alph{\number\c@enumiv}}\fi}

We also need to control for the font and direction in which a counter label is
printed. Direction is straightforward: a Latin label like (1b) should be written
left-to-right when called in a Hebrew text, and a Hebrew label like (2dalet) should
be written right-to-left when called in a Latin text. The font question is more
delicate, because we should decide whether the numerals should be typeset in
the font of the language enviroment in which the label was issued, or that of the
environment in which it is called.

e A purely numeric label like (23) looks best if it is set in the font of the
surrounding language.

344

e But a mixed alphanumeric label like (1b) lookes weird if the ‘1’ is taken
from the Hebrew font; likewise, (2dalet) looks weird if the ‘2’ is taken from
a Latin font.

e Finally, mixing the two possibilities is worst, because a single Hebrew sen-
tence referring to examples (1b) and (2) would take the ‘1’ from the Latin
font and the ‘2’ from the Hebrew font, and this looks really awful. (It is also
very hard to implement).

In light of the conflicting considerations it seems like there’s no perfect solution.
I have chosen to implement the top option, where numerals are taken from the
font of the surrounding language, because it seems to me that reference to purely
numeric labels is the most common, so this gives a good solution to the majority
of cases and a mediocre solution to the minority.

We redefine the \1abel command which writes to the .aux file. Depending on
the language environment we issue appropriate \beginR/L---\endR/L commands
to control the direction without affecting the font. Since these commands do not
affect the value of \if@rl, we cannot use the macro \@brackets to determine
the correct brackets to be used with \p@enumiii; instead, we let the language
environment determine an explicit definition.

62.118 \def\label#1{\@bsphack
62.119 \iferl

62.120 \def\p@enumiii{\p@enumii) \theenumii (}%

62.121 \protected@urite\Qauxout{}

62.122 {\string\newlabel{#1}{{\beginR\@currentlabel\endR}{\thepage}}}%
62.123 \else

62.124 \def\p@enumiii{\p@enumii(\theenumii)}’

62.125 \protected@write\Q@auxout{}%

62.126 {\string\newlabel{#1}{{\beginL\Qcurrentlabel\endL}{\thepage}}}/
62.127 \fi

62.128 \@esphack}

\appendix

NOTE: it appears that the definition of \1label is language-independent and thus
belongs in rlbabel.def, but this is not the case. The decision to typeset label
numerals in the font of the surrounding language is reasonable for Hebrew, be-
cause mixed-font (1b) and (2dalet) are somewhat acceptable. The same may not
be acceptable for Arabic, whose numeral glyphs are radically different from those
in the Latin fonts. The decision about the direction may also be different for Ara-
bic, which is more right-to-left oriented than Hebrew (two examples: dates like
15/6/2003 are written left-to-right in Hebrew but right-to-left in Arabic; equa-
tions like 1 + 2 = 3 are written left-to-right in Hebrew but right-to-left in Arabic
elementary school textbooks using Arabic numeral glyphs). My personal hunch is
that a label like (1b) in an Arabic text would be typeset left-to-right if the ‘17 is
a Western glyph, but right-to-left if the ‘1’ is an Arabic glyph. But this is just a
guess, I’d have to ask Arab typesetters to find the correct answer. —RA.

The following code provides for the proper printing of appendix numbers in tables
of contents. Section and chapter headings are normally bilingual: regardless of
the text language, the author supplies each section/chapter with two headings—
one for the Hebrew table of contents and one for the Latin table of contents. It
makes sense that the label should be a Latin letter in the Latin table of contents
and a Hebrew letter in the Hebrew table of contents. The definition is similar to
that of \theenumii and \theenumiv above, but additional \protect commands
ensure that the entire condition is written the .aux file. The appendix number
will therefore be typeset according to the environment in which it is used rather
than issued: a Hebrew number (with apostrophes) in a Hebrew environment and
a Latin capital letter in a Latin environment (the command \@@Alph is set in
rlbabel.def to hold the default meaning of I¥TEX [latin] \@Alph, regardless of
the mode in which it is issued). The net result is that the second appendix will
be marked with ‘B’ in the Latin table of contents and with ‘bet’ in the Hebrew

345

table of contents; the mark in the main text will depend on the language of the
appendix itself.

62.129 \@ifclassloaded{letter}{}{%
62.130 \@ifclassloaded{slides}{}{%
62.131 \let\@Qappendix=\appendix
62.132 \@ifclassloaded{article}{%

62.133 \renewcommand\appendix{\@@appendixy

62.134 \renewcommand\thesection

62.135 {\protect\if@rl\protect\Hebrewnumeral{\number\c@section}j,
62.136 \protect\else\Q@QAlph\c@section\protect\fi}}}

62.137 {\renewcommand\appendix{\@@appendix’

62.138 \renewcommand\thechapter

62.139 {\protect\if@rl\protect\Hebrewnumeral{\number\c@chapter}’
62.140 \protect\else\@0Alph\c@chapter\protect\fi}}}}}

\@hebrew@numeral

QUESTION: is this also the appropriate way to refer to an appendix in the text,
or should we retain the original label the same way we did with enumerate labels?
ANOTHER QUESTION: are similar redefinitions needed for other counters that
generate texts in bilingual lists like .1of/.fol and .lot/.tol? —RA.

The command \@hebrew@numeral prints a Hebrew number. The groups of thou-
sands, millions, billions are separated by apostrophes and typeset without apostro-
phes or final letters; the remainder (under 1000) is typeset conventionally, with the
selected styles for apostrophes and final letters. The function calls on \gim@no@mil
to typeset each three-digit block. The algorithm is recursive, but the maximum re-
cursion depth is 4 because TEX only allows numbers up to 23! —1 = 2,147,483,647.
The typesetting routine is wrapped in \@hebrew in order to ensure that numbers
are always typeset in Hebrew mode.
Initialize: \@tempcnta holds the value, \@tempcntb is used for calculations.

62.141 \newcommand*{\@hebrewOnumeral} [1]
62.142 {\Ghebrew{\Q@tempcnta=#1\0@tempcntb=#1\relax
62.143 \divide\@tempcntb by 1000

If we’re under 1000, call \gim@nomil

62.144 \ifnum\@tempcntb=0\gim@nomil\@tempcnta\relax

If we’re above 1000 then force no apostrophe and no final letter styles for the
value above 1000, recur for the value above 1000, add an apostrophe, and call
\gim@nomil for the remainder.

62.145 \else{\Q@gim@apostfalse\@gim@finalfalse\@hebrew@numeral\@tempcntb}’’

62.146 \multiply\@tempcntb by 1000\relax

62.147 \advance\@tempcnta by -\@tempcntb\relax
62.148 \gim@nomil\@tempcnta\relax

62.149 \fi

62.150 }}

\gim@nomil

NOTE: is it the case that 15,000 and 16,000 are written as yod-he and yod-vav,
rather than tet-vav and tet-zayin? This vaguely rings a bell, but I'm not certain.

If this is the case, then the current behavior is incorrect and should be changed.
-RA.

The command \gim@nomil typesets an integer between 0 and 999 (for 0 it typesets
nothing). The code has been modified from the old hebcal.sty (appropriate
credits—Boris Lavva and Michail Rozman ?). \@tempcnta holds the total value
that remains to be typeset. At each stage we find the highest valued letter that is
less than or equal to \@tempcnta, and call on \gim@print to subtract this value
and print the letter.

Initialize: \@tempcnta holds the value, there is no previous letter.

62.151 \newcommand*{\gim@nomil} [1] {\@tempcnta=#1\Q@gim@prevfalse

Find the hundreds digit.

62.152 \@tempcntb=\@tempcnta\divide\@tempcntb by 100\relax % hundreds digit
62.153 \ifcase\@tempcntb % print nothing if no hundreds

346

62.154 \or\gim@print{100}{\hebqof}%

62.155 \or\gim@print{200}{\hebresh}y,

62.156 \or\gim@print{300}{\hebshin}},

62.157 \or\gim@print{400}{\hebtavl}y,

62.158 \or\hebtav\@gim@prevtrue\gim@print{500}{\hebqofl}’

62.159 \or\hebtav\@gim@prevtrue\gim@print{600}{\hebresh}y

62.160 \or\hebtav\@gim@prevtrue\gim@print{700}{\hebshin}¥

62.161 \or\hebtav\0gim@prevtrue\gim@print{800}{\hebtavl}y,

62.162 \or\hebtav\@gim@prevtrue\hebtav\gim@print{900}{\hebqof}%
62.163 \fi

Find the tens digit. The numbers 15 and 16 are traditionally printed as tet-vav
(9 + 6) and tet-zayin (9 + 7) to avoid spelling the Lord’s name.

62.164 \O@tempcntb=\Q@tempcnta\divide\@tempcntb by 10\relax % tens digit
62.165 \ifcase\@tempcntb % print nothing if no tens
62.166 \or % number between 10 and 19
62.167 \ifnum\@tempcnta = 16 \gim@print {9}{\hebtetl}), tet-zayin
62.168 \else\ifnum\@tempcnta = 15 \gim@print {9}{\hebtetl}), tet-vav
62.169 \else \gim@print{10}{\hebyod}’%

62.170 \fi % \@tempcnta = 15

62.171 \fi % \@tempcnta = 16

Initial or final forms are selected according to the current style option; \gim@print
will force a non-final letter in non-final position by means of a local style change.

62.172 \or\gim@print{20}{\if@gim@final\hebfinalkaf\else\hebkaf\fil}},
62.173 \or\gim@print{30}{\heblamed}/,

62.174 \or\gim@print{40}{\if@gim@final\hebfinalmem\else\hebmem\fi}y
62.175 \or\gim@print{50}{\if@gim@final\hebfinalnun\else\hebnun\fil}j,
62.176 \or\gim@print{60}{\hebsamekh}

62.177 \or\gim@print{70}{\hebayin}/,

62.178 \or\gim@print{80}{\if@gim@final\hebfinalpe\else\hebpe\fi}},

62.179 \or\gim@print{90}{\if@gim@final\hebfinaltsadi\else\hebtsadi\fil}},
62.180 \fi

Print the ones digit.

62.181 \ifcase\Q@tempcnta % print nothing if no ones
62.182 \or\gim@print{1}{\hebalefl}),
62.183 \or\gim@print{2}{\hebbet}%
62.184 \or\gim@print{3}{\hebgimell}},
62.185 \or\gim@print{4}{\hebdaletl}},
62.186 \or\gim@print{5}{\hebhe}
62.187 \or\gim@print{6}{\hebvavl}y,
62.188 \or\gim@print{7}{\hebzayin}},
62.189 \or\gim@print{8}{\hebhet}%
62.190 \or\gim@print{9}{\hebtet}%
62.191 \fi

62.192 }

\gim@print The actual printing routine typesets a digit with the appropriate apostrophes:
\if@gim@prev if a number sequence consists of a single letter then it is followed by a single
apostrophe, and if it consists of more than one letter then a double apostrophe is
inserted before the last letter. We typeset the letters one at a time, keeping a flag
that tells us if any previous letters had been typeset.
62.193 \newif\if@gim@prev % flag if a previous letter has been typeset

For each letter, we first subtract its value from the total. Then,

e if the result is zero then this is the last letter; we check the flag to see if this
is the only letter and print it with the appropriate apostrophe;

e if the result is not zero then there remain additional letters to be typeset;
we print without an apostrophe and set the ‘previous letter’ flag.

347

\hebr

\@tempcnta holds the total value that remains to be typeset. We first deduct the
letter’s value from \@tempcnta, so \@tempcnta is zero if and only if this is the
last letter.

62.194 \newcommand*{\gim@print} [2]{), #2 is a letter, #1 is its value.
62.195 \advance\@tempcnta by -#1\relax), deduct the value from the remainder

If this is the last letter, we print with the appropriate apostrophe (depending
on the style option): if there is a preceding letter, print "x if the style calls for
apostrophes, x if it doesn’t; otherwise, this is the only letter: print x’ if the style
calls for apostrophes, x if it doesn’t.

62.196 \ifnum\@tempcnta=0% if this is the last letter

62.197 \ifQ@gim@prev\ifQ@gim@apost"\fi#2},

62.198 \else#2\if@gim@apost’\fi\fi},
If this is not the last letter: print a non-final form (by forcing a local style option)
and set the ‘previous letter’ flag.

62.199 \else{\@gim@finalfalse#2}\Qgim@prevtrue\fi}

The older Hebrew counter commands \hebr and \gim are retained in order to

\gim keep older documents from breaking. They are set to be equivalent to \alph, and

their use is deprecated. Note that \hebr gives different results than it had in the
past—it now typesets 11 as yod-alef rather than kaf.

62.200 \let\hebr=\alph
62.201 \let\gim=\alph

For backward compatibility with ‘older’ hebrew.sty packages, we define He-
brew equivalents of some useful IXTEX commands. Note, however, that 8-bit
macros defined in Hebrew are no longer supported.

62.202 \def \hebcopy{\protect\R{\hebhe\hebayin\hebtav\hebqof}}
62.203 \def\hebincl{\protect\R{\hebresh\hebtsadi"\hebbetl}}

62.204 \def \hebpage{\protect\R{\hebayin\hebmem\hebvav\hebdalet}}
62.205 \def \hebto{\protect\R{\hebayin\hebdalet}}

\hadgesh produce “poor man’s bold” (heavy printout), when used with normal
font glyphs. It is advisable to use bold font (for example, Dead Sea) instead of
this macro.

62.206 \def\hadgesh#1{\leavevmode\setboxO=\hbox{#11}/,
62.207 \kern-.025em\copyO\kern-\wdO

62.208 \kern.Obem\copyO\kern-\wd0

62.209 \kern-.025em\raise.0433em\box0 }

\piska and \piskapiska sometimes used in ‘older’ hebrew sources, and should
not be used in ETEX 2¢.

62.210 \if@compatibility

62.211 \def\piska#1{\item{#1}\hangindent=-\hangindent}

62.212 \def\piskapiska#1l{\itemitem{#1}\hangindent=-\hangindent}
62.213 \fi

The following commands are simply synonyms for the standard ones, provided
with ITEX 2¢.
62.214 \let\makafgadol=\textendash
62.215 \let\makafanak=\textemdash
62.216 \let\geresh=\textquoteright
62.217 \let\opengeresh=\textquoteright
62.218 \let\closegeresh=\textquoteleft
62.219 \let\openquote=\textquotedblright
62.220 \let\closequote=\textquotedblleft
62.221 \let\leftquotation=\textquotedblright
62.222 \let\rightquotation=\textquotedblleft

We need to ensure that Hebrew is used as the default right-to-left language
at \begin{document}. The mechanism of defining the \@rllanguagename is
the same as in babel’s \languagename: the last right-to-left language in the

348

\usepackage{babel} line is set as the default right-to-left language at document
beginning.
For example, the following code:

\usepackage [russian,hebrew,arabic,greek,english] {babel}

will set the Arabic language as the default right-to-left language and the English
language as the default language. As a result, the commands \L{} and \embox{}
will use English and \R{} and \hmbox{} will use Arabic by default. These defaults
can be changed with the next \sethebrew or \selectlanguage{language name}
command.

62.223 \AtBeginDocument{\def\@rllanguagename{hebrewl}}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

62.224 \1df@finish{hebrew}
62.225 (/hebrew)

62.4 Right to left support

This file r1babel.def defines necessary bidirectional macro support for BTEX 2¢.
It is designed for use not only with Hebrew, but with any Right-to-Left languages,
supported by babel. The macros provided in this file are language and encoding
independent.

Right-to-left languages will use TEX extensions, namely TEX primitives
\beginL, \endL and \beginR, \endR, currently implemented only in e-TEX and
in TEX--XgT.

If e-TEX is used, we should switch it to the enhanced mode:

62.226 (*rightleft)

62.227 \ifx\TeXXeTstate\undefined\else},
62.228 \TeXXeTstate=1

62.229 \fi

Note, that e-TEX’s format file should be created for extended mode. Mode can
be checked by running e-TEX on some TEX file, for example:

This is e-TeX, Version 3.14159-1.1 (Web2c 7.0)
entering extended mode

The second line should be entering extended mode.
We check if user uses Right-to-Left enabled engine instead of regular Knuth’s
TEX:
62.230 \ifx\beginL\@undefinedy,
62.231 \newlinechar‘\~"J
62.232 \typeout{~~JTo avoid this error message,~~J%

62.233 run TeX--XeT or e-TeX engine instead of regular TeX.~"J}
62.234 \errmessage{Right-to-Left Support Error: use TeX--XeT or e-TeX
62.235 engine}’

62.236 \fi

62.4.1 Switching from LR to RL mode and back

\@torl and \@fromrl are called each time the horizontal direction changes.
They do all that is necessary besides changing the direction. Currently their
task is to change the encoding information and mode (condition \if@rl). They
should not normally be called by users: user-level macros, such as \sethebrew
and \unsethebrew, as well as babel’s \selectlanguage are defined in language-
definition files and should be used to change default language (and direction).

Local direction changing commands (for small pieces of text): \L{}, \R{},
\embox{} and \hmbox{} are defined below in this file in language-independent
manner.

349

\if@rl rltrue means that the main mode is currently Right-to-Left.
rlfalse means that the main mode is currently Left-to-Right.

62.237 \newif\if@rl

\if@rlmain This is the main direction of the document. Unlike \if@rl it is set once and never
changes.

rltrue means that the document is Right-to-Left.
rlfalse means that the document is Left-to-Right.

Practically \if@rlmain is set according to the value of \if@rl in the beginning
of the run.
62.238 \AtBeginDocument{’% Here we set the main document direction

62.239 \newif\if@rlmainj,
62.240 \1f@rl% e.g: if the options to babel were [english,hebrew]

62.241 \@rlmaintrue,

62.242 \else), e.g: if the options to babel were [hebrew,english]
62.243 \@rlmainfalsey,

62.244 \fi%

62.245 }

\@torl Switches current direction to Right-to-Left: saves current Left-to-Right en-
coding in \lr@encodingdefault, sets required Right-to-Left language name in
\@rllanguagename (similar to babel’s \languagename) and changes derection.

The Right-to-Left language encoding should be defined in .1df file as special
macro created by concatenation of the language name and string encoding, for
example, for Hebrew it will be \hebrewencoding.

62.246 \DeclareRobustCommand{\@torl}[1]{%

62.247 \if@rl\else},

62.248 \let\lr@encodingdefault=\encodingdefault’

62.249 \fi%

62.250 \def\@rllanguagename{#1}%

62.251 \def\encodingdefault{\csname#lencoding\endcsname},
62.252 \fontencoding{\encodingdefault}y,

62.253 \selectfont

62.254 \@rltrue}

\efromrl Opposite to \@torl, switches current direction to Left-to-Right: restores saved
Left-to-Right encoding (\1r@encodingdefault) and changes direction.
62.255 \DeclareRobustCommand{\@fromr1}{%
62.256 \if@rly
62.257 \let\encodingdefault=\1lr@encodingdefaulty
62.258 \fi%
62.259 \fontencoding{\encodingdefaultl}y,
62.260 \selectfont
62.261 \@rlfalse}

\selectlanguage This standard babel’s macro should be redefined to support bidirectional tables.
We divide \selectlanguage implementation to two parts, and the first part calls
the second \@@selectlanguage.

62.262 \expandafter\def\csname selectlanguage \endcsname#1{J
62.263 \edef\languagename{%

62.264 \ifnum\escapechar=\expandafter‘\string#1\Q@empty
62.265 \else \string#1\Q@empty\fi}/,

62.266 \@@selectlanguage{\languagenamel}}

\@@selectlanguage This new internal macro redefines a final part of the standard babel’s \select-
language implementation.

Standard I¥TEX provides us with 3 tables: Table of Contents (.toc), List of

Figures (.1lof), and List of Tables (.1lot). In multi-lingual texts mixing Left-to-

Right languages with Right-to-Left ones, the use of various directions in one table

350

results in very ugly output. Therefore, these 3 standard tables will be used now
only for Left-to-Right languages, and we will add 3 Right-to-Left tables (their
extensions are simply reversed ones): RL Table of Contents (.cot), RL List of
Figures (.fol), and RL List of Tables (.1lof).

62.267 \def \@@selectlanguage#1{%

62.268 \select@language{#11}J,

62.269 \if@filesw

62.270 \protected@urite\Qauxout{}{\string\select@language{#1}1}/,
62.271 \if@rl%

62.272 \addtocontents{cot}{\xstring\select@language{#1}}/
62.273 \addtocontents{fol}{\xstring\select@language{#1}}%
62.274 \addtocontents{tol}{\xstring\select@language{#1}}/
62.275 \else’,

62.276 \addtocontents{toc}{\xstring\select@language{#1}}%
62.277 \addtocontents{lof}{\xstring\select@language{#1}}/
62.278 \addtocontents{lot}{\xstring\select@language{#1}}/
62.279 \fi%

62.280 \fi}

\setrllanguage The \setrllanguage and \unsetrllanguage pair of macros is proved to very
\unsetrllanguage useful in bilingual texts, for example, in Hebrew-English texts. The language-
specific commands, for example, \sethebrew and \unsethebrew use these macros

as basis.

Implementation saves and restores other language in \other@languagename
variable, and uses internal macro \@@selectlanguage, defined above, to switch
between languages.

62.281 \let\other@languagename=\languagename

62.282 \DeclareRobustCommand{\setrllanguage} [1]{%
62.283 \if@rl\elseY%

62.284 \let\other@languagename=\languagenamey,
62.285 \fi%

62.286 \def\languagename{#11}/,

62.287 \@@selectlanguage{\languagename}}

62.288 \DeclareRobustCommand{\unsetrllanguage} [1]{%
62289 \iferly

62.290 \let\languagename=\other@languagename,
62.291 \fi

62.292 \@@selectlanguage{\languagename}}

\L Macros for changing direction, originally taken from TUGboat. Usage: \L{Left to
\R Right text} and \R{Right to Left text}. Numbers should also be enclosed in \L{},
\HeblatexRedefineL as in \L{123}.

Note, that these macros do not receive language name as parameter. Instead,
the saved \@rllanguagename will be used. We assume that each Right-to-Left
language defines \tolanguagename and \fromlanguagename macros in language
definition file, for example, for Hebrew: \tohebrew and \fromhebrew macros in
hebrew.1df file.

The macros \L and \R include ‘protect’ to to make them robust and allow use,
for example, in tables.

Due to the fact that some packages have different definitions for \L the macro
\HeblatexRedefineL is provided to overide them. This may be required with
hyperref, for instance.

62.293 \let\next=\

62.294 \def\HeblatexRedefineL{},

62.295 \def\L{\protect\pL}%

62.296 }

62.297 \HeblatexRedefineL

62.298 \def\pL{\protect\afterassignment\moreL \let\next= }
62.299 \def\moreL{\bracetext \aftergroup\endL \beginL\csname
62.300 from\@rllanguagename\endcsname}

351

62.301 \def\R{\protect\pR}

62.302 \def\pR{\protect\afterassignment\moreR \let\next= }

62.303 \def\moreR{\bracetext \aftergroup\endR \beginR\csname

62.304 to\@rllanguagename\endcsname}

62.305 \def\bracetext{\ifcat\next{\else\ifcat\next}\fi

62.306 \errmessage{Missing left brace has been substituted}\fi \bgroup}
62.307 \everydisplay{\if@rl\aftergroup\beginR\fi }

\@ensure@R Two small internal macros, a-la \ensuremath

\@ensure@Lgs 308 \def\Qensure@R#1{\if0rl#1\else\R{#1}\fi}
62.309 \def\@ensure@L#1{\if@r1\L{#1}\else#1\fi}

Take care of Right-to-Left indentation in every paragraph. Originally,
\noindent was redefined for right-to-left by Yaniv Bargury, then the implemen-
tation was rewritten by Alon Ziv using an idea by Chris Rowley: \noindent now
works unmodified.

62.310 \def\rl@everypar{\if@rl{\setbox\z@\lastbox\beginR\usebox\z@}\fi}
62.311 \let\o@everypar=\everypar
62.312 \def \everypar#1{\o@everypar{\rl@everypar#1}}

\hmbox Useful vbox commands. All text in math formulas is best enclosed in these: LR
\embox text in \embox and RL text in \hmbox. \mbox{} is useless for both cases, since
it typesets in Left-to-Right even for Right-to-Left languages (additions by Yaniv
Bargury).
62.313 \newcommand{\hmbox} [1] {\mbox{\R{#1}}}
62.314 \newcommand{\embox} [1]{\mbox{\L{#1}}}

\@brackets When in Right-to-Left mode, brackets should be swapped. This macro receives 3
parameters: left bracket, content, right bracket. Brackets can be square brackets,
braces, or parentheses.

62.315 \def\@brackets#1#2#3{\protect\ifQ@rl #3#2#1\protect\else
62.316 #1#2#3\protect\fi}

\Onumber \@number preserves numbers direction from Left to Right. \@latin in addition
\@latin switches current encoding to the latin.
62.317 \def \@Onumber#1{\ifmmode\else\beginL\fi#1\ifmmode\else\endL\fi}
62.318 \def\@@latin#1{\@@number{{\@fromrl#1}}}
62.319 \def \@number{\protect\@Cnumber}
62.320 \def\@latin{\protect\@@latin}

62.4.2 Counters

To make counter references work in Right to Left text, we need to surround their
original definitions with an \@number{...} or \@latin{...}. Note, that language-
specific counters, such as \hebr or \gim are provided with language definition file.
We start with saving the original definitions:

62.321 \let\@@arabic=\Qarabic

62.322 \let\@@roman=\@roman

62.323 \let\Q@@Roman=\@Roman

62.324 \let\@@alph=\0@alph

62.325 \1et\@@Alph=\@Alph

\@arabic Arabic and roman numbers should be from Left to Right. In addition, roman
\@roman numerals, both lower- and upper-case should be in latin encoding.

\@Romangz 326 \def\Q@arabic#1{\@number{\@@arabic#1}}
62.327 \def\@roman#1{\@latin{\@@roman#1}}
62.328 \def\@Roman#1{\@latin{\@@Roman#1}}

\arabicnorl This macro preserves the original definition of \arabic (overrides the overriding
of \@arabic)

62.329 \def\arabicnorl#1{\expandafter\@Qarabic\csname c@#1\endcsname}

352

\make@lr

\TeX

\LaTeX

\LaTeXe

list

In Right to Left documents all counters defined in the standard document
classes article, report and book provided with IXTEX 2¢, such as \thesection,
\thefigure, \theequation should be typed as numbers from left to right. To
ensure direction, we use the following \make@®lr{counter} macro:

62.330 \def \make@lr#1{\begingroup

62.331
62.332
62.333
62.334

62.335
62.336
62.337
62.338
62.339
62.340
62.341
62.342
62.343
62.344
62.345

62.346 }

\toks@=\expandafter{#1}J,

\edef\x{\endgroup
\def \noexpand#1{\noexpand\@number{\the\toks@}}}%
\x}

\@ifclassloaded{letter}{}{%

\@ifclassloaded{slides}{}{%
\make@lr\thesection
\make@lr\thesubsection
\make@lr\thesubsubsection
\make@lr\theparagraph
\make@lr\thesubparagraph
\make@lr\thefigure
\make@lr\thetable

}

\make@lr\theequation

62.4.3 Preserving logos
Preserve TEX, BTEX and WTEX 2¢ logos.

62.347 \1et\@Q@TeX\TeX
62.348 \def\TeX{\@latin{\@@TeX}}

62.349 \1let\@@LaTeX\LaTeX
62.350 \def\LaTeX{\@latin{\@@LaTeX}}

62.351 \1let\@@LaTeXe\LaTeXe
62.352 \def\LaTeXe{\@latin{\@@LaTeXe}}

62.4.4 List environments

List environments in Right-to-Left languages, are ticked and indented from the
right instead of from the left. All the definitions that caused indentation are
revised for Right-to-Left languages. TEX keeps track on the indentation with
the \leftmargin and \rightmargin values.

Thus we need to override the definition of the \1ist macro: when in RTL mode,
the right margins are the begining of the line.

62.353 \def\list#1#2{J

62.354
62.355
62.356
62.357
62.358
62.359
62.360
62.361
62.362
62.363
62.364
62.365
62.366

\ifnum \@listdepth >5\relax
\@toodeep

\else
\global\advance\@listdepth\@ne

\fi

\rightmargin\z@

\listparindent\z@

\itemindent\z@

\csname @list\romannumeral\the\@listdepth\endcsname

\def\@itemlabel{#1}%

\let\makelabel\@mklab

\@nmbrlistfalse

#2\relax

353

\labelenumii
\p@enumiii

\@tableofcontents
\@listoffigures
\@listoftables

62.367 \@trivlist

62.368 \parskip\parsep

62.369 \parindent\listparindent

62.370 \advance\linewidth -\rightmargin
62.371 \advance\linewidth -\leftmargin

The only change in the macro is the \if@rl case:
62.372 \iferl

62.373 \advance\Qtotalleftmargin \rightmargin
62.374 \else

62.375 \advance\@totalleftmargin \leftmargin
62.376 \fi

62.377 \parshape \@ne \@totalleftmargin \linewidth
62.378 \ignorespaces}

The \labelenumii and \p@enumiii commands use parentheses. They are revised
to work Right-to-Left with the help of \@brackets macro defined above.

62.379 \def\labelenumii{\@brackets(\theenumii)}
62.380 \def\p@enumiii{\p@enumii\@brackets (\theenumii)l}

62.4.5 Tables of moving stuff

Tables of moving arguments: table of contents (toc), list of figures (1of) and list
of tables (lot) are handles here. These three default WTEX tables will be used
now exclusively for Left to Right stuff.

Three additional Right-to-Left tables: RL table of contents (cot), RL list of
figures (fol), and RL list of tables (tol) are added. These three tables will be
used exclusively for Right to Left stuff.

We define 3 new macros similar to the standard IXTEX tables, but with one pa-
rameter — table file extension. These macros will help us to define our additional
tables below.

62.381 \@ifclassloaded{letter}{}{/ other

62.382 \@ifclassloaded{slides}{}{% other

62.383 \@ifclassloaded{article}{) article

62.384 \newcommand\@tableofcontents [1]{%

62.385 \section*{\contentsname\@mkboth

62.386 {\MakeUppercase\contentsname},

62.387 {\MakeUppercase\contentsname}}%

62.388 \@starttoc{#1}}

62.389 \newcommand\@listoffigures[1]{}

62.390 \section*{\listfigurename\@mkboth

62.391 {\MakeUppercase\listfigurename}y,

62.392 {\MakeUppercase\listfigurename}},

62.393 \@starttoc{#1}}

62.394 \newcommand\@listoftables[1]{%

62.395 \section*{\listtablename\@mkbothy

62.396 {\MakeUppercase\listtablenamel}/,

62.397 {\MakeUppercase\listtablenamel}}/,

62.398 \@starttoc{#1}}}%

62.399 {% else report or book

62.400 \newcommand\@tableofcontents[1]{/

62.401 \@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumny,
62.402 \fi\chapter*{\contentsname\@mkbothy,

62.403 {\MakeUppercase\contentsnamel},

62.404 {\MakeUppercase\contentsname}}%

62.405 \@starttoc{#1}\if@restonecol\twocolumn\fi}
62.406 \newcommand\@listoffigures[1]{%

62.407 \@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumny,
62.408 \fi\chapter*{\listfigurename\@mkboth,
62.409 {\MakeUppercase\listfigurename},

62.410 {\MakeUppercase\listfigurename}},

354

62.411
62.412
62.413
62.414
62.415
62.416
62.417

\@starttoc{#1}\if@restonecol\twocolumn\fi}
\newcommand\@listoftables[1]{%
\if@twocolumn\@restonecoltrue\onecolumn\else\Q@restonecolfalse\fi},
\chapter*{\listtablename\@mkbothy,
{\MakeUppercase\listtablenamely
{\MakeUppercase\listtablename}}/,
\@starttoc{#1}\if@restonecol\twocolumn\fi}}/,

\1lrtableofcontents Left-to-Right tables are called now \1lrzzz and defined with the aid of three macros
\1rlistoffigures defined above (extensions toc, lof, and lot).

\1lrlistoftablesgo 418

62.419
62.420

\newcommand\lrtableofcontents{\@tableofcontents{toc}}%
\newcommand\lrlistoffigures{\@listoffigures{lof}}/
\newcommand\lrlistoftables{\@listoftables{lot}}}

\rltableofcontents Right-to-Left tables will be called \rlzzz and defined with the aid of three macros
\rllistoffigures defined above (extensions cot, fol, and tol).

\rllistoftablesgo 491

62.422
62.423

\newcommand\rltableofcontents{\@tableofcontents{cot}}%
\newcommand\rllistoffigures{\@listoffigures{foll}}%
\newcommand\rllistoftables{\@listoftables{tol}}}

\tableofcontents Let \zzz be \rlzzz if the current direction is Right-to-Left and \lrzzz if it is
\listoffigures Left-to-Right.

\liStOftab16562.424
62.425
62.426
62.427
62.428
62.429

\renewcommand\tableofcontents{\if@rl\rltableofcontents’,

\else\lrtableofcontents\fi}

\renewcommand\listoffigures{\if@rl\rllistoffigures,

\else\lrlistoffigures\fi}

\renewcommand\listoftables{\if@rl\rllistoftables},

\else\lrlistoftables\fi}}}

\@dottedtocline The following makes problems when making a Right-to-Left tables, since it uses
\leftskip and \rightskip which are both mode dependent.

62.430 \def\@dottedtocline#1#2#3#4#5{/

62.431
62.432
62.433
62.434
62.435
62.436
62.437
62.438
62.439
62.440
62.441
62.442
62.443
62.444
62.445
62.446
62.447
62.448
62.449

\ifnum #1>\c@tocdepth \else

\vskip \z@ \@plus.2\p@

{\if@rl\rightskip\else\leftskip\fi #2\relax
\if@rl\leftskip\else\rightskip\fi \@tocrmarg \parfillskip
-\if@rl\leftskip\else\rightskip\fi

\parindent #2\relax\@afterindenttrue
\interlinepenalty\@GM
\leavevmode
\@tempdima #3\relax
\advance\if@rl\rightskip\else\leftskip\fi \@tempdima
\null\nobreak\hskip -\if@rl\rightskip\else\leftskip\fi
{#4}\nobreak
\leaders\hbox{$\m@th
\mkern \@dotsep mu\hbox{.}\mkern \@dotsep
mu$\hfill
\nobreak
\hb@xt@\@pnumwidth{\hfil\normalfont \normalcolor \beginL#5\endL}/
\parl}’

\fi}

\lopart This standard macro was redefined for table of contents since it uses \rightskip
which is mode dependent.
62.450 \@ifclassloaded{letter}{}{% other

62.451 \@ifclassloaded{slides}{}{/, other
62.452 \renewcommand*\1@part [2] {%

62.453
62.454
62.455
62.456
62.457

\ifnum \c@tocdepth >-2\relax

\addpenalty{-\@highpenaltyl}

\addvspace{2.25em \@plus\p@}/

\begingroup
\setlength\@tempdima{3em},

355

62.458 \parindent \z@ \if@rl\leftskip\else\rightskip\fi \@pnumwidth

62.459 \parfillskip -\@pnumwidth

62.460 {\leavevmode

62.461 \large \bfseries #1\hfil \hb@xt@\@pnumwidth{\hss#2}}\par
62.462 \nobreak

62.463 \global\@nobreaktrue

62.464 \everypar{\global\@nobreakfalse\everypar{}}/

62.465 \endgroup

62.466 \fi}}}

\@part Part is redefined to support new Right-to-Left table of contents (cot) as well as

the Left-to-Right one (toc).

62.467 \@ifclassloaded{article}{) article class
62.468 \def\@part [#1]#2{},

62.469 \ifnum \c@secnumdepth >\m@ne

62.470 \refstepcounter{part}y,

62.471 \addcontentsline{toc}{part}{\thepart\hspace{lem}#13}J,
62.472 \addcontentsline{cot}{part}{\thepart\hspace{lem}#1}/,
62.473 \else

62.474 \addcontentsline{toc}H part}{#1}/

62.475 \addcontentsline{cot}{part}{#1}/

62.476 \fi

62.477 {\parindent \z@ \raggedright

62.478 \interlinepenalty \@M

62.479 \normalfont

62.480 \ifnum \c@secnumdepth >\m@ne

62.481 \Large\bfseries \partname~\thepart

62.482 \par\nobreak

62.483 \fi

62.484 \huge \bfseries #2J,

62.485 \markboth{}{}\par}’

62.486 \nobreak

62.487 \vskip 3ex

62.488 \@afterheadingl}¥%

62.489 }{/, report and book classes
62.490 \def\@part [#1]#2{/

62.491 \ifnum \c@secnumdepth >-2\relax

62.492 \refstepcounter{part}y,

62.493 \addcontentsline{toc}{part}{\thepart\hspace{lem}#1}J,
62.494 \addcontentsline{cot}{part}{\thepart\hspace{lem}#1}J
62.495 \else

62.496 \addcontentsline{toc}{part}{#1}/

62.497 \addcontentsline{cot}{part}{#1}%

62.498 \fi

62.499 \markboth{}{}%

62.500 {\centering

62.501 \interlinepenalty \@M

62.502 \normalfont

62.503 \ifnum \c@secnumdepth >-2\relax

62.504 \huge\bfseries \partname~\thepart

62.505 \par

62.506 \vskip 20\p@

62.507 \fi

62.508 \Huge \bfseries #2\parlj,

62.509 \@endpart}}

\@sect Section was redefined from the latex.ltx file.

It is changed to support both

Left-to-Right (toc) and Right-to-Left (cot) table of contents simultaneously.

62.510 \def \O@sect#1#2#3#4#5#6 [#7]#8{Y,
62.511 \ifnum #2>\c@secnumdepth
62.512 \let\@svsec\@empty

62.513 \else

356

62.514
62.515
62.516
62.517
62.518
62.519
62.520
62.521
62.522
62.523
62.524
62.525
62.526
62.527
62.528
62.529
62.530
62.531
62.532
62.533
62.534
62.535
62.536
62.537
62.538
62.539
62.540
62.541
62.542
62.543
62.544
62.545
62.546
62.547
62.548
62.549
62.550
62.551

\refstepcounter{#1}%
\protected@edef\@svsec{\@seccntformat{#1}\relax}y,
\fi
\@tempskipa #5\relax
\ifdim \@tempskipa>\z@
\begingroup
#6{%
\@hangfrom{\hskip #3\relax\@svsecl}
\interlinepenalty \@M #8\@@parly,
\endgroup
\csname #1lmark\endcsname{#7}}
\addcontentsline{toc}{#1}{/
\ifnum #2>\c@secnumdepth \else
\protect\numberline{\csname the#1\endcsnamel},
\fi
#7}%
\addcontentsline{cot}{#1}{/
\ifnum #2>\c@secnumdepth \else
\protect\numberline{\csname the#1\endcsnamel},
\fi
#7}%
\else
\def\@svsechd{’
#6{\hskip #3\relax
\@svsec #8}/
\csname #1lmark\endcsname{#7}J,
\addcontentsline{tocH#1}{/
\ifnum #2>\c@secnumdepth \else
\protect\numberline{\csname the#1\endcsnamel},
\fi
#7}%
\addcontentsline{cot}{#1}{/
\ifnum #2>\c@secnumdepth \else
\protect\numberline{\csname the#1\endcsnamel},

\fi

#73},
\fi
\@xsect{#5}}

\@caption Caption was redefined from the latex.ltx file. It is changed to support Left-to-
Right list of figures and list of tables (lof and lot) as well as new Right-to-Left
lists (fol and tol) simultaneously.

62.552 \long\def\Q@caption#1 [#2]#3{},

62.553
62.554
62.555
62.556
62.557
62.558
62.559
62.560
62.561
62.562
62.563
62.564
62.565
62.566
62.567
62.568
62.569
62.570
62.571

\par
\addcontentsline{\csname ext@#1\endcsname}{#1}J
{\protect\numberline{\csname the#1\endcsnamel}%
{\ignorespaces #2}}%
\def\@fignm{figure}
\ifx#1\@fignm\addcontentsline{fol}{#1}Y,
{\protect\numberline{\csname the#1\endcsnamely,
{\ignorespaces #2}}\fi%
\def\@tblnm{table}
\ifx#1\@tblnm\addcontentsline{tol}{#1}/,
{\protect\numberline{\csname the#1\endcsnamely,
{\ignorespaces #2}}\fi%
\begingroup
\@parboxrestore
\if@minipage
\@setminipage
\fi
\normalsize
\O@makecaption{\csname fnum@#1\endcsname}{\ignorespaces #3}\par

357

62.572 \endgroup}

\lechapter This standard macro was redefined for table of contents since it uses \rightskip

which is mode dependent.
62.573 \@ifclassloaded{letter}{}{%

62.574 \@ifclassloaded{slides}{}{%
62.575 \@ifclassloaded{article}{}{%

62.576 \renewcommand*\1@chapter [2] {/

62.577 \ifnum \c@tocdepth >\m@ne

62.578 \addpenalty{-\@highpenaltyl}/

62.579 \vskip 1.0em \@plus\p@

62.580 \setlength\@tempdima{l.5em}%

62.581 \begingroup

62.582 \parindent \z@ \if@rl\leftskip\else\rightskip\fi \@pnumwidth
62.583 \parfillskip -\@pnumwidth

62.584 \leavevmode \bfseries

62.585 \advance\if@rl\rightskip\else\leftskip\fi\@tempdima
62.586 \hskip -\if@rl\rightskip\else\leftskip\fi

62.587 #1\nobreak\hfil \nobreak\hb@xt@\@pnumwidth{\hss#2}\par
62.588 \penalty\@highpenalty

62.589 \endgroup

62.590 \fi}}}}

\l@section The toc entry for section did not work in article style. Also it does not print dots,
\l@subsection which is funny when most of your work is divided into sections.

\1l@subsubsection It was revised to use \@dottedtocline as in report.sty (by Yaniv Bargury)
\l@paragraph and was updated later for all kinds of sections (by Boris Lavva).

\1l@subparagraphgs 591 \@ifclassloaded{article}{%

\@outputdblcol
\set@outputdblcol
rl@outputdblcol

62.592 \renewcommand*\1@section{\@dottedtocline{1}{1.5em}{2.3em}}

62.593 \renewcommand*\1@subsection{\@dottedtocline{2}{3.8em}{3.2em}}
62.594 \renewcommand*\1@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}}
62.595 \renewcommand*\1@paragraph{\@dottedtocline{4}{10em}{5em}}

62.596 \renewcommand*\1l@subparagraph{\@dottedtocline{5}{12em}{6em}}}{}

62.4.6 Two-column mode

This is the support of twocolumn option for the standard KETEX2c classes.
The following code was originally borrowed from the ArabTgEX package, file
latexext.sty, copyright by Klaus Lagally, Institut fuer Informatik, Universitaet
Stuttgart. It was updated for this package by Boris Lavva.

First column is \@leftcolumn will be shown at the right side, Second column is
\@outputbox will be shown at the left side.

\set@outputdblcol IS CURRENTLY DISABLED. TODO: REMOVE IT
[tzafrir]|

62.597 \1let\@Qoutputdblcol\@outputdblcol

62.598 %\def\set@outputdblcol{’,

62.599 % \if@rl\renewcommand{\@outputdblcol}{\rl@outputdblcoll}’%
62.600 % \else\renewcommand{\@outputdblcol}{\@Qoutputdblcol}\fi}
62.601 \renewcommand{\@outputdblcol}{’

62.602 \if@rlmain

62.603 \rl@outputdblcol’,
62.604 \elsel,

62.605 \@@outputdblcoly,
62.606 \fil

62.607 }

62.608 \newcommand{\rl@outputdblcol}{}

62.609 \if@firstcolumn

62.610 \global \@firstcolumnfalse

62.611 \global \setbox\@leftcolumn \box\@outputbox
62.612 \else

358

62.613 \global \@firstcolumntrue

62.614 \setbox\@outputbox \vbox {\hbO@xt@\textwidth {%
62.615 \hskip\columnwidthy
62.616 \hfil\vrule\@width\columnseprule\hfil
62.617 \hbe@xt@\columnwidth {J
62.618 \box\@leftcolumn \hssl}
62.619 \hb@xt@\columnwidth {%
62.620 \hskip-\textwidth,
62.621 \box\@outputbox \hss}/
62.622 \hskip\columnsep?,

62.623 \hskip\columnwidth}}%
62.624 \@combinedblfloats

62.625 \@outputpage

62.626 \begingroup

62.627 \@dblfloatplacement

62.628 \@startdblcolumn

62.629 \@whilesw\if@fcolmade \fi

62.630 {\@outputpage

62.631 \@startdblcolumn}y,

62.632 \endgroup

62.633 \fil}

62.4.7 Footnotes

\footnoterule The Right-to-Left footnote rule is simply reversed default Left-to-Right one. Foot-
notes can be used in RL or LR main modes, but changing mode while a footnote
is pending is still unsolved.

62.634 \let\@@footnoterule=\footnoterule
62.635 \def\footnoterule{\if@rl\hb@xt@\hsize{\hss\vbox{\@@footnoterule}}’

62.636

\else\@@footnoterule\fi}

62.4.8 Headings and two-side support

When using headings or myheadings modes, we have to ensure that the language
and direction of heading is the same as the whole chapter/part of the document.
This is implementing by setting special variable \headlanguage when starting
new chapter/part.

In addition, when selecting the twoside option (default in book document
class), the LR and RL modes need to be set properly for things on the heading

and footing. This is done here too.

ps@headings First, we will support the standard letter class:
ps@myheadingsgs 637 \@ifclassloaded{letter}{%

headeveng2.638
headodd62.639
62.640

62.641

62.642

62.643

62.644

62.645

62.646

62.647

62.648

62.649

62.650

62.651

62.652

62.653

62.654

62.655

\def\headodd{\protect\if@rl\beginR\fi\headtoname{}
\ignorespaces\toname
\hfil \@date
\hfil \pagename{} \thepage\protect\if@rl\endR\fi}
\if@twoside
\def \ps@headings{
\let\@oddfoot\@empty\let\@evenfoot\Q@empty
\def\Q@oddhead{\select@language{\headlanguagel}\headodd}
\let\@evenhead\Q@oddhead}

\else
\def\ps@headings{%
\let\@oddfoot\Qempty
\def\@oddhead{\select@language{\headlanguage}\headodd}}
\fi

\def\headfirst{\protect\if@rl\beginR\fi\fromlocation \hfill %
\telephonenum\protect\if@rl\endR\fi}
\def\ps@firstpage{%
\let\@oddhead\@empty

359

62.656 \def\@oddfoot{\raisebox{-45\p@} [\z@]{%

62.657 \hbext@\textwidth{\hspace*{100\pel}’
62.658 \ifcase \@ptsize\relax

62.659 \normalsize

62.660 \or

62.661 \small

62.662 \or

62.663 \footnotesize

62.664 \fi

62.665 \select@language{\headlanguage}\headfirst}}\hss}}
62.666 %

62.667 \renewcommand{\opening}[1]{%

62.668 \let\headlanguage=\languagename},

62.669 \ifx\Q@empty\fromaddress?,

62.670 \thispagestyle{firstpagel}’

62.671 {\raggedleft\@date\par}y,

62.672 \else % home address

62.673 \thispagestyle{empty}/

62.674 {\raggedleft

62.675 \if@rl\begin{tabular}{@{\beginR\csnamej,
62.676 to\@rllanguagename\endcsname}r@{\endR}}\ignorespaces
62.677 \fromaddress *[2\parskipl%

62.678 \@date \end{tabular}\par

62.679 \else\begin{tabular}{l}\ignorespaces
62.680 \fromaddress *[2\parskipl%

62.681 \@date \end{tabular}\par

62.682 \£i}%

62.683 \fi

62.684 \vspace{2\parskip}%

62.685 {\raggedright \toname \\ \toaddress \parl}/
62.686 \vspace{2\parskipl}/,

62.687 #1\par\nobreak}

62.688 }

Then, the article, report and book document classes are supported. Note, that
in one-sided mode \markright was changed to \markboth.

62.689 {}, article, report, book
62.690 \def\headeven{\protect\if@rl\beginR\thepage\hfil\rightmark\endR

62.691 \protect\else\thepage\hfil{\slshape\leftmark}
62.692 \protect\fi}

62.693 \def\headodd{\protect\if@rl\beginR\leftmark\hfil\thepage\endR
62.694 \protect\else{\slshape\rightmark}\hfil\thepage
62.695 \protect\fi}

62.696 \@ifclassloaded{article}{) article

62.697 \if@twoside % two-sided

62.698 \def\ps@headings{/

62.699 \let\@oddfoot\@empty\let\@evenfoot\Q@empty

62.700 \def\Qevenhead{\select@language{\headlanguage}\headevenl}y,
62.701 \def\@oddhead{\select@language{\headlanguage}\headodd}’
62.702 \let\@mkboth\markboth

62.703 \def\sectionmark##1{}

62.704 \markboth {\MakeUppercase{/

62.705 \ifnum \c@secnumdepth >\z@

62.706 \thesection\quad

62.707 \fi

62.708 #1333}

62.709 \def\subsectionmark##1{J,

62.710 \markright{%

62.711 \ifnum \c@secnumdepth >\@ne

62.712 \thesubsection\quad

62.713 \fi

62.714 ##1}}}

62.715 \else % one-sided

360

62.716
62.717
62.718
62.719
62.720
62.721
62.722
62.723
62.724
62.725
62.726
62.727
62.728
62.729
62.730
62.731
62.732
62.733
62.734
62.735
62.736
62.737
62.738
62.739
62.740
62.741
62.742
62.743
62.744
62.745
62.746
62.747
62.748
62.749
62.750
62.751
62.752
62.753
62.754
62.755
62.756
62.757
62.758
62.759
62.760
62.761
62.762
62.763
62.764
62.765
62.766
62.767
62.768
62.769
62.770
62.771
62.772
62.773
62.774
62.775
62.776
62.777

\def\ps@headings{/,
\let\@oddfoot\@empty
\def\@oddhead{\headodd}/,
\let\@mkboth\markboth
\def\sectionmark##1{}

\markboth{\MakeUppercase{/,

\ifnum \c@secnumdepth >\m@ne
\thesection\quad

\fi

##1}}{\MakeUppercase{/,

\ifnum \c@secnumdepth >\m@ne
\thesection\quad

\fi

##1111}

\fi

\def\ps@myheadings{%
\let\@oddfoot\@empty\let\@evenfoot\Q@empty
\def\@evenhead{\select@language{\headlanguage}\headeven}y,
\def\Q@oddhead{\select@language{\headlanguagel}\headoddl}’
\let\@mkboth\@gobbletwo
\let\sectionmark\@gobble
\let\subsectionmark\@gobble

}}{% report and book

\if@twoside % two-sided
\def\ps@headings{%
\let\@oddfoot\@empty\let\@evenfoot\Q@empty

\def\@evenhead{\select@language{\headlanguage}\headeven}

\def\@oddhead{\select@language{\headlanguage}\headodd}
\let\@mkboth\markboth
\def\chaptermark##1{J
\markboth{\MakeUppercase{/,
\ifnum \c@secnumdepth >\m@ne
\@chapapp\ \thechapter. \ %
\fi
##133H{}}%
\def\sectionmark##1{}
\markright {\MakeUppercase{’
\ifnum \c@secnumdepth >\z@
\thesection. \ %
\fi
##11}1}
\else 7% one-sided
\def \ps@headings{%
\let\Qoddfoot\Q@empty
\def\Qoddhead{\select@language{\headlanguagel}\headodd}
\let\@mkboth\markboth
\def\chaptermark##1{Y
\markboth{\MakeUppercase{}
\ifnum \c@secnumdepth >\m@ne
\@chapapp\ \thechapter. \ %
\fi
##1}}{\MakeUppercase{/
\ifnum \c@secnumdepth >\m@ne
\@chapapp\ \thechapter. \ %
\fi
##1}1}1}
\fi
\def\ps@myheadings{%
\let\@oddfoot\@empty\let\@evenfoot\@empty
\def\Qevenhead{\select@language{\headlanguage}\headeven}y,
\def\@oddhead{\select@language{\headlanguage}\headodd}’

361

62.778 \let\@mkboth\@gobbletwo

62.779 \let\chaptermark\@gobble
62.780 \let\sectionmark\@gobble
62.781 }}}

62.4.9 Postscript Porblems

Any command that is implemented by PostScript directives, e.g commands from
the ps-tricks package, needs to be fixed, because the PostScript directives are being
interpeted after the document has been converted by TEXto visual Hebrew (DVI,
PostScript and PDF have visual Hebrew).

For instance: Suppose you wrote in your document:

\textcolor{cyan}{some ltr text}

This would be interpeted by TEXto something like:

[postscript:make color cyan]some LTR text[postscript:make color black]

However, with the bidirectionality support we get:

\textcolor{cyan}{\hebalef\hebbet}

Translated to:

[postscript:make color black]{bet}{alef}[postscript:make color cyan]

While we want:

[postscript:make color cyan]{bet}{alef}[postscript:make color black]

The following code will probably work at least with code that stays in the same
line:

Qtextcolor

62.782 \AtBeginDocument{/
62.783 %I assume that \@textcolor is only defined by the package color
62.784 \ifx\@textcolor\@undefined\else,

62.785 % If that macro was defined before the beginning of the document,
62.786 % that is: the package was loaded: redefine it with bidi support
62.787 \def\@textcolor#1#2#3{}

62.788 \iferly

62.789 \beginL\protect\leavevmode{\color#1{#2}\beginR#3\endR}\endL}
62.790 \elsel

62.791 \protect\leavevmode{\color#1{#2}#3}}

62.792 \fi%

62.793 Yh

62.794 \fi%

62.795 }

62.796 % \end{macrocode}
62.797 % \end{macro}
62.798 % \begin{macro}{\thetrueSlideCounter}

62.799 % This macro probably needs to be overriden for when using |prosperl,
62.800 % (waiting for feedback. Tzafrir)
62.801 % \begin{macrocode}

62.802 \@ifclassloaded{prosper}{/
62.803 \def\thetrueSlideCounter{\arabicnorl{trueSlideCounter}}
62.804 H{}

62.4.10 Miscellaneous internal BTEX macros

\raggedright \raggedright was changed from latex.ltx file to support Right-to-Left mode,
\raggedleft because of the bug in its implementation.
62.805 \def\raggedright{’
62.806 \let\\\@centercr
62.807 \leftskip\z@skip\rightskip\@flushglue
62.808 \parindent\z@\parfillskip\z@skip}
Swap meanings of \raggedright and \raggedleft in Right-to-Left mode.

62.809 \let\QCraggedleft=\raggedleft
62.810 \let\@@raggedright=\raggedright

362

62.811 \renewcommand\raggedleft{\if@rl\@@raggedrighty

62.812 \else\@@raggedleft\fi}
62.813 \renewcommand\raggedright{\if@rl\@Qraggedlefty,
62.814 \else\Q@@raggedright\fi}

\author \author is inserted with tabular environment, and will be used in restricted
horizontal mode. Therefore we have to add explicit direction change command
when in Right-to-Left mode.

62.815 \let\@Qauthor=\author
62.816 \renewcommand{\author}[1]{\@@author{\if@rl\beginR #1\endR\else #1\fi}}

\MakeUppercase There are no uppercase and lowercase letters in most Right-to-Left languages,
\MakeLowercase therefore we should redefine \MakeUppercase and \MakeLowercase ITEX 2¢ com-
mands.
62.817 \let\@OMakeUppercase=\MakeUppercase
62.818 \def \MakeUppercase#1{\if@rl#1\else\@0MakeUppercase{#1}\fi}
62.819 \let\@@MakeLowercase=\MakeLowercase
62.820 \def \MakeLowercase#1{\if@rl#1\else\@O@MakeLowercase{#1}\fi}

\underline We should explicitly use \L and \R commands in \underlined text.

62.821 \let\@@@underline=\underline
62.822 \def\underline#1{\@@Qunderline{\if@r1\R{#1}\else #1\fi}}

\undertext was added for XTEX2.09 compatibility mode.
62.823 \if@compatibility
62.824 \let\undertext=\underline
62.825 \fi

\exnthm The following has been inserted to correct the appearance of the number in
\@opargbegintheorem \newtheorem to reorder theorem number components. A similar correction in
the definition of \@opargbegintheorem was added too.
62.826 \def \@xnthm#1#2 [#3]{/

62.827 \expandafter\Q@ifdefinable\csname #1\endcsname
62.828 {\@definecounter{#1}\@addtoreset{#1}{#31}/,

62.829 \expandafter\xdef\csname the#1\endcsname{\noexpand\@number
62.830 {\expandafter\noexpand\csname the#3\endcsname \Q@thmcountersep
62.831 \@thmcounter{#1}}}/,

62.832 \global\@namedef{#1}{\@thm{#1}{#2}}/

62.833 \global\@namedef{end#1}{\Q@endtheorem}}}

62.834 %

62.835 \def\Qopargbegintheorem#1#2#3{/,

62.836 \trivlist

62.837 \item[\hskip \labelsep{\bfseries #1\ #2\
62.838 \@brackets ({#3})}]\itshape}

\@chapter The following was added for pretty printing of the chapter numbers, for supporting
\@schapter Right-to-Left tables (cot, fol, and tol), to save \headlanguage for use in running
headers, and to start two-column mode depending on chapter’s main language.
62.839 \@ifclassloaded{article}{}{%
62.840 % For pretty priniting
62.841 \def\@Q@chapapp{Chapter}
62.842 \def\@@thechapter{\@Qarabic\c@chapter}
62.843 \def\@chapter [#1]1#2{%

62.844 \let\headlanguage=\languagename?,

62.845 %\set@outputdblcoly,

62.846 \ifnum \c@secnumdepth >\m@ne

62.847 \refstepcounter{chapter}y

62.848 \typeout{\@0chapapp\space\@@thechapter.1}/
62.849 \addcontentsline{toc}{chapter}y,

62.850 {\protect\numberline{\thechapter}#1}
62.851 \addcontentsline{cot}{chapterl}y,

363

62.852 {\protect\numberline{\thechapter}#1}

62.853 \else

62.854 \addcontentsline{toc}{chapter}{#1}%

62.855 \addcontentsline{cot}{chapter}{#1}%

62.856 \fi

62.857 \chaptermark{#1}

62.858 \addtocontents{lof}{\protect\addvspace{10\p@}1}/
62.859 \addtocontents{fol}{\protect\addvspace{10\p@}}/
62.860 \addtocontents{lot}{\protect\addvspace{10\p@}1}J
62.861 \addtocontents{tol}{\protect\addvspace{10\p@}1}%
62.862 \if@twocolumn

62.863 \@topnewpage [\O@makechapterhead{#2}1%

62.864 \else

62.865 \@makechapterhead{#2}/,

62.866 \@afterheading

62.867 \fi}

62.868 %

62.869 \def\@schapter#1{J,

62.870 \let\headlanguage=\languagename’,

62.871 %\set@outputdblcoly,

62.872 \if@twocolumn

62.873 \@topnewpage [\@makeschapterhead{#11}]7

62.874 \else

62.875 \@makeschapterhead{#1}},

62.876 \@afterheading

62.877 \fi}}

\appendix Changed mainly for pretty printing of appendix numbers, and to start two-column
mode with the right language (if needed).
62.878 \@ifclassloaded{letter}{}{/% other

62.879 \@ifclassloaded{slides}{}{% other
62.880 \Q@ifclassloaded{article}{% article

62.881 \renewcommand\appendix{\par

62.882 \setcounter{section}{0}/

62.883 \setcounter{subsection}{0}},

62.884 \renewcommand\thesection{\@Alph\c@section}}
62.885 }{) report and book

62.886 \renewcommand\appendix{\par

62.887 %\set@outputdblcoly,

62.888 \setcounter{chapter}{0}/

62.889 \setcounter{section}{0}},

62.890 \renewcommand\@chapapp{\appendixnamel}y
62.891 % For pretty priniting

62.892 \def\@@chapapp{Appendix}%

62.893 \def\@@thechapter{\@Q@Alph\c@chapter}

62.894 \renewcommand\thechapter{\@Alph\c@chapter}}}}}

62.4.11 Bibliography and citations

\ecite Citations are produced by the macro \@cite{LABEL}{ NOTE}. Both the citation
\@biblabel label and the note is typeset in the current direction. We have to use \@brackets
\@lbibitem macro in \@cite and \@biblabel macros. In addition, when using alpha or similar

bibliography style, the \@lbibitem is used and have to be update to support bot
Right-to-Left and Left-to-Right citations.

62.895 \def\Q@cite#1#2{\@brackets [{#1\ifQtempswa , #2\fi}]}
62.896 \def\@biblabel#1{\@brackets [{#1}]1}
62.897 \def\@lbibitem [#1]#2{\item[\@biblabel{#1}\hfill]\if@filesw

62.898 {\let\protect\noexpand

62.899 \immediate

62.900 \if@rl\write\@auxout{\string\bibcite{#2}{\R{#1}}}/
62.901 \else\write\@auxout{\string\bibcite{#2}{\L{#1}}}\fi/
62.902 H\filignorespaces}

364

thebibliography Use \rightmargin instead of \leftmargin when in RL mode.

62.903 \@ifclassloaded{letter}{}{% other

62.904 \@ifclassloaded{slides}{}{/ other

62.905 \@ifclassloaded{article}{%

62.906 \renewenvironment{thebibliography}[1]
62.907 {\section*{\refname\@mkboth},

62.908 {\MakeUppercase\refname}

62.909 {\MakeUppercase\refname}1}

62.910 \1list{\@biblabel{\@arabic\c@enumiv}},

62.911 {\settowidth\labelwidth{\@biblabel{#1}}/

62.912 \if@rl\leftmargin\else\rightmargin\fi\labelwidth
62.913 \advance\if@rl\leftmargin\else\rightmargin\fi\labelsep
62.914 \@openbib@code

62.915 \usecounter{enumiv}y

62.916 \let\p@enumiv\@empty

62.917 \renewcommand\theenumiv{\@arabic\c@enumiv}}y,
62.918 \sloppy

62.919 \clubpenalty4000

62.920 \@clubpenalty \clubpenalty

62.921 \widowpenalty4000%

62.922 \sfcode‘\.\@m}
62.923 {\def\@noitemerr

62.924 {\@latex@warning{Empty ‘thebibliography’ environmentl}}}
62.925 \endlist}}%

62.926 {\renewenvironment{thebibliography}[1]{%

62.927 \chapter*{\bibname\@mkboth,

62.928 {\MakeUppercase\bibname}

62.929 {\MakeUppercase\bibname}}/

62.930 \list{\@biblabel{\@arabic\c@enumiv}}},

62.931 {\settowidth\labelwidth{\@biblabel{#1}}%

62.932 \if@rl\leftmargin\else\rightmargin\fi\labelwidth
62.933 \advance\if@rl\leftmargin\else\rightmargin\fi\labelsep
62.934 \@openbib@code

62.935 \usecounter{enumiv}y,

62.936 \let\p@enumiv\@empty

62.937 \renewcommand\theenumiv{\@arabic\c@enumiv}}y,

62.938 \sloppy

62.939 \clubpenalty4000

62.940 \@clubpenalty \clubpenalty

62.941 \widowpenalty4000%

62.942 \sfcode‘\.\@m}

62.943 {\def\@noitemerr

62.944 {\@latex@warning{Empty ‘thebibliography’ environmentl}}},
62.945 \endlist}}}}

\@verbatim All kinds of verbs (\verb,\verb*,verbatim and verbatim*) now can be used in
Right-to-Left mode. Errors in latin mode solved too.
62.946 \def \@verbatim{J
62.947 \let\do\@makeother \dospecials}
62.948 \obeylines \verbatim@font \@noligs}

\@makecaption Captions are set always centered. This allows us to use bilingual captions, for
example: \caption{\R{RLtext} \\ \L{LRtextl}}, which will be formatted as:

Right to left caption here (RLtext)
Left to right caption here (LRtext)

See also \bcaption command below.
62.949 \long\def \@makecaption#1#2{J,
62.950 \vskip\abovecaptionskip,
62.951 \begin{center}/,

62.952 #1: #2),
62.953 \end{center} \par,

365

62.954 \vskip\belowcaptionskip}

62.4.12 Additional bidirectional commands
e Section headings are typeset with the default global direction.

e Text in section headings in the reverse language do not have to be protected
for the reflection command, as in: \protect\L{Latin Text}, because \L and
\R are robust now.

e Table of contents, list of figures and list of tables should be typeset with
the \tableofcontents, \listoffigures and \listoftables commands
respectively.

e The above tables will be typeset in the main direction (and language) in
effect where the above commands are placed.

e Only 2 tables of each kind are supported: one for Right-to-Left and another
for Left-to-Right directions.

How to include line to both tables? One has to use bidirectional sectioning
commands as following:

1. Use the \bzzx version of the sectioning commands in the text instead of
the \zzz version (zzx is one of: part, chapter, section, subsection,
subsubsection, caption).

2. Syntax of the \bzzz command is \bzzx{RL text}{LR text}. Both arguments
are typeset in proper direction by default (no need to change direction for
the text inside).

3. The section header inside the document will be typeset in the global direction
in effect at the time. i.e. The {RL text} will be typeset if Right-to-Left mode
is in effect and {LR text} otherwise.

\bpart

62.955 \newcommand{\bpart} [2]{\part{\protect\if@rl}
62.956 #1 \protect\else #2 \protect\fil}}

\bchapter

62.957 \newcommand{\bchapter} [2]{\chapter{\protect\if@rly,
62.958 #1 \protect\else #2 \protect\fil}}

\bsection

62.959 \newcommand{\bsection}[2]{\section{\protect\if@rlyj
62.960 #1 \protect\else #2 \protect\fi}}

\bsubsection

62.961 \newcommand{\bsubsection}[2]{\subsection{\protect\if@rly,
62.962 #1 \protect\else #2 \protect\fi}}

\bsubsubsection

62.963 \newcommand{\bsubsubsection}[2] {\subsubsection{\protect\if@rly,
62.964 #1 \protect\else #2 \protect\fi}}

\bcaption

62.965 \newcommand{\bcaption} [2]{%

62.966 \caption[\protect\if@rl \R{#1}\protect\else \L{#2}\protect\fil{’
62.967 \if@rl1\R{#1}\protect\\ \L{#2}

62.968 \else\L{#2}\protect\\ \R{#1}\fil}}

The following definition is a modified version of \bchapter, meant as a bilin-
gual twin for \chapter* and \section* (added by Irina Abramovici).

366

\bchapternn

62.969 \newcommand{\bchapternn} [2] {\chapter*{\protect\if@rlj,
62.970 #1 \protect\else #2 \protect\fi}}

\bsectionnn

62.971 \newcommand{\bsectionnn} [2] {\section*{\protect\if@rlj
62.972 #1 \protect\else #2 \protect\fi}}

Finally, at end of babel package, the \headlanguage and two-column mode
will be initialized according to the current language.
62.973 \AtEndOfPackage{\r1AtEnd0fPackage}
62.974 %
62.975 \def\r1AtEndOfPackage{%
62.976 \global\let\headlanguage=\languagename,\set@outputdblcol,
62.977 }
62.978 (/rightleft)

62.5 Hebrew calendar

The original version of the package hebcal.sty’* for TEX and BTEX2.09, entitled
“TEX & BTEX macros for computing Hebrew date from Gregorian one” was created
by Michail Rozman, misha@iop.tartu.ew.su’”

Released: Tammuz 12, 5751-June 24, 1991

Corrected: Shebat 10, 5752—January 15, 1992 by Rama Porrat

Corrected: Adar II 5, 5752-March 10, 1992 by Misha

Corrected: Tebeth, 5756—-January 1996 Dan Haran

(haran@math.tau.ac.il)

The package was adjusted for babel and IXTEX 2¢ by Boris Lavva.

Changes to the printing routine (only) by Ron Artstein, June 1, 2003.

This package should be included after the babel with hebrew option, as fol-
lowing:

\documentclass[...]{...}
\usepackage [hebrew,... ,other languages, ...]{babel}

\usepackage{hebcal}
Two main user-level commands are provided by this package:
\Hebrewtoday Computes today’s Hebrew date and prints it. If we are presently in Hebrew
mode, the date will be printed in Hebrew, otherwise — in English (like Shebat 10,
5752).
\Hebrewdate Computes the Hebrew date from the given Gregorian date and prints it. If we

are presently in Hebrew mode, the date will be printed in Hebrew, otherwise —
in English (like Shebat 10, 5752). An example of usage is shown below:

\newcount\hd \newcount\hm \newcount\hy
\hd=10 \hm=3 \hy=1992
\Hebrewdate{\hd}{\hm}{\hy}

full The package option full sets the flag \@full@hebrew@year, which causes
years from the current millenium to be printed with the thousands digit (he-
tav-shin-samekh-gimel). Without this option, thousands are not printed for the
current millenium. NOTE: should this be a command option rather than a package
option? —RA.

74The following description of hebcal package is based on the comments included with original
source by the author, Michail Rozman.
75Please direct any comments, bug reports, questions, etc. about the package to this address.

367

62.5.1 Introduction

The Hebrew calendar is inherently complicated: it is lunisolar — each year starts
close to the autumn equinox, but each month must strictly start at a new moon.
Thus Hebrew calendar must be harmonized simultaneously with both lunar and
solar events. In addition, for reasons of the religious practice, the year cannot
start on Sunday, Wednesday or Friday.

For the full description of Hebrew calendar and for the list of references see:

Nachum Dershowitz and Edward M. Reingold, “Calendarical Calcu-
lations”, Software—Pract.Exper., vol. 20 (9), pp.899-928 (September
1990).

C translation of LISP programs from the above article available from Mr. Wayne
Geiser, geiserypictel@uunet.uu.net.

The 4" distribution (July 1989) of hdate/hcal (Hebrew calendar programs
similar to UNIX date/cal) by Mr. Amos Shapir, amos@shum.huji.ac.il, contains
short and very clear description of algorithms.

62.5.2 Registers, Commands, Formatting Macros

The command \Hebrewtoday produces today’s date for Hebrew calendar. It is
similar to the standard BTEX 2¢ command \today. In addition three numerical
registers \Hebrewday, \Hebrewmonth and \Hebrewyear are set. For setting this
registers without producing of date string command \Hebrewsetreg can be used.

The command \Hebrewdate{ Gday}{ Gmonth}{ Gyear} produces Hebrew cal-
endar date corresponding to Gregorian date Gday.Gmonth.Gyear. Three numeri-
cal registers \Hebrewday, \Hebrewmonth and \Hebrewyear are set.

For converting arbitrary Gregorian date Gday.Gmonth.Gyear to Hebrew date
Hday.Hmonth.Hyear without producing date string the command:

\HebrewFromGregorian{ Gday}{ Gmonth}{ Gyear}{Hday}{ Hmonth}{Hyear}

can be used.

62.979 (*calendar)

62.980 \newif\if@full@hebrewQyear

62.981 \@full@hebrew@yearfalse

62.982 \DeclareOption{full}{\@full@hebrew@yeartrue}

62.983 \ProcessOptions

62.984 \newcount\Hebrewday \newcount\Hebrewmonth \newcount\Hebrewyear

\Hebrewdate Hebrew calendar date corresponding to Gregorian date Gday.Gmonth.Gyear. If
Hebrew (right-to-left) fonts & macros are not loaded, we have to use English

format.
62.985 \def \Hebrewdate#1#2#3{%
62.986 \HebrewFromGregorian{#1}{#2}{#3}
62.987 {\Hebrewday}{\Hebrewmonth}{\Hebrewyear}y
62.988 \ifundefined{if@rl}},
62.989 \FormatForEnglish{\Hebrewday}{\Hebrewmonth}{\Hebrewyear}
62.990 \else%
62.991 \FormatDate{\Hebrewday}{\Hebrewmonth}{\Hebrewyear}y
62.992 \fi}

\Hebrewtoday Today’s date in Hebrew calendar.

62.993 \def\Hebrewtoday{\Hebrewdate{\day}{\month}{\year}}
62.994 \let\hebrewtoday=\Hebrewtoday

\Hebrewsetreg Set registers: today’s date in hebrew calendar.

62.995 \def\Hebrewsetreg{/
62.996 \HebrewFromGregorian{\day}{\month}{\year}
62.997 {\Hebrewday}{\Hebrewmonth}{\Hebrewyear}}

368

\FormatDate Prints a Hebrew calendar date Hebrewday .Hebrewmonth.Hebrewyear.
62.998 \def\FormatDate#1#2#3{/,
62.999 \if@rl%
62.1000 \FormatForHebrew{#1}{#2}{#3}/,
62.1001 \else%
62.1002 \FormatForEnglish{#1}{#2}{#3}
62.1003 \fi}

\HebrewYearName

62.
62.
62.

62

62.
62.
62.
62.

62

62.

62

62.
62.
62.
62.

62

62.

62

62.
62.
62.

\HebrewMonthName

62.

62

62.
62.
62.
62.

62

62.
62.
62.
62.
62.
62.

62

62.
62.
62.
62.
62.
62.
62.

To prepare another language version of Hebrew calendar commands, one should
change or add commands here.
We start with Hebrew language macros.

Prints Hebrew year as a Hebrew number. Disambiguates strings by adding lamed-
pe-gimel to years of the first Jewish millenium and to years divisible by 1000.
Suppresses the thousands digit in the current millenium unless the package option
full is selected. NOTE: should this be provided as a command option rather
than a package option? —RA.

1004 \def\HebrewYearName#1{{/,

1005 \@tempcnta=#1\divide\@tempcnta by 1000\multiply\@tempcnta by 1000
1006 \ifnum#1=\Qtempcnta\relax % divisible by 1000: disambiguate

.1007 \Hebrewnumeralfinal{#1}\)\heblamed\hebpe"\hebgimel (%

1008 \else % not divisible by 1000

1009 \ifnum#1<1000\relax % first millennium: disambiguate

1010 \Hebrewnumeralfinal{#1}\)\heblamed\hebpe"\hebgimel (%

1011 \else

1012 \ifnum#1<5000

1013 \Hebrewnumeralfinal{#1}/,

.1014 \else

1015 \ifnum#1<6000 % current millenium, print without thousands
1016 \@tempcnta=#1\relax

1017 \if@full@hebrew@year\else\advance\@tempcnta by -5000\fi
1018 \Hebrewnumeralfinal{\@tempcnta}y,

.1019 \else % #1>6000

1020 \Hebrewnumeralfinal{#1}J,

.1021 \fi

1022 \fi

1023 \fi

1024 \fi}}

The macro \HebrewMonthName{month}{year} returns the name of month in the
‘year’.
1025 \def\HebrewMonthName#1#2{/,

.1026 \ifnum #1 =7 %

1027 \CheckLeapHebrewYear{#21}

1028 \if@HebrewLeap \hebalef\hebdalet\hebresh\ \hebbet’}
1029 \else \hebalef\hebdalet\hebreshi,

1030 \£fil

.1031 \else%

1032 \ifcase#1Y%

1033 % nothing for O

1034 \or\hebtav\hebshin\hebresh\hebyod/,

1035 \or\hebhet\hebshin\hebvav\hebfinalnun}
1036 \or\hebkaf\hebsamekh\heblamed\hebvav?,
1037 \or\hebtet\hebbet\hebtavy,

.1038 \or\hebshin\hebbet\hebtet}

1039 \or\hebalef\hebdalet\hebresh\ \hebalef’}
1040 \or\hebalef\hebdalet\hebresh\ \hebbet’
1041 \or\hebnun\hebyod\hebsamekh\hebfinalnun
1042 \or\hebalef\hebyod\hebyod\hebreshi,

1043 \or\hebsamekh\hebyod\hebvav\hebfinalnunj
1044 \or\hebtav\hebmem\hebvav\hebzayin,

1045 \or\hebalef\hebbet},

369

62.1046
62.1047
62.1048

\or\hebalef\heblamed\hebvav\heblamed’,

\fi%
\fi}

\HebrewDayName Name of day in Hebrew letters (gimatria).
62.1049 \def \HebrewDayName#1{\Hebrewnumeral{#1}}

\FormatForHebrew The macro \FormatForHebrew{hday}{hmonth }{hyear} returns the formatted
Hebrew date in Hebrew language.
62.1050 \def\FormatForHebrew#1#2#3{/,
\HebrewDayName{#1}~\hebbet\HebrewMonthName{#2}{#3}, %
\HebrewYearName{#3}}

62.1051
62.1052

We continue with two English language macros for Hebrew calendar.

\HebrewMonthNameInEnglish The macro \HebrewMonthNameInEnglish{month}{ year} is similar to \Hebrew-
MonthName described above. It returns the name of month in the Hebrew ‘year’
in English.

62.1053 \def \HebrewMonthNameInEnglish#1#2{/

62.1054
62.1055
62.1056
62.1057
62.1058
62.1059
62.1060
62.1061
62.1062
62.1063
62.1064
62.1065
62.1066
62.1067
62.1068
62.1069
62.1070
62.1071
62.1072
62.1073
62.1074

\ifnum #1 =

7h

\CheckLeapHebrewYear{#2}%
\ifO@HebrewLeap Adar II\else Adar\fiY

\else’,
\ifcase

#1%

% nothing for 0

\or
\or
\or
\or
\or
\or
\or
\or
\or
\or
\or
\or
\or
\fi
\fi}

Tishrei,
Heshvan,
Kislevy
Tebeth’,
Shebat,
Adar I%
Adar IIY
Nisan’
Iyar’
Sivan,
Tammuz%,
AvY,
Elul’

\FormatForEnglish The macro \FormatForEnglish{hday}{hmonth }{hyear} is similar to \Format-
ForHebrew macro described above and returns the formatted Hebrew date in En-
glish.

62.1075 \def \FormatForEnglish#1#2#3{/

\HebrewMonthNameInEnglish{#2}{#3} \number#1,\ \number#3}

62.1076

62.5.3 Auxiliary Macros

62.1077 \newcount\@common

\Remainder \Remainder{a}{b}{c} calculates c = a%b==a—0bx }
62.1078 \def\Remainder#1#2#3{%

62.1079
62.1080
62.1081
62.1082

#3 = #1Y% %h c=a

\divide #3 by #2% % c=a/b
\multiply #3 by -#2J% % c = -b(a/b)
\advance #3 by #11}/, % c=a - bla/b)

62.1083 \newif\if@Divisible

\CheckIfDivisible \CheckIfDivisible{a}{b} sets \@Divisibletrue if a%b ==
62.1084 \def\CheckIfDivisible#1#2{%

370

62.1085 4

62.1086 \countdef\tmp = 0% \tmp == \countO - temporary variable
62.1087 \Remainder{#1}{#2}{\tmp}%

62.1088 \ifnum \tmp = 0%

62.1089 \global\@Divisibletrue

62.1090 \elseY,

62.1091 \global\@Divisiblefalse,

62.1092 \fi}}

\ifundefined From the TEXbook, ex. 7.7:
\ifundefined{command}<true text>\else<false text>\fi

6

[

.1093 \def\ifundefined#1{\expandafter\ifx\csname#1\endcsname\relax}

62.5.4 Gregorian Part

62.1094 \newif\if@GregorianLeap

\IfGregorianLeap Conditional which is true if Gregorian ‘year’ is a leap year: ((year%4 == 0) A
(year%100 # 0)) V (year%400 == 0)

62.1095 \def\IfGregorianLeap#1{/,

62.1096 \CheckIfDivisible{#1}{4}%

62.1097 \if@Divisible},

62.1098 \CheckIfDivisible{#1}{100}%
62.1099 \if@Divisible,

62.1100 \CheckIfDivisible{#1}{400}}
62.1101 \if@Divisible%

62.1102 \@GregorianLeaptrue’
62.1103 \else’,

62.1104 \@GregorianLeapfalse}
62.1105 \fi%

62.1106 \else,

62.1107 \@GregorianLeaptrue,
62.1108 \fi%

62.1109 \elsel,

62.1110 \@GregorianLeapfalse

62.1111 \fi%

62.1112 \if@GregorianLeap}

\GregorianDaysInPriorMonths The macro \GregorianDaysInPriorMonths{month}{year}{days} calculates the
number of days in months prior to ‘month’ in the ‘year’.

62.1113 \def\GregorianDaysInPriorMonths#1#2#3{%

62.1114 %

62.1115 #3 = \ifcase #1%

62.1116 0 \or’ % no month number O
62.1117 0 \or%

62.1118 31 \or%

62.1119 59 \or

62.1120 90 \or%

62.1121 120 \or%

62.1122 151 \or

62.1123 181 \or’

62.1124 212 \or%

62.1125 243 \orY,

62.1126 273 \or%

62.1127 304 \or%

62.1128 3347,

62.1129 \fi%

62.1130 \IfGregorianLeap{#23}/

62.1131 \ifnum #1 > 2j, % if month after February
62.1132 \advance #3 by 1% % add leap day
62.1133 \fi%

371

62.1134 \fi%
62.1135 \global\@common = #3},
62.1136 #3 = \@common}

\GregorianDaysInPriorYears The macro \GregorianDaysInPriorYears{year}{days} calculates the number of
days in years prior to the ‘year’.
62.1137 \def\GregorianDaysInPriorYears#1#2{J,

62.1138 Tk

62.1139 \countdef\tmpc = 4, % \tmpc==\count4

62.1140 \countdef\tmpb = 27 % \tmpb==\count?2

62.1141 \tmpb = #1% YA

62.1142 \advance \tmpb by -1% %

62.1143 \tmpc = \tmpb% % \tmpc = \tmpb = year-1
62.1144 \multiply \tmpc by 365} Y’ Days in prior years =
62.1145 #2 = \tmpc % = 365%(year-1)

62.1146 \tmpc = \tmpb% YA

62.1147 \divide \tmpc by 4% % \tmpc = (year-1)/4

62.1148 \advance #2 by \tmpc? % ... plus Julian leap days ...
62.1149 \tmpc = \tmpb% YA

62.1150 \divide \tmpc by 100% % \tmpc = (year-1)/100

62.1151 \advance #2 by -\tmpc) % ... minus century years ...
62.1152 \tmpc = \tmpb% YA

62.1153 \divide \tmpc by 400% % \tmpc = (year-1)/400

62.1154 \advance #2 by \tmpc? % ... plus 4-century years.
62.1155 \global\@common = #2}7

62.1156 #2 = \Q@common}

\AbsoluteFromGregorian The macro \AbsoluteFromGregorian{day}{month}{year}{absdate} calculates
the absolute date (days since 01.01.0001) from Gregorian date day.month.year.

62.1157 \def \AbsoluteFromGregorian#1#2#3#4{J,

62.1158 %

62.1159 \countdef\tmpd = 07 % \tmpd==\count0

62.1160 #4 = #1), % days so far this month
62.1161 \GregorianDaysInPriorMonths{#2}{#3}{\tmpd}%

62.1162 \advance #4 by \tmpd/, % add days in prior months
62.1163 \GregorianDaysInPriorYears{#3}{\tmpd}%

62.1164 \advance #4 by \tmpd% % add days in prior years
62.1165 \global\@common = #41}J,

62.1166 #4 = \Q@common}

62.5.5 Hebrew Part
62.1167 \newif\if @HebrewLeap

\CheckLeapHebrewYear Set \@HebrewLeaptrue if Hebrew ‘year’ is a leap year, i.e. if (1+7 x year)%19 <7
then true else false

62.1168 \def\CheckLeapHebrewYear#1{/,

62.1169 v

62.1170 \countdef\tmpa = 0% % \tmpa==\countO
62.1171 \countdef\tmpb = 1% % \tmpb==\count1
62.1172 %

62.1173 \tmpa = #1%

62.1174 \multiply \tmpa by 7%

62.1175 \advance \tmpa by 1%

62.1176 \Remainder{\tmpa}{19}{\tmpbl}/

62.1177 \ifnum \tmpb < 7% % \tmpb = (7*year+1)%19
62.1178 \global\@HebrewLeaptrue,

62.1179 \elseY,

62.1180 \global\@HebrewLeapfalse,

62.1181 \fi}}

372

\HebrewElapsedMonths The macro \HebrewElapsedMonths{year}{months} determines the number of
months elapsed from the Sunday prior to the start of the Hebrew calendar to
the mean conjunction of Tishri of Hebrew ‘year’.

62.1182 \def \HebrewElapsedMonths#1#2{/,

62.1183
62.1184
62.1185
62.1186
62.1187
62.1188
62.1189
62.1190
62.1191
62.1192
62.1193
62.1194
62.1195
62.1196
62.1197
62.1198
62.1199
62.1200
62.1201
62.1202
62.1203
62.1204
62.1205
62.1206

%

%

%

%

%

{4

#2

\countdef\tmpa = 0% % \tmpa==\countO

\countdef\tmpb = 1% % \tmpb==\count1

\countdef\tmpc = 2Y% % \tmpc==\count2

\tmpa = #17 A

\advance \tmpa by -1% yA

#2 = \tmpa¥ % #2 = \tmpa = year-1

\divide #2 by 19% % Number of complete Meton cycles
\multiply #2 by 235% % #2 = 236%((year-1)/19)

\Remainder{\tmpa}{19}{\tmpbl}), \tmpa = years’,19-years this cycle

\tmpc = \tmpb% %

\multiply \tmpb by 12% yA

\advance #2 by \tmpb¥ % add regular months this cycle

\multiply \tmpc by 7% YA

\advance \tmpc by 1% %

\divide \tmpc by 19% % \tmpc = (1+7*((year-1)%19))/19 -
% number of leap months this cycle

\advance #2 by \tmpc % add leap months

\global\@common = #21}J,

= \@common}

\HebrewElapsedDays The macro \HebrewElapsedDays{year}{days} determines the number of days
elapsed from the Sunday prior to the start of the Hebrew calendar to the mean
conjunction of Tishri of Hebrew ‘year’.

62.1207 \def \HebrewElapsedDays#1#2{J,

62.1208
62.1209
62.1210
62.1211
62.1212
62.1213
62.1214
62.1215
62.1216
62.1217
62.1218
62.1219
62.1220
62.1221
62.1222
62.1223
62.1224
62.1225
62.1226
62.1227
62.1228
62.1229
62.1230
62.1231
62.1232
62.1233
62.1234
62.1235
62.1236

%

%

%

{

\countdef\tmpa = 0% % \tmpa==\countO
\countdef\tmpb = 17 % \tmpb==\count1
\countdef\tmpc = 2 % \tmpc==\count2

\HebrewElapsedMonths{#1}{#2}%

\tmpa = #2J YA

\multiply \tmpa by 13753% %

\advance \tmpa by 5604 7 \tmpa=MonthsElapsed*13758 + 5604
\Remainder{\tmpa}{25920}{\tmpc}¥, \tmpc == ConjunctionParts
\divide \tmpa by 25920%

\multiply #2 by 29%
\advance #2 by 1%
\advance #2 by \tmpa’ % #2 = 1 + MonthsElapsed*29 +
% PartsElapsed/25920
\Remainder{#2}{7}{\tmpa}’ % \tmpa == DayOfWeek
\ifnum \tmpc < 19440%
\ifnum \tmpc < 99247
\else % New moon at 9 h. 204 p. or later
\ifnum \tmpa = 2J % on Tuesday ...
\CheckLeapHebrewYear{#1}} of a common year
\if@HebrewLeap
\else
\advance #2 by 1%
\fi%
\fiy%
\fi%
\ifnum \tmpc < 167897

373

62.1237 \else % New moon at 15 h. 589 p. or later

62.1238 \ifnum \tmpa = 1), % on Monday ...
62.1239 \advance #1 by -1%

62.1240 \CheckLeapHebrewYear{#1}}, at the end of leap year
62.1241 \if@HebrewLeap

62.1242 \advance #2 by 1%

62.1243 \fi%

62.1244 \fil

62.1245 \£fi%

62.1246 \elseY

62.1247 \advance #2 by 1 % mnew moon at or after midday
62.1248 \fi%

62.1249 %

62.1250 \Remainder{#2}{7}{\tmpa}) % \tmpa == DayOfWeek
62.1251 \ifnum \tmpa = 0% % if Sunday ...
62.1252 \advance #2 by 1

62.1253 \else/ %

62.1254 \ifnum \tmpa = 3% % Wednesday ...
62.1255 \advance #2 by 1%

62.1256 \elsel,

62.1257 \ifnum \tmpa = 6% J or Friday

62.1258 \advance #2 by 1%

62.1259 \fi%

62.1260 \fi%

62.1261 \fi%

62.1262 \global\@common = #21},

62.1263 #2 = \Q@common}

\DaysInHebrewYear The macro \DaysInHebrewYear{year}{days} calculates the number of days in
Hebrew ‘year’.

62.1264 \def\DaysInHebrewYear#1#2{J,

62.1265 {k

62.1266 \countdef\tmpe = 12% 7 \tmpe==\countl2
62.1267 %

62.1268 \HebrewElapsedDays{#1}{\tmpe}/

62.1269 \advance #1 by 1%

62.1270 \HebrewElapsedDays{#1}{#2}/

62.1271 \advance #2 by -\tmpe,

62.1272 \global\@common = #2},

62.1273 #2 = \Q@common}

\HebrewDaysInPriorMonths The macro \HebrewDaysInPriorMonths{month}{year}{days} calculates the nu-
mber of days in months prior to ‘month’ in the ‘year’.

62.1274 \def\HebrewDaysInPriorMonths#1#2#3{J,

62.1275 %

62.1276 \countdef\tmpf= 147 % \tmpf==\count14
62.1277 %

62.1278 #3 = \ifcase #1% % Days in prior month of regular year
62.1279 0 \or% % no month number 0
62.1280 0 \or% % Tishri

62.1281 30 \or% % Heshvan

62.1282 59 \or % Kislev

62.1283 89 \or’ % Tebeth

62.1284 118 \or % Shebat

62.1285 148 \or, % Adar I

62.1286 148 \or, % Adar II

62.1287 177 \or, % Nisan

62.1288 207 \or% % Iyar

62.1289 236 \or¥% % Sivan

62.1290 266 \or % Tammuz

62.1291 295 \or¥% % Av

62.1292 325 \or/ % Elul

374

\AbsoluteFromHebrew

62.1293 400% % Dummy

62.1294 \£fi%

62.1295 \CheckLeapHebrewYear{#2}J

62.1296 \if@HebrewLeap’ % in leap year
62.1297 \ifnum #1 > 6 % if month after Adar I
62.1298 \advance #3 by 30% % add 30 days
62.1299 \fi%

62.1300 \£fi%

62.1301 \DaysInHebrewYear{#2}{\tmp£fl}/

62.1302 \ifnum #1 > 3%

62.1303 \ifnum \tmpf = 353 %

62.1304 \advance #3 by -1% %

62.1305 \fi% % Short Kislev
62.1306 \ifnum \tmpf = 383} %

62.1307 \advance #3 by -1% %

62.1308 \£fi% YA

62.1309 \£fi%

62.1310 %

62.1311 \ifnum #1 > 2%

62.1312 \ifnum \tmpf = 355Y% %

62.1313 \advance #3 by 1% %

62.1314 \£fi% % Long Heshvan
62.1315 \ifnum \tmpf = 385% %

62.1316 \advance #3 by 1% %

62.1317 \£fi% %

62.1318 \£fi%

62.1319 \global\@common = #3}%

62.1320 #3 = \@common}

absolute date of Hebrew date day.month.year.
62.1321 \def\AbsoluteFromHebrew#1#2#3#4{/,

62.1322 {k

62.1323 #4 = #1,

62.1324 \HebrewDaysInPriorMonths{#2}{#3}{#11}/,

62.1325 \advance #4 by #1% % Add days in prior months this year
62.1326 \HebrewElapsedDays{#3}{#1}/

62.1327 \advance #4 by #17 % Add days in prior years

62.1328 \advance #4 by -13734297, ¥ Subtract days before Gregorian
62.1329 \global\@common = #41}/, % 01.01.0001

62.1330 #4 = \Qcommon}

\HebrewFromGregorian The macro \HebrewFromGregorian{Gday}{Gmonth}{Gyear}{Hday}{Hmonth}-

The macro \AbsoluteFromHebrew{day}{month}{year}{absdate} calculates the

{Hyear} evaluates Hebrew date Hday, Hmonth, Hyear from Gregorian date Gday,

Gmonth, Gyear.
62.1331 \def \HebrewFromGregorian#1#2#3#4#5#6{/,

62.1332 v

62.1333 \countdef\tmpx= 177 % \tmpx==\count17
62.1334 \countdef\tmpy= 18, % \tmpy==\count18
62.1335 \countdef\tmpz= 197 % \tmpz==\count19
62.1336 %

62.1337 #6 = #3), %

62.1338 \global\advance #6 by 3761% approximation from above
62.1339 \AbsoluteFromGregorian{#1{#2}{#3}{#41}/

62.1340 \tmpz = 1 \tmpy = 1%

62.1341 \AbsoluteFromHebrew{\tmpz}{\tmpy}{#6}{\tmpx}’
62.1342 \ifnum \tmpx > #4 %

62.1343 \global\advance #6 by -1 Hyear = Gyear + 3760
62.1344 \AbsoluteFromHebrew{\tmpz}{\tmpy}{#6}{\tmpx}%
62.1345 \fif %

62.1346 \advance #4 by -\tmpx’ % Days in this year
62.1347 \advance #4 by 1% %

375

62.1348 #5 = #4Y A

62.1349 \divide #5 by 30% % Approximation for month from below
62.1350 \loop% % Search for month

62.1351 \HebrewDaysInPriorMonths{#5}{#6}{\tmpx}/

62.1352 \ifnum \tmpx < #4%

62.1353 \advance #5 by 1%

62.1354 \tmpy = \tmpx%

62.1355 \repeat¥

62.1356 \globalladvance #5 by -1%

62.1357 \global\advance #4 by -\tmpy}}

62.1358 (/calendar)

63 Hebrew input encodings

Hebrew input encodings defined in file hebinp.dtx’® should be used with
inputenc IKTEX2: package. This package allows the user to specify an input
encoding from this file (for example, ISO Hebrew/Latin 8859-8, IBM Hebrew
codepage 862 or MS Windows Hebrew codepage 1255) by saying:

\usepackage [encoding name]{inputenc}
The encoding can also be selected in the document with:
\inputencoding{encoding name}

The only practical use of this command within a document is when using text
from several documents to build up a composite work such as a volume of journal
articles. Therefore this command will be used only in vertical mode.

The encodings provided by this package are:

e si960 7-bit Hebrew encoding for the range 32-127. This encoding also
known as “old-code” and defined by Israeli Standard SI-960.

e 8859-8 ISO 8859-8 Hebrew/Latin encoding commonly used in UNIX sys-
tems. This encoding also known as ‘new-code” and includes hebrew letters
in positions starting from 224.

e cp862 IBM 862 code page commonly used by DOS on IBM-compatible per-
sonal computers. This encoding also known as “pc-code” and includes hebrew
letters in positions starting from 128.

e cp1255 MS Windows 1255 (hebrew) code page which is similar to 8859-8.
In addition to hebrew letters, this encoding contains also hebrew vowels and
dots (nikud).

Each encoding has an associated .def file, for example 8859-8.def which defines
the behaviour of each input character, using the commands:

\DeclareInputText{slot}{text}
\DeclareInputMath{slot}{math}

This defines the input character slot to be the text material or math material
respectively. For example, 8859-8.def defines slots "EA (letter hebalef) and "B5

(1) by saying:

\DeclareInputText{224}{\hebalef}
\DeclareInputMath{181}{\mu}

76The files described in this section have version number v1.1b and were last revised on
2004/02/20.

376

Note that the commands should be robust, and should not be dependent on the
output encoding. The same slot should not have both a text and a math declara-
tion for it. (This restriction may be removed in future releases of inputenc).
The .def file may also define commands using the declarations:
\providecommand or \ProvideTextCommandDefault. For example, 8859-8.def
defines:

\ProvideTextCommandDefault{\textonequarter}{\ensuremath{\frac14}}
\DeclareInputText{188}{\textonequarter}

The use of the ‘provide’ forms here will ensure that a better definition will not
be over-written; their use is recommended since, in general, the best defintion
depends on the fonts available.

See the documentation in inputenc.dtx for details of how to declare input
definitions for various encodings.

63.1 Default definitions for characters

First, we insert a \makeatletter at the beginning of all . def files to use @ symbol
in the macros’ names.

63.1 (-driver)\makeatletter

Some input characters map to internal functions which are not in either the
T1 or OT1 font encoding. For this reason default definitions are provided in the
encoding file: these will be used unless some other output encoding is used which
supports those glyphs. In some cases this default defintion has to be simply an
error message.

Note that this works reasonably well only because the encoding files for both
0T1 and T1 are loaded in the standard LaTeX format.

63.2 (*8859-8 | cp862 | cp1255)

63.3 \ProvideTextCommandDefault{\textdegree}{\ensuremath{{"\circ}}}
63.4 \ProvideTextCommandDefault{\textonehalf}{\ensuremath{\frac12}}
63.5 \ProvideTextCommandDefault{\textonequarter}{\ensuremath{\frac14}}
63.6 (/8859-8 | cp862 | cp1255)

63.7 (*8859-8 | cp1255)

63.8 \ProvideTextCommandDefault{\textthreequarters}{\ensuremath{\frac34}}
63.9 (/8859-8 | cp1255)
63.10 (*cp862 | cp1255)
63.11 \ProvideTextCommandDefault{\textflorin}{\textit{f}}
63.12 (/cp862 | cp1255)
63.13 (*cp862)
63.14 \ProvideTextCommandDefault{\textpeseta}{Pt}
63.15 (/cp862)

The name \textblacksquare is derived from the AMS symbol name since
Adobe seem not to want this symbol. The default definition, as a rule, makes no
claim to being a good design.

63.16 (*cp862)
63.17 \ProvideTextCommandDefault{\textblacksquare}
63.18 {\vrule \@width .3em \@height .4em \@depth -.lem\relax}
63.19 (/cp862)
Some commands can’t be faked, so we have them generate an error message.
63.20 (*8859-8 | cp862 | cp1255)
63.21 \ProvideTextCommandDefault{\textcent}
63.22 {\TextSymbolUnavailable\textcent}
63.23 \ProvideTextCommandDefault{\textyen}
63.24 {\TextSymbolUnavailable\textyen}
63.25 (/8859-8 | cp862 | cp1255)
63.26 (*8859-8)
63.27 \ProvideTextCommandDefault{\textcurrency}
63.28 {\TextSymbolUnavailable\textcurrency}

377

63.29 (/8859-8)

63.30 (*cpl255)

63.31 \ProvideTextCommandDefault{\newsheqel}

63.32 {\TextSymbolUnavailable\newsheqel}

63.33 (/cp1255)

63.34 (*8859-8 | cp1255)

63.35 \ProvideTextCommandDefault{\textbrokenbar}
63.36 {\TextSymbolUnavailable\textbrokenbar}
63.37 (/8859-8 | cp1255)

63.38 (*cpl255)

63.39 \ProvideTextCommandDefault{\textperthousand}
63.40 {\TextSymbolUnavailable\textperthousand}
63.41 (/cpl255)

Characters that are supposed to be used only in math will be defined by
\providecommand because I#TEX 2¢ assumes that the font encoding for math fonts
is static.

63.42 (*8859-8 | cp1255)

63.43 \providecommand{\mathonesuperior}{{~1}}
63.44 \providecommand{\maththreesuperior}{{~3}}
63.45 (/8859-8 | cp1255)

63.46 (*8859-8 | cp862 | cp1255)

63.47 \providecommand{\mathtwosuperior}{{~2}}
63.48 (/8859-8 | cp862 | cp1255)

63.49 (*cp862)

63.50 \providecommand{\mathordmasculine}{{"o}}
63.51 \providecommand{\mathordfeminine}{{~a}}
63.52 (/cp862)

63.2 The SI-960 encoding

The SI-960 or “old-code” encoding only allows characters in the range 32-127, so
we only need to provide an empty si960.def file.

63.3 The ISO 8859-8 encoding and the MS Windows cp1255
encoding

The 8859-8.def encoding file defines the characters in the ISO 8859-8 encoding.

The MS Windows Hebrew character set incorporates the Hebrew letter reper-
toire of ISO 8859-8, and uses the same code points (starting from 224). It has also
some important additions in the 128-159 and 190-224 ranges.

63.53 (*cp1255)

63.54 \DeclareInputText{130}{\quotesinglbase}
63.55 \DeclareInputText{131}{\textflorin}

63.56 \DeclareInputText{132}{\quotedblbase}
63.57 \DeclareInputText{133}{\dots}

63.58 \DeclareInputText{134}{\dag}

63.59 \DeclareInputText{135}{\ddag}

63.60 \DeclareInputText{136}{\~{}}

63.61 \DeclareInputText{137}{\textperthousand}
63.62 \DeclareInputText{139}{\guilsinglleft}
63.63 \DeclareInputText{145}{\textquoteleft}
63.64 \DeclareInputText{146}{\textquoteright}
63.65 \DeclareInputText{147}{\textquotedblleft}
63.66 \DeclareInputText{148}{\textquotedblright}
63.67 \DeclareInputText{149}{\textbullet}

63.68 \DeclareInputText{150}{\textendash}

63.69 \DeclareInputText{151}{\textemdash}

63.70 \DeclareInputText{1562}{\"{}}

63.71 \DeclareInputText{1563}{\texttrademark}
63.72 \DeclareInputText{1565}{\guilsinglright}
63.73 (/cp1255)

378

63.74 (*8859-8 | cp1255)
63.75 \DeclareInputText{160}{\nobreakspace}
63.76 \DeclareInputText{162}{\textcent}
63.77 \DeclareInputText{163}{\pounds}
63.78 (+8859-8) \DeclareInputText{164}{\textcurrency}
63.79 (+cpl1255) \DeclareInputText{164}{\newsheqel}
63.80 \DeclareInputText{165}{\textyen}
63.81 \DeclareInputText{166}{\textbrokenbar}
63.82 \DeclareInputText{167}{\S}
63.83 \DeclareInputText{168}{\"{}}
63.84 \DeclareInputText{169}{\textcopyright}
63.85 (+8859-8) \DeclareInputMath{170}{ \times}
63.86 \DeclareInputText{171}{\guillemotleft}
63.87 \DeclareInputMath{172}{\1not}
63.88 \DeclareInputText{173}{\-}
63.89 \DeclareInputText{174}{\textregistered}
63.90 \DeclareInputText{175}{\@tabacckludge={1}}
63.91 \DeclareInputText{176}{\textdegree}
63.92 \DeclareInputMath{177}{\pm}
63.93 \DeclareInputMath{178}{\mathtwosuperior}
63.94 \DeclareInputMath{179}{\maththreesuperior}
63.95 \DeclareInputText{180}{\@tabacckludge’{}}
63.96 \DeclareInputMath{181}{\mu}
63.97 \DeclareInputText{182}{\P}
63.98 \DeclareInputText{183}{\textperiodcentered}
63.99 (+8859-8) \DeclareInputText{184}{\c\ }
63.100 \DeclareInputMath{185}{\mathonesuperior}
63.101 (+8859-8) \DeclareInputMath{186}{\div}
63.102 \DeclareInputText{187}{\guillemotright}
63.103 \DeclareInputText{188}{\textonequarter}
63.104 \DeclareInputText{189}{\textonehalf}
63.105 \DeclareInputText{190}{\textthreequarters}
63.106 (/8859-8 | cp1255)

Hebrew vowels and dots (nikud) are included only to MS Windows cp1255
page and start from the position 192.

63.107 (*cp1255)

63.108 \DeclareInputText{192}{\hebsheva}
63.109 \DeclareInputText{193}{\hebhatafsegol}
63.110 \DeclareInputText{194}{\hebhatafpatah}
63.111 \DeclareInputText{195}{\hebhatafqamats}
63.112 \DeclareInputText{196}{\hebhiriq}
63.113 \DeclareInputText{197}{\hebtsere}
63.114 \DeclareInputText{198}{\hebsegol}
63.115 \DeclareInputText{199}{\hebpatah}
63.116 \DeclareInputText{200}{\hebqamats}
63.117 \DeclareInputText{201}{\hebholam}
63.118 \DeclareInputText{203}{\hebqubuts}
63.119 \DeclareInputText{204}{\hebdagesh}
63.120 \DeclareInputText{205}{\hebmeteg}
63.121 \DeclareInputText{206}{\hebmaqgaf}
63.122 \DeclareInputText{207}{\hebrafe}

63.123 \DeclareInputText{208}{\hebpaseq}
63.124 \DeclareInputText{209}{\hebshindot}
63.125 \DeclareInputText{210}{\hebsindot}
63.126 \DeclareInputText{211}{\hebsofpasuq}
63.127 \DeclareInputText{212}{\hebdoublevav}
63.128 \DeclareInputText{213}{\hebvavyod}
63.129 \DeclareInputText{214}{\hebdoubleyod}
63.130 (/cp1255)

Hebrew letters start from the position 224 in both encodings.
63.131 (*8859-8 | cp1255)

379

63.132 \DeclareInputText{224}{\hebalef}
63.133 \DeclareInputText{225}{\hebbet}
63.134 \DeclareInputText{226}{\hebgimel}
63.135 \DeclareInputText{227}{\hebdalet}
63.136 \DeclareInputText{228}{\hebhel}

63.137 \DeclareInputText{229}{\hebvav}
63.138 \DeclareInputText{230}{\hebzayin}
63.139 \DeclareInputText{231}{\hebhet}
63.140 \DeclareInputText{232}{\hebtet}
63.141 \DeclareInputText{233}{\hebyod}
63.142 \DeclareInputText{234}{\hebfinalkaf}
63.143 \DeclareInputText{235}{\hebkaf}
63.144 \DeclareInputText{236}{\heblamed}
63.145 \DeclareInputText{237}{\hebfinalmem}
63.146 \DeclareInputText{238}{\hebmem}
63.147 \DeclareInputText{239}{\hebfinalnun}
63.148 \DeclareInputText{240}{\hebnun}
63.149 \DeclareInputText{241}{\hebsamekh}
63.150 \DeclareInputText{242}{\hebayin}
63.151 \DeclareInputText{243}{\hebfinalpe}
63.152 \DeclareInputText{244}{\hebpe}

63.153 \DeclareInputText{245}{\hebfinaltsadi}
63.154 \DeclareInputText{246}{\hebtsadi}
63.155 \DeclareInputText{247}{\hebqof}
63.156 \DeclareInputText{248}{\hebresh}
63.157 \DeclareInputText{249}{\hebshin}
63.158 \DeclareInputText{250}{\hebtav}
63.159 (/8859-8 | cp1255)

Special symbols which define the direction of symbols explicitly. Currently,
they are not used in ITEX.

63.160 (*cp1255)
63.161 \DeclareInputText{253}{\lefttorightmark}
63.162 \DeclareInputText{254}{\righttoleftmark}
63.163 (/cp1255)

63.4 The IBM code page 862

The cp862.def encoding file defines the characters in the IBM codepage 862
encoding. The DOS graphics ‘letters’ and a few other positions are ignored (left
undefined).

Hebrew letters start from the position 128.

63.164 (*cp862)

63.165 \DeclareInputText{128}{\hebalef}
63.166 \DeclareInputText{129}{\hebbet}
63.167 \DeclareInputText{130}{\hebgimel}
63.168 \DeclareInputText{131}{\hebdalet}
63.169 \DeclareInputText{132}{\hebhe}

63.170 \DeclareInputText{133}{\hebvav}
63.171 \DeclareInputText{134}{\hebzayin}
63.172 \DeclareInputText{135}{\hebhet}
63.173 \DeclareInputText{136}{\hebtet}
63.174 \DeclareInputText{137}{\hebyod}
63.175 \DeclareInputText{138}{\hebfinalkaf}
63.176 \DeclareInputText{139}{\hebkaf}
63.177 \DeclareInputText{140}{\heblamed}
63.178 \DeclareInputText{141}{\hebfinalmem}
63.179 \DeclareInputText{142}{\hebmem}
63.180 \DeclareInputText{143}{\hebfinalnun}
63.181 \DeclareInputText{144}{\hebnun}
63.182 \DeclareInputText{145}{\hebsamekh}
63.183 \DeclareInputText{146}{\hebayin}

380

63.184 \DeclareInputText{147}{\hebfinalpe}
63.185 \DeclareInputText{148}{\hebpel}

63.186 \DeclareInputText{149}{\hebfinaltsadi}
63.187 \DeclareInputText{150}{\hebtsadi}
63.188 \DeclareInputText{151}{\hebqof}

63.189 \DeclareInputText{152}{\hebresh}

63.190 \DeclareInputText{153}{\hebshin}

63.191 \DeclareInputText{154}{\hebtav}

63.192 \DeclareInputText{155}{\textcent}

63.193 \DeclareInputText{156}{\pounds}

63.194 \DeclareInputText{157}{\textyen}

63.195 \DeclareInputText{158}{\textpeseta}

63.196 \DeclareInputText{159}{\textflorin}

63.197 \DeclareInputText{160}{\@tabacckludge’a}
63.198 \DeclareInputText{161}{\@tabacckludge’\i}
63.199 \DeclareInputText{162}{\@tabacckludge’o}
63.200 \DeclareInputText{163}{\@tabacckludge’u}
63.201 \DeclareInputText{164}{\"n}

63.202 \DeclareInputText{165}{\"N}

63.203 \DeclareInputMath{166}{\mathordfeminine}
63.204 \DeclareInputMath{167}{\mathordmasculine}
63.205 \DeclareInputText{168}{\textquestiondown}
63.206 \DeclareInputMath{170}{\1lnot}

63.207 \DeclareInputText{171}{\textonehalf}
63.208 \DeclareInputText{172}{\textonequarter}
63.209 \DeclareInputText{173}{\textexclamdown}
63.210 \DeclareInputText{174}{\guillemotleft}
63.211 \DeclareInputText{175}{\guillemotright}

63.212 \DeclareInputMath{224}{\alpha}

63.213 \DeclareInputText{225}{\ss}

63.214 \DeclareInputMath{226}{\Gamma}

63.215 \DeclareInputMath{227}{\pi}

63.216 \DeclareInputMath{228}{\Sigma}

63.217 \DeclareInputMath{229}{\sigma}

63.218 \DeclareInputMath{230}{\mu}

63.219 \DeclareInputMath{231}{\tau}

63.220 \DeclareInputMath{232}{\Phi}

63.221 \DeclareInputMath{233}{\Theta}

63.222 \DeclareInputMath{234}{\Omegal}

63.223 \DeclareInputMath{235}{\delta}

63.224 \DeclareInputMath{236}{\infty}

63.225 \DeclareInputMath{237}{\phi}

63.226 \DeclareInputMath{238}{\varepsilon}
63.227 \DeclareInputMath{239}{\cap}

63.228 \DeclareInputMath{240}{\equiv}

63.229 \DeclareInputMath{241}{\pm}

63.230 \DeclareInputMath{242}{\ge}

63.231 \DeclareInputMath{243}{\1le}

63.232 \DeclareInputMath{246}{\div}

63.233 \DeclareInputMath{247}{\approx}

63.234 \DeclareInputText{248}{\textdegreel}
63.235 \DeclareInputText{249}{\textperiodcentered}
63.236 \DeclareInputText{250}{\textbullet}
63.237 \DeclareInputMath{251}{\surd}

63.238 \DeclareInputMath{252}{\mathnsuperior}
63.239 \DeclareInputMath{253}{\mathtwosuperior}
63.240 \DeclareInputText{254}{\textblacksquare}
63.241 \DeclareInputText{255}{\nobreakspace}
63.242 (/cp862)

\DisableNikud A utility macro to ignore any nikud character that may appear in the input. This
allows you to ignore cp1255 nikud characters that happened to appear in the input.

381

63.243 (*8859-8)

63.244 \newcommand{\DisableNikud}{%
63.245 \DeclareInputText{192}{}%
63.246 \DeclareInputText{193}{}%
63.247 \DeclareInputText{194}{}%
63.248 \DeclareInputText{195}{}%
63.249 \DeclareInputText{196}{}%
63.250 \DeclareInputText{197}{}%
63.251 \DeclareInputText{198}{}%
63.252 \DeclareInputText{199}{}%
63.253 \DeclareInputText{200}{}%
63.254 \DeclareInputText{201}{}%
63.255 \DeclareInputText{203}{}%
63.256 \DeclareInputText{204}{}%
63.257 \DeclareInputText{205}{}%
63.258 \DeclareInputText{206}{}%
63.259 \DeclareInputText{207}{}%
63.260 \DeclareInputText{208}{}%
63.261 \DeclareInputText{209}{}%
63.262 \DeclareInputText{210}{}%
63.263 \DeclareInputText{211}{}%
63.264 \DeclareInputText{212}{}%
63.265 \DeclareInputText{213}{}%
63.266 \DeclareInputText{214}{}%
63.267 }

63.268 (/8859-8)

Finally, we reset the category code of the @ sign at the end of all .def files.
63.269 (-driver)\makeatother

64 Hebrew font encodings

Don’t forget to update the docs...

64.1 THIS SECTION IS OUT OF DATE. UPDATE DOCS
TO MATCH HE8 ENCODING

The file hebrew.fdd’" contains the Local Hebrew Encoding (LHE) definition, the
external font information needed to use the Hebrew 7-bit fonts (old code fonts)
and hebfont package that provides Hebrew font switching commands.

Using this file as an input, lheenc.def encoding definition file, all .£fd files
(font definition files) and font switching package for available Hebrew fonts are
generated. We chose to use 7-bit encoding as default font encoding, because:

1. There are many 7-bit encoded Hebrew fonts available, more then for any
other encoding.

2. Available TEX Hebrew fonts do not include latin alphabet, and we can safely
map Hebrew glyphs to the ASCII positions (0 — 127).

Current definition of the LHE encoding supports only Hebrew letters (\hebalef—
\hebtav), but not Hebrew points, such as \hebdagesh, \hebgamats, \hebpatah,
\hebshindot, etc. We are working now on such addition.

64.2 The DOCSTRIP modules

The following modules are used in the implementation to direct DOCSTRIP in
generating external files:

77The files described in this section have version number v1.2c and were last revised on
2005/05/20.

382

driver
HES8enc

HE8cmr

HE8cmss

HES8cmtt
HE80OmegaHebrew
HE8aharoni
HE8david
HES8drugulin
HES8ellinia
HES8frankruehl
HE8KtavYad
HE8MiriamMono
HE8Nachlieli
HE8CourierShalom
HES8HelveticaNarkissTam
HE8TimesNarkissim
HE8mfdavid
HE8mflrank
HE8mffrankthick
HE8mffrankthin
HE8mfmiriam
HE8mfmiriamwide
HE8mfnarkistam
LHEenc

LHEcmr
LHEcmss
LHEcmtt
LHEclas
LHEshold
LHEshscr
LHEshstk
LHEfr
LHEcrml
LHEredis

nowarn

hebfont

produce a documentation driver file
produce the encoding definition for CodePage 1255 (HE8)

make Hebrew default font in HE8

make Hebrew sans-serif font in HE8

make Hebrew typewriter font in HE8
Hebrew font from the Omega project (by ?77)
Hebrew sans-serif font (Culmus)

Hebrew serif font (Culmus)

Hebrew old serif font (Culmus)

Hebrew isans-serif font (Culmus)

Hebrew serif font (Culmus)

Hebrew handwriting font (Culmus)
Hebrew monospaced font

Hebrew sans-serif font (Culmus)

Hebrew Shalom (Courier) font (by IBM)
Hebrew NarkisTam (Helvetica) (by Zvi Narkis)
Hebrew Narkissim (Times) (by Zvi Narkis)
Hebrew David font (by ?777)

Hebrew Frank-Ruehl font (by ?7)

Hebrew Frank-Ruehl (thick) font (by 77)
Hebrew Frank-Ruehl (thin) font (by ?7)
Hebrew Miriam font (by ?77)

Hebrew Miriam (wide) font (by ?777?)
Hebrew Narkis Tam font (by ?777)

produce the encoding definition for Local Hebrew Encoding (LHE)

make Hebrew default font in LHE

make Hebrew sans-serif font in LHE

make Hebrew typewriter font in LHE

make Hebrew classic font (by Joel M. Hoffman) in LHE

make Hebrew shalom old font (by Jonathan Brecher) in LHE
make Hebrew shalom script font (by Jonathan Brecher) in LHE
make Hebrew shalom stick font (by Jonathan Brecher) in LHE
make Hebrew frank-ruehl font in LHE

make Hebrew carmel font (by Dr. Samy Zafrany) in LHE

make Hebrew redis font (by Prof. Jacques J. Goldberg) in LHE

option for font definition files, that used
to produce “silent” font substitutions without giving warnings

create Hebrew font switching commands package

A typical DOCSTRIP command file would then have entries like:

\generateFile{lhecmr.fd}{t}{\from{hebrew.fdd}{LHEcmr ,nowarn}}

64.3 The LHE encoding definition file

The Hebrew font encoding LHE is based upon the old-code encoding also known as
the Israeli Standard SI-960. Many Hebrew TEX fonts from the Hebrew University
of Jerusalem are encoded in this encoding. It only uses the lower 128 positions of
the font table. As local encoding its name start with the letter ‘L’.

First we define the Local Hebrew Encoding; specify a default for the font
substitution process for the LHE encoding and supply a font to be used when all

else fails.
64.1 (*LHEenc)

64.2 \DeclareFontEncoding{LHE}{}{}
64.3 \DeclareFontSubstitution{LHE}{cmr}{m}{n}
64.4 \DeclareErrorFont{LHE}{cmr}{m}{n}{10}

64.5 (/LHEenc)

383

Then we define a few commands in the LHE encoding.

64.6 (*LHEenc)

64.7 \ProvideTextCommand{\textcopyright }{LHE}{\textcircled{\@latin{c}}}

64.8 \ProvideTextCommand{\textregistered}{LHE}{\textcircled{\scshape,

64.9 \@latin{r}}}
64.10 \ProvideTextCommand{\texttrademark}{LHE}{\textsuperscript{\@latin{TM}}}
64.11 (/LHEenc)

Because not everyone can input Hebrew input text directly from the keyboard
we need to define control sequences for all the Hebrew glyphs in the fonts. In
addition, we want to support many input encodings for Hebrew and to keep the
language definition file (hebrew.1df) independent of the encoding. Therefore, we
exploit the standard KTEX 2¢ font encoding mechanism to define control sequences
for all the Hebrew glyphs in the fonts in encoding-specific way. The language
definition file uses only the control sequences and doesn’t need to check the current
font or input encoding.

In the LHE encoding (7-bit encoding) all the Hebrew glyphes reside in the lower
half of the font. Currently, only the Hebrew letters are supported. They use the
same positions as the latin small letters in ASCII encoding and the position of .

The symbol ¢ (glyph 96) is used by Hebrew letter Alef, so we need to define its
lccode to allow hyphenation. All other letters retain the same lccodes as their
latin counterparts.

64.12 (+LHEenc)\lccode‘ ‘=**

Hebrew letters occupy the positions 96-122 in LHE encoding:

64.13 (*LHEenc)

64.14 \DeclareTextSymbol{\hebalef}{LHE}{96}

64.15 \DeclareTextSymbol{\hebbet}{LHE}{97}

64.16 \DeclareTextSymbol{\hebgimel}{LHE}{983}
64.17 \DeclareTextSymbol{\hebdalet}{LHE}{99}
64.18 \DeclareTextSymbol{\hebhe}{LHE}{100}

64.19 \DeclareTextSymbol{\hebvav}{LHE}{101}

64.20 \DeclareTextSymbol{\hebzayin}{LHE}{102}
64.21 \DeclareTextSymbol{\hebhet}{LHE}{103}

64.22 \DeclareTextSymbol{\hebtet}{LHE}{104}

64.23 \DeclareTextSymbol{\hebyod}{LHE}{105}

64.24 \DeclareTextSymbol{\hebfinalkaf}{LHE}{106}
64.25 \DeclareTextSymbol{\hebkaf}{LHE}{107}

64.26 \DeclareTextSymbol{\heblamed}{LHE}{108}
64.27 \DeclareTextSymbol{\hebfinalmem}{LHE}{109}
64.28 \DeclareTextSymbol{\hebmem}{LHE}{1103}

64.29 \DeclareTextSymbol{\hebfinalnun}{LHE}{111}
64.30 \DeclareTextSymbol{\hebnun}{LHE}{112}

64.31 \DeclareTextSymbol{\hebsamekh}{LHE}{113}
64.32 \DeclareTextSymbol{\hebayin}{LHE}{114}
64.33 \DeclareTextSymbol{\hebfinalpe}{LHE}{115}
64.34 \DeclareTextSymbol{\hebpe}{LHE}{116}

64.35 \DeclareTextSymbol{\hebfinaltsadi}{LHE}{117}
64.36 \DeclareTextSymbol{\hebtsadi}{LHE}{118}
64.37 \DeclareTextSymbol{\hebqof}{LHE}{119}

64.38 \DeclareTextSymbol{\hebresh}{LHE}{120}
64.39 \DeclareTextSymbol{\hebshin}{LHE}{121}
64.40 \DeclareTextSymbol{\hebtav}{LHE}{122}

64.41 (/LHEenc)

Letter \hebsin is defined as a synonym of \hebshin:
64.42 (+LHEenc)\let\hebsin=\hebshin

384

64.4 The font definition files (in LHE encoding)
64.4.1 Hebrew default font

It uses Jerusalem font for regular font, Old Jaffa font for italic shape and small-
caps, Dead Sea font for bold face, and Tel-Aviv for bold-italic

64.43 (*LHEcmr)

64.44 \DeclareFontFamily{LHE}{cmr}{\hyphenchar\font453}
64.45 \DeclareFontShape{LHE}{cmr}{m}{n}
64.46 {<-> jerus10 }}

64.47 %hhhthhl, Italicized shape

64.48 \DeclareFontShape{LHE} cmrHm}{it}
64.49 {<-> oldjaf10 }{}

64.50 \DeclareFontShape{LHE}{cmr}{m}{s1}
64.51 {<-> oldjaf10 }{}

64.52 \DeclareFontShape{LHE}{cmr}{m}{sc}
64.53 {<-> oldjaf10 }}

64.54 %hhhhhl Bold extended series

64.55 \DeclareFontShape{LHE}{cmr}{bx}{n}

64.56 {<-> deads10 }{}
64.57 \DeclareFontShape{LHE}{ cmr}{b}{n}
64.58 {<-> deads10 }}

64.59 %hhhhhh Bold extended (Italic) series
64.60 \DeclareFontShape{LHE}{cmr}{bx}{s1}

64.61 {<-> telavi0 }{}
64.62 \DeclareFontShape{LHE}{cmr}{bx}{it}
64.63 {<-> telavi0 }{}

64.64 (/LHEcmr)

64.4.2 Hebrew sans-serif font

We use Tel Aviv font for the Sans family. Old Jaffa font is used for italic shape
and Dead Sea used for bold face.

64.65 (*LHEcmss)

64.66 \DeclareFontFamily{LHE}{cmss}{\hyphenchar\font45}
64.67 \DeclareFontShape{LHE}{cmss}{m}{n}

64.68 {<-> telavio }?

64.69 %hhhhhh Font/shape undefined, therefore substituted
64.70 \DeclareFontShape{LHE}{cmss}{m}{sc}

64.71 (-nowarn) {<->sub * cmss/m/n}}

64.72 (+nowarn) {<->ssub * cmss/m/n}{}

64.73 hhhhthhls ITtalicized shape

64.74 \DeclareFontShape{LHE}{cmss}Hm}{it}

64.75 {<-> oldjaf10 }{}

64.76 hhhhhhl Font/shape undefined, therefore substituted
64.77 \DeclareFontShape{LHE}{cmss}H{m}{s1}

64.78 {(-nowarn) {<->sub * cmss/m/it}{}

64.79 (+nowarn) {<->ssub * cmss/m/it}{}

64.80 %hhhhhsh Bold extended series

64.81 \DeclareFontShape{LHE}{cmss}{bx}{n}

64.82 {<-> deads10 }{}

64.83 %hhhhhkh Font/shape undefined, therefore substituted
64.84 \DeclareFontShape{LHE}{cmss}{b}{n}

64.85 (-nowarn) {<->sub * cmss/bx/n}{}

64.86 (+nowarn) {<->ssub * cmss/bx/n}{}

64.87 %hhhhhh Font/shape undefined, therefore substituted
64.88 \DeclareFontShape{LHE}{cmss}{bx}{s1}

64.89 (-nowarn) {<->sub * cmss/bx/n}{}

64.90 (+nowarn) {<->ssub * cmss/bx/n}{}

64.91 %hhhthhls Font/shape undefined, therefore substituted
64.92 \DeclareFontShape{LHE}{cmss}{bx}{it}

64.93 (-nowarn) {<->sub * cmss/bx/n}{}

64.94 (+nowarn) {<->ssub * cmss/bx/n}{}

385

64.95 (/LHEcmss)

64.4.3 Hebrew typewriter font

We use Tel Aviv font as the typewriter font. Old Jaffa font is used for italic shape
and Dead Sea used for bold face.

64.96 (*LHEcmtt)

64.97 \DeclareFontFamily{LHE}{cmtt}{\hyphenchar \font\m@ne}
64.98 \DeclareFontShape{LHE}{cmtt}{m}{n}

64.99 {<-> telaviO }{}

64.100 %%hhhh%h Font/shape undefined, therefore substituted
64.101 \DeclareFontShape{LHE} cmtt}{m}{sc}

64.102 (-nowarn) {<->sub * cmtt/m/nMH}

64.103 (+nowarn) {<->ssub * cmtt/m/n}{}

64.104 %hhhhhh Italicized shape

64.105 \DeclareFontShape{LHE}{cmtt}{m}{it}

64.106 {<-> oldjaf10 }{}

64.107 %hh%hhh% Font/shape undefined, therefore substituted
64.108 \DeclareFontShape{LHE}{cmtt}{m}{s1}

64.109 (-nowarn) {<->sub * cmtt/m/it}{}

64.110 (+nowarn) {<->ssub * cmtt/m/it}}

64.111 %hhhhhh Bold extended series

64.112 \DeclareFontShape{LHE} cmtt}{bx}{n}

64.113 {<-> deads10 }?

64.114 Y%%hhhhth Font/shape undefined, therefore substituted
64.115 \DeclareFontShape{LHE} cmtt}{bx}{it}

64.116 (-nowarn) {<->sub * cmtt/bx/n}{}

64.117 (+nowarn) {<->ssub * cmtt/bx/n}{}

64.118 (/LHEcmtt)

64.4.4 Hebrew classic font

Hclassic and hcaption fonts are distributed freely from CTAN sites and copy-
righted by Joel M. Hoffman, of 19 Hillcrest Lane, Rye, NY 10580 USA, e-mail:
72700.402@compuserve. com.

Hclassic is a modernized Classical Hebrew font (in the same way that Knuth’s
cmr family is a modernized Roman font — but his fonts are much nicer). Hcaption
is a slanted version of hclassic font. Both fonts contain all of the Hebrew conso-
nants, the (rarely used) ligature alef-lamed and two versions of the letter ayin for
use with and without vowels. Hclassic also contains all of the vowels found in
Hebrew, a symbol for meteg, and dots for use as a dagesh and for differentiating
shin and sin letters.

Currently, only the Hebrew consonants (hebalef — hebtav) from these fonts
are supported by KTEX 2¢, however one can use vowels and dots directly with
PrLaIN TEX macros. We are working on generic vowels and dots support for
TREX 2¢.

64.119 (*LHEclas)

64.120 \DeclareFontFamily{LHE}{clas}{}

64.121 \DeclareFontShape{LHE}{clas}{m}{n}

64.122 {<-> s * [0.83345] hclassic }{}

64.123 %hh%hhh% Font/shape undefined, therefore substituted
64.124 \DeclareFontShape{LHE}{clas}{m}{sc}

64.125 (-nowarn) {<->sub * clas/m/n}H}

64.126 (+nowarn) {<->ssub * clas/m/n}{}

64.127 %hhhhhh Slanted shape

64.128 \DeclareFontShape{LHE}{clas}{m}{s1}

64.129 {<-> s * [0.69389] hcaption }}

64.130 %tkhhlhiht Font/shape undefined, therefore substituted
64.131 \DeclareFontShape{LHE}{clas}{m}{it}

64.132 (-nowarn) {<->sub * clas/m/s1}{}

64.133 (+nowarn) {<->ssub * clas/m/s1M}

386

64.134 (/LHEclas)

64.4.5 Hebrew shalom fonts

All three shalom fonts (ShalomScript10, ShalomStick10 and ShalomOIldStyle10)
have been created by Jonathan Brecher, of 9 Skyview Road, Lexington, MA 02173-
1112 USA, e-mail: brecher@husc.harvard.edu.

All shalom fonts have been written in POSTSCRIPT via Fontographer on a
Mac. The fonts have been converted to METAFONT by Rama Porrat (e-mail:
rama@cc.huji.ac.il), using the utility typo, a font editor + converter between
font formats (a commercial product). ShalomScript10.mf is the METAFONT
equivalent of ShalomScript.ps, ShalomStick10.mf came from ShalomStick.ps
and Shalom01ldStylel0.mf originated in Shalom0ldStyle.ps.

The fonts differ in the letters’ style. ShalomScript10 contains hand writing
Hebrew letters; ShalomStick10 contains sans-serif letters, and ShalomOldStylel0
contains old style letters. All three fonts contain vowels and dots (nikud). While
converting to METAFONT, letters and symbols within the fonts have been arranged
so as to get a usable font for writing Hebrew documents in TEX or ITEX, with as
well as without vowels.

Currently, only the Hebrew consonants (hebalef — hebtav) from these fonts
are supported by I#TEX 2¢, however one can use vowels and dots directly with
PLAIN TEX macros. We are working on generic vowels and dots support for

BTEX 2¢.
64.135 (*LHEshold)
64.136 \DeclareFontFamily{LHE}{shold}{}
64.137 \DeclareFontShape{LHE}{shold}{m}{n}
64.138 {<-> shold10 }}
64.139 (/LHEshold)
64.140 (*LHEshscr)
64.141 \DeclareFontFamily{LHE}{shscr}{}
64.142 \DeclareFontShape{LHE}{shscr}{m}{n}
64.143 {<-> shscr10 }{}
64.144 (/LHEshscr)
64.145 (*LHEshstk)
64.146 \DeclareFontFamily{LHE}{ shstk}{}
64.147 \DeclareFontShape{LHE}{shstk}{m}{n}
64.148 {<-> shstk10 }{}
64.149 (/LHEshstk)

64.4.6 Hebrew frank-ruehl font

Frank Ruehl font was written in METAFONT and includes three shapes: regular,
bold extaneded and slanted.

64.150 (*LHEfr)

64.151 \DeclareFontFamily{LHE}{fr}{}

64.152 \DeclareFontShape{LHE}{fr}{m}{n}

64.153 {<-> fr ¥}

64.154 %hhlhhth Font/shape undefined, therefore substituted
64.155 \DeclareFontShape{LHE}{fr}{m}{sc}

64.156 (-nowarn) {<->sub * fr/m/n}{}

64.157 (+nowarn) {<->ssub * fr/m/n}{}

64.158 %hhlhhh’h Slanted shape

64.159 \DeclareFontShape{LHE}{fr}{m}{s1}

64.160 {<-> frsl ¥}

64.161 %hhlhhihth Font/shape undefined, therefore substituted
64.162 \DeclareFontShape{LHE}Hfr}{m}{it}

64.163 (-nowarn) {<->sub * fr/m/s1}{}

64.164 (+nowarn) {<->ssub * fr/m/s1}{}

64.165 %hhlhhh’h Bold extended series

64.166 \DeclareFontShape{LHE}{fr}{bx}{n}

387

64.167 {<-> frbx H}

64.168 %thhlhite Font/shape undefined, therefore substituted
64.169 \DeclareFontShape{LHE}{fr}{b}{n}

64.170 (-nowarn) {<->sub * fr/bx/n}}

64.171 (+nowarn) {<->ssub * fr/bx/n}{}

64.172 %lhhhlhhth Font/shape undefined, therefore substituted
64.173 \DeclareFontShape{LHE}{fr}{bx}{s1}

64.174 (-nowarn) {<->sub * fr/bx/n}{}

64.175 (+nowarn) {<->ssub * fr/bx/n}{}

64.176 %hh%hhh%h Font/shape undefined, therefore substituted
64.177 \DeclareFontShape{LHE}{fr}{bx}{it}

64.178 (-nowarn) {<->sub * fr/bx/n}{}

64.179 (+nowarn) {<->ssub * fr/bx/n}{}

64.180 (/LHEfr)

64.4.7 Hebrew carmel font

Carmel font includes regular and slanted shapes. It was created by Dr. Samy
Zafrany of the Technion, Haifa, Israel with the intention of making nice fonts for
headers and emphasized text.

64.181 (*LHEcrml)

64.182 \DeclareFontFamily{LHE}{ crml1}{}

64.183 \DeclareFontShape{LHE}{ crml}{m}{n}

64.184 {<-> crml110 }}

64.185 %thhlohlte Font/shape undefined, therefore substituted
64.186 \DeclareFontShape{LHE}{ crml}{m}{sc}

64.187 {(-nowarn) {<->sub * crml/m/n}}

64.188 (+nowarn) {<->ssub * crml/m/n}{}

64.189 %hhhhhlh Slanted shape

64.190 \DeclareFontShape{LHE}{ crml}{m}{s1}

64.191 {<-> crmls110 }}

64.192 %%hhhhh Font/shape undefined, therefore substituted
64.193 \DeclareFontShape{LHE}{ crm1}{m}{it}

64.194 (-nowarn) {<->sub * crml/m/s1}{}

64.195 (+nowarn) {<->ssub * crml/m/s1}}

64.196 (/LHEcrml)

64.4.8 Hebrew redis font

Redis font has been created by Prof. Jacques J. Goldberg of the Technion. Haifa,
Israel. The font is available in regular, slanted and bold extanded shapes. This
font contains a full set of Hebrew letters in a “sans-serif vectorized” style, and
selected punctuation.

64.197 (*LHEredis)

64.198 \DeclareFontFamily{LHE}{redis}{}

64.199 \DeclareFontShape{LHE}{redis}{m}{n}{%

64.200 <5> <6> redis7

64.201 <7> <8> <9> <10> <12> gen * redis

64.202 <10.95> redisl0

64.203 <14.4> redisl2

64.204 <17.28> <20.74> <24.88> redis17}{}

64.205 %hhlhhihth Font/shape undefined, therefore substituted
64.206 \DeclareFontShape{LHE}{redis}{m}{sc}

64.207 (-nowarn) {<->sub * redis/m/n}{}

64.208 (+nowarn) {<->ssub * redis/m/n}{}

64.209 %hhhhhh Slanted shape

64.210 \DeclareFontShape{LHE}{redis}{m}{s1}{%

64.211 <6> <7> rediss8

64.212 <8> <9> <10> <12> gen * rediss

64.213 <10.95> redissi10

64.214 <14.4> <17.28> <20.74> <24.88> rediss12}{}

388

64.215 %hh%hhh%h Font/shape undefined, therefore substituted
64.216 \DeclareFontShape{LHE}{redis}{m}{it}

64.217 (-nowarn) {<->sub * redis/m/sl1}{}

64.218 (+nowarn) {<->ssub * redis/m/s1}M}

64.219 hhhhhhh Bold extended series

64.220 \DeclareFontShape{LHE}{redis}{bx}{n}{%

64.221 <5> <6> <7> <8> <9> <10> <10.95> <12>

64.222 <14.4> <17.28> <20.74> <24.88> redisb10}{}

64.223 %hhhhhYh Font/shape undefined, therefore substituted
64.224 \DeclareFontShape{LHE}{redis}{b}{n}

64.225 (-nowarn) {<->sub * redis/bx/n}{}

64.226 (+nowarn) {<->ssub * redis/bx/n}}

64.227 Y%hhlhhth Font/shape undefined, therefore substituted
64.228 \DeclareFontShape{LHE}{redis}{bx}{sl}

64.229 (-nowarn) {<->sub * redis/bx/n}{}

64.230 (+nowarn) {<->ssub * redis/bx/n}{}

64.231 %thlhiht Font/shape undefined, therefore substituted
64.232 \DeclareFontShape{LHE}{redis}{bx}{it}

64.233 (-nowarn) {<->sub * redis/bx/n}{}

64.234 (+nowarn) {<->ssub * redis/bx/n}{}

64.235 (/LHEredis)

64.5 The HE8 encoding definition file

The Hebrew font encoding HE8 is based upon an extention by Microsoft to the
ISO-8859-8 standard. This is an 8bit encoding. The extentions include hebrew
points (“Nikud”).

First we define the Codepage 1255; specify a default for the font substitution
process for the HE8 encoding and supply a font to be used when all else fails.

64.236 (*HE8enc)

64.237 \DeclareFontEncoding{HE8}{}{}

64.238 \DeclareFontSubstitution{HE8}{cmr}{m}{n}
64.239 \DeclareErrorFont{HE8}{cmr}{m}{n}{10}
64.240 (/HEB8enc)

Then we define a few commands in the HE8 encoding.
64.241 (*HEB8enc)
64.242 \ProvideTextCommand{\textcopyright }{HE8}{\textcircled{\@latin{c}}}
64.243 \ProvideTextCommand{\textregistered}{HE8}{\textcircled{\scshape}
64.244 \@latin{r}}}
64.245 \ProvideTextCommand{\texttrademark}{HE8}{\textsuperscript{\@latin{TM}}}
64.246 (/HEB8enc)

64.5.1 CHECK HERE FOR HE8 UPDATES

Because not everyone can input Hebrew input text directly from the keyboard we
need to define control sequences for all the Hebrew glyphs in the fonts. In addition,
we want to support many input encodings for Hebrew and to keep the language
definition file (hebrew.1df) independent of the encoding. Therefore, we exploit
the standard TEX 2¢ font encoding mechanism to define control sequences for all
the Hebrew glyphs in the fonts in encoding-specific way. The language definition
file uses only the control sequences and doesn’t need to check the current font or
input encoding.

In the LHE encoding (7-bit encoding) all the Hebrew glyphes reside in the lower
half of the font. Currently, only the Hebrew letters are supported. They use the
same positions as the latin small letters in ASCII encoding and the position of .

Some general symbols:

64.247 (*HE8enc)

64.248 \ProvideTextCommand{\textcopyright }-{HE8}{\textcircled{\@latin{c}}}
64.249 \ProvideTextCommand{\textregistered}{HE8}{\textcircled{\scshape,
64.250 \@latin{r}}}

389

64.251 \ProvideTextCommand{\texttrademark}{HE8}{\textsuperscript{\@latin{TM}}}
64.252 (/HE8enc)

The hebrew points:

64.253 (*HE8enc)

64.254 \DeclareTextSymbol{\sheva}{HE8}{192}
64.255 \DeclareTextSymbol{\hatafsegol}{HE8}{193}
64.256 \DeclareTextSymbol{\hatafpatah}{HE8}{194}
64.257 \DeclareTextSymbol{\hatafqamats}{HE8}{195}
64.258 \DeclareTextSymbol{\hiriq}{HE8}{196}
64.259 \DeclareTextSymbol{\tsere}{HE8}{197}
64.260 \DeclareTextSymbol{\segol}{HE8}{198}
64.261 \DeclareTextSymbol{\patah}{HE8}{199}
64.262 \DeclareTextSymbol{\qamats}{HE8}{200}
64.263 \DeclareTextSymbol{\holam}{HE8}{201}
64.264 \DeclareTextSymbol{\qubuts}{HE8}{203}
64.265 \DeclareTextSymbol{\dagesh}{HE8}{204}
64.266 \DeclareTextSymbol{\meteg}{HE8}{205}
64.267 \DeclareTextSymbol{\maqaf}{HE8}{206}
64.268 \DeclareTextSymbol{\rafe}{HE8}{207}

64.269 \DeclareTextSymbol{\paseq}{HE8}{208}
64.270 \DeclareTextSymbol{\shindot}{HE8}{209}
64.271 \DeclareTextSymbol{\sindot}{HE8}{210}
64.272 \DeclareTextSymbol{\sofpasuq}{HE8}{211}
64.273 \DeclareTextSymbol{\doublevav}{HE8}{212}
64.274 \DeclareTextSymbol{\vavyod}{HE8}{213}
64.275 \DeclareTextSymbol{\doubleyod}{HE8}{214}
64.276 (/HE8enc)

Hebrew letters occupy the positions 224-250 in HE8 encoding [WHAT ABOUT
OTHER MARKS]:

64.277 (*HE8enc)

64.278 % \lccode‘‘=¢¢ Y, probably not needed (Tzafrir)
64.279 \DeclareTextSymbol{\hebalef}{HE8}{224}
64.280 \DeclareTextSymbol{\hebbet}{HE8}{225}
64.281 \DeclareTextSymbol{\hebgimel}{HE8}{226}
64.282 \DeclareTextSymbol{\hebdalet}{HE8}{227}
64.283 \DeclareTextSymbol{\hebhe}{HE8}{228}

64.284 \DeclareTextSymbol{\hebvav}{HE8}{229}
64.285 \DeclareTextSymbol{\hebzayin}{HE8}{230}
64.286 \DeclareTextSymbol{\hebhet}{HE8}{231}
64.287 \DeclareTextSymbol{\hebtet}{HE8}{232}
64.288 \DeclareTextSymbol{\hebyod}{HE8}{233}
64.289 \DeclareTextSymbol{\hebfinalkaf}{HE8}{234}
64.290 \DeclareTextSymbol{\hebkaf}{HE8}{235}
64.291 \DeclareTextSymbol{\heblamed}{HE8}{236}
64.292 \DeclareTextSymbol{\hebfinalmem}{HE8}{237}
64.293 \DeclareTextSymbol{\hebmem}{HE8}{238}
64.294 \DeclareTextSymbol{\hebfinalnun}{HE8}{239}
64.295 \DeclareTextSymbol{\hebnun}{HE8}{240}
64.296 \DeclareTextSymbol{\hebsamekh}{HE8}{241}
64.297 \DeclareTextSymbol{\hebayin}{HE8}{242}
64.298 \DeclareTextSymbol{\hebfinalpe}{HE8}{243}
64.299 \DeclareTextSymbol{\hebpe}{HE8}{244}

64.300 \DeclareTextSymbol{\hebfinaltsadi}{HE8}{245}
64.301 \DeclareTextSymbol{\hebtsadi}{HE8}{246}
64.302 \DeclareTextSymbol{\hebqof}{HE8}{247}
64.303 \DeclareTextSymbol{\hebresh}{HE8}{248}
64.304 \DeclareTextSymbol{\hebshin}{HE8}{249}
64.305 \DeclareTextSymbol{\hebtav}{HE8}{250}
64.306 {/HE8enc)

Letter \hebsin is defined as a synonym of \hebshin:
64.307 (+HEB8enc)\let\hebsin=\hebshin

390

64.6 The font definition files (in HE8 encoding)
64.6.1 Hebrew default font

It uses OmegaHebrew font for regular font, Old Jaffa font for italic shape and
small-caps, Dead Sea font for bold face, and Tel-Aviv for bold-italic

64.308 (*HE8cmr)

64.309 \DeclareFontFamily{HE8}{cmr}{\hyphenchar\font45}
64.310 \DeclareFontShape{HE8}{cmr}{m}{n}
64.311 {<-> david }{}

64.312 %hhtohht Italicized shape

64.313 \DeclareFontShape{HE8}{cmr}{m}{it}
64.314 {<-> davidi M}

64.315 \DeclareFontShape{HE8}{cmr}{m}{s1}
64.316 {<-> davidi }{}

64.317 \DeclareFontShape{HE8}{cmr}{m}{sc}
64.318 {<-> david M}

64.319 %h%hhh% Bold extended series

64.320 \DeclareFontShape{HE8}{cmr}{bx}{n}

64.321 {<-> davidb }}
64.322 \DeclareFontShape{HE8}{cmr}{b}{n}
64.323 {<-> davidb }{}

64.324 %hhhhhl Bold extended (Italic) series
64.325 \DeclareFontShape{HE8}{cmr}{bx}{s1}

64.326 {<-> davidbi }H3}
64.327 \DeclareFontShape{HE8}{cmr}{bx}{it}
64.328 {<-> davidbi M}

64.329 (/HE8cmr)

64.6.2 Hebrew sans-serif font

Until we have a real sans-serif font in this distribution, this file will remain a copy
of the roman fonts definitons above.

64.330 (*HE8cmss)

64.331 \DeclareFontFamily{HE8}{cmss}{\hyphenchar\font45}
64.332 \DeclareFontShape{HE8}{cmss}{m}{n}
64.333 {<-> nachlieli }}

64.334 hhhthhhh Italicized shape

64.335 \DeclareFontShape{HE8}{cmss}{m}{it}
64.336 {<-> nachlieli }}

64.337 \DeclareFontShape{HE8}{cmss}{m}{s1}
64.338 {<-> nachlieli M}

64.339 \DeclareFontShape{HE8}{cmss}{m}{sc}
64.340 {<-> nachlieli }}

64.341 %hhhhh’h Bold extended series

64.342 \DeclareFontShape{HE8}{cmss}{bx}{n}

64.343 {<-> nachlieli }}
64.344 \DeclareFontShape{HE8}{cmss}{b}{n}
64.345 {<-> nachlieli }{}

64.346 %hh%hhh%h Bold extended (Italic) series
64.347 \DeclareFontShape{HE8}{cmss}{bx}{s1l}

64.348 {<-> nachlieli }{}
64.349 \DeclareFontShape{HE8}{cmss}{bx}{it}
64.350 {<-> nachlieli }}

64.351 (/HE8cmss)

64.6.3 Hebrew typewriter font

Until we have a real sans-serif font in this distribution, this file will remain a copy
of the roman fonts definitons above.

64.352 (*HE8cmtt)
64.353 \DeclareFontFamily{HE8}{cmtt}{\hyphenchar\font45}

391

64.354 \DeclareFontShape{HE8}{cmtt}{m}{n}
64.355 {<-> miriam M}

64.356 hhhtehhf Italicized shape

64.357 \DeclareFontShape{HE8}{cmtt}{m}{it}
64.358 {<-> miriam M}

64.359 \DeclareFontShape{HE8}{cmtt}{m}{s1}
64.360 {<-> miriam }}

64.361 \DeclareFontShape{HE8}{cmtt}{m}{sc}
64.362 {<-> miriam H}

64.363 hhhhihh/ Bold extended series

64.364 \DeclareFontShape{HE8}{cmtt}{bx}{n}

64.365 {<-> miriam }{}
64.366 \DeclareFontShape{HE8}{cmtt}{b}{n}
64.367 {<-> miriam }{}

64.368 %hhhhh%h Bold extended (Italic) series
64.369 \DeclareFontShape{HE8}{cmtt}{bx}{sl}

64.370 {<-> miriam }{}
64.371 \DeclareFontShape{HE8}{cmtt}{bx}{it}
64.372 {<-> miriam }{}

64.373 (/HE8cmtt)

64.6.4 8Bit OmegaHebrew font

OmegaHebrew is a serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.374 (*HE8OmegaHebrew)

64.375 \def \OmegaHebrewscale{0.9}

64.376 \DeclareFontFamily{HE8}{OmegaHebrew}{\hyphenchar\font45}

64.377 \DeclareFontShape{HE8}{OmegaHebrew}{m}{n}{<-> [\OmegaHebrewscale] OmegaHebrew }{}
64.378 %\endinput % is it needed [tzafrir]

64.379 (/HE8OmegaHebrew)

64.6.5 8Bit Aharoni font

Aharoni is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.380 (*HE8aharoni)

64.381 \def\Aharoniscale{1.0}

64.382 \DeclareFontFamily{HE8}{aharoni}{\hyphenchar\font45}

64.383 \DeclareFontShape{HE8}{aharoni}{m}{n} {<-> [\Aharoniscale] aharoni}{}
64.384 \DeclareFontShape{HE8}{aharoni}{m}{it} {<-> [\Aharoniscale] aharoniil}{}
64.385 \DeclareFontShape{HE8}{aharoni}{m}{sl} {<-> [\Aharoniscale] aharoniil}{}
64.386 \DeclareFontShape{HE8}{aharoni}{b}{n} {<-> [\Aharoniscale] aharonib}{}
64.387 \DeclareFontShape{HE8}{aharoni}{bx}{n} {<-> [\Aharoniscale] aharonib}{}
64.388 \DeclareFontShape{HE8}{aharoni}{bx}{it} {<-> [\Aharoniscale] aharonibi}{}
64.389

64.390 %\endinput % is it needed [tzafrir]

64.391 (/HEB8aharoni)

64.6.6 8Bit David font

Dawvid is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.392 (*HE8david)

64.393 \def\Davidscale{1.0}

64.394 \DeclareFontFamily{HE8}{david}{\hyphenchar\font45}

64.395

64.396 \DeclareFontShape{HE8}{david}{m}{n} {<-> [\Davidscale] david}{}
64.397 \DeclareFontShape{HE8}{david}{m}{it} {<-> [\Davidscale] davidi}{}
64.398 \DeclareFontShape{HE8}{david}{m}{s1l} {<-> [\Davidscale] davidi}{}
64.399 \DeclareFontShape{HE8}{david}{b}{n} {<-> [\Davidscale] davidb}{}

392

64.400 \DeclareFontShape{HE8}{david}{bx}{n} {<-> [\Davidscale] davidb}{}
64.401 \DeclareFontShape{HE8}{david}{bx}{it} {<-> [\Davidscale] davidbil}{}
64.402

64.403

64.404 % \endinput % is it needed [tzafrir]

64.405 (/HE8david)

64.6.7 8Bit Drugulin font

Drugulin is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.406 (*HE8drugulin)

64.407 \def\Drugulinscale{1.0}

64.408 \DeclareFontFamily{HE8}{drugulin}{\hyphenchar\font45}

64.409 \DeclareFontShape{HE8}{drugulin}{m}{n} {<-> [\Drugulinscale]
64.410 \DeclareFontShape{HE8}{drugulin}{m}{it} {<-> [\Drugulinscale]
64.411 \DeclareFontShape{HE8}{drugulin}{m}{s1l} {<-> [\Drugulinscale]
64.412 \DeclareFontShape{HE8}{drugulin}{b}{n} {<-> [\Drugulinscale]
64.413 \DeclareFontShape{HE8}{drugulin}{bx}{n} {<-> [\Drugulinscale]
64.414 \DeclareFontShape{HE8}{drugulin}{bx}{it} {<-> [\Drugulinscale]
64.415 %\endinput % is it needed [tzafrir]

64.416 (/HE8drugulin)

drugulinb}{}
drugulinbi}{}
drugulinbi}{}
drugulinb}{}
drugulinb}{}
drugulinbi}{}

64.6.8 8Bit Ellinia font

FEllinia is a sans-serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.417 (*HEB8ellinia)
64.418 \def\Elliniascale{1.0}
64.419 \DeclareFontFamily{HE8}{ellinia}{\hyphenchar\font45}

64.420 \DeclareFontShape{HE8}{ellinia}{m}{n} {<->
64.421 \DeclareFontShape{HE8}{ellinia}{m}{it} {<->
64.422 \DeclareFontShape{HE8}{ellinia}{m}{sl} {<->
64.423 \DeclareFontShape{HE8}{ellinia}{b}{n} {<->
64.424 \DeclareFontShape{HE8}{ellinia}{bx}{n} {<->
64.425 \DeclareFontShape{HE8}{ellinia}{bx}{it} {<->

[\Elliniascale]
[\Elliniascale]
[\Elliniascale]
[\Elliniascale]
[\Elliniascale]
[\Elliniascale]

ellinia}{}
elliniail}{}
elliniail}{}
elliniab}{}
elliniab}{}
elliniabil}{}

64.426 %\endinput % is it needed [tzafrir]
64.427 (/HEB8ellinia)

64.6.9 8Bit FrankRuehl font

FrankRuehl is a serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.428 (*HEB8frankruehl)

64.429 \def\FrankRuehlscale{1.0}

64.430 \DeclareFontFamily{HE8}{frank}{\hyphenchar\font45}

64.431 \DeclareFontShape{HE8}{frank}{m}{n} {<-> [\FrankRuehlscale]
64.432 \DeclareFontShape{HE8}{frank}{m}{it} {<-> [\FrankRuehlscale]
64.433 \DeclareFontShape{HE8}{frank}{m}{s1l} {<-> [\FrankRuehlscale]
64.434 \DeclareFontShape{HE8}{frank}{b}{n} {<-> [\FrankRuehlscale]
64.435 \DeclareFontShape{HE8}{frank}{bx}{n} {<-> [\FrankRuehlscale]
64.436 \DeclareFontShape{HE8}{frank}{bx}{it} {<-> [\FrankRuehlscale]
64.437 % \endinput % is it needed [tzafrir]

64.438 (/HE8frankruehl)

frank}{}
franki}{}
franki}{}
frankb}{}
frankb}{}
frankbi}{}

64.6.10 8Bit KtavYad font

KtavYad is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.439 (*HE8yad)

393

64.440 \def\KtavYadscale{1.0}

64.441 \DeclareFontFamily{HE8}{yad}{\hyphenchar\font45}

64.442 \DeclareFontShape{HE8}{yad}{m}{n} {<-> [\KtavYadscale] yadi}{}
64.443 \DeclareFontShape{HE8}{yad}{m}{it} {<-> [\KtavYadscale] yadi}{}
64.444 \DeclareFontShape{HE8}{yad}{m}{s1} {<-> [\KtavYadscale] yadi}{}
64.445 \DeclareFontShape{HE8}{yad}{b}{n} {<-> [\KtavYadscale] yadbil}{}
64.446 \DeclareFontShape{HE8}{yad}{bx}{n} {<-> [\KtavYadscale] yadbil}{}
64.447 \DeclareFontShape{HE8}{yad}{bx}{it} {<-> [\KtavYadscale] yadbil}{}
64.448 %\endinput % is it needed [tzafrir]

64.449 (/HEB8yad)

64.6.11 8Bit MiriamMono font

MiriamMono is a serif hebrew font created by the omega project [FILL IN CRED-
ITS] [FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.450 (*HE8miriam)

64.451 \def\MiriamMonoscale{1.0}

64.452 \DeclareFontFamily{HE8}{miriam}{\hyphenchar\font45}

64.453 \DeclareFontShape{HE8}{miriam}{m}{n} {<-> [\MiriamMonoscale] miriam}{}
64.454 \DeclareFontShape{HE8}{miriam}{m}{it} {<-> [\MiriamMonoscale] miriami}{}
64.455 \DeclareFontShape{HE8}{miriam}{m}{s1} {<-> [\MiriamMonoscale] miriami}{}
64.456 \DeclareFontShape{HE8}{miriam}{b}{n} {<-> [\MiriamMonoscale] miriamb}{}
64.457 \DeclareFontShape{HE8}{miriam}{bx}{n} {<-> [\MiriamMonoscale] miriamb}{}
64.458 \DeclareFontShape{HE8}{miriam}{bx}{it} {<-> [\MiriamMonoscale] miriambil}{}
64.459

64.460 %\endinput % is it needed [tzafrir]

64.461 (/HE8miriam)

64.6.12 8Bit Nachlieli font

Nachlieli is a serif hebrew font created by the omega project [FILL IN CREDITS]
[FILL IN GENERAL SHAPE DESCRIPTION] shapes: [FILL IN]

64.462 (*HE8nachlieli)

64.463 \def\Nachlieliscale{1.0}

64.464 \DeclareFontFamily{HE8}{nachlieli}{\hyphenchar\font45}

64.465 \DeclareFontShape{HE8}{nachlieli}{m}{n} {<-> [\Nachlieliscale] nachlielil}{}
64.466 \DeclareFontShape{HE8}{nachlieli}{m}{it} {<-> [\Nachlieliscale] nachlieliil}{}
64.467 \DeclareFontShape{HE8}{nachlieli}H{m}{s1l} {<-> [\Nachlieliscale] nachlielii}{}
64.468 \DeclareFontShape{HE8}{nachlieli}{b}{n} {<-> [\Nachlieliscale] nachlielib}{}
64.469 \DeclareFontShape{HE8}{nachlieli}{bx}{n} {<-> [\Nachlieliscale] nachlielib}{}
64.470 \DeclareFontShape{HE8}{nachlieli}{bx}{it} {<-> [\Nachlieliscale] nachlielibil}{}
64.471 % \endinput % is it needed [tzafrir]

64.472 (/HEB8nachlieli)

64.6.13 Hebrew font switching commands

The hebfont package defines a number of high-level commands (all starting with
\text.. similar to the standard KTEX 2s font-change commands, for example
\textbf) that have one argument and typeset this argument in the requested
way. These commands are defined for all available Hebrew fonts defined above
and change only font parameters but not direction.

For example, to use Hebrew Classic font family, the following sequence of
commands should be included in a ¥TEX 2¢ document:

\sethebrew
\textclas{Hebrew text printed with Classic fonts}

or to use Hebrew with Classic fonts locally:

\R{\textclas{Hebrew text printed with Classic fonts}}

394

Command

Corresponds to

Font family

\textjm{. .} \rmfamily Jerusalem font
\textds{..} \bfseries Dead Sea font
\textoj{..} \itshape Old Jaffa font
\slshape
\emph
\textta{..} \sffamily Tel-Aviv font
\ttfamily
\textcrml{..} \fontfamily{crml} Carmel fonts
\textfr{..} \fontfamily{fr} Frank-Ruehl fonts
\textredis{..} \fontfamily{redis} Redis fonts
\textclas{..} \fontfamily{redis} Classic fonts
\textshold{..} \fontfamily{shold} Shalom Old Style font
\textshscr{..} \fontfamily{shscr} Shalom Script font
\textshstk{..} \fontfamily{shstk} Shalom Stick font

Table 36: Hebrew font-change commands with arguments

The font change commands provided here all start with \text.. to
emphasize that they are for use in normal text and to be easily mem-
orable.

We declare IXTEX 2¢ font commands, e.g. \textjm{...} for all available fonts.

Table 36 shows the meanings of all these new high-level commands.

\textjm Switches to Jerusalem font which is default regular Hebrew font (“roman” family).

Commands \textrm{...} and old-style {\rm

64.473
64.474
64.475
64.476
64.477
64.478
64.479
64.480
64.481
64.482
64.483
64.484
64.485
64.486
64.487
64.488
64.489
64.490
64.491
64.492
64.493
64.494
64.495
64.496
64.497
64.498
64.499
64.500
64.501
64.502

... } will produce the same result.

(*hebfont)

\def\ivritex@tmp{HE8}

\ifx\ivritex@tmp\HeblatexEncoding %
% compatibility with hebfonts:
\DeclareTextFontCommand{\textjm}{\rmfamily\selectfont}
\DeclareTextFontCommand{\textds}{\bfseries\selectfont}
\DeclareTextFontCommand{\textoj}{\itshape\selectfont}
\DeclareTextFontCommand{\textta}{\sffamily\selectfont}

% an attempt to give some replacements to the original hebfonts:

%

\DeclareTextFontCommand{\textcrml}{\fontfamily{david}\selectfont}
\DeclareTextFontCommand{\textfr}{\fontfamily{frank}\selectfont}
\DeclareTextFontCommand{\textredis}{\fontfamily{aharoni}\selectfont}
\DeclareTextFontCommand{\textclas}{\fontfamily{drugulin}\selectfont}
\DeclareTextFontCommand{\textshold}{\fontfamily{frank}\selectfont}
\DeclareTextFontCommand{\textshscr}{\fontfamily{yad}\selectfont}
\DeclareTextFontCommand{\textshstk}{\fontfamily{aharoni}\selectfont}
% note that redis is larger than shstk

\DeclareTextFontCommand{\textaha}{\fontfamily{aharoni}\selectfont}
\DeclareTextFontCommand{\textdav}{\fontfamily{david}\selectfont}
\DeclareTextFontCommand{\textdru}{\fontfamily{drugulin}\selectfont}
\DeclareTextFontCommand{\textel} {\fontfamily{ellinia}\selectfont}

% \textfr is already declared above
\DeclareTextFontCommand{\textmir}{\fontfamily{miriam}\selectfont}
\DeclareTextFontCommand{\textna} {\fontfamily{nachlieli}\selectfont}
% is this necessary:

\DeclareTextFontCommand{\textyad} {\fontfamily{yadl}\selectfont}

395

Old font command Font name Comment

{\jm ..} Jerusalem default regular (roman) font
{\ds ..} Dead Sea default bold font
Noj ..} Old Jaffa default italic and slanted font
used also to emphasize text
{\ta ..} Tel-Aviv default sans-serif and typewriter font

Table 37: Hebrew old font-change commands for compatibility mode

64.503
64.504 \else%
64.505 \DeclareTextFontCommand{\textjm}{\rmfamily\selectfont}

\textds Switches to Dead Sea font which is default bold font in Hebrew. Commands
\textbf{...} and old-style {\bf ...} will produce the same result.
64.506 \DeclareTextFontCommand{\textds}{\bfseries\selectfont}

\textoj Switches to Old Jaffa font which is default italic font in Hebrew. Commands
\textit{...}, \textsl{...}, \emph{...} and old-style {\it ...} or {\em ...}
will produce the same result.

64.507 \DeclareTextFontCommand{\textoj}{\itshape\selectfont}

\textta Switches to Tel-Aviv font which is default sans-serif font in Hebrew. Commands
\textsf{...}, \texttt{...} and old-style {\sf ...} or {\tt ...} will produce
the same result (because sans-serif is used as typewriter font when in Hebrew

mode).
64.508 \DeclareTextFontCommand{\textta}{\sffamily\selectfont}

\textcrml Switches to Carmel font. Regular and slanted variants of carmel font will be used..
64.509 \DeclareTextFontCommand{\textcrml}{\fontfamily{crml}\selectfont}

\textfr Switches to Frank-Ruehl font family. Regular, bold and slanted frank ruehl fonts
will be used.
64.510 \DeclareTextFontCommand{\textfr}{\fontfamily{fr}\selectfont}

\textredis Switches to Redis font family. Regular, bold and slanted redis fonts of various
sizes will be used.
64.511 \DeclareTextFontCommand{\textredis}{\fontfamily{redis}\selectfont}

\textclas Switches to Classic font family. The normal font will be hclassic and slanted —
hcaption.
64.512 \DeclareTextFontCommand{\textclas}{\fontfamily{clas}\selectfont}

\textshold Switches to Shalom Old Style font.
64.513 \DeclareTextFontCommand{\textshold}{\fontfamily{shold}\selectfont}

\textshscr Switches to Shalom Script font.
64.514 \DeclareTextFontCommand{\textshscr}{\fontfamily{shscr}\selectfont}

\textshstk Switches to Shalom Stick font.
64.515 \DeclareTextFontCommand{\textshstk}{\fontfamily{shstk}\selectfont}
64.516 \fi

Finally, for backward compatibility with ETEX2.09. four old font commands,

e.g. {\jm ...} are defined too (see Table 37).

64.517 \if@compatibility
64.518 \DeclareOldFontCommand{\jm}{\normalfont\rmfamily\selectfont}/
64.519 {\@nomath\jm}

396

64.520 \Declare0ldFontCommand{\ds}{\normalfont\bfseries\selectfont}V

64.521 {\@nomath\ds}

64.522 \DeclareOldFontCommand{\oj}{\normalfont\itshape\selectfont}’
64.523 {\@nomath\oj}

64.524 \DeclareOldFontCommand{\ta}{\normalfont\sffamily\selectfontl}y,
64.525 {\@nomath\ta}

64.526 \fi

64.527 (/hebfont)

65 Hebrew in BKTEX 2.09 compatibility mode

\documentstyle command in the preamble of IATEX document indicates that it
is a IMTEX 2.09 document, and should be processed in compatibility mode. In such
documents, one of the following three Hebrew style options can be included:

1. hebrew_newcode indicates that document will use UNIX ISO 8859-8 or Win-
dows cpl1255 input encoding, i.e. Alef letter will be represented as 224.

2. hebrew_p indicates that document is encoded with IBM PC cp862 encoding,
i.e. Alef letter will be represented as 128.

3. hebrew_oldcode indicates that document uses old 7-bit encoding, as defined
in Israeli Standard 960, i.e. Alef is character number 96.

Note, that other hebrew-related styles, such as hebcal can be included after the
abovenamed Hebrew style option, for example:

\documentstyle[12pt,hebrew_p,hebcal]l{report}.

Any Hebrew document which compiled under BTEX 2.09 should compile under
compatibility mode, unless it uses low-level commands such as \tenrm.

65.1 The DOCSTRIP modules

The following modules are used in the implementation to direct DOCSTRIP in
generating the external files:

newcode produce hebrew_newcode.sty
pccode produce hebrew_p.sty
oldcode produce hebrew_oldcode.sty

65.2 Obsolete style files

For each of the Hebrew KTEX 2.09 Hebrew styles, we produce a file which uses
correct input encoding and calls babel with Hebrew and English language op-
tions. This means that any styles which say \input hebrew_newcode.sty or
\documentstylel[...hebrew_newcode...]{...} should still work.

65.1 (*newcode | pccode | oldcode)
65.2 \NeedsTeXFormat{LaTeX2e}
65.3 (/newcode | pccode | oldcode)

65.4 (*newcode)
65.5 \Qobsoletefile{hebrew.sty}{hebrew_newcode.sty}
65.6 \RequirePackage [8859-8] {inputenc}
65.7 (/newcode)
65.8 (*pccode)
65.9 \Qobsoletefile{hebrew.sty}{hebrew_p.sty}
65.10 \RequirePackage [cp862] {inputenc}
65.11 (/pccode)
65.12 (*oldcode)
65.13 \@obsoletefile{hebrew.sty}{hebrew_oldcode.sty}
65.14 \RequirePackage [s1960]{inputenc}
65.15 (/oldcode)

397

65.16 (*newcode | pccode | oldcode)
65.17 \RequirePackage [english,hebrew] {babel}
65.18 (/newcode | pccode | oldcode)

398

66 The Bahasa Indonesian language

The file bahasa.dtx’® defines all the language definition macros for the Bahasa
Indonesia / Bahasa Melayu language. Bahasa just means ‘language’ in Bahasa
Indonesia / Bahasa Melayu. Since both national versions of the language use the
same writing, although differing in pronounciation, this file can be used for both
languages.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

66.1 (*code)
66.2 \Ldf Init\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, bahasa
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@bahasa to see whether we have to do something here.

For both Bahasa Indonesia and Bahasa Malaysia the same set of hyphenation
patterns can be used which are available in the file inhyph.tex. However it could
be loaded using any of the possible Babel options fot the Indonesian and Malaysian
languase. So first we try to find out whether this is the case.

66.3 \ifx\1@bahasa\@undefined
66.4 \ifx\1l@bahasai\@undefined

66.5 \ifx\1@indon\@undefined

66.6 \ifx\1@indonesian\@undefined
66.7 \ifx\1@bahasam\@undefined
66.8 \ifx\1l@malay\@undefined
66.9 \ifx\1l@meyalu\@undefined
66.10 \@nopatterns{Bahasa Indonesia}
66.11 \adddialect\1@bahasaO\relax
66.12 \else

66.13 \let\l@bahasa\l@meyalu
66.14 \fi

66.15 \else

66.16 \let\1l@bahasa\l@malay
66.17 \fi

66.18 \else

66.19 \let\1l@bahasa\l@bahasam
66.20 \fi

66.21 \else

66.22 \let\1l@bahasa\l@indonesian
66.23 \fi

66.24 \else

66.25 \let\1l@bahasa\l@indon

66.26 \fi

66.27 \else

66.28 \let\1l@bahasa\l@bahasai

66.29 \fi

66.30 \fi

Now that we are sure the \1@bahasa has some valid definition we need to make
sure that a name to access the hyphenation patterns, corresponding to the option
used, is available.

66.31 \expandafter\expandafter\expandafter\let

66.32 \expandafter\csname

66.33 \expandafter 1l\expandafter @\CurrentOption\endcsname
66.34 \l@bahasa

The next step consists of defining commands to switch to (and from) the Ba-
hasa language.

"8The file described in this section has version number v1.0] and was last revised on 2008/03/15.

399

\captionsbahasa

\datebahasa

\extrasbahasa
\noextrasbahasa

\bahasahyphenmins

The macro \captionsbahasa defines all strings used in the four standard docu-
mentclasses provided with ETEX.

66.35 \@namedef{captions\CurrentOption}{%
66.36 \def\prefacename{Pendahuluan},

66.37 \def\refname{Pustakal,

66.38 \def\abstractname{Ringkasan}, (sometime it’s called ’intisari’
66.39 % or ’ikhtisar’)
66.40 \def\bibname{Bibliografil}y

66.41 \def\chaptername{Bab},

66.42 \def\appendixname{Lampiran}y,

66.43 \def\contentsname{Daftar Isil}}

66.44 \def\listfigurename{Daftar Gambarl}y,
66.45 \def\listtablename{Daftar Tabell}
66.46 \def\indexname{Indeks}%

66.47 \def\figurename{Gambarlj,

66.48 \def\tablename{Tabell}%

66.49 \def\partname{Bagianl}’

66.50 %, Subject: Subyek

66.51 % From: Dari

66.52 \def\enclname{Lampiran}/

66.53 \def\ccname{cc}

66.54 \def\headtoname{Kepadal/,

66.55 \def\pagename{Halaman}/,

66.56 % Notes (Endnotes): Catatan

66.57 \def\seename{lihatl}%

66.58 \def\alsoname{lihat jugal’

66.59 \def\proofname{Buktil}y,

66.60 \def\glossaryname{Daftar Istilah}j,
66.61 }

The macro \datebahasa redefines the command \today to produce Bahasa In-
donesian dates.

66.62 \@namedef{date\CurrentOption}{%
66.63 \def\today{\number\day~\ifcase\month\or

66.64 Januari\or Pebruarilor Maret\or Aprillor Meilor Junilor
66.65 Julilor Agustus\or September\or Oktober\or Nopember\or Desember\fi
66.66 \space \number\year}}

The macro \extrasbahasa will perform all the extra definitions needed for the
Bahasa language. The macro \extrasbahasa is used to cancel the actions of
\extrasbahasa. For the moment these macros are empty but they are defined for
compatibility with the other language definition files.

66.67 \@namedef{extras\CurrentOption}{}
66.68 \@namedef{noextras\CurrentOption}{}

The bahasa hyphenation patterns should be used with \lefthyphenmin set to 2
and \righthyphenmin set to 2.

66.69 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

66.70 \1df@finish{\CurrentOption}
66.71 (/code)

400

\captionsbahasam

67 The Bahasa Malaysia language

The file bahasam.dtx’® defines all the language definition macros for the Bahasa
Malaysia language. Bahasa just means ‘language’ in Bahasa Malaysia. A number
of terms differ from those used in bahasa indonesia.

For this language currently no special definitions are needed or available.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

67.1 (*code)
67.2 \LdfInit\CurrentOption{date\CurrentOption}

When this file is read as an option, i.e. by the \usepackage command, bahasa
could be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@bahasa to see whether we have to do something here.

For both Bahasa Malaysia and Bahasa Indonesia the same set of hyphenation
patterns can be used which are available in the file inhyph.tex. However it could
be loaded using any of the possible Babel options fot the Malaysian and Indonesian
languase. So first we try to find out whether this is the case.

67.3 \ifx\1@malay\Qundefined
67.4 \ifx\l@meyalu\@undefined

67.5 \ifx\1l@bahasam\@undefined

67.6 \ifx\1@bahasa\@undefined

67.7 \ifx\1@bahasai\@undefined

67.8 \ifx\1@indon\@undefined

67.9 \ifx\1l@indonesian\@undefined
67.10 \@nopatterns{Bahasa Malaysia}
67.11 \adddialect\1l@malayO\relax
67.12 \else

67.13 \let\l@malay\l@indonesian
67.14 \fi

67.15 \else

67.16 \let\1l@malay\1l@indon

67.17 \fi

67.18 \else

67.19 \let\l@malay\l@bahasai

67.20 \fi

67.21 \else

67.22 \let\l@malay\l@bahasa

67.23 \fi

67.24 \else

67.25 \let\l@malay\l@bahasam

67.26 \fi

67.27 \else

67.28 \let\1l@malay\l@meyalu

67.29 \fi

67.30 \fi

Now that we are sure the \1@malay has some valid definition we need to make
sure that a name to access the hyphenation patterns, corresponding to the option
used, is available.

67.31 \expandafter\expandafter\expandafter\let

67.32 \expandafter\csname

67.33 \expandafter 1l\expandafter @\CurrentOption\endcsname
67.34 \l@malay

The next step consists of defining commands to switch to (and from) the Ba-
hasa language.

The macro \captionsbahasam defines all strings used in the four standard docu-
mentclasses provided with BTEX.

" The file described in this section has version number v1.0k and was last revised on
2008/01/27.

401

\datebahasam

\extrasbahasam
\noextrasbahasam

\bahasamhyphenmins

67.35 \@namedef{captions\CurrentOption}{%

67.36 \def\prefacename{Prakatal’,

67.37 \def\refname{Rujukan}y,

67.38 \def\abstractname{Abstrak}), (sometime it’s called ’intisari’
67.39 % or ’ikhtisar’)
67.40 \def\bibname{Bibliografil}y,

67.41 \def\chaptername{Babl}

67.42 \def\appendixname{Lampiran}

67.43 \def\contentsname{Kandungan}/

67.44 \def\listfigurename{Senarai Gambarlj,

67.45 \def\listtablename{Senarai Jaduall}

67.46 \def\indexname{Indeks}’

67.47 \def\figurename{Gambarl}y,

67.48 \def\tablename{Jaduall}y,

67.49 \def\partname{Bahagian}y

67.50 %, Subject: Perkara

67.51 % From: Dari

67.52 \def\enclname{Lampiran}/

67.53 \def\ccname{skl}), (short form for ’Salinan Kepada’)
67.54 \def\headtoname{Kepadal,

67.55 \def\pagename{Halaman}/,

67.56 % Notes (Endnotes): Catatan

67.57 \def\seename{sila rujukl}’

67.58 \def\alsoname{rujuk jugal’

67.59 \def\proofname{Buktil}y,

67.60 \def\glossaryname{Istilah}},

67.61 }

The macro \datebahasam redefines the command \today to produce Bahasa
Malaysian dates.

67.62 \@namedef{date\CurrentOption}{%
67.63 \def\today{\number\day~\ifcase\month\or

67.64 Januari\or Februarilor Mac\or April\or Meilor Jun\or
67.65 Julailor Ogos\or September\or Oktober\or November\or Disember\fi
67.66 \space \number\year}}

The macro \extrasbahasa will perform all the extra definitions needed for the
Bahasa language. The macro \extrasbahasa is used to cancel the actions of
\extrasbahasa. For the moment these macros are empty but they are defined for
compatibility with the other language definition files.

67.67 \@namedef{extras\CurrentOption}{}
67.68 \@namedef{noextras\CurrentOption}{}

The bahasam hyphenation patterns should be used with \lefthyphenmin set to 2
and \righthyphenmin set to 2.

67.69 \providehyphenmins{\CurrentOption}{\tw@\tw@}

The macro \1df@finish takes care of looking for a configuration file, setting
the main language to be switched on at \begin{document} and resetting the
category code of @ to its original value.

67.70 \1df@finish{\CurrentOption}
67.71 (/code)

402

68 Not renaming hyphen.tex

As Don Knuth has declared that the filename hyphen.tex may only be used to
designate his version of the american English hyphenation patterns, a new solution
has to be found in order to be able to load hyphenation patterns for other languages
in a plain-based TEX-format. When asked he responded:

That file name is "sacred", and if anybody changes it they will cause
severe upward /downward compatibility headaches.

People can have a file localhyphen.tex or whatever they like, but they
mustn’t diddle with hyphen.tex (or plain.tex except to preload addi-
tional fonts).

The files bplain.tex and blplain.tex can be used as replacement wrappers
around plain.tex and lplain.tex to acheive the desired effect, based on the
babel package. If you load each of them with iniTEX, you will get a file called either
bplain.fmt or blplain.fmt, which you can use as replacements for plain.fmt
and 1lplain.fmt.

As these files are going to be read as the first thing iniTEX sees, we need to set
some category codes just to be able to change the definition of \input
68.1 (*bplain | blplain)

68.2 \catcode‘\{=1 % left brace is begin-group character

68.3 \catcode‘\}=2 % right brace is end-group character

68.4 \catcode‘\#=6 7, hash mark is macro parameter character

Now let’s see if a file called hyphen.cfg can be found somewhere on TEX’s input
path by trying to open it for reading...

68.5 \openin O hyphen.cfg

If the file wasn’t found the following test turns out true.

68.6 \ifeof0

68.7 \else

When hyphen.cfg could be opened we make sure that ¢ will be read instead of
the file hyphen.tex which should (according to Don Knuth’s ruling) contain the
american English hyphenation patterns and nothing else.

We do this by first saving the original meaning of \input (and I use a one
letter control sequence for that so as not to waste multi-letter control sequence on
this in the format).

68.8 \let\a\input
Then \input is defined to forget about its argument and load hyphen. cfg instead.
68.9 \def\input #1 {J
68.10 \let\input\a
68.11 \a hyphen.cfg
Once that’s done the original meaning of \input can be restored and the definition
of \a can be forgotten.

68.12 \let\a\undefined
68.13 }
68.14 \fi

68.15 (/bplain | blplain)
Now that we have made sure that hyphen.cfg will be loaded at the right moment
it is time to load plain.tex.

68.16 (bplain)\a plain.tex

68.17 (blplain)\a lplain.tex
Finally we change the contents of \fmtname to indicate that this is not the plain
format, but a format based on plain with the babel package preloaded.

68.18 (bplain)\def\fmtname{babel-plain}

68.19 (blplain)\def\fmtname{babel-1lplain}

When you are using a different format, based on plain.tex you can make a copy

of blplain.tex, rename it and replace plain.tex with the name of your format file.

403

69 Support for formats based on PLAINTEX

The following code duplicates or emulates parts of IXTEX 2¢ that are needed for
babel.

69.1 (*code)
69.2 \ifx\adddialect\@undefined

When \adddialect is still undefined we are making a format. In that case only
the first part of this file is needed.
69.3 \def\@empty{}

We need to define \loadlocalcfg for plain users as the ETEX definition uses
\InputIfFileExists.

69.4 \def\loadlocalcfg#1{/

69.5 \openinO#1.cfg

69.6 \ifeof0

69.7 \closein0

69.8 \else

69.9 \closein0

69.10 {\immediate\writel6{skkskskskskkskkkskkk sk okk sk ok k ok k 3k ok 3k sk ok o sk ok ok ok ok sk ok sk ok %
69.11 \immediate\writel16{* Local config file #1.cfg usedl}/
69.12 \immediate\writel6{*}/,

69.13 }

69.14 \input #1.cfg\relax

69.15 \fi

We have to execute \@endofldf in this case
69.16 \@endofldf
69.17 }
We want to add a message to the message IMTEX 2.09 puts in the \everyjob
register. This could be done by the following code:

\let\orgeveryjob\everyjob
\def\everyjob#1{/,
\orgeveryjob{#1}%
\orgeveryjob\expandafter{\the\orgeveryjob\immediate\write16{%
hyphenation patterns for \the\loaded@patterns loaded.l}}’
\let\everyjob\orgeveryjob\let\orgeveryjob\@undefined}

The code above redefines the control sequence \everyjob in order to be able to

add something to the current contents of the register. This is necessary because

the processing of hyphenation patterns happens long before INTEX fills the register.
There are some problems with this approach though.

e When someone wants to use several hyphenation patterns with SHTEX the
above scheme won’t work. The reason is that SI'TEX overwrites the contents
of the \everyjob register with its own message.

e Plain TEX does not use the \everyjob register so the message would not be
displayed.

To circumvent this a ‘dirty trick’ can be used. As this code is only processed
when creating a new format file there is one command that is sure to be used,
\dump. Therefore the original \dump is saved in \org@dump and a new definition
is supplied.

69.18 \let\orig@dump=\dump

69.19 \def\dump{’
To make sure that BITEX 2.09 executes the \@begindocumenthook we would want
to alter \begin{document}, but as this done too often already, we add the new
code at the front of \@preamblecmds. But we can only do that after it has been
defined, so we add this piece of code to \dump.

404

69.20 \ifx\@ztryfc\Qundefined

69.21 \else

69.22 \toksO=\expandafter{\@preamblecmds}

69.23 \edef\@preamblecmds{\noexpand\@begindocumenthook\the\toks0}
69.24 \def\@begindocumenthook{}

69.25 \fi

This new definition starts by adding an instruction to write a message on the
terminal and in the transcript file to inform the user of the preloaded hyphenation
patterns.

69.26 \everyjob\expandafter{\the\everyjob
69.27 \immediate\writel6{\the\toks8 loaded.l}}%
Then everything is restored to the old situation and the format is dumped.
69.28 \let\dump\orig@dump\let\orig@dump\Qundefined\dump}
69.29 \expandafter\endinput
69.30 \fi

The rest of this file is not processed by iniTEX but during the normal document
run. A number of KTEX macro’s that are needed later on.

69.31 \long\def\@firstofone#1{#1}

69.32 \long\def\@firstoftwo#1#2{#1}

69.33 \long\def\@secondoftwo#1#2{#2}

69.34 \def\@ifstar#1{\@ifnextchar *{\@firstoftwo{#1}}}
69.35 \def\@star@or@long#1{’

69.36 \Q@ifstar

69.37 {\let\l@ngrel@x\relax#1}J,

69.38 {\let\l@ngrel®x\long#11}}

69.39 \let\1l@ngrel@x\relax

69.40 \def\Qcar#1#2\@nil{#1}

69.41 \def\@cdr#1#2\Gnil{#2}

69.42 \let\@typeset@protect\relax

69.43 \long\def\@gobble#1{}

69.44 \edef\@backslashchar{\expandafter\@gobble\string\\}
69.45 \def\strip@prefix#1>{}

69.46 \def\g@addto@macro#1#2{{/

69.47 \toks@\expandafter{#1#2}

69.48 \xdef#1{\the\toks@}}}

69.49 \def\@namedef#1{\expandafter\def\csname #1\endcsname}
69.50 \def\@ifundefined#1{%

69.51 \expandafter\ifx\csname#1\endcsname\relax

69.52 \expandafter\@firstoftwo
69.53 \else

69.54 \expandafter\@secondoftwo
69.55 \fi}

¥TEX 2¢ has the command \@onlypreamble which adds commands to a list of
commands that are no longer needed after \begin{document}.

69.56 \ifx\@preamblecmds\Qundefined

69.57 \def\@preamblecmds{}

69.58 \fi

69.59 \def\@onlypreamble#1{/,

69.60 \expandafter\gdef\expandafter\@preamblecmds\expandafter{’,
69.61 \@preamblecmds\do#1}}

69.62 \@Qonlypreamble\@onlypreamble

Mimick I#TEX’s \AtBeginDocument; for this to work the user needs to add
\begindocument to his file.

69.63 \def\begindocument{%

69.64 \@begindocumenthook

69.65 \global\let\@begindocumenthook\@undefined
69.66 \def\do##1{\global\let ##1\@undefined}Y,
69.67 \@preamblecmds

69.68 \globalllet\do\noexpand

69.69 7}

405

69.70 \ifx\@begindocumenthook\@undefined

69.71 \def\@begindocumenthook{}

69.72 \fi

69.73 \@onlypreamble\@begindocumenthook

69.74 \def\AtBeginDocument{\g@addto@macro\@begindocumenthook}

We also have to mimick ETEX’s \AtEndOfPackage. Our replacement macro is
much simpler; it stores its argument in \@endofldf.

69.75 \def\AtEnd0fPackage#1{\g@addto@macro\@endof1df{#1}}

69.76 \@onlypreamble\AtEndOfPackage

69.77 \def\@endof1ldf{}

69.78 \@Qonlypreamble\@endofldf

ETEX needs to be able to switch off writing to its auxiliary files; plain doesn’t
have them by default.

69.79 \ifx\if@filesw\@undefined

69.80 \expandafter\let\csname if@filesw\expandafter\endcsname
69.81 \csname iffalse\endcsname

69.82 \fi

Mimick BETEX’s commands to define control sequences.

69.83 \def\newcommand{\@star@or@long\new@command}
69.84 \def\new@command#1{%

69.85

\@testopt{\@newcommand#1}0}

69.86 \def \@newcommand#1 [#2] {%

69.87
69.88

\@ifnextchar [{\@xargdef#1[#2]}%
{\@argdef#1 [#2]1}}

69.89 \long\def\Qargdef#1 [#2]#3{%

69.90

\@yargdef#1\@ne{#2}{#3}}

69.91 \long\def\@xargdef#1 [#2] [#3]#4{%

69.92 \expandafter\def\expandafter#l\expandafter{y,

69.93 \expandafter\@protected@testopt\expandafter #1J,
69.94 \csname\string#1\expandafter\endcsname{#3}}/

69.95 \expandafter\Qyargdef \csname\string#1\endcsname
69.96 \two{#2}{#4}}

69.97 \long\def\Q@yargdef#1#2#3{J,

69.98 \Q@tempcnta#3\relax

69.99 \advance \@tempcnta \@ne

69.100 \let\@hash@\relax

69.101 \edef\reserved@a{\ifx#2\tw@ [\@hash@1]\fil}},

69.102 \@tempcntb #2%

69.103 \@whilenum\@tempcntb <\@tempcnta

69.104 \do{%

69.105 \edef\reserved@a{\reserved@a\@Ghash@\the\Q@tempcntb}’
69.106 \advance\@tempcntb \@nel}’,

69.107 \let\Chash@##},

69.108 \l@ngrel@x\expandafter\def\expandafter#l\reserved@a}
69.109 \let\providecommand\newcommand

69.110 \def\DeclareRobustCommand{\@star@or@long\declare@robustcommand}
69.111 \def\declare@robustcommand#1{}

69.112 \edef\reserved@a{\string#1}}

69.113 \def\reserved@b{#11}J,

69.114 \edef\reserved@b{\expandafter\strip@prefix\meaning\reserved@bl}y
69.115 \edef#1{%

69.116 \ifx\reserved@a\reserved@b

69.117 \noexpand\x@protect

69.118 \noexpand#1,

69.119 \fi

69.120 \noexpand\protect

69.121 \expandafter\noexpand\csname

69.122 \expandafter\@gobble\string#1 \endcsname
69.123 hyA

69.124 \expandafter\new@command\csname

406

69.125 \expandafter\Q@gobble\string#1l \endcsname
69.126 }

69.127 \def\x@protect#1{Y

69.128 \ifx\protect\@typeset@protect\else

69.129 \@xQ@protect#1,

69.130 \fi

69.131 }

69.132 \def\@xOprotect#1\fi#2#3{Y

69.133 \fi\protect#1}

69.134 }

The following little macro \in@ is taken from latex.ltx; it checks whether its

first argument is part of its second argument. It uses the boolean \in@; allocating a
new boolean inside conditionally executed code is not possible, hence the construct
with the temporary definition of \bbl@tempa.

69.135 \def\bbl@tmpa{\csname newif\endcsname\ifin@}

69.136 \1fx\in@\@undefined

69.137 \def\in@#1#2{%

69.138 \def\in@Q##1#1##2##3\in00{Y,

69.139 \ifx\in@##2\in@false\else\in@true\fil}%

69.140 \in@O#2#1\in@\in0Q}

69.141 \else

69.142 \let\bbl@tmpa\Qempty

69.143 \fi

69.144 \bbl@tmpa

ETEX has a macro to check whether a certain package was loaded with specific
options. The command has two extra arguments which are code to be executed in
either the true or false case. This is used to detect whether the document needs
one of the accents to be activated (activegrave and activeacute). For plain TEX we
assume that the user wants them to be active by default. Therefore the only thing
we do is execute the third argument (the code for the true case).

69.145 \def\@ifpackagewith#1#2#3#4{/,
69.146 #3}

The IXTEX macro \@ifl@aded checks whether a file was loaded. This functionality
is not needed for plain TEX but we need the macro to be defined as a no-op.

69.147 \def\Q@iflQaded#1#2#3#4{}

For the following code we need to make sure that the commands \newcommand
and \providecommand exist with some sensible definition. They are not fully
equivalent to their I4TEX 2¢ versions; just enough to make things work in
plain TEXenvironments.

69.148 \ifx\@tempcnta\@undefined

69.140 \csname newcount\endcsname\@tempcnta\relax
69.150 \fi

69.151 \ifx\@tempcntb\@undefined

69.152 \csname newcount\endcsname\@tempcntb\relax
69.153 \fi

To prevent wasting two counters in HTEX 2.09 (because counters with the same
name are allocated later by it) we reset the counter that holds the next free counter
(\count10).

69.154 \ifx\bye\Qundefined

69.155 \advance\countl10 by -2\relax
69.156 \fi

69.157 \ifx\@ifnextchar\@undefined
69.158 \def\Q@ifnextchar#1#2#3{%

69.159 \let\reserved@d=#1%

69.160 \def\reserved@a{#2}\def\reserved@b{#3}/,
69.161 \futurelet\@let@token\@ifnch}

69.162 \def\@ifnch{’

69.163 \ifx\@let@token\@sptoken

407

69.164 \let\reserved@c\@xifnch

69.165 \else

69.166 \ifx\@let@token\reserved@d
69.167 \let\reserved@c\reserved@a
69.168 \else

69.169 \let\reserved@c\reserved@b
69.170 \fi

69.171 \fi

69.172 \reserved@c}

69.173 \def\:{\let\@sptoken= } \: 7 this makes \@sptoken a space token
69.174 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
69.175 \fi

69.176 \def\Q@testopt#1#2{/,

69.177 \@ifnextchar [{#1}{#1[#2]1}}

69.178 \def\@protected@testopt#1{%J

69.179 \ifx\protect\@typeset@protect

69.180 \expandafter\Q@testopt
69.181 \else
69.182 \@x@protect#1/,

69.183 \fi}

69.184 \long\def\@whilenum#i\do #2{\ifnum #1\relax #2\relax\@iwhilenum{#1\relax
69.185 #2\relax}\fi}

69.186 \long\def\@iwhilenum#1{\ifnum #1\expandafter\@iwhilenum

69.187 \else\expandafter\Q@gobble\fi{#1}}

Code from 1ltoutenc.dtx, adapted for use in the plain TEX environment.

69.188 \def\DeclareTextCommand{%

69.189 \@dec@text@cmd\providecommand
69.190 }

69.191 \def\ProvideTextCommand{%

69.192 \@dec@text@cmd\providecommand
69.193 }

69.194 \def\DeclareTextSymbol#1#2#3{J
69.195 \@dec@text@cmd\chardef#1{#2}#3\relax
69.196 }

69.197 \def\@dec@text@cmd#1#2#3{/,

69.198 \expandafter\def\expandafter#2},

69.199 \expandafter{’,

69.200 \csname#3-cmd\expandafter\endcsname
69.201 \expandafter#2/,

69.202 \csname#3\string#2\endcsname

69.203 Yo

69.204 % \let\@ifdefinable\@rc@ifdefinable

69.205 \expandafter#1l\csname#3\string#2\endcsname
69.206 }

69.207 \def\Qcurrent@cmd#1{/,

69.208 \ifx\protect\@typeset@protect\else

69.209 \noexpand#1\expandafter\Q@gobble

69.210 \fi

69.211 }

69.212 \def \@changed@cmd#1#2{%

69.213 \ifx\protect\@typeset@protect

69.214 \expandafter\ifx\csname\cf@encoding\string#1\endcsname\relax
69.215 \expandafter\ifx\csname 7\string#1\endcsname\relax
69.216 \expandafter\def\csname 7\string#1\endcsname{’,
69.217 \@changed@xQ@err{#1}/

69.218 Yh

69.219 \fi

69.220 \global\expandafter\let

69.221 \csname\cf@encoding \string#l\expandafter\endcsname
69.222 \csname ?7\string#1\endcsname

69.223 \fi

69.224 \csname\cf@encoding\string#1%

408

69.225 \expandafter\endcsname
69.226 \else

69.227 \noexpand#1%

69.228 \fi

69.229 }

69.230 \def\@changed@x@err#1{J,

69.231 \errhelp{Your command will be ignored, type <return> to proceed}’
69.232 \errmessage{Command \protect#l undefined in encoding \cf@encoding}}

69.233 \def\DeclareTextCommandDefault#1{/

69.234 \DeclareTextCommand#17%

69.235 }

69.236 \def\ProvideTextCommandDefault#1{},

69.237 \ProvideTextCommand#17%

69.238 }

69.239 \expandafter\let\csname OT1-cmd\endcsname\@current@cmd
69.240 \expandafter\let\csname?-cmd\endcsname\@changed@cmd
69.241 \def\DeclareTextAccent#1#2#3{J,

69.242 \DeclareTextCommand#1{#2} [1]{\accent#3 ##1}

69.243 }

69.244 \def\DeclareTextCompositeCommand#1#2#3#4{%

69.245 \expandafter\let\expandafter\reserved@a\csname#2\string#1\endcsname
69.246 \edef\reserved@b{\string##1}/,

69.247 \edef\reserved@c{/,

69.248 \expandafter\@strip@args\meaning\reserved@a:-\Q@stripQargs}s
69.249 \ifx\reserved@b\reserved@c

69.250 \expandafter\expandafter\expandafter\ifx

69.251 \expandafter\@car\reserved@a\relax\relax\@nil

69.252 \@text@composite

69.253 \else

69.254 \edef\reserved@b##1{}

69.255 \def\expandafter\noexpand

69.256 \csname#2\string#1\endcsname####1{J,

69.257 \noexpand\@text@composite

69.258 \expandafter\noexpand\csname#2\string#1\endcsname
69.259 ####1\noexpand\@empty\noexpand\Q@text@composite
69.260 {##1Y),

69.261 Yh

69.262 Y

69.263 \expandafter\reserved@b\expandafter{\reserved@a{##1}1}/,
69.264 \fi

69.265 \expandafter\def\csname\expandafter\string\csname

69.266 #2\endcsname\string#1-\string#3\endcsname{#4}

69.267 \else

69.268 \errhelp{Your command will be ignored, type <return> to proceed}%
69.269 \errmessage{\string\DeclareTextCompositeCommand\space used on
69.270 inappropriate command \protect#1}

69.271 \fi

69.272 }

69.273 \def\QtextQcomposite#1#2#3\0@text@composite{’,
69.274 \expandafter\Q@textQ@composite@x

69.275 \csname\string#1-\string#2\endcsname
69.276 }

69.277 \def \Q@text@composite@x#1#2{},

69.278 \ifx#1\relax

69.279 #2Y,
69.280 \else
69.281 #1Y%
69.282 \fi
69.283 }

69.284 %

69.285 \def\@stripQargs#l: #2-#3\0stripQargs{#2}
69.286 \def\DeclareTextComposite#1#2#3#4{J,

409

69.287 \def\reserved@a{\DeclareTextCompositeCommand#1{#2}{#3}1}/
69.288 \bgroup

69.289 \lccode ‘\@=#4Y,
69.290 \lowercase{’
69.291 \egroup

69.292 \reserved@a @Y
69.293 hyA

69.294 }

69.295 %

69.296 \def\UseTextSymbol#1#2{%

69.297 % \let\@curr@enc\cf@encoding

69.298 %, \Quse@text@encoding{#1}},

69.299 #2

69.300 %, \Quse@text@encoding\@curr@enc

69.301 }

69.302 \def\UseTextAccent#1#2#3{J,

69.303 % \let\@curr@enc\cf@encoding

69.304 % \Quse@text@encoding{#11}},

69.305 % #2{\@use@text@encoding\@curr@enc\selectfont#3}/,
69.306 %, \Quse@text@encoding\@curr@enc

69.307 }

69.308 \def\Quse@text@encoding#1{/

69.309 % \edef\f@encoding{#11}/,

69.310 % \xdef\font@name{’,

69.311 % \csname\curr@fontshape/\f@size\endcsname
69.312% %

69.313 % \pickup@font

69.314 4 \font@name

69.315 % \@Q@encQ@update

69.316 }

69.317 \def\DeclareTextSymbolDefault#1#2{Y

69.318 \DeclareTextCommandDefault#1{\UseTextSymbol{#2}#1}J,
69.319 }

69.320 \def\DeclareTextAccentDefault#1#2{Y

69.321 \DeclareTextCommandDefault#1{\UseTextAccent{#2}#1}/,
69.322 }

69.323 \def\cf@encoding{0T1}

Currently we only use the IATEX 2¢ method for accents for those that are known
to be made active in some language definition file.

69.324 \DeclareTextAccent{\"}{0T1}{127}
69.325 \DeclareTextAccent{\’}{0T1}{19}
69.326 \DeclareTextAccent{\~}{0T1}{94}
69.327 \DeclareTextAccent{\‘}{0T1}{18}
69.328 \DeclareTextAccent{\"}{0T1}{126}

The following control sequences are used in babel.def but are not defined for

PLAIN TEX.

69.329 \DeclareTextSymbol{\textquotedblleft}{0T1}{92}
69.330 \DeclareTextSymbol{\textquotedblright }{OT1}{‘\"}
69.331 \DeclareTextSymbol{\textquoteleft}{0T1}{‘\‘}
69.332 \DeclareTextSymbol{\textquoteright}{OT1}{‘\’}
69.333 \DeclareTextSymbol{\i}{0T1}{16}

69.334 \DeclareTextSymbol{\ss}{0T1}{25}

For a couple of languages we need the INTEX-control sequence \scriptsize to be
available. Because plain TEX doesn’t have such a sofisticated font mechanism as
TEX has, we just \let it to \sevenrm.

69.335 \ifx\scriptsize\Q@undefined

69.336 \let\scriptsize\sevenrm

69.337 \fi
69.338 (/code)

410

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols \@opargbegintheorem \az 47.374
\- ... 20.123, 34.110, ... 47.147,62.826 \az@ 47.376
36.144, 41.57, \@outputdblcol . 62.597 \Azc 47.434, 238
44.92, 46.63, \@part ... 47.192, 62.467 \azc 47.433
51.177 54.242 \@roman 62.326 \azc@ 47.435
\@az 47.493 \@schapter 62.839 \azcee 47.436
\QQaz@string ... 47.457 \@seccntformat .. 47.96 \Azp 47.421, 237
\@@azc 47.440 \@sect 47.99,62.510 Nazp 47.420
\@@enc@update \@ssect 47.133 \azp@ 47.422
51.365, 54.430 \@tableofcontents (2.381 \pzr 47.406, 237
\@@selectlanguage 62.267 \@testdef 12,1232 Nazr 47.405
\@@vpageref 12.1349 \@textcolor 02.782 \ 09 47.407
\GAlph 62.102 \@tilde 39.52 \azree 47.408
\@Alph@bul 57.254 \@torl 62246 \,ree0 47.409
\@Alphfinal 6(2.102 \Ctrema 20.102
\@Roman 62.326 \Qumlaut .. 306.77, 39.52 B
\@acute 36.77 \@verbatim (2.946 \babel@beginsave 12.807
\Galph 62.102 \Cxnthm 62.820 \papelesave .. 12.810, 13
\@alph@bul 57.273 A \babel@savecnt . 12.807
\@arabic 62.326 . \babel@savevariable
N 47.377 \AbsoluteFromGregorian 12.819, 13
\@azc 47439 ot 62.1157 \bahasahyphenmins 66.69
\@azp 47 493 \AbsoluteFromHebrew .

P SLeSs 62.1321 \bahasamhyphenmins 67.69
\@azr 47.410 \Acite A7 4% \basquehyphenmins 39.49
\Gbegintheorem . 47.147 CTT€ occo 25 200 \bbleactivate 12, 12.603
\Gbibitem 12,1984 3€ite oo AL T eaddenist 12.775
\Gbiblabel 62805 ‘2ctivedprefiz . 12501 o idospecial ..
\Gbrackets G2.315 . 2dddialect ... [, 1257 T 409, 13

. " \addlanguage .. 11,1245 - —
\@caption . 47.81, 62.552 \addto 12.832, 13 \bbl@afterelse . 12.430
\@chapter .. 47.212, \afrikaanshyphenmins \bbl@afterfi ... 12.430

47.286, 62839 20.101 \bbl@bibcite ... 12.1275
\@cite 62.895 \aliasshorthand 6, 127645 \bbl@cite@choice 12.1277
\@citex 12.1256 \allowhyphens 12.844, 13 \bbl@clear@ttribs 12.796
\@dottedtocline 62.430 \Alph 62.102 \bbl@deactivate
\@ensureQL 62308 _ 4 62.102 e 12, 12.609
\Censure@R 62.308 tAlf,hfinal ... 62.102 \bbl@declare@ttribute
\@fromrl 62.255 \anyefalse 9884 e 12, 12.757
\Cgrave 36.77 \anweprint 28.84 \bbledisc 12.856
\Ghebrew 62.92 \apyetrue 28.84 \bblefirstecs ... 12.615
\CGhebrew@numeral 62.141 ~\pop, 5251 \bbl@frenchindent
\@latin 62.317 Naob 5251 29.667, 49.54, 53.58
\@lbibitem 02.895 N\ap @ \bbl@frenchlabelitems
\@listoffigures 62.381 \Apageref .. 47.419, 237 ... 29.608
\@listoftables . (2.381 \apageref 47.418 \bbl@frenchspacing .
\Gmakecaption \appendix 62.129, 62.878 12.824, 13

47.69, 62.949 \arabicnorl 62.329 \bbl@get@enc ... 12.356
\@makechapterhead . \Aref 47.404, 237 \bbl@hyph@enc .. 12.356

47.235, 47.305 N\aref 47.403 \bbl@ifattributeset
\@mkboth 12.1300 \Asbuk ... 56.340, 58.319 12.761
\@newl@bel 12.1219 \asbuk ... 56.347, 58.326 \bbl@ifknown@ttrib .
\@nolanerr 12.262 \author 62.815 .. 12.786
\@noopterr 12.262 \AutoSpaceBeforeFDP \bbl@language®@stack
\@nopatterns ... 12.262 29.249, L. 12.80
\@notshorthand . 12.658 56.268, 58.247 \bbl@main@language .
\@number 62.317 \Az 47.375, 237 12.247

\bbl@nonfrenchindent
29.667, 49.54, 53.58
\bbl@nonfrenchlabelitems

......... 29.608
\bbl@nonfrenchspacing
...... 12.824, 13
\bbl@patterns 12.173
\bbl@pop@lang 12.84
\bbl@pop@language
..... 12.80, 12.81
\bbl@prlm@s 12.698
\bbl@prim@s 12.698
\bbl@push@language 12.81
\bbl@redefine .. 12.1194
\bbl@redefine@long .
........ 12.1200
\bbl@redefinerobust
........ 12.1205
\bbl@remove@special
...... 12.419, 183
\bbl@restore@actives
......... 12.602
\bbl@scndcs 12.615
\bbl@set@language 12.96
\bbl@sh@select 12.584
\bbl@switch@sh 12.668
\bbl@switch@sh@off .
......... 12.679
\bbl@switch@sh@on 12.680
\bbl@test@token 12.437
\bcaption 62.965
\bchapter 62.957
\bchapternn 62.969
\bibcite 12.1272
\bpart 62.955
\breton@sh@:@ 24.59
\breton@sh@;@ 24.48
\breton@sh@?@ ... 24.75
\breton@sh@@ 24.59
\bsc 29.400
\bsection 62.959
\bsectionnn 62.971
\bsubsection ... 62.961
\bsubsubsection 62.963
C
\captionsafrikaans 20.64
\captionsalbanian 49.6
\captionsaustrian 22.23
\captionsbahasa 66.35
\captionsbahasam 67.35
\captionsbasque 39.7
\captionsbrazil 34.66
\captionsbreton 24.6
\captionsbulgarian .
......... 57.117

\captionscatalan . 36.8

\captionscroatian 50.6
\captionsczech .. 51.34
\captionsdanish 41.7
\captionsdutch 20.22
\captionsenglish 21.66
\CaptionSeparator 29.565

\captionsesperanto 18.6
\captionsestonian 48.7
\captionsfinnish . 46.6

\captionsfrench 29.507
\captionsgerman 22.23
\captionsgreek 28.32
\captionshebrew 62.22
\captionsicelandic 42.25

\captionsinterlingua

........... 19.7
\captionsirish 26.7
\captionsitalian 30.6
\captionslang 12
\captionslatin 31.16
\captionslsorbian 59.14
\captionsmagyar 47.14
\captionsnaustrian 23.12
\captionsngerman 23.12
\captionsnorsk 43.9
\captionsnynorsk 43.35
\captionspolish 52.6
\captionspolutonikogreek

.......... 28.55
\captionsportuges 34.34
\captionsromanian 40.6
\captionsrussian 56.121
\captionssamin 45.7
\captionsscottish 27.6
\captionsserbian 53.6
\captionsslovak 54.34
\captionsslovene 55.6
\captionsswedish 44.6
\captionsturkish 61.6
\captionsukrainian .

......... 58.121
\captionsusorbian 60.14
\captionswelsh 25.7
\catalanhyphenmins 36.7
\CBgreekCaporali 30.129
\cdash 56.311,

57.216, 58.290
\CheckIfDivisible

........ 62.1084
\CheckLeapHebrewYear

........ 62.1168
\ck 22.124, 60.112
\clq 51.149, 54.214
\clqq . 51.134, 54.199
\erq 51.149, 54.214
\crqq . 51.144, 54.209
\cs@activatehyphens

51.280, 54.345
\cs@addparam

51.254, 54.319
\cs@boxhyphen

51.173, 54.238
\cs@checkchardef

51.243, 54.308
\cs@checkcode

51.261, 54.326
\cs@checkhyphen

51.210, 54.275

412

\cs@continuescan
51.217, 54.282
\cs@deactivatehyphens
... 51.280, 54.345
\cs@emdash 51.168, 54.233
\cs@endash 51.168, 54.233
\cs@examinechar .
51.257, 54.322
\cs@examinetoken ..
51.224, 54.289
\cs@expandchar .
51.257, 54.322
\cs@firsthyphOn .
51.192, 54.257
\cs@firsthyphen .
51.192, 54.257
\cs@gett@ken
51.217, 54.282
\cs@gettoken
51.217, 54.282

\cs@hyphen
51.168, 51.274,
54.233, 54.339
\cs@ignoretoken
51.251, 54.316
\cs@looseness
51.290, 54.355
\cs@main@language .
51.295, 54.360
51.273, 54.338
\cs@scanword
51.217, 54.282
\cs@secondhyph@n . .
51.192, 54.257
\cs@secondhyphen ..
51.192, 54.257
\cs@selectlanguage .
51.295, 54.360
\cs@splitattr
51.277, 54.342
\cs@splithyphen .
51.174, 54.239
\cs@tempdisable .
51.310, 54.375
\cs@undoiltw@
51.352, 54.417

\cs@nosplit

\cs@wordlen

\cyrdash ... 56.326,
57.231,

\CyrillicCaporali 30.129

\cyrillictext 56.111,

57.111, 58.111
D

\dateafrikaans 20.86
\datealbanian ... 49.29
\dateamerican .. 21.125
\dateanustrian 23.40
\dateaustralian 21.117
\dateaustrian ... 22.51
\datebahasa 66.62

\datebahasam 67.62
\datebasque 39.30
\datebrazil 34.89
\datebreton 24.29
\datebulgarian . 57.161
\datecatalan 36.31
\datecroatian ... 50.29
\dateczech 51.57
\datedanish 41.30
\datedutch 20.49
\dateenglish 21.89
\dateesperanto 18.30
\dateestonian ... 48.34
\datefinnish 46.29
\datefrench 29.330
\dategerman 22.46
\dategreek 28.64
\datehebrew 62.77
\dateicelandic 42.48
\dateinterlingua 19.30
\dateirish 26.30
\dateitalian 30.29
\datelang 12
\datelatin 31.39
\datemagyar 47.37
\datengerman 23.35
\datenorsk 43.60
\datepolish 52.29
\dateportuges ... 34.57
\dateromanian ... 40.30
\daterussian ... 56.185
\datesamin 45.30
\datescottish ... 27.29
\datesdmy 44.39
\dateserbian 53.29
\dateslovak 54.57
\dateslovene 55.29
\dateswedish 44.29
\datesymd 44.36
\dateturkish 61.30
\dateukrainian 58.162
\datewelsh 25.31
\DaysInHebrewYear
........ 62.1264
\DecimalMathComma 29.461
\decimalsep 42.106
\declare@shorthand .
...... 12, 12.617
\defineshorthand
....... 6, 12.643
\degres 29.438
\dieresia 39.50
\dieresis 36.74
\DisableNikud .. 63.243
\DJ 12.914
\dj ... 12.914
\doc@style . 12.1030
\dq 22.70, 23.59,
42.54, 43.75,
44.51, 51.70,
52.112, 54.83,

56.287, 57.193,
58.266, 60.68
\dutchhyphenmins 20.101
E
\EEob 42.90
\eeob 42.90
\embox 62.313
\englishhyphenmins .
...... 21.65, 41.6
environments:
hyphenrules 6, 12.180
otherlanguage .
....... 6, 12.134
otherlanguage* .
....... 6, 12.142
thebibliography
......... 62.903
\Eob 42.90, 52.51
\eob 42.90, 52.51
\Esper 18.53
\esper 18.53
\estonianhyphenmins
.......... 48.55
\et@gentilde 48.64
\et@newtilde 48.69
\extrasafrikaans 20.93
\extrasalbanian 49.34
\extrasaustrian 22.53
\extrasbahasa ... 66.67
\extrasbahasam 67.67
\extrasbasque 39.36
\extrasbreton ... 24.35
\extrasbulgarian 57.181
\extrascatalan 36.37
\extrascroatian 50.34
\extrasczech 51.62
\extrasdanish ... 41.35
\extrasdutch 20.93
\extrasenglish 21.133
\extrasesperanto 18.35
\extrasestonian 48.49
\extrasfinnish 46.35
\extrasfrench ... 29.60
\extrasgerman ... 22.53
\extrasgreek 28.80
\extrashebrew 62.78
\extrasicelandic 42.18
\extrasinterlingua 19.36
\extrasirish 26.38
\extrasitalian 30.35
\extraslang 12
\extraslatin 31.49
\extraslsorbian . 59.59
\extrasmagyar 47.59
\extrasnaustrian 23.42
\extrasngerman 23.42
\extrasnorsk 43.66
\extrasnynorsk 43.66
\extraspolish ... 52.35
\extrasportuges 34.97
\extrasromanian 40.36
\extrasrussian 56.200

413

\extrassamin 45.46
\extrasscottish 27.37
\extrasserbian 53.34
\extrasslovak 54.63
\extrasslovene 55.34
\extrasswedish 44.43
\extrasturkish 61.36
\extrasukrainian 58.177
\extrasusorbian 60.51
\extraswelsh 25.38
F

\FBprocess@options .

......... 29.964
\FBtextellipsis 29.735
\FDP@thinspace .

... 56.268, 58.247
\FDPoff .. 56.272, 58.251
\FDPon ... 56.272, 58.251
\fg 29.289
\finishhyphenmins 46.66
\flgo 12.964
\flgq 12.974
\fnum@figure 47.63
\fnum@table 47.63
\footnoterule 62.634
\foreign@language 12.157
\FOREIGNLANGUAGE 12.1378
\foreignlanguage

....... 6, 12.148
\FormatDate 62.998
\FormatForEnglish

........ 62.1075
\FormatForHebrew 62.1050
\fprimo) 29.384
\frenchbsetup 29.778
\FrenchLayout 29.716
\fromhebrew 62.90
\frq 12.964
\frqq 12.974
\full 367
\fup 29.337

G
\gim 62.200
\gim@nomil 62.151
\gim@print 62.193
\glq « oo 12.940
\glqq - oo 12.952
\gr@cOgreek 28.71
\gre@ill@value 28.82
\gr@month 28.64
\grénum@i 28.139
\grénum@ii 28.139
\grénum@iii 28.139
\grénum@iv 28.148
\grénum@v 28.148
\gronum@vi 28.148
\gradur 42.193
\greek@Alph 28.115
\greek@alph 28.115
\greek@amp 28.135
\greekORoman ... 28.125

\greek@roman ... 28.125 1
\greek@tilde ... 28.160 \ieme 29.378
\greekhyphenmins 28.30 \iemes 29.378
\Greeknumeral 28.113, 99 \ier 29.378
\greeknumeral . 28.89, 99 \iere 29.378
\greektext . 28.24, 98 \ieres 29.378
\GregorianDaysInPriorMonth§iers 29.378
........ 62.1113 \if@gim@apost 62.94
\GregorianDaysInPriorYears\if@gim@final 62.94
-------- 62.1137 \ifegim@prev ... 62.193
\grq ... 12.940 \iferl 62.237
\graqq 12.952 \if@rlmain 62.238
\Grtoday 28.76 \if@safe@actives 12.600
\guillemotleft . \ifQ@Two@E 42.11
12.868, 29.291 \1fGregorianLeap 62.1095
\guillemotright . \iflanguage ... 6, 12.60
12.868, 29.291 \jfraTeXe 29.12
\guilsinglleft . 12886 \jfthenelse 12.1332
\guilsinglright — 12.850 \jfyndefined ... 62.1093
H \NIJ o 12.904
\headeven 62.637 \:!'J. L o 12901
; \initiate®@active@char
\headodd 62.637 19 12.430
\bebdate 62.73 \interlinguahyphei)m?
\hebday 6276 T T 19.6
\HeblatexRedefineL . \irishhyphenmins 26.6
......... 62.293 i
\hebmonth 62,61 Miteccap 30101
\hebr 62.200 ‘itécwm 3049, 30.57
\Hebrewdate . 62.985, 567 \rt@oC@P - 30101
\HebrewDayName . 62.1049 \:!.tal:.Lanhyphenm1ns M
\HebrewDaysInPriorMonths \}tem:}zeFB 29.608
........ 62.1274 \itemizeORI 29.608
\HebrewElapsedDays . L
........ 62.1207
\HebrewElapsedMonths AL M
........ 62.1182 Meelooooo.oo... 36187
\hebrewencoding 62.7 \1.1 M
\HebrewFromGregorian \lCchapter 62.573
........ 62.1331 \l@paragraph ... (2.591
\hebrewhyphenmins 62.21 \l@part 62.450
\HebrewMonthName (2.1025 ‘l@section 62.591
\HebrewMonthNameInEnglish \l@subparagraph 62.591
........ 62.1053 \l@subsection .. 62.591
\Hebrewnumeral 62.96 \l@subsubsection 62.591
\hebrewnumeral 62.96 \label . 47.519, 62.112
\Hebrewnumeralfinal tlabelenumii s wz
.......... 62.96 \langhyphenmins 12
\Hebrewsetreg 62.995 \language 12.37
\hebrewtext 62.86 \language@group 12.633
\Hebrewtoday 62.993, 367 \languageattribute .
\HebrewYearName 62.1004 .-« .. 7, 12.725
\hhline 12.1363 \languagename 6
\hmbox 62.313 \languageshorthands
\hodiau 18.63 ... 6, 12.644
\hodiaun 18.63 \last@language 12.40
\hun@alph@lehgth 47.453 \LaTeX .. 12.1328, 62.349
\hun@number@lehgth . \LaTeXe 62.351
......... 47.447 \latinencoding 12.12
\hun@tempadef 47.381 56.7, 57.7, 58.7
\hunnewlabel ... 47.539 \latinhyphenmins 31.48
hyphenrules (environ- \LatinMarksOff 32.50
ment) .. 0,12.180 \LatinMarksOn ... 32.50

414

\latintext
12.22, 56.111,
57.111, 58.111, 98
\Lcaron . 51.83, 54.154
\lcaron . 51.83, 54.154
\ldf@finish .. 72, 12.238
\1ldf@quit 12, 12.232
\LdfInit 12, 12.200
\Lgem 36.147
\lgem 36.147
\list 62.353
\1istFB 29.596
\listoffigures 62.424
\listoftables 62.424
\1istORI 29.596
\loadlocalcfg . 12,13.1
\looseness 51.290, 54.355
\lower@umlaut 12.994
\lrlistoffigures 62.418
\lrlistoftables 62.418
\lrtableofcontents .
......... 62.418
\ltx@amp 28.135
\LtxSymbCaporali 30.101
M
\main@language 12, 12.247
\make@lr 62.330
\MakeLowercase 62.817
\MakeUppercase 62.817
\markboth 12.1300
\markright . 12.1286
\mathalbanian ... 49.63
\mathserbian 53.67
\mdqoff 22.124, 23.90,
58.310, 60.112
\mdgon 22.124, 23.90,
52.159, 56.331,
58.310, 60.112
N
\newdatelsorbian 59.37
\newdateusorbian 60.37
\newlabel 12.1217
\nfss@catcodes . 12.1381
\No 29.384
\no 29.384
\NoAutoSpaceBeforeFDP
...... 29.249,
56.268, 58.247
\NoAutoSpacing 29.286
\nocite 12.1270
\noextrasafrikaans 20.93
\noextrasalbanian 49.34
\noextrasaustrian 22.53
\noextrasbahasa 66.67
\noextrasbahasam 67.67
\noextrasbasque 39.36
\noextrasbreton 24.35
\noextrascatalan 36.37
\noextrascroatian 50.34
\noextrasczech 51.62

\noextrasdanish 41.35 \peekQ@token 12.432
\noextrasdutch 20.93 \polishrz 52.130
\noextrasenglish 21.133 \polishzx 52.130
\noextrasesperanto 18.35 \portugeshyphenmins
\noextrasestonian 48.49 34.96
\noextrasfinnish 46.35 \primo 29.384
\noextrasfrench 29.60 \process@language 12.318
\noextrasgerman 22.53 \process@line 12.296
\noextrasgreek 28.80 \process@synonym 12.303
\noextrashebrew 62.81 \ProsodicMarks 32.21
\noextrasicelandic 42.18 \ProsodicMarksOff 32.1
\noextrasinterlingua \ProsodicMarksOn 32.1
.......... 19.36 \providehyphenmins .
\noextrasirish 26.38 ..., 12, 12.195
\noextrasitalian 30.35 \ProvidesLanguage
\noextraslang 12 L. 10.1, 12
\noextraslatin 31.49 \ps@headings 47.155,
\noextraslsorbian 59.59 47.253, 47.321,
\noextrasmagyar 47.59 47.356, 62.637
\noextrasnaustrian 23.42 \ps@myheadings 62.637
\noextrasngerman 23.42
\noextraspolish 52.35 Q
\noextrasportuges 34.97 \quotedblbase 12.858
\noextrasromanian 40.36 \quotesinglbase 12.863
\noextrassamin 45.46
\noextrasscottish 27.37 R
\noextrasserbian 53.34 M 62.293
\noextrasslovak 54.63 \ra ... 34.114
\noextrasslovene 55.34 \raggedleft 62.805
\noextrasswedish 44.43 \raggedright ... 62.805
\noextrasturkish 61.36 \readconfigfile 12.365
\noextraswelsh 25.38 \Ref 12.1349
\nohebrewtext . 6286 \ref 12.1252
\nombre 20.475 \refstepcounter 47.514
\norskhyphenmins 43.6 \Remainder . 62.1078
\Nos 29.384 \rl@outputdblcol (2.597
\nosS 29.384 \rllistoffigures 62.421
\rllistoftables 62.421
(@) \rltableofcontents .
\og 29.289 ..., 62.421
\olddatelsorbian 59.43 \ro 34.114
\olddateusorbian 60.43 \romandate 31.48
\ondatemagyar 47.45 \russian@sh@:Q 56.231
\ontoday 237 \russian@sh@;@ . 56.231
\Oob 42.90 \russian@sh@?7@ . 56.231
\oob 42.90 \russian@she@@ .. 56.231
\OOob 42.90
\ooob 42.90 S
\ord 34.114 \saminhyphenmins 45.6
\orda 34.114 \save@sf@q .. 12.851, 19
\originalTeX ... 12.259 \selectlanguage
\OTldgpos 12.720 6, 12.70, 62.262
otherla_nguage (envi_ \set@hyphenmins 12.199
ronment) 6, 12.134 \set@low@box . 12.848, 13
otherlanguage* (envi_ \set@outputdblcol 62.597
ronment) 6, 12.142 \sethebrew 62.84
\SetLatinLigatures 31.61
P \setrllanguage 62.281
\p@enumiii 62.379 \shorthandoff . 7, 12.666
\pageref 12.1252 \shorthandon .. 7, 12.666
\pdfstringdefDisableComman¥skb 52.71
........ 12.1371 \slidelabel 62.56
\ped 30.84 \sob 42.82, 52.43

\spb
\splithyphens
51.275, 54.340

51.70, 54.83
12.938

\SS
\standardhyphens ..
51.275, 54.340
\StandardLayout 29.716
\StandardMathComma .
29.461
\substitutefontfamily
11.106, 12
\swedishhyphenmins 44.42
\system@group 12.633
\system@sh@:Q
56.280, 58.259
\system@sh@;@
56.280, 58.259
\system@sh@?70@
56.280, 58.259
\system@sh@@
56.280, 58.259

T
\Tldgpos 12.720
\T@unoCaporali 30.129
\tableofcontents 62.424
\tala 42.115
\telepl 52.87
\TeX 12.1328, 62.347
\textacute 36.74
\textclas 64.512
\textcrml 64.509
\textcyrillic 56.115,
57.115, 58.115
\textds 64.506
\textfr 64.510
\textgrave 36.74
\textgreek ... 28.27, 98
\textjm 64.473
\textlatin
12.25, 56.115,
57.115, 58.115, 98
\textoj 64.507
\textol 28.28, 98
\textormath 12.627
\textpl 52.78
\textquoteddblleft .
......... 29.291
\textquoteddblright
......... 29.291
\textredis 64.511
\textshold 64.513
\textshscr 64.514
\textshstk 64.515
\textta 64.508
\texttilde 39.50
thebibliography (envi-
ronment) 62.903
\theenumii 62.112
\theenumiv 62.112
\thousandsep ... 42.106
\todayRoman 57.179

\tohebrew
\turkish@sh@:@
\turkish@sh@@

U
\ukrainian@sh@:@
\ukrainian@sh@;@
\ukrainian@sh@?@
\ukrainian@sh@@
\umlauthigh

58.210
58.210
58.210
58.210
12.984

Jl

gl

\umlautlow 12.984
\underline 62.821
\unit 30.84
\unsethebrew 62.84
\unsetrllanguage 62.281
\up 29.337, 36.194
\upp 42.155
\upp@size 42.155
\user@group 12.633
\useshorthands 6, 12.636

416

\uv 51.159, 54.224
\%

\v ... 51.76, 54.147

\verbatim@font .
56.202, 58.181

\vrefpagenum ... 12.1349
w

(e}

\welshhyphenmins . 25.

Change History

3.0
\clqq: Added \leavevmode to allow an opening quote at the beginning of a
paragraph 265, 287
albanian-1.0a
General: Started first version of the file 256
albanian-1.0b
General: A number of corrections in the translations from Adi Zaimi 256
albanian-1.0c
General: Small documentation fix 256
babel 2.0a
General: Added text about german.sty 1
babel 2.0b
General: Changed order of code to prevent plain TEXfrom seeing all of it 1
babel 2.1
General: Modified user interface, \1langTeX no longer necessary 1
babel 2.1a
General: Incorporated Nico’s comments 1
babel 2.1b
General: rename \language to \current@language 1
babel 2.1c
General: abstract for report fixed, missing }, found by Nicolas Brouard 1
babel 2.1d
General: Missing right brace in definition of abstract environment, found by
Werenfried Spit 1
babel 2.1e
General: Incorporated more comments from Nico 1
babel 2.2
General: Renamed \newlanguage to \addlanguage 1
babel 2.2a
General: Modified the documentation somewhat 1
babel 3.0
General: Moved part of the code to hyphen.doc in preparation for TgX 3.0 1
babel 3.0a
General: Updated comments in various places 1
\iflanguage: Added \@bsphack and \@esphack 21
\selectlanguage: Added \@bsphack and \@esphack 23
Replaced \gdef with \def 23
babel 3.0b
General: Removed some problems in change log 1
babel 3.0c
General: Renamed babel.sty and latexhax.sty to .com 1
\iflanguage: Added comment character after #2 21
\selectlanguage: Made \selectlanguage robust 21
babel 3.0d
\@noopterr: Added a percent sign to remove unwanted white space 28
General: Removed use of \@ifundefined 18
\doc@style: Removed use of \@ifundefined 51
\iflanguage: Removed space hacks and use of \@ifundefined 21
Removed superfluous \expandafter 21
\process@language: Added the collection of pattern names. 29
Reinserted \expandafter 29
Removed superfluous \expandafter 29
\selectlanguage: Removed space hacks and use of \@ifundefined 23
Removed superfluous \expandafter 23
babel 3.1
General: Added the support for active characters and for extending a macro ... 1
Removed definition of \if@restonecol 51
Removed the need for latexhax]
\addto: Added macro 45

\readconfigfile: Removed the extra if control sequence 32

Removed use of \toksO 31
\selectlanguage: \originalTeX should only be executed once 23
babel 3.2
General: Some Changes by br 1
\adddialect: Added \relaxt 21
\addlanguage: Added a %, removed by 20
\babel@beginsave: Added macro 44
\babel@save: Added macro 45
\babel@savecnt: Added macro 44
\babel@savevariable: Added macro 45
\bbl@add@special: Added macro 32
\bbl@remove@special: Added macro 33
\iflanguage: Rephrased \ifnumtest 21
\selectlanguage: Modified to allow arguments that start with an escape char-
ACLET . 21
babel 3.2a
General: Fixups of the code and documentation 1
\originalTeX: Set \originalTeX to \empty, because it should be expandable. 28
\readconfigfile: Free macro space for \process@language 32
\selectlanguage: Added \relax as first command to stop an expansion if
\protect isempty 23
Added three \expandafters to save macro space for \originalTeX 23
Moved definition of \originalTeX before \extras(lang) 23
Set \originalTeX to \empty, because it should be expandable. 23
Simplified the modification to allow the use in a \write command 21
babel 3.2b
\allowhyphens: Moved macro from language definition files 46
\save@sf@q: Moved macro from language definition files 46
\set@low@box: Moved macro from language definition files 46
babel 3.2c
\babel@save: missing backslash led to errors when executing \originalTeX .. 45
babel 3.2d
\babel@save: saving in \babel@i and restoring from \@babel@i doesn’t work
very well... . 45
babel 3.2e
General: Added slovak 64
babel 3.3
General: \headpagename should be \pagename 54
Added catalan and galician 64
Added turkish 64
Included driver file, and prepared for distribution 1
babel 3.4
General: Added bahasa 64
Added language definition file for bahasa 1
Updated for BTEX 2 . .« .o 1
\addto: Changed to use toks register 45
babel 3.4b
General: Added a small driver to be able to process just this file 1
Use the ltxdoc class instead of article 63
babel 3.4c
General: lhyphen.cfg has become lthyphen.cfg 15
babel 3.4e
\@nolanerr: Use \PackageError in NTEX 2z mode 28
\@nopatterns: Macroadded 28
\process@language: Added code to detect assignments to left- and righthyphen-
min in the patternfile. 30
\ProvidesLanguage: Redid the identification code, provided dummy definition of
\ProvidesFile for plain TEX 14
babel 3.4g
\@testdef: Moved the \def inside the macrocode environment 56

418

babel 3.5a
\@noopterr: Added \@activated to log active characters
General: Added a system shorthand for the right quote
Added breton, irish, scottish
Changed extension of language definition files to 1df
Provided common code to handle the active double quote
Replaced 16 system shorthands to deal with hex numbers by one
\bbl@activate: Added macro,
\bbl@deactivate: Added macro
\bbl@main@language: Macro added
\bbl@pr@m@s: Added macro
\bbl@set@language: write the language change to the auxiliary files
\initiate@active@char: Added a check for right quote and adapt \pr@m@s if
NECESSATY « v o v v o e e e e e e e e e e e
Added macro
\main@language: Macro added
babel 3.5b
General: Added brazilian as alternative for brazil
Added lsorbian, usorbian
Added the estonian option
Ithyphen.cfg has become hyphen.cfg
\initiate@active@char: Renamed macro
\pageref: Made \ref and \pageref robust (PR1353)
\process@language: Added optional reading of file with hyphenation exceptions
\process@line: added MaCro
\process@synonym: added macro
\readconfigfile: Now add a \space and a / character
\selectlanguage: Added an extra level of expansion to separate the switching
mechanism from writing to aux files
Addedd default setting of hyphenmin parameters
Changed the name of the internal macro to \selectlanguage
Separated the setting of the hyphenmin values
Store the name of the current language in a control sequence instead of passing
the whole macro construct to strip the escape character in the argument of
\selectlanguagettt
babel 3.5¢
\@noopterr: Added missing closing brace
General: Changed the order of including the language files somewhat (PR1652)
corrected a few typos (PR1652)
Repaired a typo (itlaic, PR1652)
babel 3.5d
General: Added british as an alternative for english with a preference for british
hyphenation e
Added options to influence behaviour of active acute and grave accents
Load french.1df when it is found instead of frenchb.1df
Load language definition files after the check for the hyphenation patterns
Merged glyphs.dtx into thisfile
\active@prefix: \@protected@cmd has vanished from ltoutenc.dtx
\declare@shorthand: Make a ‘note’ when a shorthand with an argument is de-
fined.
\foreignlanguage: Macroadded
\initiate@active@char: Skip the language-level active char with argument if no
shorthands with arguments were defined
Skip the user-level active char with argument if no shorthands with arguments
were defined
\loadlocalcfg: Added macro
\pageref: use a different control sequence while making \ref and \pageref ro-
buSt . L
otherlanguage: environment added
babel 3.5e
otherlanguage: changed name

419

30
29

22
24
22
24

21

28
64

46

16
17
16
15

38

babel 3.5f
\@bibitem: Now use \bbl@redefine0.iuou.o... 58
\@citex: Now use \bbl@redefine'iriiirinenrnn.n. 57
\@testdef: Complete rewrite of this macro as the same character ended up with
different category codes in the labels that are being compared. Now use

\meaning 56
Now use \bbl@redefinet 56
Use \strip@prefix only on \bbl@tempa when it is not \relax 56

General: Added a system shorthand for the left quote 41
Added the greek option L. 16
No need to reset the category code of the tilde as \initiate@active@char now
correctly deals with active characters 42
Now use the file frenchb.1df from Daniel Flipo for french support 16
repaired a tyPO 1
replaced \tmp, \bbl@tmp and \bbl@temp with \bbl@tempa 1
\aliasshorthand: New command 40
\bbl@disc: Macro moved from language definition files 46
\bbl@redefine: Macro added 55
\bbl@redefinerobust: Define *#foo instead of \foo 56

Macro added 55
\bbl@set@language: Now also define \languagename at thislevel 23
\bbl@test@token: macro added, 34
\bibcite: Now use \bbl@redefine 57
\DJ: New definition of \dj, see PR 2058 48
\frq: corrected spelling of \quilsingl... 49

now use \textormath in these definitions 49
\frqq: corrected spelling of \quillemot... 49

now use \textormath in these definitions 49

\initiate@active@char: Deal correctly with already active characters, provide
top level expansion and define all lower level expansion macros outside of the

\else branch. 34
restore the \lccode of the tie 36
Restore the category code of a shorthand char at end of package 35
store the \1lccode of the tie before changing it 35
use \peek@token to check whether it is safe to proceed 36, 37

\lower@umlaut: Added a \allowhyphens 50
removed \allowhyphensttt 50
\newlabel: Now use \bbl@redefine 56
\nocite: Now use \bbl@redefine, 57
\pageref: Now use \bbl@redefinerobust 57
redefine *ref if it exists instead of \ref 57
redefine \setref instead of \ref and \pageref in BTEX2c. 57
Reverse the previous change as it inhibits the use of active characters in labels 57
\peek@token: macro added 34
\process@language: Use \empty instead of \Q@empty as the latter is unknown in
Plain .. 30
\ProvidesLanguage: Need to temporarily change the definition of \ProvidesFile
for December 1995 release 14
Store version in \fileversion, 14
\readconfigfile: Moved the fiddling with \dump to bbplain.dtx as it is no
longer needed for INTEX L 32
\selectlanguage: Added a missing percent character 21
Moved check for escape character one level down in the expansion 21
otherlanguage*: environment added 24
babel 3.5g
General: Added definition of \Babelt 64
Added greek 64
Added option afrikaans 15
Removed the use of \patterns@loaded altogether 29
replaced \undefined with \@undefined to be consistent with BTEX 1
\ifthenelse: Redefinition of \ifthenelse added to circumvent problems with
\pageref in the argument of \isodd 60

420

\initiate®@active@char: Top level expansion of \normal@char char where char
is already active, should be the expansion of the active character, not the

active character itself as this causes an endless loop 34
\nfss@catcodes: Need to add the double quote and acute characters to \nfss@catcodes
to prevent problems when reading in .fd files 62
\process@line: Simplified code, removing \bbl@eq@ 29
\ProvidesLanguage: Save a few csnames; use \bbl@tempa instead of \ProvidesFile
and store message in \toks8 14
babel 3.6a
\@@vpageref: Redefinition of \@@vpageref added to circumvent problems with
active : in the argument of \vref when varioref isused 60
General: Added welsh 64
Removed \babel@core@loaded, no longer needed with the advent of \LdfInit 19
\1df@finish: Macroadded 27
\ldf@quit: Macro added 27
\LdfInit: Macro added 26
\main@language: \main@language now also sets \languagename and \1@languagename
for use by other packages in the preamble of a document 27
\selectlanguage: Check for the existence of \date... instead of \1@... ... 23
babel 3.6b
\addto: Also check if control sequence expands to \relax 45
babel 3.6¢

General: When \LdfInit is undefined we need to load babel.def from babel.sty 15
\bbl@main@language: When hyphen.cfg is not loaded in the format \1@english

might not be defined; assume english is language 0 28
babel 3.6d
\foreign@language: Added \relax to prevent disappearance of the first token
after this command. 25
New macro 25
set the language shorthands to ‘none’ before switching on the extras 25
\foreignlanguage: Introduced \foreign@language 25
\selectlanguage: set the language shorthands to ‘none’ before switching on the
EXTTAS . . o 23
otherlanguage*: Introduced \foreign@language 24
babel 3.6e
General: Added option frenchb an alias for francais 16
Added options UKenglish and USenglish 17
babel 3.6f
General: Added option KeepShorthandsActive 17
\bbl@redefine@long: Macro added 55
\ifthenelse: \ifthenelse needstobelong 60
\initiate@active@char: Made restoring of the category code of shorthand char-
acters optional 35
babel 3.6h
\readconfigfile: Added a couple of \expandafters to copy the contents of
\toks8 into \everyjob instead of the reference 32
babel 3.61
\@newl@bel: Now redefine \@newl@bel instead of \@lbibitem and \newlabel . 56
\@testdef: \@safe@activesfalse is now part of the label definition 56
Make sure that shorthands don’t get expanded at the wrong moment. 56
General: Added basque 64
Added default option 17
Added the Basque option 15
Added the ukrainian option 17
Added the possibility to have a bblopts.cfg file with option declarations. . 17
\bbl@afterfi: Made \bbl@afterelse and \bbl@afterfi \long 33
\bbl@test@token: renamed \bbl@token to \bbl@test@token to prevent a clash
with ArabTEX 34
\declare@shorthand: Make it possible to distinguish the constructed control se-
quences for the case with argument 39
\ifthenelse: Now reset the @safe@actives switch inside the 2nd and 3rd argu-
ments of \ifthenelset 60

421

\initiate@active@char: Make shorthands active during .aux file processing . 35

Remove the use of \peek@token again 37
Remove the use of \peek@token again and make the \...active@arg... com-
mands \1ong 36
\latinencoding: Macro added, moved from .1df files 19
\latintext: Macro added, moved from .1df files 19
\markright: Added redefinition of \mark... commands 58
\peek@token: Renamed \test@token to \bblO@test@token to prevent a clash with
ArabTREX . . 34
\system@group: Have a user group called ‘user’ by default 39
\textlatin: Macro added, moved from .1df files 19
babel 3.6k
\latinencoding: Use T1 encoding when it is a known encoding 19
babel 3.61

General: Don’t load babel.def now, but rather define \LdfInit temporarily in
order to load babel.def at the right time, preventing problems with the

temporary definition of \bbl@redefine 15
babel 3.6m
\latinencoding: Can’t use \@ifpackageloaded need to parse \@filelist ... 19
babel 3.6n
\latinencoding: Added a check for ‘manual’ selection of T1 encoding, without
loading fontenc 19
moved checking for fontenc right to the top of babel.sty 19
babel 3.60
General: Moved the rest of the font encoding related definitions to their original
Place .. 19
babel 3.6p
General: Added the ngerman and naustrian options 16
babel 3.6q
\latinencoding: Better solution then parsing \@filelist, use \@ifl@aded .. 19
babel 3.6r

General: We do need to load babel.def right now as \ProvidesLanguage needs
to be defined before the .1df files are read and the reason for for 3.61 has

been removed 15
babel 3.6s
\bibcite: Need to determine ‘online’ which definition of \bibcite is needed . 58
babel 3.6u
\latinencoding: Moved this code to babel.def 19
babel 3.6v
\bbl@bibcite: Macro \bbl@bibcite added 58
\bbl@cite@choice: Macro \bbl@cite@choice added 58
\bibcite: Also check for cite it can’t handle \@safe®@activesfalse in its second
ATGUINENT . . . e e 58
babel 3.7a
\@newl@bel: Call \@safe@activestrue directly 56
\@testdef: Removed \@safe@activesfalse from the label definition 56
General: Added icelandic 64
Added the hebrew option 16
Added the icelandic option 16
Added the polutonikogreek option, 16
No longer define the control sequence \KeepShorthandsActive 17
Now need packages tlenc and supertabular to be loaded; the documentation
for icelandic needs its .1df file to be present 63
\allowhyphens: Make \allowhyphens a no-op for T1 fontencoding 46
\bbl@switch@sh: Added command 40
\foreignlanguage: Added executing \originalTeX 25
\grq: Make the definition of \grq dependent on the font encoding 48
\grqq: Make the definition of \grqq dependent on the font encoding 48
\iflanguage: Now evaluate the \ifnum test after the \fi from the \ifx test and
use \@firstoftwo and \@secondoftwo 21
\initiate@active@char: Commented out peek@token and \test@token as short-
hands are made expandable again L L. 33

422

Use \@ifpackagewith to determine whether shorthand characters need to re-

main actiVve 35
\LaTeX: Make TEX and ETEX logos encoding-independent 59
\process@language: Read pattern filesina group 30
\ProvidesLanguage: Added macro to prevent problems with unexpected \ProvidesFile

in plain formats because of babel. o o 14

Removed superfluous braces 15
\shorthandoff: Added command 40
\shorthandon: Added command 40

babel 3.7b
General: Added Latin 64

Added the latin option 16
\iflanguage: Slight enhancement: added braces around first argument of

\bbl@afterfi 21

babel 3.7c
General: Added an error message for when no language option was specified .. 17

Added hebrew and serbian L 64

Added support for language attributes L. 42

Added ukrainian 64

define \adddialect before loading plain.def here 18

No longer us a redefinition of an internal macro, just check \bbl@main@language

and load babel.def 17

Removed redefinition of \@roman and \@Roman 59

set the correct language attribute for polutoniko greek 16
\initiate®@active@char: Only execute \initiate®@active@char once for each

character 34
\markright: Avoid expanding the arguments by storing them in token registers 58
Removed the use of \head@lang (PR 2990) 58
\process@language: Added the execution of the contents of \toks@ 30
Also store \languagename for possible later use in \process@synonym 29
need to set hyphenmin values globally 30
Only set hyphenmin values when the pattern file changed them 30

Set \lefthyphenmin to \m@ne inside the group; explicitly set the hyphenmin

parameters for language 0 30

\process@line: added an extra argument in order to prevent a trailing space
from becoming part of the control sequence when defining a synonym (PR

D851) o 29
\process@synonym: Now also store hyphenmin parameters for language syn-
OIYIIIS « v v v vt e e e e e e e e e 29

Use a token register to temporarily store a command to set hyphenmin param-
eters for the synonym which is defined before the first pattern file is processed 29
babel 3.7d
General: Fixed a few typos in \changes entries which made typesetting the code
impossible ... 1
\initiate@active@char: Make sure the active character doesn’t get expanded
more then once by the \edef by adding \expandafter\strip@prefix\meaning

babel 3.7e
General: Added missing hebrew files 64
\bbl@clear@ttribs: When \bbl@attributes is undefined this should be a no-op 44
\initiate@active@char: pass the argument on with braces in order to prevent

it from breaking up 36, 37
previous change was rubbish; use \let instead of \edef 34
hyphenrules: Added environment hyphenrules 25
babel 3.7f

General: Added bulgarian L 64
Added samin 64
Added the bulgarian option 16
Added the saminoption 16
\bbl@get@enc: Added macro 31
\bbl@ifattributeset: macroadded 43

423

\bbl@prim@s: Need to redefine \prim@s as well as plain TEX’s definition uses

NREXL . . ot 41
\bbl@set@language: Macro \bbl@set@language introduced 23
\ifthenelse: \pageref needs to have its babel definition reinstated in the second

and third arguments e 60
\initiate@active@char: Added an extra shorthand combination on user level to

catch an interfering \protect 37

Insert a check for math mode in the definition of \normal@char’ 35
Introduced an extra level of expansion in the definition of an active caret .. 35
Make an exception for the active caret which needs an extra level of expansion 36
remove the braces again e 36, 37
The redefinition needs to take place one level higher, \prim@s needs to be

redefined. 35
\process@language: Allow for the encoding to be used as part of the language

0B 00 30
\providehyphenmins: added macro 26
\save@sf@q: PR3119, don’t start a paragraph in a local group 46
\selectlanguage: Use \aftergroup to keep the language grouping correct in

auxiliary files PR3091 22

babel 3.7g
\@citex: The shorthands need to be deactivated for the second argument of

\@citex only. 57

General: Added option acadian 15
Added option canadian 16
Added option canadien 16

\initiate®@active@char: use \textormath to get rid of the \fi (PR 3266) ... 35

babel 3.7h

General: Added a number of missing comment characters which caused spurious

white space L 1

babel 3.7j

General: only load frenchb.1df 16

\bbl@pop@language: Introduce the language stack mechanism 22
Now use the language stack mechanism 23

\FOREIGNLANGUAGE: Define \FOREIGNLANGUAGE unconditionally 62

\substitutefontfamily: create file with lowercase name 18

\textlatin: added \leavevmode to prevent a paragraph starting inside the group 19

otherlanguage: rely on \selectlanguage to keep track of the nesting 24

\useshorthands: The change from 11/112001 was incomplete 39
When TgX has seen a character its category code is fixed; need to use a ‘stand-

in’ for the call of \bbl@activate 39

babel 3.7k

\textlatin: Use \DeclareTextFontComand 19

babel 3.7m

\@mkboth: added \bbl@restore®@actives to the mark 59

\@noopterr: Macro added 28

General: Added the interlingua option 16

\bbl@pop@language: Removed the superfluous empty definition of \bbl@pop@language

.. 23
\bbl@restore@actives: New macro added 38
\markright: added \bbl@restore@actives to the mark 58
\selectlanguage: Check for the existence of both \1@... and \date... 23

babel 3.70

\active@prefix: Added handling of the situation where \protect is set to

\Qunexpandable@protect 38
\1ldf@finish: Also restore the category code of the equals sign 27
\1df@quit: Also restore the category code of the equals sign 27
\LdfInit: make sure the equals sign has its default category code 26
\vrefpagenum: Added redefinition of \vrefpagenum which deals with ranges of

PAZES o o i e 60

babel 3.8a

General: Added interlingua L 64

Also load package url 63

424

babel 3.8b

\bbl@sh@select: Added command 37
\declare@shorthand: We need to support shorthands with and without argument
in different groups; added the name of the group to the storage macro 39
\frq: Made \flq and \frq fontencoding dependent 49
\frqq: Made \flqq and \frqq fontencoding dependent 49
\grq: Made \glq fontencoding dependent as well 48
\grqq: Made \grqq fontencoding dependent as well 48
\hhline: added \string to prevent unwanted expansion of the colon 61
\initiate@active@char: Now use \bbl@sh@select 36, 37
babel 3.8c
\@mkboth: No need to add anything to an empty mark, prevented this by checking
the contents of the arguments 59
General: Added option australian 15
Added the newzealand option 16
\markright: No need to add anything to an empty mark; prevented this by
checking the contents of the argument 58
babel 3.8e
General: Many enhancements to the text by Andrew Young 1
babel 3.8f
\@mkboth: Make the definition independent of the original definition; expand
\languagename before passing it into the token registers 59
\markright: Make the definition independent of the original definition; expand
\languagename before passing it into the token registers 58
babel 3.8g
\Ref: We also need to adapt \Ref which needs to be able to uppercase the first
letter of the expansion of \ref 60
babel 3.8h
General: added malay, meyaluy and bahasam for the Bahasa Malaysia support . 15
Added albanian and bahasam 64
Added option albanian 15
added synonyms indonesian, indon and bahasai for the original bahasa (indone-
S1A) SUPPOTt « v ottt e 15
babel 3.8j
\@mkboth: Added setting of \@mkboth (PR 3826) 59
\bbl@switch@sh@on: Added a group in order to protect the current lowercase
code of the tilde (PR 3851) 41
\pdfstringdefDisableCommands: Inform hyperref to use shorthands at system
level (PRA006)ot e 61

hyphenrules: Also set the hyphenmin paramters to the correct value (PR3997) 25
babel 3.81

\bbl@main@language: Use \bbl@patterns 27
\bbl@patterns: Macro added 25
\foreign@language: use \bbl@patterns, 25
\selectlanguage: Use \bbl@patterns 23
hyphenrules: Use \bbl@patterns 25
babel 3.8m
\readconfigfile: Also restore the name of the language in \languagenme (PR
4039) 32
Store the name of the language loaded in register 0 (PR 4039) 32
bahasa-0.9¢c
General: Now use \@patterns to produce the warning 399, 401
Removed the use of \filedate and moved identification after the loading of
babel.def 399, 401
bahasa-1.0b
\captionsbahasa: Added \proofname for AMS-ETEX 400
\captionsbahasam: Added \proofname for AMS-BETEX 401
bahasa-1.0d
General: Replaced \undefined with \@Qundefined and \empty with \@empty for
consistency with ETEX 399, 401
\captionsbahasa: Replaced ‘Proof’ by ‘Bukti’ (PR2214) 400
\captionsbahasam: Replaced ‘Proof’ by ‘Bukti’ (PR2214) 401

425

bahasa-1.0e

General: Moved the definition of \atcatcode right to the beginning. ... 399, 401
Now use \1df@finish tO Wrap up 400, 402
Now use \LdfInit to perform initial checks 399, 401
\bahasahyphenmins: use \bahasahyphenmins to store the correct values 400
\bahasamhyphenmins: use \bahasamhyphenmins to store the correct values .. 402
bahasa-1.0f
\datebahasa: Use \edef to define \today 400
\datebahasam: Use \edef to define \today 402
bahasa-1.0g
\datebahasa: Februari should be spelled as Pebruari 400
\datebahasam: Februari should be spelled as Pebruari 402
bahasa-1.0h

\bahasahyphenmins: Now use \providehyphenmins to provide a default value 400
\bahasamhyphenmins: Now use \providehyphenmins to provide a default value 402

\captionsbahasa: Added \glossaryname 400
\captionsbahasam: Added \glossaryname 401
bahasa-1.0i
\captionsbahasa: Inserted translation for Glossary 400
\captionsbahasam: Inserted translation for Glossary 401
bahasa-v1.0k
General: Make it possible that this file is loaded by variuos options 399
bahasam-0.9f
General: A number of changes to make this specific to Bahasa Mayasia 401
bahasam-1.0k
\captionsbahasam: Inserted changes from Awangku Merali 401
\datebahasam: Februari restored to BM spelling; see Collins Kamus Dwibahasa
2000 L 402
bahasam-v1.0j
General: Make it possible that this file is loaded by variuos options 401
bahasa 1.0f
\datebahasa: use \def instead of \edef to save memory 400
\datebahasam: use \def instead of \edef to save memory 402
basque-1.0b
General: Removed empty groups after guillemot characters 210
\datebasque: use \def instead of \edef 209
Use \edef to define \today to save memory 209
basque-1.0c
\datebasque: fixed typo in April’sname 209
basque-1.0d
\noextrasbasque: Deactivate shorthands ouside of Basque 209
basque-1.0e
\basquehyphenmins: Now use \providehyphenmins to provide a default value 209
\captionsbasque: Added \glossaryname 208
basque-1.0f
General: Changed url’s for the patterns file 208
\captionsbasque: Added translation for Glossary 208
bbplain-0.1
General: Added redefinition of \dump to add a message to \everyjob 404
bbplain-1.0c
General: Add execution of \@begindocumenthook to \@preamblecmds 404
Added definition of \loadlocalcfgt 404
Moved the \dump code here from babel.dtx 404

bbplain-1.0d
General: Also reset category codes after loading the configuration file as \AtEndOfPackage

is undefined in this case 404
bbplain-1.0e
General: Added the \newcommand code 407
Provide a more complete emulation of \DeclareRobustCommand and \newcommand
... 406

bbplain-1.0f
General: added \@empty 404

426

Added \textquotedblright and \textquoteright 410

Added definition of \scriptsize 410

Consistently use \@undefined instead of \undefined 404

Use \toks8 instead of \patterns@loaded 405
bbplain-1.0g

General: Added \ssand \i 410

bbplain-1.0h
General: Only load the necessary parts into the format, let this file be read agian
by babel.def 404
bbplain-1.0i
General: \document is not a I¥TEX2.09-only command; AMSTEXdefines it too;

now use \@ztryfc to detect HTEX2.09 404

bbplain-1.0j
General: \@begindocumenthook might already be defined 406
Add the definition of \@begindocumenthook to the HMTEX2.09 format 404

bbplain-1.0k
General: \newcount is an \outer command, can’t use it inside an \if construct 407

missing \@undefined added 406
bbplain-1.01
General: Mixed up the definition of \@tempcntb 407
bbplain-1.0m
General: Set \if@filesw to \iffalse only for plain TEX 406
bbplain-1.0n
General: Added \@secondoftwo 405
Added the source for the format wrapper files 403
Repaired typo and added missing \endcsname 406
bbplain-1.00
General: Added definition of \in@ 407
bbplain-1.0p
General: Added \@ifl@aded as A NO-0P - - « v v v vt v et e 407
bbplain-1.0q
General: Added \@ifundefined 405
bbplain-1.0r
General: Added \textquotedblleft and \textquoteleft 410
breton-1.0
General: First release e 89
breton-1.0b
\captionsbreton: Added \proofname for AMS-INTEX 89
\noextrasbreton: Use the new mechanism for dealing with active chars 90
breton-1.0c
General: Postpone the \DeclareTextCompositeCommands untill \AtBeginDocument
.. 91
breton-1.0e
General: Now use \1df@finish towrap upt 91
Now use \LdfInit to perform initial checks 89

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with ETEX, moved the definition of \atcatcode right to the beginning. 89
breton-1.0f

\datebreton: use \def instead of \edef 89
Use \edef to define \today to save memory 89
breton-1.0g
\noextrasbreton: Deactivate shorthands ouside of Breton 90
breton-1.0h
\captionsbreton: Added \glossaryname 89

bulgarian-0.99
General: This is a prerelease version of this file. Features needing further testing
are removed. 308
bulgarian-1.0b
\extrasbulgarian: Now use \providehyphenmins to provide a default value 315
bulgarian-1.0c
General: Added missing closing brace 310
\dq: repaired typo 314

427

bulgarian-1.0d

General: Change definition of \th only for this language 317
bulgarian-1.0e

\cdash: Two occurences of \emp were changed into tab followed by emp 315
catalan-1.1

\captionscatalan: \headpagename should be \pagename 183
catalan-2.0

General: Removed code to load latexhax.com 182

\captionscatalan: Added some names 183

\extrascatalan: Macro completely rewritten 183

\noextrascatalan: Macro completely rewritten 183
catalan-2.0b

General: Incorporated the changes from spanish.sty 182
catalan-2.1

General: Update for BTEX 2o 182
catalan-2.1d

General: Now use \@nopatterns to produce the warning 183

Removed the use of \filedate and moved identification after the loading of
babel.def e 182

\captionscatalan: Added a few missing translations 183

\textacute: Renamed from \acute as that is a \mathaccent 184
catalan-2.2a

General: All the code to deal with active characters is now in babel.def ... 185

\extrascatalan: Handling of active characters completely rewritten 183

\noextrascatalan: All the code for handling active characters is now moved to

babel.def 184

catalan-2.2b
General: Changed mathmode definition of acute shorthands to expand to a single

prime followed by the next character in the input 186
Made the activation of the grave and acute accents optional 182
\captionscatalan: Added \proofname for AMS-ETEX 183
\datecatalan: Month names in lowercase 183
\Lgem: Added support for typing the catalan “ela geminada” with the macros
\lgem and \Lgemt 187
\noextrascatalan: Make activating the accent characters optional 184
\up: Added definition of macro \up, which can be used to type ordinals 188
catalan-2.2c
General: Added ” as an axtra shorthand, removed 'n as a shorthand 186
Added shorthands for guillemets 186
cedile now produced by double quote shorthand 186
Removed the use of the tilde for catalan 182
catalan-2.2d
\captionscatalan: added translation of Proof 183
Translations revised 183
catalan-2.2e
General: Added ““ as an axtra shorthand 186
Added vertical bar as argument to active acute 186
\L.L: Added redefinition of \I1 and \L 187
\noextrascatalan: Need to split up the \@ifpackagewith statements 184
Now give the apostrophe a lowercase code 183
\up: Now use \textsuperscript and make \up robust 188

catalan-2.2f
General: Replaced \undefined with \@undefined and \empty with \@empty for

consistency with BTEX 182
\Lgem: Added a check for math mode as the use of \1gem and \Lgem in math
mode is not sensible. 187
catalan-2.2g
General: Moved the definition of \atcatcode right to the beginning. 182
Now use \1df@finish tO WIrap Upot v ittt 188
Now use \LdfInit to perform initial checks 182

428

catalan-2.2h
\noextrascatalan: Added some comment signs to prevent unwanted spaces in

the output 184
catalan-2.2i
General: Removed empty groups after guillemot characters 186
\datecatalan: use \def instead of \edef 183
Use \edef to define \today to save memory 183
catalan-2.2k
General: A wrong \changes entry made typesetting impossible 182
catalan-2.21
\noextrascatalan: Don’t forget do deactivate the shorthands 184

Make sure that the grave accent has catcode 12 before it is made \active . 184
catalan-2.2m
\captionscatalan: Added \glossaryname 183
catalan-2.2n
\catalanhyphenmins: Set the hyphenation parameters both to two as required
by cahyph.tex 183
catalan-2.20
\L.L: Postpone the redefinition of \1 and \L until begin document to prevent

overwriting by fontenc 187
catalan-2.2p
\captionscatalan: Inserted translation for Glossary 183

changes-1.0f
General: The hyphen char needs to appear at the beginning of the line as well. 210
croatian-1.0a

General: Renamed babel.sty in babel.com 259
croatian-1.0b
General: Removed use of \@ifundefined 259
croatian-1.0c
General: Removed some typos 259
croatian-1.1
General: Added a warning when no hyphenation patterns were loaded. 259
Brought up-to-date with babel 3.2a 259
\captionscroatian: Added \seename, \alsoname and \prefacename 259
croatian-1.2
\captionscroatian: \headpagename should be \pagename 259
croatian-1.3
General: Update for BTEX 2o 259
croatian-1.3d
\captionscroatian: Added a few translations 259
croatian-1.3e
\captionscroatian: Added \proofname for AMS-INTEX 259
croatian-1.3f
\captionscroatian: Added translation of Proof 259
\datecroatian: in croatian language, the genitive for the name of the month has
tobeused 259
croatian-1.3g
General: Now use \1df@finish tO Wrap Up . . .« .. oo vt v i in e enn .. 260
Now use \LdfInit to perform initial checks 259

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 259
croatian-1.3h
\datecroatian: sijev{c}nja should be seij\v{cInja and there should be a

period after the year L L 259
croatian-1.3i
\captionscroatian: Replaced some of the translations with ‘better’ words .. 259
\datecroatian: use \def instead of \edef 259
Use \edef to define \today to save memory 259
croatian-1.3j
\datecroatian: changed \odinto \or 259
croatian-1.3k
\captionscroatian: Added \glossaryname 259

429

croatian-1.31

\captionscroatian: Inserted translation for Glossary 259
czech-1.0a
General: Renamed babel.sty in babel.com 261
czech-1.0b
General: Removed use of \@ifundefined 262
czech-1.1
General: Added a warning when no hyphenation patterns were loaded. 262
Brought up-to-date with babel 3.2a 261
\captionsczech: Added \seename, \alsoname and \prefacename 263
czech-1.1a
\noextrasczech: Removed typo, \q was restored twice, once too many. 263
czech-1.2
General: Included some features from Kasal’s czech.sty 261
czech-1.3
General: Update for BTEX 2 oo 261
czech-1.3d
General: Now use \@nopatterns to produce the warning 262
Removed the use of \filedate and moved identification after the loading of
babel.def 261
czech-1.3e
\noextrasczech: now use \bbl@frenchspacing and \bbl@nonfrenchspacing 263
Use BTEX’s \v and \r accent commands 263
czech-1.3f
\captionsczech: Added \proofname for AMS-ETEX 263
czech-1.3g
\captionsczech: Fixed two errors and provided translation for ‘proof’ 263
czech-1.3h
General: Now use \1df@finish towrap upcovono. .. 272
Now use \LdfInit to perform initial checks 262

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 261
czech-1.3i

\dateczech: Use \def instead of \edef 263
Use \edef to define \today to save memory 263
czech-1.3j
\captionsczech: Added \glossaryname 263
czech-1.3k
\captionsczech: Added translation for Glossary 263
czech-3.0
General: Added default for setting hyphenmin parameters. Values taken from
CSETEX . .« ot 264

Implemented the functionality of CSETEX’s czech.sty. The version number was
bumped to 3.0 to minimize confusion by being higher than the last version of
CSETEX. .« ot 261

\captionsczech: Updated some translations. Former translations were: ‘Do-
datek’ for \appendixname and ‘Index’ for \indexname. Also removed spurious

colon at the end of \ccname. 263
czech-3.1
\cs@emdash: ensure correct catcode for the saved hyphen 266
\cs@splitattr: attribute added L. 269
\noextrasczech: move \languageshorthands here, so that the language group
is always initialized correctly 263
\splithyphens: activate with split hyphens and deactivate with standard hy-
phens, not vice versa 269
danish-1.0a
General: Renamed babel.sty in babel.com 213
danish-1.0b
General: Removed use of \@ifundefined 213
danish-1.1
General: Added a warning when no hyphenation patterns were loaded. 213
Brought up-to-date with babel 3.2a 213

\captionsdanish: Added \seename, \alsoname and \prefacename 213
danish-1.2

\captionsdanish: \headpagename should be \pagename 213
danish-1.2b
\captionsdanish: Added a few translations 213
danish-1.3
General: Update for BTEX 2 oo 213
danish-1.3a
\datedanish: Added ‘.’ to definition of \today 214
danish-1.3c
\captionsdanish: Included some revisions from Peter Busk Larsen 213
danish-1.3f
General: Now use \@nopatterns to produce the warning 213
Removed the use of \filedate and moved identification after the loading of
babel.def 213
danish-1.3g
General: Added the active double quote character as suggested by Peter Busk
Laursen 213
danish-1.3h
\captionsdanish: Added \proofname for AMS-IMTEX 213
\extrasdanish: Added \bbl@frenchspacing 214
\noextrasdanish: Added \bbl@nonfrenchspacing 214
danish-1.3i
\captionsdanish: Added translation of ‘Proof” 213
danish-1.3j
General: Now use \1df@finish tO WIap UP . « - ¢ v v v vt v v i e e ee e 215
Now use \LdfInit to perform initial checks 213

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 213

\extrasdanish: Added definition of "~ and "= 214
Changed definition of "’ to print ““instead of *> 214
danish-1.3k
\datedanish: use \def instead of \edef 214
Use \edef to define \today to save memory 214
\extrasdanish: Removed empty groups after double quote and guillemot char-
ACLETS . . o 214
danish-1.3m
\extrasdanish: Deactivate shorthands ouside of Danish 214
danish-1.3n
\captionsdanish: Added \glossaryname 213
danish-1.30
\captionsdanish: Added translation of ‘Glossary’ 213
danish-1.3p
\englishhyphenmins: Added default for setting of hyphenmin parameters .. 213
danish-1.3q
\-: Added redefinition of \- from dutch.1df 214
\englishhyphenmins: Set lefthyphenmin totwo 213
\extrasdanish: Added definition of "/ from dutch.ldf 214
danish-1.3r
\extrasdanish: Made "/ a real Danish shorthand 214
dutch-2.0a
General: Added checking of format 73
dutch-2.0b
General: Added extrasdutch 73
dutch-2.0c
General: Added grqq macros 73
dutch-2.1
General: reflect change to version 2.1 in babel and changes in german v2.3 ... 73
dutch-2.1a
General: Incorporated Nico’s comments 73
dutch-2.1b
General: Incorporated more comments by Nico 73

431

dutch-2.1c

General: Fixed some typosot 73
dutch-2.2

General: Fixed problem with the use of " in moving arguments while " is active 73
dutch-2.3

\@trema: \dieresis instead of \accent127 76
General: \dieresis instead of \accent127 76
When using PostScript fonts with the Adobe font-encoding, the dieresis-accent
is located elsewhere, modified code 73
\noextrasafrikaans: Added \dieresis 75
dutch-2.3a
General: Modified the documentation somewhat 73
dutch-3.0
General: Modified for babel 3.0 73
Now use \adddialect if language undefined 73
dutch-3.0a
General: Removed some problems in change log 73
dutch-3.0b
\extrasafrikaans: added some comment chars to prevent white space 75
\noextrasafrikaans: added some comment chars to prevent white space 75
dutch-3.1
General: Removed bug found by van der Meer 73
dutch-3.1a
\captionsdutch: \pagename should be \headpagename 4
Removed \global definitions 74
\datedutch: Removed \global definitions 74
\extrasafrikaans: Removed \global definitions 75
\noextrasafrikaans: Removed \global definitions 75
dutch-3.2
General: added case for "yand "Y L o L o 76
\extrasafrikaans: Save all redefined macros 75
\noextrasafrikaans: Try to restore everything to its former state 75
dutch-3.2a
General: Added reset of catcode of @ before \endinput. 73
Renamed babel.sty in babel.com 73
dutch-3.2b
General: removed typo (allowhpyhens) 76
dutch-3.2¢
General: Removed code to load latexhax.com 73
removed use of \@ifundefined, 73
dutch-3.3
General: Rewritten parts of the code to use the new features of babel version 3.1 73
\extrasafrikaans: Macro complete rewritten 75
\noextrasafrikaans: Macro complete rewritten 75
dutch-3.3a
\@trema: renamed \Qumlaut to \@trema 76
General: Added \save@sf@q macro from germanb and rewrote all quote macros
touse 1t 75
Moved code to the beginning of the file and added \selectlanguage call .. 73
\captionsdutch: added \seename and \alsoname 74
dutch-3.3b
General: Added warning, if no dutch patterns loaded 73
\captionsdutch: added \prefacename 74
\extrasafrikaans: modified handling of \dospecials and \@sanitize 75
\noextrasafrikaans: modified handling of \dospecials and \@sanitize 75
dutch-3.4b
General: moved definition of \allowhyphens, \set@low@box and \save@sf@q to
babel.com 75
dutch-3.5
\captionsdutch: \headpagename should be \pagename 74
dutch-3.6
General: Update or LaTeX2e 73

432

dutch-3.6¢

General: Now use \@nopatterns to produce the warning 73
Removed the use of \filedate, moved identification after the loading of ba-
bel.def . . 73
dutch-3.7a
General: Moved identification code to the top of the file 73
Moved the definition of \ij and \IJ to glyphs.def 76
moved the definition of the double quote character at the baseline to
glyhps.def 75
Now use \Declaredqdutch to define the functions of the active double quote 76
Removed \dlqq, \@dlqq, \drqq, \@drqq and \dieresis 75
Rewrote the code with respect to the active double quote character 73
The support macros for the active double quote have been moved to babel.def 76
Use \ddot instead of \@MATHUMLAUT tuiruununen... 76
Use more general mechanism of \declare@shorthand 76
\afrikaanshyphenmins: use \dutchhyphenmins to store the correct values ... 75
\IJ: Changed the kerning in the faked ij to match the dc-version of it 47
dutch-3.7b
General: Added "" shorthand 76
dutch-3.7c
\captionsdutch: We need the " to be active while defining \captionsdutch .. 74
dutch-3.7d
\captionsdutch: Added \proofname for AMS-ETEX 74
dutch-3.7f
General: Replaced \undefined with \@undefined and \empty with \@empty for
consistency with ITEX 73
dutch-3.8a
General: Merged in the definitions for ‘afrikaans’ 73
Now use \1df@finish tO Wrap Upttt 76
this needs a more complicated check as ‘afrikaans’ may or may not have its
own hyphenation patterns 73
\noextrasafrikaans: Made all definitions dependant on \CurrentOption 75
dutch-3.8b
\captionsdutch: Use Bew"ys instead of Bewijs 74
dutch-3.8¢
General: Added the "~ shorthand 76
dutch-3.8e
General: Added a shorthand with the slash character 76
Forgot to replace ‘german’ by ‘dutch’ when copying definition for "~ 76
Removed empty groups after double quote characters 76
\dateafrikaans: use \def instead of \edef 75
Use \edef to define \today to save memory 75
\datedutch: use \def instead of \edef 74
Use \edef to define \today to save memory 74
dutch-3.8h
\afrikaanshyphenmins: Now use \providehyphenmins to provide a default value 75
\captionsdutch: Added \glossaryname 74
dutch-3.8i
\-: \- should use \bbl@allowhyphenscu.v.o... 76
General: "/ should use \bbl@allowhyphens 76

english-2.0a

General: Added checking of format 77
english-2.1

General: Reflect changes in babel 2.1 7
english-2.1a

General: Incorporated Nico’s comments 77
english-2.1b

General: merged USenglish.sty into thisfile 7

english-2.1c
General: fixed typo in definition for american language found by Werenfried Spit
(nspit@fys.ruunl) 7

433

english-2.1d

General: Fixed some typosot 77
english-3.0
General: Modified for babel 3.0 T
Now use \adddialect for american 78
Now use \adddialect if language undefined 7
english-3.0a
General: Removed bug found by van der Meer 7
english-3.0b
General: Removed \global definitions 78
\captionsenglish: \pagename should be \headpagename 78
Removed \global definitions 78
\dateamerican: Removed \global definitions 80
\dateenglish: Removed \global definitions 79
english-3.0c
General: Renamed babel.sty in babel.com 7
english-3.0d
General: removed use of \@ifundefined 7
english-3.1

General: Rewrote parts of the code to use the new features of babel version 3.1 77
english-3.1a

\captionsenglish: added \seename and \alsoname 78
english-3.1b
\captionsenglish: added \prefacename 78
english-3.2
\captionsenglish: \headpagename should be \pagename 78
english-3.3
General: Update or BTEX 2 oo o i e 7
english-3.3c
General: Now use \@nopatterns to produce the warning 7
Removed the use of \filedate and moved the identification after the loading
of babel.def 7

english-3.3d
General: Only define american as a dialect when no separate patterns have been

loaded 78
english-3.3e
\captionsenglish: Added \proofname for AMS-ITEX 78
english-3.3g
General: Allow british as the name of the UK patterns 7
Allow USenglish as the name of the american patterns 78
Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX 7
\captionsenglish: Construct control sequence on the fly 78
\dateenglish: Construct control sequence on the fly 79
\noextrasenglish: Construct control sequences on the fly 80
english-3.3h
General: Moved the definition of \atcatcode right to the beginning. 7
Now use \1df@finish tO WIap UpP« oot vttt ittt et 80
Now use \LdfInit to perform initial checks 77
english-3.3i
\dateamerican: use \def instead of \edef 80
Use \edef to define \today to save memory 80
\dateenglish: use \def instead of \edef 79
Use \edef to define \today to save memory 79

english-3.3j
General: Also allow american english hyphenation patterns to be used for ‘english’ 77

Ensure that \1@USenglish is alway defined 78
\captionsenglish: Added \glossaryname 78
\dateenglish: Make sure that the value of \today is correct for both options

‘american’ and ‘USenglish’ 79
english-3.3k
General: Added support for canadian 77,78

434

english-3.31

General: Added missing backslash 78
english-3.3m

\englishhyphenmins: Added default for setting of hyphenmin parameters ... 78
english-3.3n

General: Added support for australian and newzealand 77,78

\dateaustralian: Add australian date 79

\dateenglish: Added support for ‘Australian’ and ‘Newzealand’ 79
english-3.30

General: Make sure that british patterns are used if they were loaded T

\dateenglish: Explicitly choose the UK form of date 79
esperant0-1.4o0

\noextrasesperanto: Moved the check for math to babel.def 69
esperanto-1.0a

General: Renamed babel.sty in babel.com 68
esperanto-1.0b

General: Removed use of \makeatletter 68
esperanto-1.1

General: Added a warning when no hyphenation patterns were loaded. 68

Brought up-to-date with babel 3.2a 68

\captionsesperanto: Added \seename, \alsoname and \prefacename 68
esperanto-1.2

General: Included code from esperant.sty 68
esperanto-1.3

\captionsesperanto: \headpagename should be \pagename 68

Repaired a number of mistakes, indicated by D. Ederveen 68

\dateesperanto: Removed the capitals from \today 69
esperanto-1.4a

General: Updated for BTEX 2 o 68

\captionsesperanto: added missing closing brace 68

esperanto-1.4d
General: Removed the use of \filedate, moved Identification after loading of

babel.def 68
Use \@nopatterns for the warning 68
esperanto-1.4e
General: Moved identification code to the top of the file 68
esperanto-1.4f
General: Corrected typos (PR1652) 68
esperanto-1.4g
\captionsesperanto: Added \proofname for AMS-INTEX 68
esperanto-1.4h
General: Added a few shorthands 69
esperanto-1.4i
General: Moved the definition of \atcatcode right to the beginning. 68
Now use \1df@finish tO WIap Up oot vttt et et et 70
Now use \LdfInit to perform initial checks 68
Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX 68
\captionsesperanto: Replaced ‘Proof’ by ‘Pruvo’ PR 2207 68
esperanto-1.4;j
General: fixed typo in table caption (funtion instead of function) 68
esperanto-1.4k
\dateesperanto: Removed Rthe use of \edef again 69
Use \edef to define \today to save memory 69
esperanto-1.41
General: Added a shorthand definition on system level 69

esperanto-1.4n
\noextrasesperanto: Added a check for math mode to the definition of the short-

hand character 69
esperanto-1.4p
\captionsesperanto: Added \glossaryname 68

435

esperanto-1.4q

\captionsesperanto: Added translation for Glossary 68
\esper: Removed the extra level of expansion for more than five items, as was
done in IXTEXo 69

esperanto-1.4t

\esper: Added the missing ‘v’ in these macros 69
estonian-1.0b

General: corrected typoS 252
estonian-1.0c

\captionsestonian: Added \proofname for AMS-IXTEX 253

estonian-1.0d
General: The second argument was missing in the definition of some of the double-

quote shorthands L 255
\captionsestonian: Added translation of ‘Proof’ 253
\noextrasestonian: Removed the code that changes category, lower case, uper

case and space factor codes 254

estonian-1.0e
General: Now use \1df@finish tO WIap Up . . .« vt vt v it e it 255
Now use \LdfInit to perform initial checks 252

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 252
estonian-1.0f
General: Removed empty groups after double quote and guillemot characters 255

\dateestonian: use \def instead of \edef 253
Use \edef to define \today to save memory 253
estonian-1.0g
General: use \bbl@t@one instead of \bbl@next 254
estonian-1.0h
\captionsestonian: Added \glossaryname 253

\estonianhyphenmins: Now use \providehyphenmins to provide a default value 254
estonian-1.0j

\captionsestonian: Replaced the translation of ‘Proof” 253
estonian-1.0k
\captionsestonian: Added translation of ‘Glossary’ 253
\et@gentilde: do not redefine caron any more because the default one looks good
enough 254
renamed macros \gentilde and \newtilde to \et@gentilde and \et@newtilde
... 254

use tilde for all letters except s and z (instead of using caron for all letters
except o), like other babel language packages do (this fixes the display of @i

when using the utf8 package) 254
\et@newtilde: merged updates in the definition \lower@umlaut into \et@newtilde:
removed \allowhyphens and added \bgroup 254
finnish-1.0a
General: Renamed babel.sty in babel.com 234
finnish-1.0b
General: Removed use of \@ifundefined 234
finnish-1.1
General: Added a warning when no hyphenation patterns were loaded. 234
Brought up-to-date with babel 3.2a 234
\captionsfinnish: \headpagename should be \pagename 234
Added \seename, \alsoname and \prefacename 234
finnish-1.1.2
\captionsfinnish: Added translations 234
finnish-1.2
General: Update for BTEX 2 o 234
finnish-1.3¢c
General: Now use \@nopatterns to produce the warning 234
Removed the use of \filedate and moved identification after the loading of
babel.def 234
finnish-1.3d
General: Removed a few references to babel.com 234

436

finnish-1.3e

\datefinnish: Added a‘.” after the number of theday 235
finnish-1.3f
\finishhyphenmins: use \finnishhyphenmins to store the correct values ... 236
\noextrasfinnish: Added the setting of \frenchspacing 235
Added the setting of more hyphenation parameters, according to PR1027 . 235
finnish-1.3g
\-: Added change of \- 236
\captionsfinnish: Added \proofname for AMS-ETEX 234
\noextrasfinnish: Added the active double quote 235
finnish-1.3h
\captionsfinnish: Added finnish word for ‘Proof’ 234
finnish-1.3i
General: Now use \1df@finish tO WIap UP . « v« v v v vt vt v it e e e 236
Now use \LdfInit to perform initial checks 234

Replaced \undefined with \Q@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 234
finnish-1.3k

\datefinnish: use \def instead of \edef 235
Use \edef to define \today to save memory 235
\noextrasfinnish: Removed empty groups after double quote and guillemot
characters 235
finnish-1.3m
\noextrasfinnish: Added misisng closing brace 235
finnish-1.3n
\-: \allowhyphens should have been \bbl@allowhyphens 236
\captionsfinnish: Added \glossaryname 234
\finishhyphenmins: Now use \providehyphenmins to provide a default value 236
\noextrasfinnish: Deactive shorthands ouside of Finnish 235
finnish-1.30
\captionsfinnish: Provided translation for Glossary 234
finnish-1.3p
\noextrasfinnish: "= should also use \bbl@allowhyphens 236
finnish-1.3q
General: Small documentation fix 234

galician 4.3

General: \. .. isremoved and instead \dots and \dots are changed, by redefining
\1ldotc, \dotc and \textellipsis or \dots 194

\sin, \arcsin and \sinh are set to produce the same as \sen, \arcsen and
\Senh . . o 196
Added \msc 193
cosec and senh moved from \galicianoperators to the main group 196

Removed the shorthand for ¢. It existed in medieval galician-portuguese, but
that does not seem a reason to be included here. 191
Removed the shorthands "er and "ER, they don’t exist in galician. 200
Removed the Spanish et sign. 191
Set the default to \unspacedoperators 196
Set the default to do 192

german-2.61
General: Making germanb behave like german needs some more work besides

defining \CurrentOptionttt 81
germanb-1.0a
General: Incorporated Nico’s comments 81

germanb-1.0b
General: fixed typo in definition for austrian language found by Werenfried Spit

nspit@fys.ruu.nl 81
germanb-1.0c
General: Fixed some typos 81
germanb-1.1
General: When using PostScript fonts with the Adobe fontencoding, the dieresis-
accent is located elsewhere, modified code 81
\noextrasaustrian: Added \dieresis 83

437

germanb-1.1a

General: Modified the documentation somewhat 81
germanb-2.0
General: Modified for babel 3.0 81
Now use \adddialect for austrian 82
Now use \adddialect if language undefined 82
germanb-2.0a
General: Removed some problems in change log 81
germanb-2.0b
\extrasaustrian: added some comment chars to prevent white space 83
\noextrasaustrian: added some comment chars to prevent white space 83
germanb-2.1
General: Removed bug found by van der Meer 81
germanb-2.2
General: Removed global assignments, brought uptodate with german.tex v2.3d 81
\captionsaustrian: \pagename should be \headpagename 82
Removed \global definitions 82
\extrasaustrian: Save all redefined macros 83
\noextrasaustrian: Try to restore everything to its former state 83
germanb-2.2a
General: Renamed babel.sty in babel.com 81
germanb-2.2d
General: Removed use of \@ifundefined 82
germanb-2.3

General: Rewritten parts of the code to use the new features of babel version 3.1 81
germanb-2.3e

General: Added \save@sf@q macro and rewrote all quote macros to use it ... 83
Added warning, if no german patterns loaded 82
Brought up-to-date with german.tex v2.3e (plus some bug fixes) [br] 81

\captionsaustrian: Added \prefacename, \seename and \alsoname 82

\dategerman: Added \month@german 82

germanb-2.3h
General: moved definition of \allowhyphens, \set@low@box and \save@sf@q to

babel.com 83
germanb-2.4
\captionsaustrian: \headpagename should be \pagename 82
germanb-2.5
General: Update or BTEX2:s oo 81
germanb-2.5¢
General: Now use \@nopatterns to produce the warning 82
Removed the use of \filedate and moved the identification after the loading
of babel.def 81

germanb-2.6a
General: \umlautlow and \umlauthigh moved to glyphs.dtx, as well as \newumlaut

(now \1ower@umlautuuiiiiin 83
Moved all quotation characters to glyphs.dtx 83
Moved the identification to the top of the file 81
Rewrote the code that handles the active double quote character 81
Use \ddot instead of \@MATHUMLAUT tirurnunen .. 83
\noextrasaustrian: All the code to handle the active double quote has been
moved to babel.def 83
Removeed \3 as it is no longer in german.1df 83
use \germanhyphenmins to store the correct values 83
germanb-2.6b
\captionsaustrian: Added \proofname for AMS-BTEX 82
germanb-2.6¢
General: added the \allowhyphens 83
Moved \german@dq@disc to babel.def, calling it \bbl@disc 83
\noextrasaustrian: Use decimal number instead of hat-notation as the hat may
be activated 83
germanb-2.6d
General: Moved the definition of \atcatcode right to the beginning. 81

438

Now use \1df@finish tO WIap UD v vt vttt e et ettt e e e 84

Now use \LdfInit to perform initial checks 82
Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with ITEX 81
\captionsaustrian: Construct control sequence on the fly 82
\noextrasaustrian: Construct control sequence \extrasgerman or \extrasaustrian
onthe fly 83
germanb-2.6f
General: Copied the coding for "f from german.dtx version 2.5d 84
use \SS instead of SS, removed braces after \ss 84
\ck: Now use \shorthandon and \shorthandoff 84
\dateaustrian: use \def instead of \edef 83
Use \edef to define \today to save memory 83
\dategerman: use \def instead of \edef 82
Use \edef to define \today to save memory 82
germanb-2.6i
\noextrasaustrian: Deactivate shorthands ouside of German 83
germanb-2.6j
\captionsaustrian: Added \glossaryname 82

\noextrasaustrian: Now use \providehyphenmins to provide a default value 83
germanb-2.6k

\noextrasaustrian: Turn frenchspacing on, as in german.sty 83
germanb-2.6m
General: Correted a typo 81
greek-1.0b
General: Moved the definition of \atcatcode right to the beginning 98
Now use \1df@finish tO Wrap Upt v v 105
Now use \LdfInit to perform initial checks 99
Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX 98
\textgreek: Added a level of braces to keep encoding change local 100
greek-1.0c
\greek@tilde: Added command 103
greek-1.1
\Grtoday: Added macro \Grtoday 101
greek-1.1a
\dategreek: Fixed typo, Oktwbr’iou instead of Oktobr’iou 101
\greek@Alph: removed two superfluous @’s which made \@alph undefined .. 102
greek-1.1b
\noextrasgreek: Added setting of \uccodes (after kdgreek.sty) 104
Added shorthand for \char255 104
Made tilde expand to a tilde with \catcode 12 104
greek-1.1c
General: Added a couple of symbols, needed for \greeknumeral 104
\noextrasgreek: fixed two typos L. 104
greek-1.1d
\dategreek: Macro \gr@month now produces the name of the month 101
greek-1.1e
General: Added caption name for proof 100
Most symbols are removed and are now defined in package grsymb 104
\gr@month: Macro added 101
\noextrasgreek: Added lowercase code for v. 104
Added uppercase code for special letter “v”. Uppercase code for accents is now
9f, instead of ££ 104
Shorthand is changed. Active character is now \char159 104
greek-1.2
General: Added caption names for \polutonikogreek 100
Classical Greek is now a dialect 98
\gr@cOgreek: Added macro \datepolutonikogreek 101
Added macro \gr@cl@month 101
\noextrasgreek: Added lowercase codes for “modern” greek 104

439

Added uppercase codes for “modern” Greek. The old codes are now for “Polu-

toniko” Greek 104
Definitions for “modern” Greek are now the definitions of “Polutoniko” Greek 104
greek-1.2a
General: filename lgrenc.def now lowercase 99
\dategreek: Use \edef to define \today 101
\noextrasgreek: Need shorthand to exist for “monotoniko” Greek, not “polu-
toniko” Greek 104
greek-1.2b
General: Classical Greek is now called “Polutoniko” Greek. The previous name
was at least misleading 98
\dategreek: use \def instead of \edef 101
\gr@num@iii: No longer use \ in the expansion of the \gr@num@x macros as they
ned to be expandable 103
greek-1.2¢

General: Package grsymb has been eliminated because the CB fonts v2.0 do not
inlcude certain symbols and so the remaining symbol definitions have been

moved here 104
This version conforms to version 2.0 of the CB fonts and consequently we added
a few new symbol-producing commands 98
greek-1.2e

\greek@Roman: Moved redefinition of \@roman back to the language specific file 102
greek-1.2f

\1tx@amp: Now switch the definition of \& from \extrasgreek 103
greek-1.3a
General: polutoniko is now an attribute to Greek, no longer a ‘dialect’ 98
\gr@c@greek: removed macro \datepolutonikogreek 101
greek-1.3b
\greeknumeral: Added \expandafter and \number (PR3000) in order to make a
counter an acceptable argument L L L. 102
greek-1.3c
\1tx@amp: Added a missing opening brace 103
greek-1.3d
General: Fixed typo, bl’epe ep’ishc instead of bl’pe ep’ishc 100
\greek@Roman: \@roman and \@Roman need to be added to \extraspolutonikogreek
... 102
greek-1.3e
\greek@Roman: \@roman and \@Roman need not be in \extraspolutonikogreek
when they are already in \extrasgreek 102
\noextrasgreek: \extrasgreek and \extraspolutonikogreek should be com-
plementary 104
greek-1.3f
General: Added some code to make older documents work 99
greek-1.3g
General: \noextraspolutonikogreek was missing 99
greek-1.3h
\captionsgreek: Added \glossaryname 100

\greekhyphenmins: Now use \providehyphenmins to provide a default value 100
greek-1.3i

\captionsgreek: The final sigma in all names appears as ‘s’ instead of ‘c’. .. 100
\noextrasgreek: uc code of ‘v’ is switched to V so that mixed text appears
correctly in headers. 104
greek-1.3j
\noextrasgreek: Because other languages might make the caret active, we can’t
use the double caret notation here 104
Ues the tilde as an alias for character 159 104
greek-1.3k
\greek@tilde: Make sure the character ’ is not active during the definition of
\greek@tilde 103
\textgreek: Added \leavevmode as was done with \latintext 100
greek-1.31

General: Commented these lines out as this change has made it into BTEX itself. 105

440

heb209 1.0a
General: Initial version. Provides hebrew newcode, hebrew oldcode and he-

brew_p style files for XTEX 2.09 (by Boris Lavva) 397
hebfdd-1.0a
General: Initial version. Supports only 7-bit LHE font encoding and all available
Hebrew TEX fonts (by Boris Lavva) 382
hebfdd-1.0b
General: fixed lhecmr.fd to use oldjafl0 for a slanted font available Hebrew TEX
fonts (by Tzafrir Cohen) 382
hebfdd-1.1a
General: Adding 8-bit HE8 fonts. Note that most of them cannot be distributed
with heb¥TEX (by Tzafrir Cohen) 382
hebfdd-1.2a
General: Adding configurations for the Culmus fonts, currently 0.90 (by Tzafrir
COohen) . . 382
hebfdd-1.2b
General: Reinstated the test whether LHE or HE8 is to be used 382
hebinp 1.0a
General: Initial version. Provides 8859-8, cp862, c¢pl1255, and old 7-bit input
encodings (by Boris Lavva) 376
hebinp 1.1

General: Renamed hebrew letters: \alef to \hebalef etc. (by Tzafrir Cohen) 376
hebinp 1.1a
General: Renamed CP1255 nikud \patah to \hebpatah etc. Added the macro

\DisableNikud - may not be a good idea (by Tzafrir Cohen) 376
hebrew-1.2¢c

General: Typo’s in the docstrip guards made HE8nachlieli.fd unusable 382
hebrew-2.0b

\captionshebrew: Added \glossaryname 341
hebrew-2.3h

\hebrewencoding: Make LHE the default encoding for compatibility reasons 340
hebrew 0.1

General: Preliminary ¥TEX Hebrew option (by Sergio Fogel) 339
hebrew 0.2

General: Corrections and additions (by Rama Porrat) 339
hebrew 0.6

General: Additions (by Yael Dubinsky) 339
hebrew 1.2

General: Bilingual tables, penalties, documentation and more changes (by Yaniv

Bargury) ..o 339

hebrew 1.30

General: Font selection, various (by Alon Ziv) 339
hebrew 1.31

General: Bug fixes (by Alon Ziv) 339
hebrew 1.32

General: Made font-change command for numbers ‘\protect’ed (by Alon Ziv) 339
hebrew 1.33
General: Made \refstepcounter work using \@ltor (by Alon Ziv) 339
hebrew 1.34
General: Moved font loading to another file. Added \mainsec. Made all text
strings be produced by control codes (similar to BTEX2.09 Mar ’'92). Fixed
\noindent (by Alon Ziv) 339
hebrew 1.35
General: Moved the texts to a file selected by the current encoding (by Alon Ziv) 339
hebrew 1.36
General: Use TEX tricks to redefine \theXXXX without keeping old definitions.
Use only \@eng for direction/font change (removed \@ltor). Switched from

use of \mainsec to code taken from babel system (by Alon Ziv) 339
hebrew 1.37
General: Use \add@around in defining font size commands. Small bug fixes (by
Alon Ziv) oo 339

441

hebrew 1.38
General: \everypar changed so that \noindent works unmodified (by Alon Ziv,
thanks to Chris Rowley) 339
hebrew 1.39
General: Redefined primitive sectioning commands. Changed \include so it finds
.h, .xet, and .1tx files (no extension needed). Reinstated use of \@ltor (by

Alon Ziv) ... 339
hebrew 1.40

General: Added the \@brackets hack (by Alon Ziv) 339
hebrew 1.41

General: Reworked towards using NFSS2. Changed some macro names to be more
logical: renamed \@ltor to \@number, \@eng to \@latin, and (in hebrew.1df)

\@heb to \@hebrew (by Alon Ziv)ii.... 339
hebrew 1.42
General: Made list environments work better. Fixed thebibliography environment
(by Alon Ziv) . .. 339
hebrew 2.0a

General: Completely rewritten for I¥TEX 2¢ and babel support. Various input and
font encodings (with NFSS2) are supported too. The original hebrew.sty is
divided to a number of packages and definition files for better readability
and extensibility. Added some user- and code-level documentation inside the
.dtx and .£dd files, and TEX-driven installation with hebrew.ins (by Boris
LaVVA) . ottt e e 339

hebrew 2.0b

\hebrewhyphenmins: Now use \providehyphenmins to provide a default value 341

hebrew 2.1

General: corrections from Sivan Toledo: sender name in letter, and section name

in headings. (by Tzafrir Cohen) 339
hebrew 2.2

General: renamed hebrew letters to heb* (e.g.: alef renamed to hebalef) (by

Tzafrir Cohen) o 339
hebrew 2.3

General: added several \@ifclassloaded{slides} to allow the use of the slides
class. (by Tzafrir Cohen) 339

hebrew 2.3a

General: The documentation should now be built fine (broken since at least 2.1,
and probably 2.0) (by Tzafrir Cohen) 339

hebrew 2.3b

General: minor clean-ups. The documentation builds now with no warnings. Also
removed \R from the caption macro (added in 2.1) Added internal \@ensure@L
and \@ensure@R (Is there a real need for them? Maybe should they be ex-
posed?) (by Tzafrir Cohen) 339

hebrew 2.3c

General: a temporary fix to the \gim macro. Should be replaced by stuff from
hebcal. (by Tzafrir Cohen) 339

hebrew 2.3d

General: Initial support for the prosper class. Added \arabicnorl . (by Tzafrir
Cohen) . . 339

hebrew 2.3e

General: Removing hebtech from this distriution (not relevant to babel), added
\HeblatexEncoding. some docs cleanup (by Tzafrir Cohen) 339

hebrew 2.3f

General: redefined \list instead of redefining every environment that uses it.
some pscolor handling, removed HeblatexEncoding (don’t use 2.3e) (by Tzafrir
Cohen) . .. 339

icelandic-1.1

General: Added definitions for old icelandic. 219
icelandic-1.1a

General: Added definitions for formatting numbers in Icelandic and some extra

utilities. 220
icelandic-1.1b
General: Added references to various publications used 220

442

icelandic-1.1c

General: Removed code already present in babel.def 216
\dateicelandic: use \def instead of \edef 218
Use \edef to define \today to save memory 218
icelandic-1.1e
\noextrasicelandic: Deactivate shorthands ouside of Icelandic 218
icelandic-1.1f
\captionsicelandic: Added \glossaryname 218

\noextrasicelandic: Now use \providehyphenmins to provide a default value 218
icelandic-1.1g

\captionsicelandic: Added translation for Glossary 218
Only use 7-bit ASCII characters in order to keep the texts input encoding

independant 218

irish-1.0b
General: Corrected typo (PR1652) 94

irish-1.0c
\captionsirish: Added \proofname for AMS-ETEX 94

irish-1.0e
General: Now use \1df@finish to Wrap up v, 95
Now use \LdfInit to perform initial checks 94

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 94
irish-1.0f

\captionsirish: Added missing translations provided in PR 2719 94
\dateirish: use \def instead of \edef 94
Use \edef to define \today to save memory 94
\irishhyphenmins: Added definition of \hyphenmins 94
irish-1.0h
\captionsirish: Added \glossaryname 94
\irishhyphenmins: Now use \providehyphenmins to provide a default value . 94
italian-0.99
General: First version, from english.doc 142
italian-1.0
General: Modified for babel 3.0 142
Now use \adddialect if language undefined 143
italian-1.0a
General: removed typo 142
italian-1.0b
General: Removed bug found by van der Meer 142
italian-1.0c
\captionsitalian: \pagename should be \headpagename 143
Removed \global definitions 143
\dateitalian: Removed \global definitions 144

italian-1.0d
\captionsitalian: ‘contiene’ substitued by ‘Allegati’ as suggested by Marco

Bozzo (BOZZO@CERNVM).ottt e 143
italian-1.0e
General: Renamed babel.sty in babel.com 142
italian-1.0h
General: Removed use of \@ifundefined 143
italian-1.1
General: Added a warning when no hyphenation patterns were loaded. 143
Brought up-to-date with babel 3.2a 142
\captionsitalian: \headpagename should be \pagename 143
Added \seename, \alsoname and \prefacename 143
italian-1.2
General: Update for LaTeXe i 142

italian-1.2b
\captionsitalian: Changed some of the words following suggestions from Clau-

dio Beccari 143
\italianhyphenmins: Added setting of left and righthyphenmin according to
Claudio Beccari’s suggestion 144

443

\noextrasitalian: Added setting of club- and widowpenalty 144

Added setting of finalhyphendemerits 144
italian-1.2e
General: Now use \@nopatterns to produce the warning 143
Removed the use of \filedate and moved identification after the loading of
babel.def 142
italian-1.2f
General: Updated for babel 3.5 142
italian-1.2g
\captionsitalian: Added \proofname for AMS-BTEX 143
italian-1.2h
\captionsitalian: Added translation of ‘Proof’ 143
\noextrasitalian: Now give the apostrophe a lowercase code 144
italian-1.2i
General: Now use \1df@finish tO WIrap Up . . .« vt vt v it et i 150
Now use \LdfInit to perform initial checks 143

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 142
italian-1.2j

General: Added braces around second arg of \LdfInit 143
italian-1.21
General: Added \unit, \ap, and \ped macros 142
Added useful macros for fulfilling ISO 31/XI regulations 146
\noextrasitalian: Changed example “begl’italiani” (obsolete spelling) with an-
other, “nell’altezza”, that behaves the same way 144
italian-1.2m
General: Added support for etymological hyphenation 142
Support for etymological hyphenation 144

\italianhyphenmins: Now use \providehyphenmins to provide a default value 144
italian-1.2n
General: Added several commands for the caporali double quotes and for simpli-

fying the accented vowel input 142
Completely modified etymological hyphenation facility 142
Completely new etymological hyphenation facility 145

italian-1.20
General: Added \glossaryname 0. 142

italian-1.2p
General: Removed redefinition of \add@acc since its functionality has been intro-
duced into the kernel of LaTeX 2001/06/01 142, 147
italian-1.2q
General: Added test for avoiding conflict with package units.sty; adjusted caporali
functionality, since the previous one did not work with the standard (although
obsolete) slides class file 142
Redefined the caporali machinery so as to avoid incompatibilities with the
slides class, as there are no Cyrillic slides fonts as there are for Latins script 148

\ped: Added testing for avoiding conflicts with the units.sty package 147
italian-1.2r

\it@cwm: Added \nobreak to \it@@cwm and corrected \it@next 145
italian-1.2s

General: Corrected email of CB 142

italian-1.2t
\noextrasitalian: Added \@clubpenalty to the italian specific settings, other-
wise any sectioning command restores it to the default value valid for english

and most other languages 144
latin-0.99
General: Added shortcuts for breve, macron, and etymological hyphenation (CB) 151
First version, from italian.dtx (CB) 151
latin-1.2
General: Added suggestions from Krzysztof Konrad Zelechowski (CB) 151
latin-2.0
General: Completely new etymological hyphenation (CB) 151

444

latin-2.0a
General: Revised by JB 151
\latinhyphenmins: Now use \providehyphenmins to provide a default value 153
latin-2.0b
General: Simplified shortcuts for etymological hyphenation; modified breve and

macro shortcuts; language attribute medieval declared 151
latin-2.0c

General: Restored caret and equals sign category codes before exiting 151
latin-2.0d

General: Restored caret and equals sign category codes before exiting 151
latin-2.0e

General: Introduced the language attribute ‘withprosodicmarks’; modified use of
breve and macron shortcuts in order to avoid possible conflicts with other

PACKAZES . . . 151
latin-2.0f
\datelatin: Added a comment character to prevent unwanted space 153
latin-2.0g
General: Added a \nobreak 157
\LatinMarks0ff: Added two commands 156
\ProsodicMarks: changed \allowhyphens to \bbl@allowhyphens 155
latin-2.0h
\LatinMarks0ff: Added missing backslash 156
Removed the setting of \LatinMarksOff from \extraslatin 156
latin-2.0i
General: Corrected the \@clubpenalty problem 151
latin-2.0j
General: Added a missing comment char and a missing closing brace 151
latin-2.0k
\LatinMarksOff: Set the \LatinMarks... commands equal to the \ProsodicMarks. .
commands for compatibility L o o o 156
\ProsodicMarks: Restore category codes rather then return them to their TEX
default values. And do that outside of the command definition 156
Use \active instead of 13 155
\ProsodicMarks0ff: Save current category codes of equals sign and caret in order
to restore them later 155
latin-2.01
General: Added two missing \end macro’s 151
Isorbian-0.1
General: First version 331
Isorbian-1.0b
\captionslsorbian: Added \proofname for AMS-ETEX 331
Isorbian-1.0d
General: Now use \1df@finish to Wrap up 332
Now use \LdfInit to perform initial checks 331

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with ITEX, moved the definition of \atcatcode right to the beginning. 331
Isorbian-1.0e

\newdatelsorbian: use \def instead of \edef 331
Use \edef to define \today to save memory 331
Isorbian-1.0f
\captionslsorbian: Added \glossaryname 331
Isorbian-1.0g
General: Make this work for more than one option name 332
Make this work for more than one option name. 332
This file can be loaded under more than one name. 331
\captionslsorbian: Make this work for more than one option name. 331
\newdatelsorbian: Make this work for more than one option name. 331
\olddatelsorbian: Make this work for more than one option name. 332
magyar-1.0a
General: Renamed babel.sty in babel.com 237
magyar-1.0b
General: Removed use of \@ifundefined 238

445

magyar-1.1

General: Added a warning when no hyphenation patterns were loaded. 238
Brought up-to-date with babel 3.2a 237
\captionsmagyar: \headpagename should be \pagename 238
Added \seename, \alsoname and \prefacename 238
magyar-1.1c
\captionsmagyar: Added translations, fixed typos 238
\ondatemagyar: The date number should not be followed by a dot. 239
magyar-1.1d
General: Further spelling corrections 237
\datemagyar: Rewritten to produce the correct date format 239
\ondatemagyar: Renamed from \datemagyar; nolonger redefines \today. ... 239
magyar-1.1le
General: Still more spelling corrections 237
magyar-1.2
General: Update for BTEX 2o o 237
magyar-1.3c
General: Now use \@nopatterns to produce the warning 238
Removed the use of \filedate and moved identification after the loading of
babel.def 237
magyar-1.3e
\captionsmagyar: Added \proofname for AMS-IMTEX 238
magyar-1.3f
\captionsmagyar: translated Proof and replaced some translations 238
magyar-1.3g
General: Replaced \undefined with \Qundefined and \empty with \@empty for
consistency with ETEX 237
magyar-1.3h
General: Now use \1df@finish towrap upoovono. .. 251
Now use \LdfInit to perform initial checks 238

magyar-1.4a
General: order inverting in headings/titles/captions; definite article handling; ac-

tive char for special hyphenation 237
\captionsmagyar: the initial letter of fejezet, tablazat, rész, lasd changed to
loWercase 238
\datemagyar: Use \number\day instead of \ifcase construct 239
magyar-1.4b
\captionsmagyar: Added \glossaryname 239
magyar-1.4c
General: Make sure that the grave accent has catcode 12 before it is made \active 251
magyar-1.4d
General: Corrected checksum 237
The \else clause got outside of the \if statement, breaking the Hungarian
SUPPOTE . . e 238
magyar-1.4f
\hun@tempadef: Added \def\safe@activesfalse as a fix for PR3426 246
magyar-1.4g
General: Further change to make it work when neither \1@magyar nor \1@hugarian
are defined 238
magyar-1.4h
\captionsmagyar: Inserted translation for Glossary 239
magyar-1.4i
\fnum@table: Use \nobreakspace instead of tilde 240
magyar-1.4j
General: Added missing comment characters in the redefinitions of \ps@headings
to prevent Spurious SPaces 237

ngermab-v2.6n
\captionsnaustrian: Corrected typo \captionnsgerman 86
ngermanb-2.6f
General: Renamed from germanb.1df; language names changed from german and
austrian to ngerman and naustrian. 86

446

ngermanb-2.6j

\noextrasnaustrian: Deactivate shorthands ouside of German 87
ngermanb-2.6k
\captionsnaustrian: Added \glossaryname 86

\noextrasnaustrian: Now use \providehyphenmins to provide a default value 87
ngermanb-2.6m

\noextrasnaustrian: Turn frenchspacing on, as in german.sty 87
norks-2.0h
\captionsnynorsk: Changed \ccname and \alsoname 225
norsk-1.0a
General: Renamed babel.sty in babel.com 224
norsk-1.0c
General: Removed use of \@ifundefined 224
norsk-1.1a
General: Added a warning when no hyphenation patterns were loaded. 224
Brought up-to-date with babel 3.2a 224
\captionsnorsk: Added \seename, \alsoname and \prefacename 225
\captionsnynorsk: Added \seename, \alsoname and \prefacename 225
norsk-1.1b
\captionsnorsk: \headpagename should be \pagename 225
\captionsnynorsk: \headpagename should be \pagename 225
norsk-1.1c
General: Added a couple of translations (from Per Norman Oma, TeX@itk.unit.no)
... 224
norsk-1.2a
General: Update for BTEX 2z oo oo 224
norsk-1.2d
General: Now use \@nopatterns to produce the warning 224
Removed the use of \filedate and moved identification after the loading of
babel.def 224
norsk-1.2f
\captionsnorsk: Added \proofname for AMS-ETEX 225
\norskhyphenmins: Added setting of hyphenmin parameters 224
norsk-1.2g
\captionsnorsk: Replaced ‘Proof’ by its translation 225
\captionsnynorsk: Replaced ‘Proof’ by its translation 225
norsk-1.2h
General: Moved the definition of \atcatcode right to the beginning. 224
Now use \1df@finish tO Wrap Upo v vt . 227
Now use \LdfInit to perform initial checks 224
Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX 224
norsk-1.2i
\datenorsk: use \def instead of \edef 225
Use \edef to define \today to save memory 225
norsk-2.0a
General: Describe the use of double quote as active character 224
Made double quote character active 226
\norskhyphenmins: Changed setting of hyphenmin parameters to22 224
norsk-2.0b
General: added the french double quotes, 227
Copied the coding for "f from germanb.dtx version 2.6g 227
norsk-2.0c
General: Deactivate shorthands ouside of Norsk 226
norsk-2.0d
General: Shorthands are the same for both spelling variants, no need to use
\CurrentOption 226
Use \bbl@allowhyphens in "- 227
norsk-2.0e
\captionsnorsk: Added \glossaryname 225
\captionsnynorsk: Added \glossaryname 225

\norskhyphenmins: Now use \providehyphenmins to provide a default value = 224

447

norsk-2.0g

\captionsnorsk: Replaced ‘Glossary’ by its translation 225
\captionsnynorsk: Replaced ‘Glossary’ by its translation 225
polish-1.0a
\textpl: Initially execute ‘textpl 275
polish-1.1c
General: Now use \@nopatterns to produce the warning 273
Removed the use of \filedate and moved identification after the loading of
babel.def 273
polish-1.1d
General: The dgmacro for Cused \’c 276
polish-1.2a

General: Don’t modify \rm and friends for I#TEX 2¢, take \selectfont instead 276
polish-1.2b

\captionspolish: Added \proofname for AMS-IXTEX 273

polish-1.2d
General: Now use \1df@finish tO Wrap Upo v v v enn .. 277
Now use \LdfInit to perform initial checks 273

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 273
\Eob: Use the constructed version of the characters only in OT1; use proper

characters in T1. 275
\skb: \skb is meant to be used in horizontal mode; so leave vertical mode if
TECESSATY « o v e e e e e e e e e e e e e e e e e 275
\sob: This macro is meant to be used in horizontal mode; so leave vertical mode
if necessary 274
\spb: \spb is meant to be used in horizontal mode; so leave vertical mode if
NECESSALY « v o v v e e e e 275
polish-1.2e
General: Removed empty groups after double quote and guillemot characters 277
polish-1.2f
\captionspolish: Added translation for Proof and changed translation of Con-
tents ... 273
\datepolish: use \def instead of \edef 274
Use \edef to define \today to save memory 274
\mdqoff: Now use \shorthandon and \shorthandoff 277
polish-1.2h
\noextraspolish: Deactivate shorthands ouside of Polish 274
polish-1.2i
\captionspolish: \bibname and \refname were swapped 273
Added \glossarynamettt 273
\datepolish: A missing comment character caused an unwanted space character
intheoutput 274
polish-1.2j

\polishzx: Added support for two notationstyles for kropka and accented z . 276
polish-1.2k

\polishzx: Fixed a typo 277
polish-1.21
General: Changed closing quote 277
portuges-1.0a
General: Renamed babel.sty in babel.com 158
portuges-1.0b
General: Removed use of cs@ifundefined 158
portuges-1.1
General: Added a warning when no hyphenation patterns were loaded. 158
Brought up-to-date with babel 3.2a 158
\captionsportuges: \headpagename should be \pagename 159
Added \seename, \alsoname and \prefacename 159
portuges-1.2
General: Update for BTEX 2z oo o oo 158
portuges-1.2d
General: Now use \@nopatterns to produce the warning 158

448

Removed the use of \filedate and moved identification after the loading of

babel.def 158
portuges-1.2e
\captionsportuges: Added a few missing translations 159
portuges-1.2g
General: Enhanced support for brasilian 158
\captionsbrazil: The captions for brasilian and portuguese are different now 160
\extrasportuges: Added the definition of some " shorthands 160
\ord: Added macro 161
\orda: Added macro 161
\portugeshyphenmins: Added setting of hyphenmin values 160
\ra: Added macro 161
\ro: Added macro 161
portuges-1.2h
\captionsportuges: Added \proofname for AMS-BTEX 159
portuges-1.2i
\captionsbrazil: Added \proofname for AMS-IMTEX 160
\captionsportuges: Substituted ‘Prova’ for ‘Proof” 159
portuges-1.2j
General: Moved the definition of \atcatcode right to the beginning. 158
Now use \LdfInit to perform initial checks 158
ow use \1dfOfinish tO WIap Up . . .« . vt i ittt 161
Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX 158
portuges-1.2k
\datebrazil: use \def instead of \edef 160
Use \edef to define \today to save memory 160
\dateportuges: use \def instead of \edef 159
Use \edef to define \today to save memory 159
\noextrasportuges: Removed empty groups after guillemot characters 161
portuges-1.2m
\captionsbrazil: Added \glossaryname 160
\captionsportuges: Added \glossaryname 159
\noextrasportuges: Deactivate shorthands ouside of Basque 160

\portugeshyphenmins: Now use \providehyphenmins to provide a default value 160
portuges-1.2n

\datebrazil: Removed spurious space after dezembro 160

\dateportuges: Removed spurious space after Dezembro 159
portuges-1.20

\portugeshyphenmins: Set \righthyphenmin to 3 if not provided by the pattern

file. 160
portuges-1.2p

\captionsportuges: Substituted ‘Glossario’ for ‘Glossary’ 159
portuges-1.2q

\captionsbrazil: Substituted ‘Glossario’ for ‘Glossary’ 160

romanian-1.0a

General: Renamed babel.sty in babel.com 211
romanian-1.0b
General: Removed use of \@ifundefined 211
romanian-1.1
General: Added a warning when no hyphenation patterns were loaded. 211
Brought up-to-date with babel 3.2a 211
\captionsromanian: \headpagename should be \pagename 211
Added \seename, \alsoname and \prefacename 211
Translation errors found by Robert Juhasz fixed 211
\dateromanian: Translation errors found by Robert Juhasz fixed 211
romanian-1.2
General: Update for LaTeX2e i 211
romanian-1.2d
General: Now use \@nopatterns to produce the warning 211
Removed the use of \filedate and moved identification after the loading of
babel.def 211

romanian-1.2e

General: Updated for babel release 3.5 211
romanian-1.2f
\captionsromanian: Added \proofname for AMS-IXTEX 211
romanian-1.2g
\captionsromanian: Added translation of ‘Proof’ 211
romanian-1.2h
General: Now use \1df@finish tO WIap UDP .« « v v v v v vt v v i e e 212
Now use \LdfInit to perform initial checks 211

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with ITEX, moved the definition of \atcatcode right to the beginning. 211
romanian-1.2i

\dateromanian: use \def instead of \edef 211
Use \edef to define \today to save memory 211
romanian-1.2k
\captionsromanian: Added \glossaryname 211
romanian-1.21
\captionsromanian: Added translation for Glossary 211
russianb-1.1a
\extrasrussian: Use \ddot instead of \@MATHUMLAUT 304
use \russianhyphenmins to store the correct values 306
Use the new mechanism for dealing with active characters 302
\russian@sh@7?@: Use new \DefineActiveNoArg 303
Use the more general mechanism of \declare@shorthand 303
\system@sh@;@: Added system level shorthands 304
russianb-1.1b
\extrasrussian: Added switch to LWN encoding 301
\russian@sh@7@: Updated to reflect the latest french definitions 303
\verbatim@font: Added changing of \verbatim@font 301

russianb-1.1c
General: Replaced \undefined with \Qundefined and \empty with \@empty for

consistency with BTEX 296
russianb-1.1d
General: Moved the definition of \atcatcode right to the beginning. 296
Now use \1df@finishtowrap up, 307
Now use \LdfInit to perform initial checks 296
russianb-1.1e
General: Added closing brace to second argument of \LdfInit 296
russianb-1.1f
General: Added definitions of Cyrillic emdash stuff and thinspace 296
\extrasrussian: Add commands for switch on/off doublequote activeness. Bor-
rowed from german. 305
Add macro for thinspace between initials 305
Added a hook to insert space or not before ‘double punctuation’ (from frenchb).
... 302, 303
Rearranging of cyrillic emdash stuff 305
\FDPoff: One more chance to avoid spaces before double punctuation 303
\russian@sh@7@: changed to kern.lem (space bit thinner) 303
Added a hook to insert space or not before ‘double punctuation’ (from frenchb).
... 303
russianb-1.1k
General: replaced all \penalty\@M with \nobreak 296
russianb-1.11
General: Made not using inputenc a warning instead of an error 299
russianb-1.1m
\captionsrussian: Added \glossaryname 301
\extrasrussian: Now use \providehyphenmins to provide a default value .. 306

russianb-1.1n
General: As this code generates a textfont 7 error it is commented out for now. 299
russianb-1.1o
\latintext: \latintext is already defined by the core of babel 299
\textlatin: \textlatin already defined by the core of babel 300

450

russianb-1.1q

General: Change definition of \th only for this language 307
russianb-1.1r

\extrasrussian: Removed the commanet character before the next code line, see

R3669 . .o 305
samin-1.0b
\captionssamin: Added \glossaryname 232
\saminhyphenmins: use \providehyphenmins 232
samin-1.0c
\captionssamin: Provided the translation for glossary 232
scottish-1.0b
General: Corrected typos (PR1652) 96
scottish-1.0c
\captionsscottish: Added \proofname for AMS-BTEX 96
scottish-1.0d
General: Now use \1df@finish to wrap upt 97
Now use \LdfInit to perform initial checks 96

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with ETEX, moved the definition of \atcatcode right to the beginning. 96
scottish-1.0e

\datescottish: use \def instead of \edef 96

Use \edef to define \today to save memory 96
scottish-1.0g

\captionsscottish: Added \glossaryname 96

serbian-1.0b
General: Added suggestions for shorthands and so on from Jankovic Slobodan 278

\noextrasserbian: Introduced the active " 279
serbian-1.0c
\noextrasserbian: Deactivate shorthands ouside of Serbian 279
serbian-1.0d
\captionsserbian: Added \glossaryname 278
\noextrasserbian: Changed definition of "- to be the same as for other lan-
BUAGES .« o o o e e e e e e e e e e e 279
slovak-1.0
General: First version 281
slovak-1.2
General: Update for BTEX 2z oo oo 281
slovak-1.2b
General: Added setting of left- and righthyphenmin 284
slovak-1.2d
General: Now use \@nopatterns to produce the warning 282
Removed the use of \filedate and moved identification after the loading of
babel.def 281
slovak-1.2e
General: Now use \slovakhyphenmins 284
\noextrasslovak: Use IXTEX’s \v accent command 284
slovak-1.2g
\captionsslovak: Added \proofname for AMS-IMTEX 283
slovak-1.2i
General: Now use \1df@finish tO WIap Upo vt mn e 293
Now use \LdfInit to perform initial checks 282

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with ITEX, moved the definition of \atcatcode right to the beginning. 281

slovak-1.2j
\dateslovak: use \def instead of \edef 284
Use \edef to define \today to save memory 284

slovak-1.2k
\captionsslovak: Repaired a few spelling mistakes 283
\dateslovak: Repaired a spelling mistake 284

slovak-1.21
General: Now use \providehyphenmins to provide a default value 284
\captionsslovak: Added \glossaryname 283

451

slovak-1.3a

General: Added contributed shorthand definitions 281

\noextrasslovak: Make three characters available for shorthands 284
slovak-3.0

General: Changed default \righthyphenmin to 3 characters. 284

Implemented the functionality of CSETEX’s slovak.sty. The version number was
bumped to 3.0 to minimize confusion by being higher than the last version of
CSETEX. « 281

\captionsslovak: Updated some translations. Former translations were: ‘Uvod’
for \prefacename, ‘Referencie’ for \refname, ‘Index’ for \indexname, ‘Obra-
zok’ for \figurename, ‘Prilohy’ for \enclname, ‘CC’ for \ccname, ‘Komu’ for
\headtoname, ‘Strana’ for \pagename 283
\noextrasslovak: now use \bbl@frenchspacing and \bbl@nonfrenchspacing 284
slovak-3.1

\cs@emdash: ensure correct catcode for the saved hyphen 288
\cs@splitattr: attribute added L. 291
\noextrasslovak: move \languageshorthands here, so that the language group
is always initialized correctly 284
\splithyphens: activate with split hyphens and deactivate with standard hy-
phens, not vice versa 291
slovene-1.0a
General: Renamed babel.sty in babel.com 294
slovene-1.0b
General: Removed use of \@ifundefined 294
slovene-1.1
General: Added a warning when no hyphenation patterns were loaded. 294
Brought up-to-date with babel 3.2a 294
\captionsslovene: \headpagename should be \pagename 294
Added \seename, \alsoname and \prefacename 294
slovene-1.2
General: Update for ITEX 2 o 294

slovene-1.2b
\captionsslovene: Added extra translations from Josef Leydold, leydold@statrix2.wu-wien.ac.at

... 294
slovene-1.2d
General: Now use \@nopatterns to produce the warning 294
Removed the use of \filedate and moved identification after the loading of
babel.def 294
slovene-1.2f
\noextrasslovene: Introduced the active " 295
slovene-1.2g
\captionsslovene: Added \proofname for AMS-I¥TEX 294
slovene-1.2h
\captionsslovene: Added translation of ‘Proof’ 294
slovene-1.2i
General: Now use \1df@finish tO WIrap Upot v v v vnu oo, 295
Now use \LdfInit to perform initial checks 294

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with ¥TEX, moved the definition of \atcatcode right to the beginning. 294
Replaced ‘Slovanian’ with correct ‘Slovenian’ 294
\noextrasslovene: removed shorthand for "L as it is not needed for slovenian 295
slovene-1.2j

\dateslovene: use \def instead of \edef 295
Use \edef to define \today to save memory 295
\noextrasslovene: Removed empty groups after double quote and guillemot
characters e 295
slovene-1.21
\noextrasslovene: Deactivate shorthands ouside of Slovene 295
slovene-1.2m
\captionsslovene: Added \glossaryname 294

452

spanish 5.0a
General: Reimplemented in full, which some parts rewritten from scratch. Added
the es- mechanism and the mexico option. Many bug fixes. 166
spanish 5.0d
General: Fixed two bugs: misplaced subscripts with lim and the like; problem

with \roman and hyperref. 166
spanish 5.0e

General: Two acutes in a row should be turned into a double right quote ... 176
spanish 5.0g

General: Fixed bad kerning before two acutes 176

spanish 5.0h
General: Removed unnecessary \strings with two acutes. Added es-noenumerate,
eS-NOIteMIZEe. o e 166
spanish 5.0i
General: romanidx not working. Some \es@roman replaced with \es@scroman. 166
spanish 5.0j
General: Colon in saved catcodes, because babel doesn’t restore it after french 166

Overdot \. was not robust. 166
spanish 5.0k
General: When saving ., check if \mathcode is 8000 166
swedish-1.0a
General: Renamed babel.sty in babel.com 228
swedish-1.0b
\captionsswedish: added definition for \enclname 228
made definition of \refname pluralis 228
removed type in definition of \contentsname 228
swedish-1.0c
General: Removed use of \@ifundefined 228
swedish-1.1
General: Added a warning when no hyphenation patterns were loaded. 228
Brought up-to-date with babel 3.2a 228
\captionsswedish: \headpagename should be \pagename 228
Added \seename, \alsoname and \prefacename 228
swedish-1.1b
\captionsswedish: Added translations 228
swedish-1.2
General: Update for LaTeX2e i 228
swedish-1.3d
General: Now use \@nopatterns to producew the warning 228
Removed the use of \filedate and moved identification after the loading of
babel.def e 228
\captionsswedish: Changed \aa to \csname aa\endcsname, to make \uppercase
do the right thing 228
swedish-1.3e
General: Update for release 3.5 228
\captionsswedish: Changed \alsoname from ‘se ocks& 229
\extrasswedish: Added \bbl@frenchspacing 229
\noextrasswedish: Added \bbl@nonfrenchspacing 229
\swedishhyphenmins: use \swedishhyphenmins to store the correct values .. 229
swedish-1.3f
\captionsswedish: Added \proofname for AMS-BTEX 228
swedish-1.3g
\captionsswedish: Replaced ‘Proof’ by its translation 229
swedish-2.0
General: Introduced active double quote 228
\noextrasswedish: Added active double quote character 230
swedish-2.1
General: Now use \1df@finish to Wrap upo .. 231
Now use \LdfInit to perform initial checks 228

Replaced \undefined with \@undefined and \empty with \@empty for consis-
tency with BTEX, moved the definition of \atcatcode right to the beginning. 228

453

swedish-2.2

\dateswedish: use \def instead of \edef 229
Use \edef to define \today to save memory 229
swedish-2.2b
\noextrasswedish: Deactivate shorthands ouside of Swedish 230
swedish-2.3a
General: added \allowhyphens 230
changed definition of "=, \-and " 230
\captionsswedish: Added full stop after “Bil” 229
\datesdmy: Command added 229
\datesymd: Command added 229
swedish-2.3b
\captionsswedish: Added \glossaryname 229
swedish-2.3c
\captionsswedish: Provided translation for Glossary 229
swedish-2.3d
General: Fixed a \changes entryo, 228
turkish-1.1
\captionsturkish: \headpagename should be \pagename 336
turkish-1.2
General: Update for BTEX 2 o 336
turkish-1.2b
\captionsturkish: Added braces behind \1i in strings 336
\dateturkish: Added braces behind \i in strings 336
turkish-1.2c
General: Now use \@nopatterns to produce the warning 336
Removed the use of \filedate and moved identification after the loading of
babel.def 336
turkish-1.2d
\dateturkish: removed extra closing brace, \mont should be \month 336
\turkish@sh@:@: Added missing \def 337
turkish-1.2e
\extrasturkish: Completely rewrote macro 337
\noextrasturkish: now use \bbl@frenchspacing and \bbl@uonfrenchspacing 337
\turkish@sh@:@: Use the new mechanism of \declare@shorthand 337
turkish-1.2f
\captionsturkish: Added \proofname for AMS-ETEX 336

turkish-1.2h
General: Replaced \undefined with \@undefined and \empty with \@empty for

consistency with BTEX 336
turkish-1.2i
General: Moved the definition of \atcatcode right to the beginning. 336
Now use \1df@finish tO Wrap upo 338
ow use \LdfInit to perform initial checks 336
turkish-1.2j
\captionsturkish: Added and modified translations 336
\dateturkish: use \def instead of \edef, 336
Use \edef to define \today to save memory 336
turkish-1.2k
\captionsturkish: Incorporated some more corrections 336
turkish-1.21
\dateturkish: removed dot from the date format 336
turkish-1.2m
\captionsturkish: Added \glossaryname 336

ukraineb-1.1d

\captionsukrainian: replace \CYRUKRI with \CYRII in \authorname 323
ukraineb-1.1e

General: replaced all \penalty\@M with \nobreak 319
ukraineb-1.1f

General: Made not using inputenc a warning instead of an error 322

454

ukraineb-1.1g

\captionsukrainian: Added \glossaryname 323

\extrasukrainian: Now use \providehyphenmins to provide a default value = 328
ukraineb-1.1h

\captionsukrainian: Added translation for ‘Glossary’ 323
ukraineb-1.1i

General: As this code generates a textfont 7 error it is commented out for now. 322
ukraineb-1.1j

\latintext: \latintext is already defined by the core of babel 322

\textlatin: \latintext is already defined by the core of babel 323
ukraineb-1.1k

General: Change definition of \th only for this language 330
usorbian-0.1

General: First version 333

usorbian-0.1b
General: Made it possible to run through BETEX; added \MF and removed extra

NeNAMACTO . . o v ottt e e 333
usorbian-0.1c
\captionsusorbian: Removed two typos (Kapitel and Dodatki) 333
usorbian-1.0a
General: Removed stuff that has been moved to babel.def 334
usorbian-1.0b
\captionsusorbian: Added \proofname for AMS-INTEX 333
usorbian-1.0c
General: Now use \bbl@disSc 335

usorbian-1.0d
General: Replaced \undefined with \Qundefined and \empty with \@empty for

consistency with BTEX 333
usorbian-1.0e

General: Moved the definition of \atcatcode right to the beginning. 333

Now use \1df@finish tO WIrap Upottt . 335

Now use \LdfInit to perform initial checks 333

usorbian-1.0f
General: Removed empty groups after double quote and guillemot characters 335
usorbian-1.0g

\ck: Now use \shorthandon and \shorthandoff 335
\newdateusorbian: use \def instead of \edef 333
Use \edef to define \today to save memory 333
\olddateusorbian: use \def instead of \edef 334
Use \edef to define \today to save memory 334
usorbian-1.0h
\extrasusorbian: Deactivate shorthands ouside of Upper Sorbian 334
usorbian-1.0i
\captionsusorbian: Added \glossaryname 333
\extrasusorbian: Now use \providehyphenmins to provide a default value . 334
usorbian-1.0j
General: Check for the option lowersorbian 333
Make this work for more than one option name 334, 335
This file can be loaded under more than one name. 333
\captionsusorbian: Make this work for more than one option name 333
\extrasusorbian: Make this work for more than one option name 334
\newdateusorbian: Make this work for more than one option name 333
\olddateusorbian: Make this work for more than one option name 334
usorbian-1.0k
\extrasusorbian: Make sure the caret has the right \catcdoe 334
v2.0
General: \parindentFFN not changed if already defined (required by JA for cah-
gUb.CIS). ... 130
Added warning for OT1 encoding. 139

AtBeginDocument, save again the definitions of the ‘list’ and ‘itemize’ envi-
ronments and the values of labelitems. As of frenchb v.1.6, ‘ORI’ values were
set when reading frenchb.ldf, later changes were ignored. 139

455

Footnotes are now printed by default ‘a la francaise’ for the whole document. 129

New command \frenchbsetup added for global customisation. 132
\bsc: \hbox dropped, replaced by \kernOpt. 122
\captionsfrench: ‘Fig.’ changed to ‘Figure’ and ‘Tab.” to ‘Table’. 125
Set \CaptionSeparator in \extrasfrench now instead of \captionsfrench
because it has to be reset when leaving French. 125
\datefrench: 2 '\relax’ added in \today’s definition. 120
\FBtextellipsis: Added special case for LY1 encoding, see bug report from
Bruno Voisin (2004/05/18). 131
\nombre: \nombre requires now numprint.sty., 124
v2.0b
General: Footnotes: Just do nothing (except warning) when the bigfoot package
isloaded. 129
v2.0c
General: \ThinSpaceInFrenchNumbers added for compatibility with frenchb-1.x. 125
Option ThinSpaceInFrenchNumbers added. 132
There is no need to define here numprint’s command \npstylefrench, it will
be redefined ‘AtBeginDocument’ by \FBprocess@options. 125
v2.0d
General: Options og and fg changed: limit the definition to French so that quote
characters can be used in German. 132
v2.0e
General: New option: StandardLists. 132
v2.0f
General: StandardLayout option had no effect on lists. Test moved to \FBprocess@options.
... 132

Two typos corrected in option StandardLists: [false] — [true] and Standard-
Layout — StandardLists. 132
v2.0g
General: Revert previous change to StandardLayout. This option must set
the three flags \FBReduceListSpacingfalse, \FBCompactItemizefalse, and
\FBStandardItemLabeltrue instead of \FBStandardListstrue, so that later
options can still change their value before executing \FBprocess@options.

Same thing for option StandardLists. 132
\StandardLayout: Flag \ifFBStandardLayout not checked by \FBprocess@options,
low-level flags have to be set one by one. 131
v2.1a
General: Command \fup added to produce better superscripts than \textsuperscript.
... 120
New option: FrenchSuperscripts to define \up as \fup or as \textsuperscript.
... 132
New option: LowercaseSuperscripts. 132
\datefrench: \today changed (correction in 2.0 was wrong: \today was printed
without spaces in toc). 120
v2.1b
General: Disable some commands in bookmarks. 139
\fup: Command \fup changed to use real superscripts from fourier v. 1.6. .. 120
v2.1c
General: Added commands \Nos and \nos. 122

\degres: Provide a temporary definition (hyperref safe) of \degres in case it has
to be expanded in the preamble (by beamer’s \title command for instance). 123
\up: Provide a temporary definition (hyperref safe) of \up in case it has to be
expanded in the preamble (by beamer’s \title command for instance). .. 120
v2.1d
General: Argument of \ProvidesLanguage changed above from ‘french’ to
‘frenchb’ (otherwise \1listfiles prints no date/version information). The real
name of current language (french) as to be corrected before calling \LdfInit. 112
Avoid warning “\end occurred when \ifx ... incomplete” with LaTeX-2.09. 112
v2.2a
General: The global layout of the document is no longer changed when frenchb
is not the last option of babel (\bbl@main@language). Suggested by Ulrike
Fischer. 132

456

Values of flags \ifFBReduceListSpacing, \ifFBCompactItemize, \ifFBStandardItemLabels,
\ifFBIndentFirst, \ifFBFrenchFootnotes, \ifFBAutoSpaceFootnotes changed:
default now means ‘StandardLayout’, it will be changed to ‘FrenchLayout’

AtEndOfPackage only if french is \bbl@main@language. 132

When frenchb is babel’s last option, French becomes the document’s main
language, so GlobalLayoutFrench applies. 132

\fup: \newif and \newdimen moved before \ifLaTeXe to avoid an error with
plainTeX. . .. 120

v2.3a

General: \NoAutoSpaceBeforeFDP and \AutoSpaceBeforeFDP now set the flag
\ifFBAutoSpacePunctuation accordingly (LaTeX only). 118

In LaTeX, frenchb no longer adds spaces before ‘double punctuation’ characters
in computer code. Suggested by Yannis Haralambous. 118

New option: OriginalTypewriter. Now frenchb switches to \noautospace@beforeFDP
when a tt-font is in use. When Original Typewriter is set to true, frenchb be-

haves as in pre-2.3 versions. 132
\fup: \lowercase changed to \MakeLowercase as the former doesn’t work for non
ASCII characters in encodings like applemac, utf-8,... 120
v2.3b
General: New commands \dotFFN and \kernFFN for more flexibility (suggested
by JA). 130
v2.3c
General: Commands \ttfamily, \rmfamily and \sffamily have to be robust.
Bug introduced in 2.3a, pointed out by Manuel Pégourié-Gonnard. 118
v2.3d

\bbl@nonfrenchindent: Bug correction: previous versions of frenchb set the flag
\if@afterindent to false outside French which is correct for English but
wrong for some languages like Spanish. Pointed out by Juan José Torrens. 129
\frenchbsetup: Warning added to \GlobalLayoutFrench when French is not the
main language. 132
v2.3e
General: Execute \AutoSpaceBeforeFDP also in LaTeX to define \FDP@colonspace:
needed for tex4ht, pointed out by MPG. 118
v2.4a
General: \PackageWarning changed to \FBWarning (when bigfoot package in use).

New option SuppressWarning. 132
\CaptionSeparator: \PackageWarning changed to \FBWarning (in case \@makecaption
has been customized). \FBWarning is defined as \PackageWarning by default

but can be made silent using \frenchbsetup, (suggested by MPG). 126
\noextrasfrench: Added a new ‘if’ \FBunicode and some \lccode definitions to
\extrasfrench and \noextrasfrench. 113
v2.4b
\FBprocess@options: false when the enumitem package is loaded (ensures com-
PAtibility). . . 136
v2.4c
General: In \ttfamilyFB, also cancel automatic spaces inside French guillemets
entered as characters (see \frenchbsetup). 118
\frenchbsetup: In \ttfamilyFB, also cancel automatic spaces inside French
guillemets coded as characters (see \frenchbsetup). 134
v2.4d

\up: Command \up defined with \providecommand instead of \newcommand as
\up may be defined elsewhere (catalan.ldf). Bug pointed out by Felip Manyé

iBallester. 120
v2.5a
General: \og and \fg do not print correctly in English when using XeTeX, fixed
by using \textquotedblleft and \textquotedblright defined above. ... 120

Define \bbl@nonfrenchspacing locally as \relax, otherwise the \bbl@frenchspacing
command included in germanb.ldf is overwritten here by \noextrasfrench.

Bug pointed out by Ulrike Fischer. 140
Define \Fthinspace for those who want to customise the width of the space
before ; and 7. 114

457

New command \NoAutoSpacing, suggested by MPG. 119
New definitions needed for XeTeX to print properly some dates and captions:

using c.s. like \’e do not work with XeTeX (OK with XeLaTeX). 123
Punctation is no longer made active with XeTeX-based engines. 114
Test \@ifundefined leaves the tested control sequence defined as \relax when

TRUE. Changed \relax to \undefined when testing \numprint. 125

Test \@ifundefined leaves the tested control sequence defined as \relax when

TRUE. Changed \relax to \undefined when testing \pdfstringdefDisableCommands

AtBeginDocument. 139
\captionsfrench: \emph deleted in \seename and \alsoname to match what is
done for the other languages. Suggested by Marc Baudoin. 125
Replaced \’e, \‘e and \‘a by c.s. to work with XeTeX. 125
\datefrench: Replaced \’e and \~u by c.s. to work with XeTeX. 120

\frenchbsetup: Test \@ifundefined leaves the tested control sequence de-
fined as \relax when TRUE. Changed \relax to \undefined when testing
\XeTeXrevision, \DeclareInputText, \uc@dclc, \DeclareUnicodeCharacter,
\mule@def in \og and \fg. 134

\textquoteddblright: Change \guillemotleft and \guillemotright defini-

tions for Unicode anf provide definitions for \textquotedblleft and \textquotedbright.

Insures correct printing of quotes by \og and \fg in French and outside. . 119
\up: Test \@ifundefined leaves the tested control sequence defined as \relax
when TRUE. Changed \relax to \undefined when testing \realsuperscript.

... 120
v3.8a
\lower@umlaut: Use \leavevmode\bgroup to prevent problems when this com-
mand occurs in vertical mode. L L Lo o 50
\umlauthigh: Use \leavevmode\bgroup to prevent problems when this command
occurs in vertical mode. L L L 49
v3.8d
\@notshorthand: Error message added 40
welsh-1.0b
\datewelsh: use \def instead of \edef 92
Use \edef to define \today to save memory 92
welsh-1.0c
\captionswelsh: Added \glossarynamecouveun.o... 92
\welshhyphenmins: Now use \providehyphenmins to provide a default value . 92
welsh-1.0d
\captionswelsh: Provided the translation for Glossary 92
\datewelsh: removed ‘a viz’ from the definition of \today 92

458

	Contents
	1 The user interface
	1.1 Languages supported by Babel
	1.2 Workarounds

	2 Changes for LaTeX2e
	3 Changes in Babel version 3.7
	4 Changes in Babel version 3.6
	5 Changes in Babel version 3.5
	6 The interface between the core of babel and the language definition files
	6.1 Support for active characters
	6.2 Support for saving macro definitions
	6.3 Support for extending macros
	6.4 Macros common to a number of languages

	7 Compatibility with german.sty
	8 Compatibility with ngerman.sty
	9 Compatibility with the french package
	10 Identification
	11 The Package File
	11.1 Language options

	12 The Kernel of Babel
	12.1 Encoding issues (part 1)
	12.2 Multiple languages
	12.3 Support for active characters
	12.4 Shorthands
	12.5 Language attributes
	12.6 Support for saving macro definitions
	12.7 Support for extending macros
	12.8 Macros common to a number of languages
	12.9 Making glyphs available
	12.10 Quotation marks
	12.11 Letters
	12.12 Shorthands for quotation marks
	12.13 Umlauts and trema's
	12.14 The redefinition of the style commands
	12.14.1 Redefinition of macros

	12.15 Cross referencing macros
	12.16 marks
	12.17 Encoding issues (part 2)
	12.18 Preventing clashes with other packages
	12.18.1 ifthen
	12.18.2 varioref
	12.18.3 hhline
	12.18.4 hyperref
	12.18.5 General

	13 Local Language Configuration
	14 Driver files for the documented source code
	15 Conclusion
	16 Acknowledgements
	17 References
	18 The Esperanto language
	19 The Interlingua language
	20 The Dutch language
	21 The English language
	22 The German language
	23 The German language – new orthography
	24 The Breton language
	25 The Welsh language
	26 The Irish language
	27 The Scottish language
	28 The Greek language
	28.1 Typing conventions
	28.2 Greek numbering

	29 The French language
	29.1 Basic interface
	29.2 Customisation
	29.3 Hyphenation checks
	29.4 Changes
	29.5 File frenchb.cfg
	29.6 Initial setup
	29.7 Punctuation
	29.8 Commands for French quotation marks
	29.9 Date in French
	29.10 Extra utilities
	29.11 Formatting numbers
	29.12 Caption names
	29.13 French lists
	29.14 French indentation of sections
	29.15 Formatting footnotes
	29.16 Global layout
	29.17 Dots…
	29.18 Setup options: keyval stuff
	29.19 Clean up and exit

	30 The Italian language
	30.1 Support for etymological hyphenation
	30.2 Facilities required by the ISO 31/XI regulations
	30.3 Accents
	30.4 Caporali or French double quotes
	30.5 Finishing commands
	30.6 References

	31 The Latin language
	32 Latin shortcuts
	33 Etymological hyphenation
	34 The Portuguese language
	35 The Spanish language
	35.1 The Code

	36 The Catalan language
	37 This file
	38 The Galcian language
	38.1 The Code

	39 The Basque language
	40 The Romanian language
	41 The Danish language
	42 The Icelandic language
	42.1 Overview
	42.2 References
	42.3 TeXnical details
	42.4 Captionnames and date
	42.5 Icelandic quotation marks
	42.6 Old Icelandic
	42.7 Formatting numbers
	42.8 Extra utilities

	43 The Norwegian language
	44 The Swedish language
	45 The North Sami language
	45.1 The code of samin.dtx

	46 The Finnish language
	47 The Hungarian language
	48 The Estonian language
	48.1 Implementation

	49 The Albanian language
	50 The Croatian language
	51 The Czech Language
	51.1 Usage
	51.2 Compatibility
	51.3 Implementation

	52 The Polish language
	53 The Serbocroatian language
	54 The Slovak language
	54.1 Compatibility
	54.2 Implementation

	55 The Slovenian language
	56 The Russian language
	57 The Bulgarian language
	58 The Ukrainian language
	59 The Lower Sorbian language
	60 The Upper Sorbian language
	61 The Turkish language
	62 The Hebrew language
	62.1 Acknowledgement
	62.2 The docstrip modules
	62.3 Hebrew language definitions
	62.3.1 Hebrew numerals

	62.4 Right to left support
	62.4.1 Switching from LR to RL mode and back
	62.4.2 Counters
	62.4.3 Preserving logos
	62.4.4 List environments
	62.4.5 Tables of moving stuff
	62.4.6 Two-column mode
	62.4.7 Footnotes
	62.4.8 Headings and two-side support
	62.4.9 Postscript Porblems
	62.4.10 Miscellaneous internal LaTeX macros
	62.4.11 Bibliography and citations
	62.4.12 Additional bidirectional commands

	62.5 Hebrew calendar
	62.5.1 Introduction
	62.5.2 Registers, Commands, Formatting Macros
	62.5.3 Auxiliary Macros
	62.5.4 Gregorian Part
	62.5.5 Hebrew Part

	63 Hebrew input encodings
	63.1 Default definitions for characters
	63.2 The SI-960 encoding
	63.3 The ISO 8859-8 encoding and the MS Windows cp1255 encoding
	63.4 The IBM code page 862

	64 Hebrew font encodings
	64.1 THIS SECTION IS OUT OF DATE. UPDATE DOCS TO MATCH HE8 ENCODING
	64.2 The docstrip modules
	64.3 The LHE encoding definition file
	64.4 The font definition files (in LHE encoding)
	64.4.1 Hebrew default font
	64.4.2 Hebrew sans-serif font
	64.4.3 Hebrew typewriter font
	64.4.4 Hebrew classic font
	64.4.5 Hebrew shalom fonts
	64.4.6 Hebrew frank-ruehl font
	64.4.7 Hebrew carmel font
	64.4.8 Hebrew redis font

	64.5 The HE8 encoding definition file
	64.5.1 CHECK HERE FOR HE8 UPDATES

	64.6 The font definition files (in HE8 encoding)
	64.6.1 Hebrew default font
	64.6.2 Hebrew sans-serif font
	64.6.3 Hebrew typewriter font
	64.6.4 8Bit OmegaHebrew font
	64.6.5 8Bit Aharoni font
	64.6.6 8Bit David font
	64.6.7 8Bit Drugulin font
	64.6.8 8Bit Ellinia font
	64.6.9 8Bit FrankRuehl font
	64.6.10 8Bit KtavYad font
	64.6.11 8Bit MiriamMono font
	64.6.12 8Bit Nachlieli font
	64.6.13 Hebrew font switching commands

	65 Hebrew in LaTeX 2.09 compatibility mode
	65.1 The docstrip modules
	65.2 Obsolete style files

	66 The Bahasa Indonesian language
	67 The Bahasa Malaysia language
	68 Not renaming hyphen.tex
	69 Support for formats based on plainTeX
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Change History

