
1 The Italian language

The file italian.dtx1 defines all the language-specific macros for the Italian lan-
guage.

The features of this language definition file are the following:

1. The Italian hyphenation is invoked, provided that file ithyph.tex was load-
ed when the LATEX 2ε format was built; in case it was not, read the infor-
mation coming with your distribution of the TEX software, and the babel
documentation.

2. The language dependent fixed words to be inserted by such commands as
\chapter, \caption, \tableofcontents, etc. are redefined in accordance
with the Italian typographical practice.

3. Since Italian can be easily hyphenated and Italian practice allows to break
a word before the last two letters, hyphenation parameters have been
set accordingly, but a very high demerit value has been set in order to
avoid word breaks in the penultimate line of a paragraph. Specifically the
\clubpenalty, and the \widowpenalty are set to rather high values and
\finalhyphendemerits is set to such a high value that hyphenation is pro-
hibited between the last two lines of a paragraph. In orer to make it consis-
tent, also \@clubpenalty is set to the same value; actualy the latter value
is the reset value after every sectioning command, so that after the first
section, \clubpenalty is reset to the low default value. Thanks to Enrico
Gregorio for spotting this serious bug.

4. Some language specific shortcuts have been defined so as to allow etymolog-
ical hyphenation, specifically " inserts a break point in any word boundary
that the typesetter chooses, provided it is not followed by and accented let-
ter (very unlikely in Italian, where compulsory accents fall only on the last
and ending vowel of a word, but may take place with compound words that
include foreign roots), and "| when the desired break point falls before an
accented letter.

5. The shortcut "" introduces the raised (English) opening double quotes; this
shortcut proves its usefulness when one reminds that the Italian keyboard
misses the backtick key, and the backtick on a Windows based platform may
be obtained only by pressing the Alt key while inputting the numerical code
0096; very, very annoying!

6. The shortcuts "< and "> insert the French guillemots, sometimes used in
Italian typography; with the T1 font encoding the ligatures << and >> should
insert such signs directly, but not all the virtual fonts that claim to follow
the T1 font encoding actually contain the guillemots; with the OT1 encoding

1The file described in this section has version number v1.2t and was last revised on
2008/03/14. The original author is Maurizio Codogno, (mau@beatles.cselt.stet.it). It has
been largely revised by Johannes Braams and Claudio Beccari

1

the guillemots are not available and must be faked in some way. By using
the "< and "> shortcuts (even with the T1 encoding) the necessary tests
are performed and in case the suitable glyphs are taken from other fonts
normally available with any good, modern LATEX distribution.

7. Three new specific commands \unit, \ped, and \ap are introduced so as
to enable the correct composition of technical mathematics according to the
ISO 31/XI recommendations. \unit does not get redefined if the babel pack-
age is loaded after the package units.sty whose homonymous command
plays a different role and follows a different syntax.

For this language a limited number of shortcuts has been defined, table 1,
some of which are used to overcome certain limitations of the Italian keyboard; in
section 1.3 there are other comments and hints in order to overcome some other
keyboard limitations.

" inserts a compound word mark where hyphenation
is legal; it allows etymological hyphenation which is
recommended for technical terms, chemical names
and the like; it does not work if the next character is
represented with a control sequence or is an accented
character.

"| the same as the above without the limitation on char-
acters represented with control sequences or accented
ones.

"" inserts open quotes “.
"< inserts open guillemots.
"> inserts closed guillemots.
"/ equivalent to \slash

Table 1: Shortcuts for the Italian language

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

1 〈∗code〉
2 \LdfInit{italian}{captionsitalian}%

When this file is read as an option, i.e. by the \usepackage command, italian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \l@italian to see whether we have to do something
here.

3 \ifx\l@italian\@undefined

4 \@nopatterns{Italian}%

5 \adddialect\l@italian0\fi

The next step consists of defining commands to switch to (and from) the Italian
language.

2

\captionsitalian The macro \captionsitalian defines all strings used in the four standard docu-
ment classes provided with LATEX.

6 \addto\captionsitalian{%

7 \def\prefacename{Prefazione}%

8 \def\refname{Riferimenti bibliografici}%

9 \def\abstractname{Sommario}%

10 \def\bibname{Bibliografia}%

11 \def\chaptername{Capitolo}%

12 \def\appendixname{Appendice}%

13 \def\contentsname{Indice}%

14 \def\listfigurename{Elenco delle figure}%

15 \def\listtablename{Elenco delle tabelle}%

16 \def\indexname{Indice analitico}%

17 \def\figurename{Figura}%

18 \def\tablename{Tabella}%

19 \def\partname{Parte}%

20 \def\enclname{Allegati}%

21 \def\ccname{e~p.~c.}%

22 \def\headtoname{Per}%

23 \def\pagename{Pag.}% % in Italian the abbreviation is preferred

24 \def\seename{vedi}%

25 \def\alsoname{vedi anche}%

26 \def\proofname{Dimostrazione}%

27 \def\glossaryname{Glossario}%

28 }%

\dateitalian The macro \dateitalian redefines the command \today to produce Italian dates.

29 \def\dateitalian{%

30 \def\today{\number\day~\ifcase\month\or

31 gennaio\or febbraio\or marzo\or aprile\or maggio\or giugno\or

32 luglio\or agosto\or settembre\or ottobre\or novembre\or

33 dicembre\fi\space \number\year}}%

\italianhyphenmins The italian hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

34 \providehyphenmins{\CurrentOption}{\tw@\tw@}

\extrasitalian

\noextrasitalian

Lower the chance that clubs or widows occur.

35 \addto\extrasitalian{%

36 \babel@savevariable\clubpenalty

37 \babel@savevariable\widowpenalty

38 \babel@savevariable\@clubpenalty

39 \clubpenalty3000\widowpenalty3000\@clubpenalty\clubpenalty}%

Never ever break a word between the last two lines of a paragraph in italian
texts.

40 \addto\extrasitalian{%

41 \babel@savevariable\finalhyphendemerits

42 \finalhyphendemerits50000000}%

3

In order to enable the hyphenation of words such as “nell’altezza” we give the ’
a non-zero lower case code. When we do that TEX finds the following hyphenation
points nel-l’al-tez-za instead of none.

43 \addto\extrasitalian{%

44 \lccode‘’=‘’}%

45 \addto\noextrasitalian{%

46 \lccode‘’=0}%

1.1 Support for etymological hyphenation

In his article on Italian hyphenation [1] Beccari pointed out that the Italian lan-
guage gets hyphenated on a phonetic basis, although etymological hyphenation
is allowed; this is in contrast with what happens in Latin, for example, where
etymological hyphenation is always used. Since the patterns for both languages
would become too complicated in order to cope with etymological hyphenation,
in his paper Beccari proposed the definition of an active character ‘_’ such that it
could insert a “soft” discretionary hyphen at the compound word boundary. For
several reasons that idea and the specific active character proved to be unpractical
and was abandoned.

This problem is so important with the majority of the European languages, that
babel from the very beginning developed the tradition of making the " character
active so as to perform several actions that turned useful with every language.
One of these actions consisted in defining the shortcut "| that was extensively
used in German and in many other languages in order to insert a discretionary
hyphen such that hyphenation would not be precluded in the rest of the word as
it happens with the standard TEX command \-.

Meanwhile the ec fonts with the double Cork encoding (thus formerly called
the dc fonts) have become more or less standard and are widely used by virtually
all Europeans that write languages with many special national characters; by so
doing they avoid the use of the \accent primitive which would be required with
the standard cm fonts; with the latter fonts the primitive command \accent is such
that hyphenation becomes almost impossible, in any case strongly impeached.

The ec fonts contain a special character, named “compound word mark”, that
occupies position 23 in the font scheme and may be input with the sequence ^^W.
Up to now, apparently, this special character has never been used in a practical
way for the typesetting of languages rich of compound words; also it has never
been inserted in the hyphenation pattern files of any language. Beccari modified
his pattern file ithyph.tex v4.8b for Italian so as to contain five new patterns
that involve ^^W, and he tried to give the babel active character " a new shortcut
definition, so as to allow the insertion of the “compound word mark” in the proper
place within any word where two semantic fragments join up. With such facility
for marking the compound word boundaries, etymological hyphenation becomes
possible even if the patterns know nothing about etymology (but the typeset-
ter hopefully does!). In Italian such etymological hyphenation is desirable with
technical terms, chemical names, and the like.

Even this solution proved to be inconvenient on certain UN*X platforms, so

4

Beccari resorted to another approach that uses the babel active character " and
relies on the category code of the character that follows ".

47 \initiate@active@char{"}%

48 \addto\extrasitalian{\bbl@activate{"}\languageshorthands{italian}}%

\it@cwm The active character " is now defined for language italian so as to perform
different actions in math mode compared to text mode; specifically in math mode
a double quote is inserted so as to produce a double prime sign, while in text mode
the temporary macro \it@next is defined so as to defer any further action until
the next token category code has been tested.

49 \declare@shorthand{italian}{"}{%

50 \ifmmode

51 \def\it@next{’’}%

52 \else

53 \def\it@next{\futurelet\it@temp\it@cwm}%

54 \fi

55 \it@next

56 }%

\it@cwm The \it@next service control sequence is such that upon its execution a temporary
variable \it@temp is made equivalent to the next token in the input list without
actually removing it. Such temporary token is then tested by the macro \it@cwm

and if it is found to be a letter token, then it introduces a compound word separator
control sequence \it@allowhyphens whose expansion introduces a discretionary
hyphen and an unbreakable space; in case the token is not a letter, then it is
tested against |12: if so a compound word separator is inserted and the | token is
removed, otherwise another test is performed so as to see if another double quote
sign follows: in this case a double open quote mark is inserted, otherwise two
other tests are performed so as to see if guillemets have to be inserted, otherwise
nothing is done. The double quote shortcut for inserting a double open quote sign
is useful for people who are inputting Italian text by means of an Italian keyboard
that unfortunately misses the grave or backtick key. By this shortcut "" becomes
equivalent to ‘‘ for inserting raised open high double quotes.

57 \def\it@@cwm{\nobreak\discretionary{-}{}{}\nobreak\hskip\z@skip}%

58 \def\it@@ocap#1{\it@ocap}\def\it@@ccap#1{\it@ccap}%

59 \DeclareRobustCommand*{\it@cwm}{\let\it@@next\relax

60 \ifcat\noexpand\it@temp a%

61 \def\it@@next{\it@@cwm}%

62 \else

63 \if\noexpand\it@temp \string|%

64 \def\it@@next{\it@@cwm\@gobble}%

65 \else

66 \if\noexpand\it@temp \string<%

67 \def\it@@next{\it@@ocap}%

68 \else

69 \if\noexpand\it@temp \string>%

70 \def\it@@next{\it@@ccap}%

71 \else

5

72 \if\noexpand\it@temp\string/%

73 \def\it@@next{\slash\@gobble}%

74 \else

75 \ifx\it@temp"%

76 \def\it@@next{‘‘\@gobble}%

77 \fi

78 \fi

79 \fi

80 \fi

81 \fi

82 \fi

83 \it@@next}%

By this definition of " if one types macro"istruzione the possible break points
become ma-cro-istru-zio-ne, while without the " mark they would be ma-croi-stru-
zio-ne, according to the phonetic rules such that the macro prefix is not taken as a
unit. A chemical name such as des"clor"fenir"amina"cloridrato is breakable
as des-clor-fe-nir-ami-na-clo-ri-dra-to instead of de-sclor-fe-ni-ra-mi-na-...

In other language description files a shortcut is defined so as to allow a break
point without actually inserting any hyphen sign; examples are given such as
entrada/salida; actually if one wants to allow a breakpoint after the slash, it is
much clearer to type \slash instead of / and LATEX does everything by itself;
here the shortcut "/ was introduced to stand for \slash so that one can type
input"/output and allow a line break after the slash. This shortcut works only
for the slash, since in Italian such constructs are extremely rare.

Attention: the expansion of " takes place before the actual expansion of OT1
or T1 accented sequences such as \‘{a}; therefore this etymological hyphenation
facility works as it should only when the semantic word fragments do not start
with an accented letter; this in Italian is always avoidable, because compulsory
accents fall only on the last vowel, but it may be necessary to mark a compound
word where one or more components come from a foreign language and contain
diacritical marks according to the spelling rules of that language. In this case
the special shorthand "| may be used that performs exactly as " normally does,
except that the | sign is removed from the token input list: kilo"|{\"o}rsted

gets hyphenated as ki-lo-ör-sted.

1.2 Facilities required by the ISO 31/XI regulations

The ISO 31/XI regulations require that units of measure are typeset in upright
font in any circumstance, math or text, and that in text mode they are separated
from the numerical indication of the measure with an unbreakable (thin) space.
The command \unit that was defined for achieving this goal happened to conflict
with the homonymous command defined by the package units.sty; we therefore
need to test if that package has already been loaded so as to avoid conflicts; we
assume that if the user loads that package, s/he wants to use that package facilities
and command syntax.

The same regulations require also that super and subscripts (apices and

6

pedices) are in upright font, not in math italics, when they represent “adjectives”
or appositions to mathematical or physical variables that do not represent count-
able or measurable entities such as, for example, Vmax or Vrms for a maximum or
a root mean square voltage, compared to Vi or VT as the i-th voltage in a set,
or a voltage that depends on the thermodynamic temperature T . See [2] for a
complete description of the ISO regulations in connection with typesetting.

More rarely it happens to use superscripts that are not mathematical variables,
such as the notation AT to denote the transpose of matrix A; text superscripts are
useful also as ordinals or in old fashioned abbreviations in text mode; for example
the feminine ordinal 1a or the old fashioned obsolete abbreviation Flli for Fratelli
in company names (compare with “Bros.” for brothers in American English); text
subscripts are mostly used in logos.

\unit

\ap

\ped

First we define the new (internal) commands \bbl@unit, \bbl@ap, and \bbl@ped

as robust ones.

84 \@ifpackageloaded{units}{}{%

85 \DeclareRobustCommand*{\bbl@unit}[1]{%

86 \textormath{\,\mbox{#1}}{\,\mathrm{#1}}}%

87 }%

88 \DeclareRobustCommand*{\bbl@ap}[1]{%

89 \textormath{#1}{^{\mathrm{#1}}}}%

90 \DeclareRobustCommand*{\bbl@ped}[1]{%

91 \textormath{$_{\mbox{\fontsize\sf@size\z@

92 \selectfont#1}}$}{_\mathrm{#1}}}%

Then we can use \let to define the user level commands, but in case the macros
already have a different meaning before entering in Italian mode typesetting, we
first memorize their meaning so as to restore them on exit.

93 \@ifpackageloaded{units}{}{%

94 \addto\extrasitalian{%

95 \babel@save\unit\let\unit\bbl@unit}%

96 }%

97 \addto\extrasitalian{%

98 \babel@save\ap\let\ap\bbl@ap

99 \babel@save\ped\let\ped\bbl@ped

100 }%

1.3 Accents

Most of the other language description files introduce a number of shortcuts for
inserting accents and other language specific diacritical marks in a more comfort-
able way compared with the lengthy standard TEX conventions. When an Italian
keyboard is being used on a Windows based platform, it exhibits such limitations
that up to now no convenient shortcuts have been developed; the reason lies in the
fact that the Italian keyboard lacks the grave accent (also known as “backtick”),
which is compulsory on all accented vowels except the ‘e’, but, on the opposite, it
carries the keys with all the accented lowercase vowels; the keyboard lacks also the
tie ~ (tilde) key, while the curly braces require pressing three keys simultaneously.

7

The best solution Italians have found so far is to use a smart editor that accepts
shortcut definitions such that, for example, by striking "(one gets directly { on the
screen and the same sign is saved into the .tex file; the same smart editor should
be capable of translating the accented characters into the standard TEX sequences
when writing a file to disk (for the sake of file portability), and to transform the
standard TEX sequences into the corresponding signs when loading a .tex file
from disk to memory. Such smart editors do exist and can be downloaded from
the ctan archives.

For what concerns the missing backtick key, which is used also for inputting the
open quotes, it must be noticed that the shortcut "" described above completely
solves the problem for double raised open quotes; according to the traditions of
particular publishing houses, since there are no compulsory regulations on the
matter, the French guillemets may be used; in this case the T1 font encoding
solves the problem by means of its built in ligatures << and >>. But. . .

1.4 Caporali or French double quotes

Although the T1 font encoding ligatures solve the problem, there are some cir-
cumstances where even the T1 font encoding cannot be used, either because the
author/typesetter wants to use the OT1 encoding, or because s/he uses a font set
that does not comply completely with the T1 font encoding; some virtual fonts,
for example, are supposed to implement the double Cork font encoding but actu-
ally miss some glyphs; one such virtual font set is given by the ae virtual fonts,
because they are supposed to implement such double font encoding simply using
the cm fonts, of which the type 1 PostScript version exists and is freely available.
Since guillemets (in Italian caporali) do not exist in any cm latin font, their glyphs
must be substituted with something else that approaches them.

Since in French typesetting guillemets are compulsory, the French language
definition file resorts to a clever font substitution; such file exploits the LATEX 2ε
font selection machinery so as to get the guillemets from the Cyrillic fonts, because
it suffices to locally change the default encoding. There are several sets of Cyrillic
fonts, but the ones that obey the OT2 font encoding are generally distributed
with all recent implementations of the TEX software; they are part of the American
Mathematical Society fonts and come both as METAFONT source files and Type 1
PostScript .pfb files. The availability of such fonts should be guaranteed by the
presence of the OT2cmr.fd font description file. Actually the presence of this file
does not guarantee the completeness of your TEX implementation; should LATEX
complain about a missing Cyrillic .tfm file (that kind of file that contains the
font metric parameters) and/or about missing Cyrillic (.mf) files, then your TEX
system is incomplete and you should download such fonts from the ctan archives.
Temporarily you may issue the command \LtxSymbCaporali so as to approximate
the missing glyphs with the LATEX symbol fonts. In some case warning messages
are issued so as to inform the typesetter about the necessity of resorting to some
poor man solution.

In spite of these alternate fonts, we must avoid invoking unusual fonts if the
available encoding allows to use built in caporali. As far as I know (CB) the only

8

T1-encoded font families that miss the guillemets are the AE ones; we therefore
first test if the default encoding id the T1 one and in this case if the AE families
are the default ones; in order for this to work properly it is necessary to load these
optional packages before babel. If the T1 encoding is not the default one when the
Italian language is specified, then some substitutions must be done.

\LtxSymbCaporali

\it@ocap

\it@ccap

We define some macros for substituting the default guillemets; first the emulation
by means of the LATEX symbols; each one of these macro sets actually redefines the
control sequences \it@ocap and \it@ccap that are the ones effectively activated
by the shortcuts "< and ">.

101 \def\LtxSymbCaporali{%

102 \DeclareRobustCommand*{\it@ocap}{\mbox{%

103 \fontencoding{U}\fontfamily{lasy}\selectfont(\kern-0.20em(}%

104 \ignorespaces}%

105 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi

106 \mbox{%

107 \fontencoding{U}\fontfamily{lasy}\selectfont)\kern-0.20em)}}%

108 }%

Then the substitution with any specific font that contains such glyphs; it might
be the CBgreek fonts, the Cyrillic one, the super-cm ones, the lm ones, or any
other the user might prefer (the code is adapted from the one that appears in the
frenchb.ld file; thanks to Daniel Flipo). By default if the user did not select
the T1 encoding, the existence of the CBgreek fonts is tested; if they exist the
guillemets are taken from this font, and since its families are a superset of the
default CM ones and they apply also to typeset slides with the standard class
slides. If the CBgreek fonts are not found, then the existence of the Cyrillic
ones is tested, although this choice is not suited for typesetting slides; otherwise
the poor man solution of the LATEX special symbols is used. In any case the user
can force the use of the Cyrillic guillemets substitution by issuing the declaration
\CyrillicCaporali just before the \begin{document} statement; in alternative
the user can specify with

\CaporaliFrom{〈encoding〉}{〈family〉}{〈opening number〉}{〈closing number〉}

the encoding and family of the font s/he prefers, and the slot numbers of the
opening and closing guillemets respectively. For example if the T1-encoded Latin
Modern fonts are desired the specific command should be

\CaporaliFrom{T1}{lmr}{19}{20}

These user choices might be necessary for assuring the correct typesetting with
fonts that contain the required glyphs and are available also in PostScript form so
as to use them directly with pdflatex, for example.

109 \def\CaporaliFrom#1#2#3#4{%

110 \DeclareFontEncoding{#1}{}{}%

111 \DeclareTextCommand{\it@ocap}{T1}{%

112 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespaces}}%

113 \DeclareTextCommand{\it@ccap}{T1}{\ifdim\lastskip>\z@\unskip\fi%

9

114 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}%

115 \DeclareTextCommand{\it@ocap}{OT1}{%

116 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespaces}}%

117 \DeclareTextCommand{\it@ccap}{OT1}{\ifdim\lastskip>\z@\unskip\fi%

118 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}

Then we set a boolean variable and test the default family; if such family has
a name that starts with the letters “ae” then we have no built in guillemets; of
course if the AE font family is chosen after the babel package is loaded, the test
does not perform as required.

119 \def\get@ae#1#2#3!{\def\bbl@ae{#1#2}}%

120 \def\@ifT@one@noCap{\expandafter\get@ae\f@family!%

121 \def\bbl@temp{ae}\ifx\bbl@ae\bbl@temp\expandafter\@firstoftwo\else

122 \expandafter\@secondoftwo\fi}%

We set another couple of boolean variables for testing the existence of the CBgreek
or the Cyrillic fonts

123 \newif\if@CBgreekEncKnown

124 \IfFileExists{lgrcmr.fd}%

125 {\@CBgreekEncKnowntrue}{\@CBgreekEncKnownfalse}

126 \newif\if@CyrEncKnown

127 \IfFileExists{ot2cmr.fd}%

128 {\@CyrEncKnowntrue}{\@CyrEncKnownfalse}%

\CBgreekCaporali

\CyrillicCaporali

\T@unoCaporali

Next we define the macros \CBgreekCaporali, \T@unoCaporali, and \CyrillicCaporali;
with the latter one we test the loaded class, and if it’s slides nothing gets done. In
any case each one of these declarations, if used, must be specified in the preamble.

129 \def\CBgreekCaporali{\@ifclassloaded{slides}{%

130 \IfFileExists{lgrlcmss.fd}{\DeclareFontEncoding{LGR}{}{}%

131 \DeclareRobustCommand*{\it@ccap}%

132 {\ifdim\lastskip>\z@\unskip\fi

133 {\fontencoding{LGR}\selectfont))}}%

134 \DeclareRobustCommand*{\it@ocap}%

135 {{\fontencoding{LGR}\selectfont((}\ignorespaces}}%

136 {\LtxSymbCaporali}}%

137 {\DeclareFontEncoding{LGR}{}{}%

138 \DeclareRobustCommand*{\it@ccap}%

139 {\ifdim\lastskip>\z@\unskip

140 \fi{\fontencoding{LGR}\selectfont))}}%

141 \DeclareRobustCommand*{\it@ocap}%

142 {{\fontencoding{LGR}\selectfont((}\ignorespaces}}%

143 }%

144 \def\CyrillicCaporali{\@ifclassloaded{slides}{\relax}%

145 {\DeclareFontEncoding{OT2}{}{}%

146 \DeclareRobustCommand*{\it@ccap}%

147 {\ifdim\lastskip>\z@\unskip\fi

148 {\fontencoding{OT2}\selectfont\char62\relax}}%

149 \DeclareRobustCommand*{\it@ocap}%

150 {{\fontencoding{OT2}\selectfont\char60\relax}\ignorespaces}}}%

151 \@onlypreamble{\CBgreekCaporali}\@onlypreamble{\CyrillicCaporali}%

10

152 \def\T@unoCaporali{\DeclareRobustCommand*{\it@ocap}{<<\ignorespaces}%

153 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi>>}}%

Now we can do some real setting; first we start testing the encoding; if the encoding
is T1 we test if the font family is the AE one; if so, we further test for other
possibilities

154 \ifx\cf@encoding\bbl@t@one

155 \@ifT@one@noCap{%

156 \if@CBgreekEncKnown

157 \CBgreekCaporali

158 \else

159 \if@CyrEncKnown

160 \CyrilicCaporali

161 \else

162 \LtxSymbCaporali

163 \fi

164 \fi}%

165 {\T@unoCaporali}%

But if the default encoding is not the T1 one, then the substitutions must be
performed.

166 \else

167 \if@CBgreekEncKnown

168 \CBgreekCaporali

169 \else

170 \if@CyrEncKnown

171 \CyrilicCaporali

172 \else

173 \LtxSymbCaporali

174 \fi

175 \fi

176 \fi

1.5 Finishing commands

The macro \ldf@finish takes care of looking for a configuration file, setting the
main language to be switched on at \begin{document} and resetting the category
code of @ to its original value.

177 \ldf@finish{italian}%

178 〈/code〉

References

[1] Beccari C., “Computer Aided Hyphenation for Italian and Modern Latin”,
TUGboat vol. 13, n. 1, pp. 23-33 (1992).

[2] Beccari C., “Typesetting mathematics for science and technology according to
ISO 31/XI”, TUGboat vol. 18, n. 1, pp. 39-48 (1997).

11

