1 The Italian language

Important notice: This language description file relies on functionalities pro-
vided by a modern TeX system distribution with pdfLATeX working in extended
mode (eTeX commands available); it should perform correctly also with XeLaTeX
and LuaLaTeX; tests have been made also with the latter programs, but it was
really tested in depth with babel and pdfLaTeX.

The file italian.dtx' defines all the language-specific macros for the Italian
language.

inserts a compound word mark where hyphenation
is legal; it allows etymological hyphenation which is
recommended for technical terms, chemical names
and the like; it does not work if the next character is
represented with a control sequence or is an accented
character.

"| the same as the above without the limitation on char-
acters represented with control sequences or accented
ones.

""" inserts open quotes

"< inserts open guillemets.

"> inserts closed guillemets.

"/ equivalent to \slash

Table 1: Shortcuts for the Italian language

The features of this language definition file are the following;:

1. The Italian hyphenation is invoked, provided that the Italian hyphenation
pattern files were loaded when the specific format file was built.

2. The language dependent infix words to be inserted by such commands as
\chapter, \caption, \tableofcontents, etc. are redefined in accordance
with the Italian typographical practice.

3. Since Italian can be easily hyphenated and Italian practice allows to break
a word before the last two letters, hyphenation parameters have been
set accordingly, but a very high demerit value has been set in order to
avoid word breaks in the penultimate line of a paragraph. Specifically
the \clubpenalty, and the \widowpenalty are set to rather high values
and \finalhyphendemerits is set to such a high value that hyphenation is
strongly discouraged between the last two lines of a paragraph.

IThe file described in this section has version number v1.3a and was last revised on
2013/10/02. The original author is Maurizio Codogno, (mau@beatles.cselt.stet.it). It was
initially revised by Johannes Braams and then completely rewritten by Claudio Beccari

4. Some language specific shortcuts have been defined so as to allow etymolog-
ical hyphenation, specifically " inserts a break point in any word boundary
that the typesetter chooses, provided it is not followed by an accented letter
(very unlikely in Italian, where compulsory accents fall only on the last and
ending vowel of a word, but it may take place with compound words that
include foreign roots), and "| when the desired break point falls before an
accented letter.

5. The shortcut "" introduces the raised (English) opening double quotes; this
shortcut proves its usefulness when one reminds that the Italian keyboard
misses the backtick key, and the backtick on a Windows based platform may
be obtained only by pressing the Alt key while keying the numerical code
0096 in the numeric keypad; very, very annoying!

6. The shortcuts "< and "> insert the guillemets sometimes used also in Italian
typography; with the T1 font encoding the ligatures << and >> should insert
such signs directly, but not all the virtual fonts that claim to follow the
T1 font encoding actually contain the guillemets; with the OT1 encoding
the guillemets are not available and must be faked in some way. By using
the "< and "> shortcuts (even with the T1 encoding) the necessary tests
are performed and in case the guillemets are faked by means of the special
LaTeX math symbols. At the same time if OpenType fonts are being used
with XeLaTeX or LuaLaTeX, there are no problems with guillemets.?

7. Three new specific commands \unit, \ped, and \ap are introduced so as
to enable the correct composition of technical mathematics according to
the ISO 31/XI recommendations. The definition of \unit takes place only
at “begin document' so that it is possible to verify if some other similar
functionalites have already been defined by other packages, such as unit.sty
or siunitx.sty.

8. Since in all languages different from English the decimal separator according
to the ISO regulations must be a comma, and since no language description
file nor the babel package itself provides for this deficiency, a simple intel-
ligent comma definition is provided such that at least in mathematics it
behaves correctly. There are other packages that provide a similar function-
ality, for example icomma and ncccomma; I believe that my solution is better
than that provided by both those packages; but, since this functionality may
be turned on or off at the user will, those packages may still be used By de-
fault this functionality is turned off, therefore the user should turn it on by
means of the \IntelligentComma command; it can turn it off by means of
\NoIntelligentComma.

2At the date of writing actually there are some problems with LuaLaTeX, in the sense that
the real guillemets « and » work as they should, while the << and >> ligatures don’t; the bug is
due to the lack of some lines in the features description file of OpenType fonts for LualaTeX;
the bug has already been submitted to the LuaTeX Team; is is very likely that when you use
this Italian language description file, the bug has already been corrected.

\captionsitalian

9. In Italian legal documents it is common to tag list-items with the old fash-
ioned 21-letter Italian alphabet, that differs from the Latin one by the
omission of the letters ‘j’, ‘k’, ‘w’,‘x’, and ‘y’. This applies for both up-
per and lower case tags. This feature is obtained by using the commands
\XXIletters and \XXVIletters that allow to switch back and forth between
21- and 26-letter tagging.

For this language a few shortcuts have been defined, table 1, some of which
are used to overcome certain limitations of the Italian keyboard; in section 2.1
there are other comments and hints in order to overcome some other keyboard
limitations.

The macro \LdfInit takes care of preventing that this file is loaded more than
once, checking the category code of the @ sign, etc.

1 \LdfInit{italian}{captionsitalian}y

When this file is read as an option, i.e. by the \usepackage command, italian
will be an ‘unknown’ language in which case we have to make it known. So we
check for the existence of \1@italian to see whether we have to do something
here.

2 \ifx\1l@italian\@undefined
3 \@nopatterns{Italian},
4 \adddialect\1l@italianO\fi

The next step consists of defining commands to switch to (and from) the Italian
language.

The macro \captionsitalian defines all strings used in the four standard docu-
ment classes provided with IXTEX.

5 \addto\captionsitalian{’,

6 \def\prefacename{Prefazionel}

7 \def\refname{Riferimenti bibliograficily,
8 \def\abstractname{Sommariol}y

9 \def\bibname{Bibliografial}%

10 \def\chaptername{Capitolo}%

11 \def\appendixname{Appendicel}

12 \def\contentsname{Indicel}V,

13 \def\listfigurename{Elenco delle figurel}’
14 \def\listtablename{Elenco delle tabellel},
15 \def\indexname{Indice analitico}}

16 \def\figurename{Figura}l’

17 \def\tablename{Tabellal}},

18 \def\partname{Partel}

19 \def\enclname{Allegatil}’

20 \def\ccname{e~p.~c.}%

21 \def\headtoname{Per}y,

22 \def\pagename{Pag.}/

23 \def\seename{vedil}/,

24 \def\alsoname{vedi anchel}},

25 \def\proofname{Dimostrazionel}

\dateitalian

\italianhyphenmins

\extrasitalian
\noextrasitalian

\XXIletters
\XXVIletters

26 \def\glossaryname{Glossariolj,
27}

The macro \dateitalian redefines the command \today to produce Italian dates.

28 \def\dateitalian{}
29 \def\today{\number\day~\ifcase\month\or

30 gennaio\or febbraio\or marzo\or aprile\or maggio\or giugno\or
31 luglio\or agosto\or settembre\or ottobre\or novembre\or
32 dicembre\fi\space \number\year}}/,

The italian hyphenation patterns can be used with both \lefthyphenmin and
\righthyphenmin set to 2.

33 \providehyphenmins{\CurrentOption}{\tw@\tw@}

Lower the chance that clubs or widows occur.

34 \addto\extrasitalian{’

35 \babel@savevariable\clubpenalty

36 \babel@savevariable\widowpenalty

37 \babel@savevariable\@clubpenalty

38 \clubpenalty3000\widowpenalty3000\@clubpenalty\clubpenalty}’

Never ever break a word between the last two lines of a paragraph in italian
texts.
39 \addto\extrasitalian{’

40 \babel@savevariable\finalhyphendemerits
41 \finalhyphendemerits50000000}%

In order to enable the hyphenation of words such as “nell’altezza” we give the °
a non-zero lower case code. When we do that TEX finds the following hyphenation
points nel-1’al-tez-za instead of none.
42 \addto\extrasitalian{}
43 \lccode‘’=’}%
44 \addto\noextrasitalian{¥
45 \lccode‘’=0}%

In some traditional texts, especially of legal nature, enumerations labelled with
lower or upper case letters use the reduced Latin alphabet that omits the so called
“non Italian letters”: j, k, w, x, and y.

At the same time it is considered useful to have the posssibility of switching back
and forth from the 21-letter tagging and the 26-letter one. This requires a counter
that keeps the switching status (0 for 21 letters and 1 for 26 letters) and commands
\XXIletters and \XXVIletters to set the switch. Default is 26 letter tagging.

46 \newcount\it@lettering \it@lettering=\@ne

47 \newcommand*\XXIletters{\it@lettering=\z@}

48 \newcommand*\XXVIletters{\it@lettering=\@ne}

49 \let\bbl@alph\@alph \let\bbl@Alph\@Alph

50 \addto\extrasitalian{\babel@savevariable\it@lettering

51 \let\@alph\it@alph \let\@Alph\it@Alph}

52 \addto\noextrasitalian{\let\@alph\bbl@alph\let\@Alph\bbl@Alph}

To make this feasible it’s necessary to redefine the way the I¥TEX \@alph and
\@Alph work. Let’s make the alternate definitions:

53 \def\it@alph#1{Y%

54 \ifcase\it@lettering

55 \ifcase#1\or al\or b\or c\or d\or e\or flor g\or h\or ilor

56 1\or m\or n\or o\or p\or g\or r\or s\or t\or u\or v\or

57 z\else\@ctrerr\fi

58 \or

59 \ifcase#1\or al\or b\or c\or d\or e\or flor g\or h\or ilor

60 j\or k\or 1l\or m\or n\or ol\or p\or g\or r\or s\or t\or u\or v\or
61 w\or x\or y\or z\else\@ctrerr\fi

62 \fi}%

63 \def\it@Alph#1{Y

64 \ifcase\it@lettering

65 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or

66 L\or M\or N\or O\or P\or Q\or R\or S\or T\or Ulor V\or

67 Z\else\@ctrerr\fi

68 \or

69 \ifcase#1\or A\or B\or C\or D\or E\or F\or G\or H\or I\or

70 J\or K\or L\or M\or N\or 0\or P\or Q\or R\or S\or T\or Ulor V\or
71 W\or X\or Y\or Z\else\@ctrerr\fi

72 \fil}%

In order to have a complete description, the situation is this:

1. If you want to always use the 21-letter item tagging, simply use the
\XXIletters declaration just after \begin{document} and this setting re-
mains global (provided, of course, that the declaration is defined, therefore
that the Italian language is the default one); in this way the setting is global
while you use the Italian language.

2. The XXLIletter command, issued outside any environment sets the 26-letter
item tagging in a global way; this setting is the default one.

3. If you specify \XXIletters just before entering an environment that uses
alphabetic tagging, this environment will be tagged with the 21-letter alpha-
bet, but this is a local setting, because the letter taggingg takes place only
from the second level of enumeration.

4. The declarations \XXIletters and \XXVIletters let you switch back and
forth between the two kinds of tagging, But this kind of tagging, the 21-
letter one, is meaningful only in Italian and when you change language,
letter tagging reverts to the 26-letter one.

1.1 Support for etymological hyphenation

In Italian such etymological hyphenation is desirable with technical terms, chem-
ical names, and the like.

1.1.1 Some history

In his article on Italian hyphenation [1] Beccari pointed out that the Italian lan-
guage gets hyphenated on a phonetic basis, although etymological hyphenation
is allowed; this is in contrast with what happens in Latin, for example, where
etymological hyphenation is always used. Since the patterns for both languages
would become too complicated in order to cope with etymological hyphenation,
in his paper Beccari proposed the definition of an active character ‘_’ such that it
could insert a “soft” discretionary hyphen at the compound word boundary. For
several reasons that idea and the specific active character proved to be unpractical
and was abandoned.

This problem is so important with the majority of the European languages, that
babel from the very beginning developed the tradition of making the " character
active so as to perform several actions that turned useful with every language.
One of these actions consisted in defining the shortcut " |, that was extensively
used in German and in many other languages, in order to insert a discretionary
hyphen such that hyphenation would not be precluded in the rest of the word as
it happens with the standard TEX command \-.

Meanwhile the ec fonts with the double Cork encoding (thus formerly called
the dc fonts) have become more or less standard and are widely used by virtually
all Europeans that write languages with many special national characters; by so
doing they avoid the use of the \accent primitive which would be required with
the standard OT1 encoded cm fonts; with such OT1 encoded fonts the primitive
command \accent is such that hyphenation becomes almost impossible, in any
case strongly impeached.

The T1 encoded fonts contain a special character, named “compound word
mark”, that occupies slot 23 (or ’27 or "17 in the font scheme and may be input
with the sequence ~~W. Up to now, apparently, this special character has never been
used in a practical way for typesetting languages rich of compound words; more-
over it has never been inserted in the hyphenation pattern files of any language.
Beccari modified his pattern file ithyph.tex v4.8b for Italian so as to contain
five new patterns that involve ~~W, and he tried to give the babel active character
" a new shortcut definition, so as to allow the insertion of the “compound word
mark” in the proper place within any word where two semantic fragments join
up. With such facility for marking the compound word boundaries, etymological
hyphenation becomes possible even if the patterns know nothing about etymology
(but the typesetter hopefully does!).

1.1.2 The current solution

Even this solution proved to be inconvenient on certain *NIX platforms, so Beccari
resorted to another approach that uses the babel active character " and relies on
the category code of the character that follows ".

73 \initiate@active@char{"}}%
74 \addto\extrasitalian{\bbl@activate{"}\languageshorthands{italian}}J

\it@cwm

\it@cwm

The active character " is now defined for language italian so as to perform
different actions in math mode compared to text mode; specifically in math mode
a double quote is inserted so as to produce a double prime sign, while in text mode
the temporary macro \it@next is defined so as to defer any further action until
the next token category code has been tested.

75 \declare@shorthand{italian}{"}{%

76 \ifmmode

77 \def\it@next{’’}%

78 \else

79 \def\it@next{\futurelet\it@temp\it@cwm}/,
80 \fi

81 \it@next

82 }

The \it@next service control sequence is such that upon its execution a temporary
variable \it@temp is made equivalent to the next token in the input list without
actually removing it. Such temporary token is then tested by the macro \it@cwm
and if it is found to be a letter token (cathode=11), then it introduces a compound
word separator control sequence \it@allowhyphens whose expansion introduces
a discretionary hyphen and an unbreakable null space; in case the token is not a
letter, then it is tested against |1o: if so a compound word separator is inserted
and the | token is removed, otherwise another test is performed so as to see
if another double quote sign follows: in this case a double open quote mark is
inserted; otherwise two other tests are performed so as to see if guillemets have
to be inserted, otherwise nothing is done. The double quote shortcut for inserting
a double open quote sign is useful for people who are inputting Italian text by
means of an Italian keyboard that unfortunately misses the grave or backtick key.
By this shortcut "" becomes equivalent to ¢ ¢ for inserting raised open high double
quotes.

83 \def\it@@cwm{\nobreak\discretionary{-}{}{}\hskip\z@skipl}’

84 \def\it@Q@ocap#1{\it@ocap}\def\it@0ccap#1{\it@ccapl}

85 \DeclareRobustCommand*{\it@cwm}{\let\it@Onext\relax

86 \ifcat\noexpand\it@temp al,

87 \def\it@@next{\it@@cwml}%

88 \else

89 \if\noexpand\it@temp \stringl%

90 \def\it@0Onext{\it@Acwm\@gobble},

91 \else

92 \if\noexpand\it@temp \string<y

93 \def\it@Onext{\it@@ocapl}’

94 \else

95 \if\noexpand\it@temp \string>’

96 \def\it@0Onext{\it@0ccapl}’

97 \else

98 \if\noexpand\it@temp\string/%

99 \def\it@next{\slash\@gobblel}j,

100 \else

101 \ifx\it@temp"%

102 \def\it@0Onext{‘‘\Q@gobblel}y
103 \fi

104 \fi

105 \fi

106 \fi

107 \fi

108 \fi

109 \it@@next}Y

By this definition of " if one types macro"istruzione the possible break points
become ma-cro-istru-zio-ne, while without the " mark they would be ma-croi-stru-
zio-ne, according to the phonetic rules such that the macro prefix is not taken as a
unit. A chemical name such as des"clor"fenir"amina"cloridrato is breakable
as des-clor-fe-nir-ami-na-clo-ri-dra-to instead of de-sclor-fe-ni-ra-mi-na-. ..

In other language description files a shortcut is defined so as to allow a break
point without actually inserting any hyphen sign; examples are given such as
entrada/salida; actually if one wants to allow a breakpoint after the slash, it is
much clearer to type \slash instead of / and KTEX does everything by itself;
here the shortcut "/ was introduced to stand for \slash so that one can type
input"/output and allow a line break after the slash. This shortcut works only
for the slash, since in Italian such constructs are extremely rare.

Attention: the expansion of " takes place before the actual expansion of OT1
or T1 accented sequences such as \ ‘{a}; therefore this etymological hyphenation
facility works as it should only when the semantic word fragments do not start
with an accented letter; this in Italian is always avoidable, because compulsory
accents fall only on the last vowel, but it may be necessary to mark a compound
word where one or more components come from a foreign language and contain
diacritical marks according to the spelling rules of that language. In this case the
special shorthand " | may be used that performs exactly as " normally does, except
that the | sign is removed from the token input list: kilo"|{\"o}rsted gets
hyphenated as ki-lo-6r-sted; but also kilo" | drsted gets hyphenated correctly
as ki-lo-6r-sted The " | macro is necessary because, even with a suitable option
specified to the inputenc package, the letter ‘6’ does not have category code 11,
as the ASCII letters do, because of the intermediate passages that have to be done
in order to fetch the proper glyph in the output font.

1.2 Facilities required by the ISO 31/XI regulations

The ISO 31/XI1 regulations require that units of measure are typeset in upright
font in both math and text, and that in text mode they are separated from the
numerical indication of the measure with an unbreakable (thin) space. The com-
mand \unit that was defined for achieving this goal happened to conflict with the
homonymous command defined by the units.sty; we therefore need to test if that
package has already been loaded so as to avoid conflicts; we assume that if the
user loads that package, s/he wants to use that package facilities and command
syntax.

\unit

Actually there are around several packages that help to typeset units of mea-
sure in the proper way; besides units.sty there is also siunitx.sty that nowa-
days offers the best performances in this domain. Therefore we keep controlling
the possibility that units.sty has been loaded just for backwards compatibility,
but we must do the same with siunitx.sty. In order to avoid the necessity o
loading packages in a certain order, we delay the test until \begin{document}.

The same ISO regulations require also that super and subscripts (apices and
pedices) are in upright font, not in math italics, when they represent “adjectives”
or appositions to mathematical or physical variables that do not represent count-
able or measurable entities such as, for example, Viyax or Ving for a maximum or
a root mean square voltage, compared to V; or Vp as the i-th voltage in a set,
or a voltage that depends on the thermodynamic temperature 7. See [2] for a
complete description of the ISO regulations in connection with typesetting.

More rarely it happens to use superscripts that are not mathematical variables,
such as the notation AT to denote the transpose of matrix A; text superscripts are
useful also as ordinals or in old fashioned abbreviations in text mode; for example
the feminine ordinal 1* or the old fashioned obsolete abbreviation F!' for Fratelli
in company names (compare with “Bros.” for brothers in American English); text
subscripts are mostly used in logos.

First we define the new (internal) commands \bbl@unit, \bbl@ap, and \bbl@ped

\ap as robust ones.
\ped 110 \def\activate@it@unit{\DeclareRobustCommand*{\bbl@it@unit}[1]1{%

111 \textormath{\, \textup{##1}}{\, \mathrm{##1}}}}

112 \AtBeginDocument{%

113 \@ifpackageloaded{units}{}{\@ifpackageloaded{siunitx}{}{/%
114 \@ifpackageloaded{SIunits}{}{%

115 \activate@it@unit\addto\extrasitalian{}

116 \babel@save\unit\let\unit\bbl@it@unit}\selectlanguage{italian}y,
117 3}
118 }

119 \DeclareRobustCommand*{\bbl@it®@ap}[1]{%

120 \textormath{#1}{ " {\mathrm{#1}}3}}%
121 \DeclareRobustCommand*{\bbl@it@ped} [1]{%

122 \textormath{$_{\mbox{\fontsize\sf@size\z@

123 \selectfont#1}}$}{_\mathrm{#1}}}%

Then we can use \let to define the user level commands, but in case the macros
already have a different meaning before entering in Italian mode typesetting, we
first memorize their meaning so as to restore them on exit.

124 \addto\extrasitalian{,

125 \babel@save\ap\let\ap\bbl@it@ap

126 \babel@save\ped\let\ped\bbl@it@ped

127 }h

\IntelligentComma
\NoINtellgentComma

\virgola
\virgoladecimale

2 Intelligent comma

This feature is optional, in the sense that it is necessary to issue a specific command
to activate it; actually it sets a switch and according to this switch the functionality
is activated or dismissed.

128 \newcount\Virgola

129 \Virgola=\z@

130 \newcommand*\IntelligentComma{\Virgola=\@ne}

131 \newcommand*\NoIntelligentComma{\Virgola=\z@}

132 \addto\extrasitalian{\babel@savevariable\Virgola}

In order to have this functionality work properly with pdfLaTeX, XeLaTeX, and
LualLaTeX, it is necessary to discover which engine is being used, or better, wichich
language handling package is being used: babel or polyglossia? Let us remem-
ber that testing the actual engine, as it would be possible with package iftex,
does not tell the whole truth, because in the case of LuaLaTeX, that is similar
to XeLaTeX for what concerns handling of OpenType fonts, it uses the same en-
gine as pdfLATeX and can use either babel or polyglossia, so this is the real
discriminant factor, not the typesetting engine.

At the same time we need to perform some tests that require some smart
control-sequence handling; therefore we call the etoolbox package that allow us
more testing functionality. There are no problems with this package that can be
invoked also by other ones before or after babel is called; the \RequirePackage
mechanism is sufficiently smart to avoid reloading of the same package more than
once. But we have to delay this call, because italian.1df is being read while
processing the options passed to babel, and this is forbidden; we delay it at the
end of processing the babel package itself.

133 \AtEndOfPackage{\RequirePackage{etoolbox}}

We need two kind of commas, one that is a decimal separator, and a second one
that is a punctuation mark.

134 \DeclareMathSymbol{\virgola}{\mathpunct}{letters}{"3B}
135 \DeclareMathSymbol{\virgoladecimale}{\mathord}{letters}{"3B}

Then we need a command to set the comma as an active charter only in math
mode; the special \mathcode that classifies an active character in math is the
exadecimal value "8000. But we have to set this value only when the current
lagguage is not English or one of its varieties.

136 \AtEndOfPackage{/
137 \AtEndPreamble{Y
138 \@ifpackageloaded{polyglossia}{%

139 \ifcsstring{xpg@main@language}{english}{\relax}{/
140 \mathcode ‘\,=\string"8000}

141 M4

142 \ifcsstring{languagename}{english}{\relax}{/

143 \mathcode ‘\,=\string"8000}

144 %

145 }}

10

Math comma activation is done only after the preamble has been completed,
that is after the \begin{document} statement has been completely executed. Now
we must give a definition to the active comma: probably it is not necessary to
pass through in intermediate robust command, but certainly it is not wrong to do
it.

146 \DeclareRobustCommand*\it@comma@def{\futurelet\let@token\m@thcommal},
147 {\catcode ‘,=\active \gdef,{\itQ@comma@def}}%

The real work shall be performed by \it@comma@def. In facts the above macro
stores the token that immediately follows \@math@comma into a temporary control
sequence that behaves as an implicit character if that token is a single character,
even a space, or behaves as an alias of a control sequence otherwise.

Is is important to remark that \@math@comma must be a command that does
not require arguments; this makes it robust when it is followed by other characters
that may play special roles within the arguments of other macros or environments.
Matter of fact the first version 1.3 of this file in version 1.3 did accept an argument;
and the result was that the active comma would “eat up” the & in vertical math
alignments and very hasty problem took place, especially within the amsmath
defined ones. This macro \@math@comma without arguments does not do any
harm to the AMS environments and the actual intelligent comma work shall be
executed by other macros.

So first we test if the comma must act intelligently; if the counter \Virgola
contains zero, we assume that the comma must always perform as a punctuation
mark; but if we want to distinguish if it must behave as a decimal separator, we
have to perform more delicate tests; this latter task is demanded to another macro
with arguments \@math@@comma.

148 \DeclareRobustCommand*\@math@comma{’

149 \ifnumequal{\Virgola}{\z@}{\virgola}{%
150 \unless\ifcat\noexpand\let@tokenx

151 \expandafter\virgola\else

152 \expandafter\@math@@comma\fil}}

In particular this macro must test if the argument has category code 12, that
is “other character”, not a letter, nor other special signs, as & for example. In case
the category code is not 12, the comma must act as a punctuation mark; but if it
is, it might be a digit, or another character, an asterisk, for example; so we have to
test its digit nature; the simplest that was found to test if a token is a digit, is to
test its ASCII code against the ASCII codes of ‘0’ (zero) and 9. The typesetting
engines give the backtick, ¢, the property that when a number is required, it yields
the ASCII code if the following token in an explicit character or a macro argument;
this is why we can’t use the temporary implicit token we just tested, but we must
examine the first non blank token that follows the \@math@@comma macro. Only if
the token is a digit, we use the decimal comma, otherwise the punctuation mark.
This is therefore the definition of the \@math@@comma macro which is not that
simple, although the testing macros have clear meanings:

153 \DeclareRobustCommand*\@math@@comma [1]{%
154 \ifcsundef{\expandafter\@gobble\string #1}{J

11

155 \ifnumless{‘#1}{‘0}{\virgolal}’
156 {\ifnumgreater{‘#1}{‘9}{\virgolal}y
157 {\virgoladecimale}}}{\virgola}#1}

Notice that the argument #1 is first changed to a string of category code 12
characters by means of the command \string; then \@gobble gobbles the first
character in the listIf it was a single character the list remains empty, while int it
was a control sequence, the backslash get stripped off. Then ifcsundef tests if
the string is defined as a control sequence; of course it it has to check an empty
string, that turns to be undefined, so we are facing a single character, while if
the original string was a control sequence the tests turns out to be false. The
particular testing macro returns the correct result true or false whiteout giving
a false negative if the string was undefined, as \ifcsname. ..\endcsname would
do in the same circumstances. In any case if the argument was a control sequence,
the comma whould be a punctuation one, while if it was a single character, its
ASCII code is testd to be in the range ‘0--‘9 and it it’s actually in this range
the comma has to be a decimal separator.

Now the last two macro definitions rely on service macros that are provided
by the etoolbox package, that shall be read at most at the end of the babel
package processing; therefore only at the end point we can delay the code at “end
preamble” time, since only at that time it will be known if the main language
is English, or any other one. This is why we have to perform such a baroque
definition as the following one:

158 \AtEndOfPackage{\AtEndPreamble{\let\m@thcomma\@math@comma}}

This intelligent comma definition is pretty intelligent, but it requires some kind
of information from the context; this context does not give enough bits of in-
formation to this ‘intelligence’ in just one case: when the comma plays the
role of a serial separator in expressions such as i = 1,2,3,...,00, entered as
$i=1,.,2,,3,\dots,\infty$. In this case and only in this case the comma must
be followed by an explicit space; should this space be absent the macro takes the
following non blank token as a digit, and since it actually is a digit, it would use
the decimal comma, which would be wrong. The control sequences \dots and
\infty are tested to see if they are undefined, and since they are defined, the
macro inserts a punctuation mark, instead of a decimal separator.

Notice that this macro may appear to be inconsistent with the contents of
a language description file. I don’t agree: matter of facts even math is part of
typesetting a text in a certain language. Does this set of macros influence other
language description files? May be, but I think that the clever use of macros
\IntelligentComma and \NoIntellingentComma may solve any interference; they
allow to use the proper mark even if the Italian language is not the main language,
the important point is to turn the switch on and/or off. By default it is off, so
there should not be any interference even with legacy documents typeset in Italian.

Notice that there are other packages that contain facilities for using the decimal
comma as the correct decimal separator; for example STunitx defines a command
\num that not only correctly spaces the decimal separator, but also can change
the input glyph with another one, so that it is possible to copy and paste numbers

12

from texts in English (with the decimal point) and paste them into the argument
of the \num macro in an Italian document where the decimal point is changed au-
tomatically into a decimal comma. Of course STunitx does much more than that;
if it’s being loaded, then the default \NoIntelligentComma declaration disables
the functionality defined in this language description file and the user can do what
he desires with the many functionalities of that package.

2.1 Accents

Most of the other language description files introduce a number of shortcuts for
inserting accents and other language specific diacritical marks in a more comfort-
able way compared with the lengthy standard TEX conventions. When an Italian
keyboard is being used on a Windows based platform, it exhibits such limitations
that up to now no convenient shortcuts have been developed; the reason lies in
the fact that the Italian keyboard lacks the grave accent (also known as “back-
tick”), which is compulsory on all accented vowels, but, on the opposite, it carries
the keys with all the accented lowercase vowels; the keyboard lacks also the tie ~
(tilde) key, while the curly braces require pressing three keys simultaneously.

The best solution Italians have found so far is to use a smart editor that accepts
shortcut definitions such that, for example, by striking " (one gets directly { on the
screen and the same sign is saved into the .tex file; the same smart editor should
be capable of translating the accented characters into the standard TEX sequences
when writing a file to disk (for the sake of file portability), and to transform the
standard TEX sequences into the corresponding signs when loading a .tex file
from disk to memory. Such smart editors do exist and can be downloaded from
the CTAN archives.

For what concerns the missing backtick key, which is used also for inputting the
open quotes, it must be noticed that the shortcut "" described above completely
solves the problem for double raised open quotes; according to the traditions of
particular publishing houses, since there are no compulsory regulations on the
matter, the guillemets may be used; in this case the T1 font encoding solves
the problem by means of its built in ligatures << and >>; such ligatures are also
available when using OpenType fonts with XeLaTeX and LualLaTeX, provided
they are loaded with the option Ligatures = TeX. But...

2.2 Caporali or French double quotes

Although the T1 font encoding ligatures solve the problem, there are some cir-
cumstances where even the T1 font encoding cannot be used, either because the
author /typesetter wants to use the OT1 encoding, or because s/he uses a font set
that does not comply completely with the T1 font encoding; some virtual fonts, for
example, are supposed to implement the double Cork font encoding but actually
miss some glyphs; one such virtual font set is given by the ae virtual fonts, because
they are supposed to implement such double font encoding by using virtual fonts
that map the CM fonts to a T1 font scheme; the type 1 PostScript version of the
CM fonts do exist, therefore one believes to be able of using them with pdfLaTeX;

13

\LtxSymbCaporali
\it@ocap
\it@ccap

but since the CM fonts do not contain the guillemets, neither the AM ones do. Since
guillemets (in Italian caporali) do not exist in any OT1 encoded cm Latin font,
their glyphs must be substituted with something else that fakes them.

In the previous versions of this language description file the absent guillemets
were faked with other fonts, by taking example from the solution the French had
found for their language description file; they would get suitable guillemets from
the cyrillic fonts; This solution was good in most cases, except when the “slides
fonts” were used, because there is no Cyryllic slide font around.

This might seem a negligible “feature” because the modern classes or exten-
sion modules to produce slides mostly avoid the “old” fonts for slides created by
Leslie Lamport when he made available to the TeX community the macro package
LaTeX.

Since I designed renewed slide fonts extending those created by Leslie Lamport
to the T1 encoding, the Text Companion fonts, and the most frequent “regular”
and AMS math fonts with the same graphic style and excellent legibility (LX-
fonts), I thought that this feature is not so negligible. It’s true that nowadays
nobody should use the old OT1 encoding when typesetting in any language, En-
glish included, because independently form the document main language, it is
very frequent to quote passages in other languages, or to type foreign proper
names of persons or places; nevertheless having in mind a minimum of backwards
compatibility and hoping that the deliberate use of OT1 encoding (still necessary
to typeset mathematics) is being abandoned, I decided to simplify the previous
handling of guillemets.

Therefore here I will test at “begin document” only if the OT1 encoding is
the default one, while if the T1 encoding is the default one, that the font collec-
tion AE is not being used; should it be the case, I will substitute the guillemets
with the LaTeX special symbols reduced to script size, and I will not try to fake
the guillemets with better solutions; evidently if OpenType fonts are being used,
nothing is done; so the tests that follow concern only typesetting old documents
or the lack of a wiser choice of fonts and their encodings; an info message is issued
and output to the .log file.

First the macro \LtxSymvCaporali is defined so as to assign a default definition
of the faked guillemets: each one of these macro sets actually redefines the control
sequences \it@ocap and \it@ccap that are the ones effectively activated by the
shortcuts "< and ">. By default the caporali glyphs are taken from T1-encoded
fonts; at the end of the preamble some tests are performed to control if the default
fonts contain such glyphs, and in case a different font is chosen.

159 \def\LtxSymbCaporali{},

160 \DeclareRobustCommand*{\it@ocap}{\mbox{%

161 \fontencoding{U}\fontfamily{lasy}\selectfont (\kern-0.20em(}%
162 \ignorespacesl}/,

163 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi
164 \mbox{%

165 \fontencoding{U}\fontfamily{lasy}\selectfont)\kern-0.20em)}1}/
166 }%

14

167 \def\T@unoCaporali{\DeclareRobustCommand*{\it@ocap}{<<\ignorespacesl}y
168 \DeclareRobustCommand*{\it@ccap}{\ifdim\lastskip>\z@\unskip\fi>>}1}J,
169 \T@unoCaporali

Nevertheless a macro for choosing where to get glyphs for real guillemets is offered;
the syntax is the following:

\CaporaliFrom{(encoding) H (family)}{{open guill. slot)} {{close guill. slot)}

where (encoding) and (family) identify the font family name of that particular
encoding from which to get the missing guillemets; (open guill. slot) and (close
guill. slot) are the (preferably) decimal slot addresses of the opening and closing
guillemets the user wants to use. For example if the T1-encoded Latin Modern
fonts are desired, the specific command should be

\CaporaliFrom{T1}{1mr}{19}{20}

These user choices might be necessary for assuring the correct typesetting with
fonts that contain the required glyphs and are available also in PostScript form so
as to use them directly with pdfLaTeX, for example.

170 \def\CaporaliFrom#1#2#3#4{/,

171 \DeclareFontEncoding{#1}{}{}/

172 \DeclareTextCommand{\it@ocap}{T1}{/

173 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespacesl}}%
174 \DeclareTextCommand{\it@ccap}{T1}{\ifdim\lastskip>\z@\unskip\fi%
175 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}1}/,

176 \DeclareTextCommand{\it@ocap}{0T1}{%

177 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#3\ignorespacesl}}/
178 \DeclareTextCommand{\it@ccap}{0T1}{\ifdim\lastskip>\z@\unskip\£fiJ

179 {\fontencoding{#1}\fontfamily{#2}\selectfont\char#4}}}

Notice that the above macro is strictly tied to the T1 encoding; it won’t do any-
thing if the default encoding is not the T1 one. Therefore if the AE font collection
is being used it would be good idea to issue the command shown above as an
example in order to get the proper guillemets>.

Then we set a boolean variable and test the default family; if such family has
a name that starts with the letters “ae” then we have no built in guillemets; of
course if the AE font family is chosen after the babel package is loaded, the test
does not perform as required.
180 \def\getQae#1#2#3!{\def\bblQae{#1#2}}%
181 \def\@ifT@one@noCap{\expandafter\get@ae\f@family',
182 \def\bbl@temp{ae}\ifx\bbl@ae\bblO@temp\expandafter\@firstoftwo\else
183 \expandafter\@secondoftwo\fi}},

Now we can set some real settings; first we start by testing the encoding; if the
encoding is OT1 we set the faked caporali with LaTeX symbols and issue a warning;
then we test if the font family is the AE one we set again the faked caporali and

3 Actually the AE fonts should not be used at all; the same results, more or less are obtained by
using the Latin Modern ones, that are not virtual fonts and contain the whole T1 font scheme.
Nevertheless the faked glyphs are not so bad, so the solution I restored from old versions of they
language description file i acceptable

15

issue another warning?; otherwise we set the commands valid for the T1 encoding,
that work well also with the TeX Ligatures of the OpenType fonts.

184 \AtBeginDocument{\normalfont\def\bbl@temp{0T1}%
185 \ifx\cf@encoding\bbl@temp

186 \LtxSymbCaporali

187 \GenericWarning{italian.1ldf\space}{/

188 File italian.ldf warning: \MessageBreak\space\space\space

189 With OT1 encoding guillemets are poorly faked\MessageBreak
190 \space\space\space

191 Use T1 encoding\MessageBreak\space\space\space

192 or specify a font with command \string\CaporaliFrom\MessageBreak
193 \space\space\space

194 See the documentation concerning the babel-italian typesetting
195 \MessageBreak\space\spacel/,

196 \else

197 \ifx\cf@encoding\bbl@t@one

198 \@ifT@one@noCap{’

199 \LtxSymbCaporali

200 \GenericWarning{italian.ldf\space}{%

201 File italian.ldf warning: \MessageBreak\space\space\space
202 The AE font collection does not contain the guillemets
203 \MessageBreak\space\space\space

204 Use the Latin Modern font collection instead

205 \MessageBreak\space}

206 Yh

207 {\TQunoCaporali}\fi

208 \fi

209 ¥

2.3 Finishing commands

The macro \1df@finish takes care of looking for a configuration file, setting the
main language to be switched on at \begin{document} and resetting the category
code of @ to its original value.

210 \1df@finish{italian}%

References

[1] Beccari C., “Computer Aided Hyphenation for Italian and Modern Latin”,
TUGboat vol. 13, n. 1, pp. 23-33 (1992).

[2] Beccari C., “Typesetting mathematics for science and technology according to
ISO 31/XI”, TUGboat vol. 18, n. 1, pp. 39-48 (1997).

4Notice the it is impossible to check if the slots 19 and 20 of the AE fonts are defined by
means of the eTeX macro \iffontchar, because they are actually defined as black squares!

16

