%&mex --translate-file=il2-pl %% test of qpxmath.tex (09.03.2001, StaW) \def\PT{dd} %% skład 10dd ;-) \input qpxmath \parindent0pt %%====== \def\TEST{Nieco zwykłego tekstu \bf półgrubo, \it a teraz kursyw±, a~może nawet \sc Kapitalikiem. \rm OK, wystarczy. Teraz matematyka w~tek¶cie $\sum_{\alpha\rightarrow\infty}{a+1\over a-b^4}$ i~dalej ($f_m,f_n)=(f_{r_{k-1}}, f_{r_k})$. I~jeszcze $x^{4m}+y^{4m}=z^{4m}$, gdzie $m\xgeq 1$. $\cal A + \cal G$. ${\mit\Gamma}+\Phi$. Cyfry nautyczne $\oldstyle 1967$} \tenpoint 10pt. \TEST \smallskip\ninepoint 9pt. \TEST \smallskip\eightpoint 8pt. \TEST \medskip\tenpoint 10pt (albo czego¶tam) $$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad \varGamma, \dots, \varOmega\quad \alpha,\dots,\omega\quad \varg $$ % \varv \varw \vary not accesible \smallskip $$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$ \smallskip $$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow \Gamma_\varepsilon$$ $$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$ \smallskip $$\underbrace {V \times \cdots \times V}_k \times \underbrace {V \times \cdots \times V}_l \rightarrow \underbrace {V \times \cdots \times V}_{k+l}$$ \smallskip $$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ \cap B^\circ$$ \medskip $$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr d\omega &=d\nu+ \left({\partial w\over \partial x}- {\partial v\over \partial y}\right) dx\wedge dy\cr}$$ \medskip $$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$ \smallskip $$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$ \smallskip \smallskip $$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$ \smallskip $$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$ \smallskip $$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j x^j{\partial\over\partial \dot x^j}$$ \smallskip $$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr) =\sum_{n\ge0}z^n\,\Biggl(\sum_ {\scriptstyle k_0,k_1,\ldots\ge0\atop \scriptstyle k_0+k_1+\cdots=n} a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$ \smallskip $$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing \Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N} =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$ \smallskip $$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$ %% \smallskip\ninepoint 9pt (albo czego¶tam) $$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad \varGamma, \dots, \varOmega\quad \alpha,\dots,\omega\quad \varg$$ %\quad \varv\quad \varw\quad \vary \smallskip $$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$ \smallskip $$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow \Gamma_\varepsilon$$ $$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$ \smallskip $$\underbrace {V \times \cdots \times V}_k \times \underbrace {V \times \cdots \times V}_l \rightarrow \underbrace {V \times \cdots \times V}_{k+l}$$ \smallskip $$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ \cap B^\circ$$ \medskip $$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr d\omega &=d\nu+ \left({\partial w\over \partial x}- {\partial v\over \partial y}\right) dx\wedge dy\cr}$$ \medskip $$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$ \smallskip $$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$ \smallskip \smallskip $$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$ \smallskip $$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$ \smallskip $$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j x^j{\partial\over\partial \dot x^j}$$ \smallskip $$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr) =\sum_{n\ge0}z^n\,\Biggl(\sum_ {\scriptstyle k_0,k_1,\ldots\ge0\atop \scriptstyle k_0+k_1+\cdots=n} a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$ \smallskip $$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing \Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N} =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$ \smallskip $$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$ %% \smallskip \eightpoint 8pt (albo czego¶tam) $$A,\dots,Z\quad a,\dots,z\quad \Gamma, \dots,\Omega\quad \varGamma, \dots, \varOmega\quad \alpha,\dots,\omega\quad \varg$$ %\varv \varw \vary \smallskip $$\aleph_\alpha\times\aleph_\beta=\aleph_\beta\iff \alpha\le \beta$$ \smallskip $$\forall \varepsilon >\alpha, \Gamma_\alpha\hookrightarrow \Gamma_\varepsilon$$ $$|x-a| < \delta \Rightarrow |f(x)-l| < \varepsilon$$ \smallskip $$\underbrace {V \times \cdots \times V}_k \times \underbrace {V \times \cdots \times V}_l \rightarrow \underbrace {V \times \cdots \times V}_{k+l}$$ \smallskip $$\{x\mid x \ne x\} = \emptyset\qquad (A\cap B)^\circ\subset A^\circ \cap B^\circ$$ \medskip $$\eqalign{\omega &= \nu+v(x,y)\,dx + w(x,y)\,dy+d\varPsi\cr d\omega &=d\nu+ \left({\partial w\over \partial x}- {\partial v\over \partial y}\right) dx\wedge dy\cr}$$ \medskip $$\hat x+\widehat X+\widehat{xy}+\widehat{xyz}+\vec A$$ \smallskip $$R_{ijkl}=-R_{jikl}=-R_{ijlk}=R_{klij}$$ \smallskip \smallskip $$f(x)=\cases{|x|&$x>a$\cr -|x|&$x\le a$\cr}$$ \smallskip $$\int_{-\infty}^\infty e^{-x\cdot\,x}\,dx=\sqrt\pi$$ \smallskip $$ X=\sum_i \xi^i {\partial\over\partial x^i}+\sum_j x^j{\partial\over\partial \dot x^j}$$ \smallskip $$\prod_{j\ge0}\biggl(\sum_{k\ge0}a_{jk}z^k\biggr) =\sum_{n\ge0}z^n\,\Biggl(\sum_ {\scriptstyle k_0,k_1,\ldots\ge0\atop \scriptstyle k_0+k_1+\cdots=n} a_{0k_0}a_{1k_1}\ldots\,\Biggr)$$ \smallskip $$\def\\#1#2{(1-q^{#1_#2+n})} % to save typing \Pi_R{a_1,a_2,\ldots,a_M\atopwithdelims[]b_1,b_2,\ldots,b_N} =\prod_{n=0}^R{\\a1\\a2\ldots\\aM\over\\b1\\b2\ldots\\bN}$$ \smallskip $$\int_0^\infty{t-ib\over t^2+b^2}e^{iat}\,dt=e^{ab}E_1(ab),\qquad a,b>0$$ \bye