New PX font package

Michael Sharpe

October 18, 2013

1 Introduction

This package is meant to be a replacement for Young Ryu's pxfonts-a complete text and math package with roman text font provided by a Palatino clone, sans serif based on a Helvetica clone, typewriter faces, plus math symbol fonts whose math italic letters are from a Palatino Italic clone. As with the related txfonts (though not as severe) the math metrics in pxfonts are overly tight.

The goal of this new project is use his glyphs along with a few additions and with completely reworked metrics which are generally looser, but not as loose as Computer Modern math. The following small examples (double normal size) provide some idea of the extent of the changes.

$$
r^{k}+\sum \int_{0}^{\infty} f(t) e^{\alpha t} d t \quad r^{k}+\sum \int_{0}^{\infty} f(t) e^{\alpha t} d t
$$

This new package differs from pxfonts in the following ways:

- the new package is split into separate text and math packages that do not need to be used in conjunction;
- both text and math packages offer options not present in the original package, described below;
- wide accent glyphs have been corrected (they should have zero depth) so that they no longer collide with the underlying glyph;
- the summation and product symbols in pxfonts seemed overly heavy at display size, and have been replaced by others of more suitable weights;
- for those who do not like the integral in pxfonts, an emboldened version of the Computer Modern integral is made available, matching the weight of the pxfonts symbols;
- an upright partial derivative symbol has been added, named \uppartial-д;
- there is now an option to get braces more pleasing to older eyes;
- macros have been added to bring the calls to Greek symbols more into conformity with PSNFSS and Mathtime Pro 2;
- an upright Greek \upvarkappa, \exists, has been added as well as a matching italic version \forall;
- problems using ams macro packages before pxfonts are settled;
- \coloneq and \eqcolon now point to the correct glyphs;
- The problem with the ogonek accent and tabular environments (bad definition of $\backslash \mathrm{k}$) is fixed;
- The default encoding for newpxtext is now T1, but support is offered also for OT1 and LY1. As some add-on packages are available only in T1, that seems the best current choice.
- The font collection used for rendering text is based on TeXGyrePagella with additions to complete the superior figures, which are set by default to render footnote markers. (It is also possible customize footnote markers by redefining \backslash thefootnote after loading newpxtext. sty.) Small caps are available in all weights and styles.

2 Text mode options and macros

The text mode environment invoked by
ckage\{newpxtext\}hasthreeoptions:youmaywrite\usepackage[scaled=.95]\{newpxtext\}toloadtheromanandtypewritertextfontsat95%ofnormalsize,andthesansserif(Helveticaclone)atscale$0.95*0.93$.Thisisnotofmuchutilityifthepackageisusedwiththemathpackagenewpxmathtowhichitisalreadymatched,butmaybewithothermathpackages.undefined

The option osf instructs the text fonts to use old-style figures 1234567890 rather than the default lining figures 1234567890. The package contains a macro \useosf which is shorthand for

```
\renewcommand*{\rmdefault}{zplj}
```

which, when issued after loading the math package, resets the text mode to use oldstyle figures rather than lining figures.

Option defaultsups (same effect as defaultsups=true) forces the package to use the ${ }^{\text {ATTEX }}$ default footnote markers (or, at least, those in force when the package is loaded) instead of preferred by the package-Palatino (clone) superior figures instead of spindly ordinary Palatino lining figures reduced to about 70%. (Footnote markers in minipages use the default lowercase alphabetic characters, unless otherwise specified by redefining \thempfootnote.) For better control over position and size of footnote markers, use the superiors package after loading newpxtext.

3 Math mode options

The package invoked by
package\{newpxmath\}loadsthemathpartofthepxfonts(withrevisedmetricsandadditionalglyphs)andshouldbeloadedafterthetextfontanditsencodinghavebeenspecified,asitusesthetextfontsettingstodefinehowoperators,numbers,mathaccents,\mathrm,\mathbfetc.arerendered.YoushouldalsoloadaTypewriterfontsoasnottogeneratemysteriouserrormessagesaboutmetafonttryingtogenerateectt10.Thepackageoffersanumberofoptions.undefined

- - varg causes the math italic letter g to be replaced by g;
- cmintegrals instructs newpxmath to load a thicker version of the Computer Modern integral in place of the newpxmath default-the pxfonts integral (identical to the integral in the Wolfram fonts), which is not to everyone's taste-a consequence is that none of the special forms of pxfonts integrals are available;
- The option cmbraces instructs newpxmath to ignore the brace collections from pxfonts, substituting a collection based on thickened versions of the Computer Modern braces, which I find much easier to distinguish from other delimiters. This works quite well in regular weight but looks a bit clunky in bold.

NEW The new option bigdelims offers delimiters which are a bit larger than the standard delimiters and the normal and big sizes, with more distinction between the two than in the standard package. With bigdelims, the option cmbraces is ignored.

- the combination
sepackage\{amsmath\}\%loadsamstext,amsbsy,amsopnbutnotamssymb\usepackage\{newpxmath\}causesnoerror,unlikethesamecombinationwithpxfonts,butdoesnothingsignificant.Thepackagenewpxmathloadsthepackageamsmathifitwasnotpreviouslyloaded.Optionstoamsmathsuchasleqno,intlimitsmaybepassedtoamsmathviaoptionstothedocumentclass.Theintegralsareasdefinedinpxfonts.With\usepackage[cmintegrals]\{newpxmath\}youmayusetheforms\iint,\iiint,\iiiintand\backslashidotsintdefinedinamsmath,butusingthepumped-upComputerModernintegralloadedbynewpxmath.undefined
- uprightGreek and slantedGreek determine the form of Greek alphabet loaded—the default is uprightGreek, which loads upright uppercase and slanted lowercase Greek symbols, as is customary in Anglo-American mathematical typesetting. With the option slantedGreek, which you might want to use if you cared about ISO standards, all Greek symbols are slanted. No matter which is set, \Gammaup (or \upGamma) gives you upright \backslash Gamma, etc.
- The newpxmath package contains three different Blackboard Bold alphabets, where original pxfonts contained one. The default, triggered by \mathbb\{\}, takes its glyphs from the font which replaces msbm and has the same overall appearance of a hollowed-out text font, which I find neither bold nor blackboard-like. The second option, taken from pxfonts, is triggered by \varmathbb\{\}, is more geometric and, in my opinion, preferable but not optimal. The option varbb makes \mathbb\{\} synonymous with \varmathbb\{\}. The third option is the double-struck glyphs from the STIX collection. See the expanded discussion below.
- nosymbolsc causes the package to not load the symbolsC fonts, saving a math family. (This font contains mostly exotic symbols, along with some very useful, commonly used symbols like \backslash coloneq $:=, \backslash$ eqcolon $=:, \backslash$ notin \notin, \backslash notni \nexists, \backslash neq \neq, \backslash nsubset $\not \subset$ and \backslash nsupset $\not \supset$, but these have been moved (virtually) to lettersA so they may continue to be used even if you use the option nosymbolsc.)
- amssymbols (the default) and noamssymbols determine whether the pxfonts versions of the ams symbols (msam, msbm) are loaded-if so, they override previous settings in amsmath. If you use the option noamssymbols, then \mathbb\{\} is set to mean the same as \varmathbb\{\}. (One advantage of noamssymbols is that you save two of your precious math families for other purposes, such as setting a couple of external math alphabets by means of the mathalfa package.)

Example:
documentclass[leqno]\{article\}\usepackage\{newpxtext\}\%T1,liningfiguressomathuseslf\usepackage\{textcomp\}\%requiredforspecialglyphs\usepackage[varg,cmintegrals,bigdelims]\{newpxmath\}\usepackage[scr=rsfso]\{mathalfa\}\%\mathscrisfancierthan\mathcal\usepackage\{bm\}\%loadafterallmathtogiveaccesstoboldmath\useosf\%old-stylefiguresintext,notinmath\linespread\{1.05\}\%GivePalatinomoreleading(spacebetweenlines)Caution:InencodingsT1andLY1,themacro\backslashmathrmdoesnotproducewhatyoumightexpectforGreekletters,duetothedifferencebetweenthoseencodingsandOT1.Butwhatwereyouexpectingwith\backslashmathrm\{Gamma\}anyway?InT1andLY1,you'llgetamathaccent.undefined

4 The $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ math font problem

Math font packages in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ are susceptible to the "Too many math alphabets" error, due to exceeding the limit of just sixteen math font families, or mathgroups, as they are called in EATEX. Put in oversimplified terms that do however correctly represent how this all works in newpxmath, the following math fonts are always loaded and permanently (if you didn't prevent loading of some features) occupying slots immediately following \begin\{document\}, and others that may be called } for in typesetting a mathematical expression can add to the list as the document grows.

Always loaded:

```
operators
letters
symbols
largesymbols
AMSa
AMSb
lettersA
symbolsC
largesymbolsA
boldoperators
boldletters
boldsymbols
boldlargesymbols
```

Notes:

- The operators font is essentially the Roman text font, used for names of operators and as the target for \backslash mathrm—its bold version is used as the target for \backslash mathbf;
- if you typeset an expression that, say, calls for a single bold glyph from symbolsC, that costs you an entire new slot, leaving only two remaining;
- same with, eg, \mathit;
- same with an external Fraktur, Blackboard Bold or Script glyphs;
- if you run out of math alphabets, look first to dropping AMSa and AMSb, as well as symbolsC, which can save you three slots;
- if space is tight, do not call bold versions of the fonts listed above where the bold version is not already loaded, to avoid loading a new mathgroup;
- if you absolutely need a letter (not a math symbol) from some math font that would normally cost you another mathgroup, you might consider using as if it were text, with something like $\backslash \operatorname{mbox}\{\{\backslash$ usefont $\{U\}\{$ zplmia\} $\{b\}\{n\}$ X $\}\}$ which allows you to use letter X from boldlettersA but without any math features;
- there is a macro \ShowMathFonts in newpxmath which may be called at any point in your document, which will provide you a list of the mathgroups currently in use. This can be helpful in figuring out where problems occur. The output lines take the form

```
(<fam number>: <internal font id> = <tfm name> [newpx name])
```


5 Bold math fonts

Every math font in the pxfonts package, and in the newpx package, is accompanied by a bold version. Some usage examples are given below. Generally, one may use either \backslash boldmath to change an entire formula to bold, or \boldsymbol to change one symbol, but the spacing generally works better after loading the bm package and using the \bm macro.

The text glyphs dotlessi ($\backslash i$ i) and dotlessj $(\backslash j)$ are rarely needed in actual text-in many fonts, roman dotlessi is very similar to the numeral 1 . They are however sometimes needed to build special math glyphs. The following table shows how to generate the mathematical forms of dotlessi and dotlessj. I illustrate with only dotlessi-dotlessj is entirely analogous.

Type	Weight	Command	Result
Math Italic	Regular	\$ \backslash hat $\backslash \backslash$ imath ${ }^{\text {S }}$	$\hat{\imath}$
Math Italic	Bold	\$\bm\{\hat\{\imath\}\}\$	$\hat{\imath}$
Roman	Regular	\$ ${ }^{\text {hat }}$	
textrm\{\i\}\}\$	î		
Roman	Bold	\$ \backslash bm\{ \backslash hat $\{\backslash$ textbf $\{\backslash i\}\}\}$ \$	

In math, bold roman characters are often used to indicate vector quantities, and for this one uses constructions like

- \$ \backslash mathbf $\{x\} \$$ produces \mathbf{x};
- $\$ \backslash \operatorname{bm}\{\backslash$ mathrm\{x\}\} $\$$ produces \mathbf{x} (same as previous but may offer improved spacing);
- \$ $\operatorname{bm}\{x\} \$$ produces x (not roman);
- \$ \backslash bm $\{\backslash$ hat $\{\backslash$ mathbf $\{x\}\}\} \$$ produces $\hat{\mathbf{x}}$ (with a bold accent);
- $\$ \backslash \operatorname{bm}\{\backslash \operatorname{dot}\{\mathrm{x}\}\} \$$ produces \dot{x} (bold but not roman);
- the macro definition
\newcommand\{\xyvec\}[2]\{\ensuremath\{\#1\bm\{\textbf\{\i\}\}\#2\bm\{\textbf\{\j\}\}\}\}
allows you to write $\backslash \mathrm{xyvec}\{\mathrm{x}\}\{+\mathrm{y}\}$ to output $x \mathbf{1}+y \mathrm{~J}$;
- $\$ \backslash \mathrm{bm}\{\backslash$ Gamma $\} \$$ produces Γ (bold Gamma);
- \$ \backslash bm $\{\backslash$ hat $\{\backslash$ Gamma $\}$ \} produces $\hat{\Gamma}$ (bold Gamma with bold accent).
(The last two assume that you have effectively set the option uprightGreek-the default.)

6 Blackboard bold

As mentioned briefly above, the package now has a new blackboard bold alphabet built-in, and some new macros to call the non-default versions. To summarize, the problems are:

- the default, called by \backslash mathbb is quite ugly and indistinct, but does cooperate with the bolding macros \backslash bm and \backslash boldsymbol;
- the original variant form called with the macro \varmathbb is better, but the macro conflicts with $\backslash \mathrm{bm}$. (In fact, the bold version is identical to the regular version, but it is still not right that it conflicts with them.) The problem stems from the part of the definition of \backslash varmathbb which allows you to insert an argument with more than one character, like \varmathbb \{ABC\}. The solution is to make a new macro that takes a single argument, like \vmathbb\{A\}, which cooperates with \backslash bm.
- the third, new, alphabet is borrowed from the STIX fonts-it is sharp and quite clear, geometric in design. The only slight problem is that it lacks a full bold version, with only the letters C, D, H, N, P, Q, R, Z, d, e, i and j available. The macro \vvmathbb provided to access this alphabet allows only a single character for its argument. The new option vvarbb effectively makes \mathbb mean the same as \vvmathbb. (The reason for including these in the newpx package rather than calling them from the mathalfa package is that newpx leaves very little space for new math symbol fonts and math alphabets, and this way requires no additional such resources.

One interesting feature of the new alphabet is that it contains blackboard bold numbers, of which 0 and 1 will likely be the most useful, perhaps as operator names. I find $\mathbb{1}=\$ \backslash$ vvmathbb $\{1\} \$$ useful in specifying an indicator, AKA characteristic function. Here are some examples:

	Regular	Bold	Remarks
Default	$\$ \backslash$ mathbb $\{R\} \$ \mathbb{R}$	$\$ \backslash$ bm $\{\backslash$ mathbb $\{R\}\} \$ \mathbb{R}$	
Variant 1	$\$ \backslash$ varmathbb $\{R\} \$ \mathbb{R}$		Bold is same as regular
\ldots or	$\$ \backslash$ vmathbb $\{R\} \$ \mathbb{R}$		Single char. argument
Variant 2	$\$ \backslash$ vvmathbb $\{R\}\} \$ \mathbb{R}$	$\{\backslash$ boldmath $\$ \backslash$ vvmathbb $\{R\} \$\} \mathbb{R}$	Make a macro for this!

