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1 Introduction
This paper contains examples of various features from AMS-LATEX.

2 Enumeration of Hamiltonian paths in a graph
LetA = (𝑎𝑖𝑗 ) be the adjacency matrix of graph 𝐺. The corresponding Kirchhoff matrix
K = (𝑘𝑖𝑗 ) is obtained from A by replacing in −A each diagonal entry by the degree of
its corresponding vertex; i.e., the 𝑖th diagonal entry is identified with the degree of
the 𝑖th vertex. It is well known that

detK(𝑖|𝑖) = the number of spanning trees of 𝐺, 𝑖 = 1, … , 𝑛 (1)

where K(𝑖|𝑖) is the 𝑖th principal submatrix of K.

\det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$},

Let 𝐶𝑖(𝑗) be the set of graphs obtained from 𝐺 by attaching edge (𝑣𝑖𝑣𝑗 ) to each
spanning tree of 𝐺. Denote by 𝐶𝑖 = ⋃𝑗 𝐶𝑖(𝑗). It is obvious that the collection of
Hamiltonian cycles is a subset of 𝐶𝑖 . Note that the cardinality of 𝐶𝑖 is 𝑘𝑖𝑖 detK(𝑖|𝑖).
Let 𝑋 = {�̂�1, … , �̂�𝑛}.
$\wh X=\{\hat x_1,\dots,\hat x_n\}$

Define multiplication for the elements of 𝑋 by

�̂�𝑖 �̂�𝑗 = �̂�𝑗 �̂�𝑖 , �̂�2𝑖 = 0, 𝑖, 𝑗 = 1, … , 𝑛. (2)

Let �̂�𝑖𝑗 = 𝑘𝑖𝑗 �̂�𝑗 and �̂�𝑖𝑗 = −∑𝑗≠𝑖 �̂�𝑖𝑗 . Then the number of Hamiltonian cycles 𝐻𝑐 is
given by the relation [8]

(
𝑛
∏
𝑗=1

�̂�𝑗)𝐻𝑐 =
1
2 �̂�𝑖𝑗 det K̂(𝑖|𝑖), 𝑖 = 1, … , 𝑛. (3)

1
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The task here is to express (3) in a form free of any �̂�𝑖 , 𝑖 = 1, … , 𝑛. The result also leads
to the resolution of enumeration of Hamiltonian paths in a graph.

It is well known that the enumeration of Hamiltonian cycles and paths in a com-
plete graph 𝐾𝑛 and in a complete bipartite graph 𝐾𝑛1𝑛2 can only be found from first
combinatorial principles [4]. One wonders if there exists a formula which can be
used very efficiently to produce 𝐾𝑛 and 𝐾𝑛1𝑛2 . Recently, using Lagrangian methods,
Goulden and Jackson have shown that 𝐻𝑐 can be expressed in terms of the determi-
nant and permanent of the adjacency matrix [3]. However, the formula of Goulden
and Jackson determines neither 𝐾𝑛 nor 𝐾𝑛1𝑛2 effectively. In this paper, using an al-
gebraic method, we parametrize the adjacency matrix. The resulting formula also
involves the determinant and permanent, but it can easily be applied to 𝐾𝑛 and 𝐾𝑛1𝑛2 .
In addition, we eliminate the permanent from𝐻𝑐 and show that𝐻𝑐 can be represented
by a determinantal function of multivariables, each variable with domain {0, 1}. Fur-
thermore, we show that 𝐻𝑐 can be written by number of spanning trees of subgraphs.
Finally, we apply the formulas to a complete multigraph 𝐾𝑛1…𝑛𝑝 .

The conditions 𝑎𝑖𝑗 = 𝑎𝑗𝑖 , 𝑖, 𝑗 = 1, … , 𝑛, are not required in this paper. All formulas
can be extended to a digraph simply by multiplying 𝐻𝑐 by 2.

3 Main Theorem
Notation. For 𝑝, 𝑞 ∈ 𝑃 and 𝑛 ∈ 𝜔 we write (𝑞, 𝑛) ≤ (𝑝, 𝑛) if 𝑞 ≤ 𝑝 and 𝐴𝑞,𝑛 = 𝐴𝑝,𝑛 .

\begin{notation} For $p,q\in P$ and $n\in\omega$
...
\end{notation}

Let B = (𝑏𝑖𝑗 ) be an 𝑛 × 𝑛 matrix. Let n = {1, … , 𝑛}. Using the properties of (2), it is
readily seen that

Lemma 3.1.

∏
𝑖∈n(

∑
𝑗∈n

𝑏𝑖𝑗 �̂�𝑖) = (∏
𝑖∈n

�̂�𝑖) perB (4)

where perB is the permanent of B.

Let 𝑌 = {�̂�1, … , �̂�𝑛}. Define multiplication for the elements of 𝑌 by

�̂�𝑖 �̂�𝑗 + �̂�𝑗 �̂�𝑖 = 0, 𝑖, 𝑗 = 1, … , 𝑛. (5)

Then, it follows that

Lemma 3.2.

∏
𝑖∈n(

∑
𝑗∈n

𝑏𝑖𝑗 �̂�𝑗) = (∏𝑖∈n
�̂�𝑖) detB. (6)

Note that all basic properties of determinants are direct consequences of Lemma
3.2. Write

∑
𝑗∈n

𝑏𝑖𝑗 �̂�𝑗 = ∑
𝑗∈n

𝑏(𝜆)𝑖𝑗 �̂�𝑗 + (𝑏𝑖𝑖 − 𝜆𝑖)�̂�𝑖 �̂� (7)
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where
𝑏(𝜆)𝑖𝑖 = 𝜆𝑖 , 𝑏(𝜆)𝑖𝑗 = 𝑏𝑖𝑗 , 𝑖 ≠ 𝑗. (8)

Let B(𝜆) = (𝑏(𝜆)𝑖𝑗 ). By (6) and (7), it is straightforward to show the following result:

Theorem 3.3.

detB =
𝑛
∑
𝑙=0

∑
𝐼𝑙⊆𝑛

∏
𝑖∈𝐼𝑙

(𝑏𝑖𝑖 − 𝜆𝑖) detB(𝜆)(𝐼𝑙 |𝐼𝑙 ), (9)

where 𝐼𝑙 = {𝑖1, … , 𝑖𝑙 } and B(𝜆)(𝐼𝑙 |𝐼𝑙 ) is the principal submatrix obtained from B(𝜆) by
deleting its 𝑖1, … , 𝑖𝑙 rows and columns.

Remark 3.1. Let M be an 𝑛 × 𝑛 matrix. The convention M(n|n) = 1 has been used in
(9) and hereafter.

Before proceeding with our discussion, we pause to note that Theorem 3.3 yields
immediately a fundamental formula which can be used to compute the coefficients of
a characteristic polynomial [9]:

Corollary 3.4. Write det(B − 𝑥I) = ∑𝑛
𝑙=0(−1)𝑙𝑏𝑙𝑥 𝑙 . Then

𝑏𝑙 = ∑
𝐼𝑙⊆n

detB(𝐼𝑙 |𝐼𝑙 ). (10)

Let

K(𝑡, 𝑡1, … , 𝑡𝑛) =
⎛⎜⎜⎜⎜⎝

𝐷1𝑡 −𝑎12𝑡2 … −𝑎1𝑛𝑡𝑛
−𝑎21𝑡1 𝐷2𝑡 … −𝑎2𝑛𝑡𝑛
. . . . . . . . . . . . . . . . . . . . . .
−𝑎𝑛1𝑡1 −𝑎𝑛2𝑡2 … 𝐷𝑛𝑡

⎞⎟⎟⎟⎟⎠
, (11)

\begin{pmatrix} D_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
-a_{21}t_1&D_2t&\dots&-a_{2n}t_n\\
\hdotsfor[2]{4}\\
-a_{n1}t_1&-a_{n2}t_2&\dots&D_nt\end{pmatrix}

where
𝐷𝑖 = ∑

𝑗∈n
𝑎𝑖𝑗 𝑡𝑗 , 𝑖 = 1, … , 𝑛. (12)

Set
𝐷(𝑡1, … , 𝑡𝑛) =

𝛿
𝛿𝑡 detK(𝑡, 𝑡1, … , 𝑡𝑛)|𝑡=1 .

Then
𝐷(𝑡1, … , 𝑡𝑛) = ∑

𝑖∈n
𝐷𝑖 detK(𝑡 = 1, 𝑡1, … , 𝑡𝑛; 𝑖|𝑖), (13)

where K(𝑡 = 1, 𝑡1, … , 𝑡𝑛; 𝑖|𝑖) is the 𝑖th principal submatrix of K(𝑡 = 1, 𝑡1, … , 𝑡𝑛).
Theorem 3.3 leads to

detK(𝑡1, 𝑡1, … , 𝑡𝑛) = ∑
𝐼 ∈n

(−1)|𝐼 |𝑡𝑛−|𝐼 |∏
𝑖∈𝐼

𝑡𝑖 ∏
𝑗∈𝐼

(𝐷𝑗 + 𝜆𝑗 𝑡𝑗 ) detA(𝜆𝑡)(𝐼 |𝐼 ). (14)
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Note that

detK(𝑡 = 1, 𝑡1, … , 𝑡𝑛) = ∑
𝐼 ∈n

(−1)|𝐼 |∏
𝑖∈𝐼

𝑡𝑖 ∏
𝑗∈𝐼

(𝐷𝑗 + 𝜆𝑗 𝑡𝑗 ) detA(𝜆)(𝐼 |𝐼 ) = 0. (15)

Let 𝑡𝑖 = �̂�𝑖 , 𝑖 = 1, … , 𝑛. Lemma 3.1 yields

(∑
𝑖∈n

𝑎𝑙𝑖𝑥𝑖) detK(𝑡 = 1, 𝑥1, … , 𝑥𝑛; 𝑙|𝑙)

= (∏𝑖∈n
�̂�𝑖) ∑

𝐼 ⊆n−{𝑙}
(−1)|𝐼 | perA(𝜆)(𝐼 |𝐼 ) detA(𝜆)(𝐼 ∪ {𝑙}|𝐼 ∪ {𝑙}). (16)

\begin{multline}
\biggl(\sum_{\,i\in\mathbf{n}}a_{l _i}x_i\biggr)
\det\mathbf{K}(t=1,x_1,\dots,x_n;l |l )\\
=\biggl(\prod_{\,i\in\mathbf{n}}\hat x_i\biggr)
\sum_{I\subseteq\mathbf{n}-\{l \}}
(-1)^{\envert{I}}\per\mathbf{A}^{(\lambda)}(I|I)
\det\mathbf{A}^{(\lambda)}
(\overline I\cup\{l \}|\overline I\cup\{l \}).
\label{sum-ali}
\end{multline}

By (3), (6), and (7), we have

Proposition 3.5.

𝐻𝑐 =
1
2𝑛

𝑛
∑
𝑙=0

(−1)𝑙𝐷𝑙 , (17)

where
𝐷𝑙 = ∑

𝐼𝑙⊆n
𝐷(𝑡1, … , 𝑡𝑛)2|𝑡𝑖={ 0, if 𝑖∈𝐼𝑙1, otherwise , 𝑖=1,…,𝑛 . (18)

4 Application
We consider here the applications of Theorems 5.1 and 5.2 to a complete multipartite
graph 𝐾𝑛1…𝑛𝑝 . It can be shown that the number of spanning trees of 𝐾𝑛1…𝑛𝑝 may be
written

𝑇 = 𝑛𝑝−2
𝑝
∏
𝑖=1

(𝑛 − 𝑛𝑖)𝑛𝑖−1 (19)

where
𝑛 = 𝑛1 + ⋯ + 𝑛𝑝 . (20)
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It follows fromTheorems 5.1 and 5.2 that

𝐻𝑐 =
1
2𝑛

𝑛
∑
𝑙=0

(−1)𝑙 (𝑛 − 𝑙)𝑝−2 ∑
𝑙1+⋯+𝑙𝑝=𝑙

𝑝
∏
𝑖=1 (

𝑛𝑖
𝑙𝑖 )

⋅ [(𝑛 − 𝑙) − (𝑛𝑖 − 𝑙𝑖)]𝑛𝑖−𝑙𝑖 ⋅ [(𝑛 − 𝑙)2 −
𝑝
∑
𝑗=1

(𝑛𝑖 − 𝑙𝑖)2].
(21)

... \binom{n_i}{l _i}\\

and

𝐻𝑐 =
1
2
𝑛−1
∑
𝑙=0

(−1)𝑙 (𝑛 − 𝑙)𝑝−2 ∑
𝑙1+⋯+𝑙𝑝=𝑙

𝑝
∏
𝑖=1 (

𝑛𝑖
𝑙𝑖 )

⋅ [(𝑛 − 𝑙) − (𝑛𝑖 − 𝑙𝑖)]𝑛𝑖−𝑙𝑖 (1 − 𝑙𝑝
𝑛𝑝)

[(𝑛 − 𝑙) − (𝑛𝑝 − 𝑙𝑝)].
(22)

The enumeration of 𝐻𝑐 in a 𝐾𝑛1⋯𝑛𝑝 graph can also be carried out by Theorem 7.2
or 7.3 together with the algebraic method of (2). Some elegant representations may
be obtained. For example, 𝐻𝑐 in a 𝐾𝑛1𝑛2𝑛3 graph may be written

𝐻𝑐 =
𝑛1! 𝑛2! 𝑛3!
𝑛1 + 𝑛2 + 𝑛3

∑
𝑖 [(

𝑛1
𝑖 )(

𝑛2
𝑛3 − 𝑛1 + 𝑖)(

𝑛3
𝑛3 − 𝑛2 + 𝑖)

+ (
𝑛1 − 1

𝑖 )(
𝑛2 − 1

𝑛3 − 𝑛1 + 𝑖)(
𝑛3 − 1

𝑛3 − 𝑛2 + 𝑖)] .
(23)

5 Secret Key Exchanges
Modern cryptography is fundamentally concerned with the problem of secure private
communication. A Secret Key Exchange is a protocol where Alice and Bob, having no
secret information in common to start, are able to agree on a common secret key, con-
versing over a public channel. The notion of a Secret Key Exchange protocol was first
introduced in the seminal paper of Diffie and Hellman [1]. [1] presented a concrete
implementation of a Secret Key Exchange protocol, dependent on a specific assump-
tion (a variant on the discrete log), specially tailored to yield Secret Key Exchange.
Secret Key Exchange is of course trivial if trapdoor permutations exist. However,
there is no known implementation based on a weaker general assumption.

The concept of an informationally one-way function was introduced in [5]. We
give only an informal definition here:

Definition 5.1. A polynomial time computable function 𝑓 = {𝑓𝑘 } is informationally
one-way if there is no probabilistic polynomial time algorithmwhich (with probability
of the form 1 − 𝑘−𝑒 for some 𝑒 > 0) returns on input 𝑦 ∈ {0, 1}𝑘 a random element of
𝑓 −1(𝑦).
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In the non-uniform setting [5] show that these are not weaker than one-way func-
tions:

Theorem 5.1 ([5] (non-uniform)). The existence of informationally one-way functions
implies the existence of one-way functions.

We will stick to the convention introduced above of saying “non-uniform” before
the theorem statement when the theorem makes use of non-uniformity. It should be
understood that if nothing is said then the result holds for both the uniform and the
non-uniform models.

It now follows fromTheorem 5.1 that

Theorem 5.2 (non-uniform). Weak SKE implies the existence of a one-way function.

More recently, the polynomial-time, interior point algorithms for linear program-
ming have been extended to the case of convex quadratic programs [11, 13], certain
linear complementarity problems [7, 10], and the nonlinear complementarity problem
[6]. The connection between these algorithms and the classical Newton method for
nonlinear equations is well explained in [7].

6 Review
We begin our discussion with the following definition:

Definition 6.1. A function 𝐻 ∶ ℜ𝑛 → ℜ𝑛 is said to be B-differentiable at the point 𝑧
if (i) 𝐻 is Lipschitz continuous in a neighborhood of 𝑧, and (ii) there exists a positive
homogeneous function 𝐵𝐻(𝑧)∶ ℜ𝑛 → ℜ𝑛 , called the B-derivative of 𝐻 at 𝑧, such that

lim𝑣→0
𝐻(𝑧 + 𝑣) − 𝐻(𝑧) − 𝐵𝐻(𝑧)𝑣

‖𝑣‖ = 0.

The function 𝐻 is B-differentiable in set 𝑆 if it is B-differentiable at every point in 𝑆.
The B-derivative 𝐵𝐻(𝑧) is said to be strong if

lim(𝑣,𝑣′)→(0,0)
𝐻(𝑧 + 𝑣) − 𝐻(𝑧 + 𝑣′) − 𝐵𝐻(𝑧)(𝑣 − 𝑣′)

‖𝑣 − 𝑣′‖ = 0.

Lemma 6.1. There exists a smooth function 𝜓0(𝑧) defined for |𝑧| > 1 − 2𝑎 satisfying the
following properties:

(i) 𝜓0(𝑧) is bounded above and below by positive constants 𝑐1 ≤ 𝜓0(𝑧) ≤ 𝑐2.
(ii) If |𝑧| > 1, then 𝜓0(𝑧) = 1.
(iii) For all 𝑧 in the domain of 𝜓0, Δ0 ln𝜓0 ≥ 0.
(iv) If 1 − 2𝑎 < |𝑧| < 1 − 𝑎, then Δ0 ln𝜓0 ≥ 𝑐3 > 0.



Sample paper for the amsmath package 7

Proof. We choose 𝜓0(𝑧) to be a radial function depending only on 𝑟 = |𝑧|. Let ℎ(𝑟) ≥ 0
be a suitable smooth function satisfying ℎ(𝑟) ≥ 𝑐3 for 1 − 2𝑎 < |𝑧| < 1 − 𝑎, and ℎ(𝑟) = 0
for |𝑧| > 1 − 𝑎

2 . The radial Laplacian

Δ0 ln𝜓0(𝑟) = (
𝑑2
𝑑𝑟2 + 1

𝑟
𝑑
𝑑𝑟 ) ln𝜓0(𝑟)

has smooth coefficients for 𝑟 > 1 − 2𝑎. Therefore, we may apply the existence and
uniqueness theory for ordinary differential equations. Simply let ln𝜓0(𝑟) be the so-
lution of the differential equation

(
𝑑2
𝑑𝑟2 + 1

𝑟
𝑑
𝑑𝑟 ) ln𝜓0(𝑟) = ℎ(𝑟)

with initial conditions given by ln𝜓0(1) = 0 and ln𝜓 ′0(1) = 0.
Next, let 𝐷𝜈 be a finite collection of pairwise disjoint disks, all of which are con-

tained in the unit disk centered at the origin in 𝐶 . We assume that 𝐷𝜈 = {𝑧 ∣ |𝑧 − 𝑧𝜈 | <
𝛿}. Suppose that 𝐷𝜈 (𝑎) denotes the smaller concentric disk 𝐷𝜈 (𝑎) = {𝑧 ∣ |𝑧 − 𝑧𝜈 | ≤
(1 − 2𝑎)𝛿}. We define a smooth weight function Φ0(𝑧) for 𝑧 ∈ 𝐶 − ⋃𝜈 𝐷𝜈 (𝑎) by setting
Φ0(𝑧) = 1 when 𝑧 ∉ ⋃𝜈 𝐷𝜈 and Φ0(𝑧) = 𝜓0((𝑧 − 𝑧𝜈 )/𝛿) when 𝑧 is an element of 𝐷𝜈 . It
follows from Lemma 6.1 that Φ0 satisfies the properties:

(i) Φ0(𝑧) is bounded above and below by positive constants 𝑐1 ≤ Φ0(𝑧) ≤ 𝑐2.
(ii) Δ0 lnΦ0 ≥ 0 for all 𝑧 ∈ 𝐶 − ⋃𝜈 𝐷𝜈 (𝑎), the domain where the function Φ0 is

defined.

(iii) Δ0 lnΦ0 ≥ 𝑐3𝛿−2 when (1 − 2𝑎)𝛿 < |𝑧 − 𝑧𝜈 | < (1 − 𝑎)𝛿 .
Let 𝐴𝜈 denote the annulus 𝐴𝜈 = {(1 − 2𝑎)𝛿 < |𝑧 − 𝑧𝜈 | < (1 − 𝑎)𝛿}, and set 𝐴 = ⋃𝜈 𝐴𝜈 .
The properties (2) and (3) of Φ0 may be summarized as Δ0 lnΦ0 ≥ 𝑐3𝛿−2𝜒𝐴, where 𝜒𝐴
is the characteristic function of 𝐴.

Suppose that 𝛼 is a nonnegative real constant. We apply Proposition 3.5 with
Φ(𝑧) = Φ0(𝑧)𝑒𝛼|𝑧|

2
. If 𝑢 ∈ 𝐶∞0 (𝑅2 − ⋃𝜈 𝐷𝜈 (𝑎)), assume that 𝒟 is a bounded domain

containing the support of 𝑢 and 𝐴 ⊂ 𝒟 ⊂ 𝑅2 − ⋃𝜈 𝐷𝜈 (𝑎). A calculation gives

∫𝒟
||𝜕𝑢||

2 Φ0(𝑧)𝑒𝛼|𝑧|
2 ≥ 𝑐4𝛼 ∫𝒟

|𝑢|2 Φ0𝑒𝛼|𝑧|
2 + 𝑐5𝛿−2 ∫𝐴

|𝑢|2 Φ0𝑒𝛼|𝑧|
2 .

The boundedness, property (1) of Φ0, then yields

∫𝒟
||𝜕𝑢||

2 𝑒𝛼|𝑧|2 ≥ 𝑐6𝛼 ∫𝒟
|𝑢|2 𝑒𝛼|𝑧|2 + 𝑐7𝛿−2 ∫𝐴

|𝑢|2 𝑒𝛼|𝑧|2 .

Let 𝐵(𝑋 ) be the set of blocks of Λ𝑋 and let 𝑏(𝑋 ) = |𝐵(𝑋 )|. If 𝜙 ∈ 𝑄𝑋 then 𝜙 is
constant on the blocks of Λ𝑋 .

𝑃𝑋 = {𝜙 ∈ 𝑀 ∣ Λ𝜙 = Λ𝑋 }, 𝑄𝑋 = {𝜙 ∈ 𝑀 ∣ Λ𝜙 ≥ Λ𝑋 }. (24)
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If Λ𝜙 ≥ Λ𝑋 then Λ𝜙 = Λ𝑌 for some 𝑌 ≥ 𝑋 so that

𝑄𝑋 = ⋃
𝑌≥𝑋

𝑃𝑌 .

Thus by Möbius inversion

|𝑃𝑌 | = ∑
𝑋≥𝑌

𝜇(𝑌 , 𝑋 ) |𝑄𝑋 | .

Thus there is a bijection from 𝑄𝑋 to𝑊 𝐵(𝑋). In particular |𝑄𝑋 | = 𝑤𝑏(𝑋).
Next note that 𝑏(𝑋 ) = dim𝑋 . We see this by choosing a basis for 𝑋 consisting of

vectors 𝑣𝑘 defined by

𝑣𝑘𝑖 = {
1 if 𝑖 ∈ Λ𝑘 ,
0 otherwise.

\[v^{k}_{i}=
\begin{cases} 1 & \text{if $i \in \Lambda_{k}$},\\
0 &\text{otherwise.} \end{cases}
\]

Lemma 6.2. Let 𝒜 be an arrangement. Then

𝜒(𝒜 , 𝑡) = ∑
ℬ⊆𝒜

(−1)|ℬ|𝑡dim 𝑇(ℬ).

In order to compute 𝑅″ recall the definition of 𝑆(𝑋 , 𝑌 ) from Lemma 3.1. Since
𝐻 ∈ ℬ, 𝒜𝐻 ⊆ ℬ. Thus if 𝑇 (ℬ) = 𝑌 thenℬ ∈ 𝑆(𝐻 , 𝑌 ). Let 𝐿″ = 𝐿(𝒜″). Then

𝑅″ = ∑
𝐻∈ℬ⊆𝒜

(−1)|ℬ|𝑡dim 𝑇(ℬ)

= ∑
𝑌∈𝐿″

∑
ℬ∈𝑆(𝐻 ,𝑌 )

(−1)|ℬ|𝑡dim 𝑌

= − ∑
𝑌∈𝐿″

∑
ℬ∈𝑆(𝐻 ,𝑌 )

(−1)|ℬ−𝒜𝐻 |𝑡dim 𝑌

= − ∑
𝑌∈𝐿″

𝜇(𝐻 , 𝑌 )𝑡dim 𝑌

= −𝜒(𝒜″, 𝑡).

(25)

Corollary 6.3. Let (𝒜 ,𝒜 ′, 𝒜″) be a triple of arrangements. Then

𝜋(𝒜 , 𝑡) = 𝜋(𝒜 ′, 𝑡) + 𝑡𝜋(𝒜″, 𝑡).
Definition 6.2. Let (𝒜 ,𝒜 ′, 𝒜″) be a triple with respect to the hyperplane 𝐻 ∈ 𝒜 .
Call 𝐻 a separator if 𝑇 (𝒜) ∉ 𝐿(𝒜 ′).
Corollary 6.4. Let (𝒜 ,𝒜 ′, 𝒜″) be a triple with respect to 𝐻 ∈ 𝒜 .
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(i) If 𝐻 is a separator then
𝜇(𝒜) = −𝜇(𝒜″)

and hence ||𝜇(𝒜)|| = ||𝜇(𝒜″)|| .
(ii) If 𝐻 is not a separator then

𝜇(𝒜) = 𝜇(𝒜 ′) − 𝜇(𝒜″)
and ||𝜇(𝒜)|| = ||𝜇(𝒜 ′)|| + ||𝜇(𝒜″)|| .

Proof. It follows fromTheorem 5.1 that 𝜋(𝒜 , 𝑡) has leading term

(−1)𝑟(𝒜)𝜇(𝒜)𝑡𝑟(𝒜).
The conclusion follows by comparing coefficients of the leading terms on both sides
of the equation in Corollary 6.3. If 𝐻 is a separator then 𝑟(𝒜 ′) < 𝑟(𝒜) and there is no
contribution from 𝜋(𝒜 ′, 𝑡).

The Poincaré polynomial of an arrangement will appear repeatedly in these notes.
It will be shown to equal the Poincaré polynomial of the graded algebras which we
are going to associate with 𝒜 . It is also the Poincaré polynomial of the complement
𝑀(𝒜) for a complex arrangement. Here we prove that the Poincaré polynomial is
the chamber counting function for a real arrangement. The complement 𝑀(𝒜) is a
disjoint union of chambers

𝑀(𝒜) = ⋃
𝐶∈Cham(𝒜)

𝐶.

The number of chambers is determined by the Poincaré polynomial as follows.

Theorem 6.5. Let 𝒜R be a real arrangement. Then

|Cham(𝒜R)| = 𝜋(𝒜R, 1).
Proof. We check the properties required in Corollary 6.4: (i) follows from 𝜋(Φ𝑙 , 𝑡) = 1,
and (ii) is a consequence of Corollary 3.4.

Theorem 6.6. Let 𝜙 be a protocol for a random pair (𝑋 , 𝑌 ). If one of 𝜎𝜙(𝑥′, 𝑦) and
𝜎𝜙(𝑥, 𝑦′) is a prefix of the other and (𝑥, 𝑦) ∈ 𝑆𝑋,𝑌 , then

⟨𝜎𝑗 (𝑥′, 𝑦)⟩∞𝑗=1 = ⟨𝜎𝑗 (𝑥, 𝑦)⟩∞𝑗=1 = ⟨𝜎𝑗 (𝑥, 𝑦′)⟩∞𝑗=1.
Proof. We show by induction on 𝑖 that

⟨𝜎𝑗 (𝑥′, 𝑦)⟩𝑖𝑗=1 = ⟨𝜎𝑗 (𝑥, 𝑦)⟩𝑖𝑗=1 = ⟨𝜎𝑗 (𝑥, 𝑦′)⟩𝑖𝑗=1.
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Figure 1: 𝑄(𝒜1) = 𝑥𝑦𝑧(𝑥 − 𝑧)(𝑥 + 𝑧)(𝑦 − 𝑧)(𝑦 + 𝑧)

Figure 2: 𝑄(𝒜2) = 𝑥𝑦𝑧(𝑥 + 𝑦 + 𝑧)(𝑥 + 𝑦 − 𝑧)(𝑥 − 𝑦 + 𝑧)(𝑥 − 𝑦 − 𝑧)
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The induction hypothesis holds vacuously for 𝑖 = 0. Assume it holds for 𝑖 − 1, in
particular [𝜎𝑗 (𝑥′, 𝑦)]𝑖−1𝑗=1 = [𝜎𝑗 (𝑥, 𝑦′)]𝑖−1𝑗=1. Then one of [𝜎𝑗 (𝑥′, 𝑦)]∞𝑗=𝑖 and [𝜎𝑗 (𝑥, 𝑦′)]∞𝑗=𝑖
is a prefix of the other which implies that one of 𝜎𝑖(𝑥′, 𝑦) and 𝜎𝑖(𝑥, 𝑦′) is a prefix of
the other. If the 𝑖th message is transmitted by 𝑃𝒳 then, by the separate-transmissions
property and the induction hypothesis, 𝜎𝑖(𝑥, 𝑦) = 𝜎𝑖(𝑥, 𝑦′), hence one of 𝜎𝑖(𝑥, 𝑦) and
𝜎𝑖(𝑥′, 𝑦) is a prefix of the other. By the implicit-termination property, neither 𝜎𝑖(𝑥, 𝑦)
nor 𝜎𝑖(𝑥′, 𝑦) can be a proper prefix of the other, hence they must be the same and
𝜎𝑖(𝑥′, 𝑦) = 𝜎𝑖(𝑥, 𝑦) = 𝜎𝑖(𝑥, 𝑦′). If the 𝑖th message is transmitted by 𝑃𝒴 then, symmet-
rically, 𝜎𝑖(𝑥, 𝑦) = 𝜎𝑖(𝑥′, 𝑦) by the induction hypothesis and the separate-transmissions
property, and, then, 𝜎𝑖(𝑥, 𝑦) = 𝜎𝑖(𝑥, 𝑦′) by the implicit-termination property, proving
the induction step.

If 𝜙 is a protocol for (𝑋 , 𝑌 ), and (𝑥, 𝑦), (𝑥′, 𝑦) are distinct inputs in 𝑆𝑋,𝑌 , then, by
the correct-decision property, ⟨𝜎𝑗 (𝑥, 𝑦)⟩∞𝑗=1 ≠ ⟨𝜎𝑗 (𝑥′, 𝑦)⟩∞𝑗=1.

Equation (25) defined 𝑃𝒴 ’s ambiguity set 𝑆𝑋|𝑌 (𝑦) to be the set of possible 𝑋 values
when 𝑌 = 𝑦 . The last corollary implies that for all 𝑦 ∈ 𝑆𝑌 , the multiset1 of codewords
{𝜎𝜙(𝑥, 𝑦) ∶ 𝑥 ∈ 𝑆𝑋|𝑌 (𝑦)} is prefix free.

7 One-Way Complexity

�̂�1(𝑋 |𝑌 ), the one-way complexity of a random pair (𝑋 , 𝑌 ), is the number of bits 𝑃𝒳
must transmit in the worst case when 𝑃𝒴 is not permitted to transmit any feedback
messages. Starting with 𝑆𝑋,𝑌 , the support set of (𝑋 , 𝑌 ), we define 𝐺(𝑋 |𝑌 ), the charac-
teristic hypergraph of (𝑋 , 𝑌 ), and show that

�̂�1(𝑋 |𝑌 ) = ⌈ log 𝜒(𝐺(𝑋 |𝑌 ))⌉ .
Let (𝑋 , 𝑌 ) be a random pair. For each 𝑦 in 𝑆𝑌 , the support set of 𝑌 , Equation (25)

defined 𝑆𝑋|𝑌 (𝑦) to be the set of possible 𝑥 values when 𝑌 = 𝑦 . The characteristic
hypergraph 𝐺(𝑋 |𝑌 ) of (𝑋 , 𝑌 ) has 𝑆𝑋 as its vertex set and the hyperedge 𝑆𝑋|𝑌 (𝑦) for
each 𝑦 ∈ 𝑆𝑌 .

We can now prove a continuity theorem.
Theorem 7.1. Let Ω ⊂ R𝑛 be an open set, let 𝑢 ∈ 𝐵𝑉 (Ω;R𝑚), and let

𝑇 𝑢𝑥 = {𝑦 ∈ R𝑚 ∶ 𝑦 = �̃�(𝑥) + ⟨ 𝐷𝑢|𝐷𝑢| (𝑥), 𝑧⟩ for some 𝑧 ∈ R𝑛} (26)

for every 𝑥 ∈ Ω\𝑆𝑢 . Let 𝑓 ∶ R𝑚 → R𝑘 be a Lipschitz continuous function such that
𝑓 (0) = 0, and let 𝑣 = 𝑓 (𝑢)∶ Ω → R𝑘 . Then 𝑣 ∈ 𝐵𝑉 (Ω;R𝑘 ) and

𝐽 𝑣 = (𝑓 (𝑢+) − 𝑓 (𝑢−)) ⊗ 𝜈𝑢 ⋅ ℋ𝑛−1||𝑆𝑢 . (27)

In addition, for ||�̃�𝑢||-almost every 𝑥 ∈ Ω the restriction of the function 𝑓 to 𝑇 𝑢𝑥 is differ-
entiable at �̃�(𝑥) and

�̃�𝑣 = ∇(𝑓 ||𝑇 𝑢𝑥
)(�̃�) �̃�𝑢||�̃�𝑢||

⋅ ||�̃�𝑢|| . (28)

1Amultiset allowsmultiplicity of elements. Hence, {0, 01, 01} is prefix free as a set, but not as amultiset.
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Before proving the theorem, we state without proof three elementary remarks
which will be useful in the sequel.
Remark 7.1. Let 𝜔∶ ]0, +∞[ → ]0, +∞[ be a continuous function such that 𝜔(𝑡) → 0
as 𝑡 → 0. Then

limℎ→0+ 𝑔(𝜔(ℎ)) = 𝐿 ⇔ limℎ→0+ 𝑔(ℎ) = 𝐿
for any function 𝑔 ∶ ]0, +∞[ → R.
Remark 7.2. Let 𝑔 ∶ R𝑛 → R be a Lipschitz continuous function and assume that

𝐿(𝑧) = limℎ→0+
𝑔(ℎ𝑧) − 𝑔(0)

ℎ
exists for every 𝑧 ∈ Q𝑛 and that 𝐿 is a linear function of 𝑧. Then 𝑔 is differentiable at
0.
Remark 7.3. Let 𝐴∶ R𝑛 → R𝑚 be a linear function, and let 𝑓 ∶ R𝑚 → R be a func-
tion. Then the restriction of 𝑓 to the range of 𝐴 is differentiable at 0 if and only if
𝑓 (𝐴)∶ R𝑛 → R is differentiable at 0 and

∇(𝑓 ||Im(𝐴))(0)𝐴 = ∇(𝑓 (𝐴))(0).

Proof. We begin by showing that 𝑣 ∈ 𝐵𝑉 (Ω;R𝑘 ) and
|𝐷𝑣| (𝐵) ≤ 𝐾 |𝐷𝑢| (𝐵) ∀𝐵 ∈ B(Ω), (29)

where 𝐾 > 0 is the Lipschitz constant of 𝑓 . By (13) and by the approximation result
quoted in §3, it is possible to find a sequence (𝑢ℎ) ⊂ 𝐶1(Ω;R𝑚) converging to 𝑢 in
𝐿1(Ω;R𝑚) and such that

limℎ→+∞∫Ω
|∇𝑢ℎ| 𝑑𝑥 = |𝐷𝑢| (Ω).

The functions 𝑣ℎ = 𝑓 (𝑢ℎ) are locally Lipschitz continuous in Ω, and the definition of
differential implies that |∇𝑣ℎ| ≤ 𝐾 |∇𝑢ℎ| almost everywhere in Ω. The lower semicon-
tinuity of the total variation and (13) yield

|𝐷𝑣| (Ω) ≤ lim infℎ→+∞
|𝐷𝑣ℎ| (Ω) = lim infℎ→+∞ ∫Ω

|∇𝑣ℎ| 𝑑𝑥

≤ 𝐾 lim infℎ→+∞ ∫Ω
|∇𝑢ℎ| 𝑑𝑥 = 𝐾 |𝐷𝑢| (Ω).

(30)

Since 𝑓 (0) = 0, we have also

∫Ω
|𝑣| 𝑑𝑥 ≤ 𝐾 ∫Ω

|𝑢| 𝑑𝑥;

therefore 𝑢 ∈ 𝐵𝑉 (Ω;R𝑘 ). Repeating the same argument for every open set 𝐴 ⊂ Ω,
we get (29) for every 𝐵 ∈ B(Ω), because |𝐷𝑣|, |𝐷𝑢| are Radon measures. To prove
Lemma 6.1, first we observe that

𝑆𝑣 ⊂ 𝑆𝑢 , ̃𝑣(𝑥) = 𝑓 (�̃�(𝑥)) ∀𝑥 ∈ Ω\𝑆𝑢 . (31)
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In fact, for every 𝜀 > 0 we have

{𝑦 ∈ 𝐵𝜌(𝑥) ∶ ||𝑣(𝑦) − 𝑓 (�̃�(𝑥))|| > 𝜀} ⊂ {𝑦 ∈ 𝐵𝜌(𝑥) ∶ ||𝑢(𝑦) − �̃�(𝑥)|| > 𝜀/𝐾},
hence

lim𝜌→0+
||{𝑦 ∈ 𝐵𝜌(𝑥) ∶ ||𝑣(𝑦) − 𝑓 (�̃�(𝑥))|| > 𝜀}||

𝜌𝑛 = 0

whenever 𝑥 ∈ Ω\𝑆𝑢 . By a similar argument, if 𝑥 ∈ 𝑆𝑢 is a point such that there exists
a triplet (𝑢+, 𝑢−, 𝜈𝑢) satisfying (14), (15), then

(𝑣+(𝑥) − 𝑣−(𝑥)) ⊗ 𝜈𝑣 = (𝑓 (𝑢+(𝑥)) − 𝑓 (𝑢−(𝑥))) ⊗ 𝜈𝑢 if 𝑥 ∈ 𝑆𝑣
and 𝑓 (𝑢−(𝑥)) = 𝑓 (𝑢+(𝑥)) if 𝑥 ∈ 𝑆𝑢\𝑆𝑣 . Hence, by (1.8) we get

𝐽 𝑣(𝐵) = ∫𝐵∩𝑆𝑣
(𝑣+ − 𝑣−) ⊗ 𝜈𝑣 𝑑ℋ𝑛−1 = ∫𝐵∩𝑆𝑣

(𝑓 (𝑢+) − 𝑓 (𝑢−)) ⊗ 𝜈𝑢 𝑑ℋ𝑛−1

= ∫𝐵∩𝑆𝑢
(𝑓 (𝑢+) − 𝑓 (𝑢−)) ⊗ 𝜈𝑢 𝑑ℋ𝑛−1

and Lemma 6.1 is proved.

To prove (31), it is not restrictive to assume that 𝑘 = 1. Moreover, to simplify our
notation, from now on we shall assume that Ω = R𝑛 . The proof of (31) is divided
into two steps. In the first step we prove the statement in the one-dimensional case
(𝑛 = 1), using Theorem 5.2. In the second step we achieve the general result using
Theorem 7.1.

Step 1

Assume that 𝑛 = 1. Since 𝑆𝑢 is at most countable, (7) yields that ||�̃�𝑣|| (𝑆𝑢\𝑆𝑣 ) = 0, so
that (19) and (21) imply that 𝐷𝑣 = �̃�𝑣 + 𝐽𝑣 is the Radon-Nikodým decomposition of
𝐷𝑣 in absolutely continuous and singular part with respect to ||�̃�𝑢||. By Theorem 5.2,
we have

�̃�𝑣
||�̃�𝑢||

(𝑡) = lim𝑠→𝑡+
𝐷𝑣([𝑡, 𝑠[)
||�̃�𝑢|| ([𝑡, 𝑠[)

, �̃�𝑢
||�̃�𝑢||

(𝑡) = lim𝑠→𝑡+
𝐷𝑢([𝑡, 𝑠[)
||�̃�𝑢|| ([𝑡, 𝑠[)

||�̃�𝑢||-almost everywhere in R. It is well known (see, for instance, [12, 2.5.16]) that
every one-dimensional function of bounded variation 𝑤 has a unique left continuous
representative, i.e., a function �̂� such that �̂� = 𝑤 almost everywhere and lim𝑠→𝑡− �̂�(𝑠) =
�̂�(𝑡) for every 𝑡 ∈ R. These conditions imply

�̂�(𝑡) = 𝐷𝑢(]−∞, 𝑡[), ̂𝑣(𝑡) = 𝐷𝑣(]−∞, 𝑡[) ∀𝑡 ∈ R (32)

and
̂𝑣(𝑡) = 𝑓 (�̂�(𝑡)) ∀𝑡 ∈ R. (33)
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Let 𝑡 ∈ R be such that ||�̃�𝑢|| ([𝑡, 𝑠[) > 0 for every 𝑠 > 𝑡 and assume that the limits in (22)
exist. By (23) and (24) we get

̂𝑣(𝑠) − ̂𝑣(𝑡)
||�̃�𝑢|| ([𝑡, 𝑠[)

= 𝑓 (�̂�(𝑠)) − 𝑓 (�̂�(𝑡))
||�̃�𝑢|| ([𝑡, 𝑠[)

=
𝑓 (�̂�(𝑠)) − 𝑓 (�̂�(𝑡) + �̃�𝑢

||�̃�𝑢||
(𝑡) ||�̃�𝑢|| ([𝑡, 𝑠[))

||�̃�𝑢|| ([𝑡, 𝑠[)

+
𝑓 (�̂�(𝑡) + �̃�𝑢

||�̃�𝑢||
(𝑡) ||�̃�𝑢|| ([𝑡, 𝑠[)) − 𝑓 (�̂�(𝑡))

||�̃�𝑢|| ([𝑡, 𝑠[)
for every 𝑠 > 𝑡 . Using the Lipschitz condition on 𝑓 we find

||||||||

̂𝑣(𝑠) − ̂𝑣(𝑡)
||�̃�𝑢|| ([𝑡, 𝑠[)

−
𝑓 (�̂�(𝑡) + �̃�𝑢

||�̃�𝑢||
(𝑡) ||�̃�𝑢|| ([𝑡, 𝑠[)) − 𝑓 (�̂�(𝑡))

||�̃�𝑢|| ([𝑡, 𝑠[)

||||||||

≤ 𝐾
||||
�̂�(𝑠) − �̂�(𝑡)
||�̃�𝑢|| ([𝑡, 𝑠[)

− �̃�𝑢
||�̃�𝑢||

(𝑡)
||||
.

By (29), the function 𝑠 → ||�̃�𝑢|| ([𝑡, 𝑠[) is continuous and converges to 0 as 𝑠 ↓ 𝑡 .
Therefore Remark 7.1 and the previous inequality imply

�̃�𝑣
||�̃�𝑢||

(𝑡) = limℎ→0+

𝑓 (�̂�(𝑡) + ℎ �̃�𝑢
||�̃�𝑢||

(𝑡)) − 𝑓 (�̂�(𝑡))

ℎ
||�̃�𝑢|| -a.e. in R.

By (22), �̂�(𝑥) = �̃�(𝑥) for every 𝑥 ∈ R\𝑆𝑢 ; moreover, applying the same argument to the
functions 𝑢′(𝑡) = 𝑢(−𝑡), 𝑣′(𝑡) = 𝑓 (𝑢′(𝑡)) = 𝑣(−𝑡), we get

�̃�𝑣
||�̃�𝑢||

(𝑡) = limℎ→0

𝑓 (�̃�(𝑡) + ℎ �̃�𝑢
||�̃�𝑢||

(𝑡)) − 𝑓 (�̃�(𝑡))

ℎ
||�̃�𝑢|| -a.e. in R

and our statement is proved.

Step 2

Let us consider now the general case 𝑛 > 1. Let 𝜈 ∈ R𝑛 be such that |𝜈 | = 1, and let
𝜋𝜈 = {𝑦 ∈ R𝑛 ∶ ⟨𝑦, 𝜈⟩ = 0}. In the following, we shall identify R𝑛 with 𝜋𝜈 × R, and we
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shall denote by 𝑦 the variable ranging in 𝜋𝜈 and by 𝑡 the variable ranging in R. By the
just proven one-dimensional result, and by Theorem 3.3, we get

limℎ→0

𝑓 (�̃�(𝑦 + 𝑡𝜈) + ℎ �̃�𝑢𝑦
||�̃�𝑢𝑦 ||

(𝑡)) − 𝑓 (�̃�(𝑦 + 𝑡𝜈))

ℎ = �̃�𝑣𝑦
||�̃�𝑢𝑦 ||

(𝑡) ||�̃�𝑢𝑦 || -a.e. in R

forℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈 . We claim that

⟨�̃�𝑢, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

(𝑦 + 𝑡𝜈) = �̃�𝑢𝑦
||�̃�𝑢𝑦 ||

(𝑡) ||�̃�𝑢𝑦 || -a.e. in R (34)

forℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈 . In fact, by (16) and (18) we get

∫𝜋𝜈
�̃�𝑢𝑦
||�̃�𝑢𝑦 ||

⋅ ||�̃�𝑢𝑦 || 𝑑ℋ𝑛−1(𝑦) = ∫𝜋𝜈
�̃�𝑢𝑦 𝑑ℋ𝑛−1(𝑦)

= ⟨�̃�𝑢, 𝜈⟩ = ⟨�̃�𝑢, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

⋅ ||⟨�̃�𝑢, 𝜈⟩|| = ∫𝜋𝜈
⟨�̃�𝑢, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

(𝑦 + ⋅𝜈) ⋅ ||�̃�𝑢𝑦 || 𝑑ℋ𝑛−1(𝑦)

and (24) follows from (13). By the same argument it is possible to prove that

⟨�̃�𝑣, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

(𝑦 + 𝑡𝜈) = �̃�𝑣𝑦
||�̃�𝑢𝑦 ||

(𝑡) ||�̃�𝑢𝑦 || -a.e. in R (35)

forℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈 . By (24) and (25) we get

limℎ→0

𝑓 (�̃�(𝑦 + 𝑡𝜈) + ℎ ⟨�̃�𝑢, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

(𝑦 + 𝑡𝜈)) − 𝑓 (�̃�(𝑦 + 𝑡𝜈))

ℎ = ⟨�̃�𝑣, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

(𝑦 + 𝑡𝜈)

forℋ𝑛−1-almost every 𝑦 ∈ 𝜋𝜈 , and using again (14), (15) we get

limℎ→0

𝑓 (�̃�(𝑥) + ℎ ⟨�̃�𝑢, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

(𝑥)) − 𝑓 (�̃�(𝑥))

ℎ = ⟨�̃�𝑣, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

(𝑥)

||⟨�̃�𝑢, 𝜈⟩||-a.e. in R𝑛 .
Since the function ||⟨�̃�𝑢, 𝜈⟩|| / ||�̃�𝑢|| is strictly positive ||⟨�̃�𝑢, 𝜈⟩||-almost everywhere,
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we obtain also

limℎ→0

𝑓 (�̃�(𝑥) + ℎ
||⟨�̃�𝑢, 𝜈⟩||
||�̃�𝑢||

(𝑥) ⟨�̃�𝑢, 𝜈⟩||⟨�̃�𝑢, 𝜈⟩||
(𝑥)) − 𝑓 (�̃�(𝑥))

ℎ

=
||⟨�̃�𝑢, 𝜈⟩||
||�̃�𝑢||

(𝑥) ⟨�̃�𝑣, 𝜈⟩||⟨�̃�𝑢, 𝜈⟩||
(𝑥)

||⟨�̃�𝑢, 𝜈⟩||-almost everywhere in R𝑛 .
Finally, since

||⟨�̃�𝑢, 𝜈⟩||
||�̃�𝑢||

⟨�̃�𝑢, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

= ⟨�̃�𝑢, 𝜈⟩
||�̃�𝑢||

= ⟨ �̃�𝑢||�̃�𝑢||
, 𝜈⟩ ||�̃�𝑢|| -a.e. in R𝑛

||⟨�̃�𝑢, 𝜈⟩||
||�̃�𝑢||

⟨�̃�𝑣, 𝜈⟩
||⟨�̃�𝑢, 𝜈⟩||

= ⟨�̃�𝑣, 𝜈⟩
||�̃�𝑢||

= ⟨ �̃�𝑣||�̃�𝑢||
, 𝜈⟩ ||�̃�𝑢|| -a.e. in R𝑛

and since both sides of (33) are zero ||�̃�𝑢||-almost everywhere on ||⟨�̃�𝑢, 𝜈⟩||-negligible
sets, we conclude that

limℎ→0

𝑓
⎛⎜⎜⎝
�̃�(𝑥) + ℎ ⟨ �̃�𝑢||�̃�𝑢||

(𝑥), 𝜈⟩
⎞⎟⎟⎠
− 𝑓 (�̃�(𝑥))

ℎ = ⟨ �̃�𝑣||�̃�𝑢||
(𝑥), 𝜈⟩ ,

||�̃�𝑢||-a.e. in R𝑛 . Since 𝜈 is arbitrary, by Remarks 7.2 and 7.3 the restriction of 𝑓 to
the affine space 𝑇 𝑢𝑥 is differentiable at �̃�(𝑥) for ||�̃�𝑢||-almost every 𝑥 ∈ R𝑛 and (26)
holds.

It follows from (13), (14), and (15) that

𝐷(𝑡1, … , 𝑡𝑛) = ∑
𝐼 ∈n

(−1)|𝐼 |−1 |𝐼 |∏
𝑖∈𝐼

𝑡𝑖 ∏
𝑗∈𝐼

(𝐷𝑗 + 𝜆𝑗 𝑡𝑗 ) detA(𝜆)(𝐼 |𝐼 ). (36)

Let 𝑡𝑖 = �̂�𝑖 , 𝑖 = 1, … , 𝑛. Lemma 1 leads to

𝐷(�̂�1, … , �̂�𝑛) = ∏
𝑖∈n

�̂�𝑖 ∑
𝐼 ∈n

(−1)|𝐼 |−1 |𝐼 | perA(𝜆)(𝐼 |𝐼 ) detA(𝜆)(𝐼 |𝐼 ). (37)

By (3), (13), and (37), we have the following result:

Theorem 7.2.

𝐻𝑐 =
1
2𝑛

𝑛
∑
𝑙=1

𝑙(−1)𝑙−1𝐴(𝜆)
𝑙 , (38)

where
𝐴(𝜆)
𝑙 = ∑

𝐼𝑙⊆n
perA(𝜆)(𝐼𝑙 |𝐼𝑙 ) detA(𝜆)(𝐼 𝑙 |𝐼 𝑙 ), |𝐼𝑙 | = 𝑙. (39)
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It is worth noting that 𝐴(𝜆)
𝑙 of (39) is similar to the coefficients 𝑏𝑙 of the charac-

teristic polynomial of (10). It is well known in graph theory that the coefficients 𝑏𝑙
can be expressed as a sum over certain subgraphs. It is interesting to see whether 𝐴𝑙 ,
𝜆 = 0, structural properties of a graph.

Wemay call (38) a parametric representation of𝐻𝑐 . In computation, the parameter
𝜆𝑖 plays very important roles. The choice of the parameter usually depends on the
properties of the given graph. For a complete graph 𝐾𝑛 , let 𝜆𝑖 = 1, 𝑖 = 1, … , 𝑛. It
follows from (39) that

𝐴(1)
𝑙 = {

𝑛! , if 𝑙 = 1
0, otherwise. (40)

By (38)

𝐻𝑐 =
1
2 (𝑛 − 1)! . (41)

For a complete bipartite graph 𝐾𝑛1𝑛2 , let 𝜆𝑖 = 0, 𝑖 = 1, … , 𝑛. By (39),

𝐴𝑙 = {
−𝑛1! 𝑛2! 𝛿𝑛1𝑛2 , if 𝑙 = 2
0, otherwise . (42)

Theorem 7.2 leads to
𝐻𝑐 =

1
𝑛1 + 𝑛2

𝑛1! 𝑛2! 𝛿𝑛1𝑛2 . (43)

Now, we consider an asymmetrical approach. Theorem 3.3 leads to

detK(𝑡 = 1, 𝑡1, … , 𝑡𝑛; 𝑙|𝑙)
= ∑

𝐼 ⊆n−{𝑙}
(−1)|𝐼 |∏

𝑖∈𝐼
𝑡𝑖 ∏

𝑗∈𝐼
(𝐷𝑗 + 𝜆𝑗 𝑡𝑗 ) detA(𝜆)(𝐼 ∪ {𝑙}|𝐼 ∪ {𝑙}). (44)

By (3) and (16) we have the following asymmetrical result:

Theorem 7.3.

𝐻𝑐 =
1
2 ∑
𝐼 ⊆n−{𝑙}

(−1)|𝐼 | perA(𝜆)(𝐼 |𝐼 ) detA(𝜆)(𝐼 ∪ {𝑙}|𝐼 ∪ {𝑙}) (45)

which reduces to Goulden–Jackson’s formula when 𝜆𝑖 = 0, 𝑖 = 1, … , 𝑛 [9].

8 Various font features of the amsmath package

8.1 Bold versions of special symbols

In the amsmath package \boldsymbol is used for getting individual bold math sym-
bols and bold Greek letters—everything in math except for letters of the Latin alpha-
bet, where you’d use \mathbf. For example,
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A_\infty + \pi A_0 \sim
\mathbf{A}_{\boldsymbol{\infty}} \boldsymbol{+}
\boldsymbol{\pi} \mathbf{A}_{\boldsymbol{0}}

looks like this:
𝐴∞ + 𝜋𝐴0 ∼ A∞ + 𝜋A0

8.2 “Poor man’s bold”

If a bold version of a particular symbol doesn’t exist in the available fonts, then
\boldsymbol can’t be used to make that symbol bold. At the present time, this means
that \boldsymbol can’t be used with symbols from the msam and msbm fonts, among
others. In some cases, poor man’s bold (\pmb) can be used instead of \boldsymbol:

𝜕𝑥
𝜕𝑦

|||
|||
|||
𝜕𝑦
𝜕𝑧

\[\frac{\partial x}{\partial y}
\pmb{\bigg\vert}
\frac{\partial y}{\partial z}\]

So-called “large operator” symbols such as∑ and∏ require an additional command,
\mathop, to produce proper spacing and limits when \pmb is used. For further details
see The TEXbook.

∑
𝑖<𝐵
𝑖 odd

∏
𝜅

𝜅𝐹(𝑟𝑖) ∑∑∑
𝑖<𝐵
𝑖 odd

∏∏∏
𝜅

𝜅(𝑟𝑖)

\[\sum_{\substack{i<B\\\text{$i$ odd}}}
\prod_\kappa \kappa F(r_i)\qquad
\mathop{\pmb{\sum}}_{\substack{i<B\\\text{$i$ odd}}}
\mathop{\pmb{\prod}}_\kappa \kappa(r_i)
\]

9 Compound symbols and other features

9.1 Multiple integral signs

\iint, \iiint, and \iiiint give multiple integral signs with the spacing between
them nicely adjusted, in both text and display style. \idotsint gives two integral
signs with dots between them.

∬
𝐴

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ∭
𝐴

𝑓 (𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 (46)

⨌
𝐴

𝑓 (𝑤, 𝑥, 𝑦, 𝑧) 𝑑𝑤 𝑑𝑥 𝑑𝑦 𝑑𝑧 ∫⋯∫
𝐴

𝑓 (𝑥1, … , 𝑥𝑘 ) (47)
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9.2 Over and under arrows

Some extra over and under arrow operations are provided in the amsmath package.
(Basic LATEX provides \overrightarrow and \overleftarrow).

⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃗𝜓𝛿 (𝑡)𝐸𝑡ℎ = 𝜓𝛿 (𝑡)𝐸𝑡ℎ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃯
⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖𝜓𝛿 (𝑡)𝐸𝑡ℎ = 𝜓𝛿 (𝑡)𝐸𝑡ℎ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮
⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃖ ⃖⃗𝜓𝛿 (𝑡)𝐸𝑡ℎ = 𝜓𝛿 (𝑡)𝐸𝑡ℎ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃮ ⃮⃯

\begin{align*}
\overrightarrow{\psi_\delta(t) E_t h}&
=\underrightarrow{\psi_\delta(t) E_t h}\\
\overleftarrow{\psi_\delta(t) E_t h}&
=\underleftarrow{\psi_\delta(t) E_t h}\\
\overleftrightarrow{\psi_\delta(t) E_t h}&
=\underleftrightarrow{\psi_\delta(t) E_t h}
\end{align*}

These all scale properly in subscript sizes:

∫⃖⃖⃖ ⃖⃗𝐴𝐵
𝑎𝑥 𝑑𝑥

\[\int_{\overrightarrow{AB}} ax\,dx\]

9.3 Dots

Normally you need only type \dots for ellipsis dots in a math formula. The main
exception is when the dots fall at the end of the formula; then you need to specify
one of \dotsc (series dots, after a comma), \dotsb (binary dots, for binary relations
or operators), \dotsm (multiplication dots), or \dotsi (dots after an integral). For
example, the input

Then we have the series $A_1,A_2,\dotsc$,
the regional sum $A_1+A_2+\dotsb$,
the orthogonal product $A_1A_2\dotsm$,
and the infinite integral
\[\int_{A_1}\int_{A_2}\dotsi\].

produces

Then we have the series 𝐴1, 𝐴2, … , the regional sum 𝐴1 +𝐴2 +⋯ , the
orthogonal product 𝐴1𝐴2⋯ , and the infinite integral

∫𝐴1
∫𝐴2

⋯
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9.4 Accents in math

Double accents:
̂�̂� ̌̌𝐶 ̃̃𝑇 ́́𝐴 ̀�̀� ̇�̇� ̈�̈� ̆̆𝐵 ̄̄𝐵 ⃗⃗𝑉

\[\Hat{\Hat{H}}\quad\Check{\Check{C}}\quad
\Tilde{\Tilde{T}}\quad\Acute{\Acute{A}}\quad
\Grave{\Grave{G}}\quad\Dot{\Dot{D}}\quad
\Ddot{\Ddot{D}}\quad\Breve{\Breve{B}}\quad
\Bar{\Bar{B}}\quad\Vec{\Vec{V}}\]
This double accent operation is complicated and tends to slow down the processing
of a LATEX file.

9.5 Dot accents

\dddot and \ddddot are available to produce triple and quadruple dot accents in
addition to the \dot and \ddot accents already available in LATEX:

⃛𝑄 ⃜𝑅
\[\dddot{Q}\qquad\ddddot{R}\]

9.6 Roots

In the amsmath package \leftroot and \uproot allow you to adjust the position of
the root index of a radical:
\sqrt[\leftroot{-2}\uproot{2}\beta]{k}
gives good positioning of the 𝛽 :

𝛽√𝑘

9.7 Boxed formulas

The command \boxed puts a box around its argument, like \fbox except that the
contents are in math mode:
\boxed{W_t-F\subseteq V(P_i)\subseteq W_t}

𝑊𝑡 − 𝐹 ⊆ 𝑉 (𝑃𝑖) ⊆ 𝑊𝑡 .

9.8 Extensible arrows

\xleftarrow and \xrightarrow produce arrows that extend automatically to ac-
commodate unusually wide subscripts or superscripts. The text of the subscript or
superscript are given as an optional resp. mandatory argument: Example:

0 𝛼←−𝜁 𝐹 × △[𝑛 − 1] 𝜕0𝛼(𝑏)−−−−−→ 𝐸𝜕0𝑏

\[0 \xleftarrow[\zeta]{\alpha} F\times\triangle[n-1]
\xrightarrow{\partial_0\alpha(b)} E^{\partial_0b}\]
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9.9 \overset, \underset, and \sideset
Examples:

∗
𝑋 𝑋∗

𝑎
𝑋𝑏

\[\overset{*}{X}\qquad\underset{*}{X}\qquad
\overset{a}{\underset{b}{X}}\]

The command \sideset is for a rather special purpose: putting symbols at the
subscript and superscript corners of a large operator symbol such as∑ or∏, without
affecting the placement of limits. Examples:

∗
∗∏

∗
∗𝑘

∑′
0≤𝑖≤𝑚

𝐸𝑖𝛽𝑥

\[\sideset{_*^*}{_*^*}\prod_k\qquad
\sideset{}{'}\sum_{0\le i\le m} E_i\beta x
\]

9.10 The \text command

The main use of the command \text is for words or phrases in a display:

y = y′ if and only if 𝑦′𝑘 = 𝛿𝑘𝑦𝜏(𝑘)
\[\mathbf{y}=\mathbf{y}'\quad\text{if and only if}\quad
y'_k=\delta_k y_{\tau(k)}\]

9.11 Operator names

Themore commonmath functions such as log, sin, and lim have predefined control se-
quences: \log, \sin, \lim. The amsmath package provides \DeclareMathOperator
and \DeclareMathOperator* for producing new function names that will have the
same typographical treatment. Examples:

‖𝑓 ‖∞ = ess sup𝑥∈𝑅𝑛
||𝑓 (𝑥)||

\[\norm{f}_\infty=
\esssup_{x\in R^n}\abs{f(x)}\]

meas1{𝑢 ∈ 𝑅1+ ∶ 𝑓 ∗(𝑢) > 𝛼} = meas𝑛{𝑥 ∈ 𝑅𝑛∶ ||𝑓 (𝑥)|| ≥ 𝛼} ∀𝛼 > 0.
\[\meas_1\{u\in R_+^1\colon f^*(u)>\alpha\}
=\meas_n\{x\in R^n\colon \abs{f(x)}\geq\alpha\}
\quad \forall\alpha>0.\]

\esssup and \meas would be defined in the document preamble as
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\DeclareMathOperator*{\esssup}{ess\,sup}
\DeclareMathOperator{\meas}{meas}

The following special operator names are predefined in the amsmath package:
\varlimsup, \varliminf, \varinjlim, and \varprojlim. Here’s what they look
like in use:

lim𝑛→∞𝒬(𝑢𝑛 , 𝑢𝑛 − 𝑢#) ≤ 0 (48)

lim
𝑛→∞

|𝑎𝑛+1| / |𝑎𝑛 | = 0 (49)

lim−→(𝑚𝜆𝑖 ⋅)∗ ≤ 0 (50)

lim←−𝑝∈𝑆(𝐴)
𝐴𝑝 ≤ 0 (51)

\begin{align}
&\varlimsup_{n\rightarrow\infty}

\mathcal{Q}(u_n,u_n-u^{\#})\le0\\
&\varliminf_{n\rightarrow\infty}
\left\lvert a_{n+1}\right\rvert/\left\lvert a_n\right\rvert=0\\

&\varinjlim (m_i^\lambda\cdot)^*\le0\\
&\varprojlim_{p\in S(A)}A_p\le0
\end{align}

9.12 \mod and its relatives

The commands \mod and \pod are variants of \pmod preferred by some authors; \mod
omits the parentheses, whereas \pod omits the ‘mod’ and retains the parentheses.
Examples:

𝑥 ≡ 𝑦 + 1 (mod 𝑚2) (52)
𝑥 ≡ 𝑦 + 1 mod 𝑚2 (53)
𝑥 ≡ 𝑦 + 1 (𝑚2) (54)

\begin{align}
x&\equiv y+1\pmod{m^2}\\
x&\equiv y+1\mod{m^2}\\
x&\equiv y+1\pod{m^2}
\end{align}
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9.13 Fractions and related constructions

The usual notation for binomials is similar to the fraction concept, so it has a similar
command \binom with two arguments. Example:

∑
𝛾∈Γ𝐶

𝐼𝛾 = 2𝑘 − (
𝑘
1)2

𝑘−1 + (
𝑘
2)2

𝑘−2

+ ⋯ + (−1)𝑙(
𝑘
𝑙 )2

𝑘−𝑙 + ⋯ + (−1)𝑘

= (2 − 1)𝑘 = 1

(55)

\begin{equation}
\begin{split}
[\sum_{\gamma\in\Gamma_C} I_\gamma&
=2^k-\binom{k}{1}2^{k-1}+\binom{k}{2}2^{k-2}\\
&\quad+\dots+(-1)^l\binom{k}{l}2^{k-l}
+\dots+(-1)^k\\
&=(2-1)^k=1
\end{split}
\end{equation}

There are also abbreviations

\dfrac \dbinom
\tfrac \tbinom

for the commonly needed constructions

{\displaystyle\frac ... } {\displaystyle\binom ... }
{\textstyle\frac ... } {\textstyle\binom ... }

The generalized fraction command \genfrac provides full access to the six TEX
fraction primitives:

\over:
𝑛 + 1
2 \overwithdelims: ⟨𝑛 + 1

2 ⟩ (56)

\atop:
𝑛 + 1
2 \atopwithdelims: (

𝑛 + 1
2 ) (57)

\above:
𝑛 + 1
2 \abovewithdelims: [

𝑛 + 1
2 ] (58)

\text{\cn{over}: }&\genfrac{}{}{}{}{n+1}{2}&
\text{\cn{overwithdelims}: }&
\genfrac{\langle}{\rangle}{}{}{n+1}{2}\\

\text{\cn{atop}: }&\genfrac{}{}{0pt}{}{n+1}{2}&
\text{\cn{atopwithdelims}: }&
\genfrac{(}{)}{0pt}{}{n+1}{2}\\

\text{\cn{above}: }&\genfrac{}{}{1pt}{}{n+1}{2}&
\text{\cn{abovewithdelims}: }&
\genfrac{[}{]}{1pt}{}{n+1}{2}
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9.14 Continued fractions

The continued fraction
1

√2 + 1

√2 + 1

√2 + 1

√2 + 1
√2 + ⋯

(59)

can be obtained by typing

\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+
\cfrac{1}{\sqrt{2}+\dotsb

}}}}}

Left or right placement of any of the numerators is accomplished by using \cfrac[l]
or \cfrac[r] instead of \cfrac.

9.15 Smash

In amsmath there are optional arguments t and b for the plain TEX command \smash,
because sometimes it is advantageous to be able to ‘smash’ only the top or only the
bottom of something while retaining the natural depth or height. In the formula 𝑋𝑗 =
(1/√𝜆𝑗 )𝑋 ′𝑗 \smash[b] has been used to limit the size of the radical symbol.

$X_j=(1/\sqrt{\smash[b]{\lambda_j}})X_j'$

Without the use of \smash[b] the formulawould have appeared thus: 𝑋𝑗 = (1/√𝜆𝑗 )𝑋 ′𝑗 ,
with the radical extending to encompass the depth of the subscript 𝑗.

9.16 The ‘cases’ environment

‘Cases’ constructions like the following can be produced using the cases environ-
ment.

𝑃𝑟−𝑗 = {
0 if 𝑟 − 𝑗 is odd,
𝑟 ! (−1)(𝑟−𝑗)/2 if 𝑟 − 𝑗 is even. (60)

\begin{equation} P_{r-j}=
\begin{cases}
0& \text{if $r-j$ is odd},\\
r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}.

\end{cases}
\end{equation}

Notice the use of \text and the embedded math.
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9.17 Matrix

Here are samples of thematrix environments, \matrix, \pmatrix, \bmatrix, \Bmatrix,
\vmatrix and \Vmatrix:

𝜗 𝜚
𝜑 𝜛 (

𝜗 𝜚
𝜑 𝜛) [

𝜗 𝜚
𝜑 𝜛] {

𝜗 𝜚
𝜑 𝜛}

|||
𝜗 𝜚
𝜑 𝜛

|||
‖‖‖
𝜗 𝜚
𝜑 𝜛

‖‖‖ (61)

\begin{matrix}
\vartheta& \varrho\\\varphi& \varpi
\end{matrix}\quad
\begin{pmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{pmatrix}\quad
\begin{bmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{bmatrix}\quad
\begin{Bmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{Bmatrix}\quad
\begin{vmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{vmatrix}\quad
\begin{Vmatrix}
\vartheta& \varrho\\\varphi& \varpi
\end{Vmatrix}

To produce a small matrix suitable for use in text, use the smallmatrix environ-
ment.

\begin{math}
\bigl( \begin{smallmatrix}

a&b\\ c&d
\end{smallmatrix} \bigr)

\end{math}

To show the effect of the matrix on the surrounding lines of a paragraph, we put it
here: ( 𝑎 𝑏

𝑐 𝑑 ) and follow it with enough text to ensure that there will be at least one
full line below the matrix.

\hdotsfor{number} produces a row of dots in a matrix spanning the given num-
ber of columns:

𝑊(Φ) =

‖‖‖‖‖‖‖‖

𝜑
(𝜑1, 𝜀1)

0 … 0
𝜑𝑘𝑛2
(𝜑2, 𝜀1)

𝜑
(𝜑2, 𝜀2)

… 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
𝜑𝑘𝑛1
(𝜑𝑛 , 𝜀1)

𝜑𝑘𝑛2
(𝜑𝑛 , 𝜀2)

… 𝜑𝑘𝑛 𝑛−1
(𝜑𝑛 , 𝜀𝑛−1)

𝜑
(𝜑𝑛 , 𝜀𝑛)

‖‖‖‖‖‖‖‖
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\[W(\Phi)= \begin{Vmatrix}
\dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\
\dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}&
\dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\
\hdotsfor{5}\\
\dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}&
\dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots&
\dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}&
\dfrac{\varphi}{(\varphi_n,\varepsilon_n)}
\end{Vmatrix}\]

The spacing of the dots can be varied through use of a square-bracket option, for
example, \hdotsfor[1.5]{3}. The number in square brackets will be used as a
multiplier; the normal value is 1.

9.18 The \substack command

The \substack command can be used to produce a multiline subscript or superscript:
for example

\sum_{\substack{0\le i\le m\\ 0<j<n}} P(i,j)

produces a two-line subscript underneath the sum:

∑
0≤𝑖≤𝑚0<𝑗<𝑛

𝑃(𝑖, 𝑗) (62)

A slightly more generalized form is the subarray environment which allows you to
specify that each line should be left-aligned instead of centered, as here:

∑
0≤𝑖≤𝑚0<𝑗<𝑛

𝑃(𝑖, 𝑗) (63)

\sum_{\begin{subarray}{l}
0\le i\le m\\ 0<j<n

\end{subarray}}
P(i,j)

9.19 Big-g-g delimiters

Here are some big delimiters, first in \normalsize:

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥 (𝑠)𝜑(𝑥) 𝑑𝑠)

\[\biggl(\mathbf{E}_{y}
\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
\biggr)

\]
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and now in \Large size:

(E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥 (𝑠)𝜑(𝑥)𝑑𝑠)

{\Large
\[\biggl(\mathbf{E}_{y}
\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
\biggr)

\]}
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A Examples of multiple-line equation structures
Note: Starting on this page, vertical rules are added at the margins so
that the positioning of various display elements with respect to the
margins can be seen more clearly.

A.1 Split

The split environment is not an independent environment but should be used inside
something else such as equation or align.

If there is not enough room for it, the equation number for a splitwill be shifted
to the previous line, when equation numbers are on the left; the number shifts down
to the next line when numbers are on the right.

𝑓ℎ,𝜀 (𝑥, 𝑦) = 𝜀E𝑥,𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑢)𝜑(𝑥) 𝑑𝑢

= ℎ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥 (𝑑𝑧)

+ ℎ[
1
𝑡𝜀(

E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥 (𝑠)𝜑(𝑥) 𝑑𝑠 − 𝑡𝜀 ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥 (𝑑𝑧))

+ 1
𝑡𝜀(

E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥 (𝑠)𝜑(𝑥) 𝑑𝑠 − E𝑥,𝑦 ∫

𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑠)𝜑(𝑥) 𝑑𝑠)]

= ℎ𝐿𝑥𝜑(𝑥) + ℎ𝜃𝜀 (𝑥, 𝑦),

(64)

Some text after to test the below-display spacing.

\begin{equation}
\begin{split}
f_{h,\varepsilon}(x,y)
&=\varepsilon\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\
&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\
&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\mathbf{E}_{y}
\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
-t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\

&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon}
\biggl(\mathbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)}
\varphi(x)\,ds -\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon s)}
\varphi(x)\,ds\biggr)\biggr]\\

&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y),
\end{split}
\end{equation}
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Unnumbered version:

𝑓ℎ,𝜀 (𝑥, 𝑦) = 𝜀E𝑥,𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑢)𝜑(𝑥) 𝑑𝑢

= ℎ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥 (𝑑𝑧)

+ ℎ[
1
𝑡𝜀(

E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥 (𝑠)𝜑(𝑥) 𝑑𝑠 − 𝑡𝜀 ∫𝐿𝑥,𝑧𝜑(𝑥)𝜌𝑥 (𝑑𝑧))

+ 1
𝑡𝜀(

E𝑦 ∫
𝑡𝜀

0
𝐿𝑥,𝑦𝑥 (𝑠)𝜑(𝑥) 𝑑𝑠 − E𝑥,𝑦 ∫

𝑡𝜀

0
𝐿𝑥,𝑦𝜀(𝜀𝑠)𝜑(𝑥) 𝑑𝑠)]

= ℎ𝐿𝑥𝜑(𝑥) + ℎ𝜃𝜀 (𝑥, 𝑦),
Some text after to test the below-display spacing.

\begin{equation*}
\begin{split}
f_{h,\varepsilon}(x,y)
&=\varepsilon\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon u)}\varphi(x)\,du\\
&= h\int L_{x,z}\varphi(x)\rho_x(dz)\\
&\quad+h\biggl[\frac{1}{t_\varepsilon}\biggl(\mathbf{E}_{y}
\int_0^{t_\varepsilon}L_{x,y^x(s)}\varphi(x)\,ds
-t_\varepsilon\int L_{x,z}\varphi(x)\rho_x(dz)\biggr)\\

&\phantom{{=}+h\biggl[}+\frac{1}{t_\varepsilon}
\biggl(\mathbf{E}_{y}\int_0^{t_\varepsilon}L_{x,y^x(s)}
\varphi(x)\,ds -\mathbf{E}_{x,y}\int_0^{t_\varepsilon}
L_{x,y_\varepsilon(\varepsilon s)}
\varphi(x)\,ds\biggr)\biggr]\\

&=h\wh{L}_x\varphi(x)+h\theta_\varepsilon(x,y),
\end{split}
\end{equation*}
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If the option centertags is included in the options list of the amsmath pack-
age, the equation numbers for split environments will be centered vertically on the
height of the split:

|𝐼2| =
||||∫

𝑇

0
𝜓(𝑡) {𝑢(𝑎, 𝑡) − ∫

𝑎

𝛾(𝑡)
𝑑𝜃

𝑘(𝜃, 𝑡) ∫
𝜃

𝑎
𝑐(𝜉 )𝑢𝑡 (𝜉 , 𝑡) 𝑑𝜉 } 𝑑𝑡

||||
≤ 𝐶6

|||
|||𝑓 ∫Ω

|| ̃𝑆−1,0𝑎,− 𝑊2(Ω, Γ𝑙 )||
|||
|||𝑢|

∘→ 𝑊 �̃�2 (Ω; Γ𝑟 , 𝑇 )||
||| .

(65)

Some text after to test the below-display spacing.
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Use of split within align:

|𝐼1| = |||∫Ω
𝑔𝑅𝑢 𝑑Ω|||

≤ 𝐶3 [∫Ω(∫
𝑥

𝑎
𝑔(𝜉 , 𝑡) 𝑑𝜉)

2
𝑑Ω]

1/2

× [∫Ω {𝑢
2𝑥 + 1

𝑘 (∫
𝑥

𝑎
𝑐𝑢𝑡 𝑑𝜉)

2

} 𝑐Ω]

1/2

≤ 𝐶4 ||||𝑓 || ̃𝑆−1,0𝑎,− 𝑊2(Ω, Γ𝑙 )|||| |||𝑢|
∘→ 𝑊 �̃�2 (Ω; Γ𝑟 , 𝑇 )|||| .

(66)

|𝐼2| =
|||∫

𝑇

0
𝜓(𝑡) {𝑢(𝑎, 𝑡) − ∫

𝑎

𝛾(𝑡)
𝑑𝜃

𝑘(𝜃, 𝑡) ∫
𝜃

𝑎
𝑐(𝜉 )𝑢𝑡 (𝜉 , 𝑡) 𝑑𝜉 } 𝑑𝑡

|||

≤ 𝐶6 |||
|||𝑓 ∫Ω

|| ̃𝑆−1,0𝑎,− 𝑊2(Ω, Γ𝑙 )||
|||
|||𝑢|

∘→ 𝑊 �̃�2 (Ω; Γ𝑟 , 𝑇 )||
||| .

(67)

Some text after to test the below-display spacing.

\begin{align}
\begin{split}\abs{I_1}
&=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\

&\le C_3\left[\int_\Omega\left(\int_{a}^x
g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\

&\quad\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k}
\left(\int_{a}^x cu_t\,d\xi\right)^2\right\}
c\Omega\right]^{1/2}\\

&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}\label{eq:A}\\
\begin{split}\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t)
-\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)}
\int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\

&\le C_6\left\lvert \left\lvert f\int_\Omega
\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}
\end{align}
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Unnumbered align, with a number on the second split:

|𝐼1| =
|||∫Ω

𝑔𝑅𝑢 𝑑Ω|||

≤ 𝐶3 [∫Ω(∫
𝑥

𝑎
𝑔(𝜉 , 𝑡) 𝑑𝜉)

2
𝑑Ω]

1/2

× [∫Ω {𝑢
2𝑥 + 1

𝑘 (∫
𝑥

𝑎
𝑐𝑢𝑡 𝑑𝜉)

2

} 𝑐Ω]

1/2

≤ 𝐶4 ||||𝑓 || ̃𝑆−1,0𝑎,− 𝑊2(Ω, Γ𝑙 )|||| |||𝑢|
∘→ 𝑊 �̃�2 (Ω; Γ𝑟 , 𝑇 )|||| .

|𝐼2| =
||||∫

𝑇

0
𝜓(𝑡) {𝑢(𝑎, 𝑡) − ∫

𝑎

𝛾(𝑡)
𝑑𝜃

𝑘(𝜃, 𝑡) ∫
𝜃

𝑎
𝑐(𝜉 )𝑢𝑡 (𝜉 , 𝑡) 𝑑𝜉 } 𝑑𝑡

||||
≤ 𝐶6

|||
|||𝑓 ∫Ω

|| ̃𝑆−1,0𝑎,− 𝑊2(Ω, Γ𝑙 )||
|||
|||𝑢|

∘→ 𝑊 �̃�2 (Ω; Γ𝑟 , 𝑇 )||
||| .

(67′)

Some text after to test the below-display spacing.

\begin{align*}
\begin{split}\abs{I_1}&=\left\lvert \int_\Omega gRu\,d\Omega\right\rvert\\
&\le C_3\left[\int_\Omega\left(\int_{a}^x
g(\xi,t)\,d\xi\right)^2d\Omega\right]^{1/2}\\

&\phantom{=}\times \left[\int_\Omega\left\{u^2_x+\frac{1}{k}
\left(\int_{a}^x cu_t\,d\xi\right)^2\right\}
c\Omega\right]^{1/2}\\

&\le C_4\left\lvert \left\lvert f\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}\\
\begin{split}\abs{I_2}&=\left\lvert \int_{0}^T \psi(t)\left\{u(a,t)
-\int_{\gamma(t)}^a\frac{d\theta}{k(\theta,t)}
\int_{a}^\theta c(\xi)u_t(\xi,t)\,d\xi\right\}dt\right\rvert\\

&\le C_6\left\lvert \left\lvert f\int_\Omega
\left\lvert \wt{S}^{-1,0}_{a,-}
W_2(\Omega,\Gamma_l)\right\rvert\right\rvert
\left\lvert \abs{u}\overset{\circ}\to W_2^{\wt{A}}
(\Omega;\Gamma_r,T)\right\rvert\right\rvert.

\end{split}\tag{\theequation$'$}
\end{align*}
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A.2 Multline

Numbered version:

∫
𝑏

𝑎 {∫
𝑏

𝑎
[𝑓 (𝑥)2𝑔(𝑦)2 + 𝑓 (𝑦)2𝑔(𝑥)2] − 2𝑓 (𝑥)𝑔(𝑥)𝑓 (𝑦)𝑔(𝑦) 𝑑𝑥}𝑑𝑦

= ∫
𝑏

𝑎 {
𝑔(𝑦)2 ∫

𝑏

𝑎
𝑓 2 + 𝑓 (𝑦)2 ∫

𝑏

𝑎
𝑔2 − 2𝑓 (𝑦)𝑔(𝑦) ∫

𝑏

𝑎
𝑓 𝑔}𝑑𝑦 (68)

To test the use of \label and \ref, we refer to the number of this equation here:
(68).

\begin{multline}\label{eq:E}
\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2]
-2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\
=\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2
\int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy

\end{multline}

Unnumbered version:

∫
𝑏

𝑎 {∫
𝑏

𝑎
[𝑓 (𝑥)2𝑔(𝑦)2 + 𝑓 (𝑦)2𝑔(𝑥)2] − 2𝑓 (𝑥)𝑔(𝑥)𝑓 (𝑦)𝑔(𝑦) 𝑑𝑥}𝑑𝑦

= ∫
𝑏

𝑎 {
𝑔(𝑦)2 ∫

𝑏

𝑎
𝑓 2 + 𝑓 (𝑦)2 ∫

𝑏

𝑎
𝑔2 − 2𝑓 (𝑦)𝑔(𝑦) ∫

𝑏

𝑎
𝑓 𝑔}𝑑𝑦

Some text after to test the below-display spacing.

\begin{multline*}
\int_a^b\biggl\{\int_a^b[f(x)^2g(y)^2+f(y)^2g(x)^2]
-2f(x)g(x)f(y)g(y)\,dx\biggr\}\,dy \\
=\int_a^b\biggl\{g(y)^2\int_a^bf^2+f(y)^2
\int_a^b g^2-2f(y)g(y)\int_a^b fg\biggr\}\,dy

\end{multline*}
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A.3 Gather

Numbered version with \notag on the second line:

𝐷(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ |𝑧 − 𝑎| < 𝑟}, (69)
seg(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ ℑ𝑧 = ℑ𝑎, |𝑧 − 𝑎| < 𝑟},

𝑐(𝑒, 𝜃, 𝑟) ≡ {(𝑥, 𝑦) ∈ C∶ |𝑥 − 𝑒| < 𝑦 tan 𝜃, 0 < 𝑦 < 𝑟}, (70)

𝐶(𝐸, 𝜃, 𝑟) ≡ ⋃
𝑒∈𝐸

𝑐(𝑒, 𝜃, 𝑟). (71)

\begin{gather}
D(a,r)\equiv\{z\in\mathbf{C}\colon \abs{z-a}<r\},\\
\seg(a,r)\equiv\{z\in\mathbf{C}\colon
\Im z= \Im a,\ \abs{z-a}<r\},\notag\\
c(e,\theta,r)\equiv\{(x,y)\in\mathbf{C}
\colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\
C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r).
\end{gather}

Unnumbered version.

𝐷(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ |𝑧 − 𝑎| < 𝑟},
seg(𝑎, 𝑟) ≡ {𝑧 ∈ C∶ ℑ𝑧 = ℑ𝑎, |𝑧 − 𝑎| < 𝑟},

𝑐(𝑒, 𝜃, 𝑟) ≡ {(𝑥, 𝑦) ∈ C∶ |𝑥 − 𝑒| < 𝑦 tan 𝜃, 0 < 𝑦 < 𝑟},
𝐶(𝐸, 𝜃, 𝑟) ≡ ⋃

𝑒∈𝐸
𝑐(𝑒, 𝜃, 𝑟).

Some text after to test the below-display spacing.

\begin{gather*}
D(a,r)\equiv\{z\in\mathbf{C}\colon \abs{z-a}<r\},\\
\seg (a,r)\equiv\{z\in\mathbf{C}\colon
\Im z= \Im a,\ \abs{z-a}<r\},\\
c(e,\theta,r)\equiv\{(x,y)\in\mathbf{C}
\colon \abs{x-e}<y\tan\theta,\ 0<y<r\},\\
C(E,\theta,r)\equiv\bigcup_{e\in E}c(e,\theta,r).
\end{gather*}
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A.4 Align

Numbered version:

𝛾𝑥 (𝑡) = (cos 𝑡𝑢 + sin 𝑡𝑥, 𝑣), (72)
𝛾𝑦 (𝑡) = (𝑢, cos 𝑡𝑣 + sin 𝑡𝑦), (73)

𝛾𝑧 (𝑡) = (cos 𝑡𝑢 + 𝛼
𝛽 sin 𝑡𝑣, − 𝛽𝛼 sin 𝑡𝑢 + cos 𝑡𝑣) . (74)

Some text after to test the below-display spacing.

\begin{align}
\gamma_x(t)&=(\cos tu+\sin tx,v),\\
\gamma_y(t)&=(u,\cos tv+\sin ty),\\
\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv,
-\frac\beta\alpha\sin tu+\cos tv\right).

\end{align}

Unnumbered version:

𝛾𝑥 (𝑡) = (cos 𝑡𝑢 + sin 𝑡𝑥, 𝑣),
𝛾𝑦 (𝑡) = (𝑢, cos 𝑡𝑣 + sin 𝑡𝑦),

𝛾𝑧 (𝑡) = (cos 𝑡𝑢 + 𝛼
𝛽 sin 𝑡𝑣, − 𝛽𝛼 sin 𝑡𝑢 + cos 𝑡𝑣) .

Some text after to test the below-display spacing.

\begin{align*}
\gamma_x(t)&=(\cos tu+\sin tx,v),\\
\gamma_y(t)&=(u,\cos tv+\sin ty),\\
\gamma_z(t)&=\left(\cos tu+\frac\alpha\beta\sin tv,
-\frac\beta\alpha\sin tu+\cos tv\right).

\end{align*}

A variation:

𝑥 = 𝑦 by (84) (75)
𝑥′ = 𝑦′ by (85) (76)

𝑥 + 𝑥′ = 𝑦 + 𝑦′ by Axiom 1. (77)

Some text after to test the below-display spacing.

\begin{align}
x& =y && \text {by (\ref{eq:C})}\\
x'& = y' && \text {by (\ref{eq:D})}\\
x+x' & = y+y' && \text {by Axiom 1.}
\end{align}
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A.5 Align and split within gather

When using the align environment within the gather environment, one or the
other, or both, should be unnumbered (using the * form); numbering both the outer
and inner environment would cause a conflict.

Automatically numbered gather with split and align*:

𝜑(𝑥, 𝑧) = 𝑧 − 𝛾10𝑥 − 𝛾𝑚𝑛𝑥𝑚𝑧𝑛
= 𝑧 − 𝑀𝑟−1𝑥 − 𝑀𝑟−(𝑚+𝑛)𝑥𝑚𝑧𝑛 (78)

𝜁 0 = (𝜉0)2,
𝜁 1 = 𝜉0𝜉1,
𝜁 2 = (𝜉1)2,

Here the split environment gets a number from the outer gather environment;
numbers for individual lines of the align* are suppressed because of the star.

\begin{gather}
\begin{split} \varphi(x,z)
&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\
&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n
\end{split}\\[6pt]
\begin{align*}
\zeta^0 &=(\xi^0)^2,\\
\zeta^1 &=\xi^0\xi^1,\\
\zeta^2 &=(\xi^1)^2,
\end{align*}
\end{gather}

The *-ed form of gather with the non-*-ed form of align.

𝜑(𝑥, 𝑧) = 𝑧 − 𝛾10𝑥 − 𝛾𝑚𝑛𝑥𝑚𝑧𝑛
= 𝑧 − 𝑀𝑟−1𝑥 − 𝑀𝑟−(𝑚+𝑛)𝑥𝑚𝑧𝑛

𝜁 0 = (𝜉0)2, (79)
𝜁 1 = 𝜉0𝜉1, (80)
𝜁 2 = (𝜉1)2, (81)

Some text after to test the below-display spacing.

\begin{gather*}
\begin{split} \varphi(x,z)
&=z-\gamma_{10}x-\gamma_{mn}x^mz^n\\
&=z-Mr^{-1}x-Mr^{-(m+n)}x^mz^n
\end{split}\\[6pt]
\begin{align} \zeta^0&=(\xi^0)^2,\\
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\zeta^1 &=\xi^0\xi^1,\\
\zeta^2 &=(\xi^1)^2,
\end{align}
\end{gather*}
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A.6 Alignat

Numbered version:

𝑉𝑖 = 𝑣𝑖 − 𝑞𝑖𝑣𝑗 , 𝑋𝑖 = 𝑥𝑖 − 𝑞𝑖𝑥𝑗 , 𝑈𝑖 = 𝑢𝑖 , for 𝑖 ≠ 𝑗; (82)

𝑉𝑗 = 𝑣𝑗 , 𝑋𝑗 = 𝑥𝑗 , 𝑈𝑗𝑢𝑗 +∑
𝑖≠𝑗

𝑞𝑖𝑢𝑖 . (83)

Some text after to test the below-display spacing.

\begin{alignat}{3}
V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j,
& \qquad U_i & = u_i,
\qquad \text{for $i\ne j$;}\label{eq:B}\\
V_j & = v_j, & \qquad X_j & = x_j,
& \qquad U_j & u_j + \sum_{i\ne j} q_i u_i.

\end{alignat}

Unnumbered version:

𝑉𝑖 = 𝑣𝑖 − 𝑞𝑖𝑣𝑗 , 𝑋𝑖 = 𝑥𝑖 − 𝑞𝑖𝑥𝑗 , 𝑈𝑖 = 𝑢𝑖 , for 𝑖 ≠ 𝑗;
𝑉𝑗 = 𝑣𝑗 , 𝑋𝑗 = 𝑥𝑗 , 𝑈𝑗𝑢𝑗 +∑

𝑖≠𝑗
𝑞𝑖𝑢𝑖 .

Some text after to test the below-display spacing.

\begin{alignat*}3
V_i & =v_i - q_i v_j, & \qquad X_i & = x_i - q_i x_j,
& \qquad U_i & = u_i,
\qquad \text{for $i\ne j$;} \\
V_j & = v_j, & \qquad X_j & = x_j,
& \qquad U_j & u_j + \sum_{i\ne j} q_i u_i.

\end{alignat*}
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The most common use for alignat is for things like

𝑥 = 𝑦 by (66) (84)
𝑥′ = 𝑦′ by (82) (85)

𝑥 + 𝑥′ = 𝑦 + 𝑦′ by Axiom 1. (86)

Some text after to test the below-display spacing.

\begin{alignat}{2}
x& =y && \qquad \text {by (\ref{eq:A})}\label{eq:C}\\
x'& = y' && \qquad \text {by (\ref{eq:B})}\label{eq:D}\\
x+x' & = y+y' && \qquad \text {by Axiom 1.}
\end{alignat}
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