%%  (c) copyright  2006, 2007
%% Antonis Tsolomitis
%% Department of Mathematics, University of the Aegean
%%
%%  This document can be redistributed and/or modified under the terms
%%  of the LaTeX Project Public License Distributed from CTAN
%%  archives in directory macros/latex/base/lppl.txt; either
%%  version 1 of the License, or any later version.

\documentclass{article}
\usepackage[polutonikogreek,english]{babel}
\usepackage[iso-8859-7]{inputenc}
\usepackage{txfonts}
\usepackage[default]{gfsbodoni}
\usepackage{latexsym,amsfonts}
%\renewcommand{\ttdefault}{hlst}

%%%%% Theorems and friends
\newtheorem{theorem}{�������}[section]         
\newtheorem{lemma}[theorem]{�����}
\newtheorem{proposition}[theorem]{�������}
\newtheorem{corollary}[theorem]{�������}
\newtheorem{definition}[theorem]{�������}
\newtheorem{remark}[theorem]{����������}
\newtheorem{axiom}[theorem]{������}
\newtheorem{exercise}[theorem]{������}


%%%%% Environment ``proof''
\newenvironment{proof}[1]{{\textit{��������:}}}{\ \hfill$\Box$}
\newenvironment{hint}[1]{{\textit{��������:}}}{\ \hfill$\Box$}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%






\title{The \textsc{gfsbodoni} font family}
\author{Antonis Tsolomitis\\
Laboratory of Digital Typography\\ and Mathematical Software\\
Department of Mathematics\\
University of the Aegean}
\date {\textsc{19} March \textsc{2006}}


\begin{document}
\maketitle

\section{Introduction}
The Bodoni family of the Greek Font Society was made available for free
in autumn 2005. This font existed with a commercial license for many
years before. Support for LaTeX and the babel package was prepared
several years ago by the author and I.\ Vasilogiorgakis. With the
free availability of the fonts I have modified the original package
so that it reflects the changes occured in the latest releases by \textsc{gfs}.

The package supports three encodings: OT1, T1 and LGR to the extend
that the font themselves cover these. OT1 and LGR should be
fairly complete. The greek part is to be used with the greek option of
the Babel package.

The fonts are loaded with

\verb|\usepackage{gfsdidot}| or \verb|\usepackage[default]{gfsdidot}|.


Tha latter one sets Bodoni as the default document font. The former
defines the environment \verb|bodoni| and the command
\verb|\textbodoni|. For example, while in Greek language

\verb|\textbodoni{dokim'h}| 

produces 

\textgreek{\textbodoni{dokim'h}}.

x-height is adjusted so that it matches with the x-height of the
\verb|txfonts| package. This is done to help with documents requiring
mathematics. In this case load \verb|txfonts| \textit{but before} \verb|gfsbodoni.sty|.

\section{Installation}

Copy the contents of the subdirectory afm in
texmf/fonts/afm/GFS/Bodoni/

\medskip

\noindent Copy the contents of the subdirectory doc in
texmf/doc/latex/GFS/Bodoni/

\medskip

\noindent Copy the contents of the subdirectory enc in
texmf/fonts/enc/dvips/GFS/Bodoni/

\medskip

\noindent Copy the contents of the subdirectory map in
texmf/fonts/map/dvips/GFS/Bodoni/

\medskip

\noindent Copy the contents of the subdirectory tex in
texmf/tex/latex/GFS/Bodoni/

\medskip

\noindent Copy the contents of the subdirectory tfm in
texmf/fonts/tfm/GFS/Bodoni/

\medskip

\noindent Copy the contents of the subdirectory type1 in
texmf/fonts/type1/GFS/Bodoni/

\medskip

\noindent Copy the contents of the subdirectory vf in
texmf/fonts/vf/GFS/Bodoni/

\medskip

\noindent In your installation's updmap.cfg file add the line

\medskip

\noindent Map gfsbodoni.map

\medskip

Refresh your filename database and the map file database (for example, on Unix systems
run mktexlsr and then run the updmap-sys (or updmap on older systems) script as root).

You are now ready to use the fonts.

\section{Usage}

As said in the introduction the package covers both english and
greek. Greek covers polytonic too through babel (read the
documentation
of the babel package and its greek option). 

For example, the preample

\begin{verbatim}
\documentclass{article}
\usepackage[english,greek]{babel}
\usepackage[iso-8859-7]{inputenc}
\usepackage[default]{gfsbodoni}
\end{verbatim}

will be the correct setup for articles in Greek using Bodoni for the
main font.

\bigskip

\subsection{Transformations by \texttt{dvips}}

Other than the shapes provided by the fonts themselves, this package
provides a slanted small caps shape
using the standard mechanism provided by dvips. Get slanted small caps with \verb|\scslshape|.
For example, the code
\begin{verbatim}
\textsc{small caps \textgreek{������������} 0123456789} {\scslshape
  \textgreek{������������ 0123456789}}
\end{verbatim}
will give 


\textsc{small caps \textgreek{������������} 0123456789} {\scslshape
  \textgreek{������������ 0123456789}}

\noindent The command \verb|\textscsl{}| are also provided.




\subsection{Tabular numbers}

Tabular numbers (of fixed width) are accessed with the command
\verb|\tabnums{}|. Compare

\begin{tabular}{ll}
\verb+|0|1|2|3|4|5|6|7|8|9|+ & |0|1|2|3|4|5|6|7|8|9|\\
\verb+\tabnums{|0|1|2|3|4|5|6|7|8|9|}+ & \tabnums{|0|1|2|3|4|5|6|7|8|9|}
\end{tabular}


\subsection{Text fractions}

Text fractions are composed using the lower and upper numerals
provided by the fonts, and are
accessed with the command \verb|\textfrac{}{}|.
For example, \verb|\textfrac{-22}{7}| gives \textfrac{-22}{7}.

Precomposed fractions are provided too by \verb|\onehalf|,
\verb|\onethird|, etc.


\subsection{Additional characters}

\begin{center}
\begin{tabular}{|c|c|}\hline
\verb|\textbullet| &\textbullet \\ \hline
\verb|\textparagraph| &\textparagraph \\ \hline
%\verb|\textparagraphalt| & \textparagraphalt\\ \hline
\verb|\careof| & \careof\\ \hline
\verb|\numero| & \numero\\ \hline
\verb|\estimated| & \estimated\\ \hline
%\verb|\whitebullet| & \whitebullet\\ \hline
\verb|\textlozenge| & \textlozenge\\ \hline
\verb|\eurocurrency| & \eurocurrency\\ \hline
%\verb|\interrobang| & \interrobang\\ \hline
\verb|\textdagger| & \textdagger\\ \hline
\verb|\textdaggerdbl| & \textdaggerdbl\\ \hline
\verb|\yencurrency| & \yencurrency\\ \hline
\end{tabular}
\end{center}

Euro is also available in LGR enconding. \verb|\textgreek{\euro}|
gives \textgreek{\euro}. 



\section{Problems}


 The
accents of the capital letters should hang in the left margin when such a letter starts a
line.  \TeX\ and \LaTeX\ do not provide the tools for such a
feature. However, this seems to be possible with 
\textlatin{pdf\TeX}
As this is work in progress, please be patient\ldots




\section{Samples}

The next two pages provide samples in english and greek with math.


\newpage

Adding up these inequalities with respect to $i$, we get
\begin{equation} \sum c_i d_i \leq \frac1{p} +\frac1{q} =1\label{10}\end{equation}
since $\sum c_i^p =\sum d_i^q =1$.\hfill$\Box$

In the case $p=q=2$
the above inequality is also called the 
\textit{Cauchy-Schwartz inequality}.

Notice, also, that by formally defining $\left( \sum |b_k|^q\right)^{1/q}$ to be
$\sup |b_k|$ for $q=\infty$, we give sense to (9) for all 
$1\leq p\leq\infty$.


A similar inequality is true for functions instead of sequences with the sums 
being substituted by integrals.

\medskip

\textbf{Theorem} {\itshape Let $1<p<\infty$ and let $q$ be such that $1/p +1/q =1$. Then, 
for all functions $f,g$ on an interval $[a,b]$ 
such that the integrals $\int_a^b |f(t)|^p\,dt$, $\int_a^b |g(t)|^q\,dt$ and
$\int_a^b |f(t)g(t)|\,dt$ exist \textup{(}as Riemann integrals\textup{)},
we have 
\begin{equation}
\int_a^b |f(t)g(t)|\,dt\leq 
\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
\end{equation}
}

Notice that if the Riemann integral $\int_a^b f(t)g(t)\,dt$ also exists, then 
from the inequality $\left|\int_a^b f(t)g(t)\,dt\right|\leq 
\int_a^b |f(t)g(t)|\,dt$ follows that
\begin{equation}
\left|\int_a^b f(t)g(t)\,dt\right|\leq 
\biggl(\int_a^b |f(t)|^p\,dt\biggr)^{1/p}
\biggl(\int_a^b |g(t)|^q\,dt\biggr)^{1/q} .
\end{equation}

  

\textit{Proof:} Consider a partition of the interval $[a,b]$ in $n$ equal 
subintervals with endpoints
$a=x_0<x_1<\cdots<x_n=b$. Let $\Delta x=(b-a)/n$.
We have
\begin{eqnarray}
\sum_{i=1}^n |f(x_i)g(x_i)|\Delta x &\leq& 
\sum_{i=1}^n |f(x_i)g(x_i)|(\Delta x)^{\frac1{p}+\frac1{q}}\nonumber\\
&=&\sum_{i=1}^n \left(|f(x_i)|^p \Delta x\right)^{1/p} \left(|g(x_i)|^q 
\Delta x\right)^{1/q}.\label{functionalHolder1}\\ \nonumber
\end{eqnarray}

\newpage\greektext


% $\bullet$ ����� ����� �������� 

% \begin{proposition}\label{chap2:sec1:prop 23}
% ���� $\gamma$ ������� �� ����������� ������� $x=g(t)$, $y=f(t)$,
% $t\in [a,\,b]$ �� $g'$, $f'$ �������� ��� $[a,\,b]$ ���� �
% $\gamma$ ���� ����� $S=L(\gamma)=\int_a^b \sqrt{g'(t)^2+f'(t)^2}
% dt$.
% \end{proposition}

\textbullet\ ������� ���������� ��� ����������\\

\begin{proposition}\label{chap2:sec1:prop23-2}
���� $\gamma$ ������� �� ����������� ������� $x=g(t)$, $y=f(t)$,
$t\in [a,\,b]$ �� $g'$, $f'$ �������� ��� $[a,\,b]$ ���� ��
������� ��� ���������� ��� $\gamma$ ���� ��� ��� $xx'$ ������� \\
$�=2\pi\int_a^b |f(t)| \sqrt{g'(t)^2+f^{\prime}(t^2)} dt$. \\ �� �
$\gamma$ ������� ��� ��� $y=f(x)$, $x\in [a,\,b]$ ����
$�=2\pi\int_a^b |f(t)| \sqrt{1+f'(x)^2} dx$
\end{proposition}

\textbullet\ ����� ������� ��� ����������\\ ���� $f :
[a,\,b]\rightarrow \mathbb{R}$ ������� ��� $R=\{f, Ox,x=a,x=b\}$
����� � ����� ��� ���������� ��� ���������� ��� $f$ ���� ��� ���
$Ox$ ������ ��� ������� $x=a$, ��� $x=b$, ���� $V=\pi\int_a^b f
(x)^2 dx$

\textbullet\ �� $f,g : [a,\,b]\rightarrow \mathbb{R}$ ��� $0\leq
g(x)\leq f(x)$ ���� � ����� ������� ��� ��������� ��� ����������
��� ���������� ��� $f$ ��� $g$, $R=\{f,g, Ox,x=a,x=b\}$ ����� \\
$V=\pi\int_a^b\{ f (x)^2-g(x)^2\} dx$.

\textbullet\ �� $x=g(t)$, $y=f(t)$, $t=[t_1,\,t_2]$ ����
$V=\pi\int_{t_1}^{t_2}\{ f (t)^2 g'(t)\} dt$ ��� $g(t_1)=a$,
$g(t_2)=b$.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{��������}\label{chap2:sec2}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{exercise}\label{chap2:ex1}
�� ��������� �� �������� ���� �� ���������� $Riemann$ �����\-�����
����������\\
$$\lim_{n\rightarrow\infty} \frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} $$
\end{exercise}
%%%%%%%%%
\textit{��������:}
������ �� ��������� ��� ��������� ��� ������ ���������� ��� ������� �� ����������.
 ���� ��������� ��� ��������� $P_n$ ��� ��������� �.�. ��� �� $U(f,P_n)$ ����� � ��������� �����.

\bigskip

%%%%%%%%%%%%%%
\textit{����:}
������ �� ��������� ��� ��������� ��� ������ ���������� ��� ������� �� ����������.
���� ��������� ��� ��������� $P_n$ ��� ��������� �.�. ��� �� $U(f,P_n)$ ����� � ��������� �����.\\
������ ���
\begin{eqnarray}\frac{1}{n}\sum_{k=1}^{n}\sqrt[n]{e^k} =
\frac{1}{n}\sqrt[n]{e}+\frac{1}{n}\sqrt[n]{e^2}+\cdots +
\frac{1}{n}\sqrt[n]{e^n}\nonumber\\
=\frac{1}{n}e^{\frac{1}{n}}+\frac{1}{n}e^{\frac{2}{n}}+\cdots+\frac{1}{n}e^{\frac{n}{n}}\nonumber
\end{eqnarray}




\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: t
%%% End: