
The dozenal Package, v5.1

Donald P. Goodman III

January 22, 2015

Abstract

The dozenal package provides some simple mechanisms for working with
the dozenal (duodecimal or “base 12”) numerical system. It redefines all
basic LATEX counters, provides a command for converting arbitrary decimal
numbers into dozenal, and provides new, real Metafont characters for ten
and eleven, though the commands for producing them can be redefined to
produce any figure. As of v2.0, it also includes Type 1 versions of the fonts,
used automatically whenever T1 encoding is selected for the document. This
package uses the \basexii algorithm by David Kastrup.

Contents

1 Introduction 1

2 Usage 2

3 The Fonts 4

4 Implementation 5

1 Introduction

While most would probably call it at best overoptimistic and at worst foolish,
some people (the author included) do still find themselves attracted to the dozenal
(base-twelve) system. These people, however, have been pretty hard up1 in the
LATEX world. There is no package file available which produces dozenal counters,
like page and chapter numbers, nor were there any (I made a pretty diligent
search) dozenal characters for ten and eleven, leaving dozenalists forced to use such
makeshift ugliness as the “X/E” or “T/E” or “*/#” or whatever other standard
they decided to use. While this sort of thing may be acceptable in ASCII, it’s
absolutely unacceptable in a beautiful, typeset document.

1This is an Americanism for “out of luck” or “in difficult circumstances,” for those who do
not know.

1

Enter the dozenal package. This package automates all the messiness of being
a dozenalist and using LATEX. It redefines all the counters (though you’ll have to
redefine them yourself if you’re using your own), provides an algorithm (generously
donated by the intrepid David Kastrup) for converting arbitrary positive whole
numbers into dozenal (this is eTEX, but all modern distributions will compile
that), and finally, it includes original dozenal characters, specifically designed to
blend in well with Knuth’s Computer Modern fonts, though they should do fine
with the more common body fonts, as well.

This document was typeset in accordance with the LATEX docstrip utility.

2 Usage

The dozenal package provides four new commands (though I can only take credit
for two of them). The first, and by far the most important given the purpose and
content of this package, is \basexii. This is a very simple command which takes\basexii

the following structure:

\basexii{〈number〉}{〈ten symbol〉}{〈eleven symbol〉}

What the above means is that the command is \basexii and it takes three manda-
tory arguments: first, the number to be converted into dozenal; second, the symbol
that should be used for ten; and third, the symbol that should be used for eleven.
This number should be positive and whole; that is, it should be zero or higher,
and it should not contain a fractional part. TEX is a typesetting program, after
all; if you want a robust decimal to dozenal converter, there are many options that
any dozenalists caring enough to use this package will already know about.

This \basexii algorithm was produced by David Kastrup, well known and
admired in the TEX world for his many useful packages and other contributions.
He posted this algorithm on comp.text.tex; it is included here with his kind and
generous permission.

That one would want to use the same ten and eleven symbols throughout a
document seems a reasonable assumption; therefore, I have provided a simplified
version of the \basexii command, \dozens. \dozens takes only a single argu-\dozens

ment, the number to be converted; the ten and eleven symbols used are those
produced by the commands \x and \e, to which we’ll get in a moment.

\x and \e are the commands used to quickly and easily access the symbols for\x

\e ten and eleven without having to use active characters (the TEX gurus will know
what that means; if you don’t know, that’s okay; you don’t need to to use this
package effectively). In any case, \x and \e default to using the special dozenal
characters that are part of this package; they could be easily redefined if for some
reason you don’t like the Pitman characters (which this package, and the Dozenal
Society of Great Britain, prefer), in the following manner:

\renewcommand\x{X}

Or whichever characters you like to use. If you prefer the Dozenal Society of Amer-
ica’s proposed characters (a stylized X and E), then this package will disappoint

2

you. May I suggest χ (χ) and ξ (ξ) as a stopgap while you locate or
produce real characters of your own? Sorry; I’m an American myself, but I much
prefer the Pitman characters for a variety of reasons (feel free to email me if you
care), and creating fonts in METAFONT, even small and inconsequential ones like
this, is too much work for characters that I don’t even like.

The dozenal package also redefines all the standard LATEX counters, such as
section and enumii. If you’ve defined your own counters, you’ll need to define
them yourself; however, this is an easy matter:

\renewcommand\thecounter{\basexii{\arabic{counter}}{\x}{\e}}

For example. Of course, you can fill in the \x and \e with whatever you want
(though it would make more sense to simply redefine \x and \e, so that all the
counters would use the same characters), or you could use the \dozens command
instead. Whatever your pleasure might be.

The nocounters option to the package prevents the redefinition of these coun-nocounters

ters. The effect of this is that the commands of the package (\basexii, \dozens,
etc.) are made available, but all the counters will still be in decimal. This permits
using dozenal characters in an otherwise decimal document; it also proves useful
in dozenal document in which these counters are undefined (e.g., minimal).

The typeone option forces dozenal to provide Postscript Type 1 fonts rathertypeone

than METAFONT bitmaps to TEX. Both of these are produced from the same font
files, though, so the difference is very slight.

Finally, as of v5.0, we can convert numbers back to decimal from dozenal, if we
wish. We do this with the \basex macro, which takes a single argument, which is\basex

the dozenal number you wish to convert to decimal. This is subject to some pretty
harsh restrictions, however. First, the only tokens allowed in the number are 0–9,
\x, and \e. Second, these will only work with unexpanded \x and \e. If you don’t
know what this means, then good for you; TEX programmers will sympathize.

To illustrate these limitations, let’s define a new counter and dozenize it. Here,
we define the counter and give it a nice value which will ensure that its dozenal
value will have an \e in it:

\newcounter{testcount}\setcounter{testcount}{47}

In dozenal, of course, “47” is “3E.” Now, let’s redefine that counter so that its
results will be dozenal:

\renewcommand\thetestcount{\basexii{\value{testcount}}{\x}{\e}}

Now we get to do lovely things like the following:

\thetestcount = 3E

Now we can try to get that number in decimal with \basex. But don’t try
it; \basex{\thetestcount} doesn’t work because the \x and \e are already ex-
panded. Instead, use LATEX’s built-in functions for chores like this:

3

\arabic{testcount} = 47

On the other hand, if you have an actual string you want converted, you can
send it directly to \basex without worrying about expansion, because through
much trial and error and banging head against wall, the expansion issues have
already been resolved:

\basex{3\e} = 47

So \basex is of limited utility, but it’s a nice tool to add to the box.

3 The Fonts

The fonts provided by the dozenal package are essentially complete fonts which
contain only the Pitman dozenal characters; these are X for ten and E for eleven.
These characters are designed to blend well with the Computer Modern fonts;
they work passable well with Times-type fonts and with kpfonts, and possibly
with others.

The characters also come in all the appropriate shapes and sizes; a few examples
follow.

Roman Italic Boldface
Footnotesize X E X E XE

Normalsize X E X E XE

LARGE X E X E XE

Huge X E X E XE

They will work in paragraph or math mode without distinction.
As of v4.0, dozenal also includes fonts for tally marks specifically designed

for use in the dozenal base. In many European countries tallies are kept in a
very similar way; this font demonstrates a way that such tally marks can be made
consistent as well as dozenal.

1 2 3 4 5 6

2 2 3 4 5 6
These are accessed by the \tally command, which takes one argument: the\tally

number, 1–6, which you want to put in tallies. Entering “X” or “E” will yield
“X” or “E” respectively. Other characters will produce nothing. Any character
produced by \tally is a METAFONT bitmap, not an outline, even if your document
is otherwise producing outlines.

The fonts are called dozch, if for some reason direct access to them is needed.
The Type 1 versions are prefixed fdz; e.g., fdzr8a.

4

4 Implementation

First, we name the package that we provide. This is not exactly the most difficult
part of the code.

1 \ProvidesPackage{dozenal}[2012/05/13 v4.0 support for dozenal fonts]

Now we need to make sure that we have fixltx2e loaded, so that the \TextorMath

magic will work.

2 \RequirePackage{fixltx2e}

Now we ensure that ifpdf is loaded, so that we can test for pdf or dvi modes.

3 \RequirePackage{ifpdf}

Now we declare the option “nocounters”, which prevents dozenal from redefining
all the counters. This prevents errors in document classes which don’t have these
counters, such as minimal. Defines the command \nocounters if and only if the
options is named.

4 \DeclareOption{nocounters}{%

5 \def\nocounters{}%

6 }%

7 \newif\iftypeone\typeonefalse

8 \DeclareOption{typeone}{\typeonetrue}

9 \ProcessOptions\relax

We then define the font that we’re using for our METAFONT-produced Pitman
characters. Incidentally, we also define the command \doz, though I can’t foresee
any decent use for it except in packages and preambles; it is then used to define \x
and \e, which provide the ten and eleven symbols for all the counter redefinitions.
This includes definitions for both T1 and OT1 encodings, so it will work with
either.

10 \DeclareFontFamily{OT1}{dozch}{}

11 \DeclareFontShape{OT1}{dozch}{m}{n}{<-6> dozchars6

12 <7> dozchars7 <8> dozchars8 <9> dozchars9 <10-11>

13 dozchars10 <12-16> dozchars12 <17-> dozchars17 }{}

14 \DeclareFontShape{OT1}{dozch}{b}{n}{<-> dozchb10 }{}

15 \DeclareFontShape{OT1}{dozch}{bx}{n}{<-6> dozchbx6

16 <7> dozchbx7 <8> dozchbx8 <9> dozchbx9 <10-11>

17 dozchbx10 <12-> dozchbx12 }{}

18 \DeclareFontShape{OT1}{dozch}{m}{sl}{<-8> dozchsl8

19 <9> dozchsl9 <10-11> dozchsl10 <12-> dozchsl12 }{}

20 \DeclareFontShape{OT1}{dozch}{bx}{sl}{<-> dozchbxsl10 }{}

21 \DeclareFontShape{OT1}{dozch}{m}{it}{<-7> dozchit7

22 <8> dozchit8 <9> dozchit9 <10-11> dozchit10

23 <12-> dozchit12 }{}

24 \DeclareFontShape{OT1}{dozch}{bx}{it}{<-> dozchbxi10 }{}

25 \ifpdf

26 \pdfmapfile{=fdz.map}

27 \fi

28 \DeclareFontFamily{T1}{dozch}{}

29 \DeclareFontShape{T1}{dozch}{m}{n}{<-> fdzr8r }{}

5

30 \DeclareFontShape{T1}{dozch}{bx}{n}{<-> fdzb8r }{}

31 \DeclareFontShape{T1}{dozch}{m}{sl}{<-> fdzs8r }{}

32 \DeclareFontShape{T1}{dozch}{bx}{sl}{<-> fdzbo8r }{}

33 \DeclareFontShape{T1}{dozch}{m}{it}{<-> fdzso8r }{}

34 \DeclareFontShape{T1}{dozch}{bx}{it}{<-> fdzbi8r }{}

35 %\newcommand\doz[1]{{\fontfamily{dozch}\selectfont #1}}

36 \iftypeone%

37 \def\doz#1{{\fontfamily{dozch}\fontencoding{T1}\selectfont #1}}%

38 \else%

39 \def\doz#1{{\fontfamily{dozch}\fontencoding{OT1}\selectfont #1}}%

40 \fi%

41 \newcommand\x{\TextOrMath{\protect\doz{{X}}}{\X}}%

42 \newcommand\e{\TextOrMath{\protect\doz{{E}}}{\E}}%

43 \DeclareSymbolFont{dozens}{OT1}{dozch}{m}{n}

44 \DeclareMathSymbol{\X}{\mathord}{dozens}{88}

45 \DeclareMathSymbol{\E}{\mathord}{dozens}{69}

Put in some additional code for the tally marks.

46 \newcommand\tally[1]{%

47 \usefont{OT1}{dozch}{m}{n}\selectfont{#1}%

48 }%

Then we define our command which will produce the dozenal numbers from deci-
mal sources. This algorithm was taken directly from the publicly available archives
of comp.text.tex, where it was posted by the well-known and redoubtable David
Kastrup. We also define the \dozens command, a simplified \basexii (which, in
fact, depends utterly upon \basexii), just to make it easy for everyone.

49 \def\basexii#1#2#3{\ifcase\numexpr(#1)\relax

50 0\or1\or2\or3\or4\or5\or6\or7\or8\or9\or#2\or#3\else

51 \expandafter\basexii\expandafter{\number\numexpr((#1)-6)/12}{#2}{#3}\expandafter\basexii\expandafter{\number\numexpr(#1)-((#1)-6)/12*12}{#2}{#3}\fi}

52 \newcommand\dozens[1]{\basexii{#1}{\x}{\e}}

Now that we can convert numbers to dozenal, let’s set it up so that we can convert
them from dozenal. This is pretty ugly stuff here, because it’s mostly straight
TEX (and e-TEX) without higher-level conveniences, and because it’s an expansion
nightmare. If we didn’t have to account for \x and \e because included in such
strings, it’s fairly easy; but it took a great deal of troubleshooting to make it work
with them.

First, we work up some macros to help us count the characters in an argument
(the same, more or less, as is used in the basicarith package, adapted from those
by “Florent” at tex-and-stuff.blogspot.com); then, we convert to decimal with
\basex.

53 \newcount\b@charcount

54 \def\gobblechar{\let\char= }

55 \def\assignthencheck{\afterassignment\checknil\gobblechar}

56 \def\countunlessnil{%

57 \ifx\char\nil \let\next=\relax%

58 \else%

59 \let\next=\auxcountchar%

60 \advance\b@charcount by1%

6

61 \fi%

62 \ifx\char\backslash\advance\b@charcount by-1\fi%

63 \next%

64 }%

65 \def\auxcountchar{%

66 \afterassignment\countunlessnil\gobblechar%

67 }%

68 \def\countchar#1{\def\xx{#1}\b@charcount=0\expandafter\auxcountchar\xx\nil}

69 %end Florent code

70 \def\gobble#1{}%

71 \newcount\@numdigs%

72 \newcount\@decmult%

73 \newcount\@loopindex\@loopindex=1%

74 \newcount\@decnum\@decnum=0%

75 \newcount\@digit\@digit=1%

76 \def\basex#1{%

77 \countchar{#1}\@numdigs=\b@charcount%

78 \@decmult=1\@loopindex=1%

79 \loop\ifnum\@loopindex<\@numdigs%

80 \multiply\@decmult by12%

81 \advance\@loopindex by1%

82 \repeat%

83 \@loopindex=0%

84 \def\isten{x}\def\iselv{e}\def\isquote{\backslash}%

85 \edef\@doznum{\detokenize{#1}\relax}%

86 \@decnum=0%

87 \loop\ifnum\@loopindex<\@numdigs%

88 \def\@firstchar{\expandafter\@car\@doznum\@nil}%

89 \if\@firstchar\@backslashchar

90 \edef\@doznum{\@removefirstdig{\@doznum}}%

91 \else

92 \if\@firstchar\isten\def\@firstchar{10}\fi

93 \if\@firstchar\iselv\def\@firstchar{11}\fi

94 \advance\@loopindex by1%

95 \@digit=\@firstchar%

96 \edef\@doznum{\@removefirstdig{\@doznum}}%

97 \multiply\@digit by\@decmult%

98 \advance\@decnum by\@digit%

99 \divide\@decmult by12%

100 \fi

101 \repeat

102 \the\@decnum%

103 }

104 \def\@removefirstdig#1{%

105 \expandafter\expandafter\expandafter\gobble\expandafter\string#1%

106 }

Now, of course, we simply redefine all the counters. This covers only those counters
included in the basic LATEX document classes, however, so if you’ve written your
own, you’ll need to redefine them yourself.

7

This first bit ensures that the counters are redefined even if the command
\mainmatter is not defined. We have to do this outside of the \g@addto@macro

below; otherwise, in documents where \mainmatter is defined but not used, the
counters will not be redefined. This way, they’re redefined in all cases.

This also takes care of ensuring that the counters are only redefined if the
“nocounters” options was not specified.

107 \@ifundefined{nocounters}{%

108 \@ifundefined{c@page}{}{%

109 \renewcommand\thepage{\basexii{\value{page}}{\x}{\e}}}

110 \@ifundefined{c@footnote}{}{%

111 \renewcommand\thefootnote{%

112 \basexii{\value{footnote}}{\x}{\e}}}

113 \@ifundefined{c@part}{}{%

114 \renewcommand\thepart{%

115 \basexii{\value{part}}{\x}{\e}}}

116 \@ifundefined{c@subparagraph}{}{%

117 \renewcommand\thesubparagraph{%

118 \basexii{\value{subparagraph}}{\x}{\e}}}

119 \@ifundefined{c@paragraph}{}{%

120 \renewcommand\theparagraph{%

121 \basexii{\value{paragraph}}{\x}{\e}}}

122 \@ifundefined{c@equation}{}{%

123 \renewcommand\theequation{%

124 \basexii{\value{equation}}{\x}{\e}}}

125 \@ifundefined{c@figure}{}{%

126 \renewcommand\thefigure{%

127 \basexii{\value{figure}}{\x}{\e}}}

128 \@ifundefined{c@table}{}{%

129 \renewcommand\thetable{%

130 \basexii{\value{table}}{\x}{\e}}}

131 \@ifundefined{c@table}{}{%

132 \renewcommand\thempfootnote{%

133 \basexii{\value{mpfootnote}}{\x}{\e}}}

134 \@ifundefined{c@enumi}{}{%

135 \renewcommand\theenumi{%

136 \basexii{\value{enumi}}{\x}{\e}}}

137 \@ifundefined{c@enumii}{}{%

138 \renewcommand\theenumii{%

139 \basexii{\value{enumii}}{\x}{\e}}}

140 \@ifundefined{c@enumiii}{}{%

141 \renewcommand\theenumiii{%

142 \basexii{\value{enumiii}}{\x}{\e}}}

143 \@ifundefined{c@enumiv}{}{%

144 \renewcommand\theenumiv{%

145 \basexii{\value{enumiv}}{\x}{\e}}}

146 \@ifundefined{c@chapter}{%

147 \renewcommand\thesection{%

148 \basexii{\value{section}}{\x}{\e}}

149 \renewcommand\thesubsection{%

8

150 \thesection.\basexii{\value{subsection}}{\x}{\e}}

151 \renewcommand\thesubsubsection{%

152 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

153 }{

154 \renewcommand\thechapter{%

155 \basexii{\value{chapter}}{\x}{\e}}

156 \renewcommand\thesection{%

157 \thechapter.\basexii{\value{section}}{\x}{\e}}

158 \renewcommand\thesubsection{%

159 \thesection.\basexii{\value{subsection}}{\x}{\e}}

160 \renewcommand\thesubsubsection{%

161 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

162 }

Finally, if the \mainmatter command is used, we need to make sure that it doesn’t
mess up our numbering scheme.

163 \@ifundefined{mainmatter}{}{%

164 \g@addto@macro\mainmatter{%

165 \@ifundefined{c@page}{}{%

166 \renewcommand\thepage{\basexii{\value{page}}{\x}{\e}}}

167 \@ifundefined{c@footnote}{}{%

168 \renewcommand\thefootnote{\basexii{\value{footnote}}{\x}{\e}}}

169 \@ifundefined{c@part}{}{%

170 \renewcommand\thepart{\basexii{\value{part}}{\x}{\e}}}

171 \@ifundefined{c@subparagraph}{}{%

172 \renewcommand\thesubparagraph{%

173 \basexii{\value{subparagraph}}{\x}{\e}}}

174 \@ifundefined{c@paragraph}{}{%

175 \renewcommand\theparagraph{%

176 \basexii{\value{paragraph}}{\x}{\e}}}

177 \@ifundefined{c@equation}{}{%

178 \renewcommand\theequation{%

179 \basexii{\value{equation}}{\x}{\e}}}

180 \@ifundefined{c@figure}{}{%

181 \renewcommand\thefigure{%

182 \basexii{\value{figure}}{\x}{\e}}}

183 \@ifundefined{c@table}{}{%

184 \renewcommand\thetable{%

185 \basexii{\value{table}}{\x}{\e}}}

186 \@ifundefined{c@table}{}{%

187 \renewcommand\thempfootnote{%

188 \basexii{\value{mpfootnote}}{\x}{\e}}}

189 \@ifundefined{c@enumi}{}{%

190 \renewcommand\theenumi{%

191 \basexii{\value{enumi}}{\x}{\e}}}

192 \@ifundefined{c@enumii}{}{%

193 \renewcommand\theenumii{%

194 \basexii{\value{enumii}}{\x}{\e}}}

195 \@ifundefined{c@enumiii}{}{%

196 \renewcommand\theenumiii{%

9

197 \basexii{\value{enumiii}}{\x}{\e}}}

198 \@ifundefined{c@enumiv}{}{%

199 \renewcommand\theenumiv{%

200 \basexii{\value{enumiv}}{\x}{\e}}}

201 \@ifundefined{c@chapter}{

202 \renewcommand\thesection{%

203 \basexii{\value{section}}{\x}{\e}}

204 \renewcommand\thesubsection{%

205 \thesection.\basexii{\value{subsection}}{\x}{\e}}

206 \renewcommand\thesubsubsection{%

207 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

208 }{

209 \renewcommand\thechapter{%

210 \basexii{\value{chapter}}{\x}{\e}}

211 \renewcommand\thesection{%

212 \thechapter.\basexii{\value{section}}{\x}{\e}}

213 \renewcommand\thesubsection{%

214 \thesection.\basexii{\value{subsection}}{\x}{\e}}

215 \renewcommand\thesubsubsection{%

216 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

217 } % end if it’s defined

218 }

219 }

220 }{} % end redefinition of counters block

And that’s the end. Thanks for reading, folks; please email me with any sugges-
tions or improvements.

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

B
\basex 3
\basexii 2

D
\dozens 2

E

\e 2

N

\nocounters 3

T
\tally 4
\typeone 3

X
\x 2

X

