
The dozenal Package, v7.1

Donald P. Goodman III

July 1, 2017

Abstract

The dozenal package provides some simple mechanisms for working with
the dozenal (duodecimal or “base 12”) numerical system. It redefines all
basic LATEX counters, provides a command for converting arbitrary decimal
numbers into dozenal, and provides new, real METAFONT characters for ten
and eleven, though the commands for producing them can be redefined to
produce any figure. As of v2.0, it also includes Type 1 versions of the fonts,
selected (as of v5.0) with the typeone package option. This package uses
the \basexii algorithm by David Kastrup.

Contents

1 Introduction 1

2 Basic Functionality 2
2.1 Base Conversion . 3
2.2 Numbers to Words . 4
2.3 Doman Numerals . 5

3 Dozenal Characters and Fonts 6
3.1 Shorthands for Dozenal Characters 6
3.2 The dozenal Fonts . 6
3.3 Tally Marks . 6
3.4 Dozenal Radix Point . 7

4 Package Options 7

5 Implementation 8

1 Introduction

While most would probably call it at best overoptimistic and at worst foolish,
some people (the author included) do still find themselves attracted to the dozenal

1

(base-twelve) system. These people, however, have been pretty hard up1 in the
LATEX world. There is no package file available which produces dozenal counters,
like page and chapter numbers, nor were there any (I made a pretty diligent
search) dozenal characters for ten and eleven, leaving dozenalists forced to use such
makeshift ugliness as the “X/E” or “T/E” or “*/#” or whatever other standard
they decided to use. While this sort of thing may be acceptable in ASCII, it’s
absolutely unacceptable in a beautiful, typeset document.

Enter the dozenal package. This package automates all the messiness of being
a dozenalist and using LATEX. It redefines all the counters (though you’ll have to
redefine them yourself if you’re using your own), provides an algorithm (generously
donated by the intrepid David Kastrup) for converting arbitrary positive whole
numbers into dozenal (this is eTEX, but all modern distributions will compile
that), and finally, it includes original dozenal characters, specifically designed to
blend in well with Knuth’s Computer Modern fonts, though they should do fine
with a few other common body fonts, as well.

This document was typeset in accordance with the LATEX docstrip utility,
which allows automatic extraction of source code and documentation from the
same source.

2 Basic Functionality

The dozenal package performs several basic tasks, which are the core of its func-
tionality. A brief listing of them will help the user understand the options available,
which are explained later on in this document.

• Provides commands for converting decimal numbers to dozenal and back
again. (The “back again,” conversion of dozenal back to decimal, only works
in limited circumstances.)

• Provides default characters for the two transdecimal digits, “X” for ten and
“E” for eleven; these correspond to the accepted Unicode standard digits
“turned digit two” and “turned digit three,” which (as of June 11EE) are
now part of the Unicode standard. These characters copy-paste as “X” and
“E,” the (somewhat) standard ASCII representations of these two digits.
However, other characters can easily be substituted if desired.

• Redefines the counters in standard LATEX document classes (such as article,
book, and so forth) to use dozenal rather than decimal. This behavior can
be shut off if desired.

• Provides macros for converting dozenal numbers to words; e.g., “3E” to
“three dozen eleven.”

• Provides macros for converting numbers to “doman” numerals; that is, a
dozenal version of Roman numerals.

1This is an Americanism for “out of luck” or “in difficult circumstances,” for those who do
not know.

2

That covered, we can now move on to how these features are exploited by the
user.

2.1 Base Conversion

The dozenal package provides several new commands for base conversion. The
first, and by far the most important given the purpose and content of this package,
is \basexii. This is a very simple command which takes the following structure:\basexii

\basexii{〈number〉}{〈ten symbol〉}{〈eleven symbol〉}

What the above means is that the command is \basexii and it takes three manda-
tory arguments: first, the number to be converted into dozenal; second, the symbol
that should be used for ten; and third, the symbol that should be used for eleven.
This number should be positive and whole; that is, it should be zero or higher,
and it should not contain a fractional part. TEX is a typesetting program, after
all; if you want a robust decimal to dozenal converter, there are many options that
any dozenalists caring enough to use this package will already know about.

This \basexii algorithm was produced by David Kastrup, well known and
admired in the TEX world for his many useful packages and other contributions.
He posted this algorithm on comp.text.tex; it is included here with his kind and
generous permission.

That one would want to use the same ten and eleven symbols throughout a
document seems a reasonable assumption; therefore, I have provided a simplified
version of the \basexii command, \dozens. \dozens takes only a single argu-\dozens

ment, the number to be converted; the ten and eleven symbols used are those
produced by the commands \x and \e, to which we’ll get in a moment.

Finally, as of v5.0, we can convert numbers back to decimal from dozenal,
if we wish. We do this with the \basex macro, which takes a single argument,\basex

which is the dozenal number you wish to convert to decimal. This is subject to
a pretty harsh restriction, however: the only tokens allowed in the number are
0–9, X, and E; putting in anything else will cause violent choking with “expected
a number”-type errors.

To illustrate these limitations, let’s define a new counter and dozenize it. Here,
we define the counter and give it a nice value which will ensure that its dozenal
value will have an \e in it:

\newcounter{testcount}\setcounter{testcount}{47}

In dozenal, of course, “47” is “3E.” Now, let’s redefine that counter so that its
results will be dozenal:

\renewcommand\thetestcount{\basexii{\value{testcount}}{\x}{\e}}

Now dozenal allow us to do lovely things like the following:

\thetestcount = 3E

3

It’s tempting to try to put that number into \basex to get it in decimal; but
don’t try it; \basex{\thetestcount} doesn’t work because it contains expanded
versions of \x and \e. Fortunately, you don’t need it; LATEX already has the value
of the testcount counter in its innards, and is quite used to outputting it in
decimal:

\arabic{testcount} = 47

On the other hand, if you have an actual string you want converted, you can
send it directly to \basex:

\basex{3E} = 47

So \basex is of limited utility, but it’s a nice tool to add to the box.

2.2 Numbers to Words

dozenal allows you to easily convert counters into words, by supplying said
counter’s name to the \doznumtoword macro. It takes as its argument the name\doznumtoword

of a counter (not a number itself!) and converts this into words:

This page’s number is ‘‘\doznumtoword{page}.’’

This page’s number is “four.”

This macro works with much larger numbers, as well. Purely for exemplary
purposes, let’s define a counter somecount with \newcounter{somecount}, and
set it equal to (decimal) 851 with \setcounter{somecount}{851}. “851” in
dozenal is “5XE.” Therefore, \doznumtoword{somecount} will yield “five biqua
ten unqua eleven.” If you want to change the capitalization, use other macros;
e.g., \DOZnumtoword{somecount} gives “FIVE BIQUA TEN UNQUA ELEVEN,”\DOZnumtoword

while \Doznumtoword{somecount} gives “Five Biqua Ten Unqua Eleven.”\Doznumtoword

\doznumtoword (and friends) do act correctly when there are zeroes in the mid-
dle of the number, e.g., when somecount is equal to decimal 6977, which is dozenal
4055, it will output “four triqua zero biqua five unqua five.” When there’s a zero
at the end of the number, that zero is still output: \doznumtoword{somecount}

where somecount is equal to 144 gives “one biqua zero unqua zero,” not simply
“one biqua.” I haven’t decided yet if this is a bug or a feature; when I do, I’ll act
accordingly.

The rank words (“unqua,” “biqua,” and so forth) are all customizable by user-
level commands, which are named \dozrankoneword for “unqua,” \dozranktwoword

for “biqua,” and so forth. Simply redefine them like so:

\def\dozrankoneword{dozen}

\setcounter{somecount}{51}

\doznumtoword{somecount} = four dozen three

This type of macro is useful for putting page numbers in both digits and words,
for example.

4

2.3 Doman Numerals

Dozenalists have also come up with some ideas for how to use Roman numerals
in a decimal way; therefore, the dozenal package provides some macros to assist
with that, as well.

To form “Doman” numerals, we simply alter the values of the traditional Ro-
man characters into more dozenal-friendly alternatives. So “v” is 6, “x” is 10, and
so on. Then, to avoid stringing four of the same character together, we extend the
subtractive principle to allow up to two lower characters prior to a higher-value
character. So, e.g., “iiv” is 6− 2, or 4, while “iv” is 6− 1, or 5.

The macros \Doman and \doman are equivalent to \Roman and \roman, giving\Doman

\doman either capitalized or lowercase dozenal Roman numerals.

1 i 2 ii 3 iii 4 iiv 5 iv 6 v
7 vi 8 vii 9 viii X iix E ix 10 x
11 xi 12 xii 13 xiii 14 xiiv 15 xiv 16 xv
17 xvi 18 xvii 19 xviii 1X xiix 1E xix 20 xx
21 xxi 22 xxii 23 xxiii 24 xxiiv 25 xxiv 26 xxv
27 xxvi 28 xxvii 29 xxviii 2X xxiix 2E xxix 30 xxx
31 xxxi 32 xxxii 33 xxxiii 34 xxxiiv 35 xxxiv 36 xxxv
37 xxxvi 38 xxxvii 39 xxxviii 3X xxxiix 3E xxxix 40 xxl
41 xxli 42 xxlii 43 xxliii 44 xxliiv 45 xxliv 46 xxlv
47 xxlvi 48 xxlvii 49 xxlviii 4X xxliix 4E xxlix 50 xl
51 xli 52 xlii 53 xliii 54 xliiv 55 xliv 56 xlv
57 xlvi 58 xlvii 59 xlviii 5X xliix 5E xlix 60 l

In the table above, the Doman numerals 1–60 are displayed, along with their
Hindu-Arabic equivalents. This table was produced entirely using a new LATEX
counter, testdoman; \thetestdoman was defined by saying

\renewcommand\thetestdoman{\doman{\value{testdoman}}}

The Hindu-Arabic columns were displayed with \dozens{\value{testdoman}}.
Every two table cells, testdoman is increased by one. The whole table was pro-
duced without manually entering a single number in either form.

Most commonly, Roman numerals are seen in part numbers and in the page
numbering of frontmatter. To achieve that result, do:

\renewcommand\thepage{\doman{\arabic{page}}}

You can reset this to normal dozenal numerals (or whatever else you’d prefer)
when you reach your mainmatter.

5

3 Dozenal Characters and Fonts

3.1 Shorthands for Dozenal Characters

To make use of the \dozens shorthand discussed earlier,2 you need to have the
commands \x and \e defined. Fortunately, this package does that for you.

\x and \e are the commands used to quickly and easily access the symbols for\x

\e ten and eleven. They default to using the special dozenal characters that are part
of this package; they could be easily redefined if for some reason you don’t like
the Pitman characters (which are soon to be included in Unicode) in the following
manner:

\renewcommand\x{X}

Or whichever characters you like to use. If you prefer the Dozenal Society of Amer-
ica’s proposed characters (a stylized X and E), then this package will disappoint
you. May I suggest χ (χ) and ξ (ξ) as a stopgap while you locate or
produce real characters of your own? Sorry; I’m an American myself, but I much
prefer the Pitman characters for a variety of reasons (feel free to email me if you
care), and creating fonts in METAFONT, even small and inconsequential ones like
this, is too much work for characters that I don’t even like.

3.2 The dozenal Fonts

The fonts provided by the dozenal package are essentially complete fonts which
contain only the Pitman dozenal characters; these are X for ten and E for eleven.
These characters are designed to blend well with the Computer Modern fonts;
they work passably well with Times-type fonts and with kpfonts, and possibly
with others.

The characters also come in all the appropriate shapes and sizes; a few examples
follow.

Roman Italic Boldface
Footnotesize X E X E XE

Normalsize X E X E XE

LARGE X E X E XE

Huge X E X E XE

They will work in paragraph or math mode without distinction.

3.3 Tally Marks

As of v4.0, dozenal also includes fonts for tally marks specifically designed for use
in the dozenal base. In many European countries tallies are kept in a very similar
way; this font demonstrates a way that such tally marks can be made consistent
as well as dozenal.

2See supra, Section 2.1, at page 3.

6

1 2 3 4 5 6

1 2 3 4 5 6
These are accessed by the \tally command, which takes one argument: the\tally

number, 1–6, which you want to put in tallies. Entering “X” or “E” will yield “X”
or “E” respectively. Other characters will produce nothing.

As of v6.0, there are separate, hand-written versions of the tally marks, ac-
cessed by putting tallies in italic:

1 2 3 4 5 6

1 2 3 4 5 6
In other words, to get these shapes, say \textit{\tally{6}}; this will give

you “6.”
The fonts are all prefixed dozch, if for some reason direct access to them is

needed.

3.4 Dozenal Radix Point

Lastly, dozenal allows the use of the common dozenal radix point, “;”, to work
properly in math mode. Some dozenalists prefer to use “;” rather than “.” (or “,”)
to mark the transition from integers to fractions in numbers; e.g., three-and-a-half
is “3;6.” In math mode, however, this doesn’t work; a semicolon in math mode
is punctuation, and a spurious space is inserted (quite correctly) afterward. We
don’t want this space when we’re using it as a radix point. So dozenal (using
code adapted from Walter Schmidt’s icomma package) fixes this:

$3;6$ = 3;6
And all is right with the world.

4 Package Options

The dozenal package redefines all the standard LATEX counters, such as section

and enumii. If you’ve defined your own counters, you’ll need to dozenize them
yourself; however, this is an easy matter:

\renewcommand\thecounter{\basexii{\arabic{counter}}{\x}{\e}}

For example. Of course, you can fill in the \x and \e with whatever you want
(though it would make more sense to simply redefine \x and \e, so that all the
counters would use the same characters), or you could use the \dozens command
instead. Whatever your pleasure might be.

If you don’t want all the counters to be redefined, or if you’re using a class which
doesn’t include basic LATEX counters, you’ll want to use the nocounters option.
The nocounters option to the package prevents the redefinition of these counters.nocounters

The effect of this is that the commands of the package (\basexii, \dozens, etc.)
are made available, but all the counters will still be in decimal. This permits

7

using dozenal characters in an otherwise decimal document; it also proves useful
in document classes in which these counters are undefined (e.g., minimal).

The dozenal fonts were designed in METAFONT, and they are distributed in
both METAFONT-generated bitmaps and autotraced Postscript Type1 fonts. The
typeone option forces dozenal to provide Postscript Type 1 fonts rather thantypeone

METAFONT bitmaps to TEX. Both of these are produced from the same font files,
though, so the difference is very slight. However, the Type1 fonts do generally
look better on screen; the typeone option will probably be used most of the time
that dozenal itself is used.

5 Implementation

Make sure that we have fixltx2e loaded, so that the \TextorMath magic will
work. Also, as of v6.0, we also require xstring to use \IfStrEq in the number-
to-word code.

1 \RequirePackage{fixltx2e}

2 \RequirePackage{xstring}

Now we ensure that ifpdf is loaded, so that we can test for pdf or dvi modes.
We also make sure we have ifluatex, so that dozenal won’t choke when you use
it with the typeone option. We’ll take care of the luatex stuff right away, while
we’re at it:

3 \RequirePackage{ifpdf}

4 \RequirePackage{ifluatex}

5 \ifluatex

6 \protected\def\pdfmapfile {\pdfextension mapfile }

7 \fi

We also require mfirstuc, because it’s great :

8 \RequirePackage{mfirstuc}

Now we declare the option “nocounters”, which prevents dozenal from redefining
all the counters. This prevents errors in document classes which don’t have these
counters, such as minimal. Defines the command \nocounters if and only if the
options is named.

9 \DeclareOption{nocounters}{%

10 \def\nocounters{}%

11 }%

Now we define the typeone option, which forces the use of the Type 1 versions of
the dozenal fonts.

12 \newif\iftypeone\typeonefalse

13 \DeclareOption{typeone}{\typeonetrue}

14 \ProcessOptions\relax

We then define the font that we’re using for our METAFONT-produced Pitman
characters. Incidentally, we also define the command \doz, though I can’t foresee
any decent use for it except in packages and preambles; it is then used to define \x
and \e, which provide the ten and eleven symbols for all the counter redefinitions.

8

This includes definitions for both T1 and OT1 encodings, so it will work with
either.

15 \iftypeone%

16 \ifpdf

17 \pdfmapfile{=dozenal.map}

18 \fi

19 \DeclareFontFamily{T1}{dozch}{}

20 \DeclareFontShape{T1}{dozch}{m}{n}{<-6> dozchars6

21 <7> dozchars7 <8> dozchars8 <9> dozchars9 <10-11>

22 dozchars10 <12-16> dozchars12 <17-> dozchars17 }{}

23 \DeclareFontShape{T1}{dozch}{b}{n}{<-> dozchb10 }{}

24 \DeclareFontShape{T1}{dozch}{bx}{n}{<-6> dozchbx6

25 <7> dozchbx7 <8> dozchbx8 <9> dozchbx9 <10-11>

26 dozchbx10 <12-> dozchbx12 }{}

27 \DeclareFontShape{T1}{dozch}{m}{sl}{<-8> dozchsl8

28 <9> dozchsl9 <10-11> dozchsl10 <12-> dozchsl12 }{}

29 \DeclareFontShape{T1}{dozch}{bx}{sl}{<-> dozchbxsl10 }{}

30 \DeclareFontShape{T1}{dozch}{m}{it}{<-7> dozchit7

31 <8> dozchit8 <9> dozchit9 <10-11> dozchit10

32 <12-> dozchit12 }{}

33 \DeclareFontShape{T1}{dozch}{bx}{it}{<-> dozchbxi10 }{}

34 \def\doz#1{{\fontfamily{dozch}\fontencoding{T1}\selectfont #1}}%

35 \DeclareSymbolFont{dozens}{T1}{dozch}{m}{n}

36 \else%

37 \DeclareFontFamily{OT1}{dozch}{}

38 \DeclareFontShape{OT1}{dozch}{m}{n}{<-6> dozchars6

39 <7> dozchars7 <8> dozchars8 <9> dozchars9 <10-11>

40 dozchars10 <12-16> dozchars12 <17-> dozchars17 }{}

41 \DeclareFontShape{OT1}{dozch}{b}{n}{<-> dozchb10 }{}

42 \DeclareFontShape{OT1}{dozch}{bx}{n}{<-6> dozchbx6

43 <7> dozchbx7 <8> dozchbx8 <9> dozchbx9 <10-11>

44 dozchbx10 <12-> dozchbx12 }{}

45 \DeclareFontShape{OT1}{dozch}{m}{sl}{<-8> dozchsl8

46 <9> dozchsl9 <10-11> dozchsl10 <12-> dozchsl12 }{}

47 \DeclareFontShape{OT1}{dozch}{bx}{sl}{<-> dozchbxsl10 }{}

48 \DeclareFontShape{OT1}{dozch}{m}{it}{<-7> dozchit7

49 <8> dozchit8 <9> dozchit9 <10-11> dozchit10

50 <12-> dozchit12 }{}

51 \DeclareFontShape{OT1}{dozch}{bx}{it}{<-> dozchbxi10 }{}

52 \def\doz#1{{\fontfamily{dozch}\fontencoding{OT1}\selectfont #1}}%

53 \DeclareSymbolFont{dozens}{OT1}{dozch}{m}{n}

54 \fi%

55 \newcommand\x{\TextOrMath{\protect\doz{{X}}}{\doz@X}}%

56 \newcommand\e{\TextOrMath{\protect\doz{{E}}}{\doz@E}}%

57 \DeclareMathSymbol{\doz@X}{\mathord}{dozens}{88}%

58 \DeclareMathSymbol{\doz@E}{\mathord}{dozens}{69}%

Put in some additional code for the tally marks.

59 \newcommand\tally[1]{%

60 % \usefont{OT1}{dozch}{m}{n}\selectfont{#1}%

9

61 \doz{#1}%

62 }%

Then we define our command which will produce the dozenal numbers from deci-
mal sources. This algorithm was taken directly from the publicly available archives
of comp.text.tex, where it was posted by the well-known and redoubtable David
Kastrup. We also define the \dozens command, a simplified \basexii (which, in
fact, depends utterly upon \basexii), just to make it easy for everyone.

63 \def\basexii#1#2#3{\ifcase\numexpr(#1)\relax

64 0\or1\or2\or3\or4\or5\or6\or7\or8\or9\or#2\or#3\else

65 \expandafter\basexii\expandafter{\number\numexpr((#1)-6)/12}{#2}{#3}\expandafter\basexii\expandafter{\number\numexpr(#1)-((#1)-6)/12*12}{#2}{#3}\fi}

66 \newcommand\dozens[1]{\basexii{#1}{\x}{\e}}

Now that we can convert numbers to dozenal, let’s set it up so that we can convert
them from dozenal. I use xstring here, replacing a messy macro mesh from the
last version (5.3).

67 \newcount\doz@countchar

68 \def\doz@charcount#1{%

69 \StrLen{#1}[\doz@filler]%

70 \doz@countchar=\doz@filler%

71 }%

Now we develop our conversion routines for \basex. For v6.0, these were hugely
simplified by using the xstring package instead of trying to bash through in plain
TEX, which eventually worked but was not pretty. We start by defining a few
counters to help us out:

72 \newcount\doz@lfiller\doz@lfiller=-1%

73 \newcount\doz@total\doz@total=0%

74 \newcount\doz@loopi\doz@loopi=0%

75 \newcount\doz@multiplier\doz@multiplier=1%

Next we adopt a macro from TeX.SE question 140476, from user ”Dan”, which
works like a charm even when using counter values rather than simple integers.
These macros let us grab an individual character from a string; in this case, from
the argument of \basex.

76 % macro from TeX.SE question 140476, posted by user "Dan"

77 \def\ninthofmany#1#2#3#4#5#6#7#8#9{#9\gobbletorelax}

78 \def\gobbletorelax#1\relax{}

79 \def\doz@CharAt#1#2{%

80 \expandafter\ninthofmany\romannumeral\numexpr(9000-\number#1000)#2\relax}

81 % end "Dan" macro

Here’s where the money happens. We loop through each digit of the argument,
multiplying it by the appropriate factor of 10 (the dozen, of course), and then add
that to a rolling total. At the end, we output the number.

82 \def\doz@ten{X}%

83 \def\doz@elv{E}%

84 \def\doz@basex#1{%

85 \doz@total=0%

86 \doz@loopi=\doz@countchar%

X

87 \doz@multiplier=1%

88 \def\doz@wholenum{#1}%

89 \loop\ifnum\doz@loopi>0%

90 \def\doz@currchar{\doz@CharAt{\number\doz@loopi}{\doz@wholenum}}%

91 \if\doz@currchar\doz@ten%

92 \doz@lfiller=10%

93 \else\if\doz@currchar\doz@elv%

94 \doz@lfiller=11%

95 \else%

96 \doz@lfiller=\doz@currchar%

97 \fi\fi%

98 \multiply\doz@lfiller by\doz@multiplier%

99 \multiply\doz@multiplier by12%

100 \advance\doz@total by\doz@lfiller%

101 \advance\doz@loopi by-1%

102 \repeat%

103 \the\doz@total%

104 }%

105 \def\basex#1{%

106 \doz@charcount{#1}%

107 \doz@loopi=0%

108 \doz@basex{#1}%

109 \doz@multiplier=1%

110 \doz@total=0%

111 }%

Finally, we define the macros for creating “Doman” (dozenal Roman) numerals.
One, of course, is defined in terms of the other. First, though, we need a modulus
operator:

112 \newcount\doz@modulus%

113 \def\doz@modulo#1#2{%

114 \doz@modulus=#1%

115 \divide\doz@modulus by#2%

116 \multiply\doz@modulus by#2%

117 \multiply\doz@modulus by-1%

118 \advance\doz@modulus by#1\relax%

119 }%

120 \newcount\doz@quotient%

121 \def\doz@quot#1#2{%

122 \doz@quotient=#1%

123 \divide\doz@quotient by#2%

124 }%

Now we can move on to the meat of the operation:

125 \newcount\doz@romct%

126 \newif\ifdoz@domancaps%

127 \def\doz@doman#1{%

128 \doz@romct=#1%

129 \doz@quot{\doz@romct}{1728}%

130 \loop\ifnum\doz@quotient>0%

E

131 \ifdoz@domancaps M\else m\fi%

132 \advance\doz@quotient by-1%

133 \advance\doz@romct by-1728%

134 \repeat

135 \ifnum\doz@romct>1440

136 \ifnum\doz@romct<1584

137 \ifdoz@domancaps CCM\else ccm\fi%

138 \advance\doz@romct by-1440

139 \else%\ifnum\doz@romct>1583

140 \ifdoz@domancaps CM\else cm\fi%

141 \advance\doz@romct by-1584

142 \fi

143 \fi

144 \ifnum\doz@romct>575%

145 \ifnum\doz@romct<719

146 \ifdoz@domancaps CCD\else ccd\fi%

147 \advance\doz@romct by-576

148 \else

149 \ifnum\doz@romct<864%

150 \ifdoz@domancaps CD\else cd\fi%

151 \advance\doz@romct by-720%

152 \fi

153 \fi

154 \else

155 \ifnum\doz@romct>719

156 \ifdoz@domancaps D\else d\fi%

157 \advance\doz@romct by-719%

158 \fi

159 \fi

160 \doz@quot{\doz@romct}{144}%

161 \loop\ifnum\doz@quotient>0%

162 \ifdoz@domancaps C\else c\fi%

163 \advance\doz@quotient by-1%

164 \advance\doz@romct by-144%

165 \repeat

166 \ifnum\doz@romct>119

167 \ifnum\doz@romct<132

168 \ifdoz@domancaps XXC\else xxc\fi%

169 \advance\doz@romct by-120

170 \else

171 \ifdoz@domancaps XC\else xc\fi%

172 \advance\doz@romct by-132

173 \fi

174 \fi

175 \ifnum\doz@romct>71

176 \ifdoz@domancaps L\else l\fi%

177 \advance\doz@romct by-72

178 \fi

179 \ifnum\doz@romct>47%

180 \ifnum\doz@romct>59%

10

181 \ifdoz@domancaps XL\else xl\fi%

182 \advance\doz@romct by-60%

183 \else

184 \ifdoz@domancaps XXL\else xxl\fi%

185 \advance\doz@romct by-48%

186 \fi

187 \fi

188 \doz@quot{\doz@romct}{12}%

189 \loop\ifnum\doz@quotient>0%

190 \ifdoz@domancaps X\else x\fi%

191 \advance\doz@quotient by-1%

192 \advance\doz@romct by-12%

193 \repeat

194 \doz@modulo{\doz@romct}{12}%

195 \ifnum\doz@modulus=10

196 \ifdoz@domancaps IIX\else iix\fi%

197 \advance\doz@romct by-10

198 \fi

199 \ifnum\doz@modulus=11

200 \ifdoz@domancaps IX\else ix\fi%

201 \advance\doz@romct by-11

202 \fi

203 \ifnum\doz@romct>5

204 \ifdoz@domancaps V\else v\fi%

205 \advance\doz@romct by-6

206 \fi

207 \ifnum\doz@romct>3%

208 \ifnum\doz@romct=4%

209 \ifdoz@domancaps IIV\else iiv\fi%

210 \advance\doz@romct by-4%

211 \else

212 \ifnum\doz@romct=5%

213 \ifdoz@domancaps IV\else iv\fi%

214 \advance\doz@romct by-5%

215 \fi

216 \ifnum\doz@romct=6%

217 \ifdoz@domancaps V\else v\fi%

218 \advance\doz@romct by-6

219 \fi

220 \fi

221 \fi

222 \doz@quot{\doz@romct}{1}%

223 \loop\ifnum\doz@quotient>0%

224 \ifdoz@domancaps I\else i\fi%

225 \advance\doz@quotient by-1%

226 \advance\doz@romct by-1%

227 \repeat

228 }

229 \protected\def\doman#1{%

230 \doz@domancapsfalse%

11

231 \doz@doman{#1}%

232 }%

233 \protected\def\Doman#1{%

234 \doz@domancapstrue%

235 \doz@doman{#1}%

236 }%

Now, of course, we simply redefine all the counters. This covers only those counters
included in the basic LATEX document classes, however, so if you’ve written your
own, you’ll need to redefine them yourself.

This first bit ensures that the counters are redefined even if the command
\mainmatter is not defined. We have to do this outside of the \g@addto@macro

below; otherwise, in documents where \mainmatter is defined but not used, the
counters will not be redefined. This way, they’re redefined in all cases.

This also takes care of ensuring that the counters are only redefined if the
“nocounters” options was not specified.

237 \@ifundefined{nocounters}{%

238 \@ifundefined{c@page}{}{%

239 \renewcommand\thepage{\basexii{\value{page}}{\x}{\e}}}

240 \@ifundefined{c@footnote}{}{%

241 \renewcommand\thefootnote{%

242 \basexii{\value{footnote}}{\x}{\e}}}

243 \@ifundefined{c@part}{}{%

244 \renewcommand\thepart{%

245 \basexii{\value{part}}{\x}{\e}}}

246 \@ifundefined{c@subparagraph}{}{%

247 \renewcommand\thesubparagraph{%

248 \basexii{\value{subparagraph}}{\x}{\e}}}

249 \@ifundefined{c@paragraph}{}{%

250 \renewcommand\theparagraph{%

251 \basexii{\value{paragraph}}{\x}{\e}}}

252 \@ifundefined{c@equation}{}{%

253 \renewcommand\theequation{%

254 \basexii{\value{equation}}{\x}{\e}}}

255 \@ifundefined{c@figure}{}{%

256 \renewcommand\thefigure{%

257 \basexii{\value{figure}}{\x}{\e}}}

258 \@ifundefined{c@table}{}{%

259 \renewcommand\thetable{%

260 \basexii{\value{table}}{\x}{\e}}}

261 \@ifundefined{c@table}{}{%

262 \renewcommand\thempfootnote{%

263 \basexii{\value{mpfootnote}}{\x}{\e}}}

264 \@ifundefined{c@enumi}{}{%

265 \renewcommand\theenumi{%

266 \basexii{\value{enumi}}{\x}{\e}}}

267 \@ifundefined{c@enumii}{}{%

268 \renewcommand\theenumii{%

269 \basexii{\value{enumii}}{\x}{\e}}}

12

270 \@ifundefined{c@enumiii}{}{%

271 \renewcommand\theenumiii{%

272 \basexii{\value{enumiii}}{\x}{\e}}}

273 \@ifundefined{c@enumiv}{}{%

274 \renewcommand\theenumiv{%

275 \basexii{\value{enumiv}}{\x}{\e}}}

276 \@ifundefined{c@chapter}{%

277 \renewcommand\thesection{%

278 \basexii{\value{section}}{\x}{\e}}

279 \renewcommand\thesubsection{%

280 \thesection.\basexii{\value{subsection}}{\x}{\e}}

281 \renewcommand\thesubsubsection{%

282 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

283 }{

284 \renewcommand\thechapter{%

285 \basexii{\value{chapter}}{\x}{\e}}

286 \renewcommand\thesection{%

287 \thechapter.\basexii{\value{section}}{\x}{\e}}

288 \renewcommand\thesubsection{%

289 \thesection.\basexii{\value{subsection}}{\x}{\e}}

290 \renewcommand\thesubsubsection{%

291 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

292 }

Finally, if the \mainmatter command is used, we need to make sure that it doesn’t
mess up our numbering scheme.

293 \@ifundefined{mainmatter}{}{%

294 \g@addto@macro\mainmatter{%

295 \@ifundefined{c@page}{}{%

296 \renewcommand\thepage{\basexii{\value{page}}{\x}{\e}}}

297 \@ifundefined{c@footnote}{}{%

298 \renewcommand\thefootnote{\basexii{\value{footnote}}{\x}{\e}}}

299 \@ifundefined{c@part}{}{%

300 \renewcommand\thepart{\basexii{\value{part}}{\x}{\e}}}

301 \@ifundefined{c@subparagraph}{}{%

302 \renewcommand\thesubparagraph{%

303 \basexii{\value{subparagraph}}{\x}{\e}}}

304 \@ifundefined{c@paragraph}{}{%

305 \renewcommand\theparagraph{%

306 \basexii{\value{paragraph}}{\x}{\e}}}

307 \@ifundefined{c@equation}{}{%

308 \renewcommand\theequation{%

309 \basexii{\value{equation}}{\x}{\e}}}

310 \@ifundefined{c@figure}{}{%

311 \renewcommand\thefigure{%

312 \basexii{\value{figure}}{\x}{\e}}}

313 \@ifundefined{c@table}{}{%

314 \renewcommand\thetable{%

315 \basexii{\value{table}}{\x}{\e}}}

316 \@ifundefined{c@table}{}{%

13

317 \renewcommand\thempfootnote{%

318 \basexii{\value{mpfootnote}}{\x}{\e}}}

319 \@ifundefined{c@enumi}{}{%

320 \renewcommand\theenumi{%

321 \basexii{\value{enumi}}{\x}{\e}}}

322 \@ifundefined{c@enumii}{}{%

323 \renewcommand\theenumii{%

324 \basexii{\value{enumii}}{\x}{\e}}}

325 \@ifundefined{c@enumiii}{}{%

326 \renewcommand\theenumiii{%

327 \basexii{\value{enumiii}}{\x}{\e}}}

328 \@ifundefined{c@enumiv}{}{%

329 \renewcommand\theenumiv{%

330 \basexii{\value{enumiv}}{\x}{\e}}}

331 \@ifundefined{c@chapter}{

332 \renewcommand\thesection{%

333 \basexii{\value{section}}{\x}{\e}}

334 \renewcommand\thesubsection{%

335 \thesection.\basexii{\value{subsection}}{\x}{\e}}

336 \renewcommand\thesubsubsection{%

337 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

338 }{

339 \renewcommand\thechapter{%

340 \basexii{\value{chapter}}{\x}{\e}}

341 \renewcommand\thesection{%

342 \thechapter.\basexii{\value{section}}{\x}{\e}}

343 \renewcommand\thesubsection{%

344 \thesection.\basexii{\value{subsection}}{\x}{\e}}

345 \renewcommand\thesubsubsection{%

346 \thesubsection.\basexii{\value{subsubsection}}{\x}{\e}}

347 } % end if it’s defined

348 }

349 }

350 }{} % end redefinition of counters block

Now we begin the number-to-word macros. First, we define the macros which
allow the user to specify his own words for each rank:

351 \def\dozrankoneword{unqua}

352 \def\dozranktwoword{biqua}

353 \def\dozrankthreeword{triqua}

354 \def\dozrankfourword{quadqua}

355 \def\dozrankfiveword{pentqua}

356 \def\dozranksixword{hexqua}

357 \def\dozranksevenword{septqua}

358 \def\dozrankeightword{octqua}

359 \def\dozranknineword{ennqua}

360 \def\dozranktenword{decqua}

361 \def\dozrankelvword{elvqua}

Then we define some \ifs to help us decide how we should capitalize the end
result.

14

362 \newif\ifDOZcaps\DOZcapsfalse

363 \newif\ifDozcaps\Dozcapsfalse

Then, we give some utility macros:

364 \def\doz@expandloop#1{\doz@xloop#1\relax}

365 \def\doz@xloop#1{%

366 \ifx\relax#1\else%

367 \doz@numword#1%

368 \expandafter\doz@xloop\fi%

369 }

370 \def\printdozrankword{}

371 \def\doz@rankword{%

372 \ifnum\doz@countchar=12

373 \def\printdozrankword{\dozrankelvword}%

374 \fi

375 \ifnum\doz@countchar=11

376 \def\printdozrankword{\dozranktenword}%

377 \fi

378 \ifnum\doz@countchar=10

379 \def\printdozrankword{\dozranknineword}%

380 \fi

381 \ifnum\doz@countchar=9

382 \def\printdozrankword{\dozrankeightword}%

383 \fi

384 \ifnum\doz@countchar=8

385 \def\printdozrankword{\dozranksevenword}%

386 \fi

387 \ifnum\doz@countchar=7

388 \def\printdozrankword{\dozranksixword}%

389 \fi

390 \ifnum\doz@countchar=6

391 \def\printdozrankword{\dozrankfiveword}%

392 \fi

393 \ifnum\doz@countchar=5

394 \def\printdozrankword{\dozrankfourword}%

395 \fi

396 \ifnum\doz@countchar=4

397 \def\printdozrankword{\dozrankthreeword}%

398 \fi

399 \ifnum\doz@countchar=3

400 \def\printdozrankword{\dozranktwoword}%

401 \fi

402 \ifnum\doz@countchar=2

403 \def\printdozrankword{\dozrankoneword}%

404 \fi

405 \ifnum\doz@countchar=1

406 \def\printdozrankword{\relax}%

407 \fi

408 \advance\doz@countchar by-1

409 \ifDOZcaps

15

410 \edef\printdozrankword{\uppercase{\printdozrankword}}%

411 \fi

412 \ifDozcaps

413 \edef\printdozrankword{\capitalisewords{\printdozrankword}}%

414 \fi

415 \ifnum\doz@countchar>0

416 \ \printdozrankword\ %

417 \else

418 \printdozrankword%

419 \fi

420 }%

421 \def\doz@numword#1{%

422 \IfStrEq{#1}{0}{\def\doz@numberword{zero}}{}%

423 \IfStrEq{#1}{1}{\def\doz@numberword{one}}{}%

424 \IfStrEq{#1}{2}{\def\doz@numberword{two}}{}%

425 \IfStrEq{#1}{3}{\def\doz@numberword{three}}{}%

426 \IfStrEq{#1}{4}{\def\doz@numberword{four}}{}%

427 \IfStrEq{#1}{5}{\def\doz@numberword{five}}{}%

428 \IfStrEq{#1}{6}{\def\doz@numberword{six}}{}%

429 \IfStrEq{#1}{7}{\def\doz@numberword{seven}}{}%

430 \IfStrEq{#1}{8}{\def\doz@numberword{eight}}{}%

431 \IfStrEq{#1}{9}{\def\doz@numberword{nine}}{}%

432 \IfStrEq{#1}{X}{\def\doz@numberword{ten}}{}%

433 \IfStrEq{#1}{E}{\def\doz@numberword{eleven}}{}%

434 \ifDOZcaps

435 \edef\doz@numberword{\uppercase{\doz@numberword}}%

436 \fi

437 \ifDozcaps

438 \edef\doz@numberword{\makefirstuc{\doz@numberword}}%

439 \fi

440 \doz@numberword%

441 \doz@rankword%

442 }%

443 \def\doznumtoword#1{%

444 \edef\thenumber{\basexii{\value{#1}}{X}{E}}%

445 \expandafter\doz@charcount\expandafter{\thenumber}%

446 \expandafter\doz@expandloop\expandafter{\thenumber}%

447 \doz@countchar=0%

448 }%

449 \def\DOZnumtoword#1{%

450 \DOZcapstrue%

451 \doznumtoword{#1}%

452 \DOZcapsfalse%

453 }%

454 \def\Doznumtoword#1{%

455 \Dozcapstrue%

456 \doznumtoword{#1}%

457 \Dozcapsfalse%

458 }%

16

Our last job is to make sure the semicolon (Humphrey point) works correctly as
a radix point in math mode. This code is adapted from the icomma package by
Walter Schmidt.

459 \AtBeginDocument{%

460 \mathchardef\humphrey\mathcode‘\;%

461 \mathcode‘\;="8000 %

462 }

463 {\catcode‘;=\active

464 \gdef;{\futurelet\@let@token\sm@rtsemi}

465 }

466 \def\sm@rtsemi{%

467 \ifx\@let@token\@sptoken \else

468 \ifx\@let@token\space \else

469 \mathord\fi\fi \humphrey}

And that’s the end. Thanks for reading, folks; please email me with any sugges-
tions or improvements.

17

