\pagestyle{empty} %Accents: \begin{displaymath} \widehat{bcd} \ \widetilde{efg} \ \dot A \ \dot R \ \mathbf{\dot A \check t} \ \check{\mathcal{A}} \check{\mathcal{a}} \ \mathbf{\acute \imath} \end{displaymath} %Angle brackets: \begin{displaymath} \langle a \rangle \left\langle \frac{a}{b} \right\rangle \left\langle \frac{\frac{a}{b}}{c} \right\rangle \end{displaymath} %Big operators: \begin{displaymath} (x + a)^n = \sum_{k=0}^n \intop_{t_1}^{t_2} {n \choose k} x^k a^{n-k}f(x)\,dx \end{displaymath} %Logical operators \begin{displaymath} \def\buildrel#1\below#2{\mathrel{\mathop{\kern0mm#2}\limits_{#1}}} \bigcup_a^b \bigcap_c^d E {\buildrel ab \below \rightarrow} F' {\buildrel cd \below \Rightarrow} G \end{displaymath} %%Horizontal brackets: \begin{displaymath} \underbrace{\overbracket{aaaaaaa}}_\textrm{Siédém} \underbrace{\overparen{aaaaa}}_\textrm{pięć} \end{displaymath} %Squares: \begin{displaymath} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}} = \frac{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{2}}}}}}}}}{\frac{2}{3}} \end{displaymath} %Cardinal numbers \begin{displaymath} \aleph_{0}<2^{\aleph_0}<2^{2^{\aleph_0}} \end{displaymath} %Powers \begin{displaymath} x^{\alpha} e^{\beta x^{\gamma} e^{\delta x^{\epsilon}}} \end{displaymath} %Integrals \begin{displaymath} \oint_C\mathbf{F}\cdot d\mathbf{r}=\int_S\mathbf{\nabla}\times\mathbf{F}\cdot d\mathbf{S}\qquad \oint_C\vec{A}\cdot\vec{dr}=\iint_S(\nabla\times\vec{A})\,\vec{dS} \end{displaymath} %Sum \begin{displaymath} (1+x)^n=1+\frac{nx}{1!}+\frac{n(n-1)x^2}{2!}+\cdots \end{displaymath} %Equations \setlength\arraycolsep{0.15em} \begin{eqnarray*} \int_{-\infty}^\infty e^{-x^2}dx &=& \left[\int_{-\infty}^\infty e^{-x^2}dx \int_{-\infty}^\infty e^{-y^2}dy\right]^{1/2}\\ &=& \left[\int_{0}^{2\pi} \int_0^\infty e^{-r^2}r\,dr\,d\theta\right]^{1/2}\\ &=& \left[\pi\int_{0}^\infty e^{-u}du\right]^{1/2}\\ &=& \sqrt{\pi} \end{eqnarray*} \endinput