%% %% This is file `sample-math-iwona.tex', %% generated with the docstrip utility. %% %% The original source files were: %% %% sample-math.dtx (with options: `iwona') %% %% IMPORTANT NOTICE: %% %% For the copyright see the source file. %% %% Any modified versions of this file must be renamed %% with new filenames distinct from sample-math-iwona.tex. %% %% For distribution of the original source see the terms %% for copying and modification in the file sample-math.dtx. %% %% This generated file may be distributed as long as the %% original source files, as listed above, are part of the %% same distribution. (The sources need not necessarily be %% in the same archive or directory.) \documentclass{article} \usepackage[default, math=iwona]{arsenal} \usepackage{natbib, hyperref, amsmath, bm} \urlstyle{rm} \usepackage{microtype} \setcounter{secnumdepth}{0} \usepackage{hologo} \providecommand*\XeTeX{\hologo{XeTeX}} \usepackage{amssymb} \usepackage[ukrainian, english]{babel} \providecommand\pkg[1]{\textit{#1}} \newcommand{\abc}{abcdefghijklmnopqrstuvwxyz} \newcommand{\ABC}{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \newcommand{\alphabeta}{\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\varkappa\lambda\mu\nu\xi o\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega} \newcommand{\AlphaBeta}{\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega} %% Getting version and date \makeatletter \def\GetFileInfo#1{% \def\filename{#1}% \def\@tempb##1 ##2 ##3\relax##4\relax{% \def\filedate{##1}% \def\fileversion{##2}% \def\fileinfo{##3}}% \edef\@tempa{\csname ver@#1\endcsname}% \expandafter\@tempb\@tempa\relax? ? \relax\relax} \makeatother \GetFileInfo{arsenal.sty} \begin{document} \selectlanguage{english} \title{Sample of Arsenal font with Iwona math } \author{Boris Veytsman} \date{Arsenal package version \fileversion, \filedate} \maketitle \section{Introduction} \label{sec:intro} The samples below are based on the example from~\citep{Hartke06, free-math-font-survey}. The math fonts are scaled based on lower case characters. \section{English} \label{sec:english} \textbf{Theorem 1 (Residue Theorem).} Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then \[ \frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k). \] \textbf{Theorem 2 (Maximum Modulus).} \emph{Let $G$ be a bounded open set in $\mathbb{C}$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then} \[ \max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}. \] \section{Ukrainian} \label{sec:ukr} \selectlanguage{ukrainian} \textbf{Теорема 1 (Теорема про залишки).} Нехай $f$ аналітична в області $G$ за винятком ізольованих сингулярностей $a_1,a_2,\ldots,a_m$. Якщо $\gamma$ є замкнута крива в $G$, що може бути спрямована, яка не проходить скрізь жодну з точок $a_k$, і якщо $\gamma\approx 0$ в $G$, то \[ \frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k). \] \textbf{Теорема 2 (Максимальне значення).} \emph{Нехай $G$ є обмежена множина в $\mathbb{C}$, і нехай $f$ є безперервна функція на $G^-$, аналітична в $G$. Тоді} \[ \max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}. \] \selectlanguage{english} \section{Alphabets} \label{sec:alphabets} \bgroup \setlength{\parindent}{0pt} \setlength{\parskip}{1ex} Uppercase and math\\ \ABC\quad \textit{\ABC} \quad $\ABC$ Lowercase and math\\ \abc\quad\textit{\abc} \quad $\abc$ \quad 0123456789\quad $01234567890$ Greek\\ $\AlphaBeta$ \quad $\alphabeta$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial\mho\imath\jmath\hslash\eth$ Lowercase Greek and math\\ $\abc\quad \alphabeta$ Uppercase Greek and math\\ $\ABC\quad \AlphaBeta$ Greek and misc\\ $\mathrm{A} \Lambda \Delta \nabla \mathrm{B C D} \Sigma \mathrm{E F} \Gamma \mathrm{G H I J K L M N O} \Theta \Omega \mho \mathrm{P} \Phi \Pi \Xi \mathrm{Q R S T U V W X Y} \Upsilon \Psi \mathrm{Z} $ $ \quad 1234567890 $ Mathbold\\ \textbf{\ABC}\quad $\mathbf{\ABC}$\\ \textbf{\abc}\quad $\mathbf{\abc}$ Math and symbols\\ $a\alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \hslash \iota i \imath j \jmath k \kappa \varkappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p \rho \varrho q r s t \tau \pi u \mu \nu v \upsilon w \omega \varpi x \chi y \psi z$ \linebreak[3] $\infty \propto \emptyset \varnothing \mathrm{d}\eth \backepsilon$ Mathcal\\ $\ABC\quad\mathcal{\ABC}$ Mathbb\\ $\ABC \quad \mathbb{\ABC}$ Uppercase mathfrak\\ $\ABC\quad\mathfrak{\ABC}$ Lowercase mathfrak\\ $\abc\quad\mathfrak{\abc}$ Bold math\\ {\boldmath $\alpha + b = 27$} Primes: $f', f'', f'''$. \egroup \selectlanguage{english} \bibliography{arsenal} \bibliographystyle{plainnat} \end{document} \endinput %% %% End of file `sample-math-iwona.tex'.