Arev Sans for T_EX and L^AT_EX

Stephen G. Hartke* August 2, 2005

1 Introduction

Bitstream Vera was designed by Jim Lyles of Bitstream, Inc., in cooperation with the Gnome Foundation as a high quality scalable free font for use with free open-source software [4]. The Bitstream Vera family includes serif, sans serif, and monospaced fonts, 1 and all three fonts have normal, oblique, bold, and bold oblique faces. Bitstream Vera is primarily intended as a screen font (though it also works well as a print font) and has hinting for display on low-resolution devices such as computer monitors and projectors. All three fonts have large x height, wide letters and spacing, and "open" letters, 2 resulting in fonts that are extremely easy to read at small sizes or on projected displays.

Tavmjong Bah created Arev Sans³ by extending Bitstream Vera Sans to include Greek, Cyrillic, and many mathematical symbols [1]. The new glyphs added by Bah accurately capture the feel of the Latin letters and so seamlessly integrate into the font. Bah's intention was to add symbols that are useful for technical writing, and hence the Greek letters are typical of those used in mathematics and science and not of the letters used in writing the Greek language.⁴ At the author's request, Bah also added several alternate glyphs for some of the Latin and Greek letters. This was mainly done so that all of the letters can be clearly distinguished when in mathematics and not surrounded by other letters or even aligned with the baseline.⁵ Additionally, several alternate glyphs were added that are "warmer" or more "humanist" than the strict "geometric" glyphs.⁶ These extra glyphs add a degree of warmth to mathematics written in Arev Sans that is not achieved with other sans serif fonts.

Figure 1 shows a sample of Arev Sans being used for text and mathematics. The primary use that the author sees for Arev Sans in LATEX is for presentations, and especially for those that are displayed with a computer projector. The attributes of Bitstream Vera and Arev mentioned above make Arev particularly suited for this purpose. Besides Arev, there are only a few other options for sans serif fonts in LATEX, and none of them are entirely satisfactory. Computer Modern sans serif and the SliTEX sans serif fonts can be used for text, but Computer Modern roman is still used for mathematics. Walter Schmidt's Computer Modern Bright⁸ (cmbright[5]) is a sans serif family that includes both text and

^{*} email: lastname at gmail dot com.

¹The text of this document is set in Bera Serif and Mono [3], a repackaging of Bitstream Vera for TEX.

 $^{^2}$ For instance, compare the lowercase "e" of Arev Sans with that of Helvetica.

³Per the license for Bitstream Vera, any derivative fonts must have a different name.

⁴Specifically, alpha is not the same as lowercase "a," nu is not the same as lowercase "v," and Upsilon is not the same as uppercase "Y."

⁵The lowercase "l" and the uppercase "I" in particular are almost identical in Bitstream Vera Sans. The lowercase phi and original uppercase Phi in Arev Sans are also difficult to distinguish without a baseline.

⁶The extra glyphs include "a," "i," "l," "u," "v," "w," "x," and uppercase Pi and Phi. The florin is used as an alternate "f."

 $^{^{7}}$ Arev Sans is actually very similar to SliT_EX sans serif (lcmss) in that both have large x height, have wide letters and spacing, and have "open" letters. Arev Sans is heavier than SliT_EX sans serif though, which makes it more suitable for computer projectors.

⁸Harald Halders created Type 1 Postcript font versions of the cmbright fonts called hfbright. The fonts were created by tracing high resolution bitmaps, and so are not perfect. However, scalable Type 1 fonts greatly improve the quality of Postscript and .pdf files on computer screens and projectors.

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; \alpha_k) \operatorname{Res}(f; \alpha_k).$$

Another nice theorem from complex analysis is

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

$$\max\{|f(z)| : z \in G^-\} = \max\{|f(z)| : z \in \partial G\}.$$

Figure 1: Font sample of Arev Sans text and math.

mathematics, but is very thin and does not display well on a computer projector. Kerkis Sans[9] is based on Avant Garde and includes Greek sans serif glyphs, but is also very thin. Helvetica and other PostScript sans serif fonts can be used for text and for Latin letters in mathematics, but they do not have matching Greek letters or the proper weight for geometric mathematical symbols.

The arev package works well with the IATEX package beamer[2] with the professional fonts option. Figures 2-7 show examples of beamer with the font options mentioned above where each slide is scaled to 90% of its default size, and Figures 8-13 show side-by-side examples scaled to 50%. SliTeX sans serif is loaded into beamer using T_{EX} Power's tpslifonts.sty [13].

2 Implementation

With internationalization of computer software and the growing use of Unicode, many free scalable fonts are available that include both Latin and Greek letters. However, making use of these fonts for mathematics in IATEX is a nontrivial task: not only are there many subtleties to using fonts in IATEX, but the documentation is scattered among many sources and there are few examples to consult. The author hopes that the arev package can serve as a template for others who wish to create new math font packages for IATEX.

The excellent GPLed font editor FontForge [6] was used by Bah to create Arev Sans and was used by the author for creating PostScript pfb, afm, and TEX tfm files. The Bash shell script afmtoglyphlist was used to extract the glyph names from the afm file into a list that a fontinst script used for renaming glyphs. The magic of fontinst was used to create virtual fonts and font metrics, LATEX font definition files, and the dvips map file.

The vertical placement of math accents requires the accents to be appropriately placed for characters 1 ex high. The accents also need to have a zero depth, which is set by the file fixotlaccents.mtx (based on their bounding boxes, the accents naturally have negative depths). Horizontal placement of math accents is done by centering the accent over the character, and then adjusting the position by

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma)\cos\left(\sqrt{x^2}\right)}{f'(x)R/\alpha} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is undefined at the points in $S \cap \Gamma$, and the integral $I_l(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Figure 2: Arev Sans

Characterization of the Imaginary Forms

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{X^2}\right)}{f'(X)R/a} dX = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & X \otimes Y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is undefined at the points in $S \cap \Gamma$, and the integral $I_l(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subset S$.

Figure 3: SliT_EX font (lcmss)

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_i w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is <u>undefined</u> at the points in $S \cap \Gamma$, and the integral $I_I(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Figure 4: Computer Modern sans serif (cmss)

Characterization of the Imaginary Forms

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma)\cos\left(\sqrt{x^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is undefined at the points in $S \cap \Gamma$, and the integral $I_l(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Figure 5: CM Bright

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^k \delta(v_i v_i w) \sigma_{i,i}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(\mathcal{S},\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is undefined at the points in $\mathcal{S} \cap \Gamma$, and the integral $I_l(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq \mathcal{S}$.

Figure 6: Kerkis Sans

Characterization of the Imaginary Forms

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_i w) \sigma_{i,i}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is undefined at the points in $S \cap \Gamma$, and the integral $I_I(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Figure 7: Helvetica

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(x)R/\alpha} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is undefined at the points in $S \cap \Gamma$, and the integral $I_i(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Characterization of the Imaginary Forms

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is undefined at the points in $S \cap \Gamma$, and the integral $I_l(i_l)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Figure 8: Arev Sans

Figure 9: Helvetica

Characterization of the Imaginary Forms

Theorem

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{X^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is <u>undefined</u> at the points in $S \cap \Gamma$, and the integral $I_l(i_1)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Characterization of the Imaginary Forms

Theorem.Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(\mathbf{S},\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(\mathbf{X})R/\sigma} \mathrm{d}\mathbf{X} = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & \mathbf{X} \otimes \mathbf{y} \end{array}\right)$$

Note: If $\beta\in\Gamma$, then the form is undefined at the points in $\mathcal{S}\cap\Gamma$, and the integral $l_i(h_i)$ diverges as $\varepsilon\to0$. This pathological behavior can be handled by taking $\Gamma\subseteq\mathcal{S}$.

Figure 10: SliT_EX font (lcmss)

Figure 11: Kerkis Sans

Characterization of the Imaginary Forms

Theoren

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta\in \Gamma$, then the form is undefined at the points in $S\cap \Gamma$, and the integral $I_l(n)$ diverges as $\varepsilon\to 0$. This pathological behavior can be handled by taking $\Gamma\subseteq S$.

Characterization of the Imaginary Forms

Theorem.

Let $S = \{v_1, v_2, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n .

Consider $\mathcal{F}(S) = \sum_{i=1}^{k} \delta(v_i v_j w) \sigma_{i,j}$.

If $\mathcal{F}(S) \leq \varepsilon$, then

$$\phi(S,\alpha) = \frac{1}{2\pi i} \int_{-\infty}^{753} \frac{\tilde{W}_n(\gamma) \cos\left(\sqrt{x^2}\right)}{f'(x)R/a} dx = \det\left(\begin{array}{cc} \alpha^2 & \Pi \\ \omega & x \otimes y \end{array}\right)$$

Note: If $\beta \in \Gamma$, then the form is <u>undefined</u> at the points in $S \cap \Gamma$, and the integral $I_l(i_l)$ diverges as $\varepsilon \to 0$. This pathological behavior can be handled by taking $\Gamma \subseteq S$.

Figure 12: Computer Modern sans serif (cmss)

Figure 13: CM Bright

the kern between the character on the left and a special character called the *skewchar*. To better visualize the placement of the accents, the graphical kerning dialog box in FontForge was used, and then the script afmtokernaccent extracts this kern information from the afm file and creates mtx files that calculate the appropriate kern. The one difficulty in implementing this in fontinst is that the kerning data must be reglyphed before applied to the font metrics.

Arev Sans is used for all letter-like symbols, including Latin and Greek letters. Arev Sans includes many mathematical symbols, but not the full range of symbols included in Computer Modern or the AMS symbol fonts. The Math Design Bitstream Charter [10] bold math font comes very close to the weight of Arev Sans, and so is used for the majority of geometric symbols⁹. Computer Modern is used for the default calligraphic font, Fourier-GUTenberg [8] for blackboard bold (since the letters are sans serif), Ralph Smith Formal Script for script, and the AMS font for fraktur. One disadvantage of using so many different fonts for mathematics is that T_EX can only have sixteen simultaneously loaded fonts, and the Arev package comes very close to this limit.

The file mathtesty.tex is a combination of the file mathtestx.tex from the mathptmx package [11] and the symbols.tex file of David Carlisle. It is very useful for testing all of the math styles and symbols for a given font setup.

There are three IATEX packages for use with Arev Sans: arev, arevtext, and arevmath. The arev package simply loads both arevtext and arevmath. arevtext changes the default text font (both roman and sans serif) to Arev Sans. arevtext also changes the default typewriter font to Bera Mono, a repackaging of Bitstream Vera Mono for T_{EX} . arevmath sets the math fonts as described above. In addition to the normal styles, the \mathbm command changes the math font to bold italic.

Variant letters defined by arevmath:

а	\origa	а	\vara	1	\origI	Ι	\varI
i	\origi	i	\vari	1	\origIota	I	\varIota
1	\origimath	ι	\varimath	П	∖origPi	П	\varPi
f	\origf	f	\varf	φ	∖origPhi	Φ	\varPhi
I	\origl	l	\varl				
и	\origu	и	\varu				
V	\origv	ν	\varv				
W	\origw	W	\varw				
X	\origx	X	\varx				

Extra symbols defined by arevmath:

4	\varspade	٦	\quarternote
•	\varheart)	\eighthnote
•	\vardiamond	Л	\sixteenthnote
ఢ్తి	\varclub	∭	\steaming

All of the variant letters are selected by default except for the variant "f" (which is a florin symbol). The user can choose which variants to use by selecting the package option origletters, and then choosing the variants from the options vara, vari, varf, varl, varu, varv, varw, varx, varI, varPi, and varPhi. Note that there is no varimath option, which follows the vari selection, or varIota option, since Iota is treated the same as "I." For example, if a user selected

\usepackage[origletters, vara, varf, varPi]{arevmath}

the following letters would be used:

⁹The Math Design Bitstream Charter math fonts have a few minor flaws: for instance, in the formation of square root symbols and overbraces. However, most of the symbols are of fine quality, and the range of symbols is impressive.

aiıfluvwxlΠΦ \$ai\imath fluvwxI\Pi\Phi\$

A possible future capability of the arevmath package is the ability to choose either italic or upright Greek letters. This would require modification of the variant letters code as well.

3 Licenses

Bitstream Vera is released under a special license that allows free distribution. The fonts may also be modified and extended, as long as the resulting fonts are released under a different name. Arev Sans is released under the same license as Bitstream Vera. However, Arev's creator Tavmjong Bah requests that TrueType versions of Arev be obtained from his website at [1] instead of being converted from the Postscript fonts included with the IATEX package. FontForge source files may also be obtained at his website.

The virtual fonts, font definitions, \LaTeX packages and other supporting files of the arev package are released under the \LaTeX Project Public License (LPPL), version 1.2. The one exception is the file ams-mdbch.sty, which was taken from the Math Design Bitstream Charter package. This file is released under the GNU General Public License (GPL), version 2.

4 Acknowledgments

The author would like to thank Tavmjong Bah for his willingness to add characters to Arev Sans; George Williams for a prompt response and patch on the FontForge mailing list; and Lars Hellström for help with math accents and fontinst on the tex-fonts and fontinst mailing lists.

References

- [1] Arev Sans by Tavmjong Bah, http://tavmjong.free.fr/FONTS.
- [2] LATEX class beamer by Till Tantau, http://latex-beamer.sourceforge.net.
- [3] Bera Postscript Type 1 fonts by Malte Rosenau (converted from Bitstream Vera fonts, which necessitated the name change) and LATEX support files by Walter Schmidt, CTAN:/fonts/bera.
- [4] Bitstream Vera by Jim Lyles of Bitstream, Inc., released in cooperation with the Gnome Foundation, http://www.gnome.org/fonts.
- [5] Computer Modern Bright fonts and cmbright IAT_EX package by Walter Schmidt, CTAN:/fonts/cmbright.
- [6] FontForge font editor by George Williams, http://fontforge.sourceforge.net.
- [7] fontinst T_EX font installation utility by Alan Jeffrey, Sebastian Rahtz, Ulrik Vieth, Lars Hellström, and Rowland McDonnell, CTAN:/fonts/utilities/fontinst.
- [8] Fourier-GUTenberg fonts and IATEX package by Michel Bovani, CTAN:/fonts/fourier-GUT.
- [9] Kerkis font by Antonis Tsolomitis, CTAN:/fonts/greek/kerkis.
- [10] Math Design fonts for Bitstream Charter by Paul Pichaureau, CTAN:/fonts/mathdesign.
- [11] mathptmx by Walter Schmidt, part of the psnfss package, CTAN:/fonts/psfonts/psnfss-source.

- [12] Ralph Smith Formal Script (rsfs) font by Ralph Smith, Postscript Type 1 version by Taco Hoekwater, CTAN:/fonts/rsfs.
- [13] $T_EXPower \LaTeX style files by Stephan Lehmke, http://texpower.sourceforge.net.$