
fontinst
Font installation software for TEX

tfm

afm

pl vplfd

vf pfa pfbtex

dvi

ps

fontinst

pltotf vptovf

latex

dvips

Alan Jeffrey Rowland McDonnell

Lars Hellström
fontinst v1.9 · July 2004

This manual is currently being rewritten, and may therefore be a bit disorganised. For
authoritative information on command syntaxes and the like, see the Literate Program-
ming sources for fontinst. The main file there is fisource.tex.

This manual describes the fontinst software for converting fonts from Adobe Font Metric format
to forms readable by TEX. This manual should be distributed with the fontinst software, which
is available by anonymous FTP from ftp://ftp.tex.ac.uk/tex-archive/fonts/utilities/

fontinst, and on the various CD-ROMs containing material from the CTAN archives. Please
do not contact the author directly for copies.

If you would like to report a bug with fontinst, please mail fontinst@tug.org. The mail will

be sent to the fontinst mailing list. If you would like to be on the fontinst mailing list, see

http://tug.org/mailman/listinfo/fontinst.

Contents

1 Defining terms 4
1.1 What’s a font? . 4
1.2 What does fontinst do? . 7
1.3 What do you do with fontinst? . 8

2 Fontmaking commands 9
2.1 Install commands . 9
2.2 Transformation commands . 13
2.3 Miscellaneous settings . 14
2.4 Other . 16

3 Mapmaking commands 16

4 General commands 17
4.1 Variables . 17
4.2 General commands . 18
4.3 Integer expressions . 19
4.4 Other . 20

5 Encoding files 21
5.1 Encoding commands . 22
5.2 Slot commands . 22
5.3 Other . 23

6 Metric files 24
6.1 Metric commands . 24
6.2 Glyph commands . 26
6.3 Other . 29

7 fontdoc commands 29

8 fontinst variables 29

9 Customisation 37

2

10 Notes on features new with v 1.9 37
10.1 Metric packages . 37
10.2 Word boundary ligatures and kerns 39
10.3 Changing the names of glyphs 40
10.4 Making map file fragments . 42
10.5 Tuning accent positions—an application of loops 45
10.6 Font installation commands . 46
10.7 Bounding boxes . 49

11 Miscellaneous notes 50
11.1 On verbatim, typewriter, and monowidth fonts 50

3

1 Defining terms

This is rather a large and perhaps tedious section. You might be tempted to
skip it so you can get to some more direct information on how to use fontinst.
That’s fine if you understand everything about how TEX handles fonts. If not,
I suggest you at least skim though this section.

1.1 What’s a font?

Once upon a time, this question was easily answered: a font is a set of type
in one size, style, etc. There used to be no ambiguity, because a font was a
collection of chunks of type metal kept in a drawer, one drawer for each font.

These days, with digital typesetting, things are more complicated. What a font
‘is’ isn’t easy to pin down. A typical use of a PostScript font with LATEX might
use these elements:

• Type 1 printer font file

• Bitmap screen font file

• Adobe font metric file (afm file)

• TEX font metric file (tfm file)

• Virtual font file (vf file)

• font definition file (fd file)

Looked at from a particular point of view, each of these files ‘is’ the font. So
what’s going on?

1.1.1 Type 1 printer font files

These files contain the information needed by your printer to draw the shapes
of all the characters in a font. They’re typically files with a pfa or pfb extension;
on Macs they’re usually in files of type ‘LWFN’ which usually have icons that
look like a laser printer. The information in all these files is basically the same:
the only difference is in its representation. pfa stands for ‘printer font ASCII’,
while pfb stands for ‘printer font binary’. That is, pfa files contain plain text
information, while pfb files contain the same information encoded as machine-
readable binary data.

If you have Adobe Type Manager (ATM) installed on your computer, ATM will
use these files to draw an accurate representation of the letters on the screen of
your computer when you are previewing a TEX document.

Printer font files are not used directly by TEX at all – TEX just prepares a dvi
file that refers to the fonts by name and the characters by number: TEX knows
nothing about the shapes involved. The DVI driver uses the printer font files
when you ask it to print the dvi file. This means that you can produce a dvi
file which uses, say, Palatino, even if you do not have the Type 1 printer font

4

file for this font on your computer. You will need to find a computer that does
have Palatino before you can print it or preview it, though.

PdfTEX is different from TEX in this respect; since pdfTEX integrates most of the
functionality of a DVI driver, it may be unable to generate working pdf output
if the some Type 1 printer font file is not available.

1.1.2 Bitmap screen font files

These files contain a low-resolution bitmap for drawing a representation of the
font on the screen of your computer if ATM is not installed. In the TEX world,
these files are only used for screen previews by the DVI driver. They are kept
in font suitcase files on Macintoshes.

1.1.3 Adobe font metric files (afm files)

These files are text files which contain information about the size of each char-
acter in a font, kerning and ligature information, and so on. They can’t be used
by TEX directly, but the information they contain is essential if you want to use
a font with TEX. Fontinst can create from an afm file the necessary tfm and vf
files so you can use a font with TEX. Once you have created all the files you
need to use a font with TEX, you can remove the corresponding afm files from
your computer unless you have other software that needs them.

The job of turning an afm file into a set of tfm and vf files is one of the main
uses for fontinst. Most of this document is concerned with this process, so don’t
worry if it seems a bit vague at the moment.

1.1.4 TEX font metric files (tfm files)

These are binary data files in a format designed for use by TEX which contain
(more-or-less) the same information as afm files: the size of each character in a
font (font metric data), kerning, and ligature information.

When you select a font in TEX, you are telling TEX to typeset using a particular
tfm file; from TEX’s point of view, a tfm file (and nothing else) is a font. TEX
itself doesn’t see printer font files, screen bitmaps, pk files, vf files, or anything
else to do with fonts: only tfm files.

TEX uses these tfm files to decide where to put characters when typesetting.
From TEX’s point of view, tfm files are fonts, even though they contain no in-
formation about the shape of letters, and are not used by anything except TEX
– once you have produced a dvi file, you don’t need the tfm files to print it
out. (This is a slight lie: dvips can read tfm files corresponding to PostScript
and TrueType fonts so it can modify the metrics slightly to improve the letter-
spacing at your chosen output resolution. This is an optional minor tweak and
not an essential part of the output process.)

5

1.1.5 Property list files (pl files)

pl files are human-readable text files which contain all the font metric, kerning,
ligature, and other information needed to create a tfm file. You can convert
between the two file formats using tftopl and pltotf.

1.1.6 Virtual font files (vf files)

These are binary data files in a format designed for use by TEX dvi drivers.
They’re main purpose in life is to let you use fonts in different encodings to the
standard TEX encodings. These files are used by dvi driver software only.

They are used only by dvi drivers to work out what it should really print when
you ask for a particular character. Technically they are like subroutine libraries
for dvi drivers, with one subroutine for each character in the virtual font: when
the dvi driver sees a dvi command to set a character from a virtual font, it will
execute a sequence of dvi commands (the “mapcommands property” of this
character) that it reads in the vf file. You need not worry about the details of
this, as fontinst deals with them for you. Creating and using virtual fonts is
what this document is about, so don’t worry if this doesn’t make sense yet.
(After all, how much do you need to know about the inner workings of dvi
files to typeset and print TEX documents?)

Each vf file has a tfm file with the same name. To use a virtual font, you select
the tfm file as the font to use in your document. When the dvi driver comes
across this tfm file in the dvi file, it looks up the vf file and uses that to decide
what to do.

1.1.7 Virtual property list files (vpl files)

vpl files are human-readable text files which contain all the font metric, kern-
ing, mapping, and other information needed to create a vf and tfm pair.

vptovf will create a vf/tfm pair from a vpl file. vftovp will create a vpl from
a vf/tfm pair. vftovp also needs to be able to read all the tfm files that are
referred to by a vf to recreate the vpl – it looks at the checksums to verify that
everything’s okay.

1.1.8 Font definition files (fd files)

These are files containing commands to tell LATEX which tfm files to associate
with a request for a font using LATEX’s font selection commands.

For example, here is a small and edited part of the fd file supplied with PSNFSS
to allow you to use the Adobe Times font in T1 encoding:

\ProvidesFile{t1ptm.fd}

[1997/02/11 Fontinst v1.6 font definitions for T1/ptm.]

6

\DeclareFontFamily{T1}{ptm}{}

\DeclareFontShape{T1}{ptm}{m}{n} {<-> ptmr8t}{}

\DeclareFontShape{T1}{ptm}{m}{it}{<-> ptmri8t}{}

...

\DeclareFontShape{T1}{ptm}{b}{n} {<-> ptmb8t}{}

\DeclareFontShape{T1}{ptm}{b}{it}{<-> ptmbi8t}{}

...

What this means is: when you use LATEX to select the font family ptm in T1
encoding in the medium series (m) and normal shape (n), TEX uses the font
ptmr8t.tfm. Similarly, if you select bold italic, TEX uses ptmbi8t.tfm.

LATEX works out which fd file to load based on the current encoding and font
family selected. If you’ve selected T1 encoded ptm like this:

\fontencoding{T1}\fontfamily{ptm}\selectfont

LATEX loads the file t1ptm.fd (if it doesn’t exist, you’re in trouble). As you can
see above, this file contains information so that LATEX knows which tfm file to
use. So if you ask for, say, T1/ptm/b/it (T1 encoded Times-Roman, bold series,
italic shape), you get the font ptmbi8t.

You can find more about fd files and LATEX’s font selection commands at CTAN:
ftp://ftp.tex.ac.uk/tex-archive/macros/latex/base/fntguide.tex and
ftp://ftp.tex.ac.uk/tex-archive/info/simple-nfss.tex are both useful.

1.2 What does fontinst do?

fontinst creates vpl and pl files from afm or pl files to map any glyph or com-
bination of glyphs in the original font files to any slot in the output font file.
There, isn’t that better? Off you go now. . .

If you’re still confused, I’ll explain a few things.

Glyph A glyph is an image, often associated with one or several characters.
Some examples of glyphs are: ‘A’, ‘A’, ‘A’, ‘B’, ‘F’, ‘f’, ‘fi’, ‘˜’. Fonts are
collections of glyphs. Fontinst refers to glyphs by name.

Slot This is jargon for ‘a numbered position in a font’. (What is important is
the number, and that this number refers to a position in a font, but which
font is usually irrelevant.)

Character The modern definition is that a character is the smallest component
of written language that has semantic value. Speaking of a character, one
refers to the abstract meaning and/or shape, rather than a specific shape.

Since fonts have often contained a unique glyph for each character and
each usable glyph has been assigned a particular slot, it is not uncommon
(in particular in older terminology) to see the three mixed up, usually so
that one says ‘character’ where one of the other two would have been
more correct. The TEX-related font file formats is no exception, as you
may see examples of elsewhere in this document.

7

Encoding There are really two different encoding concepts that one encoun-
ters when using fontinst. The differences are not great, and an encoding
of one kind often corresponds to an encoding of the other kind, but it is
not merely a matter of translation.

A LATEX encoding is a mapping from characters (or more formally LATEX
Internal Character Representations) to slots. In the OT1 encoding, ‘ø’ (or
more technically ‘\o’) maps to slot 28, whereas in the T1 encoding it maps
to slot 248. This kind of encoding affects what TEX is doing; dvi drivers
are not involved.

A font encoding (or encoding vector) is a mapping from slots to glyph
names. This is the kind of encoding that fontinst primarily deals with,
and also the kind of encoding that dvi drivers make use of. ot1.etx as-
sociates slot 28 with ‘oslash’, whereas t1.etx and EC.enc (one of several
to T1 corresponding encoding vectors that come with dvips) associates
slot 28 with ‘fi’.

LATEX encodings occur in fontinst only as names and only in relation to
fd files. It is unlikely that you will need to create one of your own. The
mappings defined by font encodings are on the other hand of great im-
portance and etx files are used to direct the generation of virtual fonts.
Advanced fontinst users may well find that they need to create new font
encodings to achieve their goals.

The thing is that the average PostScript font comes in Adobe standard encod-
ing, which, for example, has the glyph dotless i ‘ı’ in slot 245. But TEX T1 encod-
ing expects the glyph o dieresis ‘ö’ in that slot, and wants dotless i in slot 25. So
if you tried to use a raw PostScript font with TEX, any time you tried to get a ‘ö’,
you’d get a ‘ı’; and every time you tried to get a ‘ı’, you’d get a blank, because
Adobe standard encoding says that slot 25 is empty. The process of dealing
with this problem is called ‘re-encoding’, and is what fontinst helps with.

This might not make much sense yet; the best thing to do is relax. There’s a lot
of things that need to be dealt with when you’re setting up LATEX to use a new
font, so you can expect to be a bit confused until you’ve done it a few times.

1.3 What do you do with fontinst?

If you’re using fontinst, the usual steps you need to take to use an ordinary
PostScript text font with LATEX are these:

1. Give the afm files an appropriate name.

2. Use fontinst to produce an 8r encoded pl files from these afm files.

3. Use fontinst to create T1 and OT1 encoded pl and vpl files from the 8r
encoded pl files (this procedure will also create suitable fd files).

4. Use pltotf to turn each pl file into a tfm file.

5. Use vptovf to turn each vpl file into a pair of vf and tfm files.

6. Move the tfm, vf, and fd files into the appropriate directories so LATEX
can see them.

8

7. Tell your DVI driver about the new font (edit dvips’s psfonts.map file, or
OzTEX’s Default configuration file.

8. Perhaps write a package file to make selecting the new font a little easier.

9. Test it.

2 Fontmaking commands

There are three main types of files that you may write to control what font-
inst does: command files (usually with suffix .tex), encoding definition files (suffix
.etx), and metric files (suffix .mtx). Command files directly tell fontinst to do
things, whereas the purpose of an encoding or metric file is more to store data,
but all three file types are technically sequences of TEX commands that fontinst
execute when reading the file. Normal TEX syntax rules apply in all three file
types, although a few commands may behave in unfamiliar ways.

Within the command file category, it is possible to discern certain subcategor-
ies. Most command files are written for one particular task, but some are com-
mon pieces that have been factored out from larger command files and are
merely meant to be \input where appropriate. (csc2x.tex in the fontinst dis-
tribution is an example of this latter kind.) One may also distinguish between
command files that are made for use with fontinst.sty command definitions
and command files that are made for use with finstmsc.sty command defin-
itions. This section documents the commands that are particular to the former
category, whereas the next section documents commands that are particular to
the latter.

2.1 Install commands

The core fontmaking takes place within a block of “install commands”. (This
name is a bit unfortunate since nothing is actually installed; rather some files
that need to be installed are generated.) Such blocks have the structure

\installfonts

〈install commands〉
\endinstallfonts

The 〈install commands〉 describe the fonts, glyphs and encodings used to build
fonts, whereas the purpose of the delimiting \installfonts and \endinstallfonts
are rather to organise the writing of fd files.

\installfonts

\endinstallfonts

At \installfonts, fontinst’s internal list of fd files to generate are cleared. At
\endinstallfonts, fd files are written for those combinations of encoding and
font family that appeared in the 〈install commands〉.

9

Note for hackers. \installfonts, \endinstallfonts, and the individual install com-
mands between them also cooperate in a rather complicated grouping scheme to cache
glyphbases. This may interfere with non-fontinst commands in the 〈install commands〉. If
for example an assignment to some \tracing. . . parameter here does not seem to have
any effect, try making the assignment \global.

The most important 〈install command〉 is

\installfont{〈font-name〉}{〈metrics-list〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This produces a TEX virtual font called 〈font-name〉. The 〈metrics-list〉 and the
〈etx-list〉 determine this font, whereas the other arguments specify how the fd
file will declare it for LATEX. The 〈encoding〉, 〈family〉, 〈series〉, and 〈shape〉 are
precisely the NFSS parameters. The 〈size〉 is either a shorthand declared by
\declaresize (see below), or is an fd size specification.

Like most fontinst lists, the elements in the 〈metrics-list〉 and 〈etx-list〉 are sep-
arated by commas (so-called comma-separated lists). In their simplest form,
the elements of these lists are file names (minus suffixes): mtx files in the
〈metrics-list〉 and etx files in the 〈etx-list〉. First the mtx files are processed to
build up a glyphbase, i.e., store definitions of glyphs and their metric proper-
ties in memory, and then the etx files are processed (several times) to select a
set of glyphs and write the corresponding information to a vpl file.

For example, to install the T1-encoded Times Roman font (using t1.etx and
latin.mtx), you say:

\installfont{ptmr8t}{ptmr8r,latin}{t1}

{T1}{ptm}{m}{n}{}

To install a OT1-encoded Times Roman font with a scaled version of Symbol
for the Greek letters, you say:

\installfont{zptmrsy}{ptmr8r,psyr scaled 1100,latin}{ot1}

{OT1}{ptm}{m}{n}{}

As the second example indicates, there is more to the list items than just file
names. In the case of an metrics list item, the syntax permits the two forms

〈filename〉〈optional modifiers〉
\metrics 〈metric commands〉

where an 〈optional modifier〉 is one of New feature

v1.923

 scaled 〈rawscale factor〉
 suffix 〈glyph name suffix〉
 encoding 〈etx〉
 option 〈string〉

A list item may contain several such modifiers, but most commonly it does not
contain any. The 〈metric commands〉 are explicit metric commands, as described

10

in Section 6; this latter feature is meant for minor adjustments that you don’t
want to bother creating a separate mtx file for.

The 〈filename〉 above primarily refers to a file 〈filename〉.mtx, but that need not
always exist before executing the above command. If there exists a pl, afm,
or vpl file with the right name then that is first converted to a corresponding
mtx file. However, a special case occurs if there is an encoding modifier: this
forces conversion of a pl or vpl file even if an mtx file exists, and also forces
using the specified etx file when assigning glyph names to the slots of that
file. Normally the choice of etx file for such conversions to mtx is based on
\declareencoding declarations.

The scaled modifier sets the rawscale variable for the processing of that file.
This has the effect of scaling all raw glyphs from that file to 〈rawscale factor〉 per
milles of their previous size. The suffixmodified causes the 〈glyph name suffix〉
to be implicitly appended to all glyphs defined by this file. The option mod-
ifier adds the 〈string〉 to the list of “options” for this file. The \ifoption com-
mand can be used in the file to test whether a particular string has been sup-
plied as an option.

Note for hackers. In general, fontinst commands process comma-separated list ar-
guments by first splitting at commas and then fully expanding each item, but this
〈metrics-list〉 argument is an exception. This is first fully expanded (\edef) and then
split into items. The difference is that a macro used in this 〈metrics-list〉 argument can
expand to several list items, whereas a macro used in an ordinary comma-separated list
argument can only expand to (part of) a single list item.

The \metrics list items do however constitute an exception within this exception.
These list items are in their entirety protected from the initial full expansion, so you
don’t have to worry about peculiar fragility errors there.

The elements in the 〈etx-list〉 have fewer variants, but there is still a general
syntax

〈filename〉〈optional modifiers〉

The only 〈optional modifier〉 permitted is however

 mtxasetx

and that is probably only relevant for use with \installrawfont (see below).

\installfontas{〈font-name〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This install command adds an fd entry for the 〈font-name〉, but it doesn’t New feature

v1.912actually generate that font. Usually that font was generated by a previous
\installfont, and this is used to create additional entries for the font.

11

\installrawfont{〈font-name〉}{〈metrics-list〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

This is similar to \installfont except that it produces a TEX raw font as pl
file rather than a virtual font. Often a pl font with the specified name will
already exist when this command is called, and that will then be overwritten.
These two pl files will typically be somewhat different. The normal reason for
using this command is that one wishes to “refine” the metrics of a font that was
generated by transformation commands.

For example, to install an 8r-encoded Times Roman raw font (using 8r.etx
and 8r.mtx), you say:

\installrawfont{ptmr8r}{ptmr8r,8r}{8r}

{8r}{ptm}{m}{n}{}

The effect of a

〈filename〉 mtxasetx

in the 〈etx-list〉 is not that 〈filename〉.etx is read, but that 〈filename〉.mtx is read. New feature

v1.923The interpretation of the commands in this file is however not the custom-
ary, and almost the only thing paid attention to is the correspondence between
glyph names and slot numbers that is provided by the \setrawglyph and
\setscaledrawglyph commands; this correspondence is treated as if it was
given by \setslot . . . \endsetslot commands in an etx file. This is however
only guaranteed to work with transformable metric files.

The purpose of this feature is to simplify installation of fonts with very special
encodings, such as “Dingbat” or “Pi” fonts. Instead of creating an etx file,
which would probably only be useful with that particular font, one can make
use of the fact that the interesting information is anyway available in the mtx
file. To install Zapf Dingbats in their default encoding, one can thus say

\installrawfont{pzdr}{pzdr}{pzdr mtxasetx}

{U}{pzd}{m}{n}{}

Unlike the case with \installfont, which actually creates a real (although
virtual) font, \installrawfont can only create the metrics for a font. The dvi
driver will require some other kind of implementation of this font, usually an
entry in some map file (e.g. psfonts.map, in the case of dvips) that links the
TEX font name to e.g. a PostScript font name and file. (Many dvi drivers are
configured in such a way that they, without such a map file entry, will call
Metafont with the font name and thereby raise a sequence of error messages
about a .mf that doesn’t exist. These results are often rather confusing.)

\installfamily{〈encoding〉}{〈family〉}{〈fd-commands〉}

This tells fontinst to write an fd file for the given combination of encoding and
family, and clears the internal list of entries to put in that file. \installfamily
commands usually come first in each block of 〈install commands〉.

12

For example, to produces a LATEX family with the Cork-encoded Times family,
you say:

\installfamily{T1}{ptm}{}

The 〈fd-commands〉 are executed every time a font in that family is loaded, for
example to stop the Courier font from being hyphenated you say:

\installfamily{T1}{pcr}{\hyphenchar\font=-1}

In more recent versions of fontinst, the \installfamily command is only ne-
cessary if you want the 〈fd-commands〉 argument to be nonempty, but it doesn’t
hurt to make it explicit.

2.2 Transformation commands

\transformfont{〈font-name〉}{〈transformed font〉}

This makes a raw transformed font, for example expanded, slanted, condensed
or re-encoded. It is the responsibility of the device driver to implement this transform.
Each \transformfont command writes out an mtx file and a raw pl file for
〈font-name〉.

A 〈transformed font〉 is given by the following commands:

\fromafm{〈afm〉}
\fromany{〈whatever〉}
\frompl{〈pl〉}
\fromplgivenetx{〈pl〉}{〈etx〉}
\frommtx{〈mtx〉}

This reads the metrics of a font which is about to be transformed from an ex-
ternal file. \fromafm, \frompl, and \fromplgivenetx write out an mtx file
corresponding to the afm or pl file. In addition, \formafm also writes out
a raw pl file, containing just the glyph metrics but no kerning information.
\fromplgivenetx permits specifying which encoding file to use when asso-
ciating glyph names to slots, whereas \frompl tries to guess this from the
CODINGSCHEME property of the pl file. \fromany looks for a file in any of the
formats (in the order mtx, pl, afm) and behaves as the first \from. . . for which
it found a file.

A 〈transformed font〉may also be one of the following:

\scalefont{〈integer expression〉}{〈transformed font〉}
\xscalefont{〈integer expression〉}{〈transformed font〉}
\yscalefont{〈integer expression〉}{〈transformed font〉}
\slantfont{〈integer expression〉}{〈transformed font〉}

This applies a geometric transformation to the font metrics of 〈transformed font〉.
The scale factor or slant factor are given in 1000 units to the design size. Typical
examples are 167 for slanted fonts or 850 for condensed fonts.

13

The final case of a 〈transformed font〉 is:

\reencodefont{〈etx〉}{〈transformed font〉}

This rearranges the encoding vector of 〈transformed font〉 to match the encoding
given by the etx file.

For example, to create an oblique, 8r-encoded version of Adobe Times called
ptmro8r you say:

\transformfont{ptmro8r}{\reencodefont{8r}{\slantfont{167}{\fromafm{ptmr8a}}}}

This will create ptmr8a.mtx, ptmr8a.pl, ptmro8r.mtx and ptmro8r.pl, which
can then be used as raw fonts in \installfont commands. The same trans-
formation can also be achieved in two steps:

\transformfont{ptmr8r}{\reencodefont{8r}{\fromafm{ptmr8a}}}

\transformfont{ptmro8r}{\slantfont{167}{\frommtx{ptmr8r}}}

This will create ptmr8a.mtx, ptmr8a.pl, ptmr8r.mtx, ptmr8r.pl, ptmro8r.mtx
and ptmro8r.pl.

You will have to inform your device driver about the transformed font, using
the syntax appropriate for that driver. For example, in dvips you add a line to
psfonts.map:

ptmro8r Times-Roman ".167 SlantFont TeXBase1Encoding ReEncodeFont" <8r.enc

2.3 Miscellaneous settings

\substitutesilent{〈to〉}{〈from〉}
\substitutenoisy{〈to〉}{〈from〉}

This declares a LATEX font substitution, that the series or shape 〈to〉 should
be substituted if necessary by the series or shape 〈from〉. \substitutesilent
means that when the font substitution is made, no warning will given.

\substitutenoisy is the same as \substitutesilent, but gives a warning
when the substitution is made by LATEX.

For example, to say that the series bx can be replaced by the series b, you say:

\substitutesilent{bx}{b}

To say that the shape ui can be replaced by the shape i, you say:

\substitutenoisy{ui}{it}

The following weight substitutions are standard:

14

\substitutesilent{bx}{b}

\substitutesilent{b}{bx}

\substitutesilent{b}{sb}

\substitutesilent{b}{db}

\substitutesilent{m}{mb}

\substitutesilent{m}{l}

The following shape substitutions are standard:

\substitutenoisy{ui}{it}

\substitutesilent{it}{sl}

\substitutesilent{sl}{it}

The \installfontas command should be considered as an alternative to using
font substitution, as it gives much finer control over what fd entries will be
made.

\declaresize{〈size〉}{〈fd-size-range〉}

This declares a new size, and gives the fd commands for it. For example,
fontinst.sty declares the following sizes:

\declaresize{}{<->}

\declaresize{5}{<5>}

\declaresize{6}{<6>}

\declaresize{7}{<7>}

\declaresize{8}{<8>}

\declaresize{9}{<9>}

\declaresize{10}{<10>}

\declaresize{11}{<10.95>}

\declaresize{12}{<12>}

\declaresize{14}{<14.4>}

\declaresize{17}{<17.28>}

\declaresize{20}{<20.74>}

\declaresize{25}{<24.88>}

\declareencoding{〈string〉}{〈etx〉}

This declares which etx file corresponds to which encoding string. For ex-
ample, fontinst.sty declares the following encoding strings:

\declareencoding{TEX TEXT}{ot1}

\declareencoding{TEX TEXT WITHOUT F-LIGATURES}{ot1}

\declareencoding{TEX TYPEWRITER TEXT}{ot1tt}

\declareencoding{TEX MATH ITALIC}{oml}

\declareencoding{TEX MATH SYMBOLS}{oms}

\declareencoding{TEX MATH EXTENSION}{omx}

\declareencoding{EXTENDED TEX FONT ENCODING - LATIN}{t1}

\declareencoding{TEX TEXT COMPANION SYMBOLS 1---TS1}{ts1}

\declareencoding{TEXBASE1ENCODING}{8r}

\declareencoding{TEX TYPEWRITER AND WINDOWS ANSI}{8y}

15

2.4 Other

The following commands belong to this section, but there is currently no de-
scription of them here.

\afmtomtx{〈afmfile〉}{〈mtxfile〉}

\endrecordtransforms

\endreglyphfonts

\etxtopl{〈encoding list〉}{〈plfile〉}

\etxtovpl{〈encoding list〉}{〈vplfile〉}

\fakenarrow{〈width factor〉}

\generalpltomtx{〈plfile〉}{〈mtxfile〉}{〈plsuffix〉}{〈opt-enc〉}

\killglyph{〈glyph〉}

\killglyphweighted{〈glyph〉}{〈weight〉}

\latinfamily{〈family〉}{〈commands〉}

\mtxtomtx{〈source MTX〉}{〈destination MTX〉}

\mtxtopl{〈mtxfile〉}{〈plfile〉}

\NOFILES

\offmtxcommand{〈command〉}

\onmtxcommand{〈command〉}

\recordtransforms{〈filename〉}

\reglyphfont{〈destination font〉}{〈source font〉}

\reglyphfonts

\renameglyph{〈to〉}{〈from〉}

\renameglyphweighted{〈to〉}{〈from〉}{〈weight〉}

3 Mapmaking commands

The following commands belong to this section, but there is currently no de-
scription of them here. Note that several of them have a different syntax and
meaning than they do in fontmaking command files.

\adddriver{〈driver name〉}{〈fragment file name〉}

\AssumeAMSBSYY

\AssumeBaKoMa

\AssumeLWFN

\AssumeMetafont

16

\debugvalue{〈name〉}

\declarepsencoding{〈etx〉}{〈postscript name〉}{〈action〉}

\donedrivers

\download{〈file〉}

\enctoetx{〈encfile〉}{〈etxfile〉}

\etxtoenc{〈etxfile〉}{〈encfile〉}

\fromafm{〈AFM name〉}{〈PS name〉}

\frompl{〈PL name〉}

\frommtx{〈MTX name〉}

\fromvpl

\makemapentry{〈TEX font name〉}

\reencodefont{〈etx〉}

\reglyphfont

\specifypsfont{〈PS font name〉}{〈actions〉}

\storemapdata{〈TEX font name〉}{〈source〉}{〈transforms〉}

\transformfont{〈x-scale〉}{〈slant-scale〉}

4 General commands

This section describes commands and mechanisms that are the same in all file
types. Commands that are particular for one type of file are described in sub-
sequent sections.

4.1 Variables

Many (but not all) of the activities fontinst perform can be understood as either
“setting variables” or “formatting and writing to file data stored in some vari-
able”. The accessing of variables is an important aspect of how fontinstworks.

Variables come in different types and variables of different types live in differ-
ent namespaces; \int{foo}, \str{foo}, and \dim{foo} refer to three different
variables which are all named foo. Variables are either set or not set. Unless
the contrary is stated explicitly, variables default to not being set. It is an error
to access the value of a variable that has not been set. Fontinst variable assign-
ments are as a rule local, i.e., will be undone when the enclosing TEX group is
ended. Most command file commands that cause files to be read will begin a
group before reading the file(s) and end the group at some point after having
read them.

Taking string variables as an example, there are three commands for changing
a string variable:

17

\setstr{〈name〉}{〈string expression〉}
\resetstr{〈name〉}{〈string expression〉}
\unsetstr{〈name〉}

The \resetstr command unconditionally sets the string variable 〈name〉 to the
full expansion of the 〈string expression〉. The \unsetstr command uncondition-
ally renders the string variable 〈name〉 unset. If the the string variable 〈name〉 is
currently unset then the \setstr command will set it to the full expansion of
the 〈string expression〉, but if it already is set then \setstr does nothing.

This pattern with three commands, one \set. . . which only sets unset vari-
ables, one \reset. . . which sets variables regardless of whether they have been
set or not, and one \unset. . . which unsets variables is recurring in fontinst.
Variables are most commonly set using some \set. . . command; this has the
effect that the first command to try to set a variable is the one which actually
sets it.

4.2 General commands

The following general commands can be used anywhere:

\needsfontinstversion{〈version〉}

This issues a warning if the current version of the fontinst package is less than
〈version〉.

\setdim{〈dim〉}{〈dimension〉}
\setint{〈int〉}{〈integer expression〉}
\setstr{〈str〉}{〈string〉}

If the dimension variable 〈dim〉 is currently undefined, it is defined to be the
current value of 〈dimension〉.

If the integer variable 〈int〉 is currently undefined, it is defined to be the current
value of 〈integer expression〉.

If the string variable 〈str〉 is currently undefined, it is defined to be the current
value of 〈string〉.

\setcommand{〈command〉}〈parameter text〉{〈replacement text〉}

If the command 〈command〉 is currently undefined, it is defined to be the
〈definition〉. This uses the same syntax for parameters as the TEX \def com-
mand.

No. parameters 〈parameter text〉
0 (empty)
1 #1

2 #1#2

3 #1#2#3

and so on.

18

\resetdim{〈dim〉}{〈dimension〉}
\resetint{〈int〉}{〈integer expression〉}
\resetstr{〈str〉}{〈string〉}

The dimension variable 〈dim〉 is defined to be the current value of 〈dimension〉.

The integer variable 〈int〉 is defined to be the current value of 〈integer expression〉.

The string variable 〈str〉 is defined to be the current value of 〈string〉.

\resetcommand{〈command〉}〈parameter text〉{〈replacement text〉}

The command 〈command〉 is defined to be the 〈definition〉, regardless of whether
it was already defined or not. This is a synonym for the TEX \def command.

\ifisint{〈int〉}\then
\ifisdim{〈dim〉}\then
\ifisstr{〈str〉}\then
\ifisglyph{〈glyph〉}\then
\ifiscommand{〈command〉}\then

Expands out to \iftrue if the integer variable 〈int〉 is defined, and \iffalse
otherwise.

Expands out to \iftrue if the dimension variable 〈dim〉 is defined, and \iffalse
otherwise.

Expands out to \iftrue if the string variable 〈str〉 is defined, and \iffalse
otherwise.

Expands out to \iftrue if the glyph variable 〈glyph〉 is defined, and \iffalse
otherwise.

Expands out to \iftrue if the command 〈command〉 is defined, and \iffalse
otherwise.

\unsetdim{〈dim〉}
\unsetint{〈int〉}
\unsetstr{〈str〉}
\unsetcommand{〈command〉}

Makes 〈dim〉, 〈int〉, 〈str〉, or 〈command〉 an undefined dimension, integer, string
or command.

4.3 Integer expressions

The integer expressions provide a user-friendly syntax for TEX arithmetic. They
are used to manipulate any integers, including glyph dimensions, which are
given in afm units, that is 1000 to the design size. TEX pl fonts have their di-
mensions converted to afm units automatically.

The integer expressions are:

19

〈number〉

Returns the value of a TEX 〈number〉 (as explained in The TEXbook).

\int{〈int〉}

Returns the value of the integer variable 〈int〉.

\width{〈glyph〉}
\height{〈glyph〉}
\depth{〈glyph〉}
\italic{〈glyph〉}

Returns the width, height, depth, or italic correction of the glyph variable
〈glyph〉.

\kerning{〈left〉}{〈right〉}

Returns the kerning between the 〈left〉 and 〈right〉 glyph variables.

\neg{〈integer expression〉}
\add{〈integer expression〉}{〈integer expression〉}
\sub{〈integer expression〉}{〈integer expression〉}
\max{〈integer expression〉}{〈integer expression〉}
\min{〈integer expression〉}{〈integer expression〉}
\mul{〈integer expression〉}{〈integer expression〉}
\div{〈integer expression〉}{〈integer expression〉}
\scale{〈integer expression〉}{〈integer expression〉}
\half{〈integer expression〉}
\otherhalf{〈integer expression〉}

\neg returns the negation of the 〈integer expression〉.

\ad returns the sum of the two 〈integer expression〉s.

\sub returns the first 〈integer expression〉minus the second.

\mul returns the product of the two 〈integer expression〉s.

\div returns the first 〈integer expression〉 divided by the second.

\scale returns the first 〈integer expression〉 times the second, divided by 1000.

4.4 Other

The following commands belong to this section, but there is currently no de-
scription of them here.

\begincomment

\bye

\Else

20

\endcomment

\endfor(〈name〉)

\eTeX{〈version number〉}

\Fi

\fontinstcc

\fontinsterror{〈subsystem〉}{〈error〉}{〈help〉}

\fontinstinfo{〈subsystem〉}{〈info〉}

\fontinstwarning{〈subsystem〉}{〈warning〉}

\fontinstwarningnoline{〈subsystem〉}{〈warning〉}

\for(〈name〉){〈start〉}{〈stop〉}{〈step〉}

\foreach(〈name〉){〈csep-list〉}

\ifareglyphs{〈glyph list〉}\then

\ifiskern{〈glyph1〉}{〈glyph2〉}\then

\ifnumber{〈integer expression〉}〈rel〉{〈integer expression〉}\then

\ifoption{〈string〉}\then

\input 〈file name〉

\messagebreak

\needsTeXextension{〈extension tests〉}{〈who〉}

\normalcc

\offcommand{〈command〉}

\oncommand{〈command〉}

\pdfTeX{〈version number〉}{〈revision〉}

\strint{〈int〉}

5 Encoding files

An encoding file (or .etx file) is a TEX document consisting of:

\relax

ignored material
\encoding

〈encoding commands〉
\endencoding

ignored material

This describes the encoding of a font, using the 〈encoding commands〉.

Since the encoding file ignores any material between \relax and \encoding,
an encoding file can also be a LATEX document.

See also the descriptions in encspecs.tex.

21

5.1 Encoding commands

The 〈encoding commands〉 are:

\nextslot{〈integer expression〉}

Sets the number of the next slot. If there is no \nextslot command, the number
is the successor of the previous slot.

\skipslots{〈integer expressions〉}

Advances the number of the next slot. New feature

v1.8

\setslot{〈glyph〉}
〈slot commands〉
\endsetslot

Sets the slot of the 〈glyph〉. The 〈slot commands〉 describe the glyph, and give its
usage in TEX.

\inputetx{〈file〉}

Inputs the 〈encoding commands〉 of 〈file〉.etx.

5.2 Slot commands

The 〈slot commands〉 are:

\comment{〈text〉}

A comment, which is ignored by fontinst.

\label{〈text〉}

A reference label. Ignored by fontinst.

\ligature{〈ligtype〉}{〈glyph〉}{〈glyph〉}
\Ligature{〈ligtype〉}{〈glyph〉}{〈glyph〉}
\oddligature{〈note〉}{〈ligtype〉}{〈glyph〉}{〈glyph〉}

Specifies a ligature of type 〈ligtype〉 from the current glyph followed by the first
glyph to the second glyph. The 〈ligtype〉s are as in vpl files (see the vptovfWeb
source for more details). For example:

\setslot{ff}

\ligature{LIG}{i}{ffi}

\ligature{LIG}{l}{ffl}

22

\comment{The ‘ff’ ligature.}

\endsetslot

\makerightboundary{〈glyph〉}

\Unicode{〈code point〉}{〈name〉}

\usedas{〈type〉}{〈control sequence〉}

Sets the TEX control sequence for this slot, with the type taken from: New feature

Obsolete?!

char accent mathord

mathbin mathrel mathopen

mathclose mathpunct mathvariable

mathaccent mathdelim

\nextlarger{〈glyph〉}

Sets a NEXTLARGER entry from the current slot to the 〈glyph〉.

\varchar

〈varchar commands〉
\endvarchar

Sets a VARCHAR entry for the current slot, using the 〈varchar commands〉. The
〈varchar commands〉 are:

\vartop{〈glyph〉}
\varmid{〈glyph〉}
\varbot{〈glyph〉}
\varrep{〈glyph〉}

Sets the top, middle, bottom, or repeated 〈glyph〉 of the VARCHAR.

5.3 Other

The following commands belong to this section, but there is currently no de-
scription of them here.

\endsetleftboundary

\ifdirect

\ifisinslot{〈glyph〉}{〈slot〉}\then

\resetslotcomment{〈text〉}

\setfontdimen{〈fontdimen no.〉}{〈integer variable〉}

23

\setleftboundary{〈glyph〉}

\setslotcomment{〈text〉}

\useexamplefont{〈font〉}

\unsetslotcomment

6 Metric files

A metric file (or .mtx file) is a TEX document consisting of:

\relax

ignored material
\metrics

〈metric commands〉
\endmetrics

ignored material

This describes the glyphs in a font, using the 〈metric commands〉.

Metric files are usually either hand-crafted or transformable. The transformable
metric files typically encode the metrics of one particular font and are automat-
ically generated. Hand-crafted metric files (such as latin.mtx) typically do not
contain much explicit metric data, instead the code there makes use of metrics
previously specified by other files to construct new glyphs or adjust metrics to
meet special conditions. Whereas transformable metric files tend to be mere
lists of metric data, the hand-crafted metric files are more like programs.

6.1 Metric commands

The 〈metric commands〉 are:

\setglyph{〈name〉}
〈glyph commands〉
\endsetglyph

If the glyph called 〈name〉 is undefined, it is built using the 〈glyph commands〉
given below, for example:

\setglyph{IJ}

\glyph{I}{1000}

\glyph{J}{1000}

\endsetglyph

\setglyph{Asmall}

\glyph{A}{850}

\endsetglyph

24

\resetglyph{〈name〉}
〈glyph commands〉
\endsetglyph

Gives the definition of the glyph called 〈name〉 using the 〈glyph commands〉.

\unsetglyph{〈name〉}

Makes the glyph called 〈name〉 undefined.

\setrawglyph{〈name〉}{〈font〉}{〈dimen〉}{〈integer〉}
{〈integer〉}{〈integer〉}{〈integer〉}{〈integer〉}
\setscaledrawglyph{〈name〉}{〈font〉}{〈dimen〉}{〈integer〉}{〈integer〉}
{〈integer〉}{〈integer〉}{〈integer〉}{〈integer〉}

This sets a glyph called 〈name〉 from the 〈font〉, which has the given design size,
slot, width, height, depth and italic correction. If the integer variable rawscale
is set, the glyph will be scaled by that amount. This command will usually be
generated automatically from an afm or pl file.

\setnotglyph{〈name〉}{〈font〉}{〈dimen〉}
{〈integer〉}{〈integer〉}{〈integer〉}{〈integer〉}
\setscalednotglyph{〈name〉}{〈font〉}{〈dimen〉}{〈integer〉}{〈integer〉}
{〈integer〉}{〈integer〉}{〈integer〉}{〈integer〉}

This sets a glyph called 〈name〉-not, which is present in the 〈font〉, but is not in
the default encoding. It takes the same arguments as \setrawglyph, although
the slot will normally be −1. This command will usually be generated auto-
matically from an afm file.

\setkern{〈glyph〉}{〈glyph〉}{〈integer expression〉}
\resetkern{〈glyph〉}{〈glyph〉}{〈integer expression〉}

\setkern sets a kern between the two glyphs, scaled by the current value of
rawscale, unless such a kern already has been set.

\setleftkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}
\setrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}

Sets the amount by which the first glyph should mimic how the second glyph
kerns on the left or right, for example:

\setleftkerning{Asmall}{A}{850}

\setrightkerning{Asmall}{A}{850}

\setleftkerning{IJ}{I}{1000}

\setrightkerning{IJ}{J}{1000}

Sets the amount by which the first glyph should mimic how the second glyph
kerns on the right, for example:

25

\setleftrightkerning{〈glyph〉}{〈glyph〉}{〈integer expression〉}

Sets the amount by which the first glyph should mimic how the second glyph New feature

v1.8kerns on both sides, for example:

\setleftrightkerning{Asmall}{A}{850}

\noleftkerning{〈glyph〉}
\norightkerning{〈glyph〉}
\noleftrightkerning{〈glyph〉}

Removes all kerning on the specified side(s) of the 〈glyph〉. New feature

v1.9

\inputmtx{〈file〉}

Inputs the 〈metric commands〉 of 〈file〉.mtx.

6.2 Glyph commands

The 〈glyph commands〉 are:

\glyph{〈glyph〉}{〈integer expression〉}

Sets the named glyph 〈glyph〉 at the given scale, with 1000 as the natural size.
This:

• Advances the current glyph width.

• Sets the current glyph height to be at least the height of the named glyph,
adjusted for the current vertical offset.

• Sets the current glyph depth to be at least the depth of the named glyph,
adjusted for the current vertical offset.

• Sets the current glyph italic correction to be the same as the set glyph.

The named glyph must have already been defined, otherwise an error will oc-
cur. For example:

\setglyph{fi}

\glyph{f}{1000}

\glyph{i}{1000}

\endsetglyph

\glyphrule{〈integer expression〉}{〈integer expression〉}

Sets a rule of the given width and height, for example:

\setglyph{underline}

\glyphrule{333}{40}

\endsetglyph

26

\glyphspecial{〈text〉}

Sets a driver-dependent \special, for example:

\setglyph{crest}

\glyphspecial{Filename: crest.eps}

\endsetglyph

\glyphwarning{〈text〉}

Sets a warning \special, and produces a warning message each time the glyph
is used, for example:

\setglyph{missingglyph}

\glyphrule{500}{500}

\glyphwarning{Missing glyph ‘missingglyph’}

\endsetglyph

\movert{〈integer expression〉}

Moves right by the given amount, and advances the current glyph width, for
example:

\setglyph{Asmall}

\movert{50}

\glyph{A}{700}

\movert{50}

\endsetglyph

\moveup{〈integer expression〉}

Moves up by the given amount, and advances the current vertical offset. Each
glyph should always end at vertical offset zero, for example:

\setglyph{onehalf}

\moveup{500}

\glyph{one}{700}

\moveup{-500}

\glyph{slash}{1000}

\moveup{-200}

\glyph{two}{700}

\moveup{200}

\endsetglyph

\push

〈glyph commands〉
\pop

Performs the 〈glyph commands〉without adjusting the current position or glyph
width, for example:

27

\setglyph{aacute}

\push

\movert{\div{\sub{\width{a}}{\width{acute}}}{2}}

\glyph{acute}{1000}

\pop

\glyph{a}{1000}

\endsetglyph

\glyphpcc{〈glyph〉}{〈integer expression〉}{〈integer expression〉}

This is generated from PCC instructions in an afm file, and is syntactic sugar for:

\push

\movert{〈first integer expression〉}

\moveup{〈second integer expression〉}

\glyph{〈glyph〉}{1000}

\pop

\resetwidth{〈integer expression〉}
\resetheight{〈integer expression〉}
\resetdepth{〈integer expression〉}
\resetitalic{〈integer expression〉}

Sets the width, height, depth, or italic correction of the current glyph.

\samesize{〈glyph〉}

Sets the dimensions of the current glyph to be the same as 〈glyph〉.

Inside the definition of 〈glyph〉, you can use expressions such as \width{〈glyph〉},
which will refer to the glyph defined so far. For example, a display summation
sign can be defined to be a text summation

∑
scaled 120% with 0.5 pt extra

height and depth using:

\setglyph{summationdisplay}

\glyph{summationtext}{1200}

\resetheight{\add{\height{summationdisplay}}{50}}

\resetdepth{\add{\depth{summationdisplay}}{50}}

\endsetglyph

Within a \resetglyph, these expressions will refer to the previous definition of
the glyph. For example, you can add sidebearings to the letter ‘A’ with:

\resetglyph{A}

\movert{25}

\glyph{A}{1000}

\movert{25}

\endresetglyph

28

6.3 Other

The following commands belong to this section, but there is currently no de-
scription of them here.

\aliased{〈font’s name〉}{〈alias name〉}

\ProvidesMtxPackage{〈package name〉}

\unsetkerns{〈left glyph list〉}{〈right glyph list〉}

\usemtxpackage{〈package list〉}

7 fontdoc commands

\macroparameter{〈digit〉}

\plaindiv

\plainint

\plainmax

\plainmin

\showbranches

\slotexample

\textunicode{〈code point〉}{〈name〉}

8 fontinst variables

The following is a list of the fontinst variables that are accessible for the user
through the \set. . . , \reset. . . , \unset. . . , etc. commands. You may of course
set or use other variables in the MTX and ETX files you write yourself, as does
for example the standard MTX file latin.mtx, but all variables that fontinst
commands implicitly use or set are listed below.

acccapheight (integer denoting length)
Description The height of accented full capitals.
Set by MTX files.
Used by Some ETX and MTX files.

address (string)
Description Snailmail address put in BibTEX-style file header of auto-

matically generated ENC files. No address field is written unless
the address string is set. Quotes are not automatically inserted
around the address string.

Set by ETX files.
Used by The ETX-to-ENC converter.

afm-name (string)
Description Name of source font. Internal variable.

29

Set by \from. . . commands.
Used by The \transformfont, \installfont, \installrawfont, and

\reglyphfont commands.
ascender (integer denoting length)

Description The ascender height of the font.
Set by MTX files. The AFM-to-MTX converter usually writes \setint

commands for this integer.
Used by Some MTX and ETX files.

author (string)
Description Author name(s) put in BibTEX-style file header of automat-

ically generated ENC files. See the macro \ref_to_sourcefile for
more details.

Set by ETX files.
Used by The ETX-to-ENC converter. When not set, the value "See file

〈etx name〉" is used instead.
\autoinstallfamily (command)

Description Command called by the font installation commands, as

\autoinstallfamily{〈encoding〉}{〈family〉}

when they are asked to install a font with a combination of 〈encoding〉
and 〈family〉 that has not been seen before (there was no explicit
\installfamily).

Set by Explicit commands. Defaults to calling \installfamily.
Used by Font installation commands.

axisheight (integer denoting length)
Description Math formula parameter σ22.
Set by MTX files.
Used by Some ETX and MTX files.

baselineskip (integer denoting length)
Description The font designer’s recommendation for natural length of

the TEX parameter \baselineskip.
Set by MTX files.
Used by Some ETX and MTX files.

bigopspacing1 (integer denoting length)
Description Math formula parameter ξ9.
Set by MTX files.
Used by Some ETX and MTX files.

bigopspacing2 (integer denoting length)
Description Math formula parameter ξ10.
Set by MTX files.
Used by Some ETX and MTX files.

bigopspacing3 (integer denoting length)
Description Math formula parameter ξ11.
Set by MTX files.
Used by Some ETX and MTX files.

bigopspacing4 (integer denoting length)
Description Math formula parameter ξ12.
Set by MTX files.
Used by Some ETX and MTX files.

bigopspacing5 (integer denoting length)

30

Description Math formula parameter ξ13.
Set by MTX files.
Used by Some ETX and MTX files.

capheight (integer denoting length)
Description The height of the font’s full capitals.
Set by MTX files. The AFM-to-MTX converter usually writes \setint

commands for this variable.
Used by Some MTX and ETX files.

codingscheme (string)
Description The codingscheme name.
Set by ETX files.
Used by The (V)PL writer. When not set, the value UNKNOWN is used in-

stead.
defaultrulethickness (integer denoting length)

Description Math formula parameter ξ8.
Set by MTX files.
Used by Some ETX and MTX files.

delim1 (integer denoting length)
Description Math formula parameter σ20.
Set by MTX files.
Used by Some ETX and MTX files.

delim2 (integer denoting length)
Description Math formula parameter σ21.
Set by MTX files.
Used by Some ETX and MTX files.

denom1 (integer denoting length)
Description Math formula parameter σ11.
Set by MTX files.
Used by Some ETX and MTX files.

denom2 (integer denoting length)
Description Math formula parameter σ12.
Set by MTX files.
Used by Some ETX and MTX files.

descender (integer denoting length)
Description The depth of lower case letters with descenders.
Set by MTX files.
Used by Some ETX and MTX files.

descender neg (integer denoting length)
Description The vertical position of the descender line of the font, i.e.,

the negative of the font’s descender depth.
Set by MTX files. The AFM-to-MTX converter usually writes \setint

commands for this variable.
Used by Some MTX and ETX files.

designsize (dimension)
Description The design size of the font.
Set by MTX files. The (V)PL-to-MTX converter usually writes \setdim

commands for this variable.
Used by The (V)PL writer. The design size defaults to 10 pt if this vari-

able is not set.

31

Note The value of this variable has no effect on how the font is declared
to LATEX.

designunits (dimension denoting a real number)
Description The design size of a font expressed in the design unit used

in a (V)PL file.
Set by MTX files. The (V)PL-to-MTX converter usually writes \setdim

commands for this variable.
Used by Nothing. If this variable is set, but to any value other than 1 pt,

then some metrics are most likely wrong.
digitwidth (integer denoting length)

Description The median width of the digits in the font.
Set by MTX files.
Used by Some ETX and MTX files.

email (string)
Description Email address put in BibTEX-style file header of automatic-

ally generated ENC files. See the macro \ref_to_sourcefile for
more details.

Set by ETX files.
Used by The ETX-to-ENC converter. When not set, the value "See file

〈etx name〉" is used instead.
encodingname (string)

Description The name by which the encoding in question is made known
to a Postscript interpreter.

Set by ETX files.
Used by The ETX-to-ENC converter. When not set, the value fontinst-

autoenc-〈etx name〉 is used instead.
etx-name (string)

Description Name of ETX file. Internal variable in \transformfont.
Set by The \reencodefont command.
Used by The \mtxtomtx command.

extraspace (integer denoting length)
Description The natural width of extra interword glue at the end of a

sentence.
Set by MTX files.
Used by Some ETX and MTX files.

fontdimen(n) (integer)
Description Family of semi-internal variables that store the values to use

for font dimension n. It is preferred that the newer \setfontdimen
interface is used for setting these values.

Set by ETX files.
Used by The (V)PL writer.

\iftokeep (macro)
Description \iftokeep #1 \then, where #1 will be a 〈number〉, behaves

like a switch and decides whether a glyph is kept or not while re-
glyphing.

Set by Explicit commands. Defaults to

\iftokeep #1 \then 7→ \ifnum -1<#1

Used by The \reglyphfont command.

32

interword (integer denoting length)
Description The natural width of interword glue (spaces).
Set by MTX files.
Used by Some ETX and MTX files.

italicslant (integer denoting factor)
Description The italic slant of a font.
Set by MTX files generated from AFM or (V)PL files. MTX files gener-

ated by \transformfont. Locally in the AFM-to-MTX converter for
possible use in \uprightitalcorr or \slanteditalcorr.

Used by MTX files (latin.mtx and the like). ETX files (for determining
fontdimen(1)).

killweight (integer)
Description Weight for glyphs that are killed.
Set by Explicit commands. Defaults to −10 if not set.
Used by The \killglyph command; indirectly the \reglyphfont com-

mand.
letterspacing (integer denoting length)

Description Extra width added to all glyphs of a font.
Set by ETX or MTX files.
Used by The (V)PL writer. Defaults to 0 if not set.

maxdepth (integer denoting length)
Description The maximal depth over all slots in the font.
Set by MTX files.
Used by Some ETX and MTX files.

maxdepth neg (integer denoting length)
Description The negative of the maximal depth of a glyph in the font.
Set by MTX files. The AFM-to-MTX converter usually writes \setint

commands for this variable.
Used by Some ETX and MTX files.

maxheight (integer denoting length)
Description The maximal height of a glyph in the font.
Set by MTX files. The AFM-to-MTX converter usually writes \setint

commands for this variable.
Used by Some ETX and MTX files.

minimumkern (integer denoting length)
Description Kerns whose size in absolute value is less than or equal to

this variable are ignored.
Set by Command files or MTX files.
Used by The AFM-to-MTX converter and the (V)PL file generator. When

not set, the value 0 is used instead.
monowidth (flag integer)

Description Set if this font is monowidth, unset otherwise.
Set by MTX files. The AFM-to-MTX converter writes a \setint com-

mand for this variable if the AFM specifies IsFixedPitch true.
Used by Some MTX files (latin.mtx and the like), ETX files.

num1 (integer denoting length)
Description Math formula parameter σ8.
Set by MTX files.
Used by Some ETX and MTX files.

num2 (integer denoting length)

33

Description Math formula parameter σ9.
Set by MTX files.
Used by Some ETX and MTX files.

num3 (integer denoting length)
Description Math formula parameter σ10.
Set by MTX files.
Used by Some ETX and MTX files.

quad (integer denoting length)
Description The quad width of the font, normally approximately equal

to the font size and/or the width of an ‘M’.
Set by MTX files.
Used by Some ETX and MTX files.

PSfontsuffix (string)
Description Suffix added to font names to form name of file to download

to include font.
Set by Explicit commands in mapmaking command files. Defaults to

‘.pfa’.
Used by The map file fragments writer.

rawscale (integer denoting factor)
Description Scaling factor applied to raw glyphs.
Set by The \installfont command (scaled clauses in argument #2).

Unset for metric files listed without a scaled clause.
Used by The \setrawglyph, \setnotglyph, \setscaledrawglyph, \set-

scalednotglyph, \setkern, and \resetkern commands.
renameweight (integer)

Description Weight for glyphs that are renamed.
Set by Explicit commands. Defaults to 1 if not set.
Used by The \renameglyph command; indirectly the \reglyphfont com-

mand.
requireglyphs (flag integer)

Description Set if warnings are to be generated for glyphs listed in ETX
files but not present in the glyph base.

Set by Explicit commands. By default not set.
Used by The (V)PL file generator.

rightboundary (string)
Description The name of a glyph with the property that kerns on the left

may be intended as right word boundary kerns.
Set by MTX files. The (V)PL-to-MTX converter can write \setstr com-

mands for this variable.
Used by Some MTX files.

shrinkword (integer denoting length)
Description The (finite) shrink component of interword glue.
Set by MTX files.
Used by Some ETX and MTX files.

slant-scale (integer denoting factor)
Description Factor to slant by. Internal variable in \transformfont.
Set by The \slantfont, \xscalefont, and \scalefont commands.
Used by The \mtxtomtx command.

\SlantAmount (macro expanding to an integer expression)
Description Slant factor used for faking oblique shape.

34

Set by Explicit commands. Defaults to 167.
Used by The \latinfamily command.

\slanteditalcorr (macro expanding to an integer expression)
Description The integer expression used to calculate a guess for the italic

correction of glyphs in a font with positive slant. It has the syntax

\slanteditalcorr {〈width〉}{〈left〉}{〈right〉}{〈bottom〉}{〈top〉}

where 〈width〉 is the glyph’s advance width, and the remaining ar-
guments are coordinates of sides of the glyph’s bounding box. The
italicslant integer provides the italic slant of the font.

Set by Explicit commands in fontinst command files. Defaults to

max{0, right − width}.

Used by The AFM-to-MTX converter.
stretchword (integer denoting length)

Description The (finite) stretch component of interword glue.
Set by MTX files.
Used by Some ETX and MTX files.

sub1 (integer denoting length)
Description Math formula parameter σ16.
Set by MTX files.
Used by Some ETX and MTX files.

sub2 (integer denoting length)
Description Math formula parameter σ17.
Set by MTX files.
Used by Some ETX and MTX files.

subdrop (integer denoting length)
Description Math formula parameter σ19.
Set by MTX files.
Used by Some ETX and MTX files.

sup1 (integer denoting length)
Description Math formula parameter σ13.
Set by MTX files.
Used by Some ETX and MTX files.

sup2 (integer denoting length)
Description Math formula parameter σ14.
Set by MTX files.
Used by Some ETX and MTX files.

sup3 (integer denoting length)
Description Math formula parameter σ15.
Set by MTX files.
Used by Some ETX and MTX files.

supdrop (integer denoting length)
Description Math formula parameter σ18.
Set by MTX files.
Used by Some ETX and MTX files.

TFMfileprefix (string)
Description Prefix (typically a path) added to names of TFM files.
Set by Explicit commands in mapmaking command files. By default not

set, which is equivalent to being empty.

35

Used by The PLtoTF “map file fragments writer”.
underlinethickness (integer denoting length)

Description The recommended thickness of an underlining rule.
Set by MTX files. The AFM-to-MTX converter usually writes \setint

commands for this variable.
Used by Some MTX files (latin.mtx and the like).

\uprightitalcorr (macro expanding to an integer expression)
Description The integer expression used to calculate a guess for the it-

alic correction of glyphs in a font with non-positive slant. It has the
syntax

\uprightitalcorr {〈width〉}{〈left〉}{〈right〉}{〈bottom〉}{〈top〉}

where 〈width〉 is the glyph’s advance width, and the remaining ar-
guments are coordinates of sides of the glyph’s bounding box. The
italicslant integer provides the italic slant of the font.

Set by Explicit commands in fontinst command files. Defaults to 0.
Used by The AFM-to-MTX converter.

version (string)
Description Version number put in BibTEX-style file header of automat-

ically generated ENC files. See the macro \ref_to_sourcefile for
more details.

Set by ETX files.
Used by The ETX-to-ENC converter. When not set, the value "See file

〈etx name〉" is used instead.
verticalstem (integer denoting length)

Description The dominant width of vertical stems (usually the width of
stems of lower case letters).

Set by MTX files. The AFM-to-MTX converter writes \setint com-
mands for this variable if the AFM file specifies StdVW.

Used by Currently nothing.
warningspecials (switch)

Description Controls whether \glyphwarning commands will generate
VPL SPECIALs. Defaults to ‘true’.

Set by Explicit commands (\warningspecialstrue and \warningspecialsfalse).
Used by The (V)PL file generator.

x-scale (integer denoting factor)
Description Horizontal scaling factor. Internal variable in \transform-

font.
Set by The \xscalefont and \scalefont commands.
Used by The \mtxtomtx command.

xheight (integer denoting length)
Description The x-height of the font.
Set by MTX files. The AFM-to-MTX and (V)PL-to-MTX converters usu-

ally write \setint commands for this variable.
Used by MTX files, and ETX files (for determining fontdimen(5)).

y-scale (integer denoting factor)
Description Vertical scaling factor. Internal variable in \transformfont.
Set by The \yscalefont and \scalefont commands.
Used by The \mtxtomtx command.

〈glyph〉-spacing (integer denoting length)

36

Description Glyph-specific override for letterspacing; extra width ad-
ded to the glyph 〈glyph〉 as part of the process of writing a VPL file.

Set by ETX or MTX files.
Used by The (V)PL writer. Defaults to 0 if not set.

Besides these, the \latinfamily command provides a whole range of para-
meters (\latin_weights, \latin_widths, \latin_shapes, etc.) that are often
used somewhat like variables. That subject does however deserve to be treated
separately.

9 Customisation

The fontinst package reads a file fontinst.rc if it exists. This can contain your
own customisations.

You can create a fontinst format by running iniTEX on fontinst.sty then
saying \dump.

10 Notes on features new with v 1.9

The following notes are copied from fisource.tex; they were written to ex-
plain new fontinst features to old fontinst users.

10.1 Metric packages

Fontinst has traditionally come with a collection of MTX files that complement
the MTX files generated from base font metrics, in that they build glyphs that
may be missing from the base fonts or in some other way needs to be improved.
The most well-known of these is the latin.mtx file; other examples include
textcomp.mtx, mathit.mtx, and latinsc.mtx. A problem with these is how-
ever that they cannot produce optimal results for all fonts simply because there
are irregular differences in how fonts are set up by the foundries. Most glyphs
come out all right, but there are usually a few for which the parameters used
are more or less wrong. Therefore most high quality font installations are made
with modified versions of these files, where the parameters have been tuned to
the specific font design.

Modifying in particular latin.mtx is however not an entirely easy task, be-
cause this is a rather large file (with plenty of archaic pieces of code in curious
places). Doing it once is no big problem, but if one has to do it several times
(maybe because some errors are discovered in the original latin.mtx) then it
is probably no fun anymore. Furthermore, if one has two or three modified
copies of this file because one has made high quality installations of that many
different fonts then even a trivial bugfix might start to feel like entirely too
much work.

If one has to make modifications then it is usually easier to deal with several
small files (many of which can be used unchanged) than one big file. Thus

37

it would be better if these big files were split up into several smaller ones.
The main problem with splitting up something like latin.mtx is that there are
some commands which are defined at the top and which are then used in al-
most all sections of the file. One must make certain that these commands are
always loaded, which makes the metric files somewhat harder to use (espe-
cially if the one who tries to use them is not the one who wrote them).

One strategy is to include all definitions needed for a metric file in it. This
has the slight disadvantage that the commands will have to be defined several
times. What is worse however, is that the command definitions will appear in
several files, so if one finds a bug in one of them, one cannot simply correct
this bug in one place. As the number of files can soon become quite large,
correcting such bugs can become a boring procedure indeed.

Another strategy is to put all the command definitions in one file and then
explicitly include it in the 〈file-list〉 argument of \installfont. This eliminates
the repeated bug fixing problem, but requires the user to do something that the
computer can actually do just as well.

A third strategy is to put the command definitions in one or several files and
then in each metric file the user explicitly mentions load the command defini-
tions needed for that particular file. Metric packages uses an improved version
of this strategy, since they also make it possible for fontinst to remember which
packages (i.e., sets of command definitions) that have already been loaded, so
that they are not unnecessarily loaded again. The newlatin.mtx file is an al-
ternative to latin.mtx that implements this strategy. Most of the actual code
is located in the following metric packages:

ltcmds.mtx Defines some common commands used by the other
files.

llbuild.mtx Builds the latin lower case alphabet (unaccented letters
are ‘unfakable’, the rest are constructed if not present
in the base fonts).

lubuild.mtx Builds the latin upper case alphabet.
lsbuild.mtx Builds accented letters in the latin smallcaps alphabet,

but only if there are unaccented letters to build them
from in the base fonts.

lsfake.mtx Fakes a latin smallcaps alphabet by shrinking the up-
per case alphabet, but only if the glyph had not already
been manufactured.

lsmisc.mtx Make some miscellaneous smallcaps glyphs (mostly
“smallcaps f-ligatures”).

ltpunct.mtx Makes digits, punctuation marks, and other symbols
(mostly by marking as “unfakable”).

All of these are easy to use as components of equivalents of a modified
latin.mtx files, and all dependencies of one package upon another are handled
via explicit \usemtxpackage commands.

38

10.2 Word boundary ligatures and kerns

One of the new features added in TEX 3 was that of ligatures and kerns with
word boundaries. Fontinst has had an interface for making such ligatures and
kerns, but it has been completely redesigned in v 1.9 and the old interface (set-
ting the integer boundarychar) is no longer recognized by fontinst. Files which
use the old interface can still be processed with cfntinst.sty, though.

Before considering the new commands, it is suitable to make a distinction
between proper glyphs and pseudoglyphs. A proper glyph has been set using
one of the commands \setrawglyph, \setglyph, and \resetglyph. A pseudo-
glyph is any name used in the context of a glyph name which does not denote
a proper glyph. If a pseudoglyph g-not was set using the \setnotglyph com-
mand, then \ifisglyph{g-not}\then will evaluate to true, but something can
be a pseudoglyph even if an \ifisglyph test evaluates to false. The interest-
ing point about pseudoglyphs when considering word boundaries however, is
that a pseudoglyph can have ligatures and kerns.

Kerns and ligatures at the left word boundary (beginning of word) are specified
using the commands \setleftboundary and \endsetleftboundary, which are
syntactically identical to \setslot and \endsetslot respectively. One import-
ant difference is however that the argument to \setslot must be a proper
glyph, while the argument to \setleftboundarymay be any glyph, hence any
pseudoglyph will do just fine.

\ligature commands between \setleftboundary and \endsetleftboundary
will generate beginning of word ligatures. Kerns on the right of the glyph
specified in \setleftboundary will become beginning of word kerns.

Kerns and ligatures at the right word boundary (end of word) are trickier, due
to the asymmetrical nature of the ligkern table in a PL file. What a font can
do is to specify that the right word boundary, for purposes of kerning and
ligatures, should be interpreted as character n. By including a kern or ligature
with character n on the right, that kern or ligature will be used at the end of
a word, but it will also be used each time the next character is character n.
Because of this, one usually wants the slot n, which the right word boundary
is interpreted as being, to be empty whenever the encoding allows this.

The command

\setrightboundary{〈glyph〉}

will mark the current slot as used to denote the right word boundary, and leave
the slot empty, increasing the current slot number by one just like a \setslot
. . . \endsetslot block does. Kerns on the left of 〈glyph〉 will be end of word
kerns and \ligature commands with 〈glyph〉 as the second argument will be
for the end of a word.

The command

\makerightboundary{〈glyph〉}

is similar to \setrightboundary, but it is a slot command which may only be
used between a \setslot and the matching \endsetslot. Like \setrightboundary,
it marks the current slot as used to denote the right word boundary, but the

39

glyph specified in the enclosing \setslotwill be written to that slot. Ligatures
for the glyph specified by the \setslot and ligatures for the glyph specified by
the \makerightboundary will both be for this single slot. Kerns on the right of
the \setslot glyph and the \makerightboundary glyph will similarly both be
for this single slot. The idea is that the \setslot glyph should be used when
making a kern or ligature for that glyph, while the \makerightboundary glyph
should be used when making a kern or ligature for the end of a word. Fontinst
will warn you if these two uses of the slot directly contradict each other.

10.3 Changing the names of glyphs

Sometimes, primarily when making a virtual font from more than one raw
font and two of the raw fonts contain different glyphs with the same name, it
becomes necessary to change the names of some glyphs to make some sense
out of it. The main source of this kind of trouble is the “caps and small caps”
(SC) and “oldstyle figures” (OsF) fonts within many commercial font families.
The typical problem is that what is typographically different glyphs—such as
the lowercase ‘a’ (a, for fontinst) and the smallcaps ‘A’ (Asmall, for fontinst)—
are given the same name by the foundry.

One way to get round this is to say for example

\setglyph{Asmall} \glyph{a}{1000} \endsetglyph

\setleftrightkerning{Asmall}{a}{1000}

\unsetglyph{a}

\noleftrightkerning{a}

and continuing like that for all the duplicate glyph names. This is however
a rather prolix method and if the number of glyphs is large then it is usually
simpler to use the \reglyphfont command.

To reglyph one or several fonts, one writes

\reglyphfonts

〈reglyphing commands〉
\endreglyphfonts

There are two types of reglyphing commands: the \reglyphfont command,
and the commands that modify what \reglyphfont will do to the fonts it op-
erates on. The syntax of \reglyphfont is

\reglyphfont{〈destination font〉}{〈source font〉}

The 〈source font〉 font here is the name (suffix not included, of course) of the
font metric file one wants to change the glyph names in. This font metric file
can be in any of the formats MTX, PL, AFM, and VPL, and it will be converted
to MTX format if it isn’t already in that format (this happens just as for files lis-
ted in the second argument of \installfont). 〈destination font〉 (which must be
different from 〈source font〉) will be taken as the name for a new .mtx file that
will be generated. The destination font can differ from the source font only
in two ways: the names of some glyphs in the source font might be changed,
and some of the commands from the source font might not have been copied
to the destination font. To what extent the fonts are different is determined

40

by what modifying commands have been executed; when no modifying com-
mands have been executed, the source and destination font are equal.

The modifying reglyphing commands are

\renameglyph{〈to〉}{〈from〉}
\renameglyphweighted{〈to〉}{〈from〉}{〈weight〉}
\killglyph{〈glyph〉}
\killglyphweighted{〈glyph〉}{〈weight〉}
\offmtxcommand{〈command〉}
\onmtxcommand{〈command〉}

\renameglyph simply declares that occurrences of the glyph name 〈from〉 should
be replaced by the glyph name 〈to〉. To each glyph name is also assigned
a weight, which is used by a mechanism which conditions copying of com-
mands from the source font to the destination font by the set of glyphs that
command mentions. The details of this mechanism are however somewhat
tricky, so those interested in the full generality should read the comments in the
source of fontinst. Here it needs only be noted that if one applies \killglyph
to a glyph name, then (under most circumstances) commands that refer to that
glyph name will not be copied to the destination font.

\offmtxcommand and \onmtxcommand also control whether commands are copied
to the destination font, but they look at the actual command rather than the
glyphs it refers to. For example, after the command

\offmtxcommand{\setkern}

no \setkern commands will be copied. By using \offmtxcommand, it is pos-
sible to achieve effects similar to those of the files kernoff.mtx and glyphoff.mtx—
the difference is that with \offmtxcommand, it happens at an earlier stage
of the font generation. As expected, \onmtxcommand undoes the effect of
\offmtxcommand.

A special rule pertains to the \setrawglyph, \setnotglyph, \setscaledraw-
glyph, and \setscalednotglyph commands, since \transformfont doesn’t
care what something was in the source font when it generates the transformed
font. To turn these commands off while reglyphing, you use \offmtxcommand
on \setscaledrawglyph.

The effects of modifying reglyphing commands are delimited by \reglyphfonts
and \endreglyphfonts, which starts and ends a group respectively.

As we expect the most common reglyphing operation will be to go from SC
glyph names to expert glyph names, there is a file csc2x.tex in the fontinst
distribution which contains the modifying reglyphing commands needed for
setting up that conversion. Thus you can write for example

\reglyphfonts

\input csc2x

\reglyphfont{padrcx8r}{padrc8r}

\reglyphfont{padscx8r}{padsc8r}

\endreglyphfonts

to alter the glyph names in the SC fonts in the Adobe Garamond (pad) family.
Note that the names of the destination fonts here really are rather arbitrary,

41

since they will only exist as .mtx files, and thus only need to work within your
local file system. In particular, all the \setrawglyph commands in the destin-
ation font files still refer to the source font, so it is that font which the drivers
need to know about.

10.4 Making map file fragments

A map file fragment is the lines1 of a map file that the corresponding driver
would need for handling some set of fonts. When told to, fontinst can (in a fairly
automatic way) create the map file fragment which is needed for the set of raw
fonts fontinst has (i) installed directly (using \installrawfont) or (ii) used as a
base font for some installed virtual font (generated by \installfont). Fontinst
does not support the map file syntaxes of every existing driver, but the system
is designed to be extendable and contributions that extend its capabilities are
welcome. Nor can fontinst examine your TEX system and determine every piece
of information needed to make the correct map file fragments, but you can tell
it roughly how your installation looks, it can make guesses which work most
of the time, and you can specify most things explicitly if the guesses turn out
to be wrong. Should the available options for configuring the process turn out
to be inadequate for your needs, then please write to the fontinst mailing list
about this—there is probably a way to improve the system so that your needs
can be met.

Now what does one have to do to use this map file fragment writer, then? First
you need to tell fontinst to record the information the map file fragment writer
needs. You do this by giving the command

\recordtransforms{whatever.tex}

at the beginning of the run. Here whatever.tex is the name of a file that will
be created, so you can use some other name if you like. After that you do all
the calls to \transformfont, \installfont, \installrawfont, \latinfamily,
etc. you need to make the fonts you want. When you’re done, you give the
command

\endrecordtransforms

and end the run (say \bye). The file whatever.tex will now contain the in-
formation about which fonts were used and what needs to be done with them.

The second step is to actually run the map file fragment writer. Observe that
it is located in the file finstmsc.sty, not fontinst.sty! The commands you
need to give it can be so few that you can type them in at TEX’s * prompt, but
if you are writing a command file then it should typically have the following
structure (comments not necessary, of course):

\input finstmsc.sty % Input command definitions
〈general settings〉 % See below
\adddriver{〈driver name〉}{〈output file〉} % Open output file
\input whatever.tex %Writes to output file(s)
\donedrivers % Close output file(s), tidy up
\bye % Quit

1Not in general an entire map file, hence the word fragment.

42

The \adddriver command gives the order “write map file entries for the
〈driver name〉 DVI driver to the file 〈output file〉.” The plan is that it should be
possible to use the name of just about any major driver (dvips, xdvi,2 pdftex,3

OzTeX, etc.) here and get suitable map file entries for that driver as output, but
for the moment only the dvips and dvipdfm4 drivers are supported.

You may also use debug or pltotf for 〈driver name〉. The debug “DVI driver”
file simply contains all the available information about each font (hence it
should come handy for debugging code writing entries for real drivers) in a
format that should be easy to interpret for a human. It could be the right choice
if you’re going to write the map file manually, as the combined effects of several
font transformations are not always easy to compute manually. The file gener-
ated for the pltotf “driver” is actually a shell script consisting of a sequence of
pltotf commands. These commands perform the pl to tfm conversion for pre-
cisely those fonts that are actually needed (fontinst usually generates pl files
also for a number of fonts at intermediate stages of transformation, and many
of these need not be converted to tfm files). The TFMfileprefix string can be
used to add a directory path to the tfm file names, perhaps saving the step of
moving them to their proper location later.

The file whatever.tex in the above example contains the commands (\makemapentry
commands) that actually cause entries to be written to the output file. It also
contains a number of \storemapdata commands—these describe how some
given font was made. If some metric file you have used contains \setrawglyph
commands that were not automatically generated by fontinst, then there might
not be a \storemapdata for the font they refer to in whatever.tex, so you will
have to include such a command yourself somewhere. This can for example be
done in the 〈general settings〉 part of the above example file.

Another class of things that will typically appear in the 〈general settings〉 part
above is commands that will inform the routines actually writing output about
your TEX system, about the set of fonts you are using on this run, or about
something else that might be useful. Some such commands are of a general
nature and affect what assumptions fontinst will make in certain conditions
when no specific information is available. For the moment there commands
are:

\AssumeMetafont Assume all fonts with PL metrics are bitmaps generated by
Metafont, and therefore make no entries for them.

\AssumeAMSBSYY Assume all fonts with PL metrics have their TEX names in all
upper case as postscript names—just like the Computer Modern fonts in
the AMS/Blue Sky/Y&Y distribution.

\AssumeBaKoMa Assume all fonts with PL metrics have their TEX names in all
lower case as postscript names—just like the Computer Modern fonts in
the BaKoMa distribution.

2Or does that use the same map file as dvips? I heard somewhere that it did. /LH
3pdfTEX can read the map files generated for dvips, but a separate driver is desirable because

the formats are not completely identical.
4Whose support I made very much to illustrate that you don’t have to be a big and ancient

driver like dvips to have supporting code put into fontinst. (The fact that I just happened to have
printed out the documentation and that is was easy to read also helped, of course.) Note, however,
that there won’t be any support for a driver unless someone sits down and writes the code for it!
Don’t assume I will. /LH

43

Otherwise the default action of the routine for finding out the postscript name
of a font simply is to observe that it hasn’t got a clue about what the right value
is when the metrics were taken from a PL file, and therefore it writes ‘??????’
for the postscript name.

\AssumeLWFN Assume postscript fonts for which nothing else has been spe-
cified are stored in files which are named according to the MacOS scheme
for LWFNs.

Otherwise the default action is to use the name of the AFM or PL from which
the metrics were originally taken, and add the file suffix stored in the string
PSfontsuffix. The default value of this string is .pfa, but it can be changed
using \resetstr.

If neither the default nor the LWFN scheme produce correct results then you
may use the more specific \specifypsfont command, which describes exactly
which file (or files, if any) a given font is stored in. The syntax of this command
is

\specifypsfont{〈PS font name〉}{〈actions〉}

where the 〈actions〉 is a sequence of “action commands”. Currently the only
such command is

\download{〈file〉}

which instructs the map file writer to include in any entry using that PS font
and “instruction” that the specified file should be downloaded. Some examples
are

\specifypsfont{Times-Roman}{}

\specifypsfont{Shareware-Cyrillic-Regular}{\download{fcyr.gsf}}

\specifypsfont{zmnl8ac6}{%

\download{MinionMM.pfb}\download{zmnl8ac6.pro}%

}

Many dvi drivers (for example dvips) have more than one style of font down-
loading (e.g., partial and full downloading). This interface could be extended
to control also such finer details (for example by adding a \fulldownload com-
mand to force full download of a font), but requests for this has so far been
scarce.

Finally, there is the \declarepsencoding command which is used to link ETX
files to postscript encodings. If no postscript encoding has been linked to a
given ETX file then fontinst will automatically create a postscript encoding
(.enc) file for that encoding, and use this file for all reencoding commands. The
8r encoding is predeclared, and it doesn’t matter if an encoding is undeclared
if you never use it to reencode fonts, but there is potentially a problem with
not having declared encodings you have installed and use for reencoding, as
you may then find yourself having two files with identical names that define
encodings that do not have the same name (as far as postscript is concerned).

44

10.5 Tuning accent positions—an application of loops

The accent placements made by latin.mtx certainly aren’t perfect for all fonts,
and the only way to find out where they should be put is through trying in text
the accented letters you get for a couple of values for the position parameter
and deciding which one works best. Since to try one parameter value you
need to (i) edit it into an MTX file, (ii) run fontinst, (iii) run vptovf, (iv) run TEX
on some test text, and (v) print that text, trying one parameter value can take
annoyingly much time. Repeating the same procedure ten times to test ten
values is not something one does without being bored (unless one scripts it, of
course), but it is possible to try ten parameter values in a single virtual font,
and without doing very much typing.

Say you’re not too happy with how latin.mtx positions the accent in the
ohungarumlaut glyph:

\setglyph{ohungarumlaut}

\topaccent{o}{hungarumlaut}{500}

\endsetglyph

The 500 is the horizontal position (in thousandths of the width of the o) that the
centre of hungarumlaut in the glyph constructed will have, so that is the posi-
tion parameter value that you want to change. Create an MTX file containing
the code

\for(pos){250}{750}{50}

\setglyph{ohungarumlaut\strint{pos}}

\topaccent{o}{hungarumlaut}{\int{pos}}

\endsetglyph

\setleftrightkerning{ohungarumlaut\strint{pos}}

{ohungarumlaut}{1000}

\endfor(pos)

This will set eleven glyphs ohungarumlaut250, ohungarumlaut300, ohungarumlaut350,
. . . , ohungarumlaut750, each being an Hungarianly umlauted ‘o’ (i.e., an ‘ő’)
but all having that umlaut in slightly different positions. In order to put them
in a font, you also need to make an encoding that contains them. Therefore
create an ETX file which contains the code

\relax\encoding

\nextslot{"C0}

\for(pos){250}{750}{50}

\setslot{ohungarumlaut\strint{pos}}

\endsetslot

\endfor(pos)

\endencoding

The command for installing this experiment font would be something like

\installfont{〈some name〉}{〈the normal list of metrics〉,〈the new MTX〉}
{ot1,〈the new ETX〉}{OT1}. . .

The reason for including ot1 in the third argument above is that you’ll need
letters other than ‘ő’ against which you can compare the experimental glyphs.

45

It would not have been possible to use t1 instead of ot1 (even though that has
more Hungarian letters) since that would set all slots in the font and leave none
for these experimental ohungarumlauts.

It is even possible to use a loop for making the test text. The LATEX macros

\newcount\slotcount

\newcommand\testtext[3]{%

\slotcount=#1\relax

\begin{description}%

\loop\item[\the\slotcount]#3%

\ifnum #2>\slotcount \advance \slotcount 1 \repeat

\end{description}%

}

\DeclareTextCompositeCommand{\H}{OT1}{o}{\char\slotcount}

will let you write

\testtext{〈first〉}{〈last〉}{〈text〉}

to get the text 〈text〉 typeset once for each slot from 〈first〉 to 〈last〉 inclusive, with
\H{o} ranging through the glyphs in this interval. Thus in this case \testtext
{"C0}{"CA}{Erd\H{o}s} would be a trivial test.

10.6 Font installation commands

The \installfont, \installrawfont, and \installfontas commands have
the respective syntaxes

\installfont{〈font-name〉}{〈metrics〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

\installrawfont{〈font-name〉}{〈metrics〉}{〈etx-list〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

\installfontas{〈font-name〉}
{〈encoding〉}{〈family〉}{〈series〉}{〈shape〉}{〈size〉}

The 〈font-name〉 argument and the last five arguments are common to all these
commands. The first argument is the name of a TEX font to install. The last five
arguments are the NFSS attributes under which that font will be declared to
LATEX—encoding, family, series, shape, and size. It is worth observing that en-
coding names are usually in upper case, whereas the family, series, and shape
are usually in lower case. The size argument is either a shorthand (declared
using \declaresize) for a particular font size (or range of font sizes), or an
explicit list of font sizes or ranges of sizes, which is copied directly to the font
declaration. The most common case is to let the size argument be empty, as
that is declared as a shorthand for “any size”.

The \installfontas command does not itself create the font, it just makes a
note that the specified font declaration should be written to the proper FD file
at \endinstallfonts. The \installfont and \installrawfont commands
do however produce the font, in the sense that they write a VPL and PL re-
spectively file for the font. It depends solely on the 〈metrics〉 and 〈etx-list〉 argu-
ments what this font will contain. Many features of these arguments are new
with fontinst v 1.9; therefore the complete syntaxes are described below.

46

Both arguments are comma-separated lists of basically file names (not includ-
ing an extension). The files listed in the 〈metrics〉 are font metric files which to-
gether build up a glyph base (definitions of glyphs and metrics related to one or
several glyphs), whereas the files listed in the 〈etx-list〉 are encoding definition
files that select a subset of the glyph base for turning into a TEX font. The font
metrics can be in either of the four formats MTX, PL, AFM, and VPL, which are
considered in that order. If the metrics are not originally in MTX format then
they will be converted to this format (a new file will be created) before they are
used. The encoding definitions must be in ETX format. The files actually read
will have a suffix .mtx, .pl, .afm, .vpl, or .etx appended to the name given,
depending on which format is expected.

Within each element of the comma-separated list, the actual file name is fol-
lowed by zero or more modifier clauses. A 〈modifier clause〉 consists of a keyword
followed by some number (usually one) of arguments, separated by spaces. The
whole thing looks a lot like the 〈rule specifications〉 of e.g. the \vrule command,
but here the spaces are mandatory. The currently defined 〈modifier clause〉s are

option 〈string〉 Available for metric and encoding files. This adds 〈string〉
to the list of options for this file, which may affect what code the file
executes. The file can then test, using the \ifoption command, whether
a specific string is one of the options it was given.

scaled 〈factor〉 Available for metric files. Causes the rawscale integer vari-
able to be set to the 〈factor〉 (an integer expression) while the file is being
read. This scales glyphs and kerns that are added to the glyph base by
the 〈factor〉.

suffix 〈suffix〉 Available for metric files. Causes 〈suffix〉 to be appended to
every glyph name appearing in a glyph or kern that file adds to the glyph
base. Thus “suffix /2” effectively changes a

\setrawglyph{a}. . .

to a

\setrawglyph{a/2}. . .

encoding 〈etx-name〉 Available for metric files, and forces fontinst to only con-
sider the PL and VPL formats for this font. As these file formats do
not contain glyph names, an ETX file is used to assign glyph names to
the slots in the font. This ETX file is usually selected according to the
CODINGSCHEME property of the PL or VPL (using the correspondences set
up via the \declareencoding command), but that information is not al-
ways as one would want it (there are even fonts for which it is quite
wrong). An encoding clause bypasses this automatic mechanism, so that
the file 〈etx-name〉.etx is used instead.

mtxasetx This is available for files in the 〈etx-list〉. The actual function of a

〈file-name〉 mtxasetx

item in the 〈etx-list〉 is that the file 〈file-name〉.mtx is inputted (not 〈file-name〉.etx)
and that the correspondence between glyph names and slot numbers

47

set up in \setrawglyph or \setscaledrawglyph commands in this file
is treated as if it had been set up by \setslot commands in an ETX file.
Provided the MTX file is transformable, the glyph base will be unaffected.

The purpose of this feature is to simplify quick and dirty installations of
odd fonts for which no suitable ETX file is available. This can be useful
in early stages of the design of a new font, but is inferior to installation
using proper ETX files since one for example cannot specify any ligatures
in MTX files.

Furthermore there is a special exception for the 〈metrics〉: if the first token in
one of the list items is the control sequence \metrics, then the rest of that item
is interpreted as explicit metric commands to execute.

If the 〈metrics〉 of two subsequent \installfont or \installrawfont com-
mands are identical then the glyph bases will be identical as well. This creates
an opportunity for optimization, which fontinstmakes use of by caching glyph
bases from one installation command to the next so that the glyph base does
not have to be rebuilt in these cases. A side-effect of this caching is that local
assignments made between two font installation commands are cleared out
with the glyph base, but \setint and similar fontinst commands make global
assignments when used in such positions.

Some examples might be in order. The first is an adaptation of an installation
command from mfnt-0.59 by Matthias Clasen and Ulrik Vieth: the installation
command for the 8-bit math font xma1000 (which can be thought of as being
to cmmi10 sort of as ecrm1000 is to cmr10). The first three encoding clauses are
more fine-tuning—without them, a few glyphs would get incorrect names—
but the last two are quite essential, as the msam10 and msbm10 fonts incorrectly
claim to have the coding scheme TEX MATH SYMBOLS.

\installfont{xma1000}{%

yma1000 encoding mcin,%

cmr10 encoding ot1upright,%

cmmi10,%

cmsy10 encoding omscal,%

msam10 encoding msam,%

msbm10 encoding msbm,%

mccmhax,mccmkern,mcmissing,%

cmsy10-base,cmsy10-extra%

}{mc}{MC}{cm}{m}{n}{〈10-〉}

Also note the explicit LATEX size specification for the range “10 pt and up”.

The second example makes use of a suffix clause to combine the letters from
one font with the digits from another.

\installfont{msbrj8t}{msbr8r,msbrc8r suffix /2,latin}{digit2,t1}

{T1}{msbj}{m}{n}{}

In this case, the glyph base contains the glyphs of Monotype Sabon (SabonMT)—
under names such as A for ‘A’, a for ‘a’, and one for a lining digit one—as well

48

as the glyphs of Monotype Sabon Small Caps and Oldstyle Figures (SabonMT-
SCOSF)—under names such as A/2 for ‘A’, a/2 for ‘A’, and one/2 for a hanging
digit one. The digit2.etx file simply makes the definition

\setcommand\digit#1{#1/2}

which causes t1.etx to put zero/2 in slot 48 (digit zero), one/2 in slot 49 etc.,
instead of as it normally would zero in slot 48, one in slot 49 and so on. The
net effect is that the digits in the generated msbrj8t is from msbrc8r (SabonMT-
SCOSF) but everything else is from msbr8r (SabonMT).

The third example makes use of an mtxasetx clause to install (with its default
encoding) a font for which creating an appropriate ETX file seems not worth
the trouble.

\installrawfont{psyr}{psyr,\metrics

\setint{xheight}{\height{alpha}}

}{txtfdmns,psyr mtxasetx}{U}{psy}{m}{n}{}

The effect of the second psyr is that psyr.mtx is read (in case there was no
psyr.mtx then it is created from (hopefully) psyr.afm) and the information
in it will form the glyph base. Because of the \metrics control sequence, the
rest of that item will be interpreted as explicit metric commands modifying
the glyph base, and thus the \setint command can provide a value for the
xheight variable (there doesn’t seem to be such a value in the AFM). Once the
glyph base is completed, the \installrawfont starts writing the file psyr.pl
(that’s for the first psyr). The encoding of that font will, because of the psyr
mtxasetx, be the same as that used in psyr.mtx. Finally, the txtfdmns is for
txtfdmns.etx, an ETX file which sets fontdimens 1–16 as for a T1 encoded font
but does not set any slots. Since psyr.mtx reinterpreted as an ETX file sets slots
but no fontdimens, these complement each other nicely.

10.7 Bounding boxes

Han The Thanh has created an implementation of bounding box support for
fontinst, and it is a modified form of that support is distributed with fontinst as
the file bbox.sty. To load this, begin your command file with

\input fontinst.sty

\input bbox.sty

The reason for not making it default is that keeping track of bounding boxes
increases some of fontinst’s memory requirements quite a lot.

One important characteristic of this implementation is that the dimensions of
the bounding box are not bundled into the same data structure (the \g-〈glyph〉
macros) as the glyph’s width, height, depth, and italic correction are, but stored
in a separate data structure (the \gb-〈glyph〉 macros). A glyph doesn’t need to

49

have its bounding box set, it is simply a piece of information that fontinst will
store if you tell it to and which you can later retrieve.

The bounding box will be stored as coordinates of the sides in the normal AFM
coordinate system. The commands for retrieving these coordinates are

Command Side
\bbtop{〈glyph〉} top (y-coordinate)
\bbbottom{〈glyph〉} bottom (y-coordinate)
\bbleft{〈glyph〉} left (x-coordinate)
\bbright{〈glyph〉} right (x-coordinate)

In Thanh’s implementation the command names were \ury, \lly, \llx, and
\urx respectively instead, but I think the former are easier to remember. If no
bounding box has been set for a glyph then the above commands will instead
report the corresponding coordinate of the glyph’s TEX box (i.e. \height{〈glyph〉},
\neg{\depth{〈glyph〉}}, 0, and \width{〈glyph〉} respectively).

The command for setting the bounding box of a glyph is

\setglyphbb{〈glyph〉}{〈left〉}{〈bottom〉}{〈right〉}{〈top〉}

11 Miscellaneous notes

11.1 On verbatim, typewriter, and monowidth fonts

The verbatim, typewriter, and monowidth concepts are common sources of
confusion for those who use fontinst to install fonts with LATEX; in particular
there are many misconceptions about the relation between them. The official
view (of which not much has actually been brought forward) is that these con-
cepts are really about three quite different things.

A font is a monowidth (monospaced, fixed-pitch) font if all glyphs in it have
exactly the same width. Some font formats make special provisions for such
fonts; the most notable example is the AFM format, where a single CharWidth
keyword specifies the width for all glyphs in the font. Fontinst responds to this
by including the command

\setint{monowidth}{1}

in the MTX file generated from an AFM, but that is everything that is hard-
wired into the program. That a font is monowidth is however something that
one should take note of when installing it for TEX, as it means many of the
glyphs in it have such a strange appearance that they are (pretty much) useless.
The endash is for example usually only half as long as the hyphen and the
letters in ligature glyphs are only half as wide as normal letters. Many of the
ETX and MTX files that come with fontinst contain special commands to avoid
making use of such degenerate glyphs.

That a font is a typewriter font really only means that it has a typewriterish
look about it. The two most familiar typewriter fonts are probably Computer

50

cmtt: The quick brown fox jumps over the lazy dog.

cmvtt: The quick brown fox jumps over the lazy dog.

Figure 1: Two typewriter fonts

TEX TEXT

TEX TEXT WITHOUT

F-LIGATURES TEX TYPEWRITER TEXT

non-italic

cmb10

cmbx5–12
cmbxsl10

cmdunh10

cmff10

cmfib8

cmr6–17
cmsl8–12
cmss8–17
cmssbx10

cmssdc10

cmssi8–17
cmssq8

cmssqi8

cmvtt10

cmcsc8–10
cmr5

cmsltt10

cmtcsc10

cmtt8–12

italic

cmbxti10

cmfi10

cmti7–12
cmu10

cmitt10

Table 1: “OT1-encoded” Computer Modern fonts, collected according to the
actual font encoding

Modern Typewriter (cmtt) and Courier. Both of these fonts are monowidth,
but there is no absolute rule about this. One of the standard TEX fonts is for
example Computer Modern Variable-width Typewriter (cmvtt), which is not a
monowidth font, as Figure 1 shows.

The verbatim concept has very little to do with fonts at all; in LATEX it is con-
sidered to be a property of the environment (verbatim, macrocode, etc.) rather
than a property of the font. The connection there is with fonts is that the en-
coding of the font must contain visible ASCII (as defined in Appendix C of The
TEXbook) as a subset for the text to be rendered correctly. The cmtt family is
the only one amongst the original Computer Modern fonts which meets this
criterion and that is the primary grounds for the idea that these three concepts
should be connected. Today that reason is at best a very weak one, as all T1-
encoded fonts also meet the criterion of containing visible ASCII as a subset.

A circumstance which has probably added to the confusion is that OT1 is usu-
ally claimed to be an encoding. In reality the Computer Modern fonts that are
declared in LATEX as being OT1 display as many as five different encodings, as
shown in Table 1. Since most monowidth fonts are only used for setting ver-

51

batim text, there is some code in ot1.etx which automatically chooses a TEX
TYPEWRITER TEXT encoding for the font when the monowidth integer is set. The
only reason for this is the guess that this is what the user wanted.

Acknowledgements

I’d like to thank all of the fontinst α-testers, especially Karl Berry, Damian
Cugley, Steve Grahthwohl, Yannis Haralambous, Alan Hoenig, Rob Hutch-

ings, Constantin Kahn, Peter Busk Laursen, Ciarán Ó Duibhı́n, Hilmar Schle-
gel, Paul Thompson, Norman Walsh and John Wells, who made excellent bug-
catchers!

Thanks to Barry Smith, Frank Mittelbach, and especially Sebastian Rahtz for
many useful email discussions on how virtual fonts should interact with
LATEX 2ε.

Thanks to Karl Berry and Damain Cugley for detailed comments on this docu-
mentation.

Thanks to David Carlisle for the use of his trigmacros for calculating trigono-
metry.

52

