
The Dvipdfmx User’s Manual
The Dvipdfmx Project Team

December 23, 2018

Contents

1 Getting Started 3
1.1 Introduction . 3

1.1.1 xdvipdfmx . 4
1.1.2 Legal Notice . 4

1.2 Installation and Usage . 4
1.3 Quick Guide . 5

1.3.1 X ETEX . 5
1.3.2 pTEX . 6
1.3.3 upTEX . 7
1.3.4 CJK-LATEX . 7

1.4 Auxiliary Files . 8
1.4.1 PostScript CMap Resources 8
1.4.2 Subfont Definition Files . 8
1.4.3 The Adobe Glyph List and ToUnicode Mappings 8

1.5 Overview of Extensions . 9
1.5.1 CJK Support . 9
1.5.2 Unicode Support . 9
1.5.3 Other Extensions . 10

2 Graphics 11
2.1 Image Inclusion . 11

2.1.1 Supported Graphics File Formats 11
2.1.2 Image Cache . 13

2.2 Graphics Drawing . 14
2.2.1 The pdf:content Special 15
2.2.2 Guide to PDF Graphics Operators 15

3 Specials 20
3.1 PDF Specials . 20

3.1.1 Additions to PDF Specials 20
3.1.2 ToUnicode Special . 23
3.1.3 PDF Special Examples . 24

3.2 Dvipdfmx Extensions . 31
3.3 PS Specials . 31

1

CONTENTS CONTENTS

4 Fonts and Encodings 33
4.1 Fonts and Encodings Support . 33
4.2 Font Mappings . 33

4.2.1 Extended Syntax and Options 34
4.2.2 Specifying Unicode Plane 35
4.2.3 OpenType Layout Feature 36

4.3 Other Improvements . 37
4.3.1 Extended Glyph Name Syntax 37
4.3.2 CFF Conversion . 37

4.4 Font Licensing . 38

5 Encryption 40
5.1 Encryption Support . 40

6 Compatibility 43
6.1 Incompatible Changes . 43
6.2 Important Changes . 43

A GNU Free Documentation License 46

2

Chapter 1

Getting Started

1.1 Introduction
The dvipdfmx (formerly dvipdfm-cjk) project provides an extended version of the
dvipdfm, a DVI to PDF translator developed by Mark A. Wicks.

The primary goal of this project is to support multi-byte character encodings
and large character sets such as for East Asian languages. This project started as a
combined work of the dvipdfm-jpn project by Shunsaku Hirata and its modified
one, dvipdfm-kor, by Jin-Hwan Cho.

Extensions to dvipdfm include,

• Support for OpenType and TrueType font, including partial support for the
OpenType Layout for finding glyph variants and vertical writing.

• Support for CJK-LATEX and HLATEX with Subfont Definition Files.

• Support for various legacy multi-byte encodings via PostScript CMap Re-
sources.

• Unicode related features: Unicode as an input encoding and auto-creation
of ToUnicode CMaps.

• Support for pTEX (a Japanese localized variant of TEX) including vertical
writing extension.

• Some extended DVI specials.

• Reduction of output files size with on-the-fly Type1 to CFF (Type1C) conver-
sion and PDF object stream.

• Advanced raster image support including alpha channels, embedded ICC
profiles, 16-bit bit-depth colors, and so on.

• Basic PDF password security support for PDF output.

Some important features are still missing:

• Linearization.

• Color Management.

3

1.2. INSTALLATION AND USAGE CHAPTER 1. GETTING STARTED

• Resampling of images.

• Selection of compression filters.

• Variable font and OpenType 1.8.

• and many more...

dvipdfmx is now maintained as part of TEX Live. Latest source code can be
found at the TEX Live SVN repository. For an instruction on accessing the devel-
opment sources for TEX Live, see,

http://www.tug.org/texlive/svn/

This document, “The dvipdfmx User’s Manual”, was originally prepared for
TEX Live 2017. Current maintainer of this document is Shunsaku Hirata. Latest
version and contact information can be found at:

http://github.com/shirat74/dvipdfm-x-doc

Please send questions or suggestions.

1.1.1 xdvipdfmx

xdvipdfmx is an extended version of dvipdfmx, and is now incorporated into
dvipdfmx.

The xdvipdfmx extensions provides support for the Extended DVI (.xdv) for-
mat generated by X ETEXwhich includes support for platform-native fonts and the
X ETEX graphics primitives, as well as Unicode text and OpenType font.

X ETEX originally used aMac-specific program called xdv2pdf as a backend pro-
gram instead of xdvipdfmx. The xdv2pdf program supported a couple of special
effects that are not yet available through xdvipdfmx: The Quartz graphics-based
shadow support, AAT “variation” fonts such as Skia, transparency as an attribute
of font, and so on. It would be nice if they continue to be supported. Suggestions
and help are welcomed.

1.1.2 Legal Notice
Copyright©The dvipdfmx project team. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Founda-
tion; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documenta-
tion License”.

1.2 Installation and Usage
Typical usage and installation steps are not different from the original dvipdfm.
Please refer documents from dvipdfm distribution for detailed instruction on how
to install and how to use dvipdfm. The dvipdfmmanual is available from its CTAN
site:

http://www.ctan.org/tex-archive/dviware/dvipdfm

4

http://www.tug.org/texlive/svn/
http://github.com/shirat74/dvipdfm-x-doc
http://www.ctan.org/tex-archive/dviware/dvipdfm

1.3. QUICK GUIDE CHAPTER 1. GETTING STARTED

Option Description
-C number Specify miscellaneous option flags. See, section of

“Incompatible Changes” for details.
-S Enable PDF encryption.
-K number Set encryption key length. The default value is 40.
-P number Set permission flags for PDF encryption. The number

is a 32-bit unsigned integer representing permission
flags. See, section of “Encryption Support”. The de-
fault value is 0x003C.

-I number Life of image cache in hours. By specifying value 0
dvipdfmx erases cached images, and value -1 erases
all cached images and does not leave newly generated
one. The default value is -2. (ignore image cache)

-M Process METAPOST generated PostScript file.
-E Always try to embed fonts regardless of licensing.
-O number Set maximum depth of open bookmark item.

Table 1.1: Additional command line options recognized by dvipdfmx.

The minimal requirements for building dvipdfmx is the kpathsea library. the
zlib library for compression and the libpng library for PNG inclusion are highly
recommended. Optionally, the libpaper library might be used to handle paper
size.

This documentmainly focuses on the additions andmodifications to dvipdfm.
Please refer the “Dvipdfm User’s Manual” available from the CTAN site men-
tioned above for basic usage.

Some additional command line options recognized by dvipdfmx are listed in
Table 1.1. In addition to this, the -V option for specifying the output PDF version
now accepts the version specification of a form 2.0. Try

dvipdfmx --help

for the list of command line options and their explanations.

1.3 Quick Guide
dvipdfmx is supposed to be used by users of LATEX packages for typesetting CJK
languages like HLATEX and CJK-LATEX, and TEX variants such as X ETEX, pTEX, and
upTEX. This section is intended to be a quick guide for each users.

1.3.1 X ETEX
X ETEX users normally do not invoke the dvipdfmx command directly. To control
the behavior of dvipdfmx, please consider using the dvipdfmx:config special
explained in the section of “Specials”. Some part of this document is irrelevant
for X ETEX users.

5

http://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf

1.3. QUICK GUIDE CHAPTER 1. GETTING STARTED

1.3.2 pTEX
pTEX users are at least required to install several auxiliary files mentioned in the
section of “Auxiliary Files” and to setup font-mappings. Just install the adobe-
mappings and glyphlist for auxiliary files. (As TEX Live basic installation requires
them, they are probably already installed for TEX Live users.)

For TEX Live users, setting up fontmaps can be easily done with the help of
the ptex-fontmaps package and the updmap program. To use with the IPAex fonts
(contained in the ipaex package), for example, run,

kanji-config-updmap --sys ipaex

where the ‘--sys’ option indicates the system-wide configuration. After success-
ful invocation of the above command, the IPAex fonts will be used by default.
The current setting can be checked via,

kanji-config-updmap --sys status

For more information on the updmap program, try,

kanji-config-updmap --help

or refer the documentation of the updmap program.
Alternatively, just for a quick test of installation, try the following:

\documentclass{article}
\begin{document}
\special{pdf:mapline rml H KozMinProVI-Regular}
...Some Japanese text goes here...
\end{document}

In this example, PDF viewer which can handle substitute font is required since
dvipdfmx does not embed fonts.

For using Japanese text in PDF document information and annotations, put
the following special command,

\AtBeginDocument{\special{pdf:tounicode 90ms-RKSJ-UCS2}}

in the preamble. The above special command instructs dvipdfmx to convert
text encoded in Shift-JIS to Unicode. For EUC-JP, replace 90ms-RKJK-UCS2 with
EUC-UCS2.

6

1.3. QUICK GUIDE CHAPTER 1. GETTING STARTED

1.3.3 upTEX
upTEX users are basically the same as pTEX users but there are two choices for
setting fontmaps. Setup fontmaps as mentioned above for pTEX, or use keyword
unicode in the encoding field of the fontmap file.

The former might be easier as the auto-creation of fontmap files can be done
with the updmap program and the ptex-fontmaps package. But in this method
there are some difficulties when using fonts which employ character collections
(glyph repertoire) other than Adobe-Japanͱ in the case of PostScript flavored
OpenType fonts. In the later case, the adobemappings package is not required and
newer PostScript flavored OpenType fonts which do not employ Adobe-Japanͱ
can be easily used too.

Using unicode is more simpler and intuitive thus it is recommended to use
this method.¹ A typical example fontmap entries for using Adobe’s SouceHan
series might look like:

urml unicode SourceHanSerifJP-Light.otf
urmlv unicode SourceHanSerifJP-Light.otf -w 1
ugbm unicode SourceHanSansJP-Medium.otf
ugbmv unicode SourceHanSansJP-Medium.otf -w 1

As in pTEX, the following special instruction might be necessary for PDF
document information and annotations to be shown correctly:

\AtBeginDocument{\special{pdf:tounicode UTF8-UCS2}}

Here, input encoding is assumed to be UTF-8.

1.3.4 CJK-LATEX
CJK-LATEX users are required to have Subfont Definition Files to be installed. They
are available as part of the ttfutils package.

To use TrueType Arphic fonts provided by the arphic-ttf package:

\documentclass{article}
\usepackage{CJKutf8}
...Other packages loaded here...
\AtBeginDocument{%

\special{pdf:tounicode UTF8-UCS2}%
\special{pdf:mapline bsmiu@Unicode@ unicode bsmi00lp.ttf}%
}

\begin{document}
\begin{CJK}{UTF8}{bsmi}
...some Chinese text goes here...
\end{CJK}

¹For TEX Live 2017. Earlier versions have buggy support.

7

1.4. AUXILIARY FILES CHAPTER 1. GETTING STARTED

\end{document}

Here, pdf:mapline special is used to setup a font-mapping.

1.4 Auxiliary Files
This section is mostly for supporting legacy encodings and legacy font format
such as PostScript Type1 font. X ETEX users may skip this section.

dvipdfmx has a capacity to handle various input encodings from 7-bit encod-
ings to variable-width multi-byte encodings. It also has some sort of Unicode
support. Several auxiliary files which are not common to TEX users are needed to
enable those features. This section shortly describes about them.

1.4.1 PostScript CMap Resources
PostScript CMap Resources² are required for supporting legacy encodings such
as Shift-JIS, EUC-JP, Big͵, and other East Asian encodings. dvipdfmx internally
identifies glyphs with identifiers (CIDs³) represented as an integer ranging from 0
to 65535 in the CID-based glyph access. PostScript CMap Resources describes the
mapping between sequences of input character codes and CIDs. dvipdfmx has an
extensible support for multi-byte encodings via PostScript CMap Resources.

CMap files for standard East Asian encodings, for use with Adobe’s charac-
ter collections, are included in the adobemapping package. The latest version of
those CMap files maintained by Adobe can be found at Adobe’s GitHub Project
page:

http://github.com/adobe-type-tools/cmap-resources

Those files are mandatory for supporting pTEX. upTEX users may also want to
install them but they are not required.

1.4.2 Subfont Definition Files
CJK fonts usually contain several thousands of glyphs. For using such fonts with
(original) TEX, which can only handle 8-bit encodings, it is necessary to split a
font into several subfonts. The Subfont Definition File (SFD) specify the way
how those fonts are split into subfonts. dvipdfmx uses SFD files to convert a set
of subfonts back to a single font.

SFD files are not required for use with TEX variants which can handle multi-
byte character encodings and large character sets such as pTEX, upTEX,X ETEX, and
Omega. HLATEX and CJK-LATEX users are required to have those files to be installed.
SFD files are available as a part of the ttfutils package for TEX Live users.

1.4.3 The Adobe Glyph List and ToUnicode Mappings
TheAdobeGlyph List⁴ (AGL) describes correspondence between PostScript glyph
names (e.g., AE, Aacute,...) and Unicode character sequences representing them.

²See, “Adobe CMap and CIDFont Files Specification”
³PostScript terminology “Character IDentifier”.
⁴See, “Adobe Glyph List Specification”

8

http://github.com/adobe-type-tools/cmap-resources
http://www.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5014.CIDFont_Spec.pdf
http://github.com/adobe-type-tools/agl-specification

1.5. OVERVIEW OF EXTENSIONS CHAPTER 1. GETTING STARTED

Some features described in the section “Unicode Support” requires AGL file.
dvipdfmx looks for the file glyphlist.txt when conversion from PostScript

glyph names to Unicode sequences is necessary. This conversion is done in vari-
ous situations; when creating ToUnicode CMaps for 8-bit encoding fonts, finding
glyph descriptions from TrueType and OpenType fonts when the font itself does
not provide a mapping from PostScript glyph names to glyph indices (version 2.0
“post” table), and when the encoding unicode is specified for Type1 font.

The AGL file is included in the glyphlist package. The latest version can be
found at Adobe’s GitHub site:

http://github.com/adobe-type-tools/agl-aglfn

ToUnicode Mappings are similar to AGL but they describe correspondence
between CID numbers (instead of glyph names) andUnicode values. The content
of those files are the same as CMap Resources. They are required when using
TrueType fonts emulated as a CID-keyed font. They should be found in the same
directory as ordinary CMap files.

ToUnicode Mapping files are included in the adobemapping package. Those
files are not required for X ETEX users.

1.5 Overview of Extensions
This section gives a quick overview of dvipdfmx’s extended capabilities.

1.5.1 CJK Support
There are many extensions made for supporting CJK languages. Features de-
scribed here is mainly for CJK languages but their use is actually not limited to
it. Those features are implemented in a generic way so that it can be beneficial
to users who are not involved in CJK languages.

Legacy Multi-byte Encodings

dvipdfmx has an extensible support for encodings by means of PostScript CMap
Resources. Just like enc files are written for 8-bit encodings, one can write their
own CMap files to support custom encodings. See, Adobe’s technical notes[2] for
details on PostScript CMap Resources.

Vertical Writing

dvipdfmx supports the vertical writing extension used by pTEX and upTEX. A DVI
instruction to set the writing mode is supported. The OpenType Layout GSUB
Feature is supported for selecting vertical version of glyphs.

1.5.2 Unicode Support
Unicode support here consists of two parts: Supporting Unicode as an input en-
coding and making output PDF files “Unicode aware”.

9

http://github.com/adobe-type-tools/agl-aglfn

1.5. OVERVIEW OF EXTENSIONS CHAPTER 1. GETTING STARTED

「こんにちは」 「
こ
ん
に
ち
は
」

Figure 1.1: An example of horizontal and vertical text; left and right corner brack-
ets are replaced with their vertical counterparts.

Unicode as Input Encoding

dvipdfmx recognizes an additional keyword unicode in fontmap files to declare
that Unicode values are used in the input DVI file. Unicode support is basically
limited to the Basic Multilingual Plane (BMP) since there are no support for code
ranges that requires more than three bytes in TFM and extended TFM formats.

ToUnicode CMap Support

In PDF, it is often the case that text is not encoded in Unicode. However, modern
applications usually want them represented in Unicode to make it usable as text
information. The ToUnicode CMap is a bridge between PDF text string encod-
ings and Unicode encodings, and makes it possible to extract text in PDF files as
Unicode encoded strings. It is important to make resulting PDF search-able and
copy-and-past-able. Dvipdfmx supports auto-creation of ToUnicode CMaps.

It will not work properly for multiply encoded glyphs due to fundamental
limitations of Unicode conversion mechanism with ToUnicode CMaps.

1.5.3 Other Extensions
dvipdfmx can generate encrypted PDF documents to protect its contents from
unauthorized access. It is limited to password-based authentication, and public-
key based authentication is not supported. The 256-bit AES encryption is also
supported for PDF version 1.7 and 2.0 setting although it may not be supported
by PDF viewers.

There are various other improvements over dvipdfm. The most notable one is
more improved PDF input and output support: The cross-reference stream and
object stream introduced in PDF-ͱ.͵ are also supported.

10

Chapter 2

Graphics

2.1 Image Inclusion
The basics of incorporating images into output PDF is the same as in dvipdfm. To
do this, LATEX users can simply use the graphicx package. (possibly with the driver
option dvipdfmx) This section is not for providing a how-to guide to include im-
ages but just for supported graphics and image formats along with supported
features.

Graphics support was mostly rewritten in dvipdfmx. Support for BMP and
JPEGͲͰͰͰ was added. An effort to preserve more information originally found
in included images, e.g., embedded ICC Profiles and XMP Metadata, was made.

However, dvipdfmx does not support various features common to graphics
manipulation programs such as resampling, color conversion, and selection of
compression filters. Thus, it is recommended to use other programs specialized
in image manipulation for preparation of images.

2.1.1 Supported Graphics File Formats
Supported formats are, PNG, JPEG, JPEGͲͰͰͰ, BMP, PDF, andMETAPOST gener-
ated EPS. All other format images, such as SVG and PostScript, must be converted
to PDF before inclusion. The ‘-D’ option, as in dvipdfm, can be used for filtering
images.

Notes on PNG Support

PNG is supported as in dvipdfm with many improvements.
PNG support includesmost of important features of PNG format such as color

palette, transparency, 16-bit bit-depth color, embedded ICC Profiles, calibrated
color, and embedded XMP Metadata.

In including PNG images, dvipdfmx first decompresses image data and then
compresses (if requested) it again. For better compression ratio, a preprocessing
filter (Predictor filter) might be applied before compression. dvipdfmx supports
the TIFF Predictor 2 and the PNG optimum filter. However, there is yet no way to
specify which predictor function is to be used and currently PNG optimum filter
is always employed.

11

2.1. IMAGE INCLUSION CHAPTER 2. GRAPHICS

Feature PDF Version Required
16-bit Color Depth Version 1.5
Transparency Full support for alpha channel requires PDF version

1.4. Color key masking (a specific color is treated as
fully transparent) requires 1.3.

XMP Metadata Version 1.4
ICC Profile Version 1.3

Table 2.1: PNG features and corresponding PDF versions required.

Predictor filter is a preprocessing filter to image data for improving compres-
sion. Using a predictor filter usually gives better compression but in many cases
compression speed becomes significantly slower. Try ‘-C 0x20’ command line
option to disable predictor filters and to check if slowness is due to filtering.

For the PNG optimum filter, a heuristic approach, “minimum sum of abso-
lute differences”, is employed for finding the most optimal filter to be used. See,
discussion in the PNG Specification ”Filter selection”:

http://www.w3.org/TR/2003/REC-PNG-20031110/#12Filter-selection

As built-in support for the sRGB color space is absent in PDF, the sRGB color
can only be represented precisely by means of the sRGB ICC Profile. However,
for sRGB color PNG images, dvipdfmx uses an approximate calibrated RGB color
space instead. For approximating the sRGB color, the gamma and CIE ͱͳͱ chro-
maticity values mentioned in the PNG Specification is used. See, the following
page for more information:

http://www.w3.org/TR/2003/REC-PNG-20031110/#11sRGB

dvipdfmx also supports calibrated color with the gAMA and the cHRM chunk.
These chunks carry information on more accurate color representation. Some
software programs, however, write only cHRM but do not record the gamma value
although the PNG specification recommends to do so. Gamma value 2.2 is as-
sumed if only cHRM is present but gAMA is not.

Some PNG features are unavailable depending on output PDF version setting.
Please refer Table 2.1 for more details.

JPEG and JPEGͲͰͰͰ

JPEG format is supported as in dvipdfm. In addition to this, JPEGͲͰͰͰ is also
supported.

JPEG and JPEGͲͰͰͰ image inclusion is basically done as ”pass-through”, that
is, image data is not decompressed before inclusion. So, although these formats
are basically lossy, there should be no quality loss when including images.

JPEG is relatively well supported. dvipdfmx supports embedded ICC Profiles
and CMYK color. Embedded XMP metadata is also preserved in the output PDF.
JFIF or Exif data might be used to determine image’s physical size.

As the PDF specification does not require information irrelevant to displaying
images to be embedded, dvipdfmx does not embed whole data. Especially, not
all application specific data is retained. Application specific data such as JFIF,
Exif, and APP14 Adobe marker are preserved. Please note that XMP and Exif data

12

http://www.w3.org/TR/2003/REC-PNG-20031110/#12Filter-selection
http://www.w3.org/TR/2003/REC-PNG-20031110/#11sRGB

2.1. IMAGE INCLUSION CHAPTER 2. GRAPHICS

which may contain location information where the photo was taken is always
preserved in the output PDF file.

JPEGͲͰͰͰ is also supported. It is restricted to JP2 and JPX baseline subset as
required by the PDF specification. It is not well supported and still in an experi-
mental stage. J2C format and transparency are not supported.

PDF Support

PDF inclusion is supported as in dvipdfm, with various important enhancement
over dvipdfm for more robust inclusion. dvipdfmx can handle cross-reference
streams and object streams introduced in PDF-ͱ.͵. dvipdfmx also supports in-
clusion of PDF pages other than the first page. However, tagged PDF may cause
problems and annotations are not kept.

As there are no clear way to determine the natural extent of the graphics con-
tent to be clipped, dvipdfmx preferably try to find the crop box to decide image
size. If there are no crop box explicitly specified,¹ then it tries to refer other bound-
ary boxes such as the art box. If there are no possible boundaries of the graphics
content explicitly specified, the media box, which is the boundaries of the physi-
cal medium on which the page is to be printed, is used as the last resort.

The pdf:image special supports additional keys, “page” and “pagebox”. The
page key takes an integer value representing the page number of PDF page to be
included, and the pagebox takes one of the keywords mediabox, cropbox, artbox,
bleedbox, or trimbox for selecting page’s boundary box to be used. For example,

\special{pdf:image pagebox artbox page 3 (foo.pdf)}

includes 3rd page of ‘foo.pdf’ with the boundary box set to the art box.

Other Image Formats

For METAPOST generated Encapsulated PostScript (EPS) files, multi-byte en-
coding support is added. dvipdfmx also supports “METAPOST mode”. When
dvipdfmx is invoked with ‘-M’ option, it enters inMETAPOST mode and processes
a METAPOST generated EPS file as an input.²

BMP support is also added. It is limited to uncompressed or RLE-compressed
raster images. Extensions are not (won’t be) supported.

For image formats not natively supported, the -D option can be used to con-
vert images to PDF format before inclusion, as in dvipdfm. In dvipdfmx, the letter
v in the -D option argument is expanded to the output PDF version.

2.1.2 Image Cache
Caching of images generated via filtering command specified with ‘-D’ option is
supported. It solves the problems that image inclusion becomes very slow when

¹There are some accusations by Japanese TEX users as ”violating the PDF spec.” regarding this
point. However, what we are talking about is how to guess the natural or intended size of images but
not the default value of the PDF crop box itself.

²prologue should be set to 2.

13

2.2. GRAPHICS DRAWING CHAPTER 2. GRAPHICS

external filtering program such as GhostScript is invoked each time images are
included.

Use ‘-I’ option to enable this feature:

-I 24

where the integer represents the life of cache files, 24 hours in this example. Zero
and negative values have a special meaning. Value 0 for “erase old cached images
while leaving newly created one”, -1 for “erase all cached images”, and -2 for “ignore
image cache”. Default value is set to -2.

2.2 Graphics Drawing
dvipdfmx does not offer a high level interface to draw graphics objects. A possible
way to draw graphics is to write raw PDF graphics drawing codes and then to
insert them into the output via special commands.

To show an example, the following code:

\special{pdf:content
1 0 0 1 0 0 cm
0 100 m
80 100 120 80 120 0 c
S

}

draws a Bézier curve,

The pdf:content special is used here which is useful for inserting an isolated
graphics object.

The above example illustrates a typical example of PDF graphics drawing. It
consists of three parts; setting graphics state, constructing a path, and painting a
path. AGraphic object are specified as a sequence of operators and their operands
using postfix notation. Graphics state operators comes first, cm in this example
sets the current transformation matrix (CTM). Then, path construction opera-
tors follow; move to position (0, 100), append a Bézier curve from current point
to (120, 0) with control points (80, 100) and (120, 80). Finally, a path painting

14

2.2. GRAPHICS DRAWING CHAPTER 2. GRAPHICS

operator comes to draw the constructed path. In this example the stroking oper-
ator S is used.

2.2.1 The pdf:content Special
The pdf:content special can be used for drawing an isolated graphics object. It
sets the origin of graphics drawing operators supplied to this command to the
position where it is inserted. The whole content is enclosed by a pair of graph-
ics state save-restore operators. So for example, a color change made within a
pdf:content command takes an effect only within the content of this special.

2.2.2 Guide to PDF Graphics Operators
PDF employs essentially the same imaging model as PostScript. So, it is easy
to learn about PDF graphics drawing for people who are well accustomed to
PostScript. This section is intended to be a short guide for PDF graphics oper-
ators.

Graphics State Operators

The cm operator modifies CTM by concatenating the specified matrix. Operands
given to this operators are six numbers each representing transformation matrix
elements: translation represented as [1, 0, 0, 1, 𝑡௫ , 𝑡௬], scaling [𝑠௫ , 0, 0, 𝑠௬ , 0, 0], ro-
tation [cos𝜃, sin𝜃,− sin𝜃, cos𝜃, 0, 0].

To uniformly scale the object, just use

2.0 0 0 2.0 0 0 cm

The w operator sets the line width, e.g., ‘2 w’ sets the line width to 2. Here is
an example of drawing a rotated rectangle:

0.866 0.5 -0.5 0.866 30 2 cm 5 w 0 0 100 50 re S

Transformations can be sequentially applied; for the above example,

1 0 0 1 30 2 cm 0.866 0.5 -0.5 0.866 0 0 cm

15

2.2. GRAPHICS DRAWING CHAPTER 2. GRAPHICS

5 w 0 0 100 50 re S

gives the same result.
To specify colors, use RG, rg, K, and k operators, for RGB or CMYK color for

stroking (upper-case) and nonstroking (lower-case).

0.866 0.5 -0.5 0.866 30 2 cm 5 w
1 0.4 0 0 K 1 0 0 0 k
0 0 100 50 re B

where the B operator fill and then stroke the path.

A dash pattern can be specified with the d operator. Operands for this opera-
tor are the dash array and the dash phase. For example, to specify a dash pattern
with 6-on 4-off starting with phase 0:

[6 4] 0 d 2 w 0 0 m 320 0 l S

draws the following dashed line:

Other important operators are q and Q, which saves and restores the graphics
state.

1 0 0 1 30 2 cm
q
0.866 0.5 -0.5 0.866 0 0 cm
[6 4] 0 d 2 w 0 0 100 50 re S
Q
-30 0 m 90 0 l S
0 -2 m 0 96 l S

16

2.2. GRAPHICS DRAWING CHAPTER 2. GRAPHICS

Operands Operator Description
— q Save the current graphics state.
— Q Restore the previously saved graphics state.
𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 cm Modify the current transformation matrix by con-

catenating the specified matrix.
width w Set the line width.
array phase d Set the line dash pattern.
𝑟 𝑔 𝑏 RG Set the stroking color space to RGB and set the

stroking color as specified.
𝑟 𝑔 𝑏 rg Set the nonstroking color space to RGB and set the

nonstroking color as specified.
𝑐 𝑚 𝑦 𝑘 K Set the stroking color space to CMYK and set the

stroking color as specified.
𝑐 𝑚 𝑦 𝑘 k Set the nonstroking color space to CMYK and set

the nonstroking color as specified.

Table 2.2: A few examples of graphics state operators and color operators.

In the above example, d, w, and rotation only take effect within the q-Q block. The
portion drawing two straight lines is unaffected by these graphics state change.

For a (incomplete) list of graphics state operators, see Talbe 2.2.

Path Construction Operators

A path construction normally starts with a m operator which moves the current
point to the specified position and then sequences of other path construction op-
erators follow. The path currently under construction is called the current path.
A sequence of path construction operators appends segments of path to the cur-
rent path and then move the current point to the end point of appended path. A
typical sequence of path construction looks like,

100 50 m
100 78 78 100 50 100 c
22 100 0 78 0 50 c
0 22 22 0 50 0 c
78 0 100 22 100 50 c
S

17

2.2. GRAPHICS DRAWING CHAPTER 2. GRAPHICS

Operands Operator Description
𝑥 𝑦 m Begin a new path by moving the current point

specified by given operands.
𝑥 𝑦 l Append a line segment from the current point

to the point specified.
𝑥ଵ 𝑦ଵ 𝑥ଶ 𝑦ଶ 𝑥ଷ 𝑦ଷ c Append a Bézier curve to the current path.

Two Control points and the end point given
as operands.

𝑥ଶ 𝑦ଶ 𝑥ଷ 𝑦ଷ v Append a Bézier curve to the current path. Us-
ing the current point and first two operand as
the Bézier control points.

𝑥ଵ 𝑦ଵ 𝑥ଷ 𝑦ଷ y Append a Bézier curve to the current path.
The second control point coincides with the
end point.

— h Close the current path by appending a straight
line segment from the current point to the
starting point of the path.

𝑥 𝑦 width height re Append a rectangle. First two operands for the
position of lower-left corner, third and forth
operand representing width and height.

Table 2.3: List of path construction operators. All operators move the current
point to the end point of appended path.

This example is an approximated circle drawn by four Bézier curves.
Table 2.3 shows a list of path construction operators. Those who are accus-

tomed to the PostScript language should note that in PDF the current path is not
a part of the graphics state, and hence is not saved and restored along with the
other graphics state parameters.

Path Painting Operators

There are basically four kind of path painting operators: S, f, B, and n. The first
three for “stroke”, “fill”, and “fill then stroke” operators respectively, and the last
one n paints nothing but end the path object. For filling operators, there are two
kind of operators depending on how “insideness” of points are determined: the
non-zerowinding number rule and the even-odd rule. The even-odd rule operators
are f* and B*.

The following example illustrates the difference:

18

2.2. GRAPHICS DRAWING CHAPTER 2. GRAPHICS

0 0 100 100 re 20 20 60 60 re f
1 0 0 1 120 0 cm
0 0 100 100 re 20 20 60 60 re f*

The “interior” of the “inner” square has a non-zero even winding number. (In this
example, counter-clockwise direction is assumed for both of two re operators.)

19

Chapter 3

Specials

3.1 PDF Specials
dvipdfmx recognizes various special commands originally introduced in dvipdfm.
Please refer to the “Dvipdfm User’s Manual”[1] for detailed information on PDF
specials.

3.1.1 Additions to PDF Specials
Several special commands are added for more flexible PDF generation: creation
of arbitrary stream objects, controlling dvipdfmx behavior, and some specials
which might be useful for graphics drawing.

PDF Object Manipulation

PDF object manipulation is a key feature of PDF specials. The pdf:fstream spe-
cial is added in dvipdfmx which enables creation of PDF stream object from an
existing file. The syntax of this special is,

pdf:fstream @identifier (filename) <<dictionary>>

where identifier and filename (specified as a PDF string object) are mandatory
and a dictionary object, following the filename, which is to be added to the stream
dictionary is optional.

For example, to incorporate XMP Metadata from a file test.xmp,

\special{pdf:fstream @xmp (test.xmp) <<
/Type /Metadata
/Subtype /XML

>>}
\special{pdf:put @catalog << /Metadata @xmp >>}

20

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

Figure 3.1: An image created by pdf:stream special.

Similarly, pdf:stream special can be used to create a PDF stream object from
a PDF string instead of a file.

pdf:stream @identifier (stream contents) <<dictionary>>

This special might be useful for creating a simple image inline.

\special{pdf:stream @myim01
<5500AAC05500AAC05500AAC05500AAC05500>
<<
/Type /XObject
/Subtype /Image
/BitsPerComponent 1
/ColorSpace /DeviceGray
/Width 9
/Height 9

>>
}
\special{pdf:put @resources <<

/XObject << /MyIM01 @myim01 >>
>>}
\special{pdf:content 81 0 0 81 0 0 cm /MyIM01 Do}

The above example draws an image like Figure 3.1.

Controlling Font Mappings

pdf:mapline and pdf:mapfile specials can be used to append a fontmap entry
or to load a fontmap file:

pdf:mapline foo unicode bar
pdf:mapfile foo.map

21

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

Specifying Output PDF Version

pdf:majorversion and pdf:minorversion specials can be used to specify major
and minor version of output PDF.

pdf:minorversion 3

Please note that this commandmust appear on the first page, otherwise it will
be ignored.

Custom File Identifiers

Addition in TEX
Live 2019

A custom file identifier (the ID entry in the trailer dictionary) can be specified via
pdf:trailerid special as

pdf:trailerid [(0123456789abcdef) (0123456789abcdef)]

An array of two 16-byte PDF string objects must be supplied as a file identifier.
This special command must appear on the first page.

Encryption

To protect output PDF with encryption, use pdf:encrypt special

pdf:encrypt userpw (foo) ownerpw (bar) length 128 perm 20

where user-password (userpw) and owner-password (ownerpw) must be specified
as PDF string objects. (which can be empty) Numbers specifying key-length and
permission flags here are decimal numbers. See, section “Encryption Support”
for a brief description of permission flags.

PDF Document Creation

Addition in TEX
Live 2019

As a convenience, the pageresources special is added, which puts given page
resources into subsequent page’s Resource Dictionary. For example,

\special{pdf:pageresources <<
/ExtGState << /MyGS01 << /ca 0.5 /CA 0.5 >> >>

>>}

puts an ExtGState resource named MyGS01 into the current page’s and all subse-
quent pages’ resource dictionary.

Other notable extensions are code, bcontent, and econtent. The code special
can be used to insert raw PDF graphics instructions into the output. It is different

22

3.1. PDF SPECIALS CHAPTER 3. SPECIALSχ
Figure 3.2: A character drawn in the PDF text rendering mode 1.

from dvipdfm’s content special in that it does not enclose contents with a q and
Q (save-restore of graphics state) pair. A typical usage of this special is:

\special{pdf:code q 1 Tr}
...some text goes here...
\special{pdf:code Q}

which changes text rendering mode to 1, as shown in Figure 3.2.
Be careful on using this special as it is very easy to generate broken PDF files.

The bcontent and econtent pair is somewhat fragile and might be incompatible
to other groups of special commands. It may not always be guaranteed to work
as ‘expected’.

3.1.2 ToUnicode Special
PDF allows users to attach various additional information such as document in-
formation, annotation, and navigation information (like bookmarks) to their doc-
ument. All human-readable text, text string, contained in such informationmust
be encoded either in PDFDocEncoding or UTF-16BE with Unicode byte order
marker. However, as many users can’t prepare their document with text strings
properly encoded, there is a special kind of special command, pdf:tounicode,
which can be used to convert text strings into the appropriateUnicode form. Note
that this feature is provided just as a remedy for users incapable of encoding text
strings properly.

For example,

\special{pdf:tounicode 90ms-RKSJ-UCS2}

declares that some of text strings should be re-encoded according to specified
conversion CMap 90ms-RKSJ-UCS2.

Conversion is done only for arguments to several PDF special commands such

23

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

as docinfo, ann, and out but not for that of general object creation specials. Note
that not all PDF string objects are subject to this conversion. By default, only
dictionary entries listed below are converted.

Title Author Subject Keywords Creator Producer Contents Subj
TU T TM

Addition in TEX
Live 2019

The list of dictionary entries subject to conversion can be extended by supply-
ing additional dictionary keys as an array object:

\special{pdf:tounicode 90ms-RKSJ-UCS2 [/RC /DS]}

If the name of conversion CMap contains one of the keywords RKSJ, B͵, GBK,
and KSC, PDF string objects are treated specially when they are parsed. A two
byte sequence starting with the first byte’s high bit set is treated “as is” so that the
0x5c byte appears in the second byte is not treated as an escape sequence. This
behavior is not compliant to the PDF specification.

3.1.3 PDF Special Examples
This section shows several examples of special command usage. It is intended to
be a hint for advanced users, so uninterested users can safely skip this section.
In many cases, using dvipdfmx PDF specials requires knowledge on PDF. Please
refer to Adobe’s “PDF Reference”[2].

Annotations

In this section, some useful special commands for creating annotations are ex-
plained. Note that viewer support is required for annotations to be displayed
correctly.

First start with a very simple Text Annotation for attaching a comment. This
feature is supported by many PDF viewer applications.

\special{pdf:ann width 20bp height 20bp
<<

/Type /Annot
/Subtype /Text
/Name /Comment
/T (Text Annotation Example)
/Subj (An Example of Text Annotations)
/Contents (A Quick Brown Fox Jumped Over The Lazy Dog.)

>>
}

24

Text Annotation Example
An Example of Text Annotations
A Quick Brown Fox Jumped Over The Lazy Dog.

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

pdf:ann special is used to create an annotation. A small icon shall be shown on
the side margin. Here, dictionary entry T is for the tilte, Subj for the subject of
this annotation, and Contents for the text string to be shown in the body of this
annotation.

Likewise, Rubber Stamp Annotation, which places a rubber stamp like figure,

\special{pdf:ann width 150bp height 50bp
<<

/Type /Annot
/Subtype /Stamp
/Name /Approved

>>
}

Other keywords such as Expired, Final, Draft, and so on, can be used in place
of Approved.

One can create stamps of their own style. For this purpose, other specials
pdf:bxobj and pdf:exobj can be used for designing stamps. Those specials “cap-
ture” all typeset material enclosed by them into a PDF Form XObject, which is a
reusable graphics object like included images.

For a simple example,

\special{pdf:bxobj @MyStamp
width 280pt height 0pt depth 40pt}

\addfontfeature{Scale=4,Color=FF9933}My Own Stamp
\special{pdf:exobj}

It captures typeset material “My Own Stamp” (this example uses fontspec pack-
age’s command for changing font size and text color) into the object labeled as
MyStamp for later reuse. Then, AP (appearance dictionary) entry for controlling
the appearance of annotations is used as,

\special{pdf:ann width 280pt height 40pt
<<
/Type /Annot
/Subtype /Stamp
/AP << /N @MyStamp >>

>>
}

25

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

The image captured into the object MyStamp is used as “Normal” (AP dictionary
entry N) appearance. (R for “Rollover” and D for “Down” can be used.)

The result is:

With the following code, dvipdfmx reads the source file and creates a stream
object named SourceFile, and then creates file attachment annotation.

\special{pdf:fstream @SourceFile (\jobname.tex)}%
\special{pdf:ann width 10bp height 20bp

<<
/Type /Annot
/Subtype /FileAttachment
/FS <<

/Type /Filespec
/F (\jobname.tex)
/EF << /F @SourceFile >>

>>
/Name /PushPin
/C [0.8 0.2 0.2]
/T (The Dvipdfmx User's Manual)
/Subj (The Dvipdfmx User's Manual)
/Contents (XeLaTeX source file of the manual.)

>>
}

A push-pin image must be shown on the margin if viewer supports this kind of
annotation. PDF viewer applications are required to provide predefined icon ap-
pearances at least for the following standard icons: Graph, PushPin, PaperClip,
and Tag.

Special Color Space

This section shows various examples of using Special color spaces. Examples in
this section have a common structure. They consist of essentially three parts. The
first part is for defining color space itself. PDF object creation commands like
pdf:obj and pdf:stream are used for this purpose. Next is for registering color
space resources in the page’s Resource Dictionary. It can be done via pdf:put
command as,

\special{pdf:put @resource <<
/Category << ...key-value pairs... >>

>>}

26

\documentclass[a4paper,xetex,oneside]{book}
\usepackage{xltxtra}
\usepackage{fontspec}
\usepackage{microtype}
\usepackage{xunicode}
\usepackage{unicode-math}
%%
%% PLATFORM DEPENDENT INSTRUCTION HERE
%% Font setup for body text.
\setmainfont{Constantia}
\setsansfont{Cambria}
\setmonofont[Scale=0.92]{Consolas}% Adjust xheight difference
\setmathfont{Cambria Math}
%% The following section is for showing some fancy examples.
%% Some fonts used here may not be availabel on your system.
%% Please modify this. Just replacing with empty macros is OK.
\newcommand{\jpzerofourexamples}{{%
\setmainfont[Scale=5,RawFeature=+jp04]{SourceHanSerifJP-Light.otf}葛祇逢}}
\newcommand{\jpninezeroexamples}{{%
\setmainfont[Scale=5,RawFeature=+jp90]{SourceHanSerifJP-Light.otf}葛祇逢}}
%% We use PostScript raw code here to test dvipdfmx's capability.
%% TFM files `uprml' and `uprmlv' are distributed with upTeX.
%% TrueType font `yumindb.ttf' is bundled with Windows 10.
\newcommand{\jphoritext}{%
\makebox[112bp][l]{%
\raisebox{88bp}[112bp][0bp]{%
\special{pdf:mapline uprml UniJIS-UTF8-H yumindb.ttf}
\special{ps: uprml findfont 16 scalefont setfont
 currentpoint moveto (「こんにちは」) show}%
}}}
\newcommand{\jpverttext}{%
\makebox[16bp][l]{%
\raisebox{112bp}[112bp][0bp]{%
\special{pdf:mapline uprmlv UniJIS-UTF8-V yumindb.ttf}
\special{ps: uprmlv findfont 16 scalefont setfont
 currentpoint moveto (「こんにちは」) show}%
}}}
%%%
\usepackage{xcolor,hyperref,hyperxmp}
\hypersetup{%
 bookmarksnumbered=true,%
 colorlinks=true,%
 urlcolor=[rgb]{0.2,0.2,0.4},
 linkcolor=[rgb]{0.2,0.2,0.4},
 citecolor=[rgb]{0.2,0.2,0.4},
 pdftitle={The Dvipdfmx User's Manual},%
 pdfauthor={The dvipdfmx project team},%
 pdfsubject={A User's Manual for Dvipdfmx and Xdvipdfmx.},%
 pdfkeywords={dvipdfmx, XeTeX, TeX, LaTeX},
 pdflang=en,
 pdfcopyright={Copyright © The dvipdfmx project team.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".},
 pdflicenseurl={http://www.gnu.org/licenses/fdl.html}
}
\usepackage{listings}
\lstset{
 keepspaces=true,
 basicstyle={\ttfamily},
 frame={tb},
 breaklines=true,
 columns=[l]{fullflexible},
 numbers=none,
 xrightmargin=2em,
 xleftmargin=2em,
 aboveskip=2em,
 belowskip=2em
}
\usepackage{mflogo}
\usepackage{lipsum}
\usepackage{array}
\usepackage{marginnote}
\renewcommand*{\marginfont}{\footnotesize\itshape}
\usepackage[noorphans,font=itshape]{quoting}
\newcommand{\package}[1]{\textit{#1}}
\newcommand{\code}[1]{\mbox{\texttt{#1}}}
\newcommand{\keyword}[1]{\textit{#1}}
\newcommand{\option}[1]{\mbox{`\texttt{#1}'}}
\newcommand{\dvipdfm}{\texttt{dvipdfm}}
\newcommand{\dvipdfmx}{\texttt{dvipdfmx}}
\newcommand{\xdvipdfmx}{\texttt{xdvipdfmx}}
\newcommand{\deprecated}[1]{\marginnote{\addfontfeatures{Color=CC3333}#1}}
\newcommand{\newfeature}[1]{\marginnote{\addfontfeatures{Color=3366CC}#1}}
\newcommand{\lnum}[1]{{\addfontfeatures{RawFeature=+lnum}#1}}
% For placeing drawings via \special
\newcommand{\specialbox}[3]{%
\makebox[#1][l]{\raisebox{-#2}[0bp][#2]{\special{#3}}}}
\usepackage{fancyhdr}
\pagestyle{fancy}
%%DVIPDFMX SETTINGS
\AtBeginDocument{%
 \special{dvipdfmx:config O 1}%
 \special{dvipdfmx:config V 7}
}
\begin{document}

\begin{titlepage}
 \begin{raggedleft}
 {\Huge\bfseries The Dvipdfmx User's Manual}\\[\baselineskip]
 \Large The Dvipdfmx Project Team\\
 December 23, 2018\par
 \end{raggedleft}
\end{titlepage}

\tableofcontents

\chapter{Getting Started}

\section{Introduction}

The \dvipdfmx\ (formerly \dvipdfm-cjk) project provides an extended version of
the \dvipdfm, a DVI to PDF translator developed by Mark~A.~Wicks.

The primary goal of this project is to support multi-byte character encodings
and large character sets such as for East Asian languages.
This project started as a combined work of the \dvipdfm-jpn project by
Shunsaku Hirata and its modified one, \dvipdfm-kor, by Jin-Hwan Cho.

Extensions to \dvipdfm\ include,
\begin{itemize}
 \item Support for OpenType and TrueType font, including partial support
 for the OpenType Layout for finding glyph variants and vertical writing.
 \item Support for CJK-\LaTeX\ and H\LaTeX\ with Subfont Definition Files.
 \item Support for various legacy multi-byte encodings via PostScript CMap
 Resources.
 \item Unicode related features: Unicode as an input encoding and
 auto-creation of ToUnicode CMaps.
 \item Support for p\TeX\ (a Japanese localized variant of \TeX) including
 vertical writing extension.
 \item Some extended DVI specials.
 \item Reduction of output files size with on-the-fly Type1 to CFF (Type1C)
 conversion and PDF object stream.
 \item Advanced raster image support including alpha channels, embedded
 ICC profiles, 16-bit bit-depth colors, and so on.
 \item Basic PDF password security support for PDF output.
\end{itemize}
Some important features are still missing:
\begin{itemize}
 \item Linearization.
 \item Color Management.
 \item Resampling of images.
 \item Selection of compression filters.
 \item Variable font and OpenType 1.8.
 \item and many more...
\end{itemize}

\dvipdfmx\ is now maintained as part of \TeX\ Live. Latest source code can
be found at the \TeX\ Live SVN repository. For an instruction on accessing the
development sources for \TeX\ Live, see,\medskip

\url{http://www.tug.org/texlive/svn/}
\medskip

This document, ``The \dvipdfmx\ User's Manual'', was originally prepared for
\TeX\ Live 2017. Current maintainer of this document is Shunsaku Hirata.
Latest version and contact information can be found at:\medskip

\url{http://github.com/shirat74/dvipdfm-x-doc}
\medskip

\noindent{}Please send questions or suggestions.

\subsection{\xdvipdfmx}

\xdvipdfmx\ is an extended version of \dvipdfmx, and is now incorporated into
\dvipdfmx.

The \xdvipdfmx\ extensions provides support for the Extended DVI (.xdv) format
generated by \XeTeX\ which includes support for platform-native fonts and the
\XeTeX\ graphics primitives, as well as Unicode text and OpenType font.

\XeTeX\ originally used a Mac-specific program called \code{xdv2pdf} as a
backend program instead of \xdvipdfmx. The \code{xdv2pdf} program supported
a couple of special effects that are not yet available through \xdvipdfmx:
The Quartz graphics-based shadow support, AAT ``variation'' fonts such as Skia,
transparency as an attribute of font, and so on.
It would be nice if they continue to be supported. Suggestions and help are
welcomed.

\subsection{Legal Notice}

Copyright © The dvipdfmx project team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled
``\hyperref[SEC:FDL]{GNU Free Documentation License}''.

\section{Installation and Usage}

Typical usage and installation steps are not different from the original
\dvipdfm. Please refer documents from \dvipdfm\ distribution for detailed
instruction on how to install and how to use \dvipdfm. The \dvipdfm\ manual is
available from its CTAN site:\medskip

\url{http://www.ctan.org/tex-archive/dviware/dvipdfm}
\medskip

The minimal requirements for building \dvipdfmx\ is the \keyword{kpathsea} library.
the \keyword{zlib} library for compression and the \keyword{libpng} library for PNG
inclusion are highly recommended.
Optionally, the \keyword{libpaper} library might be used to handle paper size.

This document mainly focuses on the additions and modifications to \dvipdfm.
Please refer the
``\href{http://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf}{Dvipdfm User's Manual}''
available from the CTAN site mentioned above for basic usage.

Some additional command line options recognized by \dvipdfmx\ are listed in
Table~\ref{TABLE:options}. In addition to this, the \code{-V} option for specifying
the output PDF version now accepts the version specification of a form \code{2.0}. Try
\begin{lstlisting}
dvipdfmx --help
\end{lstlisting}
for the list of command line options and their explanations.

\begin{table}
 \centering
 \begin{tabular}{lp{8cm}}\hline
 Option & Description \\ \hline\hline
 \code{-C} \textit{number} & Specify miscellaneous option flags. See,
 section of ``\hyperref[SEC:compatibility]{Incompatible Changes}'' for
 details. \\
 \code{-S} & Enable PDF encryption. \\
 \code{-K} \textit{number} & Set encryption key length. The default value
 is 40.\\
 \code{-P} \textit{number} & Set permission flags for PDF encryption.
 The \textit{number} is a 32-bit unsigned integer representing permission
 flags.
 See, section of ``\hyperref[SEC:encryption]{Encryption Support}''.
 The default value is \code{0x003C}.\\
 \code{-I} \textit{number} & Life of image cache in hours. By specifying
 value \code{0} \dvipdfmx\ erases cached images, and value \code{-1}
 erases all cached images and does not leave newly generated one. The
 default value is \code{-2}. (ignore image cache) \\
 \code{-M} & Process \MP\ generated PostScript file.\\
 \code{-E} & Always try to embed fonts \emph{regardless of
 licensing}.\\
 \code{-O} \textit{number} & Set maximum depth of open bookmark item.\\
 \hline
 \end{tabular}
 \caption{Additional command line options recognized by \dvipdfmx.}%
 \label{TABLE:options}
\end{table}

\section{Quick Guide}

\dvipdfmx\ is supposed to be used by users of \LaTeX\ packages for typesetting
CJK languages like H\LaTeX\ and CJK-\LaTeX, and \TeX\ variants such as \XeTeX,
p\TeX, and up\TeX.
This section is intended to be a quick guide for each users.

\subsection{\texorpdfstring{\XeTeX}{XeTeX}}

\XeTeX\ users
normally do not invoke the \dvipdfmx\ command directly. To control the
behavior of \dvipdfmx, please consider using the \code{dvipdfmx:config}
special explained in the section of ``\hyperref[SEC:specials]{Specials}''.
Some part of this document is irrelevant for \XeTeX\ users.

\subsection{p\TeX}
p\TeX\ users are at least required to install several auxiliary files
mentioned in the section of ``\hyperref[SEC:auxfiles]{Auxiliary Files}''
and to setup font-mappings. Just install the \package{adobemappings} and
\package{glyphlist} for auxiliary files. (As \TeX\ Live basic installation
requires them, they are probably already installed for \TeX\ Live users.)

For \TeX\ Live users, setting up fontmaps can be easily done with the help
of the \package{ptex-fontmaps} package and the \keyword{updmap} program.
To use with the IPAex fonts (contained in the \package{ipaex} package), for
example, run,
\begin{lstlisting}
kanji-config-updmap --sys ipaex
\end{lstlisting}
where the \option{--sys} option indicates the system-wide configuration.
After successful invocation of the above command, the IPAex fonts will
be used by default. The current setting can be checked via,
\begin{lstlisting}
kanji-config-updmap --sys status
\end{lstlisting}
For more information on the updmap program, try,
\begin{lstlisting}
kanji-config-updmap --help
\end{lstlisting}
or refer the documentation of the updmap program.

Alternatively, just for a quick test of installation, try the following:
\begin{lstlisting}
\documentclass{article}
\begin{document}
\special{pdf:mapline rml H KozMinProVI-Regular}
...Some Japanese text goes here...
\end{document}
\end{lstlisting}
In this example, PDF viewer which can handle substitute font is required since
\dvipdfmx\ does not embed fonts.

For using Japanese text in PDF document information and annotations, put
the following \code{special} command,
\begin{lstlisting}
\AtBeginDocument{\special{pdf:tounicode 90ms-RKSJ-UCS2}}
\end{lstlisting}
in the preamble.
The above \code{special} command instructs \dvipdfmx\ to convert text encoded
in Shift-JIS to Unicode. For EUC-JP, replace 90ms-RKJK-UCS2 with EUC-UCS2.

\subsection{up\TeX}
up\TeX\ users are basically the same as p\TeX\ users but there are two choices
for setting fontmaps. Setup fontmaps as mentioned above for p\TeX, or use
keyword \code{unicode} in the encoding field of the fontmap file.

The former might be easier as the auto-creation of fontmap files can be done
with the updmap program and the \package{ptex-fontmaps} package. But in
this method there are some difficulties when using fonts which employ character
collections (glyph repertoire) other than Adobe-Japan\lnum{1} in the case of PostScript
flavored OpenType fonts.
In the later case, the \package{adobemappings} package is not required
and newer PostScript flavored OpenType fonts which do not employ Adobe-Japan\lnum{1}
can be easily used too.

Using \code{unicode} is more simpler and intuitive thus it is recommended to
use this method.\footnote{For \TeX\ Live 2017. Earlier versions have buggy
support.}
A typical example fontmap entries for using Adobe's SouceHan series
might look like:
\begin{lstlisting}
urml unicode SourceHanSerifJP-Light.otf
urmlv unicode SourceHanSerifJP-Light.otf -w 1
ugbm unicode SourceHanSansJP-Medium.otf
ugbmv unicode SourceHanSansJP-Medium.otf -w 1
\end{lstlisting}

As in p\TeX, the following \code{special} instruction might be necessary for PDF
document information and annotations to be shown correctly:
\begin{lstlisting}
\AtBeginDocument{\special{pdf:tounicode UTF8-UCS2}}
\end{lstlisting}
Here, input encoding is assumed to be UTF-8.

\subsection{CJK-\LaTeX}

CJK-\LaTeX\ users are required to have \keyword{Subfont Definition Files}
to be installed. They are available as part of the \package{ttfutils} package.

To use TrueType Arphic fonts provided by the \package{arphic-ttf} package:
\begin{lstlisting}
\documentclass{article}
\usepackage{CJKutf8}
...Other packages loaded here...
\AtBeginDocument{%
 \special{pdf:tounicode UTF8-UCS2}%
 \special{pdf:mapline bsmiu@Unicode@ unicode bsmi00lp.ttf}%
 }
\begin{document}
\begin{CJK}{UTF8}{bsmi}
...some Chinese text goes here...
\end{CJK}
\end{document}
\end{lstlisting}
Here, \code{pdf:mapline} special is used to setup a font-mapping.

\section{Auxiliary Files}\label{SEC:auxfiles}

This section is mostly for supporting legacy encodings and legacy font format
such as PostScript Type1 font. \XeTeX\ users may skip this section.

\dvipdfmx\ has a capacity to handle various input encodings from 7-bit
encodings to variable-width multi-byte encodings. It also has some sort of
Unicode support. Several auxiliary files which are not common to \TeX\ users
are needed to enable those features. This section shortly describes about them.

\subsection{PostScript CMap Resources}

\keyword{PostScript CMap Resources}\footnote{See,
``\href{http://www.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5014.CIDFont_Spec.pdf}%
{Adobe CMap and CIDFont Files Specification}''}
are required for supporting legacy encodings such as Shift-JIS, EUC-JP, \lnum{Big5},
and other East Asian encodings. \dvipdfmx\ internally identifies glyphs with
identifiers (CIDs\footnote{PostScript terminology ``Character IDentifier''.})
represented as an integer ranging from 0 to 65535 in the CID-based glyph access.
PostScript CMap Resources describes the mapping between sequences of input
character codes and CIDs. \dvipdfmx\ has an extensible support for multi-byte
encodings via PostScript CMap Resources.

CMap files for standard East Asian encodings, for use with Adobe's character
collections, are included in the \package{adobemapping} package.
The latest version of those CMap files maintained by Adobe can be found at
Adobe's GitHub Project page:\medskip

\url{http://github.com/adobe-type-tools/cmap-resources}
\medskip

Those files are mandatory for supporting p\TeX. up\TeX\ users may also
want to install them but they are not required.

\subsection{Subfont Definition Files}

CJK fonts usually contain several thousands of glyphs. For using such fonts
with (original) \TeX, which can only handle 8-bit encodings, it is necessary to
split a font into several \keyword{subfonts}. The Subfont Definition File (SFD)
specify the way how those fonts are split into subfonts. \dvipdfmx\ uses SFD
files to convert a set of subfonts back to a single font.

SFD files are not required for use with \TeX\ variants which can handle
multi-byte character encodings and large character sets such as p\TeX,
up\TeX,\XeTeX, and Omega.
H\LaTeX\ and CJK-\LaTeX\ users are required to have those files to be
installed. SFD files are available as a part of the \package{ttfutils} package
for \TeX\ Live users.

\subsection{The Adobe Glyph List and ToUnicode Mappings}

The Adobe Glyph List\footnote{See,
``\href{http://github.com/adobe-type-tools/agl-specification}{Adobe Glyph List Specification}''}
(AGL) describes correspondence between PostScript glyph names (e.g., \code{AE},
\code{Aacute},...) and Unicode character sequences representing them.
Some features described in the section ``Unicode Support'' requires AGL file.

\dvipdfmx\ looks for the file \code{glyphlist.txt} when conversion from
PostScript glyph names to Unicode sequences is necessary.
This conversion is done in various situations; when creating ToUnicode CMaps
for 8-bit encoding fonts, finding glyph descriptions from TrueType and OpenType
fonts when the font itself does not provide a mapping from PostScript glyph
names to glyph indices (version 2.0 ``post'' table), and when the encoding
\code{unicode} is specified for Type1 font.

The AGL file is included in the \package{glyphlist} package. The latest version
can be found at Adobe's GitHub site:\medskip

\url{http://github.com/adobe-type-tools/agl-aglfn}
\medskip

ToUnicode Mappings are similar to AGL but they describe correspondence
between CID numbers (instead of glyph names) and Unicode values.
The content of those files are the same as CMap Resources.
They are required when using TrueType fonts emulated as a CID-keyed font.
They should be found in the same directory as ordinary CMap files.

ToUnicode Mapping files are included in the \package{adobemapping} package.
Those files are not required for \XeTeX\ users.

\section{Overview of Extensions}

This section gives a quick overview of \dvipdfmx's extended capabilities.

\subsection{CJK Support}

There are many extensions made for supporting CJK languages. Features described
here is mainly for CJK languages but their use is actually not limited to it.
Those features are implemented in a generic way so that it can be beneficial to
users who are not involved in CJK languages.

\subsubsection{Legacy Multi-byte Encodings}

\dvipdfmx\ has an extensible support for encodings by means of
PostScript CMap Resources. Just like \code{enc} files are written for 8-bit
encodings, one can write their own CMap files to support custom encodings.
See, Adobe's technical notes\cite{ADOBE} for details on PostScript CMap Resources.

\subsubsection{Vertical Writing}

\dvipdfmx\ supports the vertical writing extension used by p\TeX\ and up\TeX.
A DVI instruction to set the writing mode is supported. The OpenType Layout
GSUB Feature is supported for selecting vertical version of glyphs.

\begin{figure}
\centering
\jphoritext\hspace{24pt}\jpverttext%
\caption{An example of horizontal and vertical text;
left and right corner brackets are replaced with their vertical counterparts.}%
\label{FIG:verttext}
\end{figure}

\subsection{Unicode Support}

Unicode support here consists of two parts: Supporting Unicode as an input
encoding and making output PDF files ``Unicode aware''.

\subsubsection{Unicode as Input Encoding}

\dvipdfmx\ recognizes an additional keyword \code{unicode} in fontmap files
to declare that Unicode values are used in the input DVI file. Unicode support is
basically limited to the Basic Multilingual Plane (BMP) since there are no
support for code ranges that requires more than three bytes in TFM and extended
TFM formats.

\subsubsection{ToUnicode CMap Support}

In PDF, it is often the case that text is not encoded in Unicode.
However, modern applications usually want them represented in Unicode to make
it usable as text information.
The ToUnicode CMap is a bridge between PDF text string encodings and Unicode
encodings, and makes it possible to extract text in PDF files as
Unicode encoded strings. It is important to make resulting PDF search-able and
copy-and-past-able. Dvipdfmx supports auto-creation of ToUnicode CMaps.

It will not work properly for multiply encoded glyphs due to fundamental
limitations of Unicode conversion mechanism with ToUnicode CMaps.

\subsection{Other Extensions}

\dvipdfmx\ can generate encrypted PDF documents to protect its contents from
unauthorized access. It is limited to password-based authentication, and
public-key based authentication is not supported. The 256-bit AES encryption is
also supported for PDF version 1.7 and 2.0 setting although it may not be supported
by PDF viewers.

There are various other improvements over \dvipdfm. The most notable one is
more improved PDF input and output support: The cross-reference stream and
object stream introduced in \lnum{PDF-1.5} are also supported.

\chapter{Graphics}\label{SEC:graphics}

\section{Image Inclusion}

The basics of incorporating images into output PDF is the same as in \dvipdfm.
To do this, \LaTeX\ users can simply use the \package{graphicx} package.
(possibly with the driver option \code{dvipdfmx})
This section is \emph{not} for providing a how-to guide to include images but
just for supported graphics and image formats along with supported features.

Graphics support was mostly rewritten in \dvipdfmx.
Support for BMP and JPEG\lnum{2000} was added. An effort to preserve more
information originally found in included images, e.g., embedded ICC Profiles
and XMP Metadata, was made.

However, \dvipdfmx\ does not support various features common to graphics
manipulation programs such as resampling, color conversion, and selection of
compression filters. Thus, it is recommended to use other programs specialized
in image manipulation for preparation of images.

\subsection{Supported Graphics File Formats}

Supported formats are, PNG, JPEG, \lnum{JPEG2000}, BMP, PDF, and \MP\ generated
EPS. All other format images, such as SVG and PostScript, must be converted to
PDF before inclusion. The \option{-D} option, as in \dvipdfm, can be used for
filtering images.

\subsubsection{Notes on PNG Support}

PNG is supported as in \dvipdfm\ with many improvements.

PNG support includes most of important features of PNG format such as color
palette, transparency, 16-bit bit-depth color, embedded ICC Profiles,
calibrated color, and embedded XMP Metadata.

In including PNG images, \dvipdfmx\ first decompresses image data and then
compresses (if requested) it again.
For better compression ratio, a preprocessing filter (Predictor filter) might
be applied before compression.
\dvipdfmx\ supports the TIFF Predictor 2 and the PNG optimum filter.
However, there is yet no way to specify which predictor function is to be used
and currently PNG optimum filter is always employed.

Predictor filter is a preprocessing filter to image data for improving compression.
Using a predictor filter usually gives better compression
but in many cases compression speed becomes significantly slower.
Try \option{-C 0x20} command line option to disable predictor filters and to
check if slowness is due to filtering.

For the PNG optimum filter, a heuristic approach, ``minimum sum of absolute
differences'', is employed for finding the most optimal filter to be used.
See, discussion in the PNG Specification ''Filter selection'':\medskip

\url{http://www.w3.org/TR/2003/REC-PNG-20031110/\#12Filter-selection}
\medskip

As built-in support for the sRGB color space is absent in PDF,
the sRGB color can only be represented precisely by means of the sRGB ICC Profile.
However, for sRGB color PNG images, \dvipdfmx\ uses an approximate calibrated
RGB color space instead.
For approximating the sRGB color, the gamma and CIE \lnum{1931} chromaticity values
mentioned in the PNG Specification is used.
See, the following page for more information:\medskip

\url{http://www.w3.org/TR/2003/REC-PNG-20031110/\#11sRGB}
\medskip

\dvipdfmx\ also supports calibrated color with the \code{gAMA} and the \code{cHRM} chunk.
These chunks carry information on more accurate color representation.
Some software programs, however, write only \code{cHRM} but do not record the gamma value
although the PNG specification recommends to do so. Gamma value 2.2 is assumed if only
\code{cHRM} is present but \code{gAMA} is not.

Some PNG features are unavailable depending on output PDF version setting. Please refer
Table~\ref{TABLE:PNGfeat} for more details.

\begin{table}
 \centering
 \begin{tabular}{lp{8cm}}\hline
 Feature & PDF Version Required \\ \hline\hline
 16-bit Color Depth & Version 1.5 \\
 Transparency & Full support for alpha channel requires PDF version 1.4.
 Color key masking (a specific color is treated as fully transparent)
 requires 1.3.\\
 XMP Metadata & Version 1.4 \\
 ICC Profile & Version 1.3 \\
 \hline
 \end{tabular}
 \caption{PNG features and corresponding PDF versions required.}%
 \label{TABLE:PNGfeat}
\end{table}

\subsubsection{JPEG and \lnum{JPEG2000}}

JPEG format is supported as in \dvipdfm. In addition to this, \lnum{JPEG2000}
is also supported.

JPEG and \lnum{JPEG2000} image inclusion is basically done as ''pass-through'',
that is, image data is not decompressed before inclusion. So, although these
formats are basically lossy, there should be no quality loss when including
images.

JPEG is relatively well supported. \dvipdfmx\ supports embedded ICC Profiles
and CMYK color. Embedded XMP metadata is also preserved in the output PDF.
JFIF or Exif data might be used to determine image's physical size.

As the PDF specification does not require information irrelevant to
displaying images to be embedded, \dvipdfmx\ does not embed whole data.
Especially, not all application specific data is retained. Application
specific data such as JFIF, Exif, and \code{APP14} Adobe marker are
preserved.
Please note that XMP and Exif data which may contain location information
where the photo was taken is always preserved in the output PDF file.

\lnum{JPEG2000} is also supported. It is restricted to JP2 and JPX baseline
subset as required by the PDF specification. It is not well supported and still in
an experimental stage. J2C format and transparency are not supported.

\subsubsection{PDF Support}

PDF inclusion is supported as in \dvipdfm, with various important enhancement
over \dvipdfm\ for more robust inclusion. \dvipdfmx\ can handle cross-reference
streams and object streams introduced in \lnum{PDF-1.5}.
\dvipdfmx\ also supports inclusion of PDF pages other than the first page.
However, tagged PDF may cause problems and annotations are not kept.

As there are no clear way to determine the natural extent of the graphics content
to be clipped, \dvipdfmx\ preferably try to find the \emph{crop box} to decide
image size. If there are no crop box \emph{explicitly} specified,%
\footnote{There are some accusations by Japanese \TeX\ users as
''violating the PDF spec.'' regarding this point. However, what we are
talking about is how to guess the \emph{natural} or \emph{intended} size of
images but not the default value of the PDF crop box itself.} then it
tries to refer other boundary boxes such as the \emph{art box}. If there are no
possible boundaries of the graphics content explicitly specified, the \emph{media box},
which is the boundaries of the physical medium on which the page is to be printed,
is used as the last resort.

The \code{pdf:image} special supports additional keys, ``\code{page}'' and
``\code{pagebox}''. The \code{page} key takes an integer value representing
the page number of PDF page to be included, and the \code{pagebox} takes one
of the keywords \code{mediabox}, \code{cropbox}, \code{artbox}, \code{bleedbox},
or \code{trimbox} for selecting page's boundary box to be used. For example,
\begin{lstlisting}
\special{pdf:image pagebox artbox page 3 (foo.pdf)}
\end{lstlisting}
includes 3rd page of `foo.pdf' with the boundary box set to the art box.

\subsubsection{Other Image Formats}

For \MP\ generated Encapsulated PostScript (EPS) files, multi-byte encoding
support is added.
\dvipdfmx\ also supports ``\MP\ mode''. When \dvipdfmx\ is invoked with
\option{-M} option, it enters in \MP\ mode and processes a \MP\
generated EPS file as an input.%
\footnote{\code{prologue} should be set to \code{2}.}

BMP support is also added. It is limited to uncompressed or RLE-compressed
raster images. Extensions are not (won't be) supported.

For image formats not natively supported, the \code{-D} option can be
used to convert images to PDF format before inclusion, as in \dvipdfm.
In \dvipdfmx, the letter \code{v} in the \code{-D} option argument is expanded
to the output PDF version.

\subsection{Image Cache}

Caching of images generated via filtering command specified with \option{-D}
option is supported. It solves the problems that image inclusion becomes very
slow when external filtering program such as GhostScript is invoked each time
images are included.

Use \option{-I} option to enable this feature:
\begin{lstlisting}
-I 24
\end{lstlisting}
where the integer represents the life of cache files, 24 hours in this example.
Zero and negative values have a special meaning.
Value 0 for ``erase old cached images while leaving newly created one'',
-1 for ``erase all cached images'', and -2 for ``ignore image cache''.
Default value is set to -2.

\section{Graphics Drawing}

\dvipdfmx\ does not offer a high level interface to draw graphics objects.
A possible way to draw graphics is to write raw PDF graphics drawing codes and
then to insert them into the output via \code{special} commands.

To show an example, the following code:
\begin{lstlisting}
\special{pdf:content
 1 0 0 1 0 0 cm
 0 100 m
 80 100 120 80 120 0 c
 S
}
\end{lstlisting}
draws a Bézier curve,
\begin{center}
\specialbox{120bp}{100bp}{pdf:content 1 0 0 1 0 0 cm 0 100 m 80 100 120 80 120 0 c S}
\end{center}
The \code{pdf:content} special is used here which is useful for inserting an
isolated graphics object.

The above example illustrates a typical example of PDF graphics drawing.
It consists of three parts; setting graphics state, constructing a path, and painting
a path. A Graphic object are specified as a sequence of operators and their operands
using \emph{postfix notation}. \keyword{Graphics state operators} comes first,
\code{cm} in this example sets the current transformation matrix (CTM). Then,
\keyword{path construction} operators follow; move to position $(0, 100)$,
append a Bézier curve from current point to $(120, 0)$ with control points
$(80, 100)$ and $(120, 80)$. Finally, a \keyword{path painting} operator
comes to draw the constructed path.
In this example the stroking operator \code{S}
is used.

\subsection{The \code{pdf:content} Special}

The \code{pdf:content} special can be used for drawing an \emph{isolated}
graphics object. It sets the origin of graphics drawing operators supplied to
this command to the position where it is inserted.
The whole content is enclosed by a pair of graphics state save-restore
operators. So for example, a color change made within a \code{pdf:content}
command takes an effect only within the content of this special.

\subsection{Guide to PDF Graphics Operators}

PDF employs essentially the same imaging model as PostScript.
So, it is easy to learn about PDF graphics drawing for people who are
well accustomed to PostScript. This section is intended to be a short guide
for PDF graphics operators.

\subsubsection{Graphics State Operators}

The \code{cm} operator modifies CTM by concatenating the specified matrix.
Operands given to this operators are six numbers each representing
transformation matrix elements:
translation represented as $[1, 0, 0, 1, t_x, t_y]$,
scaling $[s_x, 0, 0, s_y, 0, 0]$,
rotation $[\cos\theta, \sin\theta, -\sin\theta, \cos\theta, 0, 0]$.

To uniformly scale the object, just use
\begin{lstlisting}
2.0 0 0 2.0 0 0 cm
\end{lstlisting}

The \code{w} operator sets the line width, e.g., `\code{2 w}' sets the line
width to 2. Here is an example of drawing a rotated rectangle:
\begin{lstlisting}
0.866 0.5 -0.5 0.866 30 2 cm 5 w 0 0 100 50 re S
\end{lstlisting}
\begin{center}
\specialbox{120bp}{96bp}{pdf:content 0.866 0.5 -0.5 0.866 30 2 cm 5 w 0 0 100 50 re S}%
\end{center}

Transformations can be sequentially applied; for the above example,
\begin{lstlisting}
1 0 0 1 30 2 cm 0.866 0.5 -0.5 0.866 0 0 cm
5 w 0 0 100 50 re S
\end{lstlisting}
gives the same result.

To specify colors, use \code{RG}, \code{rg}, \code{K}, and \code{k} operators,
for RGB or CMYK color for stroking (upper-case) and nonstroking (lower-case).
\begin{lstlisting}
0.866 0.5 -0.5 0.866 30 2 cm 5 w
1 0.4 0 0 K 1 0 0 0 k
0 0 100 50 re B
\end{lstlisting}
where the \code{B} operator fill and then stroke the path.
\begin{center}
\specialbox{120bp}{96bp}{pdf:content 0.866 0.5 -0.5 0.866 30 2 cm 5 w
1 0.4 0 0 K 1 0 0 0 k 0 0 100 50 re B}
\end{center}

A dash pattern can be specified with the \code{d} operator.
Operands for this operator are the \keyword{dash array} and
the \keyword{dash phase}.
For example, to specify a dash pattern with 6-on 4-off starting with phase 0:
\begin{lstlisting}
[6 4] 0 d 2 w 0 0 m 320 0 l S
\end{lstlisting}
draws the following dashed line:
\begin{center}
\specialbox{320bp}{30bp}{pdf:content
1 0 0 1 0 20 cm [6 4] 0 d 2 w 0 0 m 320 0 l S}
\end{center}

Other important operators are \code{q} and \code{Q}, which saves and restores
the graphics state.
\begin{lstlisting}
1 0 0 1 30 2 cm
q
0.866 0.5 -0.5 0.866 0 0 cm
[6 4] 0 d 2 w 0 0 100 50 re S
Q
-30 0 m 90 0 l S
0 -2 m 0 96 l S
\end{lstlisting}
In the above example, \code{d}, \code{w}, and rotation only take effect within
the \code{q}-\code{Q} block. The portion drawing two straight lines is unaffected
by these graphics state change.
\begin{center}
\specialbox{120bp}{96bp}{pdf:content
1 0 0 1 30 2 cm
q
0.866 0.5 -0.5 0.866 0 0 cm
[6 4] 0 d 2 w 0 0 100 50 re S
Q
-30 0 m 90 0 l S
0 -2 m 0 96 l S
}
\end{center}

For a (incomplete) list of graphics state operators, see
Talbe~\ref{TAB:operatorsGS}.

\begin{table}
 \centering
 \begin{tabular}{llp{7.6cm}}\hline
 Operands & Operator & Description\\ \hline\hline
 --- & \code{q} & Save the current graphics state.\\
 --- & \code{Q} & Restore the previously saved graphics state.\\
 a b c d e f & \code{cm} & Modify the current transformation matrix
 by concatenating the specified matrix.\\
 \textit{width} & \code{w} & Set the line width.\\
 \textit{array} \textit{phase} & \code{d} & Set the line dash pattern.\\
 r g b & \code{RG} & Set the stroking color space to RGB and
 set the stroking color as specified.\\
 r g b & \code{rg} & Set the nonstroking color space to RGB and
 set the nonstroking color as specified.\\
 c m y k & \code{K} & Set the stroking color space to CMYK and
 set the stroking color as specified.\\
 c m y k & \code{k} & Set the nonstroking color space to CMYK and
 set the nonstroking color as specified.\\
 \hline
 \end{tabular}
 \caption{A few examples of graphics state operators and color operators.}%
 \label{TAB:operatorsGS}
\end{table}

\subsubsection{Path Construction Operators}

A path construction normally starts with a \code{m} operator which moves the
current point to the specified position and then sequences of other path
construction operators follow. The path currently under construction is
called the \keyword{current path}. A sequence of path construction operators
appends segments of path to the current path and then move the
\keyword{current point} to the end point of appended path.
A typical sequence of path construction looks like,
\begin{lstlisting}
100 50 m
100 78 78 100 50 100 c
22 100 0 78 0 50 c
0 22 22 0 50 0 c
78 0 100 22 100 50 c
S
\end{lstlisting}
\begin{center}
\specialbox{120bp}{80bp}{pdf:content
100 50 m
100 78 78 100 50 100 c
22 100 0 78 0 50 c
0 22 22 0 50 0 c
78 0 100 22 100 50 c
S}
\end{center}
This example is an approximated circle drawn by four Bézier curves.

Table~\ref{TAB:operators} shows a list of path construction operators.
Those who are accustomed to the PostScript language should note that in PDF
the current path is not a part of the graphics state,
and hence is \emph{not} saved and restored along with the other graphics state
parameters.

\begin{table}
 \centering
 \begin{tabular}{llp{6.9cm}}\hline
 Operands & Operator & Description \\ \hline\hline
 x y & \code{m} & Begin a new path by moving the current point specified by given operands.\\
 x y & \code{l} & Append a line segment from the current point to the point specified.\\
 x_1 y_1 x_2 y_2 x_3 y_3 & \code{c} & Append a Bézier curve to the current path.
 Two Control points and the end point given as operands.\\
 x_2 y_2 x_3 y_3 & \code{v} & Append a Bézier curve to the current path. Using the current
 point and first two operand as the Bézier control points.\\
 x_1 y_1 x_3 y_3 & \code{y} & Append a Bézier curve to the current path. The second
 control point coincides with the end point.\\
 --- & \code{h} & Close the current path by appending a straight line segment from the current point
 to the starting point of the path.\\
 x y \textit{width} \textit{height} & \code{re} & Append a rectangle. First two operands for the
 position of lower-left corner, third and forth operand representing width and
 height.\\
 \hline
 \end{tabular}
 \caption{List of path construction operators. All operators move the current point to the end
 point of appended path.}\label{TAB:operators}
\end{table}

\subsubsection{Path Painting Operators}

There are basically four kind of path painting operators: \code{S}, \code{f},
\code{B}, and \code{n}. The first three for ``stroke'', ``fill'', and
``fill then stroke'' operators respectively, and the last one \code{n}
paints nothing but end the path object. For filling operators, there are
two kind of operators depending on how ``insideness'' of points are determined:
the \keyword{non-zero winding number rule} and the \keyword{even-odd rule}.
The even-odd rule operators are \code{f*} and \code{B*}.

The following example illustrates the difference:
\begin{lstlisting}
0 0 100 100 re 20 20 60 60 re f
1 0 0 1 120 0 cm
0 0 100 100 re 20 20 60 60 re f*
\end{lstlisting}
\begin{center}
\specialbox{220bp}{100bp}{pdf:content
0 0 100 100 re 20 20 60 60 re f
1 0 0 1 120 0 cm
0 0 100 100 re 20 20 60 60 re f*}
\end{center}
The ``interior'' of the ``inner'' square has a non-zero even winding number.
(In this example, counter-clockwise direction is assumed for both of
two \code{re} operators.)

\chapter{Specials}

\section{PDF Specials}\label{SEC:specials}

\dvipdfmx\ recognizes various special commands originally introduced in
\dvipdfm. Please refer to the ``Dvipdfm User's Manual''\cite{DVIPDFM} for detailed
information on PDF specials.

\subsection{Additions to PDF Specials}

Several \code{special} commands are added for more flexible PDF generation:
creation of arbitrary stream objects, controlling \dvipdfmx\ behavior, and some
specials which might be useful for graphics drawing.

\subsubsection{PDF Object Manipulation}

PDF object manipulation is a key feature of PDF specials.
The \code{pdf:fstream} special is added in \dvipdfmx\ which enables creation of
PDF stream object from an existing file. The syntax of this special is,
\begin{lstlisting}
pdf:fstream @identifier (filename) <<dictionary>>
\end{lstlisting}
where identifier and filename (specified as a PDF string object) are
mandatory and a dictionary object, following the filename, which is to be added
to the stream dictionary is optional.

For example, to incorporate XMP Metadata from a file \code{test.xmp},
\begin{lstlisting}
\special{pdf:fstream @xmp (test.xmp) <<
 /Type /Metadata
 /Subtype /XML
>>}
\special{pdf:put @catalog << /Metadata @xmp >>}
\end{lstlisting}

Similarly, \code{pdf:stream} special can be used to create a PDF stream
object from a PDF string instead of a file.
\begin{lstlisting}
pdf:stream @identifier (stream contents) <<dictionary>>
\end{lstlisting}

This special might be useful for creating a simple image inline.
\begin{lstlisting}
\special{pdf:stream @myim01
 <5500AAC05500AAC05500AAC05500AAC05500>
 <<
 /Type /XObject
 /Subtype /Image
 /BitsPerComponent 1
 /ColorSpace /DeviceGray
 /Width 9
 /Height 9
 >>
}
\special{pdf:put @resources <<
 /XObject << /MyIM01 @myim01 >>
>>}
\special{pdf:content 81 0 0 81 0 0 cm /MyIM01 Do}
\end{lstlisting}
The above example draws an image like Figure~\ref{FIG:stream}.
\begin{figure}
 \centering
 \makebox[81bp][l]{\raisebox{-81bp}[0bp][81bp]{%
 \special{pdf:stream @myim01 <5500AAC05500AAC05500AAC05500AAC05500>
 <<
 /Type /XObject
 /Subtype /Image
 /BitsPerComponent 1
 /ColorSpace /DeviceGray
 /Width 9
 /Height 9
 >>}
 \special{pdf:put @resources <<
 /XObject << /MyIM01 @myim01 >>
 >>}
 \special{pdf:content 81 0 0 81 0 0 cm /MyIM01 Do}
}}
\caption{An image created by \code{pdf:stream} special.}%
\label{FIG:stream}
\end{figure}

\subsubsection{Controlling Font Mappings}

\code{pdf:mapline} and \code{pdf:mapfile} specials can be used to append a
fontmap entry or to load a fontmap file:
\begin{lstlisting}
pdf:mapline foo unicode bar
pdf:mapfile foo.map
\end{lstlisting}

\subsubsection{Specifying Output PDF Version}

\code{pdf:majorversion} and \code{pdf:minorversion} specials can be used to
specify major and minor version of output PDF.
\begin{lstlisting}
pdf:minorversion 3
\end{lstlisting}

Please note that this command must appear on the first page,
otherwise it will be ignored.

\subsubsection{Custom File Identifiers}

\newfeature{Addition in \TeX\ Live 2019}

A custom file identifier (the \code{ID} entry in the trailer dictionary)
can be specified via \code{pdf:trailerid} special as
\begin{lstlisting}
pdf:trailerid [(0123456789abcdef) (0123456789abcdef)]
\end{lstlisting}
An array of two 16-byte PDF string objects must be supplied as
a file identifier. This special command must appear on the first page.

\subsubsection{Encryption}

To protect output PDF with encryption, use \code{pdf:encrypt} special
\begin{lstlisting}
pdf:encrypt userpw (foo) ownerpw (bar) length 128 perm 20
\end{lstlisting}
where user-password (\code{userpw}) and owner-password (\code{ownerpw}) must be
specified as PDF string objects. (which can be empty)
Numbers specifying key-length and permission flags here are decimal numbers.
See, section ``\hyperref[SEC:encryption]{Encryption Support}'' for a brief
description of permission flags.

\subsubsection{PDF Document Creation}

\newfeature{Addition in \TeX\ Live 2019}

As a convenience, the \code{pageresources} special is added, which puts given page
resources into subsequent page's \keyword{Resource Dictionary}. For example,
\begin{lstlisting}
\special{pdf:pageresources <<
 /ExtGState << /MyGS01 << /ca 0.5 /CA 0.5 >> >>
>>}
\end{lstlisting}
puts an ExtGState resource named \code{MyGS01} into the current page's and all
subsequent pages' resource dictionary.

Other notable extensions are \code{code}, \code{bcontent}, and
\code{econtent}. The \code{code} special can be used to insert raw PDF graphics
instructions into the output. It is different from \dvipdfm's
\code{content} special in that it does not enclose contents with a \code{q}
and \code{Q} (save-restore of graphics state) pair.
A typical usage of this special is:
\begin{lstlisting}
\special{pdf:code q 1 Tr}
...some text goes here...
\special{pdf:code Q}
\end{lstlisting}
which changes text rendering mode to 1, as shown in Figure~\ref{FIG:trmode}.

\begin{figure}
\centering
\mbox{\special{pdf:code q 1 w 1 Tr}%
{\fontsize{200pt}{200pt}\selectfont\textchi}%
\special{pdf:code Q}}%
\caption{A character drawn in the PDF text rendering mode 1.}%
\label{FIG:trmode}
\end{figure}

Be careful on using this special as it is very easy to generate
broken PDF files. The \code{bcontent} and \code{econtent} pair is somewhat
fragile and might be incompatible to other groups of special commands.
It may not always be guaranteed to work as `expected'.

\subsection{ToUnicode Special}

PDF allows users to attach various additional information such as document information,
annotation, and navigation information (like bookmarks) to their document.
All human-readable text, \keyword{text string}, contained in such information must
be encoded either in \keyword{PDFDocEncoding} or UTF-16BE with Unicode byte order
marker. However, as many users can't prepare their document with text strings
properly encoded, there is a special kind of special command, \code{pdf:tounicode},
which can be used to convert text strings into the appropriate Unicode form.
Note that this feature is provided just as a remedy for users incapable of encoding
text strings properly.

For example,
\begin{lstlisting}
\special{pdf:tounicode 90ms-RKSJ-UCS2}
\end{lstlisting}
declares that \emph{some} of text strings should be re-encoded according to specified
conversion CMap \code{90ms-RKSJ-UCS2}.

Conversion is done only for arguments to several PDF special commands such as
\code{docinfo}, \code{ann}, and \code{out} but not for that of general object creation
specials. Note that not all PDF string objects are subject to this conversion.
By default, only dictionary entries listed below are converted.
\begin{lstlisting}
Title Author Subject Keywords Creator Producer Contents Subj
TU T TM
\end{lstlisting}

\newfeature{Addition in \TeX\ Live 2019}

The list of dictionary entries subject to conversion can be extended by supplying
additional dictionary keys as an array object:
\begin{lstlisting}
 \special{pdf:tounicode 90ms-RKSJ-UCS2 [/RC /DS]}
\end{lstlisting}

If the name of conversion CMap contains one of the keywords RKSJ, \lnum{B5}, GBK, and KSC,
PDF string objects are treated specially when they are parsed. A two byte sequence
starting with the first byte's high bit set is treated ``as is'' so that
the \code{0x5c} byte appears in the second byte is not treated as an escape sequence.
This behavior is not compliant to the PDF specification.

\subsection{PDF Special Examples}

This section shows several examples of special command usage.
It is intended to be a hint for advanced users, so uninterested users can safely skip
this section. In many cases, using \dvipdfmx\ PDF specials requires knowledge on PDF.
Please refer to Adobe's ``PDF Reference''\cite{ADOBE}.

\subsubsection{Annotations}

In this section, some useful special commands for creating \keyword{annotations}
are explained. Note that viewer support is required for annotations to be
displayed correctly.

First start with a very simple \keyword{Text Annotation} for attaching a comment.
This feature is supported by many PDF viewer applications.
\marginnote{\special{pdf:ann width 20bp height 20bp
 <<
 /Type /Annot
 /Subtype /Text
 /Name /Comment
 /T (Text Annotation Example)
 /Subj (An Example of Text Annotations)
 /Contents (A Quick Brown Fox Jumped Over The Lazy Dog.)
 >>
}}

\begin{lstlisting}
\special{pdf:ann width 20bp height 20bp
 <<
 /Type /Annot
 /Subtype /Text
 /Name /Comment
 /T (Text Annotation Example)
 /Subj (An Example of Text Annotations)
 /Contents (A Quick Brown Fox Jumped Over The Lazy Dog.)
 >>
}
\end{lstlisting}
\code{pdf:ann} special is used to create an annotation. A small icon shall
be shown on the side margin. Here, dictionary entry \code{T} is for the tilte,
\code{Subj} for the subject of this annotation, and \code{Contents} for
the text string to be shown in the body of this annotation.

Likewise, \keyword{Rubber Stamp Annotation}, which places a rubber stamp
like figure,
\begin{center}
\specialbox{150bp}{50bp}{pdf:ann width 150bp height 50bp
 <<
 /Type /Annot
 /Subtype /Stamp
 /Name /Approved
 >>
}
\end{center}

\begin{lstlisting}
\special{pdf:ann width 150bp height 50bp
 <<
 /Type /Annot
 /Subtype /Stamp
 /Name /Approved
 >>
}
\end{lstlisting}
Other keywords such as \code{Expired}, \code{Final}, \code{Draft}, and so on,
can be used in place of \code{Approved}.

One can create stamps of their own style. For this purpose, other specials
\code{pdf:bxobj} and \code{pdf:exobj} can be used for designing stamps.
Those specials ``capture'' all typeset material enclosed by them into a PDF
\keyword{Form XObject}, which is a reusable graphics object like included images.

For a simple example,
\begin{lstlisting}
\special{pdf:bxobj @MyStamp
 width 280pt height 0pt depth 40pt}
\addfontfeature{Scale=4,Color=FF9933}My Own Stamp
\special{pdf:exobj}
\end{lstlisting}
It captures typeset material ``My Own Stamp'' (this example uses \code{fontspec}
package's command for changing font size and text color) into the object labeled as
\code{MyStamp} for later reuse.
Then, \code{AP} (\keyword{appearance dictionary}) entry for controlling the appearance
of annotations is used as,
\begin{lstlisting}
\special{pdf:ann width 280pt height 40pt
 <<
 /Type /Annot
 /Subtype /Stamp
 /AP << /N @MyStamp >>
 >>
}
\end{lstlisting}
The image captured into the object \code{MyStamp} is used as ``Normal''
(\code{AP} dictionary entry \code{N}) appearance.
(\code{R} for ``Rollover'' and \code{D} for ``Down'' can be used.)

\parbox[t][0pt][c]{280pt}{%
\special{pdf:bxobj @MyStamp width 280pt height 0pt depth 40pt}%
\addfontfeature{Scale=4,Color=FF9933}My Own Stamp%
\special{pdf:exobj}%
}%

The result is:
\begin{center}
\specialbox{280bp}{40bp}{pdf:ann width 280pt height 40pt
 <<
 /Type /Annot
 /Subtype /Stamp
 /AP << /N @MyStamp >>
 >>
}
\end{center}

With the following code, \dvipdfmx\ reads the source file and creates a stream
object named \code{SourceFile}, and then creates file attachment annotation.
\marginnote{%
\special{pdf:fstream @SourceFile (\jobname.tex)}%
\special{pdf:ann width 10bp height 20bp
 <<
 /Type /Annot
 /Subtype /FileAttachment
 /FS <<
 /Type /Filespec
 /F (\jobname.tex)
 /EF << /F @SourceFile >>
 >>
 /Name /PushPin
 /C [0.8 0.2 0.2]
 /T (The Dvipdfmx User's Manual)
 /Subj (The Dvipdmfx User's Manual)
 /Contents (XeLaTeX source file of this manual.)
 >>
}}%
\begin{lstlisting}
\special{pdf:fstream @SourceFile (\jobname.tex)}%
\special{pdf:ann width 10bp height 20bp
 <<
 /Type /Annot
 /Subtype /FileAttachment
 /FS <<
 /Type /Filespec
 /F (\jobname.tex)
 /EF << /F @SourceFile >>
 >>
 /Name /PushPin
 /C [0.8 0.2 0.2]
 /T (The Dvipdfmx User's Manual)
 /Subj (The Dvipdfmx User's Manual)
 /Contents (XeLaTeX source file of the manual.)
 >>
}
\end{lstlisting}
A push-pin image must be shown on the margin if viewer supports this kind of
annotation.
PDF viewer applications are required to provide predefined icon appearances
at least for the following standard icons: \code{Graph}, \code{PushPin},
\code{PaperClip}, and \code{Tag}.

\subsubsection{Special Color Space}

This section shows various examples of using \keyword{Special color spaces}.
Examples in this section have a common structure. They consist of essentially
three parts. The first part is for defining color space itself.
PDF object creation commands like \code{pdf:obj} and \code{pdf:stream} are used
for this purpose. Next is for registering color space resources in the page's
\keyword{Resource Dictionary}. It can be done via \code{pdf:put} command as,
\begin{lstlisting}
\special{pdf:put @resource <<
 /Category << ...key-value pairs... >>
>>}
\end{lstlisting}
where \code{@resource} is a special keyword representing current page's
Resource Dictionary and \code{Category} (to be replaced by actual category
name) is a category name such as \code{ColorSpace}.
Finally, graphics objects are placed, with or with a combination of
text and, PDF drawing operators inserted by the \code{pdf:code} or the
\code{pdf:contents} special.

%%EXAMPLE: Separation Color Space
The first example is the \keyword{Separation} color space:
\special{pdf:stream @TintTransform1
 ({0 exch dup 0.62 mul exch 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}%
\special{pdf:stream @TintTransform2
 ({dup 0.78 mul exch dup 0.05 mul exch 0.71 mul 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}%
\special{pdf:obj @Orange [
 /Separation /Orange /DeviceCMYK @TintTransform1
]
}%
\special{pdf:obj @Green [
 /Separation /Green /DeviceCMYK @TintTransform2
]
}%
\begin{center}
\mbox{%
\special{pdf:put @resources <<
 /ColorSpace << /CS01 @Orange /CS02 @Green >>
 >>
}%
\fontsize{40pt}{40pt}\selectfont
\special{pdf:code q /CS01 cs 1.0 scn}Orange\special{pdf:code Q} and
\special{pdf:code q /CS02 cs 1.0 scn}Green\special{pdf:code Q}
}
\end{center}
\begin{lstlisting}
\special{pdf:stream @TintTransform1
 ({0 exch dup 0.62 mul exch 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}
\special{pdf:stream @TintTransform2
 ({dup 0.78 mul exch dup 0.05 mul exch 0.71 mul 0})
 << /FunctionType 4
 /Domain [0.0 1.0]
 /Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
 >>
}
\special{pdf:obj @Orange [
 /Separation /Orange /DeviceCMYK @TintTransform1
]
}
\special{pdf:obj @Green [
 /Separation /Green /DeviceCMYK @TintTransform2
]
}
\mbox{%
 \special{pdf:put @resources <<
 /ColorSpace << /CS01 @Orange /CS02 @Green >>
 >>
 }%
 \special{pdf:code q /CS01 cs 1.0 scn}
 Orange
 \special{pdf:code Q}
 and
 \special{pdf:code q /CS02 cs 1.0 scn}
 Green
 \special{pdf:code Q}
}
\end{lstlisting}

\code{TintTransform}'s defined here are functions for transforming
\keyword{tint} values into approximate colors in the
\keyword{alternate color space}
(\code{DeviceCMYK} in this example). PostScript calculator functions are used
for converting a single component value representing ``Orange'' or ``Green''
into four component CMYK values to approximate those colors. The ``Orange''
color v is approximated as $(0, 0.62v, v, 0)$ in CMYK color space for
alternate display here.

The \code{cs} operator for selecting color space and the \code{scn} operator
for color values are used in the \code{pdf:code} special.
Be sure that the \code{pdf:put} command, which puts color space resources
into the current page's Resource Dictionary, goes into the same page as
subsequent drawing commands.

\dvipdfmx\ currently does not have an easy interface for using various color
space families such as CIE-Based color spaces (e.g., calibrated colors and
color space with an ICC profile) and Special color spaces (e.g., indexed,
separation, shading and patterns).

%%EXAMPLE: Shading
Another example is a \keyword{shading pattern}:
\begin{lstlisting}
\special{pdf:put @resources <<
 /Shading <<
 /SH01 <<
 /ShadingType 2
 /ColorSpace @Orange
 /Coords [0 0 320 20]
 /Extend [true true]
 /Function << /FunctionType 2 /Domain [0 1] /N 1.0 >>
 >>
 >>
>>}
\special{pdf:content 0 0 320 20 re W n /SH01 sh}
\end{lstlisting}
where the ``Orange'' separation color space defined before is used again.
This example shows an axial shading (\code{ShadingType} 2) pattern.
\begin{center}
\makebox[320pt][l]{
 \special{pdf:put @resources <<
 /Shading <<
 /SH01 <<
 /ShadingType 2
 /ColorSpace @Orange
 /Coords [0 0 320 20]
 /Extend [true true]
 /Function << /FunctionType 2 /Domain [0 1] /N 1.0 >>
 >>
 >>
 >>}
 \raisebox{-20pt}[0pt][20pt]{\special{pdf:content 0 0 320 20 re W n /SH01 sh}}
}
\end{center}

The shading pattern requires coordinate values to be mapped into color values.
Type 2 (Exponential Interpolation) \keyword{Function} is used for defining how
this mapping should occur here.
The above example, with the exponent $N=1$, is just a simple linear-gradient.

The final examples is a \keyword{tiling pattern}.
\begin{lstlisting}
\special{pdf:stream @MyPattern
 (0.16 0 0 0.16 0 0 cm 4 w
 50 0 m 50 28 28 50 0 50 c S 100 50
 m 72 50 50 28 50 0 c S
 50 100 m 50 72 72 50 100 50 c S
 0 50 m 28 50 50 72 50 100 c S
 100 50 m 100 78 78 100 50 100 c 22 100 0 78 0 50 c
 0 22 22 0 50 0 c 78 0 100 22 100 50 c S
 0 0 m 20 10 25 5 25 0 c f 0 0 m 10 20 5 25 0 25 c f
 100 0 m 80 10 75 5 75 0 c f
 100 0 m 90 20 95 25 100 25 c f
 100 100 m 80 90 75 95 75 100 c f
 100 100 m 90 80 95 75 100 75 c f
 0 100 m 20 90 25 95 25 100 c f
 0 100 m 10 80 5 75 0 75 c f
 50 50 m 70 60 75 55 75 50 c 75 45 70 40 50 50 c f
 50 50 m 60 70 55 75 50 75 c 45 75 40 70 50 50 c f
 50 50 m 30 60 25 55 25 50 c
 25 45 30 40 50 50 c f
 50 50 m 60 30 55 25 50 25 c 45 25 40 30 50 50 c f)
 <<
 /BBox [0 0 16 16]
 /PaintType 2
 /PatternType 1
 /Resources <<
 /ProcSet [/PDF]
 >>
 /TilingType 3
 /Type /Pattern
 /XStep 16
 /YStep 16
 >>
}
\end{lstlisting}

The above example defines a tiling pattern. The content stream containing
painting operators, \code{m} for ``move-to'', \code{c} for ``curve-to'',
\code{f} for ``fill'', and \code{S} for ``stroke'', defines the appearance of
the \keyword{pattern cell} for this tiling pattern. With the following code,
\begin{lstlisting}
\special{pdf:put @resources
 <<
 /ColorSpace << /CS01 [/Pattern /DeviceRGB] >>
 /Pattern << /PT01 @MyPattern >>
 >>
}
\special{pdf:content
 q 0.8 0.3 0.3 RG /CS01 cs 0.8 0.3 0.3 /PT01 scn
 0 0 320 100 re f
}
\end{lstlisting}
a box filled with the tiling pattern defined above is drawn.
\special{pdf:stream @MyPattern
 (0.16 0 0 0.16 0 0 cm 4 w
 50 0 m 50 28 28 50 0 50 c S 100 50
 m 72 50 50 28 50 0 c S
 50 100 m 50 72 72 50 100 50 c S
 0 50 m 28 50 50 72 50 100 c S
 100 50 m 100 78 78 100 50 100 c 22 100 0 78 0 50 c
 0 22 22 0 50 0 c 78 0 100 22 100 50 c S
 0 0 m 20 10 25 5 25 0 c f 0 0 m 10 20 5 25 0 25 c f
 100 0 m 80 10 75 5 75 0 c f
 100 0 m 90 20 95 25 100 25 c f
 100 100 m 80 90 75 95 75 100 c f
 100 100 m 90 80 95 75 100 75 c f
 0 100 m 20 90 25 95 25 100 c f
 0 100 m 10 80 5 75 0 75 c f
 50 50 m 70 60 75 55 75 50 c 75 45 70 40 50 50 c f
 50 50 m 60 70 55 75 50 75 c 45 75 40 70 50 50 c f
 50 50 m 30 60 25 55 25 50 c
 25 45 30 40 50 50 c f
 50 50 m 60 30 55 25 50 25 c 45 25 40 30 50 50 c f)
 <<
 /BBox [0 0 16 16]
 /PaintType 2
 /PatternType 1
 /Resources <<
 /ProcSet [/PDF]
 >>
 /TilingType 3
 /Type /Pattern
 /XStep 16
 /YStep 16
 >>
}%
\begin{center}
\raisebox{-100bp}[0bp][100bp]{\makebox[320bp][l]{\special{pdf:put @resources
 <<
 /ColorSpace << /CS01 [/Pattern /DeviceRGB] >>
 /Pattern << /PT01 @MyPattern >>
 >>
}%
\special{pdf:content
 0.8 0.3 0.3 RG /CS01 cs 0.8 0.3 0.3 /PT01 scn
 0 0 320 100 re f
}}}%
\end{center}

\subsubsection{Transparency}

%%EXAMPLE: Transparency
\XeTeX's transparency feature is currently lost in \xdvipdfmx, but the same
effect can be achieved by setting graphics state parameters with
\code{ExtGState} resources and \code{gs} operator. Here is a simple
transparency example:
\special{pdf:obj @gs01 <<
 /Type /ExtGState /CA 0.5 /ca 0.5 /AIS false
>>}%
\begin{figure}[ht]
\centering
\mbox{%
 %\raisebox{120pt}{\parbox[t]{0.8\textwidth}{%
 % \addfontfeature{Color=444444}\lipsum[1]}%
 %}%
 %\hspace{-0.8\textwidth}%
 \special{pdf:put @resources <<
 /ExtGState << /GS01 @gs01 >>
 >>}%
 \fontsize{220pt}{220pt}\selectfont
 \special{pdf:code q /GS01 gs 1.0 0.8 0.2 rg}%
 α%
 \special{pdf:code 0.4 0.8 0.4 rg}%
 \hspace{-0.3em}%
 β%
 \hspace{-0.3em}\raisebox{0.5ex}{%
 \special{pdf:code 0.4 0.4 0.8 rg}%
 π%
 }%
 \special{pdf:code 0.6 0.2 0.8 rg}%
 \hspace{-0.2em}%
 γ%
 \special{pdf:code Q}%
}
\end{figure}
\begin{lstlisting}
\special{pdf:obj @GS01 <<
 /Type /ExtGState /CA 0.5 /ca 0.5 /AIS false
>>}%
\mbox{%
 \special{pdf:put @resources <<
 /ExtGState << /GS01 @GS01 >>
 >>}%
 \special{pdf:code q /GS01 gs 1.0 0.8 0.2 rg}%
 α%
 \special{pdf:code 0.4 0.8 0.4 rg}%
 \hspace{-0.3em}%
 β%
 \hspace{-0.3em}\raisebox{0.5ex}{%
 \special{pdf:code 0.4 0.4 0.8 rg}%
 π%
 }%
 \special{pdf:code 1.0 0.2 0.4 rg}%
 \hspace{-0.2em}%
 γ%
 \special{pdf:code Q}%
}
\end{lstlisting}
where values for \code{CA} and \code{ca} represent opacity of stroke and
fill color respectively. Again, \code{pdf:put} command must go into the same
page as subsequent graphics and text drawing operators.

\section{Dvipdfmx Extensions}

\newfeature{Addition in \TeX\ Live 2016}

\noindent{}A new special \code{dvipdfmx:config} was introduced in
\TeX Live 2016 which makes it possible to invoke a command line option.
Several single letter command line options except \option{D} are supported.
For example,
\begin{lstlisting}
dvipdfmx:config C 0x10
\end{lstlisting}
sets the \dvipdfmx's compatibility flags. See, the section
``\hyperref[SEC:compatibility]{Incompatible Changes}'' for an explanation of
compatibility flags.

\section{PS Specials}

PS (PostScript) specials can be used to insert a raw PostScript code for drawing
graphics objects and transforming subsequent text and graphics.
Please note that support for PostScript operators in \dvipdfmx\ is very
limited. It is just enough for interpreting PostScript figures output by \MP.
Only a basic set of operators for arithmetic and math, stack operation and manipulation,
graphics state, path construction and painting, glyph and font, are supported.
See, Table~\ref{TABLE:PS} for the list of
recognized PostScript operators.

\begin{table}
 \centering
 \begin{tabular}{p{3cm}>{\raggedright\arraybackslash}p{8cm}}\hline
 Classification & Operators \\ \hline\hline
 Arithmetic \& Math & \code{add} \code{sub} \code{mul} \code{div} \code{neg} \code{truncate}\\
 Stack Operation & \code{clear} \code{pop} \code{exch}\\
 Graphis State & \code{gsave} \code{grestore}
 \code{setlinewidth} \code{setdash} \code{setlinecap} \code{setlinejoin} \code{setmiterlimit} \code{setgray} \code{setrgbcolor} \code{setcmykcolor} \\
 Coordinate System & \code{concat} \code{scale} \code{translate} \code{rotate} \code{idtransform} \code{dtransform}\\
 Path Construction & \code{currentpoint} \code{newpath} \code{closepath} \code{moveto} \code{rmoveto} \code{lineto} \code{rlineto} \code{curveto} \code{rcurveto} \code{arc} \code{arcn} \code{clip} \code{eoclip} \\
 Painting & \code{stroke} \code{fill} \\
 Glyph \& Font & \code{show} \code{findfont} \code{scalefont} \code{setfont} \code{currentfont} \code{stringwidth}\\
 \hline
 \end{tabular}
 \caption{List of PostScript operators recognized by \dvipdfmx.}%
 \label{TABLE:PS}
\end{table}

It might be enough for the purpose of basic graphics drawings but as there are
no support for conditionals and controls it is not enough for complicated tasks,
especially, the PSTricks package is not supported.

In \dvipdfmx, text handling is extended to support CJK text.
The following code draws Japanese text like shown in Figure~\ref{FIG:verttext}:
\begin{lstlisting}
\special{pdf:mapline uprml UniJIS-UTF8-H yumindb.ttf}
\special{ps: uprml findfont 16 scalefont setfont
 currentpoint moveto
 (...some Japanese text goes here...) show
}
\end{lstlisting}

\chapter{Fonts and Encodings}

\section{Fonts and Encodings Support}

In \dvipdfmx, all font formats supported by \dvipdfm\ are also supported with
many improvements: The CFF conversion for PostScript Type1 fonts\footnote{PostScript
Type1 font support is restricted to the binary format as in \dvipdfm.} is
implemented which greatly reduces the output file size. Embedded TrueType fonts are
now subsetted. The OpenType font format is also supported.\footnote{Its
implementation is based on the OpenType specification version 1.4.
Newly added features such as color fonts and variable fonts are not supported yet.}

There are various enhancements made for supporting Unicode and legacy multi-byte
character encodings for East Asian languages.

\section{Font Mappings}

The Syntax of font-mapping (fontmap) files is basically the same as in \dvipdfm.
There are few extensions available in \dvipdfmx. In addition to the 8-bit \code{enc}
file and keywords \code{builtin} and \code{none}, \dvipdfmx\ accepts a PostScript CMap
Resource name and the keyword \code{unicode} in the encoding field.

When the keyword \code{unicode} is specified in the encoding field of fontmap
files, it is assumed that Unicode values are used in the input DVI file.

\begin{lstlisting}
 urml unicode SourceHanSerifJP-Light.otf
\end{lstlisting}

Although the DVI format allows 3-byte and 4-byte character codes to be used,
\dvipdfmx\ only supports up to 2-byte range since there is no TFM format supporting
3-byte or 4-byte codes.

For PostScript Type1 fonts which do not support Unicode natively, an auxiliary file,
the Adobe Glyph List, is required to make it possible to use fonts with Unicode access.

As a general framework for supporting legacy multi-byte encodings, \dvipdfmx\ employs
PostScript CMap Resources for handling input strings encoded in various
character encodings. A CMap name can be specified in the encoding field just like
the encoding name for 8-bit encodings. For example, to specify the CMap ``UniJIS-UCS2-H'',

\begin{lstlisting}
 urml UniJIS-UCS2-H HiraMinPro-W3.otf
\end{lstlisting}

For information on the Adobe Glyph List and PostScript CMap Resources, see,
the section \ref{SEC:auxfiles}, ``Auxiliary Files''.

\subsection{Extended Syntax and Options}

Few options are available in \dvipdfmx\ in addition to the original dvipdfm's
one. Please note that all features which makes \dvipdfmx\ to use
non-embedded fonts are deprecated, as by doing so it makes \dvipdfmx\ to create
PDF files which can be non-compliant to the ISO standards.

\subsubsection{SFD Specification}

For bundling up a font split into multiple subfonts via SFD back into
a single font, dvipdfmx supports extended syntax of the form
\begin{lstlisting}
tfm_name@SFD@ encoding filename options
\end{lstlisting}
A typical example looks like:
\begin{lstlisting}
gbsn@EUC@ GB-EUC-H gbsn00lp
\end{lstlisting}
where TFMs \code{gbsn00}, \code{gbsn01}, \code{gbsn02}... are mapped into a
single font named \code{gbsn00lp} via the rule described in the SFD file
\code{EUC}.

\subsubsection{TrueType Collection Index}

TrueType Collection index number can be specified with \code{:n:}
in front of the TrueType font name:
\begin{lstlisting}
min10 H :1:mincho
\end{lstlisting}
In this example, the option \code{:1:} tells \dvipdfmx\ to select first
TrueType font from the TTC font \code{mincho.ttc}. Alternatively, the
\option{-i} option can be used in the option field to specify TTC index:
\begin{lstlisting}
min10 H mincho -i 1
\end{lstlisting}

\subsubsection{Non-embedding Switch}

\deprecated{Use of this option is deprecated.}
\noindent{}The character \option{!} in front of the font name can be used to
indicate that the font shall not be embedded. This feature greatly reduces the
size of the final PDF output, but the PDF file may not be viewed exactly the same
in other systems on which appropriate fonts are not installed.
\bigskip

\noindent{}NOTE: \dvipdfmx\ always converts input encodings to CIDs and then
uses Identity CMaps\footnote{Predefined CMaps \code{Identity-H} and
\code{Identity-V} for the identity mapping.}
in the output PDF. However, \lnum{ISO~32000-1:2008} describes as
\begin{quoting}
The Identity-H and Identity-V CMaps shall not be used with a non-embedded font.
Only standardized character sets may be used.
\end{quoting}
which had never appeared in Adobe's PDF References. This makes all PDF files
generated by \dvipdfmx\ with non-embedded CID-keyed fonts non-compliant to
the ISO standards.

\subsubsection{`Standard' CJK Fonts}

\deprecated{This feature is deprecated.}
\noindent{}Use of this feature shall be avoided for new documents. It is
described here since it might still be useful for some situations.

\dvipdfmx\ recognizes several `Standard' CJK fonts although there are no such
notion in PDF. In older days where there were not so many freely available CJK
fonts, it was sometimes useful to create PDF files without embedding fonts and
let PDF viewers or printers to use substitute fonts (tend to be higher quality)
installed in their systems. \dvipdfmx\ `knows' several fonts which might be
available in PostScript printers and PDF applications such as Acrobat Reader,
and uses them without actually having it.
See, Table~\ref{TABLE:StdCJKFont}, for the list of available `Standard' CJK
fonts.

\begin{table}
 \centering
 \begin{tabular}{lll}\hline
 Character Collection & Font Family & Description \\ \hline\hline
 Adobe-Japan1 & Ryumin-Light & PS printers \\
 & GothicBBB-Medium & \\
 Adobe-CNS1 & MHei-Medium-Acro & Acrobat Reader 4 \\
 & MSung-Light-Acro & \\
 Adobe-GB1 & STSong-Light-Acro & \\
 & STHeiti-Regular-Acro & \\
 Adobe-Japan1 & HeiseiMin-W3-Acro & \\
 & HeiseiKakuGO-W5-Acro & \\
 Adobe-Korea1 & HYGoThic-Medium-Acro & \\
 & HYSMyeongJo-Medium-Acro & \\
 Adobe-CNS1 & MSungStd-Light-Acro & Acrobat Reader 5 \\
 Adobe-GB1 & STSongStd-Light-Acro & \\
 Adobe-Korea1 & HYSMyeongJoStd-Medium-Acro \\
 Adobe-CNS1 & AdobeMingStd-Light-Acro & Adobe Reader 6 \\
 Adobe-GB1 & AdobeSongStd-Light-Acro & \\
 Adobe-Japan1 & KozMinPro-Regular-Acro & \\
 & KozGoPro-Medium-Acro & \\
 Adobe-Korea1 & AdobeMyungjoStd-Medium-Acro & \\
 Adobe-CNS1 & AdobeHeitiStd-Regular & Adobe Reader 7 \\
 Adobe-Japan1 & KozMinProVI-Regular & Adobe Reader 8\\
 \hline
 \end{tabular}
 \caption{List of available `Standard' CJK font. Most of them are
 available as a part of Adobe Asian Font Packs for each versions of
 Adobe or Acrobat Reader.}\label{TABLE:StdCJKFont}
\end{table}

Only fixed-pitch glyphs (i.e., quarter, third, half, and full widths) are
supported for those fonts.

\subsubsection{Stylistic Variants}

\deprecated{Use of this option is deprecated.}
\noindent{}Keywords \code{,Bold}, \code{,Italic}, and \code{,BoldItalic} can be
used to create synthetic bold, italic, and bolditalic style variants from other
font using PDF viewer's (or OS's) function.
\begin{lstlisting}
jbtmo@UKS@ UniKSCms-UCS2-H :0:!batang,Italic
\end{lstlisting}

Availability of this feature highly depends on the implementation of PDF
viewers. This feature is usually not supported for embedded fonts.
Notice that this option automatically disables font embedding thus
use of it is deprecated.

\subsection{Specifying Unicode Plane}

As there are no existing TFM formats supporting 3-byte or 4-byte character
encodings, the only way to use Unicode characters other than the BMP is to
map the code range 0-65535 to different planes via (e.g., to plane 1)
the \option{-p 1} fontmap option. This option is
available only when \code{unicode} is specified in the encoding field.

\subsection{OpenType Layout Feature}

The OpenType Layout Feature fontmap options mentioned below are only meaningful
when \code{unicode} is specified in the encoding field.

With the \option{-w} option, writing mode can be specified.
\option{-w 1} denotes the font is for vertical writing. It automatically
enables an OpenType Layout Feature related to vertical writing, namely,
\code{vert} or \code{vrt2}, to choose proper glyphs for vertical text.

\newfeature{Addition in \TeX\ Live 2017.}

The \option{-l} (lower case el) option can be used to enable various
OpenType Layout GSUB Features. For example, \option{-l jp04} enables
\code{jp04} feature to select \lnum{JIS2004} forms for Kanjis.
Features can be specified as a ``:'' separated list of OpenType Layout
Feature tags like \option{-l vkna:jp04}. Script and language may be
additionally specified as
\option{-l kana.JAN.ruby}.

An example can be
\begin{lstlisting}
uprml-v unicode SourceHanSerifJP-Light.otf -w 1 -l jp90
\end{lstlisting}
which declares that font should be treated as for vertical writing and
use \lnum{JIS1990} form for Kanjis.

\begin{figure}
\centering
\jpzerofourexamples\hspace{30pt}\jpninezeroexamples%
\caption{\lnum{JIS2004} vs. \lnum{JIS1990} form.}\label{FIG:jp90}
\end{figure}

This feature is limited to the single substitution, there are no way to select
a glyph from multiple candidates, such as in the \code{aalt} feature, and specifying
general many-to-many glyph substitutions does not take effect.

\section{Other Improvements}

This section briefly describes other improvements made for \dvipdfmx.
There is an extension to glyph name handling in the \code{enc} file for
seamless support of both PostScript Type1 and TrueType fonts.
PostScript Type1 font support is enhanced although this format might be
considered obsolete.

\subsection{Extended Glyph Name Syntax}

\dvipdfmx\ accepts the following syntax for glyph names in the \code{enc} file:
\code{uni0130}, \code{zero.onum} and \code{T_h.liga}.
Each represents a glyph accessed with Unicode value \code{U+0130},
oldstyle number for zero and ``Th'' ligature accessed via the OpenType
Layout GSUB Feature \code{onum} and \code{liga}, respectively.
Note that \dvipdfmx\ does not understand glyph names which directly
use a glyph index such as \code{index0102} or \code{gid2104}.

When \dvipdfmx\ encounters a glyph name, e.g., \code{T_h.liga}, it first looks
for OpenType \code{post} table if such glyph name exists; if it exists, then
\dvipdfmx\ simply uses \code{post} table and maps the glyph name to the glyph index;
if not, \dvipdfmx\ tries to convert \code{T_h} to a Unicode sequence (U+0054
U+0068 in this example) via the AGL mapping; then, OpenType \code{cmap} table is used
to further convert the resulting Unicode sequence to the sequence of glyph indices;
finally, the OpenType Layout Feature \code{liga} is applied to get the desired glyph.

A glyph name of a form \code{a.swsh2} can be specified to denote the 2nd swash
variant form of the letter `a'.

\subsection{CFF Conversion}

\dvipdfmx\ supports on-the-fly PostScript Type1 to CFF (Type1C) conversion
which greatly reduces size of the resulting PDF file when using Type1 fonts.
Conversion is essentially `lossless' and there should not be any quality loss.
However, due to differences in the ability of rasterizers, there might be
noticeable differences on rendering result.

When an older Type1 font is used, \dvipdfmx\ may give the following warning
message:
\begin{lstlisting}
Obsolete four arguments of "endchar" will be used for Type1
"seac" operator.
\end{lstlisting}
It happens when there is an accented character made as a composite glyph using
the ``seac'' operator.
This warning is issued as conversion can't be done without relying on the
\emph{deprecated} usage of the \code{endchar} operator. However, as mentioned in
``Appendix C Compatibility and Deprecated Operators'' of Adobe Technical
Note \#5177,
``\href{http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5177.Type2.pdf}{Type 2 Charstring Format}'',
PDF applications should support this operator and hence this warning
message can be ignored.

Use of Type1 font should be avoided as much as possible.
Please consider using OpenType version instead.

\section{Font Licensing}

In OpenType font format, information regarding how a font should be treated
when creating a document can be recorded.%
\footnote{See,
``\href{http://www.microsoft.com/typography/otspec/os2.htm}{OpenType Specification:
OS/2 -- OS/2 and Windows Metrics Table}''}.
\dvipdfmx\ uses this information to decide whether font embedding is permitted.

This font licensing information is indicated by the flag called \code{fsType}
recorded in OpenType font files; each bits representing different restrictions on
font embedding. If multiple flag bits are set in \code{fsType}, the least restrictive
license granted takes precedence in \dvipdfmx.
The \code{fsType} flag bit recognized by \dvipdfmx\ is as follows:
\begin{itemize}
 \item Installable embedding
 \item Editable embedding
 \item Embedding for Preview \& Print only
\end{itemize}
\dvipdfmx\ issues the following warning message for fonts with `Preview \& Print only'
setting:
\begin{verbatim}
 This document contains 'Preview & Print' only licensed font
\end{verbatim}

For a font with this type of licensing, font embedding is allowed solely for the
purpose of (on-screen) viewing and/or printing; further editing of the document
or extracting embedded font data for other purposes are not allowed.
One way to ensure this condition is to protect your document with a non-empty
password.

All other flags are treated as more restrictive license than any of
the above flags and treated as ``No embedding allowed''; e.g., if both
of the editable-embedding flag and unrecognized license flag is set,
the font is treated as editable-embedding allowed, however, if only
unrecognized flags are set, the font is not embedded.

Font Embedding flags are preserved in the embedded font if they are embedded
as a TrueType font or a CIDFontType2 CID-keyed font.
For all fonts embedded as a PostScript font (Type1C and CIDFontType0
CID-keyed font), they are not preserved.
Only \code{Copyright} and \code{Notice} in the \keyword{FontInfo} dictionary
are preserved in this case.

Some font vendors put different embedding restrictions for different
condition; e.g., font embedding might not be permitted for the commercial
use unless you acquire the ``commercial license'' separately.
Please read EULA carefully before making decision on the font usage.

See, for example,
\href{http://www.adobe.com/products/type/font-licensing/font-embedding-permissions.html}{Adobe's site on font embedding permissions}
for the font in the Adobe Type Library.
Microsoft also has a
\href{http://www.microsoft.com/typography/RedistributionFAQ.mspx}{FAQ page on Font Redistribution}.

For Japanese font in general, embedding permission tend to be somewhat
restrictive. Japanese users should read the statement regarding font
embedding from Japan Typography Association (in Japanese):\medskip

\url{http://www.typography.or.jp/act/morals/moral4.html}
\medskip

\dvipdfmx\ does not support full embedding. Only subset embedding is supported.

\chapter{Encryption}

\section{Encryption Support}\label{SEC:encryption}

\dvipdfmx\ offers basic PDF password security support including the 256-bit AES encryption.
Only the ``Standard'' security handler is supported and the Public-key security handler is not
supported.

Encryption is enabled by \option{-S} command line option.
\begin{lstlisting}
 dvipdfmx -S -K 128 -P 0x14
\end{lstlisting}
where \code{-K} and \code{-P} options are used to specify encryption key length and
permission flags respectively, and are briefly explained in Table~\ref{TABLE:enc-options}.

\begin{table}
 \centering
 \begin{tabular}{lp{8cm}}\hline
 Option & Description \\ \hline\hline
 \code{-S} & Enable PDF encryption. \\
 \code{-K} \textit{number} & Set encryption key length. The default value
 is 40.\\
 \code{-P} \textit{number} & Set permission flags for PDF encryption.
 The \textit{number} is a 32-bit unsigned integer representing permission
 flags.
 See, Table~\ref{TABLE:flags}. The default value is \code{0x003C}.\\
 \hline
 \end{tabular}
 \caption{Command line options for encryption.}%
 \label{TABLE:enc-options}
\end{table}

When \dvipdfmx\ is invoked with encryption via the \code{-S} option,
passwords will be asked.
However, in some circumstances, it might be desirable to avoid being prompted for
passwords. In that case, use the \code{pdf:encrypt} special to supply passwords in
the \TeX\ file, as,
\begin{lstlisting}
 \special{pdf:encrypt userpw (foo) ownerpw (bar) length 128 perm 20}
\end{lstlisting}
Here, user and owner passwords are supplied as PDF string objects (\code{foo} and \code{bar}
in the example above) which can be empty.

Up to two passwords can be specified for a document -- an owner password and a user password.
If a user attempts to open an encrypted document with user password being set, PDF application
should prompt for a password. Users are allowed to access the contents of the document only when
either password is correctly supplied.
Depending on which password (user or owner) was supplied, additional operations
allowed for the opened document is determined; full access for users who opened
with the correct owner password or additional operations
controlled by permission flags for users who opened with the correct user password.

Although PDF specification allows various character encodings other than \code{US-ASCII}
for entering password, \dvipdfmx\ is unable to handle it properly.
Thus it must be assumed that \code{US-ASCII} is used for password strings.

Access permission flags can be specified via \option{-P} command-line option.
Each bits of (32-bit unsigned) integer number given to this option represents user
access permissions; e.g., bit position 3 for allowing ``print'', 4 for
``modify'', 5 for ``copy or extract'', and so on. See, Table~\ref{TABLE:flags}.
For example, \code{-P 0x34} allows printing, copying and extraction of text, and adding and
modifying text annotation and filling in interactive form fields (but disallows
modification of the contents of the document).
\begin{table}
 \centering
 \begin{tabular}{lp{8.3cm}}\hline
 Bit Position & Meaning \\ \hline\hline
 3 & (Revision 2) Print the document. \\
 & (Revision 3 or greater) Print the document. Print quality depending on bit 12.\\
 4 & Modify the contents of the document by operations other than those controlled
 by bits 6, 9, and 11. \\
 5 & Copy or extract text and graphics from the document. \\
 6 & Add or modify text annotations, fill in interactive form fields.
 Creation and modification of interactive form field is also
 allowed if bit 4 is set.\\
 9 & (Revision 3 or greater) Fill in existing interactive form fields
 (including signature fields), even if bit 6 is clear.\\
 10 & \em{Deprecated in PDF 2.0} \\
 & (Revision 3 or greater) Extract text and graphics (in support of accessibility to
 users with disabilities or for other purposes).\\
 11 & (Revision 3 or greater) Assemble the document
 (insert, rotate, or delete pages and create document outline items or thumbnail
 images), even if bit 4 is clear.\\
 12 & (Revision 3 or greater) High-quality printing.
 When this bit is clear (and bit 3 is set), printing shall be limited to a low-level,
 possibly of degraded quality.\\
 \hline
 \end{tabular}
 \caption{Flag bits and their short explanation.
 Revision 2 is used when encryption key length is 40 bits or when PDF output
 version is less than 1.5. Otherwise, Revision 3 or greater is used.}\label{TABLE:flags}
\end{table}

The \option{-K} option can be used to specify the encryption key length.
The key length must be multiple of 8 in the range 40 to 128, or 256 (for PDF
version 1.7 plus Adobe Extension or PDF version 2.0). Please note
that when key length 256 is specified for PDF version 1.7 output, it requires
Adobe's Extension to \lnum{PDF-1.7} and hence PDF applications may not support it.
PDF version 1.4 is required for key length more than 40 bits. AES encryption algorithm requires
PDF version 1.6.

To show some examples:\\
128-bit AES encryption with print-only (high-quality) setting,
\begin{lstlisting}
 dvipdfmx -V 5 -S -K 128 -P 0x804 input.dvi
\end{lstlisting}
256-bit AES encryption with print (low-quality), adding and modifying text annotations
allowed,
\begin{lstlisting}
 dvipdfmx -V 2.0 -S -K 256 -P 0x24 input.dvi
\end{lstlisting}

The default value for \option{-K} is 40 and for \option{-P} is \code{0x003C0}
(all bits from bit-position 3 to 6 set).

\chapter{Compatibility}

\section{Incompatible Changes}\label{SEC:compatibility}

There are various minor incompatible changes to \dvipdfm.

The \option{-C} command line option may be used for compatibility to
\dvipdfm\ or older versions of \dvipdfmx. The \option{-C} option takes flags
meaning
\begin{itemize}
 \item bit position 2: Use semi-transparent filling for tpic shading
 command, instead of opaque gray color. (requires PDF 1.4)
 \item bit position 3: Treat all CID-keyed font as fixed-pitch font. This is
 only for compatibility.
 \item bit position 4: Do not replace duplicate fontmap entries.
 \dvipdfm\ behavior.
 \item bit position 5: Do not optimize PDF destinations. Use this if you
 want to refer from other files to destinations in the current file.
 \item bit position 6: Do not use predictor filter for Flate compression.
 \item bit position 7: Do not use object stream.
\end{itemize}

The remap option \option{-r} in fontmaps is no longer supported and is
silently ignored. The command line option \option{-e} to disable partial
(subset) font embedding is not supported.

\section{Important Changes}

Here is a list of important changes since the \TeX\ Live 2016 release:
\begin{itemize}
\item Changes to make PDF/A creation easier: Always write CIDSet and CharSet
for embedded fonts. Do not compress XMP metadata.
\item Merge from libdpx for p\TeX-ng by Clerk Ma.
\item Addition of \code{STHeiti-Regular-Acro} for CJK `Standard' fonts.
\item Command line option \option{-p} takes precedence over \code{papersize}
and \code{pagesize} specials.
\item Fixed serious bugs in supporting `\code{unicode}' encoding:
OpenType Layout Feature \code{vert} and \code{vrt2} was not enabled.
Support for format 2 CFF charsets was broken.
\item Added simplified version of OpenType Layout support: The `\option{-l}'
option in fontmaps.
\end{itemize}
The full \code{ChangeLog} entries can be viewed via the web interface of the
\TeX\ Live SVN repository:
\medskip

\url{http://www.tug.org/svn/texlive/trunk/Build/source/texk/dvipdfm-x}
\medskip

There was an undocumented feature for supporting OpenType Layout but it was
dropped. Simplified support for the OpenType Layout was introduced instead.

%\renewcommand{\refname}{Further Reading}
\renewcommand{\bibname}{Further Reading}
\begin{thebibliography}{99}
\bibitem{DVIPDFM} ``\href{http://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf}%
{Dvipdfm User's Manual}'' written by Mark~A.~Wicks.
\bibitem{ADOBE} Adobe's PDF References and a free copy of
\lnum{ISO 32000-1:2008} standard are available from
``\href{http://www.adobe.com/devnet/pdf.html}{PDF Technology Center}''
on \href{http://www.adobe.com/devnet.html}{Adobe Developer Connection}.
\bibitem{MICROSOFT} The OpenType Specification is available from Microsoft's
site:
``\href{http://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx}%
{OpenType Specification}''.
\bibitem{PNGSPEC} ``\href{https://www.w3.org/TR/2003/REC-PNG-20031110/}%
{Portable Network Graphics (PNG) Specification (Second Edition)}''.
\bibitem{CHOF} An article regarding DVI specials: Jin-Hwan Cho,
``\href{http://www.tug.org/TUGboat/tb30-1/tb94cho.pdf}{DVI specials for PDF generation}'',
TUGboat, 30(1):6-11, 2009.
\end{thebibliography}

\appendix

\chapter{GNU Free Documentation License}\label{SEC:FDL}

This document is distributed under the term of the GNU Free Documentation
License. See, the attached file for copying conditions.%
\marginnote{%
\special{pdf:fstream @fileobj (fdl-1.3.txt)}%
\special{pdf:ann width 10bp height 20bp
 << /Type /Annot
 /Subtype /FileAttachment
 /FS <<
 /Type /Filespec
 /F (fdl-1.3.txt)
 /EF << /F @fileobj >>
 >>
 /Name /PushPin
 /C [0.8 0.2 0.2]
 /T (GNU Free Documentation License)
 /Subj (GNU FDL)
 /Contents (Plain text version of the GNU Free Documentation License.)
 >>
}}%

Or, in case that PDF viewers can not extract attached files, please visit the
following site:
\medskip

\url{http://www.gnu.org/licenses/fdl.html}

\end{document}

The Dvipdfmx User's Manual
The Dvipdmfx User's Manual
XeLaTeX source file of this manual.

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

where @resource is a special keyword representing current page’s Resource Dic-
tionary and Category (to be replaced by actual category name) is a category
name such as ColorSpace. Finally, graphics objects are placed, with or with a
combination of text and, PDF drawing operators inserted by the pdf:code or the
pdf:contents special.

The first example is the Separation color space:

Orange and Green
\special{pdf:stream @TintTransform1

({0 exch dup 0.62 mul exch 0})
<< /FunctionType 4

/Domain [0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]

>>
}
\special{pdf:stream @TintTransform2

({dup 0.78 mul exch dup 0.05 mul exch 0.71 mul 0})
<< /FunctionType 4

/Domain [0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]

>>
}
\special{pdf:obj @Orange [

/Separation /Orange /DeviceCMYK @TintTransform1
]

}
\special{pdf:obj @Green [

/Separation /Green /DeviceCMYK @TintTransform2
]

}
\mbox{%

\special{pdf:put @resources <<
/ColorSpace << /CS01 @Orange /CS02 @Green >>

>>
}%
\special{pdf:code q /CS01 cs 1.0 scn}
Orange
\special{pdf:code Q}
and
\special{pdf:code q /CS02 cs 1.0 scn}
Green
\special{pdf:code Q}

}

TintTransform’s defined here are functions for transforming tint values into

27

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

approximate colors in the alternate color space (DeviceCMYK in this example).
PostScript calculator functions are used for converting a single component value
representing “Orange” or “Green” into four component CMYK values to approx-
imate those colors. The “Orange” color 𝑣 is approximated as (0, 0.62𝑣, 𝑣, 0) in
CMYK color space for alternate display here.

The cs operator for selecting color space and the scn operator for color values
are used in the pdf:code special. Be sure that the pdf:put command, which puts
color space resources into the current page’s Resource Dictionary, goes into the
same page as subsequent drawing commands.

dvipdfmx currently does not have an easy interface for using various color
space families such as CIE-Based color spaces (e.g., calibrated colors and color
space with an ICC profile) and Special color spaces (e.g., indexed, separation,
shading and patterns).

Another example is a shading pattern:

\special{pdf:put @resources <<
/Shading <<
/SH01 <<
/ShadingType 2
/ColorSpace @Orange
/Coords [0 0 320 20]
/Extend [true true]
/Function << /FunctionType 2 /Domain [0 1] /N 1.0 >>

>>
>>

>>}
\special{pdf:content 0 0 320 20 re W n /SH01 sh}

where the “Orange” separation color space defined before is used again. This
example shows an axial shading (ShadingType 2) pattern.

The shading pattern requires coordinate values to be mapped into color val-
ues. Type 2 (Exponential Interpolation) Function is used for defining how this
mapping should occur here. The above example, with the exponent 𝑁 = 1, is
just a simple linear-gradient.

The final examples is a tiling pattern.

\special{pdf:stream @MyPattern
(0.16 0 0 0.16 0 0 cm 4 w
50 0 m 50 28 28 50 0 50 c S 100 50
m 72 50 50 28 50 0 c S
50 100 m 50 72 72 50 100 50 c S
0 50 m 28 50 50 72 50 100 c S
100 50 m 100 78 78 100 50 100 c 22 100 0 78 0 50 c
0 22 22 0 50 0 c 78 0 100 22 100 50 c S

28

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

0 0 m 20 10 25 5 25 0 c f 0 0 m 10 20 5 25 0 25 c f
100 0 m 80 10 75 5 75 0 c f
100 0 m 90 20 95 25 100 25 c f
100 100 m 80 90 75 95 75 100 c f
100 100 m 90 80 95 75 100 75 c f
0 100 m 20 90 25 95 25 100 c f
0 100 m 10 80 5 75 0 75 c f
50 50 m 70 60 75 55 75 50 c 75 45 70 40 50 50 c f
50 50 m 60 70 55 75 50 75 c 45 75 40 70 50 50 c f
50 50 m 30 60 25 55 25 50 c
25 45 30 40 50 50 c f
50 50 m 60 30 55 25 50 25 c 45 25 40 30 50 50 c f)

<<
/BBox [0 0 16 16]
/PaintType 2
/PatternType 1
/Resources <<

/ProcSet [/PDF]
>>
/TilingType 3
/Type /Pattern
/XStep 16
/YStep 16

>>
}

The above example defines a tiling pattern. The content stream containing
painting operators, m for “move-to”, c for “curve-to”, f for “fill”, and S for “stroke”,
defines the appearance of the pattern cell for this tiling pattern. With the follow-
ing code,

\special{pdf:put @resources
<<

/ColorSpace << /CS01 [/Pattern /DeviceRGB] >>
/Pattern << /PT01 @MyPattern >>

>>
}
\special{pdf:content

q 0.8 0.3 0.3 RG /CS01 cs 0.8 0.3 0.3 /PT01 scn
0 0 320 100 re f

}

a box filled with the tiling pattern defined above is drawn.

29

3.1. PDF SPECIALS CHAPTER 3. SPECIALS

Transparency

X ETEX’s transparency feature is currently lost in xdvipdfmx, but the same effect
can be achieved by setting graphics state parameters with ExtGState resources
and gs operator. Here is a simple transparency example:

αβπγ
\special{pdf:obj @GS01 <<

/Type /ExtGState /CA 0.5 /ca 0.5 /AIS false
>>}%
\mbox{%

\special{pdf:put @resources <<
/ExtGState << /GS01 @GS01 >>

>>}%
\special{pdf:code q /GS01 gs 1.0 0.8 0.2 rg}%
α%
\special{pdf:code 0.4 0.8 0.4 rg}%
\hspace{-0.3em}%
β%
\hspace{-0.3em}\raisebox{0.5ex}{%

30

3.2. DVIPDFMX EXTENSIONS CHAPTER 3. SPECIALS

\special{pdf:code 0.4 0.4 0.8 rg}%
π%

}%
\special{pdf:code 1.0 0.2 0.4 rg}%
\hspace{-0.2em}%
γ%
\special{pdf:code Q}%

}

where values for CA and ca represent opacity of stroke and fill color respectively.
Again, pdf:put command must go into the same page as subsequent graphics
and text drawing operators.

3.2 Dvipdfmx Extensions
Addition in TEX
Live 2016

A new special dvipdfmx:config was introduced in TEXLive 2016 which makes it
possible to invoke a command line option. Several single letter command line
options except ‘D’ are supported. For example,

dvipdfmx:config C 0x10

sets the dvipdfmx’s compatibility flags. See, the section “Incompatible Changes”
for an explanation of compatibility flags.

3.3 PS Specials
PS (PostScript) specials can be used to insert a raw PostScript code for drawing
graphics objects and transforming subsequent text and graphics. Please note that
support for PostScript operators in dvipdfmx is very limited. It is just enough for
interpreting PostScript figures output by METAPOST. Only a basic set of opera-
tors for arithmetic and math, stack operation and manipulation, graphics state,
path construction and painting, glyph and font, are supported. See, Table 3.1 for
the list of recognized PostScript operators.

It might be enough for the purpose of basic graphics drawings but as there are
no support for conditionals and controls it is not enough for complicated tasks,
especially, the PSTricks package is not supported.

In dvipdfmx, text handling is extended to support CJK text. The following
code draws Japanese text like shown in Figure 1.1:

\special{pdf:mapline uprml UniJIS-UTF8-H yumindb.ttf}
\special{ps: uprml findfont 16 scalefont setfont

currentpoint moveto
(...some Japanese text goes here...) show

}

31

3.3. PS SPECIALS CHAPTER 3. SPECIALS

Classification Operators
Arithmetic & Math add sub mul div neg truncate
Stack Operation clear pop exch
Graphis State gsave grestore setlinewidth setdash setlinecap

setlinejoin setmiterlimit setgray setrgbcolor
setcmykcolor

Coordinate System concat scale translate rotate idtransform
dtransform

Path Construction currentpoint newpath closepath moveto rmoveto
lineto rlineto curveto rcurveto arc arcn clip
eoclip

Painting stroke fill
Glyph & Font show findfont scalefont setfont currentfont

stringwidth

Table 3.1: List of PostScript operators recognized by dvipdfmx.

32

Chapter 4

Fonts and Encodings

4.1 Fonts and Encodings Support
In dvipdfmx, all font formats supported by dvipdfm are also supported withmany
improvements: The CFF conversion for PostScript Type1 fonts¹ is implemented
which greatly reduces the output file size. Embedded TrueType fonts are now
subsetted. The OpenType font format is also supported.²

There are various enhancements made for supporting Unicode and legacy
multi-byte character encodings for East Asian languages.

4.2 Font Mappings
The Syntax of font-mapping (fontmap) files is basically the same as in dvipdfm.
There are few extensions available in dvipdfmx. In addition to the 8-bit enc file
and keywords builtin and none, dvipdfmx accepts a PostScript CMap Resource
name and the keyword unicode in the encoding field.

When the keyword unicode is specified in the encoding field of fontmap files,
it is assumed that Unicode values are used in the input DVI file.

urml unicode SourceHanSerifJP-Light.otf

Although the DVI format allows 3-byte and 4-byte character codes to be used,
dvipdfmx only supports up to 2-byte range since there is no TFM format support-
ing 3-byte or 4-byte codes.

For PostScript Type1 fonts which do not support Unicode natively, an auxil-
iary file, the Adobe Glyph List, is required to make it possible to use fonts with
Unicode access.

As a general framework for supporting legacymulti-byte encodings, dvipdfmx
employs PostScript CMap Resources for handling input strings encoded in vari-
ous character encodings. A CMap name can be specified in the encoding field just

¹PostScript Type1 font support is restricted to the binary format as in dvipdfm.
²Its implementation is based on the OpenType specification version 1.4. Newly added features

such as color fonts and variable fonts are not supported yet.

33

4.2. FONT MAPPINGS CHAPTER 4. FONTS AND ENCODINGS

like the encoding name for 8-bit encodings. For example, to specify the CMap
“UniJIS-UCS2-H”,

urml UniJIS-UCS2-H HiraMinPro-W3.otf

For information on the Adobe Glyph List and PostScript CMap Resources, see,
the section 1.4, “Auxiliary Files”.

4.2.1 Extended Syntax and Options
Few options are available in dvipdfmx in addition to the original dvipdfm’s one.
Please note that all features which makes dvipdfmx to use non-embedded fonts
are deprecated, as by doing so it makes dvipdfmx to create PDF files which can
be non-compliant to the ISO standards.

SFD Specification

For bundling up a font split intomultiple subfonts via SFD back into a single font,
dvipdfmx supports extended syntax of the form

tfm_name@SFD@ encoding filename options

A typical example looks like:

gbsn@EUC@ GB-EUC-H gbsn00lp

where TFMs gbsn00, gbsn01, gbsn02... are mapped into a single font named
gbsn00lp via the rule described in the SFD file EUC.

TrueType Collection Index

TrueType Collection index number can be specified with :n: in front of the True-
Type font name:

min10 H :1:mincho

In this example, the option :1: tells dvipdfmx to select first TrueType font from
the TTC font mincho.ttc. Alternatively, the ‘-i’ option can be used in the option
field to specify TTC index:

min10 H mincho -i 1

34

4.2. FONT MAPPINGS CHAPTER 4. FONTS AND ENCODINGS

Non-embedding Switch

Use of this option
is deprecated.

The character ‘!’ in front of the font name can be used to indicate that the font
shall not be embedded. This feature greatly reduces the size of the final PDF
output, but the PDF file may not be viewed exactly the same in other systems on
which appropriate fonts are not installed.

NOTE: dvipdfmx always converts input encodings to CIDs and then uses Identity
CMaps³ in the output PDF. However, ISO ͳͲͰͰͰ-ͱ:ͲͰͰ describes as

The Identity-H and Identity-V CMaps shall not be used with a non-
embedded font. Only standardized character sets may be used.

which had never appeared in Adobe’s PDF References. This makes all PDF files
generated by dvipdfmx with non-embedded CID-keyed fonts non-compliant to
the ISO standards.

‘Standard’ CJK Fonts

This feature is
deprecated.

Use of this feature shall be avoided for new documents. It is described here since
it might still be useful for some situations.

dvipdfmx recognizes several ‘Standard’ CJK fonts although there are no such
notion in PDF. In older days where there were not so many freely available CJK
fonts, it was sometimes useful to create PDF files without embedding fonts and
let PDF viewers or printers to use substitute fonts (tend to be higher quality) in-
stalled in their systems. dvipdfmx ‘knows’ several fonts which might be available
in PostScript printers and PDF applications such as Acrobat Reader, and uses
them without actually having it. See, Table 4.1, for the list of available ‘Standard’
CJK fonts.

Only fixed-pitch glyphs (i.e., quarter, third, half, and full widths) are sup-
ported for those fonts.

Stylistic Variants

Use of this option
is deprecated.

Keywords ,Bold, ,Italic, and ,BoldItalic can be used to create synthetic bold,
italic, and bolditalic style variants from other font using PDF viewer’s (or OS’s)
function.

jbtmo@UKS@ UniKSCms-UCS2-H :0:!batang,Italic

Availability of this feature highly depends on the implementation of PDF view-
ers. This feature is usually not supported for embedded fonts. Notice that this
option automatically disables font embedding thus use of it is deprecated.

4.2.2 Specifying Unicode Plane
As there are no existing TFM formats supporting 3-byte or 4-byte character en-
codings, the only way to use Unicode characters other than the BMP is to map

³Predefined CMaps Identity-H and Identity-V for the identity mapping.

35

4.2. FONT MAPPINGS CHAPTER 4. FONTS AND ENCODINGS

Character Collection Font Family Description
Adobe-Japan1 Ryumin-Light PS printers

GothicBBB-Medium
Adobe-CNS1 MHei-Medium-Acro Acrobat Reader 4

MSung-Light-Acro
Adobe-GB1 STSong-Light-Acro

STHeiti-Regular-Acro
Adobe-Japan1 HeiseiMin-W3-Acro

HeiseiKakuGO-W5-Acro
Adobe-Korea1 HYGoThic-Medium-Acro

HYSMyeongJo-Medium-Acro
Adobe-CNS1 MSungStd-Light-Acro Acrobat Reader 5
Adobe-GB1 STSongStd-Light-Acro
Adobe-Korea1 HYSMyeongJoStd-Medium-Acro
Adobe-CNS1 AdobeMingStd-Light-Acro Adobe Reader 6
Adobe-GB1 AdobeSongStd-Light-Acro
Adobe-Japan1 KozMinPro-Regular-Acro

KozGoPro-Medium-Acro
Adobe-Korea1 AdobeMyungjoStd-Medium-Acro
Adobe-CNS1 AdobeHeitiStd-Regular Adobe Reader 7
Adobe-Japan1 KozMinProVI-Regular Adobe Reader 8

Table 4.1: List of available ‘Standard’ CJK font. Most of them are available as a
part of Adobe Asian Font Packs for each versions of Adobe or Acrobat Reader.

the code range 0-65535 to different planes via (e.g., to plane 1) the ‘-p 1’ fontmap
option. This option is available only when unicode is specified in the encoding
field.

4.2.3 OpenType Layout Feature
The OpenType Layout Feature fontmap options mentioned below are only mean-
ingful when unicode is specified in the encoding field.

With the ‘-w’ option, writing mode can be specified. ‘-w 1’ denotes the font is
for vertical writing. It automatically enables an OpenType Layout Feature related
to vertical writing, namely, vert or vrt2, to choose proper glyphs for vertical text.

Addition in TEX
Live 2017.

The ‘-l’ (lower case el) option can be used to enable variousOpenType Layout
GSUB Features. For example, ‘-l jp04’ enables jp04 feature to select JISͲͰͰʹ
forms for Kanjis. Features can be specified as a “:” separated list of OpenType
Layout Feature tags like ‘-l vkna:jp04’. Script and language may be additionally
specified as ‘-l kana.JAN.ruby’.

An example can be

uprml-v unicode SourceHanSerifJP-Light.otf -w 1 -l jp90

which declares that font should be treated as for vertical writing and use JISͱͰ
form for Kanjis.

36

4.3. OTHER IMPROVEMENTS CHAPTER 4. FONTS AND ENCODINGS

葛祇逢
Figure 4.1: JISͲͰͰʹ vs. JISͱͰ form.

This feature is limited to the single substitution, there are no way to select
a glyph from multiple candidates, such as in the aalt feature, and specifying
general many-to-many glyph substitutions does not take effect.

4.3 Other Improvements
This section briefly describes other improvements made for dvipdfmx. There is
an extension to glyph name handling in the enc file for seamless support of both
PostScript Type1 and TrueType fonts. PostScript Type1 font support is enhanced
although this format might be considered obsolete.

4.3.1 Extended Glyph Name Syntax
dvipdfmx accepts the following syntax for glyph names in the enc file: uni0130,
zero.onum and T_h.liga. Each represents a glyph accessed with Unicode value
U+0130, oldstyle number for zero and “Th” ligature accessed via the OpenType
Layout GSUB Feature onum and liga, respectively. Note that dvipdfmx does not
understand glyph names which directly use a glyph index such as index0102 or
gid2104.

When dvipdfmx encounters a glyph name, e.g., T_h.liga, it first looks for
OpenType post table if such glyph name exists; if it exists, then dvipdfmx simply
uses post table andmaps the glyph name to the glyph index; if not, dvipdfmx tries
to convert T_h to a Unicode sequence (U+0054 U+0068 in this example) via the
AGLmapping; then, OpenType cmap table is used to further convert the resulting
Unicode sequence to the sequence of glyph indices; finally, the OpenType Layout
Feature liga is applied to get the desired glyph.

A glyph name of a form a.swsh2 can be specified to denote the 2nd swash
variant form of the letter ‘a’.

4.3.2 CFF Conversion
dvipdfmx supports on-the-fly PostScript Type1 to CFF (Type1C) conversion which
greatly reduces size of the resulting PDF file when using Type1 fonts. Conversion
is essentially ‘lossless’ and there should not be any quality loss. However, due to
differences in the ability of rasterizers, there might be noticeable differences on
rendering result.

When an older Type1 font is used, dvipdfmx may give the following warning
message:

Obsolete four arguments of "endchar" will be used for Type1
"seac" operator.

37

4.4. FONT LICENSING CHAPTER 4. FONTS AND ENCODINGS

It happens when there is an accented character made as a composite glyph using
the “seac” operator. This warning is issued as conversion can’t be done without re-
lying on the deprecated usage of the endchar operator. However, as mentioned in
“Appendix C Compatibility and Deprecated Operators” of Adobe Technical Note
#5177, “Type 2 Charstring Format”, PDF applications should support this operator
and hence this warning message can be ignored.

Use of Type1 font should be avoided as much as possible. Please consider
using OpenType version instead.

4.4 Font Licensing
In OpenType font format, information regarding how a font should be treated
when creating a document can be recorded.⁴. dvipdfmx uses this information to
decide whether font embedding is permitted.

This font licensing information is indicated by the flag called fsType recorded
in OpenType font files; each bits representing different restrictions on font em-
bedding. If multiple flag bits are set in fsType, the least restrictive license granted
takes precedence in dvipdfmx. The fsType flag bit recognized by dvipdfmx is as
follows:

• Installable embedding

• Editable embedding

• Embedding for Preview & Print only

dvipdfmx issues the following warning message for fonts with ‘Preview & Print
only’ setting:

This document contains 'Preview & Print' only licensed font

For a font with this type of licensing, font embedding is allowed solely for the
purpose of (on-screen) viewing and/or printing; further editing of the document
or extracting embedded font data for other purposes are not allowed. One way to
ensure this condition is to protect your document with a non-empty password.

All other flags are treated asmore restrictive license than any of the above flags
and treated as “No embedding allowed”; e.g., if both of the editable-embedding
flag and unrecognized license flag is set, the font is treated as editable-embedding
allowed, however, if only unrecognized flags are set, the font is not embedded.

Font Embedding flags are preserved in the embedded font if they are embed-
ded as a TrueType font or a CIDFontType2 CID-keyed font. For all fonts embed-
ded as a PostScript font (Type1C and CIDFontType0 CID-keyed font), they are not
preserved. Only Copyright and Notice in the FontInfo dictionary are preserved
in this case.

Some font vendors put different embedding restrictions for different condi-
tion; e.g., font embedding might not be permitted for the commercial use unless
you acquire the “commercial license” separately. Please read EULA carefully be-
fore making decision on the font usage.

See, for example, Adobe’s site on font embedding permissions for the font in
the Adobe Type Library. Microsoft also has a FAQ page on Font Redistribution.

⁴See, “OpenType Specification: OS/2 – OS/2 and Windows Metrics Table”

38

http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/font/pdfs/5177.Type2.pdf
http://www.adobe.com/products/type/font-licensing/font-embedding-permissions.html
http://www.microsoft.com/typography/RedistributionFAQ.mspx
http://www.microsoft.com/typography/otspec/os2.htm

4.4. FONT LICENSING CHAPTER 4. FONTS AND ENCODINGS

For Japanese font in general, embedding permission tend to be somewhat
restrictive. Japanese users should read the statement regarding font embedding
from Japan Typography Association (in Japanese):

http://www.typography.or.jp/act/morals/moral4.html

dvipdfmx does not support full embedding. Only subset embedding is sup-
ported.

39

http://www.typography.or.jp/act/morals/moral4.html

Chapter 5

Encryption

5.1 Encryption Support
dvipdfmx offers basic PDF password security support including the 256-bit AES
encryption. Only the “Standard” security handler is supported and the Public-key
security handler is not supported.

Encryption is enabled by ‘-S’ command line option.

dvipdfmx -S -K 128 -P 0x14

where -K and -P options are used to specify encryption key length and permission
flags respectively, and are briefly explained in Table 5.1.

When dvipdfmx is invoked with encryption via the -S option, passwords will
be asked. However, in some circumstances, it might be desirable to avoid being
prompted for passwords. In that case, use the pdf:encrypt special to supply
passwords in the TEX file, as,

\special{pdf:encrypt userpw (foo) ownerpw (bar) length 128
perm 20}

Here, user and owner passwords are supplied as PDF string objects (foo and bar
in the example above) which can be empty.

Option Description
-S Enable PDF encryption.
-K number Set encryption key length. The default value is 40.
-P number Set permission flags for PDF encryption. The number

is a 32-bit unsigned integer representing permission
flags. See, Table 5.2. The default value is 0x003C.

Table 5.1: Command line options for encryption.

40

5.1. ENCRYPTION SUPPORT CHAPTER 5. ENCRYPTION

Bit Position Meaning
3 (Revision 2) Print the document.

(Revision 3 or greater) Print the document. Print qual-
ity depending on bit 12.

4 Modify the contents of the document by operations
other than those controlled by bits 6, 9, and 11.

5 Copy or extract text and graphics from the document.
6 Add or modify text annotations, fill in interactive form

fields. Creation and modification of interactive form
field is also allowed if bit 4 is set.

9 (Revision 3 or greater) Fill in existing interactive form
fields (including signature fields), even if bit 6 is clear.

10 Deprecated in PDF 2.0
(Revision 3 or greater) Extract text and graphics (in sup-
port of accessibility to users with disabilities or for other
purposes).

11 (Revision 3 or greater) Assemble the document (insert,
rotate, or delete pages and create document outline
items or thumbnail images), even if bit 4 is clear.

12 (Revision 3 or greater) High-quality printing. When
this bit is clear (and bit 3 is set), printing shall be limited
to a low-level, possibly of degraded quality.

Table 5.2: Flag bits and their short explanation. Revision 2 is used when encryp-
tion key length is 40 bits or when PDF output version is less than 1.5. Otherwise,
Revision 3 or greater is used.

Up to two passwords can be specified for a document – an owner password
and a user password. If a user attempts to open an encrypted document with
user password being set, PDF application should prompt for a password. Users
are allowed to access the contents of the document only when either password is
correctly supplied. Depending on which password (user or owner) was supplied,
additional operations allowed for the opened document is determined; full access
for users who opened with the correct owner password or additional operations
controlled by permission flags for users who opened with the correct user pass-
word.

Although PDF specification allows various character encodings other than
US-ASCII for entering password, dvipdfmx is unable to handle it properly. Thus
it must be assumed that US-ASCII is used for password strings.

Access permission flags can be specified via ‘-P’ command-line option. Each
bits of (32-bit unsigned) integer number given to this option represents user ac-
cess permissions; e.g., bit position 3 for allowing “print”, 4 for “modify”, 5 for “copy
or extract”, and so on. See, Table 5.2. For example, -P 0x34 allows printing, copy-
ing and extraction of text, and adding and modifying text annotation and filling
in interactive form fields (but disallows modification of the contents of the doc-
ument).

The ‘-K’ option can be used to specify the encryption key length. The key
length must be multiple of 8 in the range 40 to 128, or 256 (for PDF version 1.7
plus Adobe Extension or PDF version 2.0). Please note that when key length 256

41

5.1. ENCRYPTION SUPPORT CHAPTER 5. ENCRYPTION

is specified for PDF version 1.7 output, it requires Adobe’s Extension to PDF-ͱ.ͷ
and hence PDF applications may not support it. PDF version 1.4 is required for
key length more than 40 bits. AES encryption algorithm requires PDF version 1.6.

To show some examples:
128-bit AES encryption with print-only (high-quality) setting,

dvipdfmx -V 5 -S -K 128 -P 0x804 input.dvi

256-bit AES encryption with print (low-quality), adding and modifying text an-
notations allowed,

dvipdfmx -V 2.0 -S -K 256 -P 0x24 input.dvi

The default value for ‘-K’ is 40 and for ‘-P’ is 0x003C0 (all bits from bit-position
3 to 6 set).

42

Chapter 6

Compatibility

6.1 Incompatible Changes
There are various minor incompatible changes to dvipdfm.

The ‘-C’ command line option may be used for compatibility to dvipdfm or
older versions of dvipdfmx. The ‘-C’ option takes flags meaning

• bit position 2: Use semi-transparent filling for tpic shading command, in-
stead of opaque gray color. (requires PDF 1.4)

• bit position 3: Treat all CID-keyed font as fixed-pitch font. This is only for
compatibility.

• bit position 4: Do not replace duplicate fontmap entries. dvipdfm behavior.

• bit position 5: Do not optimize PDF destinations. Use this if you want to
refer from other files to destinations in the current file.

• bit position 6: Do not use predictor filter for Flate compression.

• bit position 7: Do not use object stream.

The remap option ‘-r’ in fontmaps is no longer supported and is silently ig-
nored. The command line option ‘-e’ to disable partial (subset) font embedding
is not supported.

6.2 Important Changes
Here is a list of important changes since the TEX Live 2016 release:

• Changes to make PDF/A creation easier: Always write CIDSet and CharSet
for embedded fonts. Do not compress XMP metadata.

• Merge from libdpx for pTEX-ng by Clerk Ma.

• Addition of STHeiti-Regular-Acro for CJK ‘Standard’ fonts.

• Command line option ‘-p’ takes precedence over papersize and pagesize
specials.

43

6.2. IMPORTANT CHANGES CHAPTER 6. COMPATIBILITY

• Fixed serious bugs in supporting ‘unicode’ encoding: OpenType Layout Fea-
ture vert and vrt2was not enabled. Support for format 2 CFF charsets was
broken.

• Added simplified version of OpenType Layout support: The ‘‘-l’’ option in
fontmaps.

The full ChangeLog entries can be viewed via the web interface of the TEX Live
SVN repository:

http://www.tug.org/svn/texlive/trunk/Build/source/texk/dvipdfm-x

There was an undocumented feature for supporting OpenType Layout but it
was dropped. Simplified support for the OpenType Layout was introduced in-
stead.

44

http://www.tug.org/svn/texlive/trunk/Build/source/texk/dvipdfm-x

Further Reading

[1] “Dvipdfm User’s Manual” written by Mark A. Wicks.

[2] Adobe’s PDF References and a free copy of ISO ͳͲͰͰͰ-ͱ:ͲͰͰ standard are
available from “PDF Technology Center” on Adobe Developer Connection.

[3] The OpenType Specification is available from Microsoft’s site: “OpenType
Specification”.

[4] “Portable Network Graphics (PNG) Specification (Second Edition)”.

[5] An article regarding DVI specials: Jin-Hwan Cho, “DVI specials for PDF gen-
eration”, TUGboat, 30(1):6-11, 2009.

45

http://mirrors.ctan.org/dviware/dvipdfm/dvipdfm.pdf
http://www.adobe.com/devnet/pdf.html
http://www.adobe.com/devnet.html
http://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx
http://www.microsoft.com/en-us/Typography/OpenTypeSpecification.aspx
https://www.w3.org/TR/2003/REC-PNG-20031110/
http://www.tug.org/TUGboat/tb30-1/tb94cho.pdf
http://www.tug.org/TUGboat/tb30-1/tb94cho.pdf

Appendix A

GNU Free Documentation
License

This document is distributed under the term of the GNU Free Documentation
License. See, the attached file for copying conditions.

Or, in case that PDF viewers can not extract attached files, please visit the
following site:

http://www.gnu.org/licenses/fdl.html

46

 GNU Free Documentation License
 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
 <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

GNU Free Documentation License
GNU FDL
Plain text version of the GNU Free Documentation License.

http://www.gnu.org/licenses/fdl.html

	1 Getting Started
	1.1 Introduction
	1.1.1 xdvipdfmx
	1.1.2 Legal Notice

	1.2 Installation and Usage
	1.3 Quick Guide
	1.3.1 XeTeX
	1.3.2 pTeX
	1.3.3 upTeX
	1.3.4 CJK-LaTeX

	1.4 Auxiliary Files
	1.4.1 PostScript CMap Resources
	1.4.2 Subfont Definition Files
	1.4.3 The Adobe Glyph List and ToUnicode Mappings

	1.5 Overview of Extensions
	1.5.1 CJK Support
	1.5.2 Unicode Support
	1.5.3 Other Extensions

	2 Graphics
	2.1 Image Inclusion
	2.1.1 Supported Graphics File Formats
	2.1.2 Image Cache

	2.2 Graphics Drawing
	2.2.1 The pdf:content Special
	2.2.2 Guide to PDF Graphics Operators

	3 Specials
	3.1 PDF Specials
	3.1.1 Additions to PDF Specials
	3.1.2 ToUnicode Special
	3.1.3 PDF Special Examples

	3.2 Dvipdfmx Extensions
	3.3 PS Specials

	4 Fonts and Encodings
	4.1 Fonts and Encodings Support
	4.2 Font Mappings
	4.2.1 Extended Syntax and Options
	4.2.2 Specifying Unicode Plane
	4.2.3 OpenType Layout Feature

	4.3 Other Improvements
	4.3.1 Extended Glyph Name Syntax
	4.3.2 CFF Conversion

	4.4 Font Licensing

	5 Encryption
	5.1 Encryption Support

	6 Compatibility
	6.1 Incompatible Changes
	6.2 Important Changes

	A GNU Free Documentation License

