
OPmac – macros for plainTEX
1

Petr Olšák, 2012, 2013, 2014

http://petr.olsak.net/opmac-e.html

Contents
Introduction . 1

0 Using OPmac . 2
1 Font sizes . 2
2 Parts of the document . 3
3 Another numbered objects . 4
4 Lists . 5
5 Table of contents . 5
6 Making the index . 6
7 Colors . 7
8 Hyperlinks, outlines . 8
9 Verbatim . 8

10 Tables . 9
11 Images . 11
12 PDF transformations . 11
13 Footnotes and marginal notes . 11
14 BibTEXing . 12
15 Typesetting math . 14
16 Setting the margins . 14
17 The last page . 15
18 Summary . 16

Introduction
The OPmac package is a set of simple additional macros to plainTEX. It enables users to take
advantage of basic LATEX functionality: font size selection, the automatic creation of a table of
contents and an index, working with bibliography databases, tables, references with optional
hyperlinks, margin settings, etc.

I had been using these macros personally for a long time, but now, after cleaning up the
code a bit and providing both user and technical documentation, I’m releasing them to the
general public along with the new version of CSplain.

My main motivation in publishing OPmac is to provide a set of macros with solutions to
common tasks for plainTEX users. Additionally, I wanted to demonstrate that it is possible to
write TEX code in a simple and effective style, something that most LATEX macro packages lack.
All of OPmac’s macros are contained within the single file opmac.tex in only 1,700 lines. By
comparison, the LATEX code which solves comparable tasks is placed inside its “kernel” along
with many LATEX packages all of which contain tens of thousands of lines.

The main principles which I followed when creating this macro package, are:

• Simplicity is power.

1 This text is second revised version. The first version was published in TUGboat 34:1, 2013, pp. 88–96

1

http://petr.olsak.net/opmac-e.html

• Macros are not universal, but are readable and understandable.
• User can easily redefine these macros as he/she wishes.

Each part of the macro code is written in order to maximize readability for human who
will want to read it, understand it and change it.

OPmac package offers a markup language for authors of texts (like LATEX), i.e. the fixed
set of tags to define the structure of the document. This markup is different from the LATEX
markup. It may offer to write the source text of the document somewhat clearer and more
attractive. The OPmac package, however, does not care for typographic of the document. The
simple sober document is created if no additional macros are used. We assume that the author
of additional macros is able to create a look of the document to suit specific requirement.

OPmac has a small number of additional packages: pdfuni, opmac-xetex and opmac-bib
(see the end of http://petr.olsak.net/opmac-e.html page). Moreover, there exist many
tens of little OPmac tricks comparable with LATEX packages mentioned on http://petr.olsak.
net/opmac-tricks.html page.

0 Using OPmac
OPmac is not compiled as a format. For using it in plainTEX, you can simply \input opmac
at the beginning of your document. The example of the simple document follows:

\input opmac
\typosize[11/13] % setting the basic font size and the baselineskip
\margins/1 a4 (1,1,1,1)in % setting 1in margins for A4 paper

Here is a text.
\bye

You can use TEX, pdfTEX, XeTEX or luaTEX with etex.src or CSplain preloaded. The
CSplain is recommended but it is not explicitly requested if you don’t need to use Czech/Slovak
specific features1.

1 Font sizes
The commands for font size setting described here have local validity. It means that if you put
them into group, the font sizes are selected locally.

The command \typosize[〈fontsize〉/〈baselineskip〉] sets the font size of text and math
fonts and baselineskip. If one of these two parameters is empty, the corresponding feature stays
unchanged. The metric unit is supposed pt and this unit isn’t written in parameters. You
can change the unit by the command \ptunit=〈something-else〉, for instance \ptunit=1mm.
Examples:

\typosize[10/12] % default of plainTeX
\typosize[11/12.5] % font 11pt, baseline 12.5pt
\typosize[8/] % font 8pt, baseline unchanged

The command \typoscale[〈font-factor〉/〈baselineskip-factor〉] sets the text and math
fonts size and baselineskip as a multiple of the current fonts size and baselineskip. The factor
is written in scaled-like way, it means that 1000 means factor one. The empty parameter is
equal to the parameter 1000, i.e. the value stays unchanged. Examples:

\typoscale[800/800] % fonts and baselineskip re-size to 80 %
\typoscale[\magstep2/] % fonts bigger 1,44times

1 Warnings: “falling back to ASCII sorting” or “CZ/SK outline-conversion is off” may occur without CSplain.

2

http://petr.olsak.net/opmac-e.html
http://petr.olsak.net/opmac-tricks.html
http://petr.olsak.net/opmac-tricks.html

The sizes declared by these macros (for example in titles) are relative to the basic size
selected for the current font (this may be arbitrary size, not only 10pt).

There are times however, when one would like to make a font change relative to the docu-
ments “base” font size instead of the current font (e.g. when typesetting footnotes). The macro
\typobase provides an easy way to perform such changes. The “base” font size is set with the
first use of either \typosize or \typoscale and this size is restored by \typobase. Example:

\typosize[12/14] % if first use of \typosize, then this sets the "base"

...

{\typoscale[16/18] % bigger size (for example title font)

...

\typobase\typoscale[750/750] % reduced to 75% of [12/14] (i.e. [9/10.5])

... % this is caculated from "base", no from actual title font

}

The size of the current font can be changed by the command \thefontsize[〈font-size〉]
or can be rescaled by \thefontscale[〈factor〉]. These macros don’t change math fonts sizes
nor baselineskip.

The \resizefont, \regfont and \resizeall commands (documented in CSplain) can be
used even if the used format is not CSplain. The best design size of the font for desired size is
selected. For example \typosize[18/] selects the font cmr17 at 18pt.

The \em macro acts as \it if the current font is \rm, acts as \rm if the current font is \it,
acts as \bi if the current font is \bf and acts as \bf if the current font is \bi. The \/ spaces
are inserted automatically. Example:

This is {\em important} text. % = This is {\it important\/} text.

\it This is {\em important} text. % = This is\/ {\rm important} text.

\bf This is {\em important} text. % = This is {\bi important\/} text.

\bi This is {\em important} text. % = This is\/ {\bf important} text.

2 Parts of the document
The document can be divided into chapters, sections and subsections and titled by \tit com-
mand. The parameters have to be separed by empty line (no braces are used):

\tit Document title 〈empty line〉
\chap Chapter title 〈empty line〉
\sec Section title 〈empty line〉
\secc Subsection title 〈empty line〉

The chapters are numbered by one number, sections by two numbers (chapter.section) and
subsections by three numbers. If there are no chapters then section have only one number and
subsection two.

The implicit design of the titles of chapter etc. are implemented in the macros \printchap,
\printsec and \printsecc. User can simply change these macros if he/she needs another
behavior.

The first paragraph after the title of chapter, section and subsection is not indented but
you can type \let\firstnoindent=\relax if you need all paragraphs indented.

If a title is so long then it breaks to more lines. It is better to hint the breakpoints because
TEX does not interpret the meaning of the title. User can put the \nl (it means newline) macro
to the breakpoints.

The chapter, section or subsection isn’t numbered if the \nonum precedes. And the chapter,
section or subsection isn’t delivered to the table of contents if \notoc precedes.

3

3 Another numbered objects
Apart from chapters, sections and subsections, there are another automatically numbered ob-
jects: equations and captions for tables and figures.

If user write the \eqmark as the last element of the display mode then this equation is
numbered. The format is one number in brackets. This number is reset in each section.

If the \eqalignno is used, then user can put \eqmark to the last column before \cr. For
example:

\eqalignno{
a^2+b^2 &= c^2 \cr

c &= \sqrt{a^2+b^2} & \eqmark \cr}

The next numbered object is caption which is tagged by \caption/t for tables and
\caption/f for figures. Example:

\hfil\table{rl}{
age & value \crl\noalign{\smallskip}
0--1 & unmeasured \cr
1--6 & observable \cr
6--12 & significant \cr
12--20 & extremal \cr
20--40 & normal \cr
40--60 & various \cr
60--∞ & moderate}

\par\nobreak\medskip
\caption/t The dependency of the computer-dependency on the age.

This example produces:

age value

0–1 unmeasured
1–6 observable

6–12 significant
12–20 extremal
20–40 normal
40–60 various
60–∞ moderate

Table 2.3 The dependency of the computer-dependency on the age.

The word “Table” followed by a number is added by the macro \caption/t. The macro
\caption/f creates the word figure. The caption text is centered. If it occupies more lines
then the last line is centered.

The added word (table, figure) depends on the actual number of the \language register.
OPmac implements the mapping from \language numbers to the languages and the mapping
from languages to the generated words.

If you wish to make the table or figure as floating object, you need to use plainTEX macros
\midinsert, \topinsert and \endinsert.

Each automatically numbered object can be referenced, if the \label[〈label〉] command
precedes. The reference commands are \ref[〈label〉] and \pgref[〈label〉]. Example:

\label[beatle] \sec About Beatles

\label[comp-dependence]
\hfil\table{rl}{...} % the table

4

\caption/t The dependency of the computer-dependency on the age.

\label[pythagoras]
$$ a^2 + b^2 = c^2 \eqmark $$

Now we can point to the section~\ref[beatle] on the page~\pgref[beatle]
or write about the equation~\ref[pythagoras]. Finally there
is an interesting Table~\ref[comp-dependence].

If there are forward referenced objects then user have to run TEX twice. During each pass,
the working *.ref file (with refereces data) is created and this file is used (if it exists) at the
begin of the document.

You can create a reference to whatever else by commands \label[〈label〉]\wlabel{〈text〉}.
The connection between 〈label〉 and 〈text〉 is established. The \ref[〈label〉] will print 〈text〉.

4 Lists
The list of items is surrounded by \begitems and \enditems commands. The asterisk (*) is
active within this environment and it starts one item. The item style can be chosen by \style
parameter written after \begitems:

\style o % small bullet
\style O % big bullet (default)
\style - % hyphen char
\style n % numbered items 1., 2., 3., ...
\style N % numbered items 1), 2), 3), ...
\style i % numbered items (i), (ii), (iii), ...
\style I % numbered items I, II, III, IV, ...
\style a % items of type a), b), c), ...
\style A % items of type A), B), C), ...
\style x % small rectangle
\style X % big rectangle

Another style can be defined by the command \sdef{item:〈style〉}{〈text〉}. Default item
can be redefined by \def\normalitem{〈text〉}. The list environments can be nested. Each new
level of item is indented by next multiple of \iindent which is set to \parindent by default.
The vertical space at begin and end of the environment is inserted by the macro \iiskip.

5 Table of contents
The \maketoc command prints the table of contents of all \chap, \sec and \secc used in the
document. These data are read from external *.ref file, so you have to run TEX more than
once (typically three times if the table of contents is at the beginning of the document).

The name of the section with table of contents is not printed. The direct usage of \chap or
\sec isn’t recommended here because the table of contents is typically not referenced to itself.
You can print the unnumbered and unreferenced title of the section by the code:

\nonum\notoc\sec Table of Contents

The title of chapters etc. are written into the external file and they are read from this file
in a next run of TEX. This technique can induce some problems when a somewhat complicated
macro is used in the title. OPmac solves this problem by different way than LATEX. User can
set the problematic macro as “robust” by \addprotect\macro declaration. The \macro itself
cannot be redefined. The common macros used in OPmac which can be occur in the titles are
declared by this way. For example:

\addprotect~ \addprotect\TeX \addprotect\thefontsize \addprotect\em

5

6 Making the index
The index can be included into document by \makeindex macro. No external program is
needed, the alphabetical sorting are done inside TEX at macro level.

The \ii command (insert to index) declares the word separated by the space as the index
item. This declaration is represented as invisible atom on the page connected to the next visible
word. The page number of the page where this atom occurs is listed in the index entry. So you
can type:

The \ii resistor resistor is a passive electrical component ...

You cannot double the word if you use the \iid instead \ii:

The \iid resistor is a passive electrical component ...
or:
Now we’ll deal with the \iid resistor .

Note that the dot or comma have to be separated by space when \iid is used. This space
(before dot or comma) is removed by the macro in the current text.

The multiple-words entries are commonly organized in the index by the format (for exam-
ple):

linear dependency 11, 40–50
— independency 12, 42–53
— space 57, 76
— subspace 58

To do this you have to declare the parts of the words by the / separator. Example:

{\bf Definition.}
\ii linear/space,vector/space
{\em Linear space} (or {\em vector space}) is a nonempty set of...

The number of the parts of one index entry is unlimited. Note, that you can spare
your typing by the comma in the \ii parameter. The previous example is equivalent to
\ii linear/space \ii vector/space.

Maybe you need to propagate to the index the similar entry to the linear/space in the form
space/linear. You can do this by the shorthand ,@ at the end of the \ii parameter. Example:

\ii linear/space,vector/space,@
is equivalent to:
\ii linear/space,vector/space \ii space/linear,space/vector

If you really need to insert the space into the index entry, write “~”.
The \makeindex creates the list of alphabetically sorted index entries without the title

of the section and without creating more columns. OPmac provides another macros for more
columns:

\begmulti 〈number of columns〉
〈text〉
\endmulti

The columns will be balanced. The Index can be printed by the following code:

\sec Index\par
\begmulti 3 \makeindex \endmulti

Only “pure words” can be propagated to the index by the \ii command. It means that
there cannot be any macro, TEX primitive, math selector etc. But there is another possibility

6

to create such complex index entry. Use “pure equivalent” in the \ii parameter and map this
equivalent to the real word which is printed in the index by \iis command. Example:

The \ii chiquadrat χ-quadrat method is
...
If the \ii relax "\relax" command is used then \TeX\ is relaxing.
...
\iis chiquadrat {χ-quadrat}
\iis relax {{\tt \char‘\\relax}}
...

The \iis 〈equivalent〉 {〈text〉} creates one entry in the “dictionary of the exceptions”.
The sorting is done by the 〈equivalent〉 but the 〈text〉 is printed in the index entry list.

The special sorting by the Czech or Slovak standard of alphabetical sorting is activated if
CSplain is used and if \language register is set to the Czech or Slovak hyphenation patterns
when \makeindex is in progress. The main difference from English sorting is that “ch” is
treated as one character between h and i.

7 Colors
The colors selection macros are working only if pdfTEX-like engine is used. OPmac provides
a small number of color selectors: \Blue, \Red, \Brown, \Green, \Yellow, \Cyan, \Magenta,
\White, \Grey, \LightGrey and \Black. But user can define more such selectors by setting
the CMYK components. For example

\def\Orange{\setcmykcolor{0 0.5 1 0}}

The selectors itself change the color of the text and of the lines with the thickness more than
1bp. If the \linecolor immediately precedes the color selector then the lines with thickness
less or equal 1bp are colored. This is a second independent type of the color.

The color selectors work globally on the one page. If the colored text is broken to the next
page then the color is correctly set on the following page(s) after the second run of TEX, because
this event is implemented via external file. User can write \localcolor inside the group. This
command saves the current color and restore it after the group is completed. It is supposed
that the group corresponds to the boundary of a box which cannot break to more pages. If this
is not true case then user can use \longlocalcolor instead \localcolor. Example:

\Red The text is red
\hbox{\localcolor \Blue here is blue {\localcolor \Green and green}

restored blue \Brown and brown}
now the text is red.

The more usable example follows. It defines a macro which creates the colored text on the
colored background. Usage: \coloron〈background〉〈foreground〉{〈text〉}

The \coloron can be defined as follows:

\def\coloron#1#2#3{%
\setbox0=\hbox{#3}\leavevmode
{\localcolor\rlap{#1\strut \vrule width\wd0}#2\box0}%

}
\coloron\Yellow\Brown{The brown text on the yellow backround}

The watermark is grey text on the backrounf of the page. OPmac offers an example: the
macro \draft which creates grey scaled and rotated text DRAFT on the background of every
page.

7

8 Hyperlinks, outlines
If the command \hyperlins{〈color-in〉}{〈color-out〉} is used at the beginning of the file, then
the following objects are hyperlinked when PDF output is used:

• numbers generated by \ref or \pgref,
• numbers of chapters, sections and subsections in the table of contents,
• numbers or marks generated by \cite command (bibliography references),
• texts printed by \url command.

The last object is an external link and it is colored by 〈color-out〉. Others links are internal
and they are colored by 〈color-in〉. Example:

\hyperlinks \Blue \Green % internal links blue, URLs green.

You can use another marking of active links: by frames which are visible in the PDF viewer
but invisible when the document is printed. The way to do it is to define the macros \pgborder,
\tocborder, \citeborder, \refborder and \urlborder as the triple of RGB components of
the used color. Example:

\def\tocborder {1 0 0} % links in table of contents: red frame
\def\pgborder {0 1 0} % links to pages: green frame
\def\citeborder {0 0 1} % links to references: blue frame

By default these macros are not defined. It means that no frames are created.
There are “low level” commands to create the links. You can specify the destination of

the internal link by \dest[〈type〉:〈label〉]. The active text linked to the \dest can be created
by \link[〈type〉:〈label〉]{〈color〉}{〈text〉}. The 〈type〉 parameter is one of the toc, pg, cite,
ref or another special for your purpose.

The \url macro prints its parameter in \tt font and creates a potential breakpoints in
it (after slash or dot, for example). If \hyperlinks declaration is used then the parameter of
\url is treated as an external URL link. An example: \url{http://www.olsak.net} creates
http://www.olsak.net. The charecters %, \, #, $, { and } have to be protected by backslash
in the \url argument, the other special charecters ~, _, ^, & can be written as single character.
You can insert the \| command in the \url argument as a potential breakpoint.

If the linked text have to be different than the URL, you can use \ulink[〈url〉]{text}
macro. For example:

\ulink[http://www.olsak.net/opmac-e.html]{OPmac page}

creates OPmac page.
The PDF format provides “outlines” which are notes placed in the special frame of the PDF

viewer. These notes can be managed as structured and hyperlinked table of contents of the
document. The command \outlines{〈level〉} creates such outlines from data used for table of
contents in the document. The 〈level〉 parameter gives the level of opened sub-outlines in the
default view. The deeper levels can be open by mouse click on the triangle symbol after that.

The strings used in PDF outlines are converted if CSplain is used: the accents are stripped
off because they can make problems in outlines. But user can use \input pdfuni in order to
convert these strings to internal UNICODE representation.

The command \insertoutline{〈text〉} inserts next entry into PDF outlines at the main
level 0. This entry can be placed before table of contents (created by \outlines) or after it.

9 Verbatim
The display verbatim text have to be surrounded by the \begtt and \endtt couple. The
inline verbatim have to be tagged (before and after) by a character which is declared by
\activettchar〈char〉. For example \activettchar" declares the " for inline verbatim markup.

8

http://www.olsak.net
http://www.olsak.net/opmac-e.html

If the numerical register \ttline is set to the non-negative value then display verbatim
will number the lines. The first line has the number \ttline+1 and when the verbatim ends
then the \ttline value is equal to the number of last line printed. Next \begtt...\endtt
environment will follow the line numbering. OPmac sets \ttline=-1 by default.

The indentation of each line in display verbatim is controlled by \ttindent register. This
register is set to the \parindent when opmac.tex is read. User have to change its value if the
\parindent is changed after reading of opmac.tex.

The \begtt starts internal group in which the catcodes are changed. Then the \tthook
macro is run. This macro is empty by default and user can control fine behavior by it. For
example the cactodes can be reset here. If you need to define active character in the \tthook,
use \adef as in the following example:

\def\tthook{\adef!{?}\adef?{!}}
\begtt
Each occurrence of the exclamation mark will be changed to
the question mark and vice versa. Really? You can try it!
\endtt

The \adef command sets its parameter as active after the body of \tthook is read. So you
can’t worry about active categories.

There are tips for global \tthook definitions here:

\def\tthook{\typosize[9/11]} % setting font size for verbatim
\def\tthook{\ttline=0} % each listing will be numbered from one
\def\tthook{\adef{ }{\char‘\ }} % visualisation of spaces

You can print verbatim listing from external files by \verbinput command. Examples:

\verbinput (12-42) program.c % listing from program.c, only lines 12-42
\verbinput (-60) program.c % print from begin to the line 60
\verbinput (61-) program.c % from line 61 to the end
\verbinput (-) program.c % whole file is printed
\verbinput (70+10) program.c % from line 70, only 10 lines printed
\verbinput (+10) program.c % from the last line read, print 10 lines
\vebrinput (-5+7) program.c % from the last line read, skip 5, print 7
\verbinput (+) program.c % from the last line read to the end

The \ttline influences the line numbering by the same way as in \begtt...\endtt en-
vironment. If \ttline=-1 then real line numbers are printed (this is default). If \ttline<-1
then no line numbers are printed.

The \verbinput can be controlled by \tthook, \ttindent just like in \begtt...\endtt.

10 Tables
The macro \table{〈declaration〉}{〈data〉} provides similar 〈declaration〉 as in LATEX: you can
use letters l, r, c, each letter declares one column (aligned to left, right, center respectively).
These letters can be combined by the “|” character (vertical line). Example

\table{||lc|r||}{ \crl
Month & commodity & price \crli

\tskip.2em
January & notebook & \$ 700 \cr
February & skateboard & \$ 100 \cr
July & yacht & k\$ 170 \crl}

generates the following result:

9

Month commodity price

January notebook $ 700
February skateboard $ 100
July yacht k$ 170

The command \cr is generally known. Moreover OPmac defines following similar com-
mands:

• \crl . . . the end of the row with a horizontal line after it.
• \crli . . . like \crl but the horizontal line doesn’t intersect the vertical double lines.
• \crlli . . . like \crli but horizontal line is doubled.

The \tskip〈dimen〉 command works like the \noalign{\vskip〈dimen〉} after \cr* com-
mands but it doesn’t interrupt the vertical lines.

The configuration macros for \table are defined in the following listing with their default
values:

\def\tabiteml{\enspace} % left material in each column

\def\tabitemr{\enspace} % right material in each column

\def\tabstrut{\strut} % strut inserted in each line

\def\vvkern{1pt} % space between double vertical line

\def\hhkern{1pt} % space between double horizontal line

If you do \def\tabiteml{$\enspace}\def\tabitemr{\enspace$} then the \table acts
like LATEX’s array environment.

The \frame{〈text〉} makes a frame around 〈text〉. You can put the whole \table into
\frame if you need double-ruled border of the table. Example:

\frame{\table{|c||l||r|}{\crl

\multispan3\vrule\hss\bf Title\hss \vrule\tabstrut \crl

\noalign{\kern\hhkern}\crli

first & second & third \crlli

seven & eight & nine \crli}}

creates the following result:

Title
first second third

seven eight nine

The c, l and r are default 〈declaration〉 letters but you can define more such letters by
\def\tabdeclare〈letter〉{〈left〉##〈right〉}. For example:

\newdimen\Pwidth

\def\tabdeclareP {\enskip\vtop{\hsize=\Pwidth \rightskip=0pt plus1fil

\baselineskip=1.2em\lineskiplimit=0pt\noindent##\tabstrutA}\hss\enskip}

declares the letter P which means the tabular column with \vtops. This is similar to LATEX’s
parbox.

The rule width of tables (and implicit width of all \vrules and \hrules) can be set by the
command \rulewidth=〈dimen〉. The default value given by TEX is 0.4pt.

Many tips about tables can be seen on http://petr.olsak.net/opmac-tricks.html.

10

http://petr.olsak.net/opmac-tricks.html

11 Images
The \inspic 〈filename〉.〈extension〉〈space〉 inserts the picture stored in the graphics file with
the name 〈filename〉.〈extension〉. You can set the picture width by \picw=〈dimen〉 before first
\inspic command which declares the width of the picture. The files can be in the PNG, JPG,
JBIG2 or PDF format. The \inspic command works with pdfTEX/XeTEX only.

The \picwidth is an equivalent register to \picw. Moreover there is an \picheight register
which denotes the height of the picture. If both registers are set then the picture will be
(probably) deformed.

The file is searched in \picdir. This macro is empty by default, this means that the file
is searched in current directory.

12 PDF transformations
All typesetting elements are transformed in pdfTEX by linear transformation given by the
current transformation matrix. The \pdfsetmatrix {〈a〉 〈b〉 〈c〉 〈d〉} command makes the
internal multiplication with the current matrix so linear transformations can be composed. The
stack-oriented commands \pdfsave and \pdfrestore gives a possibility of storing and restoring
the current transformation matrix and current point. The possition of current point have to be
the same from TEX’s point of view as from transformation point of view when \pdfrestore is
processed. Due to this fact the \pdfsave\rlap{〈transformed text〉}\pdfrestore or something
similar is recomeded.

OPmac provides the macros

\pdfscale{〈horizontal-factor〉}{〈vertical-factor〉}
\pdfrotate{〈angle-in-degrees〉}
These macros simply calls the properly \pdfsetmatrix primitive command.
It is known that the comosition of transformations is not commutative. It means that the

order is important. You have to read the tranformation matrices from right to left. Example:

First: \pdfsave \pdfrotate{30}\pdfscale{-2}{2}\rlap{text1}\pdfrestore
% text1 is scaled two times and it is reflected about vertical axis
% and next it is rotated by 30 degrees left.

second: \pdfsave \pdfscale{-2}{2}\pdfrotate{30}\rlap{text2}\pdfrestore
% text2 is rotated by 30 degrees left then it is scaled two times
% and reflected about vertical axis.

third: \pdfsave \pdfrotate{-15.3}\pdfsetmatrix{2 0 1.5 2}\rlap{text3}%
\pdfrestore % first slanted, then rotated by 15.3 degrees right

This gives the following result. First: text1
second: tex

t2
third: text3

13 Footnotes and marginal notes
The plainTEX’s macro \footnote is not redefined. But a new macro \fnote{〈text〉} is defined.
The footnote mark is added automatically and it is numbered on each page from one1. The
〈text〉 is scaled by \typoscale[800]. The implicit visual aspect of the footnote mark is defined
by \def\thefnote{$^{\locfnum}$)}. User can redefine it, for example:

\def\thefnote{\ifcase\locfnum\or
*\or**\or***\or$^{\dag}$\or
$^{\ddag}$\or$^{\dag\dag}$\fi}

1 This behavior is changed if \runningfnotes is used: the footnotes are numbered from one in whole document
in such case. Alternatives are possible, see OPmac tricks or technical documentation.

11

The \fnote macro is fully applicable only in “normal outer” paragraph. It doesn’t work
inside boxes (tables for example). If you are solving such case you can use \fnotemark〈number〉
inside the box (only the footnote mark is generated). When the box is finished you can
use \fnotetext{〈text〉}. This macro puts the 〈text〉 to the footnote. The 〈number〉 after
\fnotemark have to be 1 if only one such command is in the box. Second \fnotemark inside
the same box have to have the parameter 2 etc. The same number of \fnotetexts have to be
written after the box as the number of \fnotemarks inserted inside the box.

The marginal note can be printed by the \mnote{〈text〉} macro. The 〈text〉 is placed to
the right margin on the odd pages and it is placed to the left margin on the even pages. This is
done after second TEX run because the relevant information is stored in an external file. If you
need to place the notes only to the fixed margin write \fixmnotes\right or \fixmnotes\left.

The 〈text〉 is formatted as a little paragraph with the maximal width \mnotesize ragged
left on the left margins or ragged right on the right margins. The first line of this little para-
graph is at the same height as the invisible mark created by \mnote in the current paragraph.
The exceptions are possible by \mnoteskip register. You can implement such exceptions to
each \mnote manually in final printing in order to margin notes do not overlap. The posi-
tive value of \mnoteskip shifts the note up and negative value shifts it down. For example
\mnoteskip=2\baselineskip \mnote{〈text〉} shifts this (and only this) note two lines up.

14 BibTEXing
The command \cite[〈label〉] or its variations of the type \cite[〈label-1 〉,〈label-2 〉,〈label-3 〉]
create the citations in the form [42] or [15, 19, 26]. If \shortcitations is declared at the
beginning of the document then continuous sequences of numbers are re-printed like this:
[3–5, 7, 9–11]. If \sortcitations is declared then numbers generated by one \cite command
are sorted upward.

If \nonumcitations is used then the marks instead numbers are generated depending on
the used bibTEX style. For example the citations look like [Now08] when alpha style is used
and like [Nowak, 2008] when apalike style is used.

The \rcite[〈labels〉] creates the same list as \cite[〈labels〉] but without the outer brack-
ets. Example: [\rcite[tbn], pg.~13] creates [4, pg.13].

The \ecite[〈label〉]{〈text〉} prints the 〈text〉 only, but the entry labeled 〈label〉 is decided
as to be cited. If \hyperlinks is used then 〈text〉 is linked to the references list.

You can define alternative formating of \cite command. Example:

\def\cite[#1]{(\rcite[#1])} % \cite[〈label〉] creates (27)
\def\cite[#1]{$^{\rcite[#1]}$} % \cite[〈label〉] creates^{27}
The numbers printed by \cite correspond to the same numbers generated in the list of

references. There are four possibilities to generate this references list:

• Manually using \bib[〈label〉] commands.
• Using bibTEX and \usebibtex{〈bib-base〉}{〈bib-style〉} command.
• Using pregenerated *.bbl file and \usebbl/〈type〉 〈bbl-base〉 command.
• By \usebib/〈type〉 (〈style〉) 〈bbl-base〉 command which reads *.bib databases directly.

These possibilities are documented here in detail:

References created manually using \bib[〈label〉] command.

\bib [tbn] P. Olšák. {\it\TeX{}book naruby.} 468~s. Brno: Konvoj, 1997.
\bib [tst] P. Olšák. {\it Typografický systém \TeX.}

269~s. Praha: CSTUG, 1995.

If you are using \nonumcitations then you need to declare the 〈marks〉 used by \cite com-
mand. To do it you have to use long form of the \bib command which is in the format
\bib[〈label〉] = {〈mark〉}. The spaces around equal sign are mandatory. Example:

12

\bib [tbn] = {Olšák, 2001}

P. Olšák. {\it\TeX{}book naruby.} 468~s. Brno: Konvoj, 2001.

References using bibTEX. The command \usebibtex{〈bib-base〉}{〈bst-style〉} creates the
list of cited entries and entries indicated by \nocite[〈label〉]. After first TEX run the *.aux
file is created, so user have to run the bibTEX by the command bibtex 〈document〉. After
second TEX run the bibTEX’s output is read and after third TEX run all references are properly
created.

The 〈bib-base〉 is one or more *.bib database source files (separated by spaces and without
extension) and the 〈bst-style〉 is the style used by bibTEX. The common styles are plain, alpha,
apalike, ieeetr, unsrt.

Using pregenerated *.bbl file by bibTEX. You can create the temporary file (mybase.tex,
for example) which looks like:

\input opmac

\genbbl{〈bib-base〉}{〈bst-style〉}
\end

After first TEX run the mybase.aux is generated. Then you can run bibtex mybase which
generates the .bbl file with all entries from the 〈bib-base〉 *.bib file(s). Second TEX run on
the file mybase.tex generates the printed form of the list of all bib entries with labels. This is
usable printed matter, you can place it to your notice board when you create your document.
Finally you can insert to your real document one of the following commands:

\usebbl/a mybase % print all entries from mybase.bbl (a=all)

\usebbl/b mybase % print only \cited and \nocided entries

% sorted by mybase.bbl (b=bbl)

\usebbl/c mybase % print only \cited and \nocited entries

% sorted by \cite-order (c=cite)

Sometimes the pure LATEX command occurs (unfortunately) in the .bib database or bibTEX
style. User can define such commands in the \bibtexhook macro which is a hook started inside
the group before .bbl file is read. Example:

\def\bibtexhook{\def\emph##1{{\em##1}}\def\frac##1##2{{##1\over##2}}}

Direct reading of .bib files is possible after \input opmac-bib. This package uses the
external package librarian.tex by Paul Isambert. The usage is similar to previous case:

% print only \cited and \nocited entries

\usebib/c (〈style〉) 〈bib-base〉 % sorted by \cite-order (c=cite),
\usebib/s (〈style〉) 〈bib-base〉 % sorted by style (s=style).

The 〈bib-base〉 is one or more *.bib database source files (separated by spaces and without
extension) and the 〈style〉 is the part of the filename opmac-bib-〈style〉.tex where the format-
ting of the references list is defined. Possible styles are simple or iso690. The behavior of
opmac-bib.tex and opmac-bib-iso690.tex is full documented in these files (after \endinput
command).

Formatting of the references list is controlled by the \printb macro. It is called at the
begin of each entry. The default \printb macro prints the number of the entry in square
brackets. If the \nonumcitations is set then no numbers are printed, only all lines (but no
first one) are indented. The \printb macro can use the following values: \the\bibnum (the
number of the entry) and \the\bibmark (the mark of the entry used when \nonumcitations
is set). Examples:

13

% The numbers are without square brackets:
\def\printbib{\hangindent=\parindent \indent \llap{\the\bibnum. }}
% Printing of 〈marks〉 when \nonumcitations is set:
\def\printbib{\hangindent=\parindent \noindent [\the\bibmark]\quad}

Next examples can be found on the OPmac tricks WWW page.

15 Typesetting math
There are two files for math typesetting prepared in CSplain:

• ams-math.tex loads the AMS math fonts visual compatible with Computer modern.
• tx-math.tex loads the TX fonts visual compatible with Times.

OPmac reads the first file ams-math.tex by default. If you are using font files from CSplain
(ctimes.tex, cbookman.tex, cs-termes.tex etc.) then the second math-file tx-math.tex is
loaded.

This section describes the features of the macros from ams-math.tex or tx-math.tex.
More documentation is written in these files themselves.

Hundreds math symbols and operators like in AMSTEX are accesible. For example \alpha
α, \geq ≥, \sum

∑
, \sphericalangle ^, \bumpeq, l. See AMSTEX manual (or TX-fonts

manual) for complete list of symbols.
The following math alphabets are available:

\mit % mathematical variables abc−xyz,ABC−XY Z
\it % text italics abc−xyz ,ABC−XYZ
\rm % text roman abc−xyz,ABC−XYZ
\cal % normal calligraphics ABC−XYZ
\script % script A BC−X Y Z
\frak % fracture abc−xyz,ABC−XYZ
\bbchar % double stroked letters ABC−XYZ
\bf % sans serif bold abc−xyz,ABC−XYZ
\bi % sans serif bold slanted abc−xyz ,ABC−XYZ

The last two selectors \bf and \bi select the sans serif fonts regardless current text font family.
The reason is that these shapes are used for vectors and matrices in Czech math typesetting.

The math fonts are scaled by \typosize and \typoscale macros. Two math fonts collec-
tions are prepared: \normalmath for normal weight and \boldmath for bold. The first one is
set by default. There is an example for math typesetting in titles:

\def\title#1\par{\centerline{\typosize[17/]\bf\boldmath #1}}
\title The title with math $\int_a^b f(x) {\rm d}x$ is here

Variables are printed by special math italics when ams-math.tex is loaded and by text
italics of the current text font when tx-math.tex is loaded. You can change this behavior by
following commands:

\itvariables % variables typeset by text italics.
\mitvariables % variables typeset by math italics.

16 Setting the margins
OPmac declares paper formats a4, a4l (landscape a4), a5, a5l, b5, letter and user can declare
another own format by \sdef:

\sdef{pgs:b5l}{(250,176)mm}
\sdef{pgs:letterl}{(11,8.5)in}

14

http://petr.olsak.net/opmac-tricks.html

The \margins command declares margins of the document. This command have the fol-
lowing parameters:

\margins/〈pg〉 〈fmt〉 (〈left〉,〈right〉,〈top〉,〈bot〉)〈unit〉
example:

\margins/1 a4 (2.5,2.5,2,2)cm

Parameters are:

• 〈pg〉 . . . 1 or 2 specifies one-page or two-pages design.
• 〈fmt〉 . . . paper format (a4, a4l, etc.).
• 〈left〉, 〈right〉, 〈top〉, 〈bot〉 . . . gives the amount of left, right, top and bottom margins.
• 〈unit〉 . . . unit used for values 〈left〉, 〈right〉, 〈top〉, 〈bot〉.

Each of the parameters 〈left〉, 〈right〉, 〈top〉, 〈bot〉 can be empty. If both 〈left〉 and 〈right〉
are nonempty then \hsize is set. Else \hsize is unchanged. If both 〈left〉 and 〈right〉 are
empty then typesetting area is centered in the paper format. The analogical rule works when
〈top〉 or 〈bot〉 parameter is empty (\vsize instead \hsize is used). Examples:

\margins/1 a4 (,,,)mm % \hsize, \vsize untouched,

% typesetting area centered

\margins/1 a4 (,2,,)cm % right margin set to 2cm

% \hsize, \vsize untouched, vertically centered

If 〈pg〉=1 then all pages have the same margins. If 〈pg〉=2 then the declared margins are
true for odd pages. The margins at the even pages are mirrored in such case, it means that
〈left〉 is replaced by 〈right〉 and vice versa.

The command \magscale[〈factor〉] scales the whole typesetting area. The fixed point
of such scaling is the so called the “Knuth’s point”: 1in below and 1in right of paper sides.
Typesetting (breakpoints etc.) is unchanged. All units are relative after such scaling. Only
paper formats dimensions stays unscaled. Example:

\margins/2 a5 (22,17,19,21)mm

\magscale[1414] \margins/1 a4 (,,,)mm

The first line sets the \hsize and \vsize and margins for final printing at a5 format. The
setting on the second line centers the scaled typesetting area to the true a4 paper while breaking
points for paragraphs and pages are unchanged. It may be usable for review printing. After
review is done, the second line can be commented out.

17 The last page

The number of the last page (it may be different from number of pages) is stored in the
\lastpage register after first TEX run if the working *.ref file is open. This file isn’t open for
every documents; only for those where the forward references are printed or table of contents
is created. If the *.ref file isn’t open for your document and you need to use the \lastpage
register then you have to write the command \openref. This command opens the *.ref file
immediatelly.

There is an example for footlines in the format “current page / last page”:

\footline={\hss \rm \thefontsize[10]\the\pageno/\the\lastpage \hss}

15

18 Summary

\tit Title (terminated by a blank line)
\chap Chapter Title (terminated by a blank line)
\sec Section Title (terminated by a blank line)
\secc Subsection Title (terminanted by a blank line)

\maketoc % table of contents generation
\ii item1,item2 % insertion the items to the index
\makeindex % the index is generated

\label [labname] % link target location
\ref [labname] % link to the chapter, section, subsection, equation
\pgref [labname] % link to the page of the chapter, section, ...

\caption/t % a numbered table caption
\caption/f % a numbered caption for the picture
\eqmark % a numbered equation

\begitems % start list of the items
\enditems % end of list of the items
\begtt % start verbatim text
\endtt % end verbatim text
\activettchar X % initialization character X for in-text verbatim
\verbinput % verbatim extract from the external file
\begmulti num % start multicolumn text (num columns)
\endmulti % end multicolumn text

\cite [labnames] % refers to the item in the lits of references
\rcite [labnames] % similar to \cite but [] are not printed.
\sortcitations \shortcitations \nonumcitations % cite format
\bib [labname] % an item in the list of references
\usebibtex {bib-base}{bst-style} % use BibTeX for bibliography
\genbbl {bib-base}{bst-style} % prepare the bbl file generation
\usebbl/? bbl-base % use pre-generated bbl file, ? in {a,b,c}
\usebib/? (style) bib-base % direct using of .bib file, ? in {s,c}

\typosize [font-size/baselineskip] % size setting of typesetting
\typoscale [factor-font/factor-baselineskip] % size scaling
\thefontsize [size] \thefontscale [factor] % current font size

\inspic file.ext % insert a picture, extensions: jpg, png, pdf
\table {rule}{data} % simple macro for the tables like in LaTeX

\fnote % footnote (local numbering on each page)
\mnote % note in the margin (left or right by page number)

\hyperlinks {color-in}{color-out} % PDF links activate as clickable
\outlines {level} % PDF will have a table of contents in the left tab

\magscale[factor] % resize typesetting, line/page breaking unchanged
\margins/pg format (left, right, top, bottom)unit % margins setting

16

	CONTENTS
	introduction
	using opmac
	font sizes
	parts of the document
	another numbered objects
	lists
	table of contents
	making the index
	colors
	hyperlinks, outlines
	verbatim
	tables
	images
	pdf transformations
	footnotes and marginal notes
	bibTeX ing
	typesetting math
	setting the margins
	the last page
	summary

