
PROGRAMMING
the way ConTEXt is set up

context 2021 meeting



programming — context 2021 meeting — levels

Levels
When you look at ConTEXt bottom–up (engine–interface) you will notice:

1. primitives: this is what the engine comes with

2. infrastructure: basic management of data structures

3. helpers: macros that hide complexity

4. subsystems: collections of macros that implement functionality

5. mechanisms: these combine various subsystems

6. modules: extra functionality (uses 1–5)

7. styles: handling sources and layout (uses 4–6)

Users normally see ConTEXt top–down (usage–hacking).



programming — context 2021 meeting — styles

Styles

• These are prebuilt solutions for common as well as rare situations.

• The system comes with some styles: the s-* files.

• Right from the start the idea was that you get some reasonable default.

• And if you want more you stepwise define your style as you go.

• It really is part of the game: exploration.

• Solving your problem is a nice challenge.

• If you want a completely predefined setup, shop somewhere else.



programming — context 2021 meeting — modules

Modules

• A lot of functionality is built in.

• This helps to keep the system consistent.

• We could cheat and ship thousands of few–liner styles but don't do that.

• There are a few mechanisms that don't really fit into the core, so these are implemented as
modules that do fit into the interface: the m-* and x-* files.

• Users can build and share their solutions which has resulted in some third party modules: the
t-* files.

• For (a few, often old) private files I use p-* name scheme.



programming — context 2021 meeting — mechanisms

Mechanisms

• These are combinations of subsystems but often they cannot really be distinguished.

• Examples are notes, that combine notations, lists, references, descriptions etc.



programming — context 2021 meeting — subsystems

Subsystems

• This is what users see and can configure

• Most are (conceptually) rather old but evolved over time. There are no fundamental differences
between MkIV and LMTX, but the later is hopefully a bit cleaner.

• Examples are fonts, languages, color, structure (sectioning, lists, constructions, itemgroups,
references), spacing, graphics, bibliographies, positioning, numbering and layout.

• More hidden are the backend, export and xml interfaces.

• Some have subsystems themselves, like widgets that relate to a specific backend.

• There are often dependencies between subsystems which makes that it's not really a hierarchy.
A more strict separation would demand much more overhead.



programming — context 2021 meeting — helpers

Helpers

• These provide basic programming help.

• Examples are macros for comparing things, loops, list processing, argument handling.

• But more abstract box manipulations also fits in here.

• Some subsystems, like xml and bibliographies provide more specific low level helpers.



programming — context 2021 meeting — infrastructure

Infrastructure

• The engine provides counters, dimension and other registers that need to be managed in order
to avoid clashes in usage.

• Many of the helpers, subsystems and mechanisms fall back on common rather low level func
tions (Lua) and macros (using primitives).



programming — context 2021 meeting — primitives

Primitives

• This is what the engine provides: the built-in commands and features.

• In addition to the visible primitives there are Lua interfaces and these permit adding extra prim
itives.

• In LuaMetaTEX we have the core TEX set but a few were dropped because we don't have a backend
and a different io subsystem (so they have to be emulated).

• We also have some of the 𝜀-TEX primitives and very few of the pdfTEX ones but I now consider
for instance expansion and protrusion extensions to be kind of 𝜀-TEX.

• There are additional LuaTEX primitives but some were dropped, again because of the backend,
so we emulate some, and also because some were experimental.

• There are quite some new primitives and existing mechanisms have been extended, cleaned
up and (hopefully) improved.



programming — context 2021 meeting — the shift

The shift

• There have always been complaints about TEX as a language (what makes me wonder why those
who complain use it.)

• Although there are some extensions to the language in 𝜀-TEX, follow-ups have not really suc
ceeded in this area.

• At some point I decided that code in the categories 1–4 cold benefit from extensions.

• That also meant that we use less of the low helpers. It makes the code look a bit more TEX.

• It also means less clutter, in code as well in tracing. Often the code becomes simpler too.

• The idea is that TEX becomes a bit more a programming language.

• Of course it takes away the “Watch me, I can do real dirty TEX hacking!” brawling.

• It also can take away some of the complaints.

• And it definitely adds some fun.

During the week we show some of the implementation (in Visual Studio) and examples of applications. We also
write a small extension (the dk unit)


