
Speed:

why it matters
and why we care

Hans Hagen
ConTEXt Meeting

September 2013

Speed Pages per minute

What happens What we can do

Speed

• speed matters in a edit-run-preview cycle although this is mostly perception

• the nicer the interface, the slower it gets, but you seldom set something up so that
is not much of a burden

• everything you provide gets used at some point, also in inefficient ways, so best
know your weak spots

• lots of local (grouped) tweaks leads to many mechanisms kicking in unseen, grouping
matters

• wrong use of functionality can have drastic and unexpected speed penalties

Pages per minute

• we have speed up the baseline performance (in pages per second) as much as possible

• we try to identify and optimize critical routines, both at the TEX and Lua end

• of course the used hardware machine and versions of LuaTEX and ConTEXt matter

\dorecurse {1000} {test \page}

pages Jan Apr May Sep (nuts)
1 2 2 2 4 4

10 15 17 17 36 37
100 90 109 110 237 236

1000 185 234 259 509 512
10000 215 258 289 548 557

< 06/2013, LuaTEX: 0.72+, Dell M90, SSD, 4GB, 2.33 Ghz T7600, Windows 8/32 bit
> 06/2013, LuaTEX: 0.72+, Dell 6700, SSD, 16GB, 2.80 Ghz 3840QM, Windows 8/64 bit

What happens

• load macros and Lua code is loaded from the format

• the system gets initialized, think of fonts and languages

• additional (runtime) files are loaded

• text is typeset and eventually gets passed to the page builder

• pages are packaged, this includes reverting to global document states

• the pdf representation is created

• each of these steps has its bottlenecks

• the more we don, the more Lua gets involved

What we can do

• avoid copying boxes where possible

• only enable initializers and finalizers when functionality is used

• be clever with fonts, in usage as well as in supporting features

• use trial runs in multi--pass mechanisms

• avoid too much macro expansion (only matters for tracing)

• accept that more functionality has a price

• improve the engine and cook up more clever low level code

but

• don’t compromise functionality

• avoid too obscure code

• forget about optimization by means of combining functionality

	pushbutton:1:
	pushbutton:2:
	pushbutton:3:
	pushbutton:4:
	pushbutton:5:
	pushbutton:6:
	pushbutton:7:
	pushbutton:8:
	pushbutton:9:
	pushbutton:10:
	pushbutton:11:
	pushbutton:12:
	pushbutton:13:
	pushbutton:14:
	pushbutton:15:
	pushbutton:16:

