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Math as script

• math can be input using the TEX syntax, MathML, calculator like sequences, . . .

• but apart from content MathML all stay close to good old TEX

• although not officially a script, OpenType treats it as such, but without control

$ ( (x + 1) / a + 1 )^2 = (x - 1) / b $

$ \left( \frac{x + 1}{a} + 1 \right)^2 = \frac{x - 1}{b} $

<mfenced open="(" close = ")">
<mfrac>...</mfrac> <mo>+</mo> <mn>1</mn>

</mfenced>

<mrow>
<mo>(</mo> <mfrac>...</mfrac> <mo>+</mo> <mn>1</mn> <mo>)</mo>

</mrow>

There is recognition of math as a proper (but not standardized) script.



Alphabets

• the shape (style) of a character determines its meaning

• but in most cases an type a is entered as ascii character

• and tagged with some rendering directive, often indicating a font style

• in traditional TEX we have alphabets in different fonts, so we’re talking switches

• in Unicode and OpenType we have alphabets with standardized code points (but
gaps too)

• this has big advantages for communicating, transferring data etc

• but a math engine still has to deal with ascii input as well

• multiple axis: types, alphabets, styles, variants, shapes, modifiers

We’re off better but the gaps are an anomality.



Heavy bold

• for titles and captions we might need bolder math

• bold symbols in math have special meaning

• so when going full bold they should become heavy

• heavy math involves boldening everything, including extensibles

• there are currently no fonts that have such complete heavy companions

We need proper bold fonts, but they need to be relatively complete.



Radicals

• this always has been (and still is) a combination of vertical extensibles and horizontal
rules

• it is the only two dimensional extensible so always a bit of an exception

• in the wide engines we now have more direct support primitive for that (no macro
needed)

• in practice (at least in MkIV) we still use macros because we want control

Native support for radicals is nice to have and makes coding cleaner.



Primes

• this is a special case as we (sort of) have upto two superscripts

• and also need to handle an optional subscript of the base symbol

• and in order to be visually okay, we need to collect multiple primes

• some fonts have primes raised, some have them flying high

• maybe at some point the upcoming math pre- and postscripts will help

Supporting primes will always be a bit of a pain but I stay on top of it.



Accents

• they can go on top or below one or more characters (also in combination)

• accents have some hard codes positional properties

• the wide engines have more direct support for this

• fonts provide a limited set of sizes, such accents cannot extend (by design)

Engine support for accents is better now but maybe fonts need to have more sizes.



Stackers

• arrows (and other horizontal extensibles) traditionally were made from snippets

• we need them also for chemistry, in rather flexible ways

• in upcoming math fonts they are become real extensibles

• but then we still need to deal with existing fonts that lack them (one font in the end)

• there will be native support for so called character leaders

Stackers are more easily implemented although fonts pose some challenges.



Fences

• these go left and right (or in the middle) of things

• there need to be a matching pair else we get an error

• they have to adapt their size to what they wrap

• TEXies can take care of that in their input

• but in for instance MathML checking all this is a bit of a pain

• this is still the domain of macros

• but we could make the engines a bit more tolerant (hard to do)

Matching fences will always be a bit of a problem.



Directions

• bidirectional math is mostly a matter of the availability of fonts

• there need to be some agreement (at the macro package level) of control

• it’s (for me) a visually interesting challenge

• there are some TEXies working on these matters (quite some research is done already)

Right to left math will show up thanks to pioneers.



Structure

• demand for tagging also means that we need to carry a bit more info around

• this puts a little more burden on the user

• in the end it largely is a macro package issue

• better tagging of input can also help rendering

• detailed control at the TEX level makes that users can spoil the game

In these times structure gets more important so minimal coding is less an option.



Italic correction

• in traditional TEX fonts this was used for spacing as well as special purposed

• across fonts there was never much correction

• OpenType doesn’t have this concept

• OpenType math has some of if but also more powerful kerning

• generally speaking: we can ignore italic corrections

We need to accept that old concepts die and new onces show up.



Big

• normally extensible fences are chosen automatically

• but macro packages provide tricks to choose a size

• extensible steps are unpredictable but still several mechanisms can be provided

Users will always want control and no engine can provide that but macros can.



Macros

• some special symbols were constructed by macros (and using special font properties)

• these are mostly gone (the diagonal dots)

• if it is ever needed again, we should extend the fonts

Thanks to new font technologies and wide engines need less dirty tricks.



Unscripting

• you can bet on those funny Unicode super and subscripts showing up in input

• it’s a somewhat limited and unuseable lot for math (a modifier would have made
more sense)

• it’s one of these legacies that we need to deal with

• so the macro package needs to intercept them and map them onto proper math

We always need to deal with weird input, if only because standards lack.



Combining fonts

• we can expect math fonts to be rather complete and if not, one should choose
another one

• but sometimes (for simple math) you want to swap in alphabets and digits that
match the text font

• given that we talk of ranges this is easy to support at the macro package level

Although fonts are more complete, occasional combinations should remain possible.



Tracing

• there are lots of symbols involved

• and we have those extensibles too

• the larger the fonts get the more checking we need to do

• so macro packages need to provide some tracing options (or tables in print)

We keep an eye on things.
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