and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and
on and on and on and on and on and on and on and on and on and on and on
and on and on and on and on and on and on and on and on and on and on and

on and on and on and on and on n and on and on and on and on
and on and on and on and on and nd on and on an on and on and
on and on and on and on and on n ‘_nd

and on and on and on and on and nd o

on and on and on and on and on

and on and on and on 2 n and on and on and on and on and on and
on and on and on and o d on and on and on and on and on and on
and on and on and on a Ndw an on .Jdr al)) / and
on and on and on and o nd P"(u 0. ur INn AN a n @ d on
and on and on and on ai n: d) an an -4, ndo d@ and
on and on and on and on and on and on and o @ 1 and on and on and on
and on and on and on and on and on and on anu®ea® ad on and on and on and
on and on and on and on and on and on and on and on and on and on and on

Content

Introduction

1 The first decade
2 Plug mode, an application of ffi
3 Variable fonts

4 Emoji again

5 Children of TEX
6 Performance

7 Editing

8 Advertising TEX
9 Tricky fences

10 From 5.2 to 5.3

22

32

46

48

66

72

74

76

Introduction

With LUATEX version 1.0 being released it’s not time to move on to a next stage in the
development. The first four stages were discussed in ‘mk’, ‘hybrid’, ‘about” and “still’.
Much in there ended up as article in user group journals. some was just a wrap-up of
something I ran into or played with. Also, some of it could be seen as a kind of manual
for a specific aspect of LUATEX and /or CONTEXT.

In this document we continue this kind of reporting. Maybe it’s useful for others to
read about it but in the first place it serves me to wrap up experiences occasionally.

Some chapters were meant for publications in user groups journals so they are made
public afterwards. I like to thank Karl Berry for correcting many of my mistakes and
improving the content. Because Luigi Scarso and I spend quite some time on LUATEX
development, we also share many of the experiences described in this document. With-
out his patience with me this would not be possible.

Hans Hagen
Hasselt NL
2016 onward

http://www.luatex.org
http://www.pragma-ade.com

Introduction 4

5 Introduction

1 The first decade

When writing this it’s hard to believe that we're already a decade working on LUATEX
and about the same time on MKIV. The question is, did we achieve the objectives? The
answer can easily be “yes” because we didn’t start with objectives, just with some ex-
periments with a LUA extension interface. However, it quickly became clear that this
was the way to go. Already in an early stage we took a stand in what direction we had
to move.

How did we end up with LUA and not one of the other popular scripting languages?
The CONTEXT macro package always came with a runner. Not only did the runner man-
age the (often) multiple runs, it also took care of sorting the index and other inter-job
activities. Additional helpers were written for installing fonts, managing (and convert-
ing) images, job control, etc. First they were binaries (written in MODULA 2), but suc-
cessive implementations used PERL and RUBY. When I found out that the SCITE editor I
switched to had an extension mechanism using LUA, I immediately liked that language.
It’s clean, not bloated, relatively stable, evolves in an academic environment and is not
driven by commerce and/or short term success, and above all, the syntax makes the
code look good. So, it was the most natural candidate for extending TEX.

Already for along time, TEX is a stable program and whatever we do with it, we should
not break it. There has been frontend extensions, like e-TEX, and backend extensions,
like PDFTEX, and experiments like OMEGA and ALEPH and we could start from there.
So, basically we took PDFTEX, after all, that was what we used for the first experiments,
and merged some ALEPH directional code in it. A tremendous effort was undertaken
(thanks to funding by the Oriental TEX project) to convert the code base from PASCAL
to C.

It is hard to get an agreement over what needs to be added and it’s a real waste of time
to enter that route by endless discussions: every TEX user has different demands and
macro packages differ in philosophy . So, in the spirit of the extension language LUA
we stuck to concept of “If you want it better, write it in LUA”. As a consequence we had
to provide access to the internals with efficient and convenient methods, something
that happened stepwise. We did extend the engine with a few features that make live
easier but tried to limit ourselves. On the other hand, due to developments with fonts
and languages we generalized these concepts so that extending and controlling them
is easier. And, due to developments in math font technology we also added alternative
code paths to the math renderer.

All these matters have been presented and discussed at meetings, in user group journals
and in documents that are part of the CONTEXT suite. And during this decade the CON-
TEXT users have been patient testers of whatever we threw at them in the MKIV version
of this macro package.

It’s kind of interesting to note that in the TEX community it takes a while before ver-
sion 1 of programs becomes available. Some programs never (seem to) reach that state.
However, for us version 1.0 marks the moment that we consider the interfaces to be
stable. Of course we move on so a version 2.0 can divert and provide more or even

The first decade 6

less interfaces, provide new functionality or drop obsolete features. The intermediate
versions (up to version one) were always quite useable in production. In 2005 the first
prototype of LUATEX was demonstrated at the TUG conference, and in 2007 at the TUG
conference we had a whole day on LUATEX. At that time CONTEXT MKIV evolved fast
and we already had decent OPENTYPE support as part of the oriental TEX project. It was
in those years that the major reorganization of the code base took place but in succes-
sive years many subsystems were opened and cleaned up. There were some occasions
where an interface was changed for the better but adapting was not that hard. It might
have helped that much of CONIEXT MKIV is written in LUA. What also helped is that
most CONIEXT users quickly switched to MKIV, if only because MKII was frozen. And,
thanks to those users, we were able to root out bugs and bottlenecks. It was interesting
to see that the approach of mixing TEX, METAPOST and LUA catched on quite well.

By the end of September 2016, at the 10t CoNTEXT meeting we released what we call
the first long term stable version of LUATEX. This version performs quite well but we
might still add a few things here and there and the code will be further cleaned up and
documented. In the meantime LUATEX is also used in other macro packages. It will
not replace PDFIEX (at least not soon) because that engine does the job for most of the
publications done in TEX: articles. As they are mostly in English and use traditional
fonts, there is no need to switch to the more flexible but somewhat slower LUATEX.
In a similar fashion XHTEX serves those who want the benefits of PDFTEX, hard-coded
font support and token juggling at the TEX level. We will support those engines with
MKII but as mentioned, we will not develop new code for. We strongly advice CONIEXT
users to use LUATEX but there the advertisements stop. Personally I haven’t used PDFTEX
(which made TEX survive in the evolving world of electronic documents) for a decade
and I never really used XgTEX (which opened up the TEX world to modern fonts). At
least for the coming decade I hope that LUATEX can serve us well.

7 The first decade

2 Plug mode, an application of ffi

A while ago, at an NTG meeting, Kai Eigner and Ivo Geradts demonstrated how to use
the Harfbuzz (hb) library for processing OPENTYPE fonts. The main motivation for them
playing with that was that it provides a way to compare the LUA based font machinery
with other methods. They also assumed that it would give a better performance for
complex fonts and/or scripts.

One of the guiding principles of LUATEX development is that we don’t provide hard
coded solutions. For that reason we opened up the internals so that one can provide
solutions written in pure LUA, but, of course, one can cooperate with libraries via LUA
code as well. Hard coding solutions makes no sense as there are often several solutions
possible, depending on one’s need. Although development is closely related to CON-
TEXT, the development of the LUATEX engine is generic. We try to be macro package
agnostic. Already in an early stage we made sure that the CONIEXT font handler could
be used in other packages as well, but one can easily dream up light weight variants for
specific purposes. The standard TEX font handling was kept and is called base mode
in CONTEXT. The LUA variant is tagged node mode because it operates on the node list.
Later we will refer to these modes.

With the output of XqTEX for comparison, the first motive mentioned for looking into
support for such a library is not that strong. And when we want to test against the
standard, we can use MS-Word. A minimal CONTEXT MKIV installation one only has
the LUATEX engine. Maintaining several renderers simultaneously might give rise to
unwanted dependencies.

The second motive could be more valid for users because, for complex fonts, there is—
or at least was—a performance hit with the LUA variant. Some fonts use many lookup
steps or are inefficient even in using their own features. It must be said that till now
I haven't heard CONIEXT users complain about speed. In fact, the font handling be-
came many times faster the last few years, and probably no one even noticed. Also,
when using alternatives to the built in methods, in the end, you will loose functionality
and/or interactions with other mechanisms that are built into the current font system.
Any possible gain in speed is lost, or even becomes negative, when a user wants to use
additional functionality that requires additional processing.!

Just kicking in some alternative machinery is not the whole story. We still need to deal
with the way TEX sees text, and that, in practice, is as a sequence of glyph nodes—mixed
with discretionaries for languages that hyphenate, glue, kern, boxes, math, and more.
It’s the discretionary part that makes it a bit complex. In contextual analysis as well as
positioning one needs to process up to three additional cases: the pre, post and replace
texts—either or not linked backward and forward. And as applied features accumulate
one ends up winding and unwinding these snippets. In the process one also needs

In general we try to stay away from libraries. For instance, graphics can be manipulated with external
programs, and caching the result is much more efficient than recreating it. Apart from SQL support,
where integration makes sense, I never felt the need for libraries. And even SQL can efficiently be dealt
with via intermediate files.

Plug mode, an application of ffi 8

to keep an eye on spaces as they can be involved in lookups. Also, when injecting or
removing glyphs one needs to deal with attributes associated with nodes. Of course
something hard codes in the engine might help a little, but then one ends up with the
situation where macro packages have different demands (and possible interactions) and
no solution is the right one. Using LUA as glue is a way to avoid that problem. In fact,
once we go along that route, it starts making sense to come up with a stripped down
LUATEX that might suit CONTEXT better, but it’s not a route we are eager to follow right
Now.

Kai and Ivo are plain TEX users so they use a font definition and switching environment
that is quite different from CONIEXT. In an average CONIEXT run the time spent on font
processing is measurable but not the main bottleneck because other time consuming
things happen. Sometimes the load on the font subsystem can be higher because we
provide additional features normally not found in OPENTYPE. Add to that a more dy-
namic font model and it will be clear that comparing performance between situations
that use different macro packages is not that trivial (or relevant).

More reasons why we follow a LUA route are that we: support (run time generated) vir-
tual fonts, are able to kick in additional features, can let the font mechanism cooperate
with other functionality, and so on. In the upcoming years more trickery will be pro-
vided in the current mechanisms. Because we had to figure out a lot of these OPENTYPE
things a decade ago when standards were fuzzy quite some tracing and visualization is
available. Below we will see some timings, It’s important to keep in mind that in CON-
TEXT the OPENTYPE font handler can do a bit more if requested to do so, which comes
with a bit of overhead when the handler is used in CONIEXT—something we can live
with.

Some time after Kai’s presentation he produced an article, and that was the moment
I looked into the code and tried to replicate his experiments. Because we're talking
libraries, one can understand that this is not entirely trivial, especially because I'm on
another platform than he is—Windows instead of OSX. The first thing that I did was
rewrite the code that glues the library to TEX in a way that is more suitable for CON-
TEXT. Mixing with existing modes (base or node mode) makes no sense and is asking
for unwanted interferences, so instead a new plug mode was introduced. A sort of
general text filtering mechanism was derived from the original code so that we can plug
in whatever we want. After all, stability is not the strongest point of today’s software
development, so when we depend on a library, we need to be prepared for other (library
based) solutions—for instance, if I understood correctly, XJIEX switched a few times.

After redoing the code the next step was to get the library running and I decided that the
ffi route made most sense.? Due to some expected functions not being supported, my
efforts in using the library failed. At that time I thought it was a matter of interfacing,
but I could get around it by piping into the command line tools that come with the
library, and that was good enough for testing. Of course it was dead slow, but the main
objective was comparison of rendering so it doesn’t matter that much. After that I just
quit and moved on to something else.

One can think of a intermediate layer but I'm pretty sure that I have different demands than others, but
f£1 sort of frees us from endless discussions.

9 Plug mode, an application of ffi

At some point Kai’s article came close to publishing, and I tried the old code again,
and, surprise, after some messing around, the library worked. On my system the one
shipped with Inkscape is used, which is okay as it frees me from bothering about in-
stallations. As already mentioned, we have no real reason in CONIEXT for using fonts
libraries, but the interesting part was that it permitted me to play with this so called
ffi. At that moment it was only available in LUAJITTEXBecause that creates a nasty de-
pendency, after a while, Luigi Scarso and I managed to get a similar library working in
stock LUATEX which is of course the reference. So, I decided to give it a second try, and
in the process I rewrote the interfacing code. After all, there is no reason not to be nice
for libraries and optimize the interface where possible.

Now, after a decade of writing LUA code, I dare to claim that I know a bit about how to
write relatively fast code. I was surprised to see that where Kai claimed that the library
was faster than the LUA code.l saw that it really depends on the font. Sometimes the
library approach is actually slower, which is not what one expects. But remember that
one argument for using a library is for complex fonts and scripts. So what is meant with
complex?

Most Latin fonts are not complex—Iligatures and kerns and maybe a little bit of contex-
tual analysis. Here the LUA variant is the clear winner. It runs upto ten times faster. For
more complex Latin fonts, like EBgaramond, that resolves ligatures in a different way,
the library catches up, but still the LUA handler is faster. Keep in mind that we need to
juggle discretionary nodes in any case. One difference between both methods is that
the LUA handler runs over all the lists (although it has to jump over fonts not being
processed then), while the library gets snippets. However, tests show that the overhead
involved in that is close to zero and can be neglected. Already long ago we saw that
when we compared MKIV LUATEX and MKII XgTEX, the LUA based font handler is not
that slow at all. This makes sense because the problem doesn’t change, and maybe more
importantly because LUA is a pretty fast language. If one or the other approach is less
that two times faster the gain will probably go unnoticed in real runs. In my experience
a few bad choices in macro or style writing is more harmful than a bit slower font ma-
chinery. Kick in some additional node processing and it might make comparison of a
run even harder. By the way, one reason why font handling has been sped up over the
years is because our workflows sometimes have a high load, and, for instance, process-
ing a set of 5 documents remotely has to be fast. Also, in an edit workflow you want
the runtime to be a bit comfortable.

Contrary to Latin, a pure Arabic text (normally) has no discretionary nodes, and the
library profits most of this. Some day I have to pick up the thread with Idris about the
potential use of discretionary nodes in Arabic typesetting. Contrary to Arabic, Latin
text has not many replacements and positioning, and, therefore, the LUA variant gets
the advantage. Some of the additional features that the LUA variant provides can, of
course, be provided for the library variant by adding some pre- and postprocessing
of the list, but then you quickly loose any gain a library provides. So, Arabic has less
complex node lists with no branches into discretinaries, but it definitely has more re-
placements, positioning and contextual lookups due to the many calls to helpers in the
LUA code. Here the library should win because it can (I assume) use more optimized
datastructures.

Plug mode, an application of ffi 10

In Kai’s prototype there are some cheats for right-to-left rendering and special scripts
like Devanagari. As these tweaks mostly involve discretionary nodes; there is no real
need for them. When we don’t hyphenate no time is wasted anyway. I didn’t test De-
vanagari, but there is some preprocessing needed in the LUA variant (provided by Kai
and Ivo) that I might rewrite from scratch once I understand what happens there. But
still, I expect the library to perform somewhat better there but I didn't test it. Eventually
I might add support for some more scripts that demand special treatments, but so far
there has not been any request for it.

So what is the processing speed of non-Latin scripts? An experiment with Arabic using
the frequently used Arabtype font showed that the library performs faster, but when
we use a mixed Latin and Arabic document the differences become less significant. On
pure Latin documents the LUA variant will probably win. On pure Arabic the library
might be on top. On average there is little difference in processing speed between the
LuA and library engines when processing mixed documents. The main question is, does
one want to loose functionality provided by the LUA variant? Of course one can depend
on functionality provided by the library but not by the LuA variant. In the end the user
decides.

How did we measure? The baseline measurement is the so called none mode: nothing
is done there. It’s fast but still takes a bit of time as it is triggered by a general mode
identifying pass. That pass determines what font processing modes are needed for a
list. Base mode only makes sense for Latin and has some limitations. It’s fast and,
basically, its run time can be neglected. That’s why, for instance, PDFTEX is faster than
the other engines, but it doesn’t do UNICODE well. Node mode is the fancy name for the
Lua font handler. So, in order of increasing run time we have: none, base and node.
If we compare node mode with plug mode (in our case using the hb library), we can
subtract none mode. This gives a cleaner (more distinctive) comparison but not a real
honest one because the identifying pass always happens.

We also tested with and without hyphenation, but in practice that makes no sense.
Only verbatim is typeset that way, and normally we typeset that in none mode anyway.
On the other hand mixing fonts does happen. All the tests start with forced garbage
collection in order to get rid of that variance. We also pack into horizontal boxes so that
the par builder (with all kind of associated callbacks) doesn’t kick in, although the node
mode should compensate that.

Keep in mind that the tests are somewhat dumb. There is no overhead in handling
structure, building pages, adding color or whatever. I never process raw text. As a
reference it’s no problem to let CONTEXT process hundreds of pages per second. In
practice a moderate complex document like the metafun manual does some 20 pages
per second. In other words, only a fraction of the time is spent on fonts. The timings
for LUATEX are as follows:

11 Plug mode, an application of ffi

luatex latin

modern o f—thone t=tnode lnode T
context base 0.48 0.04 -0.75 0.39 0.05
context node 1.23 0.79 0.00 1.00 1.00
context none 0.44 0.00 -0.79 0.36 0.00
harfbuzz native 5.06 4.62 3.83 4.12 5.86
harfbuzz uniscribe 5.24 4.80 4.02 4.27 6.10
t_tnone

pagella t t—thone f—thode [/thode Trode—none
context base 0.50 0.03 -0.77 0.39 0.04
context node 1.27 0.80 0.00 1.00 1.00
context none 0.47 0.00 -0.80 0.37 0.00
harfbuzz native 4.96 4.49 3.69 3.89 5.58
harfbuzz uniscribe 5.49 5.02 4.22 431 6.24

. t—tnon
dEJavu t t — tnone t — tnode t/tnode m
context base 0.46 0.04 -1.21 0.28 0.03
context node 1.68 1.25 0.00 1.00 1.00
context none 0.43 0.00 -1.25 0.25 0.00
harfbuzz native 4.50 4.07 2.82 2.68 3.26
harfbuzz uniscribe 4.79 4.37 3.12 2.86 3.49

. t_tnone

Cambrla t t— tnone t— tnode t/tnode tnodeTone
context base 0.44 0.02 -1.67 0.21 0.01
context node 2.11 1.69 0.00 1.00 1.00
context none 0.43 0.00 -1.69 0.20 0.00
harfbuzz native 4.59 4.16 2.47 217 247
harfbuzz uniscribe 5.03 4.60 291 2.38 2.73
ebgaramond t t—thone f—thode t/tnode tnct);et%
context base 0.50 0.06 -1.86 0.21 0.03
context node 2.36 1.92 0.00 1.00 1.00
context none 0.43 0.00 -1.92 0.18 0.00
harfbuzz native 496 452 2.60 2.10 2.35
harfbuzz uniscribe 5.17 4.74 2.81 2.19 2.46
lucidaot o f—thone t=tnode lnode T
context base 0.48 0.01 -0.45 0.52 0.02
context node 0.93 0.45 0.00 1.00 1.00
context none 0.47 0.00 -0.45 0.51 0.00
harfbuzz native 4.28 3.81 3.35 4.62 8.42
harfbuzz uniscribe 4.68 4.21 3.76 5.06 9.32

Plug mode, an application of ffi 12

luatex arabic

arabtype b t—tnone I—thode f/hhode T
context base 0.42 0.00 -14.75 0.03 0.00
context node 15.17 14.76 0.00 1.00 1.00
context none 0.41 0.00 -14.76 0.03 0.00
harfbuzz native 7.14 6.73 -8.02 0.47 0.46
harfbuzz uniscribe 7.68 7.27 -7.49 0.51 0.49
husayni b t=thone t=fnode !lhode T
context base 0.45 -0.01 -25.63 0.02 -0.00
context node 26.08 25.62 0.00 1.00 1.00
context none 0.46 0.00 -25.62 0.02 0.00
harfbuzz native 10.50 10.04 -15.58 0.40 0.39
harfbuzz uniscribe 18.96 18.50 -7.12 0.73 0.72

luatex mixed

arabtype t t—thone f—fhode t/tnode fm:det%ime
context base 0.68 -0.01 -7.18 0.09 -0.00
context node 7.85 7.17 0.00 1.00 1.00
context none 0.69 0.00 -7.17 0.09 0.00
harfbuzz native 5.82 5.13 -2.03 0.74 0.72
harfbuzz uniscribe 6.21 5.53 -1.64 0.79 0.77
husayni t t—thone t—thode !/tnode tn;:%
context base 0.72 0.05 -11.20 0.06 0.00
context node 11.92 11.25 0.00 1.00 1.00
context none 0.67 0.00 -11.25 0.06 0.00
harfbuzz native 6.93 6.25 -4.99 0.58 0.56
harfbuzz uniscribe 9.85 9.18 -2.07 0.83 0.82

The timings for LUAIITTEX are, of course, overall better. This is because the virtual ma-
chine is faster, but at the cost of some limitations. We seldom run into these limitations,
but fonts with large tables can’t be cached unless we rewrite some code and sacrifice
clean solutions. Instead, we perform a runtime conversion which is not that noticeable
when it’s just a few fonts. The numbers below are not influenced by this as the test stays
away from these rare cases.

luajittex latin

t_tnone
modern t t—thone t—thode !/tnode [—
context base 0.42 0.03 -0.36 0.54 0.09
context node 0.77 0.39 0.00 1.00 1.00
context none 0.38 0.00 -0.39 0.50 0.00

13 Plug mode, an application of ffi

harfbuzz native 3.07 2.69 2.30 3.98 6.90
harfbuzz uniscribe 3.05 2.67 2.28 3.94 6.84
t_tnone
pagella t t—thone f— tnode t/ tnode m
context base 0.44 0.02 -0.37 0.54 0.05
context node 0.80 0.39 0.00 1.00 1.00
context none 0.42 0.00 -0.39 0.52 0.00
harfbuzz native 3.02 2.61 2.22 3.77 6.74
harfbuzz uniscribe 3.01 2.59 2.20 3.74 6.69
. t—thon
de]avu t t— tnone t— tnode t/tnode tnodeﬁ
context base 0.40 0.04 -0.59 0.41 0.06
context node 0.98 0.62 0.00 1.00 1.00
context none 0.36 0.00 -0.62 0.37 0.00
harfbuzz native 3.02 2.66 2.04 3.07 4.28
harfbuzz uniscribe 2.97 2.60 1.98 3.01 4.19
: t_tnone
cambria t t— tnone t— tnode t/tnode m
context base 0.38 0.02 -0.79 0.33 0.02
context node 1.17 0.80 0.00 1.00 1.00
context none 0.37 0.00 -0.80 0.31 0.00
harfbuzz native 291 2.54 1.74 248 3.16
harfbuzz uniscribe 2.86 2.50 1.69 2.45 3.11
ebgaramond t t—thone f—thode t/tnode tm::%
context base 0.43 0.05 -0.89 0.33 0.05
context node 1.32 0.94 0.00 1.00 1.00
context none 0.38 0.00 -0.94 0.29 0.00
harfbuzz native 3.00 2.62 1.68 2.27 2.78
harfbuzz uniscribe 2.98 2.60 1.66 2.25 2.77
lucidaot b t—tnone ! =tnode lnode T
context base 0.41 -0.01 -0.21 0.66 -0.04
context node 0.63 0.20 0.00 1.00 1.00
context none 0.42 0.00 -0.20 0.67 0.00
harfbuzz native 2.61 2.18 1.98 4.16 10.71
harfbuzz uniscribe 2.59 217 1.97 414 10.65
luajittex arabic
t_tnone
arabtype t t—thone f—thode f/thode Trode—none
context base 0.32 -0.00 -6.85 0.04 -0.00
context node 7.17 6.84 0.00 1.00 1.00
context none 0.32 0.00 -6.84 0.04 0.00

Plug mode, an application of ffi

14

harfbuzz native 4.63 4.31 -2.54 0.65 0.63

harfbuzz uniscribe 4.67 4.35 -2.50 0.65 0.64

> t_tnone
husayni t t—thone f—thode !/tnode Trode—Fnone
context base 0.35 -0.00 -11.90 0.03 -0.00
context node 12.25 11.90 0.00 1.00 1.00
context none 0.35 0.00 -11.90 0.03 0.00
harfbuzz native 15.28 14.93 3.03 1.25 1.25
harfbuzz uniscribe 15.25 14.90 3.00 1.25 1.25

luajittex mixed

arabtype b t—tnone ! =tnode lnode T
context base 0.57 -0.03 -3.47 0.14 -0.01
context node 4.04 3.44 0.00 1.00 1.00
context none 0.60 0.00 -3.44 0.15 0.00
harfbuzz native 3.69 3.09 -0.35 091 0.90
harfbuzz uniscribe 3.69 3.08 -0.35 0.91 0.90
husayni b t—tnone =tnode lnode T
context base 0.62 0.04 -5.33 0.10 0.01
context node 5.94 5.37 0.00 1.00 1.00
context none 0.57 0.00 -5.37 0.10 0.00
harfbuzz native 7.19 6.62 1.25 1.21 1.23
harfbuzz uniscribe 7.11 6.53 1.17 1.20 1.22

A few side notes. Since a library is an abstraction, one has to live with what one gets.
In my case that was a crash in UTF-32 mode. I could get around it, but one advantage of
using LUA is that it’s hard to crash—if only because as a scripting language it manages
its memory well without user interference. My policy with libraries is just to wait till
things get fixed and not bother with the why and how of the internals.

Although CONTEXT will officially support the plug model, it will not be actively used
by me, or in documentation, so for support users are on their own. I didn't test the
plug mode in real documents. Most documents that I process are Latin (or a mix),
and redefining feature sets or adapting styles for testing makes no sense. So, can one
just switch engines without looking at the way a font is defined? The answer is—not
really, because (even without the user knowing about it) virtual fonts might be used,
additional features kicked in and other mechanisms can make assumptions about how
fonts are dealt with too.

The useability of plug mode probably depends on the workflow one has. We use CON-
TEXT in a few very specific workflows where, interestingly, we only use a small subset
of its functionality. Most of which is driven by users, and tweaking fonts is popular
and has resulted in all kind of mechanisms. So, for us it’s unlikely that we will use it.
If you process (in bursts) many documents in succession, each demanding a few runs,
you don’t want to sacrifice speed.

15 Plug mode, an application of ffi

Of course timing can (and likely will) be different for plain TEX and IATEX usage. It
depends on how mechanisms are hooked into the callbacks, what extra work is done or
not done compared to CONIEXT. This means that my timings for CONTEXT for sure will
differ from those of other packages. Timings are a snapshot anyway. And as said, font
processing is just one of the many things that goes on. If you are not using CONIEXT
you probably will use Kai’s version because it is adapted to his use case and well tested.

A fundamental difference between the two approaches is that—whereas the LUA vari-
ant operates on node lists only, the plug variant generates strings that get passed to a
library where, in the CONIEXT variant of hb support, we use UTF-32 strings. Interest-
ing, a couple of years ago I considered using a similar method for LUA but eventually
decided against it, first of all for performance reasons, but mostly because one still has
to use some linked list model. I might pick up that idea as a variant, but because all
this TEX related development doesn’t really pay off and costs a lot of free time it will
probably never happen.

I finish with a few words on how to use the plug model. Because the library initializes
a default set of features,® all you need to do is load the plugin mechanism:

\usemodule [fonts-plugins]
Next you define features that use this extension:

\definefontfeature
[hb-native]
[mode=plug,
features=harfbuzz,
shaper=native]

After this you can use this feature set when you define fonts. Here is a complete exam-
ple:

\usemodule [fonts-plugins]
\starttext
\definefontfeature

[(hb-1library]

[mode=plug,
features=harfbuzz,
shaper=native]

\definedfont [Serif*hb-library]

\input ward \par

\definefontfeature

3 Somehow passing features to the library fails for Arabic. So when you don’t get the desired result, just
try with the defaults.

Plug mode, an application of ffi 16

[hb-binary]

[mode=plug,
features=harfbuzz,
method=binary,
shaper=uniscribe]

\definedfont [Serif*hb-binary]
\input ward \par

\stoptext

The second variant uses the hb-shape binary which is, of course, pretty slow, but does
the job and is okay for testing.

There are a few trackers available too:

\enabletrackers[fonts.plugins.hb.colors]
\enabletrackers[fonts.plugins.hb.details]

The first one colors replaced glyphs while the second gives lot of information about
what is going on. If you want to know what gets passed to the library you can use the
text plugin:

\definefontfeature[test] [mode=plug,features=text]
\start

\definedfont [Serif*test]

\input ward \par
\stop

This produces something;:

otf plugin > text > start run 3
otf plugin > text > 001 : [-] The [+]-> U+00054 U+00068 U+00065

otf plugin > text > 002 : [+] Earth, [+]-> U+00045 U+00061 U+00072 ...
otf plugin > text > 003 : [+] as [+]-> U+00061 U+00073

otf plugin > text > 004 : [+] a [+]-> U+00061

otf plugin > text > 005 : [+] habi- [-]-> U+00068 U+00061 U+00062 ...
otf plugin > text > 006 : [-] tat [+]-> U+00074 U+00061 U+00074

otf plugin > text > 007 : [+] habitat [+]-> U+00068 U+00061 U+00062 ...
otf plugin > text > 008 : [+] for [+]-> U+00066 U+0006F U+00072

otf plugin > text > 009 : [+] an- [-]-> U+00061 U+0006E U+0002D

You can see how hyphenation of habi-tat results in two snippets and a whole word.
The font engine can decide to turn this word into a disc node with a pre, post and re-
place text. Of course the machinery will try to retain as many hyphenation points as
possible. Among the tricky parts of this are lookups across and inside discretionary
nodes resulting in (optional) replacements and kerning. You can imagine that there is
some trade off between performance and quality here. The results are normally accept-
able, especially because TEX is so clever in breaking paragraphs into lines.

17 Plug mode, an application of ffi

Using this mechanism (there might be variants in the future) permits the user to cook
up special solutions. After all, that is what LUATEX is about—the traditional core engine
with the ability to plug in your own code using LUA. This is just an example of it.

I'm not sure yet when the plugin mechanism will be in the CONTEXT distribution, but it
might happen once the £f1i library is supported in LUATEX. At the end of this document
the basics of the test setup are shown, just in case you wonder what the numbers apply
to.

Just to put things in perspective, the current (February 2017) METAFUN manual has 424
pages. It takes LUATEX 18.3 seconds and LUANITTEX 14.4 seconds on my Dell 7600 laptop
with 3840QM mobile i7 processor. Of this 6.1 (4.5) seconds is used for processing 2170
METAPOST graphics. Loading the 15 fonts used takes 0.25 (0.3) seconds, which includes
also loading the outline of some. Font handling is part of the, so called, hlist process-
ing and takes around 1 (0.5) second, and attribute backend processing takes 0.7 (0.3)
seconds. One problem in these timings is that font processing often goes too fast for
timing, especially when we have lots of small snippets. For example, short runs like ti-
tles and such take no time at all, and verbatim needs no font processing. The difference
in runtime between LUATEX and LUAJITTEX is significant so we can safely assume that
we spend some more time on fonts than reported. Even if we add a few seconds, in this
rather complete document, the time spent on fonts is still not that impressive. A five
fold increase in processing (we use mostly Pagella and Dejavu) is a significant addition
to the total run time, especially if you need a few runs to get cross referencing etc. right.

The test files are the familiar ones present in the distribution. The tufte example is
a good torture test for discretionary processing. We preload the files so that we don't
have the overhead of \input.

\edef\tufte{\cldloadfile{tufte.tex}}
\edef\khatt{\cldloadfile{khatt-ar.tex}}

We use six buffers for the tests. The Latin test uses three fonts and also has a paragraph
with mixed font usage. Loading the fonts happens once before the test, and the local
(re)definition takes no time. Also, we compensate for general overhead by subtracting
the none timings.

\startbuffer[latin-definitions]
\definefont [TestA] [Serif*test]
\definefont [TestB] [SerifItalic*test]
\definefont [TestC] [SerifBold*test]
\stopbuffer

\startbuffer[latin-text]
\TestA \tufte \par
\TestB \tufte \par
\TestC \tufte \par
\dorecurse {10} {%
\TestA Fluffy Test Font A
\TestB Fluffy Test Font B

Plug mode, an application of ffi 18

\TestC Fluffy Test Font C
Hpar
\stopbuffer

The Arabic tests are a bit simpler. Of course we do need to make sure that we go from
right to left.

\startbuffer[arabic-definitions]
\definedfont [Arabic*test at 14pt]
\setupinterlinespace[line=18pt]
\setupalign[r21]

\stopbuffer

\startbuffer [arabic-text]
\dorecurse {10} {

\khatt\space
\khatt\space
\khatt\blank
}
\stopbuffer

The mixed case use a Latin and an Arabic font and also processes a mixed script para-
graph.

\startbuffer [mixed-definitions]
\definefont [TestL] [Serif*test]
\definefont [TestA] [Arabic*test at 14pt]
\setupinterlinespace[line=18pt]
\setupalign[r21]

\stopbuffer

\startbuffer [mixed-text]

\dorecurse {2} {
{\TestA\khatt\space\khatt\space\khatt}
{\TestL\lefttoright\tufte}

\blank
\dorecurse{10}{%
{\TestA +
{\TestL\lefttoright A snippet text that makes no sense.}
}
}
\stopbuffer

The related font features are defined as follows:

\definefontfeature
[test—-none]
[mode=none]l

19 Plug mode, an application of ffi

\definefontfeature
[test-base]
[mode=base,
liga=yes,
kern=yes]

\definefontfeature

[test-node]

[mode=node,
script=auto,
autoscript=position,
autolanguage=position,
ccmp=yes,liga=yes,clig=yes,
kern=yes,mark=yes,mkmk=yes,
curs=yes]

\definefontfeature
[test-text]
[mode=plug,

features=text]

\definefontfeature
[test-nativel]
[mode=plug,
features=harfbuzz,
shaper=native]

\definefontfeature
[arabic-node]
[arabic]

\definefontfeature
[arabic-nativel
[mode=plug,
features=harfbuzz,
script=arab,language=dflt,
shaper=native]

The timings are collected in LUA tables and typeset afterwards, so there is no interfer-
ence there either.

The timings are as usual a snapshot and just indications. The relative times can differ over time
depending on how binaries are compiled, libraries are improved and LUA code evolves. In node
mode we can have experimental trickery that is not yet optimized. Also, especially with complex
fonts like Husayni, not all shapers give the same result, although node mode and Uniscribe
should be the same in most cases. A future (public) version of Husayni will play more safe and
use less complex sequences of features.

Plug mode, an application of ffi 20

21 Plug mode, an application of ffi

3 Variable fonts

Introduction

History shows the tendency to recycle ideas. Often quite some effort is made by histo-
rians to figure out what really happened, not just long ago, when nothing was written
down and we have to do with stories or pictures at most, but also in recent times. De-
scriptions can be conflicting, puzzling, incomplete, partially lost, biased, . . .

Just as language was invented (or evolved) several times, so were scripts. The same
might be true for rendering scripts on a medium. Semaphores came and went within
decades and how many people know now that they existed and that encryption was
involved? Are the old printing presses truly the old ones, or are older examples simply
gone? One of the nice aspects of the internet is that one can now more easily discover
similar solutions for the same problem, but with a different (and independent) origin.

So, how about this “new big thing” in font technology: variable fonts. In this case,
history shows that it’s not that new. For most TEX users the names METAFONT and
METAPOST will ring bells. They have a very well documented history so there is not
much left to speculation. There are articles, books, pictures, examples, sources, and
more around for decades. So, the ability to change the appearance of a glyph in a font
depending on some parameters is not new. What probably is new is that creating vari-
able fonts is done in the natural environment where fonts are designed: an interactive
program. The METAFONT toolkit demands quite some insight in programming shapes
in such a way that one can change look and feel depending on parameters. There are
not that many meta fonts made and one reason is that making them requires a certain
mind- and skill set. On the other hand, faster computers, interactive programs, evolv-
ing web technologies, where real-time rendering and therefore more or less real-time
tweaking of fonts is a realistic option, all play a role in acceptance.

But do interactive font design programs make this easier? You still need to be able
to translate ideas into usable beautiful fonts. Taking the common shapes of glyphs,
defining extremes and letting a program calculate some interpolations will not always
bring good results. It’s like morphing a picture of your baby’s face into yours of old
age (or that of your grandparent): not all intermediate results will look great. It’s good
to notice that variable fonts are a revival of existing techniques and ideas used in, for
instance, multiple master fonts. The details might matter even more as they can now
be exaggerated when some transformation is applied.

There is currently (March 2017) not much information about these fonts so what I say
next may be partially wrong or at least different from what is intended. The perspective
will be one from a TEX user and coder. Whatever you think of them, these fonts will be
out there and for sure there will be nice examples circulating soon. And so, when I ran
into a few experimental fonts, with POSTSCRIPT and TRUETYPE outlines, I decided to have
a look at what is inside. After all, because it’s visual, it’s also fun to play with. Let’s
stress that at the moment of this writing I only have a few simple fonts available, fonts

Variable fonts 22

that are designed for testing and not usage. Some recommended tables were missing
and no complex OPENTYPE features are used in these fonts.

The specification

I'm not that good at reading specifications, first of all because I quickly fall asleep with
such documents, but most of all because I prefer reading other stuff (I do have lots of
books waiting to be read). I'm also someone who has to play with something in order
to understand it: trial and error is my modus operandi. Eventually it's my intended
usage that drives the interface and that is when everything comes together.

Exploring this technology comes down to: locate a font, get the OPENTYPE 1.8 specifica-
tion from the MICROSOFT website, and try to figure out what is in the font. When I had a
rough idea the next step was to get to the shapes and see if I could manipulate them. Of
course it helped that in CONTEXT we already can load fonts and play with shapes (using
METAPOST). I didn’t have to install and learn other programs. Once I could render them,
in this case by creating a virtual font with inline PDF literals, a next step was to apply
variation. Then came the first experiments with a possible user interface. Seeing more
variation then drove the exploration of additional properties needed for typesetting,
like features.

The main extension to the data packaged in a font file concerns the (to be discussed) axis
along which variable fonts operate and deltas to be applied to coordinates. The gdef
table has been extended and contains information that is used in gpos features. There
are new hvar, vvar and mvar tables that influence the horizontal, vertical and general
font dimensions. The gvar table is used for TRUETYPE variants, while the cff2 table
replaces the cff table for OPENTYPE POSTSCRIPT outlines. The avar and stat tables
contain some meta-information about the axes of variations.

It must be said that because this is new technology the information in the standard
is not always easy to understand. The fact that we have two rendering techniques,
PosTSCRIPT cff and TRUETYPE ttf, also means that we have different information and
perspectives. But this situation is not much different from OPENTYPE standards a few
years ago: it takes time but in the end I will get there. And, after all, users also complain
about the lack of documentation for CONTEXT, so who am I to complain? In fact, it will
be those CONTEXT users who will provide feedback and make the implementation better
in the end.

Loading

Before we discuss some details, it will be useful to summarize what the font loader does
when a user requests a font at a certain size and with specific features enabled. When a
font is used the first time, its binary format is converted into a form that makes it suit-
able for use within CONTEXT and therefore LUATEX. This conversion involves collecting
properties of the font as a whole (official names, general dimensions like x-height and
em-width, etc.), of glyphs (dimensions, UNICODE properties, optional math properties),
and all kinds of information that relates to (contextual) replacements of glyphs (small

23 Variable fonts

caps, oldstyle, scripts like Arabic) and positioning (kerning, anchoring marks, etc.). In
the CONTEXT font loader this conversion is done in LUA.

The result is stored in a condensed format in a cache and the next time the font is needed
it loads in an instant. In the cached version the dimensions are untouched, so a font at
different sizes has just one copy in the cache. Often a font is needed at several sizes and
for each size we create a copy with scaled glyph dimensions. The feature-related di-
mensions (kerning, anchoring, etc.) are shared and scaled when needed. This happens
when sequences of characters in the node list get converted into sequences of glyphs.
We could do the same with glyph dimensions but one reason for having a scaled copy
is that this copy can also contain virtual glyphs and these have to be scaled beforehand.
In practice there are several layers of caching in order to keep the memory footprint
within reasonable bounds.*

When the font is actually used, interaction between characters is resolved using the
feature-related information. When for instance two characters need to be kerned, a
lookup results in the injection of a kern, scaled from general dimensions to the current
size of the font.

When the outlines of glyphs are needed in METAFUN the font is also converted from
its binary form to something in LUA, but this time we filter the shapes. For a cff this
comes down to interpreting the charstrings and reducing the complexity to moveto,
lineto and curveto operators. In the process subroutines are inlined. The result is
something that METAPOST is happy with but that also can be turned into a piece of a
PDF.

We now come to what a variable font actually is: a basic design which is transformed
along one or more axes. A simple example is wider shapes:

We can also go taller and retain the width:

Here we have a linear scaling but glyphs are not normally done that way. There are font
collections out there with lots of intermediate variants (say from light to heavy) and it’s
more profitable to sell each variant independently. However, there is often some logic
behind it, probably supported by programs that designers use, so why not build that
logic into the font and have one file that represents many intermediate forms. In fact,
once we have multiple axes, even when the designer has clear ideas of the intended

In retrospect one can wonder if that makes sense; just look at how much memory a browser uses when
it has been open for some time. In the beginning of LUATEX users wondered about caching fonts, but
again, just look at what amounts browsers cache: it gets pretty close to the average amount of writes that
a ssD can handle per day within its guarantee.

Variable fonts 24

usage, nothing will prevent users from tinkering with the axis properties in ways that
will fulfil their demands but hurt the designers eyes. We will not discuss that dilemma
here.

When a variable font follows the route described above, we face a problem. When you
load a TRUETYPE font it will just work. The glyphs are packaged in the same format as
static fonts. However, a variable font has axes and on each axis a value can be set. Each
axis has a minimum, maximum and default. It can be that the default instance also
assumes some transformations are applied. The standard recommends adding tables
to describe these things but the fonts that I played with each lacked such tables. So
that leaves some guesswork. But still, just loading a TRUETYPE font gives some sort of
outcome, although the dimensions (widths) might be weird due to lack of a (default)
axis being applied.

An OPENTYPE font with POSTSCRIPT outlines is different: the internal cff format has
been upgraded to cff2 which on the one hand is less complicated but on the other
hand has a few new operators — which results in programs that have not been adapted
complaining or simply quitting on them.

One could argue that a font is just a resource and that one only has to pass it along but
that’s not what works well in practice. Take LUATEX. We can of course load the font
and apply axis vales so that we can process the document as we normally do. But at
some point we have to create a PDF. We can simply embed the TRUETYPE files but no
axis values are applied. This is because, even if we add the relevant information, there
is no way in current PDF formats to deal with it. For that, we should be able to pass
all relevant axis-related information as well as specify what values to use along these
axes. And for TRUETYPE fonts this information is not part of the shape description so
then we in fact need to filter and pass more. An OPENTYPE POSTSCRIPT font is much
cleaner because there we have the information needed to transform the shape mostly
in the glyph description. There we only need to carry some extra information on how
to apply these so-called blend values. The region/axis model used there only demands
passing a relatively simple table (stripped down to what we need). But, as said above,
cff2isnotbackward-compatible so a viewer will (currently) simply not show anything.

Recalling how we load fonts, how does that translate with variable changes? If we have
two characters with glyphs that get transformed and that have a kern between them,
the kern may or may not transform. So, when we choose values on an axis, then not
only glyph properties change but also relations. We no longer can share positional
information and scale afterwards because each instance can have different values to
start with. We could carry all that information around and apply it at runtime but
because we're typesetting documents with a static design it’s more convenient to just
apply it once and create an instance. We can use the same caching as mentioned before
but each chosen instance (provided by the font or made up by user specifications) is
kept in the cache. As a consequence, using a variable font has no overhead, apart from
initial caching.

So, having dealt with that, how do we proceed? Processing a font is not different from
what we already had. However, I would not be surprised if users are not always satis-
tied with, for instance, kerning, because in such fonts a lot of care has to be given to this

25 Variable fonts

by the designer. Of course I can imagine that programs used to create fonts deal with
this, but even then, there is a visual aspect to it too. The good news is that in CONTEXT
we can manipulate features so in theory one can create a so-called font goodie file for a
specific instance.

Shapes

For OPENTYPE POSTSCRIPT shapes we always have to do a dummy rendering in order
to get the right bounding box information. For TRUETYPE this information is already
present but not when we use a variable instance, so I had to do a bit of coding for that.
Here we face a problem. For TEX we need the width, height and depth of a glyph.
Consider the following case:

The shape has a bounding box that fits the shape. However, its left corner is not at
the origin. So, when we calculate a tight bounding box, we cannot use it for actually
positioning the glyph. We do use it (for horizontal scripts) to get the height and depth
but for the width we depend on an explicit value. In OPENTYPE POSTSCRIPT we have the
width available and how the shape is positioned relative to the origin doesn’t much
matter. In a TRUETYPE shape a bounding box is part of the specification, as is the width,
but for a variable font one has to use so-called phantom points to recalculate the width
and the test fonts I had were not suitable for investigating this.

At any rate, once I could generate documents with typeset text using variable fonts it
became time to start thinking about a user interface. A variable font can have predefined
instances but of course a user also wants to mess with axis values. Take one of the test
fonts: Adobe Variable Font Prototype. It has several instances:

extralight It looks like this! weight=0.0 contrast=0.0

light It looks like this! weight=150.0 contrast=0.0
regular It looks like this! weight=394.0 contrast=0.0
semibold It looks like this! weight=600.0 contrast=0.0
bold It looks like this! weight=824.0 contrast=0.0
black high contrast It looks like this! weight=1000.0 contrast=100.0
black medium contrast It looks like this! weight=1000.0 contrast=50.0
black It looks like this! weight=1000.0 contrast=0.0

Such an instance is accessed with:

\definefont
[MyLightFont]
[name:adobevariablefontprototypelight*default]

The Avenir Next variable demo font (currently) provides:

Variable fonts 26

regular It looks like this! weight=400.0 width=100.0
medium It looks like this! weight=500.0 width=100.0
bold It looks like this! weight=700.0 width=100.0
heavy It looks like this! weight=900.0 width=100.0
condensed Itlooks like this! weight=400.0 width=75.0
medium condensed Itlooks like this! weight=500.0 width=75.0
bold condensed It looks like this! weight=700.0 width=75.0
heavy condensed It looks like this! weight=900.0 width=75.0

Before we continue I will show a few examples of variable shapes. Here we use some
METAFUN magic. Just take these definitions for granted.

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypeextralight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypelight]foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

\startMPcode
draw outlinetext.b
("\definedfont [name:adobevariablefontprototypebold] foo@bar")
(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;
\stopMPcode

\startMPcode
draw outlinetext.b
("\definefontfeature[whatever] [axis={weight:350}]%
\definedfont [name:adobevariablefontprototype*whatever]foo@bar")

(withcolor "gray")
(withcolor red withpen pencircle scaled 1/10)
xsized .45TextWidth ;

\stopMPcode

The results are shown in figure 3.1. What we see here is that as long as we fill the
shape everything will look as expected but using an outline only won’t. The crucial
(control) points are moved to different locations and as a result they can end up inside
the shape. Giving up outlines is the price we evidently need to pay. Of course this is not

27 Variable fonts

unique for variable fonts although in practice static fonts behave better. To some extent
we're back to where we were with METAFONT and (for instance) Computer Modern:
because these originate in bitmaps (and probably use similar design logic) we also can
have overlap and bits and pieces pasted together and no one will notice that. The first
outline variants of Computer Modern also had such artifacts while in the static Latin
Modern successors, outlines were cleaned up.

f@@@bar f@@@bajf
f@@@;h@ﬁ? f@@@baf

Figure 3.1 Four variants

The fact that we need to preprocess an instance but only know how to do that when we
have gotten the information about axis values from the font means that the font handler
has to be adapted to keep caching correct. Another definition is:

\definefontfeature
[lightdefault]
[default]
[axis={weight:230,contrast:50}]

\definefont
[MyLightFont]
[name:adobevariablefontprototype*xlightdefault]

Here the complication is that where normally features are dealt with after loading, the
axis feature is part of the preparation (and caching). If you want the virtual font solution
you can do this:

\definefontfeature
[inlinelightdefault]
[default]
[axis={weight:230,contrast:50},
variableshapes=yes]

\definefont
[MyLightFont]
[name:adobevariablefontprototype*inlinelightdefault]

When playing with these fonts it was hard to see if loading was done right. For instance
not all values make sense. It is beyond the scope of this article, but axes like weight,
width, contrast and italic values get applied differently to so-called regions (subspaces).

Variable fonts 28

So say that we have an x coordinate with value 50. This value can be adapted in, for
instance, four subspaces (regions), so we actually get:

X :x+51 X X1 +52XXZ+S3XX3+S4XX4

The (here) four scale factors s,, are determined by the axis value. Each axis has some
rules about how to map the values 230 for weight and 50 for contrast to such a factor.
And each region has its own translation from axis values to these factors. The deltas
X1, ..., X4 are provided by the font. For a POSTSCRIPT-based font we find sequences like:

1 <setvstore>
120 [10 -30 40 -60] 1 <blend> ... <operator>
100 120 [10 -30 40 -60] [30 -10 -30 20] 2 <blend> .. <operator>

A store refers to a region specification. From there the factors are calculated using the
chosen values on the axis. The deltas are part of the glyphs specification. Officially
there can be multiple region specifications, but how likely it is that they will be used in
real fonts is an open question.

For TRUETYPE fonts the deltas are not in the glyph specification but in a dedicated gvar
table.

apply x deltas [10 -30 40 -60] to x 120
apply y deltas [30 -10 -30 20] to y 100

Here the deltas come from tables outside the glyph specification and their application
is triggered by a combination of axis values and regions.

The following two examples use Avenir Next Variable and demonstrate that kerning is
adapted to the variant.

\definefontfeature
[default:shaped]
[default]
[axis={width:10}]

\definefont
[SomeFont]
[file:avenirnextvariablexdefault:shaped]

Coming back to the use of typefaces in electronic publishing: many of the new typographers receive their
knowledge and information about the rules of typography from books, from computer magazines or the in-
struction manuals which they get with the purchase of a PC or software. There is not so much basic instruction,
as of now, as there was in the old days, showing the differences between good and bad typographic design.
Many people are just fascinated by their PC's tricks, and think that a widelyspraised program, called up on the
screen, will make everything automatic from now on. Hermann Zapf

\definefontfeature
[default:shaped]
[default]

29 Variable fonts

[axis={width:100}]

\definefont
[SomeFont]
[file:avenirnextvariablexdefault:shaped]

Coming back to the use of typefaces in electronic publishing: many of the new ty-
pographers receive their knowledge and information about the rules of typography
from books, from computer magazines or the instruction manuals which they get with
the pur\éi’ﬁ\ase of a PC or software. There is not so much basic instruction, as of now,
as there was in the old days, showing the diffefences between good and bad typo-
graphic design. Many people are just fascinated by their PC's tricks, and think that
a widely—praised program, called up on the screen, will make everything automatic
from now on. Hermann Zapf

Embedding

Once we're done typesetting and a PDF file has to be created there are three possible
routes:

e We can embed the shapes as PDF images (inline literal) using virtual font technology.
We cannot use so-called xforms here because we want to support color selectively
in text.

e We can wait till the PDF format supports such fonts, which might happen but even
then we might be stuck for years with viewers getting there. Also documents need
to get printed, and when printer support might arrive is another unknown.

e We can embed a regular font with shapes that match the chosen values on the axis.
This solution is way more efficient than the first.

Once I could interpret the right information in the font, the first route was the way to
go. A side effect of having a converter for both outline types meant that it was trivial
to create a virtual font at runtime. This option will stay in CONTEXT as pseudo-feature
variableshapes.

When trying to support variable fonts I tried to limit the impact on the backend code.
Also, processing features and such was not touched. The inclusion of the right shapes
is done via a callback that requests the blob to be injected in the cff or glyf table.
When implementing this I actually found out that the LUATEX backend also does some
juggling of charstrings, to serve the purpose of inlining subroutines. In retrospect I
could have learned a few tricks faster by looking at that code but I never realized that
it was there. Looking at the code again, it strikes me that the whole inclusion could be
done with LUA code and some day I will give that a try.

Conclusion

When I first heard about variable fonts I was confident that when they showed up they
could be supported. Of course a specimen was needed to prove this. A first implemen-
tation demonstrates that indeed it’s no big deal to let CONTEXT with LUATEX handle

Variable fonts 30

such fonts. Of course we need to fill in some gaps which can be done once we have
complete fonts. And then of course users will demand more control. In the meantime
the helper script that deals with identifying fonts by name has been extended and the
relevant code has been added to the distribution. At some point the CONTEXT Garden
will provide the LUATEX binary that has the callback.

I'end with a warning. On the one hand this technology looks promising but on the other
hand one can easily get lost. Probably most such fonts operate over a well-defined do-
main of values but even then one should be aware of complex interactions with features
like positioning or replacements. Not all combinations can be tested. It's probably best
to stick to fonts that have all the relevant tables and don’t depend on properties of a
specific rendering technology.

Although support is now present in the core of CONTEXT the official release will happen
at the CONTEXT meeting in 2017. By then I hope to have tested more fonts. Maybe the
interface has also been extended by then because after all, TEX is about control.

31 Variable fonts

4 Emoji again

Because at the CONTEXT 2016 meeting color fonts® were on the agenda, some time was
spent on emoji (these colorful small picture glyphs). When possible I bring kids to the
BachoIEX conference so for the 2017 BachoI'UG I decided to do something with emoji
that, after all, are mostly used by those younger than I am. So, I had to take a look at
the current state. Here are some observations.

The UNICODE standard defines a whole lot of emoji and if mankind manages to survive
for a while one can assume that a lot more will be added. After all, icons as well as
variants keep evolving. There are several ways to organize these symbols in groups but
I will not give grouping a try. Just visit emojipedia.org and you get served well. For
this story I only mention that:

e There are quite some shapes and nearly all of them are in color. The yellow ones,
smilies and such, are quite prominently present but there are many more.

e A special subset is fulled by persons: man, woman, girl, boy and recently a baby.

e The grown ups can be combined in loving couples (either or not kissing) and then
can form families, but only upto 2 young kids or gender neutral babies.

e All persons can be flagged with one of five skin tones so that not all persons (or
heads) look bright yellow.

e Interesting is that girls and boys are still fond of magenta (pinkish) and cyan (blueish)
cloths and ornaments. Also haircuts are rather specific to the gender.

For rendering color emojis we have a few color related OPENTYPE font properties avail-
able: bitmaps, sVG and stacked glyphs. Now, if you think of the combinations that can
be made with skin tones, you realize that fonts can become pretty large if each com-
bination results in a glyph. In the first half of 2017 MICROSOFT released an update for
its emoji font and the company took the challenge to provide not only mixed skin tone
couples, but also supported skin tones for the kids, including a baby.

This recent addition already adds over 25.000 additional glyphs® so imagine what will
happen in the future. But, instead of making a picture for each variant, a different so-
lution has been chosen. For coloring this seguiemj font uses the (very flexible) stacking
technology: a color shape is an overlay of colored symbols. The colors are organized
in pallets and it’s no big deal to add additional pallets if needed. Instead of adding
pre-composed shapes (as is needed with bitmaps and SVG) snippets are used to build
alternative glyphs and these can be combined into new shapes by substitution and po-
sitioning (for that kerns, mark anchoring and distance compensation is used).

For that occasion the cowfont, a practical joke concerning Dutch ‘koeieletters’, were turned into a color
font and presented at the meeting.

That is the amount I counted when I added all combinations runtime but the emojipedia mentions twice
that amount. Currently in CONIEXT we resolve such combinations when requested.

Emoji again 32

So, a family can be constructed of composed shapes (man, woman, etc) that each are
composed of snippets (skull, hair, mouth, eyes). So, effectively a family of four is a
bunch of maybe 25 small glyphs overlayed and colored. In figure 4.1 we see how a shape
is constructed out of separate glyphs. Figure 4.2 shows how they can be overlayed with
colors (we use a dedicated color set).

@ KR
A RS
B R e
¢

Figure 4.1 Emoji snippets.

When a font supports it, a sequence of emoji can be turned into a more compact repre-
sentation. In figure 4.3 we see how skin tones are applied in such combinations. Fig-
ure 4.4 shows the small snippets.

i s |~ :

fffff | L I e R

Figure 4.2 Emoji snippets overlayed.

‘ -

Figure 4.4 Emoji glyphs.

When we have to choose a font we need to take the following criteria into account:

33 Emoji again

family man dark skin family man light skin
tone woman girl baby tone woman light skin
tone girl dark skin tone

family woman girl boy family man light skin tone woman
dark skin tone girl medium skin
tone boy medium skin tone

Figure 4.3 Emoji families and such with skin tones.

Emoji again

34

e What is the quality of the shapes? For sure, outlines are best if you want to scale
too.

e How efficient is a shape constructed. In that respect a bitmap or SVG image is just
one entity.

e How well can (semi) arbitrary combinations of emoji be provided. Here the glyph
approach wins.

e Are all skin colors for all human relates shapes supported? Actually it opens the
possibility for racist fonts.

e Are all reasonable combinations of persons supported? It looks like (depending on
time and version) kissing men or women can be missing, maybe because of social
political reasons.

e Are black and white shapes provided alongside color shapes.

Maybe an SVG or bitmap image can have a lot of detail compared to a stacked glyph but,
when we're just using pictographic representations, the later is the best choice.

When I was playing a bit with the skin tone variants and other combinations that should
result in some composed shape, I used the UNICODE test files but I got the impression
that there are some errors in the test suite, for instance with respect to modifiers. Maybe
the fonts are just doing the wrong thing or maybe some implement these sequences a
bit inconsistent. This will probably improve over time but the question is if we should
intercept issues. I'm not in favour of this because it adds more and more fuzzy code
that not only wastes cycles (energy) but is also a conceptual horror. So, when testing,
imperfection has to be accepted for now. This is no big deal as until now no one ever
asked for emoji support in CONTEXT.

When no combined shape is provided, the original sequence shows up. A side effect can
be that zero-width- joiners and modifiers become visible. This depends on the fonts.
Users probably don’t care that much about it. Now how do we suppose that users enter
these emoji (sequences) in a document source? One can imagine a pop up in the editor
but TgXies are often using commands for special cases.

We already showed some combined shapes. The reader might appreciate the outcome

but getting there from the input takes a bit of work. For instance a two person man

light skin tone woman medium skin tone girl medium-light skin tone baby medium-
light skin tone involves this:

font 49: seguiemj.ttf @ 12.0pt

features [basic: ccmp=yes, dist=yes, mark=yes, mkmk=yes,
script=dflt, tlig=yes, trep=yes] [extra: analyze=yes,
autolanguage=position, autoscript=position, checkmarks=yes,
colr=yes, curs=yes, devanagari=yes, dummies=yes,
extensions=yes, extrafeatures=yes, extraprivates=yes,
kern=yes, liga=yes, mathkerns=yes, mathrules=yes,
mode=node, spacekern=yes]

35 Emoji again

step 1

step 2

step 3

step 4

step 5

step 6

step 7

)] D [+TLT] U+1F468: U+1F3FB: {3
U+200D: I U+1F469: U+1F3FD: {3 U+200D: | U+1F467:§®
U+1F3FC: £3 U+200D: | U+1F476: () U+1F3FC: {3

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F468 upto U+1F3FB by ligature U+F01Cb
case 2

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F469 upto U+1F3FD by ligature U+FO01D2
case 2

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F467 upto U+1F3FC by ligature U+FO1BC
case 2

feature 'ccmp', type 'gsub_ligature', lookup 's_s_O',
replacing U+1F476 upto U+1F3FC by ligature U+FO021A
case 2

QARG [+TLT] U+F01C5:@ U+200D: [U+FO1D2: (@)
U+200D: [U+FO1BC: &) U+200D: | U+F021A:

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_2', replacing single U+FO01C5 by U+F15C4

SALEO [+TLT] U+F15C4:8 U+200D: | U+F01D2: (@ U+200D: |
U+FO1BC: §&) U+200D: [U+F021A: &

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_3', index 1, replacing character U+200D upto
U+FO1D2 by ligature U+F15EC case 4

AR [+TLT] U+F15C4:8 U+F15EC:[{ U+200D: | U+FO1BC: Q)
U+200D: [U+F021A: &

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_5', index 1, replacing character U+200D upto
U+FO1BC by ligature U+F15B9 case 4

[+TLT] U+F15C4:8 U+F15EC:f] U+F15B9: g U+200D: |
U+F021A: ©)

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_6', index 1, replacing character U+200D upto
U+FO021A by ligature U+F1607 case 4

[+TLT] U+F15C4:8 U+F15EC:[U+F15B9: g U+F1607: g

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_7', replacing single U+F15B9 by U+F15AC

[+TLT] U+F15C4:8 U+F15EC:[] U+F15AC: g U+F1607: g

Emoji again 36

step 8

step 9

step 10

step 11

step 12

step 13

result

feature 'dist', type 'gpos_single', lookup 'p_s_0',
shifting single U+F15C4 by single xy (1.5pt,Opt) and
wh (Opt,Opt)

[+TLT] U+F15C4:8 U+F15EC:f] U+F15AC: g U+F1607: g

feature 'dist', type 'gpos_single', lookup 'p_s_1',
shifting single U+F15EC by single xy (Opt,Opt) and wh
(1.5pt,0pt)

[+TLT] U+F15C4:8 U+F15EC:@ [kern] U+F15AC: g
U+F1607: g

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_2', shifting single U+F15C4 by single (Opt,Opt)
and correction (1.5pt,0pt)

[+TLT] [kern] U+F15C4:8 U+F15EC:f [kern] U+F15AC: g
U+F1607: g

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_3', shifting single U+F15EC by single
(5.71289pt,0pt) and correction (Opt,Opt)

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_3', shifting single U+F15EC by single (Opt,Opt)
and correction (9.92578pt,Opt)

[+TLT] [kern] U+F15C4:8 [kern] U+F15EC:f [kern]
U+F15AC: g U+F1607: g

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_5', shifting single U+F15C4 by single (Opt,Opt)
and correction (-5.71289pt,Opt)

[+TLT] [kern] U+F15C4:8 [kern] [kern] U+F15EC:f
[kern] U+F15AC: g U+F1607: g

feature 'mark', type 'gpos_mark2base', lookup 'p_s_27',
bound 1, anchoring mark U+F15AC to basechar U+F15EC
=> (7.59375pt,0pt)

[+TLT] [kern] U+F15C4:8 [kern] [kern] U+F15EC:f
[kern] U+F15AC: g U+F1607: g

feature 'mark', type 'gpos_mark2base', lookup 'p_s_28',
bound 2, anchoring mark U+F1607 to basechar U+F15EC
=> (0.01172pt,Opt)

8 [+TLT] [kern] U+F15C4:8 [kern] [kern] U+F15EC:f
[kern] U+F15AC: g U+F1607: g

A black and white example is the following family woman girl:

37 Emoji again

font 52: seguiemj.ttf @ 12.0pt

features [basic: ccmp=yes, dist=yes, mark=yes, mkmk=yes,
script=dflt, tlig=yes, trep=yes] [extra: analyze=yes,
autolanguage=position, autoscript=position, checkmarks=yes,
curs=yes, devanagari=yes, dummies=yes, extensions=yes,
extrafeatures=yes, extraprivates=yes, kern=yes,
liga=yes, mathkerns=yes, mathrules=yes, mode=node,
spacekern=yes]

step 1 A [+TLT] U+1F469: (0 U+200D: [U+1F467:{®

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_4', replacing single U+1F469 by U+F15E2

step 2 [+TLT] U+F15E2:f] U+200D: | U+1F467:{®

feature 'ccmp', type 'gsub_contextchain', chain lookup
's_s_5', index 1, replacing character U+200D upto
U+1F467 by ligature U+F15B0 case 4

step 3 [+TLT] U+F15E2:f] U+F15B0: g

feature 'dist', type 'gpos_single', lookup 'p_s_1',
shifting single U+F15E2 by single xy (Opt,Opt) and wh
(1.5pt,0pt)

step 4 [+TLT] U+F15E2:f [kern] U+F15BO: g

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_4', shifting single U+F15E2 by single
(1.5pt,0pt) and correction (Opt,Opt)

feature 'dist', type 'gpos_contextchain', chain lookup
'p_s_4', shifting single U+F15E2 by single (Opt,Opt)
and correction (5.71289pt,0pt)

step 5 [+TLT] [kern] U+F15E2:f] [kern] U+F15B0: p

feature 'mark', type 'gpos_mark2base', lookup 'p_s_28',
bound 1, anchoring mark U+F15BO to basechar U+F15E2
=> (0.01172pt,Opt)

result f [+TLT] [kern] U+F15E2:f [kern] U+F15B0: g

I will not show all emoji, just the subset that contains the word woman in the description.
As you can see the persons in the sequences are separated by a zero-width-joiner. There
are some curious ones, for instance a woman wearing turban which in terms of UNI-
CODE input is a female combine with a turban wearing man becomes a beardless woman
wearing a turban. Woman vampires and zombies are not supported so these are male
properties.

Emoji again 38

DDDDD 44
glejeloElele
BA Q

QAQ
QA

glejelelelele)
Q

€le)

A jelelelelelele]e]

— X — X ——X ——X ——X ——X ——X ——X —X

X X ——X ——X ——X ——X ——X ——X ——X ——X ——X ——X

SR

ADERFDDD>*>EOBDDDDDDDDDDDHOOOOODDHA

BA D
=) ®

O®

©® 9

i 65

SOR+OL+O)

CRRBEHDOHDPEBG®RD O

50)

39 Emoji again

BEBBD
®
‘O

g
p@

BRRPRPEE

>
&

®
rfe2
B

®
e
IQ‘O

BRLDBREPEDRPLOMMERD IS = ME DD ™ OB B

blondh
couple
couple
family
family
family
family
family
family
family
family
family
family
family
family
family
family
family
kiss w
kiss w
man an
old wo
pregna
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman
woman

aired woman

with heart woman man
with heart woman woman
man woman boy

man woman boy boy
man woman girl

man woman girl boy
man woman girl girl
woman boy

woman boy boy
woman girl

woman girl boy
woman girl girl

woman
woman
woman

woman
woman
woman

boy
boy boy
girl

woman woman girl boy
woman woman girl girl
oman man
oman woman
d woman holding hands
man
nt woman

artist
astronaut
biking

boot

bouncing ball
bowing
cartwheeling
climbing
clothes
construction worker
cook

dancing
detective

elf
facepalming
factory worker
fairy

farmer
firefighter
frowning
genie
gesturing no
gesturing ok

woman getting haircut
woman getting massage
woman golfing

woman guard

woman hat

woman health worker
woman in lotus position
woman in steamy room
woman judge

woman juggling

woman lifting weights
woman mage

woman mechanic

woman mountain biking
woman office worker
woman pilot

woman playing handball
woman playing water polo
woman police officer
woman pouting

woman raising hand
woman rowing boat
woman running

woman sandal

woman scientist

woman shrugging

woman singer

woman student

woman surfing

woman swimming

woman teacher

woman technologist
woman tipping hand
woman vampire

woman walking

woman wearing turban
woman with headscarf
woman zombie

S

DD PO, D© DD FD

WDw®

—X ——X ——X — X ——X —X —X ——X ——X

REDDDEDDODF #FBRARFADDEBDHRDI
DB [P DOD® PP PP

D=
pegze
RO RRARDGRDHRY ¥HERD,DRDBRPBIRDDPECD H(BED

So what if you don’t like these colors? Because we're dealing with TEX you can assume
that if there is some way around the fixed color sets, then it will be provided. So, when
you use CONIEXT, here is away to overload them:

\definecolor[emoji-red] [r=.4]
\definecolor[emoji-green] [g=.4]
\definecolor[emoji-blue] [b=.4]
\definecolor[emoji-yellow] [r=.4,g=.4]
\definecolor[emoji-gray] [s=1,t=.5,a=1]

Emoji again 40

\definefontcolorpalette
[emoji-s]
[black,emoji-gray]

\definefontcolorpalette
[emoji-r]
[emoji-red,emoji-gray]

\definefontcolorpalette
[emoji-g]
[emoji-green,emoji-gray]

\definefontcolorpalette
[emoji-b]
[emoji-blue,emoji-gray]

\definefontcolorpalette
[emoji-y]
[emoji-yellow,emoji-gray]

\definefontfeature[seguiemj-s] [ccmp=yes,dist=yes,colr=emoji-s]
\definefontfeature[seguiemj-r] [ccmp=yes,dist=yes,colr=emoji-r]
\definefontfeature[seguiemj-g] [ccmp=yes,dist=yes,colr=emoji-g]
\definefontfeature[seguiemj-b] [ccmp=yes,dist=yes,colr=emoji-b]
\definefontfeature[seguiemj-y] [ccmp=yes,dist=yes,colr=emoji-y]

\definefont [MyEmojiS] [seguiemj*seguiemj-s]
\definefont [MyEmojiR] [seguiemj*seguiemj-r]
\definefont [MyEmojiG] [seguiemj*seguiemj-g]
\definefont [MyEmojiB] [seguiemj*seguiemj-b]
\definefont [MyEmojiY] [seguiemj*seguiemj-y]

In figure 4.5 we see how this is applied. You can provide as many colors as needed but
when you don't provide enough the last one is used. This way we get the overlayed
transparent colors in the examples. By using transparency we don’t obscure shapes.

The emojipedia mentions “Asked about the design, MICROSOFT told emojipedia that
one of the reasons for the thick stroke was to allow each emoji to be easily read on
any background color.” The first glyph in the stack seems to do the trick, so just make
sure that it doesn’t become white. And, before I read that remark, while preparing a
presentation with a colored background, I had already noticed that using a background
was no problem. This font definitely sets the standard.

How do we know what colors are used? The next table shows the first color palette of
seguiemj. There are quite some colors so defining your own definitely involved some
studying.

1 @ EHEBEBE DB v s - EIEE
fal (15 [de’ Hid EEN EEN BN BN IR fEsT 2

41 Emoji again

A4 4444
BREXBRERER(X
SISIOIOIOIE
DODDDB

Figure 4.5 Overloading colors by plugging in a sequence of alternate colors.

Emoji again 42

25 28 29 30 32 33 34 35
41 42 43 44 45
51 52 53 54 55 B3
6l 628 (e3 62 o5 IBA El E
74 75 E 83 84
s Kl Ed El El El EN E2 (s (920 o5 EA
Ed EE E BN e 2 508 (104 105 HEH EE HE
109 N 110 M 111 [112 [113 [114 RS 118 |l 119 |l 120
121 [122 [VRS UY SRR DTN 126 [127 [123 [l 129 [130 M 131 [l 132
(133 [134 I AR 136 N 137 N 138 [130 [140 I 141 [142 [143 g 144
145 153 [154 IRET 0 156
157 | 153 | 159 [160 [161 N 162 [163 [164 T 168

169 170 171 172 173 174 175

Normally special symbols are accessed in CONTEXT with the symbol command where
symbols are organized in symbol sets. This is a rather old mechanism and dates from
the time that fonts were limited in coverage and symbols were collected in special fonts.
The emoji are accessed by their own command: \emoji. The font used has the font
synonym emo j i so you need to set that one first:

\definefontsynonym[emoji] [seguiemj*seguiemj-cl]
Here is an example:

\emoji{woman light skin tonel}\quad
\emoji{woman scientist}\quad
{\bfd bigger \emoji{man health workerl}}

or typeset: M 5 bigger 8

The emoji symbol scales with the normal running font. When you ask for a family with
skin toned members the lookup can result in another match (or no match) because one
never knows to what extend a font supports it.

\expandedemoji the sequence constructed from the given string

\resolvedemoji a protected sequence constructed from the given string
\checkedemoji antypesetsequence with unresolved modifiers and joiners removed
\emoji a typeset resolved sequence using the emoji font synonym
\robustemoji a typeset checked sequence using the emo ji font synonym

In case you wonder how some of the details above were typeset, there is a module
fonts-emoji that provides some helpers for introspection.

\ShowEmoji show all the emoji in the current font
\ShowEmojiSnippets show the snippets of a given emoji
\ShowEmojiSnippetsOverlay show the overlayed snippets of a given emoji
\ShowEmo jiGlyphs show the snippets of a typeset emoji
\ShowEmojiPalettes show the color pallets in the current font

43 Emoji again

Examples of usage are:

\ShowEmojiSnippets[family man woman girl boy]
\ShowEmojiGlyphs [family man woman baby girl]
\ShowEmoji ["man]

\ShowEmoji

\ShowEmojiPalettes

\ShowEmojiPalettes[1]

A good source of information about emoji is the mentioned emojipedia.org website.
There you find not only details about all these symbols but also has some history. It
compares updates in fonts too. It mentions for instance that in the creative update of
Windows 10, some persons grew beards in the seguiemj font and others lost an eye.
Now, if you look at the snippets shown before, you can wonder if that eye is really
gone. Maybe the color is wrong or the order of stacking is not right. I decided not to
waste time looking into that.

Another quote: “Support for color emoji presentation on MS WINDOWS is limited. Many
applications on MS WINDOWS display emojis with a black and white text presentation
instead of their color version.” Well, we can do better with TgX, but as usual not that
many people really cares about that. But it’s fun anyway.

We end with a warning. When you use ‘ligatures’ like this, you really need to check
the outcome. For instance, when MICROSOFT updated the font end 2017, same gender
couples got different hair style for the individuals so that one can still distinguish them.
However, kissing couples and couples in love (indicated by a heart) seem to be removed.
Who knows how and when politics creep into fonts: is public mixed couple kissing
permitted, do we support families with any mix of gender, is associating pink with
girls okay or not, how do we distinguish male and female anyway? In figure 4.6 we see
the same combination twice, the early 2017 rendering versus the late 2017 rendering.
Can you notice the differences?

Emoji again 44

family woman woman girl boy

Ly

Y &

family woman woman boy boy

family man light skin tone woman
light skin tone girl dark skin tone

&I
R

family man man girl boy

no longer supported

couple with heart man light skin
tone man medium-dark skin tone

s

family man dark skin tone woman girl baby

family man girl boy

family man light skin tone woman dark skin tone
girl medium skin tone boy medium skin tone

l o
Y W

kiss man medium-light skin
tone man dark skin tone

Figure 4.6 Incompatible updates.

45 Emoji again

5 Children of TEX

First published in user group magazines.

Children of TEX 46

47 Children of TEX

6 Performance

6.1 Introduction

This chapter is about performance. Although it concerns LUATEX this text is only meant
for CONTEXT users. This is not because they ever complain about performance, on the
contrary, I never received a complain from them. No, it’s because it gives them some
ammunition against the occasionally occurring nagging about the speed of LUATEX
(somewhere on the web or at some meeting). My experience is that in most such cases
those complaining have no clue what they’re talking about, so effectively we could just
ignore them, but let’s, for the sake of our users, waste some words on the issue.

6.2 What performance

So what exactly does performance refer to? If you use CONIEXT there are probably only
two things that matter:

e How long does one run take.
e How many runs do I need.

Processing speed is reported at the end of a run in terms of seconds spent on the run,
but also in pages per second. The runtime is made up out of three components:

e start-up time
e processing pages
e finishing the document

The startup time is rather constant. Let’s take my 2013 Dell Precision with i7-3840QM
as reference. A simple

\starttext
\stoptext

document reports 0.4 seconds but as we wrap the run in an mt xrun management run we
have an additional 0.3 overhead (auxiliary file handling, PDF viewer management, etc).
This includes loading the Latin Modern font. With LUAJITTEX these times are below 0.3
and 0.2 seconds. It might look like much overhead but in an edit-preview runs it feels
snappy. One can try this:

\stoptext

which bring down the time to about 0.2 seconds for both engines but as it doesn’t do
anything useful that is is no practice.

Finishing a document is not that demanding because most gets flushed as we go. The
more (large) fonts we use, the longer it takes to finish a document but on the average
that time is not worth noticing. The main runtime contribution comes from processing
the pages.

Performance 48

Okay;, this is not always true. For instance, if we process a 400 page book from 2500 small
XML files with multiple graphics per page, there is a little overhead in loading the files
and constructing the XML tree as well as in inserting the graphics but in such cases one
expects a few seconds more runtime. The METAFUN manual has some 450 pages with
over 2500 runtime generated METAPOST graphics. It has color, uses quite some fonts,
has lots of font switches (verbatim too) but still one run takes only 18 seconds in stock
LUATEX and less that 15 seconds with LUAJITTEX. Keep these numbers in mind if a non-
CONTIEXT users barks against the performance tree that his few page mediocre document
takes 10 seconds to compile: the content, styling, quality of macros and whatever one
can come up with all plays a role. Personally I find any rate between 10 and 30 pages
per second acceptable, and if I get the lower rate then I normally know pretty well that
the job is demanding in all kind of aspects.

Over time the CONIEXT-LUATEX combination, in spite of the fact that more functionality
has been added, has not become slower. In fact, some subsystems have been sped up.
For instance font handling is very sensitive for adding functionality. However, each ver-
sion so far performed a bit better. Whenever some neat new trickery was added, at the
same time improvements were made thanks to more insight in the matter. In practice
we’re not talking of changes in speed by large factors but more by small percentages.
I'm pretty sure that most CONTEXT users never noticed. Recently a 15-30% speed up
(in font handling) was realized (for more complex fonts) but only when you use such
complex fonts and pages full of text you will see a positive impact on the whole run.

There is one important factor I didn't mention yet: the efficiency of the console. You can
best check that by making a format (context —-make en). When that is done by pip-
ing the messages to a file, it takes 3.2 seconds on my laptop and about the same when
done from the editor (SCITE), maybe because the LUATEX run and the log pane run on
a different thread. When I use the standard console it takes 3.8 seconds in Windows
10 Creative update (in older versions it took 4.3 and slightly less when using a console
wrapper). The powershell takes 3.2 seconds which is the same as piping to a file. In-
teresting is that in Bash on Windows it takes 2.8 seconds and 2.6 seconds when piped
to a file. Normal runs are somewhat slower, but it looks like the 64 bit Linux binary is
somewhat faster than the 64 bit mingw version.” Anyway, it demonstrates that when
someone yells a number you need to ask what the conditions where.

At a CONTEXT meeting there has been a presentation about possible speed-up of a run
for instance by using a separate syntax checker to prevent a useless run. However, the
use case concerned a document that took a minute on the machine used, while the same
document took a few seconds on mine. At the same meeting we also did a comparison of
speed for a IATEX run using PDFTEX and the same document migrated to CONTEXT MKIV
using LUATEX (Harald Kénigs XML torture and compatibility test). Contrary to what one
might expect, the CONTEXT run was significantly faster; the resulting document was a
few gigabytes in size.

Long ago we found that LUATEX is very sensitive to for instance the CPU cache so maybe there are some
differences due to optimization flags and/or the fact that bash runs in one thread and all file 10 in the
main windows instance. Who knows.

49 Performance

6.3 Bottlenecks

I will discuss a few potential bottlenecks next. A complex integrated system like CON-
TEXT has lots of components and some can be quite demanding. However, when some-
thing is not used, it has no (or hardly any) impact on performance. Even when we spend
a lot of time in LUA that is not the reason for a slow-down. Sometimes using LUA results
in a speedup, sometimes it doesn’t matter. Complex mechanisms like natural tables for
instance will not suddenly become less complex. So, let’s focus on the “aspects” that
come up in those complaints: fonts and LUA. Because I only use CONIEXT and occa-
sionally test with the plain TEX version that we provide, I will not explore the potential
impact of using truckloads of packages, styles and such, which I'm sure of plays a role,
but one neglected in the discussion.

Fonts

According to the principles of LUATEX we process (OPENTYPE) fonts using LUA. That way
we have complete control over any aspect of font handling, and can, as to be expected
in TEX systems, provide users what they need, now and in the future. In fact, if we
didn’t had that freedom in CONTEXT I'd probably already quit using TEX a decade ago
and found myself some other (programming) niche.

After a font is loaded, part of the data gets passed to the TEX engine so that it can do
its work. For instance, in order to be able to typeset a paragraph, TEX needs to know
the dimensions of glyphs. Once a font has been loaded (that is, the binary blob) the
next time it’s fetched from a cache. Initial loading (and preparation) takes some time,
depending on the complexity or size of the font. Loading from cache is close to instan-
taneous. After loading the dimensions are passed to TEX but all data remains accessible
for any desired usage. The OPENTYPE feature processor for instance uses that data and
CONTIEXT for sure needs that data (fast accessible) for different purposes too.

When a font is used in so called base mode, we let TEX do the ligaturing and kern-
ing. This is possible with simple fonts and features. If you have a critical workflow you
might enable base mode, which can be done per font instance. Processing in node mode
takes some time but how much depends on the font and script. Normally there is no
difference between CONTEXT and generic usage. In CONTEXT we also have dynamic fea-
tures, and the impact on performance depends on usage. In addition to base and node
we also have plug mode but that is only used for testing and therefore not advertised.

Every \hbox and every paragraph goes through the font handler. Because we support
mixed modes, some analysis takes place, and because we do more in CONIEXT, the
generic analyzer is more light weight, which again can mean that a generic run is not
slower than a similar CONTEXT one.

Interesting is that added functionality for variable and/or color fonts had no impact
on performance. Runtime added user features can have some impact but when defined
well it can be neglected. I bet that when you add additional node list handling yourself,
its impact on performance is larger. But in the end what counts is that the job gets done
and the more you demand the higher the price you pay.

Performance 50

Lua

The second possible bottleneck when using LUATEX can be in using LUA code. However,
using that as argument for slow runs is laughable. For instance CONIEXT MKIV can
easily spend half its time in LUA and that is not making it any slower than MKII using
PDFIEX doing equally complex things. For instance the embedded METAPOST library
makes MKIV way faster than MKII, and the built-in XML processing capabilities in MKIV
can easily beat MKII XML handling, apart from the fact that it can do more, like filtering
by path and expression. In fact, files that take, say, half a minute in MKIV, could as well
have taken 15 minutes or more in MKII (and imagine multiple runs then).

So, for CONTEXT using LUA to achieve its objectives is mandate. The combination of TEX,
METAPOST and LUA is pretty powerful! Each of these components is really fast. If TEX is
your bottleneck, review your macros! When LUA seems to be the bad, go over your code
and make it better. Much of the LUA code I see flying around doesn’t look that efficient,
which is okay because the interpreter is really fast, but don’t blame LUA beforehand,
blame your coding (style) first. When METAPOST is the bottleneck, well, sometimes not
much can be done about it, but when you know that language well enough you can
often make it perform better.

For the record: every additional mechanism that kicks in, like character spacing (the
ugly one), case treatments, special word and line trickery, marginal stuff, graphics, line
numbering, underlining, referencing, and a few dozen more will add a bit to the pro-
cessing time. In that case, in CONIEXT, the font related runtime gets pretty well obscured
by other things happening, just that you know.

6.4 Some timing

Next I will show some timings related to fonts. For this I use stock LUATEX (second
column) as well as LUAJITTEX (last column) which of course performs much better. The
timings are given in 3 decimals but often (within a set of runs) and as the system load
is normally consistent in a set of test runs the last two decimals only matter in relative
comparison. So, for comparing runs over time round to the first decimal. Let’s start
with loading a bodyfont. This happens once per document and normally one has only
one bodyfont active. Loading involves definitions as well as setting up math so a couple
of fonts are actually loaded, even if they're not used later on. A setup normally involves
a serif, sans, mono, and math setup (in CONTEXT).

bodyfont

modern 0.023 0.019
pagella 0.127 0.079
termes 0.128 0.087
cambria 0.180 0.123
dejavu 0.140 0.092

8 The timing for Latin Modern is so low because that font is loaded already.

51 Performance

ebgaramond 0.142 0.093
lucidaot 0.146 0.120

There is a bit difference between the font sets but a safe average is 150 milli seconds and
this is rather constant over runs.

An actual font switch can result in loading a font but this is a one time overhead. Load-
ing four variants (regular, bold, italic and bold italic) roughly takes the following time:

bodyfont switch and 4 style changes (first time)

modern 0.028 0.028
pagella 0.035 0.031
termes 0.036 0.069
cambria 0.052 0.047
dejavu 0.091 0.069
ebgaramond 0.022 0.016
lucidaot 0.017 0.031

Using them again later on takes no time:

bodyfont switch and 4 style changes (follow up)

modern 0.000 0.000
pagella 0.001 0.000
termes 0.000 0.001
cambria 0.000 0.000
dejavu 0.001 0.000
ebgaramond 0.000 0.000
lucidaot 0.000 0.000

Before we start timing the font handler, first a few baseline benchmarks are shown.
When no font is applied and nothing else is done with the node list we get:

100 hboxes with 4 texts and no font handling
baseline 0.142 2.343

A simple monospaced, no features applied, run takes a bit more:

100 hboxes with 4 texts and no features
baseline 0.275 0.220

Now we show a one font typesetting run. As the two benchmarks before, we just typeset
a textin a \hbox, so no par builder interference happens. We use the sapolsky sample
text and typeset it 100 times 4 (either of not with font switches).

Performance 52

100 hboxes with 4 texts using one font

modern 0.933 0.591
pagella 1.027 0.660
termes 1.032 0.604
cambria 1.483 0.862
dejavu 1.009 0.581
ebgaramond 3.240 1.774
lucidaot 0.699 0.444

Much more runtime is needed when we typeset with four font switches. The garamond
is most demanding. Actually we’re not doing 4 fonts there because it has no bold, so
the numbers are a bit lower than expected for this example. One reason for it being
demanding is that it has lots of (contextual) lookups. The only comment I can make
about that is that it also depends on the strategies of the font designer. Combining
lookups saves space and time so complexity of a font is not always a good predictor for
performance hits.

If we typeset paragraphs we get this:

100 times 4 texts on pages

modern 1.377 0.904
pagella 1.523 0.961
termes 1.453 0.898
cambria 1.901 1.138
dejavu 1.437 0917
ebgaramond 3.714 2.133
lucidaot 1.117 0.767

We're talking of some 275 pages here.

100 times 4 texts on pages using 4 styles

modern 2.074 1.307
pagella 2.155 1.338
termes 2.153 1.373
cambria 3.349 2.012
dejavu 2408 1.453
ebgaramond 4.368 2.512
lucidaot 1.682 1.056

There is of course overhead in handling paragraphs and pages:

53 Performance

100 paragraphs with 4 texts and no features
baseline 0.825 0.559

Before I discuss these numbers in more details two more benchmarks are shown. The
next table concerns a paragraph with only a few (bold) words.

100 texts on pages with [1,2,4] bold font switches

modern 0.409 0.263
pagella 0.445 0.281
termes 0.432 0.300
cambria 0.606 0.368
dejavu 0.465 0.295
ebgaramond 0.922 0.530
lucidaot 0.345 0.220

The following table has paragraphs with a few mono spaced words typeset using \type.

100 texts on pages with [1,2,4] word verbatim switches

modern 0.380 0.255
pagella 0.396 0.266
termes 0.384 0.278
cambria 0.535 0.355
dejavu 0.366 0.247
ebgaramond 0.939 0.533
lucidaot 0.322 0.216

When a node list (hbox or paragraph) is processed, each glyph is looked at. One im-
portant property of LUATEX (compared to PDFTEX) is that it hyphenates the whole text,
not only the most feasible spots. For the sapolsky snippet this results in 200 poten-
tial breakpoints, registered in an equal number of discretionary nodes. The snippet
has 688 characters grouped into 125 words and because it’s an English quote we're not
hampered with composed characters or complex script handling. And, when we men-
tion 100 runs then we actually mean 400 ones when font switching and bodyfonts are
compared

Agﬁculture is a fairlyt recent human irﬂ%ntion, and in many wa}}s it was one of
the gféat stupid moves of all time. Huntermgathérers have thousands of wild
sources of food to subsist on. Agficulture changed that all, generﬁl’gﬁng an over-
tremely Vulnerﬁgle to the next famine, the next locust infesﬁtion, the next potato
blight. Agriculture allowed for stockpiling of surplus resources and thus, in-
evitably, the unequal stockpiling of them — stratification of society and the in-
vention of classes. Thus, it allowed for the in‘k’%}ntion of povérty. I think that
the punch line of the primate-human difference is that when humans irﬂ%nted
povérty, tfley came up. with a wa}gl of subjugating the low=ranking like notﬂing
ever seen before in the primate world. Robert M. Sapolsky

Performance 54

s also important not to confuse

for instance a verbatim snippet with a bold one. The bold one is indeed leading to a
pass over the list, but verbatim is normally skipped because it uses a font that needs no
processing. That verbatim or bold have the same penalty is mainly due to the fact that

7

texts. When a font has a bit more complex substitutions, as ebgaramond has, multiple
(sometimes hundreds of) passes over the list are made. This is why the more complex

a font is, the more runtime is involved.
switches. Even a few such switches (in the last benchmarks) already result in a runtime

penalty. The four switch benchmarks show an impressive increase of runtime, but it’s
Also keep in mind that the page examples are quite unreal. We use a layout with no

through TEX and LUA before it finally gets typeset. This relates to special treatments of
margins, just text from edge to edge.

verbatim itself is costly: the text is picked up using a different catcode regime and travels
spacing and syntax highlighting and such.

In order to get substitutions and positioning right we need not only to consult streams of
glyphs but also combinations with preceding pre or replace, or trailing post and replace
Another factor, one you could easily deduce from the benchmarks, is intermediate font

good to know that such a situation seldom happens. It

‘prIom ayewrtad o1y Ul 9I0J9(TS I0Ad SUTOU OYI] SunueRI-Mo] oY) Suresnlqns jo Lem e Yym dn sure

{o1) ‘A310A0d POJUEAUT SURUNY USM R[] ST 90ULIYIp uewmny-ojewrid a1y jo aur| yound o1y ey} YuIy) | A31ea0d|
O UOIYUOAUL 81} I0] POMO[R J1 ‘S, "SISSB[D JO UOHUAUL o} pur AI9100S JO UOIRIYIIRIYS — W) jo Sul[idspol
enbaun oy} ‘A[qeiIAduUI ‘sny) pur seoanosal snjdms jo Surrdyoo)s 10J pemo[[e amIMoLdy “JysIq oyejod jxou o)
UOIRISOJUL JSTDO] JXOU O} ‘DUIUIR] JXOU J[} 0} S[RIOUMA A[QUAIIXO NOA SUL{RUL ‘SHIINOS POOJ PIRIIISOUIOD USZO]
MO B O 9OURI[I SUMIPMIDA0 U FUljelduad ‘[jer) paSuryd aImjnoLFy U0 JSISqUS 0} POO] JO $90INO0S P Jo
BPUBSTNOY) oA :

ety Jueoel Aire] ©

*£139A0d JO TOTJUOATT O} I0] POMO[[R T ‘ST, "SISSB[D JO UOIJUOAUI O]} PUR A}9100S JO WOTJROYTIRIIS
101} JO dxo03s [enboun oy} ‘A[qeiraour ‘snyy pue seomnosal snidans jo Sur[dyools 10 pomo[[e oIy NoLIdy Y3

yejod Jxou oY) ‘UOTIR)SOJUT ISNOO] JXOU BT} ‘OUIUIR] IXOU oY) 0 d[RIdUMNA A[OWDIIXO NOA SUNYRW ‘SP0IN0S POOj
91BD11SAUIOP USZOP MA] © UO 9OURI[AI SUIWI[AMISA0 TR SurjeIaues ‘[[e 1ey) paSueyod aInjmoudy o Isisqns 03 pooj
O S9OINOS P[IM JO SPURSTION) OART] SIOIOYIRS-IOJUNE] oW} [[@ JO soaowl pidngs 9eald o) Jo ouo sem 1 shem Aueuy
[T PUe ‘TOTJUSAUT WRTINY] JU9I A[IIe] & ST 9IM)MOLISY "PlIom ojewrd o1} Ul 9I0Joq UAAS I0Ad SUIIOU oY Suryuey
Fmor o1y Surjesnlqns jo Aem e s dn owren 491y ‘£319A0d PIJUSAUT SURTINY USYM JRT[} ST 90USIOYIP Uewny-ojeuLid
Py jo our yound oty Jer) Yury) [‘A310a0d JO TWOTIUSAUI O} I0] POMO[[R JT ‘ST J, "SOSSB[D JO UOTJUSAUI I} PUY
191008 JO uo1ROYIIRIYS — W) Jo ulfidyoo)s fenboun oty ‘A[qeiiaout ‘sny) pue sooinosar snjdins jo
poMoOT[e 2INIMOLIY IS 03ejod JXOU 9T} ‘UOTIR)SOJUT JSTIOO] XU oY} ‘DUIUIR] JXOU OT[) 0} [(RISUMA A[oTIDIIX
0f SuIyRWl ‘SOOINOS POOJ PIYRDIIISIWOP UDZOP MO] B UO 9OURI[DI SurUpymIono ue Surjerousd ‘[re jery) pasueyd
pamy o:m< O JSISANS 03 POO] JO SEDINOS PIIAL JO SPUERSNOT) AAeT] SIoIOTJeS-I0YuNy o) [[e Jo sesowr prdnig

Aod pajusAul suRTINT]
UOAUT 9} 10] POMO[[®R 1]

Jyeoyryerys wo) Jo Surrdyooy
18y WSiq oyejod jxou oy
XU 91} 0} d[(RISUINA AOUIIIIXO NOA SULRUI ‘S9DINOS POOJ PIYRIIISIWOP USZOP MO B UO 9OURI[DI SUTII[DMIOA0 U

Burjerouss ‘[[e ey} peSURYD SINIMOLSY ‘U0 ISISNS 0} POOJ JO SIOINOS P[IM JO SPUBSNOY) SARY SIOIOYIRS-IJUNH]|
[owry e jo soaour prdnjs 1ea1d o) Jo oUO sem 1 sAem AURW UI PUR ‘UOTJUSAUT URTUNTY JU0dI A[IR] ® ST 0IN)NOLISY|

uo1yR)SJU
MOJ © U0
spuesnoty

ey urq)y [£310a0d JO UOTJUSAUL AT} I0] POMO[[R 1 ‘SNT], "SOSSB[D JO UOIUAAUI Y} puR A}9I008 JO UOT

o) jo Sutidspogs renbaun o1y ‘Ajqe)jiasut ‘snif) pue s9omosol snjdins jo 3uridspo)s 10] pomoy[e aImMoLISy Sy
1ej0d)X9U 9} ‘UOIYR)SOJUI JSNOO[JXaU BY) ‘DUIMWR] IXoU oY} 0} S[RISUNA A[PWLIIXe NOA FUR{RW ‘S9DINOS POO]
DOYROIISOWOP USZOP MOJ © UO 90URI[DI SUTW[OYMIIAC TR I o1

O S9DINOS P[IM JO SPUBSNOY) 9ARY SISIOYILF-IAUNE "owWI) [[® JO seaow prdnjs 1eaId oY) Jo aUO0 sem)1 sem Aueu
11 pue ‘UOIIUOAUL :@:5: U0 e] © ST ,VE::E Hw< ‘priom ayewrtad oy} Ul 9I0Jo(USOS 10AD SUIOU oYl Surued

ﬁm_oom mc TOTJROTYTRIYS — E&t Jjo Su Euc? Tenboun o1
PMO[[R 2INYMOLISY 1YSI[q 01ejod 1X0U Y} ‘UOIYRISOJUL ISNDO] IXIU O} ‘QUIUIR] JXIU d) 0} I[(RIIUMA A[OUIDIXE
104 SUnRW ‘SPOINOS POOJ PIRIIISOTOP TUOZOP M ® TWO 9DURI[DI SUTU[MISA0 UR SUIYRIOUSS ‘[[e et} poSueRy:
INYMOLISY WO JSISNS 0} POOJ JO $90INOS P[IM JO SPUBSNOT owy [jo seaour pidnig
1eoI13 oY) JO oUO Sem 91 sfem AURW UT PUR ‘TWOIPUOAUT UWRTINY 4 oudy priom oyewrtid oty uy
PI0Jo(| WA9S I9A® JUIIOU AYI[SunyueI-mo[o) Jurpesnlqns jo fem e ﬁ_s dn awren £o1)) ‘A110n0d pojueAul suRTINY|
OUYM JRY) ST 90USIOPIP wewny-oyewiid oy jo out] yound oy Jey) Yury) ["£110a0d JO WOIUOAUT O} I0] POMO][R 1]
QAT 9T} Pu® £191008 JO TOIIROYIJRI}S — WAY) Jo Sur[idyools Tenbaun o1y ‘A[qeiradur ‘sniy) puy
ooamosor snjdans jo Sur(idyoo)s 10 pomo[e oI MOLISY “PSI[q 0jejod JXoU J) ‘UOTYRISIJUL JSTIOO] JXOU O} ‘dUTUIR]
X0t 8T} 0} J[(RISUNA AOUIIIIXS NOA SULYRW ‘S9DINOS POOJ PIYRITISIWOP UIZOP MIJ B U0 90URI[DI SUTII[DYMISAO Y
BurjeIouss ‘[re jey) poSueyd oIMIMOMSY U0 ISISNS 0) POOJ JO SIOINOS P[IM JO SPURSNON) dARY SIDIOIRS-I0JUN]|
o) J[e Jo seaowr prdnis Jeald o) Jo oUO sem T sAem AURTI U PUR ‘WOTJUSAUT URTUNTY JU09I A[ITR] ® ST 01N NOLISY]|

Figure 6.1
of 75 pages per second with LUATEX and over 100 pages per second with LUAITTEX. On

a more modern laptop or professional server performance is of course better. And for

to typeset novels. They are rather brain dead products for a machinery so they process
fast. On the mentioned laptop 350 word pages in Dejavu fonts can be processed at a rate

So what is a realistic example? That is hard to say. Unfortunately no one ever asked us

55 Performance

fo bupdyooys uof pamo)p aunynoruby ybrq oiprod TIU Y] ‘“U01IDISIfUI ISNI0] JTIU Y] ‘DUIWLDY
prou 2y3 07 2)qDLuUINaA fippwaliTd nofi burypuL ‘sa0unos poof papILISIUWLOP UIZOP ML D U0 IUD]IL
Purwpoymaaao up buyviouab ‘9o 30Yy) pabupydo 2unyMowby -uo jsisqns 03 poof fo saounos ppm [o
EPUDSNOY] 2aDY S4343YIDH-42qunfy 2wy 110 fo saaow prdnys paub ayy fo auo som 1 sfivm fiuvw uy
pup ‘uoruaaul upwny juadad fijunf D s1 9unnobY pliom agpwaid oYy ur 2.00foq UIS LoD burypou Ay
uD4-mo) Yy buypbnlgns fo fiom v ypm dn 2wvo fiayy ‘firieaod pajusaul suDWNY UIYM IDY] ST DUILILfp UDWNY
Fogpwized ayy fo auy yound ayy 30y yuyy [“fizaaod fo uoruaauy ay) Lof pamopn 11 ‘sny [, ‘Sassv]I [0 U0UIAUL IY] PUD|
1791008 Jo wonworfiniys — wayy fo buypdyoogs ppnbaun ay) ‘fijgnpaduy ‘snyy pup s9ounosas snjdins fo buaidyools sof]
2mo]D aunnotiby pybrq ov1od 1TIU 2Y) “‘U0OYDISI UL JSNV0] 1TOU Y ‘DULWDS JTIU 2Y] 07 2)qDLPUNA fi]aUa4Td NOf)
WEYDUL ‘§90UN0S POOS PIIDISIULOP UIZOP MAf D U0 IUDYAL buu)aym.t200 uv bupvioualb 9o 10y pabunys 2unynoiby|
[uo 1518qNS 01 poof fo sa0un08 PpM fo SPUDSNOY] aDY S4LPYIDE-APJUNET P 17D fo sa00w prdngs Db 2y fo 2UO0 SDM|
1 sfinm fiupw vz pup ‘uoyuaauUl UDWNY JUIIAL filunf v st 2ungnotby prIom ayewrtad oY) UI 9I0Jo(UIDS A
Buryjou a1 Sursjuet-mof a9 Surrednlqns jo Lem e yrm dn sured £y} ‘A310A0d pajuLAUL SUBIUNTY U M|
per) st souaIoyIp uewny-ajewrid ay) jo aull yound oYy jeyy juryl J °A3roaod JO UOIJUDAUI O} JIOJ
[PeMO[[® 71 ‘snyJ, ‘SOSSe[d JO UOIJUSAUI 9} pPuR AJ9100S JO UOIjeIYIJeI)s — weY} Jo Sul[idxoosls [enbaun
pY? ‘A[qejiasul ‘sny) pue sedanosal snidins jo Sulidyo09s 10 pamojre aanynotady *y3i[q orejod jxou
P} ‘UOIJe)SOJUI ISNDO])XOU O} ‘OUIUIER] JXaU JY) 0} d[qeIsUnA A[PUWLI)Xd NOA Sulsjewt ‘sadInos pooy
[PP71eOI1SOUWOP USZOP MOJ ® U0 9dURI[ed SUIW[YMI2A0 Ue uljeisusad ‘[[e jer) padueyo ain)molidy ‘uqg
SISqNs 0} POOJ JO S92INOS P[IM JO SPURSNOYY) 9ARY SIoIdYeS-Iojuny] -ouIl} [[e Jo sosowr pidnjs jeaid
P} JOo U0 sem 91 sAem AueW Ul PUR ‘UOIJUSAUI URWINY JUSIDI A[IIe] ® SI an)nol8y ‘pliom ajewtad oy
11 ©10J0(| UDDS T0AD SUIYIOU NI SuB{uRI-MO[o) Surpednlqns jo Lem e Yym dn owred Loy ‘Aj10a0d pajuour suewny|
[IOYM JeT) ST 90UDISHIP Uewmy-ojewiid o1y jo out] ypund oy Jer) Yury) | "A110A0d JO TWOTPUAAUT O]} 0] POMO[R 1]
ST], "S9Sse[O JO UOIUAAUL BY) puR AJ9100S JO UOIeIYIyRI)S — WYY Jo Sulfidyoo)s renboun o1y ‘A[qejrasur ‘snyy pu
goomosor sndans jo Suiid:po)s 10] pamofre o MoI8y Y81 0yejod IXOU OY) ‘UOTIRYSOJUT ISNOO] JXOU O]} ‘OuUruIR]
XU T} 0} d[(RISUNA A[PUIIIXS NOA SUNYRUI ‘SPOINOS POOJ POJLIIISOWIOP UOZOP MOJ B TO 9IURI[DI SUTII[IMIDAO e
Buryerouad ‘[re jery) peSuryd oIm)MoLIy ‘U0 ISISGNS 0) POOJ JO $9IINOS P[IM JO SPUBSNON) AR SIDID)RS-I0juny|
[otry) e Jo seaowr pidnjs 1eaIs o1} JO OUO Sem JT SABM ATURUI UT PUR ‘TOTJUIAUT WRTINY JUSIDI ATITR] ® ST 91N} NOLISY|
‘plLom ppwired Y] Ul 240 aq uIS 4202 Buryjou 231 buryuvi-mo) ay3 burgpbnlqns fo finm
p ypm dn 2wod fiayy ‘Aiuaaod pajuaaur suDWNY UIYM DY) §1 DULL1p uDwnyY-a3DWILd Y] fo DU
yound a2y oYy1 Juryy J -figedaod fo uoruaaur 3y} 4L0f pamo]p 11 ‘snyJ, °"SassD]O fO UOPUIAUL Y] PUD|
fizo200s fo wowof1ypays — wayy fo burpdyooys jpnboun ay) ‘flqprasur ‘snyl pup $90.n0saL sn)dins|
fo bupdyools uof pamo)p aunynoruby ybrq oipjod ITIU Y] ‘“U01IDISIfUI 1SNI0] JTIU Y] ‘DUIWLDY
prou 2y3 07 21qDLuUINaA fippwaliTa Nofi burypwL ‘saounos poof papILISIULOP UIZOP MIAL D U0 IUD]I
Purwpoymaaao un buyoiouab ‘9o 30Yy) pabupyo unyMowby -uo jsisqns 03 poof fo saounos ppm [o
EPUDSNOY] 2aDY S4343YIDb-42qunfy 2wy 110 fo saaow prdnys paub ayy fo auo som 1 sfivm fiuvw uy
pup ‘uoruaaul upwny juadad fijunf v s1 9unnObY priom agpwaid oYy ur 2.10foq UIS Load burypou A
puyuni-moy avyp buyobnlons fo fiom v ypm dn owvd fioyy ‘frieaod pajuaaul SUDWNY UYM DY) S IULDLIP UDWNY
Fogpwized ay) fo auy yound ayy 30y yuyy [“fizaaaod fo uoruaauy ay] Lof pamopn 11 ‘snyJ, ‘Sassv]d [0 U0UIAUL IY] PUD|
fizo100s fo uoyvorfynigs — woayy fo bupdyoogs ppnboun ayy ‘fgupasur ‘snyy pup sa0unosas snydins fo buydyools Lof|
2MmoD UMby pybrq 0p1od 1TIU YY) “‘UOYDISI UL JSNI0] 1TOU Y] ‘DULWDS JTIU 2Y] 07)qVLPUINA fijPra4Td NOf)
buzypws ‘s90unos poof panorgsoutop uazop maf v uo UYL bupupymiaao up burgviauab o 10yy pabunyd 2ungmorby|
[uo 1s189MS 01 poof fo sa0un0s ppm fo spuDsNOY] 2aY S42LYIDE-APIUNET P 17D fo sa00w prdngs Db Yy fo 2uO0 sDM|
1 sfiom fiupw vz pup ‘uoluIAUL UDWNY JUIIAL filuanf D st 2unnotby plIom ayewrtad oY) UI 9I0Jo(USSS A
Buryjou a1 Sursjuet-mof a9 Surrednlqns jo Lem e yrm dn sured £y} ‘A310A0d pajuaAUl SUBUNTY UM
pey) sI souaIoyIp uewny-ojewrid ay) jo aull yound oYy jeyy juiyl J °Aroaod JO UOIJUIAUI O} JIOJ
[PoMO[[® 91 ‘SN, *SOSSe[D JO UOIJUSAUL 3} pue A1310S Jo uoljedyIjer)s — wayy jo Surfidsools renbaun|
pU? ‘A[qejiasul ‘sny) pue sedanosal snidins jo 3uiidyo0ls 10 pamojre aanymnotady *y3i[q oyejod jxou
P} ‘UOIJR)SOJUI ISNDO])XOU O} ‘OUIUIER] JXaU JY) 0} d[eISUNA A[OUWLIIXd NOA Sulsjewt ‘sadInos pooy
[PP71eOI1SOUWOP USZOP MIJ ® UO 90URI[9d SUIW[IMI2A0 Ue uljeiausd ‘[[e ey} paSueyd aIn)molidy ‘u
SIsqns 0} POOJ JO S92INOS P[IM JO SPURSNOYY) 9ARY SIoIdYjeS-I0juny] -ouIl} [[e jo soaowr pidnjs jesid
P} JO U0 sem 91 sAem AUeU UI PUE ‘UOIJUSAUI URWINY JUSIDI A[Ire] € SI 2an)norsy -priom ayewrrd oy
11 ©10J0(| WDDS T0AD FUIYIOU oY SuB{URI-MO] o) Surpednlqns jo Lem e Yy dn owred Loy ‘Aj10a0d pojuoaur suewny|
oYM JeT) ST 90UISHIP Uewmy-ojewiid o) jo out ypund oy Jer) Yury) ["A110A0d JO TWOTYUSAUT ST} I0] POMO[R 1]
[T, "SOSSE[D JO UOIJUAAUI A} pue £19100S JO UOTIedyIRI)s — Wty Jo Suridypols renbaun oty ‘A[qelrasut ‘sniy puw
goomosor sndans jo Sui(id:po)s 10] pamorre onyMoI8y Y81 0yejod IXOU O} ‘UOTIRYSOJUT ISNOO] JXOU JT[) ‘Oururej
XU 7]} 0} d[(RISUNA APUIDIIXS NOA SUNYRUI ‘SPOINOS POOJ POJLIIISOUWIOP USZOP MOJ ® TO 9IURI[DI SUTII[IMIDAO Y
Buryerouad ‘[re jer) peSuryd oIm)Moudy ‘U0 ISISGNS 0) POOJ JO $9OINOS P[IM JO SPUBSNON) AR SIDID)RS-I0junyy|

fowry [re jo seaowt prdngs JeaId o1} Jo 9UO sem §1 sAem AURUI Ul PUR ‘UOTJUSAUL URTINT JU8IAT A[ITR] ® ST 9IN)[NOLIS Y|

Figure 6.2

Bureiousd ‘e jer) peSueyd omM)MOLI8y U0 ISISqNs 0} POOJ JO SPOINOS P[IM JO SPURSNON) OARY] SIOIOY)RS-I9JUNE]

[owry [e Jo serow prdngs 1eai8 a1} JO SUO Sem 1 sSAem AURW Ul PUR ‘UOTIUSAUT WRWINY 81 A[II] ® ST 8IM)NOLISY|
‘plaom oyewttid oy} ul 81030
[I99s I9Ad SuIyjou oyl Sunjuel-mo[o) Surpesnlqns jo Aem e yym dn suren £o1) ‘A310A0d pajuLAUT SURINY WY
feyy st eouatogip wewmy-oyewirid ayy jo ouil yound oy jeyy quiyy | £310a0d JO UOMUSAUL Y} 10} POMO[[R }1 ‘SN
[S9SSB[D JO UOIIULAUT A1) pue A)91008 Jo UONedYIRI)s — W) jo Sulidyools [enbaun o) ‘A[qejrasur ‘snyj puy
ooIMosar snidims jo Suridypo)s 10y pamofe oMoty “JySiq 0jejod IXoU S} ‘UOIYRISIJUL JSNDO] JXOU A} ‘dulure]
NXoU 97[) 0 SRISUNA A]oUISI)Xd NOA SUL{RUI ‘S9DINOS POOJ PAYRIIISIWOP UZOP MIJ © U0 SOURI[I SUTW[IYMISAO UH
Buryerouas ‘e yey) paSuerd am)MmoLdy U0 ISISNS 0} POOJ JO SIOIMOS P[IA JO SPUBSNOY) AR SIDIDIRS-IoJuny|
[owry [re jo seaowr prdngys 1eaid a1} JO U0 sem 1 SAem AURW Ul PUR ‘UOTIUSAUT WRTUNY U801 A[IIR] ® ST 9IN)NOLISY|
‘pliom ayewtrid oY) ul aI10ja(
[I99S I9Ad JuIjou oyI] Surjuel-mof o) urpednlqns jo Aem e Yim dn oures 4o1) ‘A319A0d POJUOAUT SURTUNT] UM
heyy st edualayIp wewmy-oyewtid oy jo aurl yound oYy Jey) ury) | ‘£310a0d JO WONUSAUL 9} 10] PAMO][e IT ‘SniJ|
[SOSSe[d JO WOIJUDAUT 91} PUR AJ9I00S JO UOTIROYIIRIS wot) jo Suiqidyo)s Tenboun o1y ‘A[qejraeur ‘sniy) pu
Fa0Inosal sndans Jo 3urIdypo)s 10 pamo[e 2oLy "SI 0IeI0d IXoU Y[} ‘UOIIRISIJUI ISTIDO] JXOU JT[) ‘dUIUIR]
hxou o1} 0} S[qRIAUMA A[OUIAIIXS NOA SUIRUIL ‘S9DINOS POOJ PPROIISOUIOP USZOP MIJ ® UO 90URI[DI SUNUOYMIDAO U
Buryersuas ‘e ey} paSuerd aI)MoLSY WO ISISNS 01 POOJ JO SAOINOS P[IM JO SPURSNOY) SARY SIDIS)eS-Iojuny|
o) [[e Jo soaowr prdngs 1eol1s o) JO oUO SeM 9T SARM AURUL UT PUR ‘UOIJUOAUT URTUNT] U901 AITR] ® ST 0IN)[NoLIdy)|
‘plaom oyewtrid oY) Ul 8I10Ja(
[I99s I9A® JUIYjou o¥I[Surjuel-mo[o) uresnlqns jo Aem e Yim dn oured 4o1) ‘A31040d POJUOAUT SURINY US4
heyy st eoualsyIp uewmy-oyewtid o) jo autl yound oYy jey) Juryy | £)1040d JO WOIJUSAUL 9T} 10] POMO[[e J1 ‘SN
[S9sSB[D JO uonueAul oY) pue 191008 Jo uonedyIIRI)S — W) jo Sul[idyools [enbaun oy ‘A[qejIALuI ‘sny) puw
Fe0anosal snjdans jo Suiids;po)s 10 pamo[e 2Mou8y “JYSI[q 0jejod JXoU 91} ‘UOIPRISJUL JSNDO] JXU JY[} ‘urure]
hxou a1} 0 d[eISUNA A[PUWI)Xd NOA SUBRU ‘S90IN0S POOJ POYLIIISIWOP USZOP MIJ © UO SOURI[DI SUI[IYMIIAO UH
Burjerousd ‘Tre jer) peSueyd om)MOLI8y U0 ISISqNs 0} POOJ JO SPOIMOS P[IM JO SPURSNON) OARY] SIOIOY)RS-I9JUNE]
[owry e jo sarowr prdngs 1eaIs a1} JO U0 Sem 1 sSAem AURW Ul PUR ‘UOTIUSAUT UWRWINY 81 A[I1] © ST 9IM)NOLISY|
‘plaom ojewtrid oY) ul 810jo(
[I99s I0A® Julyjou oyI[Suryuel-mo[oY) Jurpesnlqus jo Aem e Ym dn owres 4oy} ‘A310A0d PoOJUSAUL SURUNY UL
hey) st eoustoyIp wewny-oyewtid o) jo oull yound oy yey) Yuryy [A31040d Jo UOIULAUL O} 10} POMO[[R I ‘sny]
[S9SSB[D JO UOIULAUT o) pue A)9100s Jo uonedyIel)s — wWey) jo Sulidyools [enbaun o) ‘Ajqejrasur ‘snyj puy
goomosol snpdins jo Surfidyo0)s 10] Pomo[[e dM)MOLIY “IYSIq 0jejod JXou oY) ‘UOIIR)SOJUI JSNOO[JXOU d[} ‘Ourure]
NXaU a7[) 0 S[RISUNA A[oUISI)Xd NOA SULRUI ‘S9DINOS POOJ PAYLIIISIWOP USZOP MSJ ® U0 SOURI[AI SUTW[IYMISAO UH
Buryerouos ‘e jyey) paSuerd am)moLdy U0 ISISqNS 0} POOJ JO SIOIMOS P[IA JO SPUBSNON) AR SIDID)RS-I0Juny|
[owry [re jo seaowr prdngs 1eaId 91} JO SUO Sem 1 SAeM AURW Ul PUR ‘UOTIUSAUT WRTINY U801 A[IIe] ® ST 9IN)[NOLISY|
‘pliom oyewrid o) ul a10ja(
[I99s I9Ad Juryjou oyl SuryueI-mof oy} urpesnlqns jo Aem e Yim dn oures Ao1) ‘A319A0d POJUOATT SURTUNT] UM
heyy st eduareylp wewmy-oyewtid ayy jo surl yound oy jey) suryy | £31040d JO UOMUSAUL 9} 10] POMO][e T ‘SniJ|
[S9SSB[D JO UOIULAUL 9} puR 4391008 JO UOLYRIYIJRIIS woay) Jo Suiidipo)s renboun oy ‘A[qerasur ‘suyy pu
Foomosel sndans jo Sul[idyo03s 10] PoMO[[e dIMYMOLIY “IYSI[q 0ejod JXoU oY) ‘UOIJRISOJUL JSNOO[IXOU d[} ‘Durure]
hxou o1} 0} S[(RIAUMA A[OUISIIXS NOA SUIYRUIL ‘S9DIN0S POOJ PAFROIISOUWOP USZOP MIJ ® UO S0URI[DI SUMUDYMISAO U
Buryetsuas ‘e ey} paSuerd aI)moLSy WO ISISNS 01 POOJ JO SAOINOS PIA JO SPURSNOY) SARY SIDISIRS-Iejuny|
[oury e jo soaowr prdngs 4ea1d o) Jo oUO sem 1 sAem AUR UI PUR ‘UOTIUIAUT URTINY JU0IT A[IR] ® ST 9IM)MOLIFY]
‘plaom oyewrid oY) Ul a10ja(
[99s I9A® JUIjou oyI[Surjuel-mof o) urednlqns jo Aem e Yim dn oured 401y ‘A31040d POJUOAUT SURTINY US4
hey) st edualayIp wewmy-oyewtid o) jo aurl yound oYy jey) furyy | ‘£)1040d JO WOIJUSAUL 9T} 10] PaMO][e J1 ‘SN
[S9sSB[D JO uOrURAUT A} pue £9100s JO uOedYIIRIS — W) jo Sul[idyoo)s [enboun oty ‘A[qejiasur ‘s pu
§e0anosal snjdams jo Suiidpo)s 10J pamo[e 2ImMo8y “JSi[q 0jejod JXoU oY) ‘UOIPRISJUI JSNOO] JXoU 9T} ‘urure]
hxou a1} 0 d[qeIOU[NA A[PUWDIIXD NOA SUB{RUL ‘SOOINO0S POOJ POJLIIISOUIOP UZOP MJ © UO JOURI[AI SUI[IYMIOAO UE
Buryeisuas ‘e jey) paSueyd aIN)MOLISY WO JSISGUS 0} POOJ JO SAOINOS PIM JO SPURSNOY) SARY] SISISJRS-Iojuny|
[owry e jo sorowr prdngs 1eals a1} JO U0 Sem 1 SAem AURU UL PUR ‘UOTIUSAUT UWRINY YL A[I1R] B ST 9IM)[NOLISY|
‘plaom oyewtrid oy} ul 8I10joq
[99s IoA8 Julyjou oyl Surjuel-mo[oy uresnlqns jo Aem e Yim dn oured £oy) ‘A110a0d pojueAul sTRIINY UL A
het) st eoustayIp uewmny-oyewtid o) jo oull yound oy yey) yuryy [A31940d Jo UOIULAUL S} 10} POMO[R 1 ‘sny]
[S9SSB[D JO UOIueAUl o) pue A39100s Jo UOeIYIIRI)S — wWe) Jjo Sul[idyools [enbaun oy ‘A[qejrasur ‘snyj puy
goomosel snpdins jo urfidyo0)s 10] Pomo[[e omM)MOLIY “JYSIq 0yejod JXou oY) ‘UOIIR)SOJUI JSNOO] XU JT[} ‘Durure]
NXaU a7[) 0 d[RISUNA A[oUWISI)Xd NOA SULRU ‘S9DINOS POOJ PAYLIIISWOP USZOP MIJ © UO SOURI[AI SUTW[IYMISAO UH

Bureoued ‘e jey) poSueyd oINjNOLIBY U0 ISISqNs 0} POOJ JO SOOINOS P[IM JO SPURSTION) OARY] SIOIOY)RS-IOJUNE]

[owry re Jo seaowr prdngs 1eaI8 91} JO SUO sem 1 SAem AURW Ul PUR ‘UOTIUSAUT WRWINY U801 A[IIe] ® ST 9IM)[NOLIS Y|

Figure 6.3

Performance 56

Burerousd ‘e jery) peSueypd omM)MOUIBY U0 ISISNS 0} POOJ JO SOOINOS P[IM JO SPURSNON) OARY] SIOIOY)RS-I9JUN|
[owry e Jo seaowr prdnas 1eaI8 91} JO U0 Sem 1 SAem AURW Ul PUR ‘UOTIUSAUT URUNY U1 A[I1e] B ST 9IN)NOLIS Y|
‘praoa oyewtad oy ul 810394
uees Iene Jurylou oNI[SunjurI-mof o) Surpesnlqns jo Aem e YImm dn omres A7) ‘A319A0d POJUSAUT STRUINT] T[4
Ne) st oduotPIp wewmy-ojeurtid o) jo our yound oyy jer) Yuiy) [A310a0d JO UOTIUSAUL OY) I0] POMO[[R T ‘SnyJ|
[S9sse[D Jo morueAur o) pue 191008 Jo uoneIYIRI)S — WAy Jo Suiidspo)s [enbaun o) ‘ATqelTASUT ‘sny) puy
gooInosor snjdins jo Suiidspols 10y pamofe 2Immoudy NSijq 0jejod IXoU S} ‘UOIPRISJUT JSNIDO] JXOU A} ‘durure]
1XoU 9]} 0 S[(RISUMNA AJoWDI)Xd NOA SUL{RW ‘SIINOS POOJ PAYRIIISIWOP USZOP MIJ © U0 JIURI[DI SUT[IYMIIAO UH
Buryesuas ‘e e} paSuerd oamMmoLy “Uo ISISNS 0} POOJ JO SIOINOS P[IM JO SPUBSNOY]) JARY SIDIDYIRS-IoJuny|
[owry e jo seaowr pTdnas Jeeld 91} JO SUO sem 1 SAem AURW Ul PUR ‘UOTIUSAUT URTUNY U801 A[I1R] ® ST 9IN)[NOLIS Y|
‘priom oyewrtid o1y Ul 810394
uees Iene JUTYIOU ONI[SunjURI-mO[o) SurpesSnlqns jo Aem & yjm dn owres A9} ‘A)10A0d POJUOATT SURTUNT] U]
hey) st eduatayIp wewmy-oyewtid oy jo surl yound oy jey) yuryy | £310a0d JO WOMUSAUL S} 10 POMO[[e 1 ‘SnyJ|
[SOSSR[D JO TOIJUOAUT oY) puR A9100S JO UOTIROYIIRIYS wot) jo Suridspo)s [enboun oy ‘ATqearasut ‘snyy pu
e0anosal snjdims Jo Suiidypols 10] pamofe 2ImImo8y “PSI[q 01e)od IXaU S} ‘UOIPRISSIUI JSNOO] JXaU I} ‘durure]
fxou 9} 03 S[RIOUNA A[OWIIXd NOA SUR{RUW ‘SOIN0S POOJ POJRIIISIWOP USZOP MIJ ® UO 9OURI[DI SUTWI[IYMIIAO U
Buryetsuas ‘e eyl paSuerd am)Mou8y UO0 ISISqUS 01 POOJ JO SPOINOS P[IM JO SPUBSTIOY]) SARY SIBIBYIRS-Iojuny|
[owr) e jo soaowr prdnas 1a13 o) Jo oUO sem 1 sAem AUR UL PUR ‘UOTIUSAUT URTINY JU0II A[IR] ® ST 9IN)NOLIFY|
‘praom oyeuttad o1y Ul 810394
uess Ions Sutyzou oy Suryuel-mol o) SurpeSnlqns jo Aem e yjm dn oured Lo ‘K110a0d POJUOAUT SURTINY U A
fey) st eoualsyIp weumy-oyewtid oYy jo surl yound oYy jey) Juryy | A31040d JO WOTJUSAUL 9T} 10 POMO][R 41 ‘SnyJ|
[s9sse[D JO uorueAul o) pue £101008 Jo uopedYIRIS — WYY Jo Suridypols [enbaun o) ‘ATqe3TAsUT ‘sny) pu
Fe0anosal snjdims jo Suiidspo)s 10 pamoqe SInmoI8y “SI[q 0jejod JXoU o1} ‘UOIPRISAJUL JSNOO] JXOU 9} ‘durure]
hxou a1} 07 d(RIAUNA A[PUWI)Xd NOA SULYRUW ‘S9INOS POOJ PAYRIIISIWOP USZOP MIJ ® UO JOUPRIDI SUTTU[IYMIIAO W
Burerouad ‘Tre jey) peSueyd omM)MOLIBY U0 ISISNS 0} POOJ JO SPOINOS P[IM JO SPURSNION) OARY] SIOIOY)RS-I9JUNH]
[owry e Jo seaowr prdnas 1eaI8 9} JO U0 Sem 1 sSAem AURU Ul PUR ‘UOTIUSAUT URUNY YD1 A[I1e] B ST 9IN)[NOLISY|
‘praom oyewttad o1y Ul 810394
uees Iane Juryiou oNI[Sunjurl-mof o) Surpesnlqns jo Aem e Y dn omres A7) ‘A119A0d POJUOAUT STRUINT] UAT[A
freyy st eouatopip wewmy-oyewtid ayy jo surl yound oy jeyy Juiyy | A310a0d JO UOMULAUL Y} 10 POMO[[R }1 ‘SN
[S9ss®[D JO morueAUl oY) pue 191008 JO UOedYIIRI)S — WLy Jo Suiidspo)s [enbaun o) ‘ATqelTASUT ‘sny) puy
goomosol snpdans jo Suridyo0)s 10] Pomo[[e dM)MOLIY “IYSIq 0jejod XU oY) ‘UOIIR)SIJUI JSNOO] JXOU dY[) ‘Durure]
NXoU 9]} 0 S[(RISUMNA A[oWDI)Xd NOA SULRW ‘SIINOS POOJ PAYLIIISWOP USZOP MIJ © U0 JOURI[AI SUT[IYMISAO UH
Buryesuas ‘e ey} paSuerd omMmoLdy U0 ISISINS 0} POOJ JO SIOINOS PIM JO SPUBSNON]) ALY SIDIDYIRS-I0Juny|
[owry e Jo seaowr prdnas 1eeI8 91} JO SUO sem 1 SAem AURW Ul PUR ‘UOTIUSAUT URTUNY U801 A[I1e] ® ST 9IN)NOLIS Y|
‘priom oyewrtid o1y ul 810394
uees Iene JuTUlOU ONI[SunyURI-MO[o) Suresnlqns jo Aem e yjm dn omren A7) ‘A119A0d POJUOAUT STRUINT] U4
hey) st eouateyIp wewmy-oyewtid ayy jo surl yound oy yey) yuryy | £310a0d Jo UOMUSAUL S} 10 POMO[[e 1 ‘SnyJ|
[s9ssed Jo uorueAur oY) pue 391008 Jo U0 ROYIRIS — WL Jo Suldypo)s [enbaun oy ‘ATqeITASUT ‘snyj pu
e0anosal snjdims Jo Suiidpols 10] pamofe 2Inmody “NSI[q 01e)od IXoU S} ‘UOIPRISAIUL JSNOO] JXoU I} ‘durure]
hxou o1} 0} S[(rIAUMA A[OWAIIXS NOA SUIYRW ‘S90INOS POOJ PIFRIIISIWOP USZOP MIJ ® UO 90URI[AI SUMU[SYMISAO U
Buryetsuas ‘[[e eyl paSuerd am)Mmoudy Uo ISISqNS 01 POOJ JO SAOINOS P[IM JO SPUBSNOY]) SARY SIBIBIRS-Iojuny|
[owr) [jo soaowr prdnas 9ea1d o) Jo ouo sem 1 sAem AUR UL PUR ‘UOTIUSAUT URTINY JUOII A[IR] ® ST 9IN)NOLISY|
‘praom oyeuwrtad o) Ul 810394
uees Ions Suryzou oy Suryuel-mol o) SurpeSnlqns jo Aem e yjim dn oured Lo ‘K110a0d POJUOAUT SURTINY U
fey) st edualsyIp weumy-oyewtid oY) jo surl yound oy jey) Juryy] A310a0d JO WOTJUSAUL 9T} 10 POMO][R 91 ‘SnyJ|
[$9ssB[D JO uouAAUl oY) pue £191008 Jo uONedYIIRI)S — W) Jo Suiidspols enbaun oy ‘ATqeaTASUT ‘sny) pur
e0anosal snjdims jo Suiidspo)s 10J pamoqe oInymo8y “YSI[q 0jejod JXoU oY) ‘UOIPRISAJUI JSNOO] JXBU 91} ‘durure]
hxou a1} 07 d(RIOUNA A[PUWDI)Xd NOA SULYRUW ‘S9INOS POOJ POJRIIISIWOP UDZOP MIJ ® UO JIURIDI SUTTU[IYMIIAO U
Burjeisuas ‘e ey} paSuerd 2IjMOLSY U0 JSISqUS 0} POOJ JO SAOINOS PIM JO SPURSTION) SARY SI9ISYJRS-Iojuny|
[owmy e Jo soaowr prdnas 1eaI8 9} JO U0 Sem 1 SAem AURU Ul PUR ‘UOTIUSAUT URTINY YT A[I1] B ST 91N [NOLISY|
‘praom oyeuwrtad o1y ul 810394
uess Isas Suryzou oy Suryurl-mof o) SurpeSnlqns jo Lem e YIm dn sured Aoy ‘A)19a0d pojuSAUT SURTINY UA[A
het) st sousteyIp uewny-sjewrid o) jo oull yound oy yey) yury) [A31040d Jo UOIUSAUL O3 0] POMO[[®R 1 ‘sny]
[S9sSB[D JO UOIueAUl 8} pue 191008 Jo uonedyIIRIS — WAy Jo Suiidypols [enbaun o) ‘ATqelTASUT ‘sny) puy
goomosel snpdins jo Suridyoo)s 10] Pomo[[e omM)MOLIY “JYSIq 0jejod XU oY) ‘UOIIR)SIJUI JSNDO] JXOU JT[) ‘OuruIe]
NXoU 9]} 07 S[(RISUMNA AoWDI)Xe NOA SULRW ‘S9INOS POOJ PAYLIIISIWOP USZOP MIJ © U0 JOURI[AI SUTW[IYMIIAO UH
Buryeiouss ‘e ey} paSued 2IN}MOLISY U0 ISISqUS 0} POOJ JO SOOINOS PIA JO SPURSIOY} dARY SIDIOYJRS-I0Jun|

[owry e Jo seaowr prdnas 1eaI8 oY) JO U0 Sem 1 SAeM AURW Ul PUR ‘UOTIUSAUT URTUNY U801 A[IIe] B ST 9IN)[NOLIS Y|

Figure 6.4

140M 91ewTJad Syl UT 94043Q USIS JUdAD BuTylou 93T BuTyued-moy 8yl butiebnlgns jo Aem e yiTm dn swed
1 ‘A1J49n0d paIUSAUT SuewNY USYM Iy} ST DDUSJIDLLTP uewny-aiewtdd 8y} jo autT)] yound Byl eyl Muty: 1|
d JO UOTIUSAUT By} JOJ POMOYe 3T ‘SNYL °"SOSSPID 4O UOTIUSAUT By} pue A3d3TD0S JO UOTIRITITIRILS ---
Jo but)Tdyd031S 1enbaun ayy ‘A1gqeITASUT ‘Sny} pue s$224nosad snidians jo HUTITAYD03}S 40 pamolle d4ny
1noTJby *3ybT1q o03erod IXdu By} ‘UOTILISDIUT ISND0] IXdU dY} ‘SuTWe) 3IXdU 3y} 03} d)1gedaulnA Ajswady
noA BuTsew ‘s924n0S poOj Pa1LITISSWOP UDZOP M3 B U0 ddURT1aJ BuTwysymiano ue Butiessusb ‘11e ey
ey> 94n31ndTJby "UO 1STSQNS 0] POOJ JO SIJNOS P1TM JO SPUBSNOYL 9ARY SJdJdyleb-uajuny ‘awtl 118 49
Aow pTdnis 1eadb oyl Jo suo sem 3T SAem Auew UT pue ‘UOTIUSAUT uewny 3udd3Jd A1JTe) e ST 94n31NOTJbY
1J40M 91ewTJd 9yl UT 2J043Q UDIS JIAd BuTylou 93T BuTued-moy 9yl butiebnlgns jo Aem e yiTm dn swed
1 ‘A1J4on0d paIUSAUT SueWNY USYM 1BY)} ST 9OUSJSLJTP uewny-ajewTdd syl Jo auty yound Byl eyl MUty 1|
d JO UOTIUSAUT By} JOJ PSMO)]e 3T ‘SNYl 'S9SSEID JO UOTIUSAUT By} pue A39TI0S 4O UOTIEITSTILULS -- -
40 but)Td¥2031s 1enbaun syy ‘A1gqeITASUT ‘Snyl pue s$22.4nosad snydians jo BuT1TAYD031S 40) pamolle dJ4ny
1N2T4by “3ybT1q o3ejod IXau 8yl ‘UOTILISSHUT ISND0] IXdU Y] ‘SUTWE) 3IXdU dY3} 0} d1gedaulna Aawadl
noA BuTyew ‘S254n0S pooJ PaILITISAWOP USZOP Md) B UO ddueT1dJ BuTwaymusno ue buriedausb ‘11e eyl
eyd 94n31NdT4BY "UO }STSQNS 0} POO4 JO SIIUNOS PITM JO SPUBSNOY} dARY SJdJdyieB-uajuny ‘dwrl 118 49
Aow pTdnis jeadb oyl jo suo sem }T SAem Auew UT pue ‘UOTIUSAUT uewny 3uddad AjJdTe) e ST 94n31NdTJby
140M 23ewTJdd 9y} UT 2J4043Q UDIS JdAd BuTyjou 93T BuTued-mol 8y} butiebnlgns jo Aem e yiTm dn swed
1 ‘A1Jon0d PaIUSAUT SuUBWNY USYM IBY) ST 9DUSJISJTP ueuwny-ajewtdd syl Jo autTy yound 9yl eyl MUty I
d JO UOTIUSAUT By} JOJ POMO]]E 3T ‘SNYL "S9SSEID JO UOTIUSAUT 39U} pue A1STI0S JO UOTIEITSTIRULS -- -
40 Bbut1Td¥0031S 1Enbaun ayy ‘A1geITASUT ‘SnyYyl pue S$224n0sad snydins jo BUTITAYD031S J0) pamolle aJ4ny
1N2TJ6y "3ybT1q ojejod IXau 8yl ‘UOTILISSJUT ISND0] IXdU Byl ‘SUTWE) 1IXdU dY3} 0} d1gedaulna Aswa.l
noA BuTsew ‘s924n0S pooj PaILITISSWOP USZOP M3 B U0 ddURT)dJ BuTwiaymiano ue Butiedsusb ‘)11e 1eyy
eyd 94n3NdT4By "UO 1STSQNS 0} POO4 JO SIUNOS PITM JO SPUBSNOY) dARY SJdJayieb-uajuny ‘awrl 118 49
Aow pTdnis 1eaub syl Jo suo sem }T SAem Auew UT pue ‘UOTIUSAUT uewny 3uddad AjdTe) e ST 94n31NdTJby
140M 91ewTJdd By} UT 24043Q USIS JUdAd BuTylou 93T BuTyued-moy a8yl butiebnlgns jo Aem e yiTm dn swed
1} ‘A3Jonod paUSAUT Suewny USYM 3By} ST DOUdJDJSTP uewny-diewtdd 8yl Jo auT) yound Byl eyl Yutyil I
d JO UOTIUSAUT Y3} JO4 PamoY]e 1T ‘SNYL "SBSSP]1D JO UOTIUSAUT 9y} pue A19TI0S JO UOTIRITLTIRILS ---
40 but)Td¥o031S 1eEnbaun ayy ‘A1geITASUT ‘SNY} pue S$224n0sad snydins jo BUTITAYD03}S J0) pamolle Jny
1n2T46y 3ybT1q 03elod IX3U BY} ‘UOTILISOLUT ISND0] IXBU Y] ‘SUTWE) 3IXdU dY3} 0} d1gedaulna Aswa.l
noA BuTsew ‘s92J4n0S pooj Pa1LITISSWOP UDZOP Md) B UO ddURT1SJ DuTwisymiano ue Butiessusb ‘11e ey
ey> 94n31NdTJ6y "UO 1STSQNS 01 POOJ JO SIIJNOS PITM JO SPUBSNOYL dARY SJdJayleb-uajuny ‘awtl 11e 49
Aow ptdnis jeaub syl Jo suo sem 1T sAem Auew UT pue ‘UOTIUSAUT uewny 1uddad A1JTe) B ST 94Nn3NDTJbY
140M 91ewTJad Syl UT 94043Q USIS JUdAd BuTylou 93T BuTyued-moy syl butiebnlgns jo Aem e yiTm dn swed
1 ‘A1J9n0d paluUSAUT SuewNy USYM Iy} ST DDUSJIDLLTP uewny-aiewTdd 8y} jo auT) yound Byl eyl MUty 1|
d JO UOTIUSAUT By} JO) PaMOYe 3T ‘SNYL °"SOSSP1D 4O UOTIUSAUT dY} pue A3d3TJ0S JO UOTIRITITILILS ---
40 but)Tdyo03S 1enbaun ayy ‘A1gqelITASUT ‘Snyl} pue S$224nosad snydians jo BUTITAYD03}S J40) pamolle d4ny
1noTJby *3ybT1g 03erod IXdu dY} ‘UOTILISDIUT ISND0] IXdU dY} ‘SuTWe) 3IXdU dY} 03} d)1gedaulnn Ajswauy
noA BuTsew ‘s924n0S poo) PaILITISSWOP UDZOP M3 B U0 ddUeT1aJ BuTwysymiano ue Butiessusb ‘11e ey
ey> 94n31ndTJby "UO 1STSQNS 0] POOJ JO SIJNOS P1TM JO SPUBSNOY] 9ARY SJdJdyleb-uajuny ‘awtl 118 49
Aow pTdnis 1eadb 9yl jo suo sem 3T SAem Auew UT pue ‘UOTIUSAUT uewny uddaJd AjJTe) e ST 94n31NdTJbY
1J40M 91ewTJd 9yl UT 9J043Q UDIS JIAd BuTylou 93T BuTued-moy 9yl butiebnlgns jo Aem e yiTm dn swed
1 ‘A1J49n0d paIUSAUT SuewNY USYM 1BY)} ST 9JUSJDLJTP uewny-ajewTdd syl jo autTy yound Byl eyl MUty 1|
d JO UOTIUSAUT By} JOJ PSMO)]e 3T ‘SNYl 'S9SSEID JO UOTIUSAUT By} pue A19TI0S 4O UOTIEITSTIRULS -- -
40 bur)Td¥2031S 1enbaun ayy ‘A1gqelITASUT ‘Snyl pue s$22.4nosad snydins jo BuT1TAYD031S JU0) pamol)e dJ4ny
1N2T4by “3ybT1q o3ejod IXau 8yl ‘UOTILISS4UT ISND0] IXdU Y] ‘SUTWE) IXdU 3y} 0} d1gedauIna KAawa.l
noA BuTyew ‘s354n0S pooJ PaILITISAWOP USZOP Md) B UO ddueT1dJ BuTw)aymusno ue buriedausb ‘11e eyl
eyd 94n31NdT4By "UO }STSQNS 0} POO4 JO SIIUNOS PITM JO SPUBSNOY} dARY SJdJdyleB-uajuny ‘dwTl 11e 49

Aow pTdnis jeadb oyl jo suo sem }T SAem Auew UT pue ‘UOTIUSAUT uewny 3uddad AjJTe) e ST 94n31NdTJby

Figure 6.5

57 Performance

automated flows batch mode is your friend. The rate is not much worse for a document
in a language with a bit more complex character handling, take accents or ligatures. Of
course PDFIEX is faster on such a dumb document but kick in some more functionality
and the advantage quickly disappears. So, if someone complains that LUATEX needs 10
or more seconds for a simple few page document . .. you can bet that when the fonts
are seen as reason, that the setup is pretty bad. Personally I'd not waste time on such a
complaint.

6.5 Valid questions

Here are some reasonable questions that you can ask when someone complains to you
about the slowness of LUATEX:

What engines do you compare?

If you come from PDFTEX you come from an 8 bit world: input and font handling are
based on bytes and hyphenation is integrated into the par builder. If you use UTF-8 in
PDFIEX, the input is decoded by TEX macros which carries a speed penalty. Because in
the wide engines macro names can also be UTF sequences, construction of macro names
is less efficient too.

When you try to use wide fonts, again there is a penalty. Now, if you use XgIEX or
LUATEX your input is UTF-8 which becomes something 32 bit internally. Fonts are wide
so more resources are needed, apart from these fonts being larger and in need of more
processing due to feature handling. Where XgIEX uses a library, LUATEX uses its own
handler. Does that have a consequence for performance? Yes and no. First of all it
depends on how much time is spent on fonts at all, but even then the difference is not
that large. Sometimes XgIEX wins, sometimes LUATEX. One thing is clear: LUATEX is
more flexible as we can roll out our own solutions and therefore do more advanced
font magic. For CONTEXT it doesn’t matter as we use LUATEX exclusively and rely on
the flexible font handler, also for future extensions. If really needed you can kick in a
library based handler but it’s (currently) not distributed as we loose other functionality
which in turn would result in complaints about that fact (apart from conflicting with
the strive for independence).

There is no doubt that PDFTEX is faster but for CONTEXT it’s an obsolete engine. The hard
coded solutions engine XHTEX is also not feasible for CONIEXT either. So, in practice
CONTIEXT users have no choice: LUATEX is used, but users of other macro packages can
use the alternatives if they are not satisfied with performance. The fact that CONTEXT
users don’t complain about speed is a clear signal that this is no issue. And, if you
want more speed you can use LUAJITTEX.? In the last section the different engines will
be compared in more detail.

In plug mode we can actually test a library and experiments have shown that performance on the average
is much worse but it can be a bit better for complex scripts, although a gain gets unnoticed in normal
documents. So, one can decide to use a library but at the cost of much other functionality that CONTEXT
offers, so we don’t support it.

Performance 58

10

Just that you know, when we do the four switches example in plain TEX on my laptop
I get a rate of 40 pages per second, and for one font 180 pages per second. There is
of course a bit more going on in CONIEXT in page building and so, but the difference
between plain and CONTEXT is not that large.

What macro package is used?

If the answer is that when plain TEX is used, a follow up question is: what variant? The
CONTEXT distribution ships with luatex-plain and that is our benchmark. If there
really is a bottleneck it is worth exploring. But keep in mind that in order to be plain, not
that much can be done. The LUATEX part is just an example of an implementation. We
already discussed CONTEXT, and for IATEX I don’t want to speculate where performance
hits might come from. When we're talking fonts, CONIEXT can actually a bit slower than
the generic (or IATEX) variant because we can kick in more functionality. Also, when
you compare macro packages, keep in mind that when node list processing code is
added in that package the impact depends on interaction with other functionality and
depends on the efficiency of the code. You can’t compare mechanisms or draw general
conclusions when you don’t know what else is done!

What do you load?

Most CONTEXT modules are small and load fast. Of course there can be exceptions when
we rely on third party code; for instance loading tikz takes a a bit of time. It makes no
sense to look for ways to speed that system up because it is maintained elsewhere. There
can probably be gained a bit but again, no user complained so far.

If CONTEXT is not used, one probably also uses a large TEX installations. File lookup in
CONTEXT is done differently and can can be faster. Even loading can be more efficient
in CONTEXT, but it’s hard to generalize that conclusion. If one complains about loading
fonts being an issue, just try to measure how much time is spent on loading other code.

Did you patch macros?

Not everyone is a TEXpert. So, coming up with macros that are expanded many times
and/or have inefficient user interfacing can have some impact. If someone complains
about one subsystem being slow, then honestly demands to complain about other sub-
systems as well. You get what you ask for.

How efficient is the code that you use?

Writing super efficient code only makes sense when it’s used frequently. In CONTEXT
most code is reasonable efficient. It can be that in one document fonts are responsible
for most runtime, but in another document table construction can be more demanding
while yet another document puts some stress on interactive features. When hz or pro-
trusion is enabled then you run substantially slower anyway so when you are willing
to sacrifice 10% or more runtime don’t complain about other components. The same is
true for enabling SYNCTEX: if you are willing to add more than 10% runtime for that,
don’t wither about the same amount for font handling.®

In CONTEXT we use a SYNCTEX alternative that is somewhat faster but it remains a fact that enabling more
and more functionality will make the penalty of for instance font processing relatively small.

59 Performance

How efficient is the styling that you use?

Probably the most easily overseen optimization is in switching fonts and color. Al-
though in CONTEXT font switching is fast, I have no clue about it in other macro pack-
ages. But in a style you can decide to use inefficient (massive) font switches. The effects
can easily be tested by commenting bit and pieces. For instance sometimes you need
to do a full bodyfont switch when changing a style, like assigning \small\bf to the
style key in \setuphead, but often using e.g. \tfd is much more efficient and works
quite as well. Just try it.

Are fonts really the bottleneck?

We already mentioned that one can look in the wrong direction. Maybe once someone
is convinced that fonts are the culprit, it gets hard to look at the real issue. If a similar
job in different macro packages has a significant different runtime one can wonder what
happens indeed.

It is good to keep in mind that the amount of text is often not as large as you think. It’s
easy to do a test with hundreds of paragraphs of text but in practice we have whitespace,
section titles, half empty pages, floats, itemize and similar constructs, etc. Often we
don’t mix many fonts in the running text either. So, in the end a real document is the
best test.

If you use LUA, is that code any good?

You can gain from the faster virtual machine of LUAJITTEX. Don’t expect wonders from
thejitting as that only pays of for long runs with the same code used over and over again.
If the gain is high you can even wonder how well written your LUA code is anyway.

What if they don’t believe you?

So, say that someone finds LUATEX slow, what can be done about it? Just advice him or
her to stick to tool used previously. Then, if arguments come that one also wants to use
UTF-8, OPENTYPE fonts, a bit of METAPOST, and is looking forward to using LUA runtime,
the only answer is: take it or leave it. You pay a price for progress, but if you do your
job well, the price is not that large. Tell them to spend time on learning and maybe
adapting and bark against their own tree before barking against those who took that
step a decade ago. Most CONTEXT users took that step and someone still using LUATEX
after a decade can’t be that stupid. It’s always best to first wonder what one actually
asks from LUATEX, and if the benefit of having LUA on board has an advantage. If not,
one can just use another engine.

Also think of this. When a job is slow, for me it’s no problem to identify where the
problem is. The question then is: can something be done about it? Well, happily keep
the answer for myself. After all, some people always need room to complain, maybe if
only to hide their ignorance or incompetence. Who knows.

6.6 Comparing engines

The next comparison is to be taken with a grain of salt and concerns the state of affairs
mid 2017. First of all, you cannot really compare MKII with MKIV: the later has more

Performance 60

functionality (or a more advanced implementation of functionality). And as mentioned
you can also not really compare PDFIEX and the wide engines. Anyway, here are some
(useless) tests. First a bunch of loads. Keep in mind that different engines also deal
differently with reading files. For instance MKIV uses LUATEX callbacks to normalize
the input and has its own readers. There is a bit more overhead in starting up a LUATEX
run and some functionality is enabled that is not present in MKII. The format is also
larger, if only because we preload a lot of useful font, character and script related data.

\starttext
\dorecurse {#1} {
\input knuth
\par
}
\stoptext

When looking at the numbers one should realize that the times include startup and
job management by the runner scripts. We also run in batchmode to avoid logging to
influence runtime. The average is calculated from 5 runs.

engine 50 500 2500

pdftex 043 0.77 233
xetex 0.85 2.66 10.79
luatex 094 250 9.44
luajittex 0.68 1.69 6.34

The second example does a few switches in a paragraph:

\starttext
\dorecurse {#1} {
\tf \input knuth
\bf \input knuth
\it \input knuth
\bs \input knuth
\par
+
\stoptext

engine 50 500 2500

pdftex 0.58 210 8.97
xetex 147 8.66 42.50
luatex 1.59 8.26 38.11
luajittex 1.12 5.57 2548

The third examples does a few more, resulting in multiple subranges per style:

\starttext
\dorecurse {#1} {
\tf \input knuth \it knuth
\bf \input knuth \bs knuth

61 Performance

\it \input knuth \tf knuth
\bs \input knuth \bf knuth
\par
}
\stoptext

engine 50 500 2500

pdftex 059 220 9.52
xetex 149 8.88 43.85
luatex 1.64 891 41.26
luajittex 1.15 591 27.15

The last example adds some color. Enabling more functionality can have an impact on
performance. In fact, as MKIV uses a lot of LUA and is also more advanced that MKII,
one can expect a performance hit but in practice the opposite happens, which can also
be due to some fundamental differences deep down at the macro level.

\setupcolors[state=start] 7 default in MkIV

\starttext
\dorecurse {#1} {
{\red \tf \input knuth \green \it knuth}
{\red \bf \input knuth \green \bs knuth}
{\red \it \input knuth \green \tf knuth}
{\red \bs \input knuth \green \bf knuth}
\par
}
\stoptext

engine 50 500 2500

pdftex 0.61 236 10.33
xetex 1.53 9.25 45.59
luatex 1.65 891 41.32
luajittex 1.15 593 27.34

In these measurements the accuracy is a few decimals but a pattern is visible. As ex-
pected PDFTEX wins on simple documents but starts loosing when things get more com-
plex. For these tests I used 64 bit binaries. A 32 bit XgIEX with MKII performs the same
as LUAIITTEX with MKIV, but a 64 bit XgTEX is actually quite a bit slower. In that case the
mingw cross compiled LUATEX version does pretty well. A 64 bit PDFTEX is also slower
(it looks) that a 32 bit version. So in the end, there are more factors that play a role.
Choosing between LUATEX and LUAJITTEX depends on how well the memory limited
LUANTTEX variant can handle your documents and fonts.

Because in most of our recent styles we use OPENTYPE fonts and (structural) features
as well as recent METAFUN extensions only present in MKIV we cannot compare en-
gines using such documents. The mentioned performance of LUATEX (or LUAITTEX)

Performance 62

and MKIV on the METAFUN manual illustrate that in most cases this combination is a
clear winner.

\starttext
\dorecurse {#1} {
\null \page
}
\stoptext

This gives:

engine 50 500 2500

pdftex 046 1.05 3.72
xetex 0.73 180 6.56
luatex 0.84 144 4.07
luajittex 0.61 1.10 3.33

That leaves the zero run:

\starttext
\dorecurse {#1} {
% nothing

}
\stoptext

This gives the following numbers. In longer runs the difference in overhead is neglec-
table.

engine 50 500 2500

pdftex 036 036 0.36
xetex 057 057 0.59
luatex 0.74 0.74 0.74
luajittex 0.53 0.53 0.54

It will be clear that when we use different fonts the numbers will also be different. And
if you use a lot of runtime METAPOST graphics (for instance for backgrounds), the MKIV
runs end up at the top. And when we process XML it will be clear that going back to MKII
is no longer a realistic option. It must be noted that I occasionally manage to improve
performance but we’ve now reached a state where there is not that much to gain. Some
functionality is hard to compare. For instance in CONTEXT we don’t use much of the PDF
backend features because we implement them all in LUA. In fact, even in MKII already
a done in TgX, so in the end the speed difference there is not large and often in favour
of MKIV.

For the record I mention that shipping out the about 1250 pages has some overhead
too: about 2 seconds. Here LUAJNITTEX is 20% more efficient which is an indication of
quite some LUA involvement. Loading the input files has an overhead of about half a
second. Starting up LUATEX takes more time that PDFTEX and XgIEX, but that disad-
vantage disappears with more pages. So, in the end there are quite some factors that

63 Performance

blur the measurements. In practice what matters is convenience: does the runtime feel
reasonable and in most cases it does.

If I would replace my laptop with a reasonable comparable alternative that one would
be some 35% faster (single threads on processors don’t gain much per year). I guess that
this is about the same increase in performance that CONTEXT MKIV got in that period.
I don't expect such a gain in the coming years so at some point we're stuck with what
we have.

6.7 Summary

So, how “slow” is LUATEX really compared to the other engines? If we go back in time to
when the first wide engines showed up, OMEGA was considered to be slow, although I
never tested that myself. Then, when XgIEX showed up, there was not much talk about
speed, just about the fact that we could use OPENTYPE fonts and native UTF input. If
you look at the numbers, for sure you can say that it was much slower than PDFTEX.
So how come that some people complain about LUATEX being so slow, especially when
we take into account that it’s not that much slower than XqIEX, and that LUAJITTEX is
often faster that X4TEX. Also, computers have become faster. With the wide engines you
get more functionality and that comes at a price. This was accepted for XgIgX and is
also acceptable for LUATEX. But the price is nto that high if you take into account that
hardware performs better: you just need to compare LUATEX (and XgTEX) runtime with
PDFIEX runtime 15 years ago.

As a comparison, look at games and video. Resolution became much higher as did
color depth. Higher frame rates were in demand. Therefore the hardware had to be-
come faster and it did, and as a result the user experience kept up. No user will say
that a modern game is slower than an old one, because the old one does 500 frames per
second compared to some 50 for the new game on the modern hardware. In a simi-
lar fashion, the demands for typesetting became higher: UNICODE, OPENTYPE, graphics,
XML, advanced PDF, more complex (niche) typesetting, etc. This happened more or less
in parallel with computers becoming more powerful. So, as with games, the user expe-
rience didn’t degrade with demands. Comparing LUATEX with PDFTEX is like comparing
a low res, low frame rate, low color game with a modern one. You need to have up to
date hardware and even then, the writer of such programs need to make sure it runs
efficient, simply because hardware no longer scales like it did decades ago. You need
to look at the larger picture.

Performance 64

65 Performance

7 Editing

7.1 Introduction

Some users like the synctex feature that is built in the TEX engines. Personally I never
use it because it doesn’t work well with the kind of documents I maintain. If you have
one document source, and don't shuffle around (reuse) text too much it probably works
out okay but that is not our practice. Here I will describe how you can enable a more
CONIEXT specific synctex support so that aware PDF viewers can bring you back to the
source.

7.2 The premise
Most of the time we provide our customers with an authoring workflow consisting of:

the typesetting engine CONTEXT

the styles to generate the desired PDF files
the text editor SCITE

the SUMATRAPDF viewer

For the MATHML we advice the MATHTYPE editor and we provide them with a cus-
tomized MATHML translator for the copy & paste actions. When ASCIIMATH is used to
code math no special tools are needed.

What people operate this workflow? Sometimes it’s an author, but most of the time they
are editors with a background in copy-editing. We call them XML editors, because they
are maintaining the large (sets of) XML documents and edit directly in the XML sources.

Maybe you'll ask yourself “Can they do that? Can they edit directly in the XML re-
source?” The answer is yes, because after they have hit the processing key they are
rewarded with a publishable PDF document in a demanding layout.

The XML sources have a dual purpose. They form the basis for:

e all folio products that are generated in XML to PDF workflow(s)
o the digital web product(s)

The XML editors do their proofing chapter-wise. Sometimes a chapter is one big XML file
(10.000 lines is no exception when the chapter contains hundreds of bloated MATHML
snippets). In other projects they have to deal with chapters that are made up of hun-
dreds (100 upto 500) of smaller XML files.

7.3 The problem

Let’s keep it simple: there’s a typo. Here’s what an XML editor will do:

e start SCITE
e openafile

Editing 66

11
12

correct the typo

generate the PDF

proof the PDF and see if his alteration has some undesired side effects like text flow
of image floating

So far so good. When the editor dealing with one big XML file there’s no problem. Hope-
tully the filename will indicate the specific chapter. He or she opens the file and searches
for the typo. And then correction happens. But what if there are hundreds of small XML
tiles. How does the editor know in which file the typo can be found?

First, let’s give a few statistics based on two projects that are in a revision stage.

project chapters # of files average # of lines

A 16 16 11000
B 132 16000'! 100

The XML resource passes three stages: a raw, a semi final and a final version. The raw
XML version originates from a web authoring tool that is used by the author. Then the
PDF is proofread and the XML editor goes to work.

workflow # edit locations and adaptations # runs'?
raw to semifinal 75 105
semifinal to final 35 55

Keep in mind that altering text may cause text to flow and images to float in a way that
an XML editor will have to finetune and needs multiple runs for one correction.

Just to give an idea of the work involved. A typical semi final needs some 50 runs where
each run takes 20 seconds (assuming 3 runs to get all cross referencing right). The
numbers of explicit pagebreaks is about 5, and (related to formulas) explicit linebreaks
around 8. It takes some 2 hours to get everything right, which includes checking in
detail, fixing some things and if needed moving content a bit around.

Now we broaden the earlier question into: how can we make the work of an XML editor
as easy and efficient as possible?

7.4 Enhancing efficiency

Since it is easier to proof content for folio and web via PDF documents we generate proof
PDF files in which the complete content is shown. The proof can be a massive document.
A normal 40 page chapter can explode to 140 pages visualizing all the content that is
coded in the XML file(s).

The content in the proof is shown in an effective way and a functional order. Let’s give
a few examples of how we enhance the XML editors effectiveness:

132 chapters consisting of +120 files.
Maybe you can now see why we put quite some effort in keeping CONTEXT working at a comfortable
speed.

67 Editing

e By default the proof PDF file is interactive which serves testing the tocs and the reg-

ister.

The web hyperlinks are active so their destinatation can be tested.

The questions and their answers are displayed in eachothers proximity. This sounds
logical but in folio they are two seperate products (theory and answer books).

e Medium specific content (web or folio) is typographically highligthed. For example
by colored backgrounds.

e When spelling mode is on the XML editor can easily pick out the colored misspelled
words.

e Images can be active areas although this is of no interest to XML editors. Clicking the
image results in opening the image file in its corresponding application for mainte-
nance.

e For practical reasons the filenames and paths of the XML files are displayed. The
filenames are active links and clicking them results in opening the destination XML
tile in SCITE.

Okay. The last option is a nice feature. However, the destination file is opened at the
top of the file and you still have to find the typo or whatever incorrect issue you are
looking for.

So a further enhancement in efficiency would be to jump to the typo’s corresponding
line in the XML source. This is where SYNCTEX comes into view. This feature, present
in the TgX engines, provides a way to go from PDF to source by using a secondary file
with positions. Unfortunately that mechanism is hardly useable for CONTEXT because
it assumes a page and file handling model different from what we use. However, as
CONTEXT uses LUATEX, it can also provide it’s own alternative.

7.5 What we want

The SYNCTEX method roughly works as follows. Internally TEX constricts linked lists of
glyphs, kerns, glue, boxes, rules etc. These elements are called nodes. Some nodes carry
information about the file and line where they were created. In the backend this infor-
mation gets somehow translated in a (sort of) verbose tree that describes the makeup
in terms of boxes, glue and kerns. From that information the SYNCTEX parser library,
hooked into a PDF viewer, can go back from a position on the screen to a line in a file.
One would expect this to be a relative simple rectangle based model, but as far as I can
see it’'s way more complex than that. There are some comments that CONTEXT is not sup-
ported well because it has a layered page model, which indicates that there are some
assumptions about how macro packages are supposed to work. Also the used heuristics
not only involve some specific spot (location) but also involve the corners and edges. It
is therefore not so much a (simple) generic system but a mechanism geared for a macro
package like IATEX.

Because we have a couple of users who need to edit complex sets of documents, coded in
TEX or XML, I decided to come up with a variant that doesn’t use the SYNCTEX machinery

Editing 68

13

but manipulates the few SYNCTEX fields directly'® and eventually outputs a straightfor-
ward file for the editor. Of course we need to follow some rules so that the editor can
deal with it. It took a bit of trial and error to get the right information in the support
file needed by the viewer but we got there.

The prerequisites of a decent CONIEXT “click on preview and goto editor” are the fol-
lowing:

e It only makes sense to click on text in the text flow. Headers and footers are often
generated from structure, and special typographic elements can originate in macros
hooked into commands instead of in the source.

e Users should not be able to reach environments (styles) and other files loaded from
the (normally read-only) TEX tree, like modules. We don’t want accidental changes
in such files.

e We not only have TgX files but also XML files and these can normally flush in rather
arbitrary ways. Although the concept of lines is sort of lost in such a file, there is
still a relation between lines and the snippets that make out the content of an XML
node.

e In the case of XML files the overhead related to preserving line numbers should be
minimal and have no impact on loading and memory when these features are not
used.

e The overhead in terms of an auxiliary file size and complexity as well as producing
that file should be minimal. It should be easy to turn on and off these features. (I'd
never turn them on by default.)

It is unavoidable that we get more run time but I assume that for the average user that
is no big deal. It pays off when you have a workflow when a book (or even a chapter
in a book) is generated from hundreds of small XML files. There is no overhead when
SYNCTEX is not used.

In CONTEXT we don’t use the built-in SYNCTEX features, that is: we let filename and
line numbers be set but often these are overloaded explicitly. The output file is not
compressed and constructed by CONTEXT. There is no benefit in compression and the
files are probably smaller than default SYNCTEX anyway.

7.6 Commands

Although you can enable this mechanism with directives it makes sense to do it using
the following command.

\setupsynctex[state=start]

This is something that in my opinion should have been possible right from the start but it’s too late now
to change the system and it would not be used beyond CONIEXT anyway.

69 Editing

The advantage of using an explicit command instead of some command line option is
that in an editor it’s easier to disable this trickery. Commenting that line will speed up
processing when needed. This command can also be given in an environment (style).
On the command line you can say

context --synctex somefile.tex
A third method is to put this at the top of your file:
% synctex=yes

Often an XML files is very structured and although probably the main body of text is
flushed as a stream, specific elements can be flushed out of order. In educational doc-
uments flushing for instance answers to exercises can happen out of order. In that case
we still need to make sure that we go to the right spot in the file. It will never be 100%
perfect but it’s better than nothing. The above command will also enable XML support.

If you don’t want a file to be accessed, you can block it:
\blocksynctexfile[foo.tex]

Of course you need to configure the viewer to respond to the request for editing. In
Sumatra combined with SciTE the magic command is:

c:\data\system\scite\wscite\scite.exe "%f" "-goto:%1"

Such a command is independent of the macro package so you can just consult the man-
ual or help info that comes with a viewer, given that it supports this linking back to the
source at all.

If you enable tracing (see next section) you can what has become clickable. Instead of
words you can also work with ranges, which not only gives less runtime but also much
smaller . synctex files. Use

\setupsynctex[state=start,method=min]
to get words clickable and
\setupsynctex[state=start,method=max]

if you want somewhat more efficient ranges. The overhead for min is about 10 percent
while max slows down around 5 percent.

7.7 Tracing
In case you want to see what gets synced you can enable a tracker:

\enabletrackers[system.synctex.visualize]
\enabletrackers[system.synctex.visualize=reall]

The following tracker outputs some status information about XML flushing. Such track-
ers only make sense for developers.

Editing 70

\enabletrackers[system.synctex.xml]

7.8 Warning

Don’t turn on this feature when you don’t need it. This is one of those mechanism that
hits performance badly.

Depending on needs the functionality can be improved and/or extended. Of course
you can always use the traditional SYNCTEX method but don’t expect it to behave as
described here.

71 Editing

8 Advertising TEX

First published in user group magazines.

Advertising TEX 72

73 Advertising TEX

9 Tricky fences

First published in user group magazines.

Tricky fences 74

75 Tricky fences

10 From 5.2 to 5.3

Maybe first published in user group magazines.

From52to053 76

77 From 5.2t05.3

