
metafun xl
Hans Hagen

uncorrected draft 1

Contents

Introduction 2
1 Text 4
2 Axis 6
3 Outline 8
4 Followtext 11
5 Placeholder 14
6 Arrow 16
7 Shade 19
8 Contour 24
9 Surface 35
10 Mesh 38
11 Function 42
12 Chart 48
13 SVG 57
14 Fonts 59
15 Interface 65

Introduction uncorrected draft 2

Introduction
For quite a while, around since 1996, the integration of MetaPost into ConTEXt became sort of mature
but, it took decades of stepwise refinement to reach the state that we’re in now. In this manual I will
discuss some of the features that became possible by combining Lua and MetaPost. We already had
quite a bit of that for a decade but in 2018, when LuaMetaTEX showed up a next stage was started.

Before we go into details it is good to summarize the steps that were involved in integrating MetaPost
and TEX in ConTEXt. It indicates a bit what we had and have to deal with which in turn lead to the
interfaces we now have.

Originally, TEX had no graphic capabilities: it just needed to know dimensions of the graphics and
pass some basic information about what to include to the dvi post processor. So, a MetaPost graphic
was normally processed outside the current run, resulting in PostScript graphic, that then had to be
included. In pdfTEX there were some more built in options, and therefore the MetaPost code could
be processed runtime using some (generic) TEXmacros that I wrote. However, that engine still had to
launchMetaPost for each graphic, although we could accumulate them and do that between runs. Im-
mediate processing means that we immediately know the dimensions, while a collective run is faster.
InLuaTEX this all changed to very fast runtimeprocessing,madepossible because theMetaPost library
is embedded in the engine, a decision that wemade early in the project and never regret.

With pdfTEX theprocesswasmanagedby thetexexecConTEXt runner butwith LuaTEX it stayedunder
the control of the current run. In the case of pdfTEX the actual embedding was done by TEX macros
that interpreted the (relatively simple) PostScript code and turned it into pdf literals. In LuaTEX that
job was delegated to Lua.

When using pdfTEX with independent MetaPost runs support for special color spaces, transparency,
embedded graphics, outline text, shading andmore was implemented using specials and special col-
ors where the color served as reference to some special extension. This works quite well. In LuaTEX
the pre- and postscript features, which are properties of picture objects, are used.

In all cases, some information about the current run, for instance layout related information, or color
information, has to be passed to the rather isolatedMetaPost run. In the case if LuaTEX (andMkIV) the
advantage is that processing optional text happens in the same process so there we don’t need to pass
information about for instance the current font setup.

In LuaTEX the MetaPost library has a runscript feature, which will call Lua with the given code. This
permitted a better integration: we could now ask for specific information (to the TEX end) instead of
passing it from the TEX end with each run. In LuaMetaTEX another feature was added: access to the
scanners from the Lua end. Although we could already fetch some variables when in Lua this made it
possible to extend the MetaPost language in ways not possible before.

Already for a while Alan Braslau and I were working on some newMetaFun code that exploits all these
new features. When the scanners cameavailable I sat downand startedworking onnew interfaces and
in this manual I will discuss some of these. Some of them are illustrative, others are probably rather
useful. The core of what we could call LuaMetaFun (or MetaFun XL when we use the file extension
as indicator) is a key-value interface as we have at the TEX end. This interface relates to ConTEXt lmtx
development and therefore relatedfileshave adifferent suffix: mpxl. However, keep inmind that some
are just wrappers around regular MetaPost code so you have the full power of traditional MetaPost at
hand.

Introduction uncorrected draft 3

We can never satisfy all needs, so to some extent this manual also demonstrates how to roll out your
own code, but for that you also need to peek into the MetaFun source code too. It will take a while for
this manual to complete. I also expect other users to come up with solutions, so maybe in the end we
will have a collection of modules for specific tasks.

Hans Hagen
Hasselt NL
August 2019 (and beyond)

Text uncorrected draft 4

1 Text

The MetaFun textext command normally can do the job of typesetting a text snippet quite well.

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw textext("\bf This is text A") withcolor "white" ;

\stopMPcode

We get:

This is text A

You can use regular ConTEXt commands, so this is valid:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw textext("\framed{\bf This is text A}") withcolor "white" ;

\stopMPcode

Of course you can as well draw a frame in MetaPost but the \framed command has more options, like
alignments.

This is text A

Here is a variant using the MetaFun interface:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw lmt_text [

text = "This is text A",
color = "white",
style = "bold"

] ;
\stopMPcode

The outcome is more or less the same:

This is text A

Here is another example. The format option is actually why this command is provided.

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw lmt_text [

text = decimal 123.45678,
color = "white",

Text uncorrected draft 5

style = "bold",
format = "@0.3F",

] ;
\stopMPcode

123.457

The following parameters can be set:

name type default comment

offset numeric 0
strut string auto adapts the dimensions to the font (yes uses the the default strut)
style string
color string
text string
anchor string one of these lft, urt like anchors
format string a format specifier using @ instead of a percent sign
position pair origin
trace boolean false

The next example demonstrates the positioning options:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkblue" ;
fill fullcircle scaled .5mm withcolor "white" ;
draw lmt_text [

text = "left",
color = "white",
style = "bold",
anchor = "lft",
position = (-1mm,2mm),

] ;
draw lmt_text [

text = "right",
color = "white",
style = "bold",
anchor = "rt",
offset = 3mm,

] ;
\stopMPcode

left right

Axis uncorrected draft 6

2 Axis

The axis macro is the result of one of the first experiments with the key/value interface in MetaFun.
Let’s show a lot in one example:

\startMPcode
draw lmt_axis [

sx = 5mm, sy = 5mm,
nx = 20, ny = 10,
dx = 5, dy = 2,
tx = 10, ty = 10,

list = {
[

connect = true,
color = "darkred",
close = true,
points = { (1, 1), (15, 8), (2, 10) },
texts = { "segment 1", "segment 2", "segment 3" }

],
[

connect = true,
color = "darkgreen",
points = { (2, 2), (4, 1), (10, 3), (16, 8), (19, 2) },
labels = { "a", "b", "c", "d", "e" }

],
[

connect = true,
color = "darkblue",
close = true,
points = { (5, 3), (8, 8), (16, 1) },
labels = { "1", "2", "3" }

]
},

] withpen pencircle scaled 1mm ;
\stopMPcode

This macro will probably be extended at some point.

name type default comment

nx numeric 1
dx numeric 1
tx numeric 0
sx numeric 1
startx numeric 0
ny numeric 1
dy numeric 1

Axis uncorrected draft 7

0 10 20

0

10 segment 1

segm
ent2

seg
men

t 3

a

b

c

d

e
1

2

3

Figure 2.1

ty numeric 0
sy numeric 1
starty numeric 0

samples list
list list
connect boolean false
list list
close boolean false
samplecolors list
axiscolor string
textcolor string

Outline uncorrected draft 8

3 Outline
In a regular text you can have outline characters by setting a (pseudo) font feature but sometimes you
want to play a bit more with this. In MetaFun we always had that option. In MkII we call pstoedit
to turn text into outlines, in MkIV we do that by manipulating the shapes directly. And, as with some
other extensions, in lmtx a new interface has been added, but the underlying code is the same as in
MkIV.

In figure 3.1 we see two examples:

\startMPcode{doublefun}
draw lmt_outline [

text = "hello"
kind = "draw",
drawcolor = "darkblue",

] xsized .45TextWidth ;
\stopMPcode

and

\startMPcode{doublefun}
draw lmt_outline [

text = "hello",
kind = "both",
fillcolor = "middlegray",
drawcolor = "darkgreen",
rulethickness = 1/5,

] xsized .45TextWidth ;
\stopMPcode

kind=draw kind=both

Figure 3.1 Drawing and/or filling an outline.

Normally the fill ends up below the draw but we can reverse the order, as in figure 3.2, where we coded
the leftmost example as:

\startMPcode{doublefun}
draw lmt_outline [

text = "hello",
kind = "reverse",
fillcolor = "darkred",
drawcolor = "darkblue",
rulethickness = 1/2,

] xsized .45TextWidth ;
\stopMPcode

Outline uncorrected draft 9

kind=reverse kind=both

Figure 3.2 Reversing the order of drawing and filling.

It is possible to fill and draw in one operation, in which case the same color is used for both, see fig-
ure 3.3 for an example fo this. This is a low level optimization where the shape is only output once.

kind=fillup kind=fill

Figure 3.3 Combining a fill with a draw in the same color.

This interface is much nicer than the one where each variant (the parameter kind above) had its own
macro due to the need to group properties of the outline and fill. Let’s show somemore:

\startMPcode{doublefun}
draw lmt_outline [

text = "\obeydiscretionaries\samplefile{tufte}",
align = "normal",
kind = "draw",
drawcolor = "darkblue",

] xsized TextWidth ;
\stopMPcode

In this case we feed the text into the \framed macro so that we get a properly aligned paragraph of
text, as demonstrated in figure 3.4 and ??. If you want more trickery you can of course use any Con-
TEXt command (including \framedwith all kind of options) in the text.

Figure 3.4 Outlining a paragraph of text.

\startMPcode{doublefun}
draw lmt_outline [

text = "\obeydiscretionaries\samplefile{ward}",
align = "normal,tolerant",
style = "bold",

Outline uncorrected draft 10

width = 10cm,
kind = "draw",
drawcolor = "darkblue",

] xsized TextWidth ;
\stopMPcode

Figure 3.5 Outlining a paragraph of text with a specific width.

We summarize the parameters:

name type default comment

text string
kind string draw One of draw, fill, both, reverse and fillup.
fillcolor string
drawcolor string
rulethickness numeric 1/10
align string
style string
width numeric

Followtext uncorrected draft 11

4 Followtext

Typesetting text along a path started as a demo if communication between TEX and MetaPost in the
early days of MetaFun. In the meantime the implementation has been modernized a few times and
the current implementation feels okay, especially now that we have a better user interface. Here is an
example:

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 1}! ",
path = fullcircle scaled 4cm,
trace = true,
spread = true,

] ysized 5cm ;
\stopMPcode

Here is the sameexamplebutwith the text in the reverseorder. The results of bothexamples are shown
in figure 4.1.

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 2}! ",
path = fullcircle scaled 4cm,
trace = true,
spread = false,
reverse = true,

] ysized 5cm ;
\stopMPcode

H
o

w

well

d
o

e
s

i

t
w o r k

1
!

Ho

w
we
ll
do
es
it
w
or
k 2
!

Figure 4.1

There are not thatmany options. One is autoscalewhichmakes the shape and textmatch. Figure 4.2
shows what happens.

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 3}! ",
trace = true,

Followtext uncorrected draft 12

autoscaleup = "yes"
] ysized 5cm ;

\stopMPcode

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 4}! ",
path = fullcircle scaled 2cm,
trace = true,
autoscaleup = "max"

] ysized 5cm ;
\stopMPcode

H
ow

welldoes it work

3!

H
o

w
welld

o
e
s
i t w o r k

4
!

Figure 4.2

You can use quite strange paths, like the one show in figure 4.3. Watch the parenthesis around the
path. this is really needed in order for the scanner to pick up the path (otherwise it sees a pair).

\startMPcode{doublefun}
draw lmt_followtext [

text = "\samplefile {zapf}",
path = ((3,0) .. (1,0) .. (5,0) .. (2,0) .. (4,0) .. (3,0)),
autoscaleup = "max"

] xsized TextWidth ;
\stopMPcode

The small set of options is:

name type default comment

text string
spread string true
trace numeric false
reverse numeric false
autoscaleup numeric no
autoscaledown string no
path string (fullcircle)

Followtext uncorrected draft 13

Com
ing

back
to
the

use
oftypefacesin

electronicpublishing:manyofthenewtypogra
pher

sre
cei
ve
the

ir
kn
ow
le
dg
e
an
d
in
fo
rm

at
io
n
ab
ou
t t
he
ru
les

of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or software. Th

er
e
is
no
ts
o
m
uc
h
ba
si
ci
ns
tr
uc
tio
n,
as
of
no
w,
as
th

erewasintheolddays,showingthedifferencesbetweengoodandbadtypographicdesign.Manypeo
pl
e
ar
e
ju
st
fa
sc
in
at
ed
by
th
ei
r P
C’
s t
ric

ks, a
nd think that a widely||praised program, called

up
on
th
e
sc
re
en
,w
ill
m
ak

ee
veryt

hingautomaticfrom
now

on.
Figure 4.3

Placeholder uncorrected draft 14

5 Placeholder

Placeholders are an old ConTEXt features andhave been around sincewe started usingMetaPost. They
are used as dummy figure, just in case one is not (yet) present. They are normally activated by loading
a MetaFun library:

\useMPLibrary[dum]

Just because it could be done conveniently, placeholders are now defined at the MetaPost end instead
of as useable MetaPost graphic at the TEX end. The variants and options are demonstrated using side
floats.

Figure 5.1

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "red",
alternative = "circle".

] ;
\stopMPcode

In addition to the traditional randomcircle we now also provide rectangles and triangles. Maybe some
daymore variants will show up.

Figure 5.2

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "green",
alternative = "square".

] ;
\stopMPcode

Herewe set the colors but in the image placeholdermechanismwe cycle through colors automatically.
Here we use primary, rather dark, colors.

Figure 5.3

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "blue",
alternative = "triangle".

] ;
\stopMPcode

If you want less dark colors, the reduction parameter can be used to interpolate between the given
color and white; its value is therefore a value between zero (default) and 1 (rather pointless as it pro-
duces white).

Placeholder uncorrected draft 15

0 0.25

0.50 0.75

Figure 5.4

We demonstrate this with four variants, all cir-
cles. Of course you can also use lighter colors, but
this optionwasneeded for the imageplaceholders
anyway.

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "yellow",
alternative = "circle".
reduction = 0.25,

] ;
\stopMPcode

There are only a fewpossible parameters. As you can see, proper dimensions need to be givenbecause
the defaults are pretty small.

name type default comment

color string red
width numeric 1
height numeric 1
reduction numeric 0
alternative string circle

Arrow uncorrected draft 16

6 Arrow

Arrows are somewhat complicated because they follow the path, are constructed using a pen, have a
fill and draw, and need to scale. One problem is that the size depends on the pen but the pen normally
is only known afterwards.

To some extent MetaFun can help you with this issue. In figure 6.1 we see some variants. The defini-
tions are given below:

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm),
]

withpen pencircle scaled 2mm
withcolor "darkred" ;

\stopMPcode

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm),
length = 8,

]
withpen pencircle scaled 2mm
withcolor "darkgreen" ;

\stopMPcode

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm rotated 45),
pen = (pencircle xscaled 2mm yscaled 1mm rotated 45),

]
withpen pencircle xscaled 2mm yscaled 1mm rotated 45
withcolor "darkblue" ;

\stopMPcode

\startMPcode
pickup pencircle xscaled 2mm yscaled 1mm rotated 45 ;
draw lmt_arrow [

path = (fullcircle scaled 3cm rotated 45),
pen = "auto",

]
withcolor "darkyellow" ;

\stopMPcode

There are some options that influence the shape of the arrowhead and its location on the path. You
can for instance ask for two arrowheads:

\startMPcode
pickup pencircle scaled 1mm ;

Arrow uncorrected draft 17

default length pen auto

Figure 6.1

draw lmt_arrow [
pen = "auto",
location = "both"
path = fullcircle scaled 3cm rotated 90,

] withcolor "darkgreen" ;
\stopMPcode

The shape can also be influenced although often this is not that visible:

\startMPcode
pickup pencircle scaled 1mm ;
draw lmt_arrow [

kind = "draw",
pen = "auto",
penscale = 4,
location = "middle",
alternative = "curved",
path = fullcircle scaled 3cm,

] withcolor "darkblue" ;
\stopMPcode

The location can also be given as percentage, as this example demonstrates. Watch how we draw only
arrow heads:

\startMPcode
pickup pencircle scaled 1mm ;

Arrow uncorrected draft 18

for i = 0 step 5 until 100 :
draw lmt_arrow [

alternative = "dimpled",
pen = "auto",
location = "percentage",
percentage = i,
dimple = (1/5 + i/200),
headonly = (i = 0),
path = fullcircle scaled 3cm,

] withcolor "darkyellow" ;
endfor ;

\stopMPcode

The supported parameters are:

name type default comment

path path
pen path

string auto
kind string fill fill or draw
dimple numeric 1/5
scale numeric 3/4
penscale numeric 3
length numeric 4
angle numeric 45
location string end end, middle or both
alternative string normal normal, dimpled or curved
percentage numeric 50
headonly boolean false

Shade uncorrected draft 19

7 Shade

This interface is still experimental!

Shading is complex. We go fromone color to another on a continuumeither linear or circular. We have
tomake sure that we cover the whole shape and thatmeans that we have to guess a little, although one
can influence this with parameters. It can involve a bit of trial and error, which is more complex that
using a graphical user interface but this is the price we pay. It goes like this:

\startMPcode
definecolor [name = "MyColor3", r = 0.22, g = 0.44, b = 0.66] ;
definecolor [name = "MyColor4", r = 0.66, g = 0.44, b = 0.22] ;

draw lmt_shade [
path = fullcircle scaled 4cm,
direction = "right",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] ;

draw lmt_shade [
path = fullcircle scaled 3cm,
direction = "left",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (45mm,0) ;

draw lmt_shade [
path = fullcircle scaled 5cm,
direction = "up",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (95mm,0) ;

draw lmt_shade [
path = fullcircle scaled 1cm,
direction = "down",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (135mm,0) ;
\stopMPcode

Normally this is good enough as demonstrated in figure 7.1 because we use shades as backgrounds.
In the case of a circular shade we need to tweak the domain because guessing doesn’t work well.

\startMPcode
draw lmt_shade [

path = fullsquare scaled 4cm,
alternative = "linear",

Shade uncorrected draft 20

Figure 7.1 Simple circular shades.

direction = "right",
colors = { "MyColor3", "MyColor4" },

] ;

draw lmt_shade [
path = fullsquare scaled 3cm,
direction = "left",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (45mm,0) ;

draw lmt_shade [
path = fullsquare scaled 5cm,
direction = "up",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (95mm,0) ;

draw lmt_shade [
path = fullsquare scaled 1cm,
direction = "down",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (135mm,0) ;
\stopMPcode

Figure 7.2 Simple rectangular shades.

Shade uncorrected draft 21

The direction relates to the boundingbox. Instead of a keyword you can also give two values, indicat-
ing points on the boundingbox. Because a boundingbox has four points, the up direction is equivalent
to {0.5,2.5}.

The parameters center, factor, vector and domain are a bit confusing but at some point the way
they were implemented made sense, so we keep them as they are. The center moves the center of
the path that is used as anchor for one color proportionally to the bounding box: the given factor is
multiplied by half the width and height.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
domain = { .2, 1.6 },
center = { 1/10, 1/10 },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

center a

center b

Figure 7.3 Moving the centers.

A vector takes the given points on the path as centers for the colors, see figure 7.4.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
domain = { .2, 1.6 },
vector = { 2, 4 },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

Messingwith the radius in combinationwith the previouslymentioneddomain is really trial and error,
as seen in figure 7.5.

\startMPcode
draw lmt_shade [

Shade uncorrected draft 22

center a

center b

Figure 7.4 Using a vector (points).

path = fullcircle scaled 5cm,
domain = { 0.5, 2.5 },
radius = { 2cm, 6cm },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

center a

center b

Figure 7.5 Tweaking the radius.

But actually the radius used alone works quite well as shown in figure 7.6.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
colors = { "red", "green" },
trace = true,

] ;

draw lmt_shade [
path = fullcircle scaled 5cm,
colors = { "red", "green" },
radius = 2.5cm,

Shade uncorrected draft 23

trace = true,
] shifted (6cm,0) ;

draw lmt_shade [
path = fullcircle scaled 5cm,
colors = { "red", "green" },
radius = 2.0cm,
trace = true,

] shifted (12cm,0) ;
\stopMPcode

center a

center b

center a

center b

center a

center b

Figure 7.6 Just using the radius.

name type default comment

alternative string circular or linear
path path
trace boolean false
domain set of numerics
radius numeric

set of numerics
factor numeric
origin pair

set of pairs
vector set of numerics
colors set of strings
center numeric

set of numerics
direction string up, down, left, right

set of numerics two points on the boundingbox

Contour uncorrected draft 24

8 Contour

This feature started out as experiment triggered by a request on the mailing list. In the end it was a
nice exploration of what is possible with a bit of Lua. In a sense it is more subsystem than a simple
MetaPost macro because quite some Lua code is involved and more might be used in the future. It’s
part of the fun.

A contour is a line through equivalent values 𝑧 that result from applying a function to two variables 𝑥
and 𝑦. There is quite a bit of analysis needed to get these lines. InMetaFunwe currently support three
methods for generating a colorful background and three for putting lines on top:

One solution is to use the the isolines and isobands methods are described on the marching squares
page of wikipedia:

https://en.wikipedia.org/wiki/Marching_squares

This method is relative efficient as we don’t do much optimization, simply because it takes time and
the gain is not that much relevant. Because we support filling of multiple curves in one go, we get
efficient paths anyway without side effects that normally can occur frommany small paths alongside.
In these days of multi megabyte movies and sound clips a request of making a pdf file small is kind of
strange anyway. In practice the penalty is not that large.

As backgroundwe can use a bitmap. Thismethod is also quite efficient becausewe use indexed colors
which results in a very good compression. We use a simple mapping on a range of values.

A third method is derived from the one that is distributed as C source file at:

https://physiology.arizona.edu/people/secomb/contours
https://github.com/secomb/GreensV4

We can create a background image, which uses a sequence of closed curves1. It can also provide two
variants of lines around the contours (we tag them shape and shade). It’s all a matter of taste. In the
meantime I managed to optimize the code a bit and I suppose that when I buy a new computer (the
code was developed on an 8 year old machine) performance is probably acceptable.

In order of useability you can think of isoband (band) with isolines (cell), bitmap (bitmap) with isolines
(cell) and finally shapes (shape) with edges (edge). But let’s start with a couple of examples.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = .05,
ymin = -6, ymax = 6, ystep = .05,

levels = 7,
height = 5cm,
preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) + sin(y)",
background = "bitmap",

1 I have to figure out how to improve it a bit so that multiple path don’t get connected.

Contour uncorrected draft 25

-1.82
-1.28
-0.54
0.11
0.84
1.56
1.96

0 2.51 5.03 7.54 10.05 12.57
-6

-3.6

-1.2

1.2

3.6

6

x = [0,12.566] ; y = [-6,6] ;

cos(x) + sin(y)

Figure 8.1

foreground = "edge",
linewidth = 1/2,
cache = true,

] ;
\stopMPcode

Infigure 8.1we see the result. There is a in this case black andwhite image generated andon topof that
we see lines. The step determines the resolution of the image. In practice using a bitmap is quite okay
and also rather efficient: we use an indexed colorspace and, as already was mentioned, because the
number of colors is limited such an image compresses well. A different rendering is seen in figure 8.2
wherewe use the shapemethod for the background. Thatmethod creates outlines but ismuch slower,
and when you use a high resolution (small step) it can take quite a while to identify the shapes. This is
why we set the cache flag.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = .10,
ymin = -6, ymax = 6, ystep = .10,

levels = 7,
preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) - sin(y)",
background = "shape",
foreground = "shape",
linewidth = 1/2,
cache = true,

] ;
\stopMPcode

Wementioned colorspace but haven’t seen any color yet, so let’s set some in figure 8.3. Two variants
are shown: a background shape with foreground shape and a background bitmap with a foreground
edge. The bitmap renders quite fast, definitely when we compare with the shape, while the quality is
as good at this size.

Contour uncorrected draft 26

-1.82

-1.28

-0.54

0.11

0.84

1.56

1.97

0 2.51 5.03 7.54 10.05 12.57

-6

-3.6

-1.2

1.2

3.6

6

x = [0,12.566] ; y = [-6,6] ;

cos(x) - sin(y)

Figure 8.2

\startMPcode{doublefun}
draw lmt_contour [

xmin = -10, xmax = 10, xstep = .1,
ymin = -10, ymax = 10, ystep = .1,

levels = 10,
height = 7cm,
color = "shade({1/2,1/2,0},{0,0,1/2})",
function = "x^2 + y^2",
background = "shape",
foreground = "shape",
linewidth = 1/2,
cache = true,

] xsized .45TextWidth ;
\stopMPcode

5.01
20.05
40.17
60.32
80.41
99.65
119.78
139.86
159.64
179.07
194.73

-10 -6 -2 2 6 10
-10

-6

-2

2

6

10

x = [-10,10] ; y = [-10,10] ;

x^2 + y^2

5.01
20.05
40.17
60.32
80.41
99.65
119.78
139.86
159.64
179.07
194.73

-10 -6 -2 2 6 10
-10

-6

-2

2

6

10

x = [-10,10] ; y = [-10,10] ;

x^2 + y^2

shape bitmap

Figure 8.3

We use the doublefun instance because we need to be sure that we don’t run into issues with scaled
numbers, the default model in MetaPost. The function that gets passed is not using MetaPost but Lua,
so basically you can do very complex things. Here we directly pass code, but you can for instance also
do this:

Contour uncorrected draft 27

\startluacode
function document.MyContourA(x,y)

return x^2 + y^2
end

\stopluacode

and then function = "document.MyContourA(x,y)". As long as the function returns a valid num-
ber we’re okay. When you pass code directly you can use the preamble key to set local shortcuts. In
the previous examples we took sin and cos from the math library but you can also roll out your own
functions and/or use themore elaboratexmath library. The color parameter is also a function, one that
returns one or three arguments. In the next example we use lin to calculate a fraction of the current
level and total number of levels.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -3, xmax = 3, xstep = .01,
ymin = -1, ymax = 1, ystep = .01,

levels = 10,
default = .5,
height = 5cm,
function = "x^2 + y^2 + x + y/2",
color = "lin(l), 0, 1/2",
background = "bitmap"
foreground = "none",
cache = true,

] xsized TextWidth ;
\stopMPcode

0.05
1.1
2.61
4.11
5.56
7.04
8.57
10.05
11.48
12.66

-3 -1.8 -0.6 0.6 1.8 3
-1

-0.6

-0.2

0.2

0.6

1

x = [-3,3] ; y = [-1,1] ;

x^2 + y^2 + x + y/2

Figure 8.4

Instead of a bitmap we can use an isoband, which boils down to a set of tiny shapes that make up a
bigger one. This is shown in figure 8.5.

\startMPcode{doublefun}
draw lmt_contour [

Contour uncorrected draft 28

xmin = -3, xmax = 3, xstep = .01,
ymin = -1, ymax = 1, ystep = .01,

levels = 10,
default = .5,
height = 5cm,
function = "x^2 + y^2 + x + y/2",
color = "lin(l), 1/2, 0",
background = "band",
foreground = "none",
cache = true,

] xsized TextWidth ;
\stopMPcode

0.05
1.1
2.61
4.11
5.56
7.04
8.57
10.05
11.48
12.66

-3 -1.8 -0.6 0.6 1.8 3
-1

-0.6

-0.2

0.2

0.6

1

x = [-3,3] ; y = [-1,1] ;

x^2 + y^2 + x + y/2

Figure 8.5

You can draw several functions and see where they overlap:

\startMPcode{doublefun}
draw lmt_contour [

xmin = -pi, xmax = 4*pi, xstep = .1,
ymin = -3, ymax = 3, ystep = .1,

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)", "sin(x) + cos(y)",
"cos(x) + sin(y)", "cos(x) + cos(y)"

},
background = "bitmap",
linecolor = "black",
linewidth = 1/10,
color = "shade({1,1,0},{0,0,1})"
cache = true,

] xsized TextWidth ;
\stopMPcode

Contour uncorrected draft 29

1

2

3

4

5

6

7

-3.14 -0.0 3.14 6.28 9.42 12.57

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-3.142,12.566] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 8.6

The range determines the 𝑧 value(s) that we take into account. You can also pass a list of colors to be
used. In figure 8.7 this is demonstrated. There we also show a variant foreground cell, which uses a
bit different method for calculating the edges.2

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = { "sin(x) + sin(y)", "sin(x) + cos(y)" },
background = "bitmap",
foreground = "cell",
linecolor = "white",
linewidth = 1/10,
colors = { (1/2,1/2,1/2), red, green, blue }
level = 3,
linewidth = 6,
cache = true,

] xsized TextWidth ;
\stopMPcode

Here the number of levels depends on the number of functions as each can overlap with another; for
instance the outcome of two functions can overlap or not which means 3 cases, and with a value not
being seen that gives 4 different cases.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

2 This a bit of a playground: more variants might show up in due time.

Contour uncorrected draft 30

1

2

3

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y)

Figure 8.7

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)",
"sin(x) + cos(y)",
"cos(x) + sin(y)",
"cos(x) + cos(y)"

},
background = "bitmap",
foreground = "none",
level = 3,
color = "shade({2/3,0,0},{2/3,1,2/3})"
cache = true,

] xsized TextWidth ;
\stopMPcode

Of course one can wonder how useful showing many functions but it can give nice pictures, as shown
in figure 8.8.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

range = { -.3, .3 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)",
"sin(x) + cos(y)",
"cos(x) + sin(y)",

Contour uncorrected draft 31

1

2

3

4

5

6

7

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 8.8

"cos(x) + cos(y)"
},
background = "bitmap",
foreground = "none",
level = 3,
color = "shade({1,0,0},{0,1,0})"
cache = true,

] xsized TextWidth ;
\stopMPcode

We can enlargen the window, which is demonstrated in figure 8.9. I suppose that such images only
make sense in educational settings.

In figure 8.10 we see different combinations of backgrounds (in color) and foregrounds (edges) in ac-
tion.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = 0,
ymin = -6, ymax = 6, ystep = 0,

levels = 5, legend = false, linewidth = 1/2,

preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) - sin(y)",
color = "shade({1/2,0,0},{0,0,1/2})",

background = "bitmap", foreground = "cell",
] xsized .3TextWidth ;

\stopMPcode

Contour uncorrected draft 32

1

2

3

4

5

6

7

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.3,0.3]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 8.9

There are quite some settings. Some deal with the background, some with the foreground and quite
some deal with the legend.

name type default comment

xmin numeric 0 needs to be set
xmax numeric 0 needs to be set
ymin numeric 0 needs to be set
ymax numeric 0 needs to be set
xstep numeric 0 auto 1/200 when zero
ystep numeric 0 auto 1/200 when zero
checkresult boolean false checks for overflow and NaN
defaultnan numeric 0 the value to be used when NaN
defaultinf numeric 0 the value to be used when overflow

levels numeric 10 number of different levels to show
level numeric only show this level (foreground)

preamble string shortcuts
function string x + y the result z value
functions list multiple functions (overlapping levels)
color string lin(l) the result color value for level l (1 or 3 values)
colors numeric used when set

background string bitmap band, bitmap, shape
foreground string auto cell, edge, shape auto

linewidth numeric .25
linecolor string gray

width numeric 0 automatic when zero
height numeric 0 automatic when zero

trace boolean false

Contour uncorrected draft 33

legend string all x y z function range all
legendheight numeric LineHeight
legendwidth numeric LineHeight
legendgap numeric 0
legenddistance numeric EmWidth
textdistance numeric 2EmWidth/3
functiondistance numeric ExHeight
functionstyle string ConTEXt style name
xformat string @0.2N number format template
yformat string @0.2N number format template
zformat string @0.2N number format template
xstyle string ConTEXt style name
ystyle string ConTEXt style name
zstyle string ConTEXt style name

axisdistance numeric ExHeight
axislinewidth numeric .25
axisoffset numeric ExHeight/4
axiscolor string black
ticklength numeric ExHeight

xtick numeric 5
ytick numeric 5
xlabel numeric 5
ylabel numeric 5

Contour uncorrected draft 34

bitmap edge bitmap cell bitmap none

shape shape shape edge shape none

band edge band cell band none

Figure 8.10

Surface uncorrected draft 35

9 Surface
This is work in progress so only some examples are shown here. Yet to be decided is howwe deal with
axis and such.

In figure 9.1 we see an example of a plot with axis as well as lines drawn.

\startMPcode{doublefun}
draw lmt_surface [

preamble = "local sin, cos = math.sin, math.cos",
code = "sin(x*x) - cos(y*y)"
xmin = -3,
xmax = 3,
ymin = -3,
ymax = 3,
xvector = { -0.3, -0.3 },
height = 5cm,
axis = { 40mm, 40mm, 30mm },
clipaxis = true,
axiscolor = "gray",

] xsized .8TextWidth ;
\stopMPcode

Figure 9.1

In figure 9.2 we don’t draw the axis and lines. We also use a high resolution.

\startMPcode{doublefun}
draw lmt_surface [

preamble = "local sin, cos = math.sin, math.cos",

Surface uncorrected draft 36

code = "sin(x*x) - cos(y*y)"
color = "f, f/2, 1-f"
color = "f, f, 0"
xstep = .02,
ystep = .02,
xvector = { -0.4, -0.4 },
height = 5cm,
lines = false,

] xsized .8TextWidth ;
\stopMPcode

Figure 9.2

The preliminary set of parameters is:

name type default comment

code string color string"f, 0, 0"
linecolor numeric 1 gray scale
xmin numeric -1
xmax numeric 1
ymin numeric -1
ymax numeric 1
xstep numeric .1
ystep numeric .1
snap numeric .01
xvector list { -0.7, -0.7 }
yvector list { 1, 0 }
zvector list { 0, 1 }
light list { 3, 3, 10 }
bright numeric 100
clip boolean false
lines boolean true

Surface uncorrected draft 37

axis list { }
clipaxis boolean false
axiscolor string "gray"
axislinewidth numeric 1/2

Mesh uncorrected draft 38

10 Mesh

This is more a gimmick than of real practical use. A mesh is a set of paths that gets transformed into
hyperlinks. So, as a start you need to enable these:

\setupinteraction
[state=start,
color=white,
contrastcolor=white]

We just give a bunch of examples ofmeshes. A path is divided in smaller paths and each of them is part
of the same hyperlink. An application is for instance clickablemaps but (so far) only Acrobat supports
such paths.

\startuseMPgraphic{MyPath1}
fill OverlayBox withcolor "darkyellow" ;
save p ; path p[] ;
p1 := unitsquare xysized(OverlayWidth/4, OverlayHeight/4) ;
p2 := unitsquare xysized(2OverlayWidth/4,3OverlayHeight/5) shifted (
OverlayWidth/4,0) ;

p3 := unitsquare xysized(OverlayWidth/4, OverlayHeight) shifted (3
OverlayWidth/4,0) ;

fill p1 withcolor "darkred" ;
fill p2 withcolor "darkblue" ;
fill p3 withcolor "darkgreen" ;
draw lmt_mesh [paths = { p1, p2, p3 }] ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

Such a definition is used as follows. First we define the mesh as overlay:

\defineoverlay[MyPath1][\useMPgraphic{MyPath1}]

Then, later on, this overlay can be used as background for a button. Herewe just jump to another page.
The rendering is shown in figure 10.1.

\button
[height=3cm,
width=4cm,
background=MyPath1,
frame=off]
{Example 1}
[realpage(2)]

More interestingarenon-rectangular shapes soweshowabunchof them. Youcanpassmultiplepaths,
influence the accuracy by setting the number of steps and show the mesh with the tracing option.

\startuseMPgraphic{MyPath2}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight) ;
save p ; path p ; p := for i=1 upto length(q) :

Mesh uncorrected draft 39

Example 1

Figure 10.1

(center q) -- (point (i-1) of q) -- (point i of q) -- (center q) --
endfor cycle ;
fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
paths = { p }

] withcolor "darkred" ;

setbounds currentpicture to OverlayBox ;
\stopuseMPgraphic

\startuseMPgraphic{MyPath3}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight)
randomized 3mm ;

fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
paths = { meshed(q,OverlayBox,.05) }

] withcolor "darkgreen" ;
% draw OverlayMesh(q,.025) withcolor "darkgreen" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath4}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight)
randomized 3mm ;

fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.0125,
paths = { q }

] withcolor "darkyellow" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath5}

Mesh uncorrected draft 40

save q ; path q ; q := unitdiamond xysized(OverlayWidth,OverlayHeight)
randomized 2mm ;

q := q shifted - center q shifted center OverlayBox ;
fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.0125,
paths = { q }

] withcolor "darkmagenta" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath6}
save p ; path p[] ;
p1 := p2 := fullcircle xysized(2OverlayWidth/5,2OverlayHeight/3) ;
p1 := p1 shifted - center p1 shifted center OverlayBox shifted (-1
OverlayWidth/4,0) ;

p2 := p2 shifted - center p2 shifted center OverlayBox shifted (1
OverlayWidth/4,0) ;

fill p1 withcolor "middlegray" ;
fill p2 withcolor "middlegray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.02,
paths = { p1, p2 }

] withcolor "darkcyan" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath7}
save p ; path p[] ;
p1 := p2 := fullcircle xysized(2OverlayWidth/5,2OverlayHeight/3) rotated 45
;

p1 := p1 shifted - center p1 shifted center OverlayBox shifted (-1
OverlayWidth/4,0) ;

p2 := p2 shifted - center p2 shifted center OverlayBox shifted (1
OverlayWidth/4,0) ;

fill p1 withcolor "middlegray" ;
fill p2 withcolor "middlegray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.01,
box = OverlayBox enlarged -5mm,
paths = { p1, p2 }

] withcolor "darkcyan" ;
draw OverlayBox enlarged -5mm withcolor "darkgray" ;

Mesh uncorrected draft 41

setbounds currentpicture to OverlayBox ;
\stopuseMPgraphic

This is typical a feature that, if used at all, needs some experimenting but at least the traced images
look interesting enough. The six examples are shown in figure 10.2.

Example 2 Example 3

MyPath2 MyPath3

Example 4 Example 5

MyPath4 MyPath5

Example 6 Example 7

MyPath6 MyPath7

Figure 10.2

Function uncorrected draft 42

11 Function

It is tempting to make helpers that can do a lot. However, that also means that we need to explain a
lot. Instead it makes more sense to have specific helpers and just make another one when needed.
Rendering functions falls into this category. At some point users will come up with specific cases that
other users can use. Therefore, the solution presented here is not the ultimate answer. We start with
a simple example:

Figure 11.1

This image is defined as follows:

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -2, ymax = 2,

sx = 1mm, xsmall = 80, xlarge = 20,
sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

code = "1.5 * math.sind (50 * x - 150)",
]

xsized 8cm
;

\stopMPcode

We can drawmultiple functions in one go. The next sample split the drawing over a few ranges and is
defined as follows; in figure 11.2 we see the result.

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -2, ymax = 2,

sx = 1mm, xsmall = 80, xlarge = 20,

Function uncorrected draft 43

sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

xticks = "bottom",
yticks = "left",
xlabels = "nolimits",
ylabels = "yes",
code = "1.5 * math.sind (50 * x - 150)",

% frame = "ticks",
frame = "sticks",
ycaption = "\strut \rotate[rotation=90]{something vertical, using
\sin{x}}",

xcaption = "\strut something horizontal",
functions = {

[xmin = 1.0, xmax = 7.0, close = true, fillcolor = "darkred"],
[xmin = 7.0, xmax = 12.0, close = true, fillcolor = "darkgreen"],
[xmin = 12.0, xmax = 19.0, close = true, fillcolor = "darkblue"],
[

drawcolor = "darkyellow",
drawsize = 2

]
}

]
xsized TextWidth

;
\stopMPcode

Instead of the same function, we can draw different ones and when we use transparency we get nice
results too.

\definecolor[MyColorR][r=.5,t=.5,a=1]
\definecolor[MyColorG][g=.5,t=.5,a=1]
\definecolor[MyColorB][b=.5,t=.5,a=1]

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -1, ymax = 1,

sx = 1mm, xsmall = 80, xlarge = 20,
sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

functions = {
[

code = "math.sind (50 * x - 150)",
close = true,
fillcolor = "MyColorR"

],

Function uncorrected draft 44

-2

2

something horizontal

so
m
et
hi
ng

ve
rt
ic
al
, u
si
ng
si
n
𝑥

Figure 11.2

[
code = "math.cosd (50 * x - 150)",
close = true,
fillcolor = "MyColorB"

]
},

]
xsized TextWidth

;
\stopMPcode

It is important to choose a good step. In figure 11.4 we show 4 variants and it is clear that in this case
using straight line segments is better (or at least more efficient with small steps).

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 10, xstep = .1,
ymin = -1, ymax = 1,

sx = 1mm, sy = 4mm,

Function uncorrected draft 45

Figure 11.3

linewidth = .025mm, offset = .1mm,

code = "math.sind (50 * x^2 - 150)",
shape = "curve"

]
xsized .45TextWidth

;
\stopMPcode

You canmanipulate the axis (a bit) by tweaking the first and last ticks. In the case of figure 11.5 we also
put the shape on top of the axis.

\startMPcode{doublefun}
draw lmt_function [

xfirst = 9, xlast = 21, ylarge = 2, ysmall = 1/5,
yfirst = -1, ylast = 1, xlarge = 2, xsmall = 1/4,

xmin = 10, xmax = 20, xstep = .25,
ymin = -1, ymax = 1,

drawcolor = "darkmagenta",
shape = "steps",
code = "0.5 * math.random(-2,2)",
linewidth = .025mm,
offset = .1mm,
reverse = true,

]
xsized TextWidth

;
\stopMPcode

The whole repertoire of parameters (in case of doubt just check the source code as this kind of code is
not that hard to follow) is:

name type default comment

Function uncorrected draft 46

xstep=.10 and shape="curve" xstep=.01 and shape="curve"

xstep=.10 and shape="line" xstep=.01 and shape="line"

Figure 11.4

Figure 11.5

sx numeric 1mm horizontal scale factor
sy numeric 1mm vertical scale factor
offset numeric 0
xmin numeric 1
xmax numeric 1
xstep numeric 1
xsmall numeric optional step of small ticks
xlarge numeric optional step of large ticks
xlabels string no yes, no or nolimits
xticks string bottom possible locations are top, middle and bottom

Function uncorrected draft 47

xcaption string
ymin numeric 1
ymax numeric 1
ystep numeric 1
ysmall numeric optional step of small ticks
ylarge numeric optional step of large ticks
xfirst numeric left of xmin
xlast numeric right of xmax
yfirst numeric below ymin
ylast numeric above ymax
ylabels string no yes, no or nolimits
yticks string left possible locations are left, middle and right
ycaption string
code string
close boolean false
shape string curve or line
fillcolor string
drawsize numeric 1
drawcolor string
frame string options are yes, ticks and sticks
linewidth numeric .05mm
pointsymbol string like type dots
pointsize numeric 2
pointcolor string
xarrow string
yarrow string
reverse boolean false when true draw the function between axis and labels

Chart uncorrected draft 48

12 Chart

This is another example implementation but it might be handy for simple cases of presenting results.
Of course one can debate the usefulness of certain ways of presenting but here we avoid that discus-
sion. Let’s start with a simple pie chart (figure 12.1).

\startMPcode
draw lmt_chart_circle [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
trace = true,

] ;
\stopMPcode

1

4

32

5

7
6

Figure 12.1

As with all these lmtx extensions, you’re invited to play with the parameters. in figure 12.2 we see a
variant that adds labels as well as one that has a legend.

The styling of labels and legends can be influenced independently.

\startMPcode
draw lmt_chart_circle [

height = 4cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
trace = true,
labelcolor = "white",
labelformat = "@0.1f",
labelstyle = "ttxx"

] ;
\stopMPcode

\startMPcode
draw lmt_chart_circle [

height = 4cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = false,
trace = true,

Chart uncorrected draft 49

linewidth = .125mm,
originsize = 0,
labeloffset = 3cm,
labelstyle = "bfxx",
legendstyle = "tfxx",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;

\stopMPcode

1.0

4.0

3.0
2.0

5.0

7.0
6.0

1

4

3
2

5

7
6

first

second

third

fourth

fifth

sixths

sevenths

Figure 12.2

A second way of rendering are histograms, and the interface is mostly the same. In figure 12.3 we see
two variants

\startMPcode
draw lmt_chart_histogram [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,

] ;
\stopMPcode

and one with two datasets:

\startMPcode
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

},
background = "lightgray",
trace = true,

] ;
\stopMPcode

Chart uncorrected draft 50

1 4 3 2 5 7 6 1 4 3 2 5 7 61 2 3 4 5 6 7

Figure 12.3

A cumulative variant is shown in figure 12.4 where we also add a background (color).

\startMPpage[offset=5mm]
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

},
percentage = true,
cumulative = true,
showlabels = false,
backgroundcolor = "lightgray",

] ;
\stopMPpage

Figure 12.4

A different way of using colors is shown in figure 12.5 where each sample gets its own (same) color.

\startMPcode
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

Chart uncorrected draft 51

},
percentage = true,
cumulative = true,
showlabels = false,
background = "lightgray",
colormode = "local",

] ;
\stopMPcode

Figure 12.5

As with pie charts you can add labels and a legend:

\startMPcode
draw lmt_chart_histogram [

height = 6cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,
labelstyle = "ttxx",
labelanchor = "top",
labelcolor = "white",
backgroundcolor = "middlegray",

] ;
\stopMPcode

The previous and next examples are shown in figure 12.6. The height specified here concerns the
graphic and excludes the labels,

\startMPcode
draw lmt_chart_histogram [

height = 6cm,
width = 10mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
trace = true,
maximum = 7.5,
linewidth = 1mm,
originsize = 0,
labelanchor = "bot",

Chart uncorrected draft 52

labelcolor = "black"
labelstyle = "bfxx"
legendstyle = "tfxx",
labelstrut = "yes",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;

\stopMPcode

1 4 3 2 5 7 6 1 4 3 2 5 7 6

first

second

third

fourth

fifth

sixths

sevenths

Figure 12.6

The third category concerns bar charts that run horizontal. Again we see similar options driving the
rendering (figure 12.7).

\startMPcode
draw lmt_chart_bar [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,

] ;
\stopMPcode

\startMPcode
draw lmt_chart_bar [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
showlabels = false,
backgroundcolor = "lightgray",

] ;
\stopMPcode

Determining the offset of labels is manual work:

Chart uncorrected draft 53

\startMPcode
draw lmt_chart_bar [

width = 4cm,
height = 5mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,
labelcolor = "white",
labelstyle = "ttxx",
labelanchor = "rt",
labeloffset = .25EmWidth,
backgroundcolor = "middlegray",

] ;
\stopMPcode

1
4
3
2
5
7
6

1

4

3

2

5

7

6

Figure 12.7

Here is one with a legend (rendered in figure 12.8):

\startMPcode
draw lmt_chart_bar [

width = 8cm,
height = 10mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
trace = true,
maximum = 7.5,
linewidth = 1mm,
originsize = 0,
labelanchor = "lft",
labelcolor = "black"
labelstyle = "bfxx"
legendstyle = "tfxx",
labelstrut = "yes",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;
\stopMPcode

Chart uncorrected draft 54

1

4

3

2

5

7

6

first

second

third

fourth

fifth

sixths

sevenths

Figure 12.8

You can have labels per dataset as well as drawmultiple datasets in one image, see figure 12.9:

\startMPcode
draw lmt_chart_bar [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 3, 2, 5, 7, 5, 6, 1 }

},
labels = {

{ "a1", "b1", "c1", "d1", "e1", "f1", "g1" },
{ "a2", "b2", "c2", "d2", "e2", "f2", "g2" }

},
labeloffset = -EmWidth,
labelanchor = "center",
labelstyle = "ttxx",
trace = true,
center = true,

] ;

draw lmt_chart_bar [
samples = {

{ 1, 4, 3, 2, 5, 7, 6 }
},
labels = {

{ "a", "b", "c", "d", "e", "f", "g" }
},
labeloffset = -EmWidth,
labelanchor = "center",
trace = true,
center = true,

] shifted (10cm,0) ;
\stopMPcode

Chart uncorrected draft 55

a1

b1

c1

d1

e1

f1

g1

a2

b2

c2

d2

e2

f2

g2

a
b
c
d
e
f
g

Figure 12.9

name type default comment

originsize numeric 1mm
trace boolean false
showlabels boolean true
center boolean false

samples list
cumulative boolean false

percentage boolean false
maximum numeric 0
distance numeric 1mm

labels list
labelstyle string
labelformat string
labelstrut string auto
labelanchor string
labeloffset numeric 0
labelfraction numeric 0.8
labelcolor string

backgroundcolor string
drawcolor string white
fillcolors list primary (dark) colors
colormode string global or local

linewidth numeric .25mm

legendcolor string
legendstyle string
legend list

Pie charts have:

name default

Chart uncorrected draft 56

height 5cm
width 5mm
labelanchor
labeloffset 0
labelstrut no

Histograms come with:

name default

height 5cm
width 5mm
labelanchor bot
labeloffset 1mm
labelstrut auto

Bar charts use:

name default

height 5cm
width 5mm
labelanchor lft
labeloffset 1mm
labelstrut no

SVG uncorrected draft 57

13 SVG

There is not that much to tell about this command. It translates an svg image to MetaPost operators.
We took a few images from amozilla emoji font:

\startMPcode
draw lmt_svg [

filename = "mozilla-svg-002.svg",
height = 2cm,
width = 8cm,

] ;
\stopMPcode

Because we get pictures, you canmess around with them:

\startMPcode
picture p ; p := lmt_svg [filename = "mozilla-svg-001.svg"] ;
numeric w ; w := bbwidth(p) ;
draw p ;
draw p xscaled -1 shifted (2.5*w,0);
draw p rotatedaround(center p,45) shifted (3.0*w,0) ;
draw image (

for i within p : if filled i :
draw pathpart i withcolor green ;

fi endfor ;
) shifted (4.5*w,0);
draw image (

for i within p : if filled i :
fill pathpart i withcolor red withtransparency (1,.25) ;

fi endfor ;
) shifted (6*w,0);

\stopMPcode

Of course. often youwon’t know in advancewhat is inside the image and how (well) it has been defined
so the previous example is more about showing someMetaPost muscle.

The supported parameters are:

SVG uncorrected draft 58

name type default comment

filename path
width numeric
height numeric

Fonts uncorrected draft 59

14 Fonts

Fonts are interesting phenomena but can also be quite hairy. Shapes can be missing or not to your
liking. There canbebugs too. Control over fontshas alwaysbeenon theagendaofTEXmacropackages,
and ConTEXt provides a lot of control, especially in MkIV. In lmtx we add some more to that: we bring
back METAFONT’s but now in the MetaPost way. A simple example shows how this is (maybe I should
say: will be) done.

We define three simple shapes and do that (for now) in the simplefun instance because that’s what is
used when generating the glyphs.

\startMPcalculation{simplefun}
vardef TestGlyphLB =

image (
fill (unitsquare xscaled 10 yscaled 16 shifted (0,-3))

withcolor "darkred" withtransparency (1,.5)
;

)
enddef ;

vardef TestGlyphRB =
image (

fill (unitcircle xscaled 15 yscaled 12 shifted (0,-2))
withcolor "darkblue" withtransparency (1,.5)

;
)

enddef ;

vardef TestGlyphFS =
image (

fill (unittriangle xscaled 15 yscaled 12 shifted (0,-2))
withcolor "darkgreen" withtransparency (1,.5)

;
)

enddef ;
\stopMPcalculation

This is not that spectacular, not is the following:

\startMPcalculation{simplefun}
lmt_registerglyphs [

name = "test",
units = 10, % 1000

] ;

lmt_registerglyph [
category = "test",
unicode = 123,
code = "draw TestGlyphLB ;",

Fonts uncorrected draft 60

width = 10, % 1000
height = 13, % 1300
depth = 3 % 300

] ;

lmt_registerglyph [
category = "test",
unicode = 125,
code = "draw TestGlyphRB ;",
width = 15,
height = 10,
depth = 2

] ;

lmt_registerglyph [
category = "test",
unicode = "/",
code = "draw TestGlyphFS ;",
width = 15,
height = 10,
depth = 2

] ;

\stopMPcalculation

We now define a font. We always use a font as starting point which has the advantage that we always
get something reasonable when we test. Of course you can use this mps font feature with other fonts
too.

\definefontfeature[metapost][metapost=test] % or: mps={category=test}

\definefont[MyFontA][Serif*metapost @ 10bp]
\definefont[MyFontB][Serif*metapost @ 12bp]

These fonts can now be used:

\MyFontA \dorecurse{20}{\{ /#1/ \} }\par
\MyFontB \dorecurse{20}{\{ /#1/ \} }\par

We get some useless text but it demonstrates the idea:

{/1/}{/2/}{/3/}{/4/}{/5/}{/6/}{/7/}
{/8/}{/9/}{/10/}{/11/}{/12/}{/13/}{/14/
}{/15/}{/16/}{/17/}{/18/}{/19/}{/20/}

{/1/}{/2/}{/3/}{/4/}{/5/}{/6/}
{/7/}{/8/}{/9/}{/10/}{/11/}{/12/
}{/13/}{/14/}{/15/}{/16/}{/17/}{
/18/}{/19/}{/20/}

Fonts uncorrected draft 61

If youknowabitmoreaboutConTEXtyoucould think: sowhat,wasn’t this alreadypossible? Sure, there
are various ways to achieve similar effects, but the method described here has a few advantages: it’s
relatively easy andwe’re talking about real fonts here. Thismeans that using the shapes for characters
is pretty efficient.

A more realistic example is given next. It is a subset of what is available in the ConTEXt core.

\startMPcalculation{simplefun}

pen SymbolPen ; SymbolPen := pencircle scaled 1/4 ;

vardef SymbolBullet =
fill unitcircle scaled 3 shifted (1.5,1.5) withpen SymbolPen

enddef ;
vardef SymbolSquare =

draw unitsquare scaled (3-1/16) shifted (1.5,1.5) withpen SymbolPen
enddef ;
vardef SymbolBlackDiamond =

fillup unitdiamond scaled (3-1/16) shifted (1.5,1.5) withpen SymbolPen
enddef ;
vardef SymbolNotDef =

draw center unitcircle
scaled 3
shifted (1.5,1.5)
withpen SymbolPen scaled 4

enddef ;

lmt_registerglyphs [
name = "symbols",
units = 10,
usecolor = true,
width = 6,
height = 6,
depth = 0,
code = "SymbolNotDef ;",

] ;

lmt_registerglyph [category = "symbols", unicode = "0x2022",
code = "SymbolBullet ;"

] ;
lmt_registerglyph [category = "symbols", unicode = "0x25A1",

code = "SymbolSquare ;"
] ;
lmt_registerglyph [category = "symbols", unicode = "0x25C6",

code = "SymbolBlackDiamond ;"
] ;

\stopMPcalculation

We could use these symbols in for instance itemize symbols. Youmight notice the potential difference
in bullets:

Fonts uncorrected draft 62

\definefontfeature[metapost][metapost=symbols]

\definefont[MyFont] [Serif*metapost sa 1]

\startitemize[packed]
\startitem {\MyFont • }\quad Regular rendering. \stopitem
\startitem {\MyFont\red • }\quad Rendering with color.
\stopitem

\startitem {\MyFont\blue\showglyphs • }\quad Idem but with boundingboxes
shown. \stopitem

\stopitemize

• • □ ◆ Regular rendering.
• • □ ◆ Rendering with color.
• • □ ◆ Idem but with boundingboxes shown.

When blown up, these symbols look as follows:

•□◆•□◆•□◆

You can use these tricks with basically any font, so also withmath fonts. However, at least for now, you
need to define these before the font gets loaded.

\startMPcalculation{simplefun}

pen KindergartenPen ; KindergartenPen := pencircle scaled 1 ;

% 10 x 10 grid

vardef KindergartenEqual =
draw image

(
draw (2,6) -- (9,5) ;
draw (2,4) -- (8,3) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenEqual"

enddef ;
vardef KindergartenPlus =

draw image
(

draw (1,4) -- (9,5) ;
draw (4,1) -- (5,8) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenPlus"

enddef ;

Fonts uncorrected draft 63

vardef KindergartenMinus =
draw image

(
draw (1,5) -- (9,4) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenMinus"

enddef ;
vardef KindergartenTimes =

draw image
(

draw (2,1) -- (9,8) ;
draw (8,1) -- (2,8) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenTimes"

enddef ;
vardef KindergartenDivided =

draw image
(

draw (2,1) -- (8,9) ;
)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenDivided"

enddef ;

lmt_registerglyphs [
name = "kindergarten",
units = 10,

% usecolor = true,
width = 10,
height = 8,
depth = 2,

] ;

lmt_registerglyph [category = "kindergarten", unicode = "0x003D",
code = "KindergartenEqual"

] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x002B",

code = "KindergartenPlus"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x2212",

code = "KindergartenMinus"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x00D7",

code = "KindergartenTimes"

Fonts uncorrected draft 64

] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x002F",

code = "KindergartenDivided"
] ;

\stopMPcalculation

We also define the colors. If we leave usecolor to true, the text colors will be taken.

\definecolor[KindergartenEqual] [darkgreen]
\definecolor[KindergartenPlus] [darkred]
\definecolor[KindergartenMinus] [darkred]
\definecolor[KindergartenTimes] [darkblue]
\definecolor[KindergartenDivided][darkblue]

\definefontfeature[mathextra][metapost=kindergarten]

Here is an example:

\switchtobodyfont[cambria]

$ y = 2 \times x + a - b / 3 $

Scaled up:

𝑦= 2× 𝑥+ 𝑎− 𝑏/3
Of course thiswon’t work outwell (yet) with extensible yet, due to related definitions forwhichwedon’t
have an interface yet. There is one thing that you need to keep inmind: the fonts are flushedwhen the
document gets finalized so you have to make sure that colors are defined at the level that they are still
valid at that time. So best put color definitions like the above in the document style.

This is an experimental interface anyway so we don’t explain the parameters yet as there might be
more of them.

Interface uncorrected draft 65

15 Interface

Because graphic solutions are always kind of personal or domain driven it makes not much sense to
cookup very generic solutions. If youhave a projectwhereMetaPost canbe of help, it alsomakes sense
to spend some timeon implementing thebasics that youneed. In that case you can just copy and tweak
what is there. The easiest way to do that is to make a test file and use:

\startMPpage
% your code

\stopMPpage

Often you don’t need to write macros, and standard drawing commands will do the job, but when you
find yourself repeating code, a wapper might make sense. And this is why we have this key/value in-
terface: it’s easier to abstract your settings than to pass them as (expression or text) arguments to a
macro, especially when there are many.

You can find many examples of the key/value driven user interface in the source files and these are
actually not that hard to understand when you know a bit of MetaPost and the additional macros that
comewithMetaFun. In case youwonder about overhead: the performance of thismechanism is pretty
good.

Although the parameter handler runs on top of the Lua interface, you don’t need to use Lua unless you
find that MetaPost can’t do the job. I won’t give examples of coding because I think that the source of
MetaFun provides enough clues, especially the file mp-lmtx.mpxl. As the name suggests this is part
of the ConTEXt version lmtx, which runs on top of LuaMetaTEX. I leave it open if I will backport this
functionality to LuaTEX and therefore MkIV.

An excellent explanation of this interface can be found at:

https://adityam.github.io/context-blog/post/new-metafun-interface/

So (at least for now) here I can stick to just mentioning the currently stable interface macros:

presetparameters name [...] Assign default values to a category of parame-
ters. Sometimes it makes sense not to set a
default, because then you can check if a para-
meter has been set at all.

applyparameters name macro This prepares the parameter handler for the
given category and calls the givenmacro when
that is done.

getparameters name [...] The parameters given after the category name
are set.

hasparameter names Returns truewhen a parameter is set, and
false otherwise.

hasoption names options Returns truewhen there is overlap in given
options, and false otherwise.

getparameter names Resolves the parameter with the given name.
because a parameter itself can have a parame-

Interface uncorrected draft 66

ter list you can pass additional names to reach
the final destination.

getparameterdefault names Resolves the parameter with the given name.
because a parameter itself can have a parame-
ter list you can pass additional names to reach
the final destination. The last value is used
when no parameter is found.

getparametercount names Returns the size if a list (array).
getmaxparametercount names Returns the size if a list (array) but descends

into lists to find the largest size of a sublist.

getparameterpath names string boolean Returns the parameter as path. The optional
string is one of --, .. or ... and the also op-
tional boolean will force a closed path.

getparameterpen names Returns the parameter as pen (path).
getparametertext names boolean Returns the parameter as string. The boolean

can be used to force prepending a so called
\strut.

pushparameters category Pushed the given (sub) category onto the stack
so that we don’t need to give the category each
time.

popparameters Pops the current (sub) category from the
stack.

Most commands accept a list of strings separated by one or more spaces, The resolved will then step-
wise descend into the parameter tree. This means that a parameter itself can refer to a list. When a
value is an array and the last name is a number, the value at the given index will be returned.

"category" "name" ... "name"
"category" "name" ... number

The category is not used when we have pushed a (sub) category which can save you some typing and
also ismore efficient. Of course than canmean that you need to store values at a higher level when you
need them at a deeper level.

There are quite some extra helpers that relate to this mechanism, at the MetaPost end as well as at
the Lua end. They aim for instance at efficiently dealing with paths and can be seen at work in the
mentionedmodule.

There is one thing you should notice. While MetaPost has numeric, string, boolean and path variables
that can be conveniently be passed to and from Lua, communicating colors is a bit of a hassle. This is
because rgb and cmyk colors and gray scales use different types. For this reason it is strongly recom-
mended to use strings that refer to predefined colors instead. This also enforces consistency with the
TEX end. As convenience you can define colors at the MetaFun end.

\startMPcode
definecolor [name = "MyColor", r = .5, g = .25, b = .25]

fill fullsquare xyscaled (TextWidth,5mm) withcolor "MyColor" ;
\stopMPcode

