
metafun xl
Hans Hagen

uncorrected draft 1

Contents

Introduction 2
1 Technology 4
2 Text 6
3 Axis 8
4 Outline 10
5 Followtext 13
6 Placeholder 16
7 Arrow 18
8 Shade 21
9 Contour 26
10 Surface 37
11 Mesh 40
12 Function 44
13 Chart 50
14 SVG 59
15 Poisson 61
16 Fonts 65
17 Color 71
18 Groups 74
19 Extensions 75
20 Interface 92

Introduction uncorrected draft 2

Introduction

For quite a while, around since 1996, the integration of MetaPost into ConTEXt became sort of mature
but, it took decades of stepwise refinement to reach the state that we're in now. In this manual I will
discuss some of the features that became possible by combining Lua and MetaPost. We already had
quite a bit of that for a decade but in 2018, when LuaMetaTEX showed up a next stage was started.

Before we go into details it is good to summarize the steps that were involved in integrating MetaPost
and TEX in ConTEXt. It indicates a bit what we had and have to deal with which in turn lead to the
interfaces we now have.

Originally, TEX had no graphic capabilities: it just needed to know dimensions of the graphics and
pass some basic information about what to include to the dvi post processor. So, a MetaPost graphic
was normally processed outside the current run, resulting in PostScript graphic, that then had to be
included. In pdfTEX there were some more built in options, and therefore the MetaPost code could
be processed runtime using some (generic) TEXmacros that I wrote. However, that engine still had to
launchMetaPost for each graphic, although we could accumulate them and do that between runs. Im
mediate processing means that we immediately know the dimensions, while a collective run is faster.
InLuaTEX this all changed to very fast runtimeprocessing,madepossible because theMetaPost library
is embedded in the engine, a decision that wemade early in the project and never regret.

With pdfTEX theprocesswasmanagedby thetexexecConTEXt runner butwith LuaTEX it stayedunder
the control of the current run. In the case of pdfTEX the actual embedding was done by TEX macros
that interpreted the (relatively simple) PostScript code and turned it into pdf literals. In LuaTEX that
job was delegated to Lua.

When using pdfTEX with independent MetaPost runs support for special color spaces, transparency,
embedded graphics, outline text, shading andmore was implemented using specials and special col
ors where the color served as reference to some special extension. This works quite well. In LuaTEX
the pre- and postscript features, which are properties of picture objects, are used.

In all cases, some information about the current run, for instance layout related information, or color
information, has to be passed to the rather isolatedMetaPost run. In the case if LuaTEX (andMkIV) the
advantage is that processing optional text happens in the same process so there we don't need to pass
information about for instance the current font setup.

In LuaTEX the MetaPost library has a runscript feature, which will call Lua with the given code. This
permitted a better integration: we could now ask for specific information (to the TEX end) instead of
passing it from the TEX end with each run. In LuaMetaTEX another feature was added: access to the
scanners from the Lua end. Although we could already fetch some variables when in Lua this made it
possible to extend the MetaPost language in ways not possible before.

Already for a while Alan Braslau and I were working on some newMetaFun code that exploits all these
new features. When the scanners cameavailable I sat downand startedworking onnew interfaces and
in this manual I will discuss some of these. Some of them are illustrative, others are probably rather
useful. The core of what we could call LuaMetaFun (or MetaFun XL when we use the file extension as
indicator) is a key-value interface as we have at the TEX end. This interface relates to ConTEXt LMTX
development and therefore relatedfileshave adifferent suffix: mpxl. However, keep inmind that some
are just wrappers around regular MetaPost code so you have the full power of traditional MetaPost at
hand.

Introduction uncorrected draft 3

We can never satisfy all needs, so to some extent this manual also demonstrates how to roll out your
own code, but for that you also need to peek into the MetaFun source code too. It will take a while for
this manual to complete. I also expect other users to come up with solutions, so maybe in the end we
will have a collection of modules for specific tasks.

Hans Hagen
Hasselt NL
August 2021 (and beyond)

Technology uncorrected draft 4

1 Technology

TheMetaPost library thatweuse in LuaMetaTEX is a followupon the library used inLuaTEXwhich itself
is a follow up on the original MetaPost program that again was a follow up on Don Knuths MetaFont,
the natural companion to TEX.

Whenwestartwith JohnHobbiesMetaPostwe see agraphical engine that provides a simplebutpower
ful programming languagemeant formaking graphics, not the freehandkind, but themore systematic
ones. The output is PostScript but a simple kind that can easily be converted to pdf.1 It's output is very
accurate and performance is great.

As part of the LuaTEX development project Taco Hoekwater turned MetaPost into mplib, a downward
compatible library where MetaPost became a small program using that library. But there is more:
there are (when enabled) backends that produce png or svg, but when used these also add dependen
cies onmoving targets. The library by default uses the so called scaled numbers: floats that internally
are long integers. But it can alsowork in doubles, decimal and binary and especially the last two create
a dependency on libraries. It is good to notice that as in the original MetaPost the PostScript output
handling is visible all over the source. Also, the way Type1 fonts are handled has been extended, for
instance by providing access to shapes.

At some point a Lua interface got added that made it possible to call out to the Lua instance used in
LuaTEX, so the three concepts: TEX, MetaPost and Lua can combine forces. A snippet of code can be
run, and a result can be piped back. Although there is some limited access to MetaPost internals, the
normal way to go is by serializing MetaPost data to the Lua end and let MetaPost scan the result using
scantokens.

The library in LuaMetaTEX is a bit different. Of course it has the same core graphic engine, but there
is no longer a backend. In ConTEXt MkIV the PostScript (and other) backends were not used anyway
because it operates on the exported Lua representation of the result. Combined with the prescript
and postscript features introduced in the library that provides all we need to make interesting ex
tensions to the graphical engine (color, shading, image inclusion, text, etc). TheMetaPost font support
features are also not used because we need support for OpenType and even in MkII (for pdfTEX and
X ETEX) we used a different approach to fonts.

It is for that reason that the library we use in LuaMetaTEX is a leaner version of its ancestor. As men
tioned, there is no backend code, only the Lua export, which saves a lot, and there are no traces of font
support left, which also drops many lines of code. We forget about the binary number model because
it needs a large library that also occasionally changes, but one can add it if needed. This means that
there are no dependencies except for decimal but that library is relatively small and doesn't change at
all. It alsomeans that the resultingmplib library ismuch smaller, but it's still a substantial component
in LuaMetaTEX. Internally I use the future version number 3. The originalMetaPost program is version
1, so the library got version 2, and that one basically being frozen (it's in bug-fix mode) means that it
will stick to that.

Another difference is that from the Lua end one has access to several scanners and also has possibili
ties to efficiently pushback results to the engine. Running scripts canalso bedonemore efficient. This

1 For that purpose I wrote a converter in the TEX language for pdfTEX, and even within the limitations of TEX at that time (fonts,
number of registers, memory) it worked out quite well.

Technology uncorrected draft 5

permits a rather efficient (in termsof performanceandmemoryusage)way to extend the language and
add for instance key/value based interfaces. There are somemore additions, like for instance pre- and
postscripts to clip, boundary andgroupobjects. Internals canbenumeric, string andboolean. Onecan
use utf input although that has also be added to the ancestor. Some redundant internal input/output
remapping has been removed and we are more tolerant to newlines in return values from Lua. Error
messages have beennormalized, internal documentation cleaned up a bit. A few anomalies have been
fixed too. All in- and output is nowunder Lua control. Etcetera. The (now very few) source files are still
cweb files but the conversion to C is done with a Lua script that uses (surprise) the LuaMetaTEX engine
as Lua processor. This give a bit nicer C output for when we view it in e.g. Visual Studio too (normally
the cweb output is not meant to be seen by humans).

Keep in mind that it's still MetaPost with all it provided, but some has to be implemented in macros
or in Lua via callbacks. The simple fact that the original library is the standard and is also the core of
MetaPost most of these changes and additions cannot be backported to the original, but that is no big
deal. The advantage is that we can experiment with new features without endangering users outside
theConTEXt bubble. The same is true for the Lua interface, which already is upgraded inmany aspects.

Text uncorrected draft 6

2 Text

The MetaFun textext command normally can do the job of typesetting a text snippet quite well.

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw textext("\bf This is text A") withcolor "white" ;

\stopMPcode

We get:

This is text A

You can use regular ConTEXt commands, so this is valid:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw textext("\framed{\bf This is text A}") withcolor "white" ;

\stopMPcode

Of course you can as well draw a frame in MetaPost but the \framed command has more options, like
alignments.

This is text A

Here is a variant using the MetaFun interface:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw lmt_text [

text = "This is text A",
color = "white",
style = "bold"

] ;
\stopMPcode

The outcome is more or less the same:

This is text A

Here is another example. The format option is actually why this command is provided.

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkred" ;
draw lmt_text [

text = decimal 123.45678,
color = "white",

Text uncorrected draft 7

style = "bold",
format = "@0.3F",

] ;
\stopMPcode

123.457

The following parameters can be set:

name type default comment

offset numeric 0
strut string auto adapts the dimensions to the font (yes uses the the default strut)
style string
color string
text string
anchor string one of these lft, urt like anchors
format string a format specifier using @ instead of a percent sign
position pair origin
trace boolean false

The next example demonstrates the positioning options:

\startMPcode
fill fullcircle xyscaled (8cm,1cm) withcolor "darkblue" ;
fill fullcircle scaled .5mm withcolor "white" ;
draw lmt_text [

text = "left",
color = "white",
style = "bold",
anchor = "lft",
position = (-1mm,2mm),

] ;
draw lmt_text [

text = "right",
color = "white",
style = "bold",
anchor = "rt",
offset = 3mm,

] ;
\stopMPcode

left right

Axis uncorrected draft 8

3 Axis

The axis macro is the result of one of the first experiments with the key/value interface in MetaFun.
Let's show a lot in one example:

\startMPcode
draw lmt_axis [

sx = 5mm, sy = 5mm,
nx = 20, ny = 10,
dx = 5, dy = 2,
tx = 10, ty = 10,

list = {
[

connect = true,
color = "darkred",
close = true,
points = { (1, 1), (15, 8), (2, 10) },
texts = { "segment 1", "segment 2", "segment 3" }

],
[

connect = true,
color = "darkgreen",
points = { (2, 2), (4, 1), (10, 3), (16, 8), (19, 2) },
labels = { "a", "b", "c", "d", "e" }

],
[

connect = true,
color = "darkblue",
close = true,
points = { (5, 3), (8, 8), (16, 1) },
labels = { "1", "2", "3" }

]
},

] withpen pencircle scaled 1mm ;
\stopMPcode

This macro will probably be extended at some point.

name type default comment

nx numeric 1
dx numeric 1
tx numeric 0
sx numeric 1
startx numeric 0
ny numeric 1
dy numeric 1

Axis uncorrected draft 9

0 10 20

0

10 segment 1

segm
ent2

seg
men

t 3

a

b

c

d

e

1

2

3

Figure 3.1

ty numeric 0
sy numeric 1
starty numeric 0

samples list
list list
connect boolean false
list list
close boolean false
samplecolors list
axiscolor string
textcolor string

Outline uncorrected draft 10

4 Outline

In a regular text you can have outline characters by setting a (pseudo) font feature but sometimes you
want to play a bit more with this. In MetaFun we always had that option. In MkII we call pstoedit
to turn text into outlines, in MkIV we do that by manipulating the shapes directly. And, as with some
other extensions, in LMTX a new interface has been added, but the underlying code is the same as in
MkIV.

In figure 4.1 we see two examples:

\startMPcode{doublefun}
draw lmt_outline [

text = "hello"
kind = "draw",
drawcolor = "darkblue",

] xsized .45TextWidth ;
\stopMPcode

and

\startMPcode{doublefun}
draw lmt_outline [

text = "hello",
kind = "both",
fillcolor = "middlegray",
drawcolor = "darkgreen",
rulethickness = 1/5,

] xsized .45TextWidth ;
\stopMPcode

kind=draw kind=both

Figure 4.1 Drawing and/or filling an outline.

Normally the fill ends up below the draw but we can reverse the order, as in figure 4.2, where we coded
the leftmost example as:

\startMPcode{doublefun}
draw lmt_outline [

text = "hello",
kind = "reverse",
fillcolor = "darkred",
drawcolor = "darkblue",
rulethickness = 1/2,

Outline uncorrected draft 11

] xsized .45TextWidth ;
\stopMPcode

kind=reverse kind=both

Figure 4.2 Reversing the order of drawing and filling.

It is possible to fill and draw in one operation, in which case the same color is used for both, see fig
ure 4.3 for an example fo this. This is a low level optimization where the shape is only output once.

kind=fillup kind=fill

Figure 4.3 Combining a fill with a draw in the same color.

This interface is much nicer than the one where each variant (the parameter kind above) had its own
macro due to the need to group properties of the outline and fill. Let's show somemore:

\startMPcode{doublefun}
draw lmt_outline [

text = "\obeydiscretionaries\samplefile{tufte}",
align = "normal",
kind = "draw",
drawcolor = "darkblue",

] xsized TextWidth ;
\stopMPcode

In this case we feed the text into the \framed macro so that we get a properly aligned paragraph of
text, as demonstrated in figure 4.4 and ??. If you want more trickery you can of course use any Con
TEXt command (including \framedwith all kind of options) in the text.

Figure 4.4 Outlining a paragraph of text.

\startMPcode{doublefun}
draw lmt_outline [

Outline uncorrected draft 12

text = "\obeydiscretionaries\samplefile{ward}",
align = "normal,tolerant",
style = "bold",
width = 10cm,
kind = "draw",
drawcolor = "darkblue",

] xsized TextWidth ;
\stopMPcode

Figure 4.5 Outlining a paragraph of text with a specific width.

We summarize the parameters:

name type default comment

text string
kind string draw One of draw, fill, both, reverse and fillup.
fillcolor string
drawcolor string
rulethickness numeric 1/10
align string
style string
width numeric

Followtext uncorrected draft 13

5 Followtext

Typesetting text along a path started as a demo if communication between TEX and MetaPost in the
early days of MetaFun. In the meantime the implementation has been modernized a few times and
the current implementation feels okay, especially now that we have a better user interface. Here is an
example:

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 1}! ",
path = fullcircle scaled 4cm,
trace = true,
spread = true,

] ysized 5cm ;
\stopMPcode

Here is the sameexamplebutwith the text in the reverseorder. The results of bothexamples are shown
in figure 5.1.

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 2}! ",
path = fullcircle scaled 4cm,
trace = true,
spread = false,
reverse = true,

] ysized 5cm ;
\stopMPcode

H
o

w

well

d
o

e
s

i

t
w o r k

1
!

Ho

w
we
ll
do
es

it
w
or
k 2
!

Figure 5.1

There are not thatmany options. One is autoscalewhichmakes the shape and textmatch. Figure 5.2
shows what happens.

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 3}! ",

Followtext uncorrected draft 14

trace = true,
autoscaleup = "yes"

] ysized 5cm ;
\stopMPcode

\startMPcode{doublefun}
draw lmt_followtext [

text = "How well does it work {\bf 4}! ",
path = fullcircle scaled 2cm,
trace = true,
autoscaleup = "max"

] ysized 5cm ;
\stopMPcode

H
ow

welldoes it work

3!

H
o

w
welld

o
e
s
i t w o r k

4
!

Figure 5.2

You can use quite strange paths, like the one show in figure 5.3. Watch the parenthesis around the
path. this is really needed in order for the scanner to pick up the path (otherwise it sees a pair).

\startMPcode{doublefun}
draw lmt_followtext [

text = "\samplefile {zapf}",
path = ((3,0) .. (1,0) .. (5,0) .. (2,0) .. (4,0) .. (3,0)),
autoscaleup = "max"

] xsized TextWidth ;
\stopMPcode

The small set of options is:

name type default comment

text string
spread string true
trace numeric false
reverse numeric false
autoscaleup numeric no
autoscaledown string no
path string (fullcircle)

Followtext uncorrected draft 15

Com
ing

back
to
the

use
oftypefacesin

electronicpublishing:manyofthenewtypograp
hers

rece
ive

the

ir
kn
ow
le
dg
e
an
d
in
fo
rm

at
io
n
ab
ou
t t
he

ru
les

of typography from books, from computer magazines or the instruction manuals which they get with the purchase of a PC or software. Th

er
e
is
no

ts
o
m
uc
h
ba
si
ci
ns
tr
uc
tio
n,
as
of
no
w,
as
th

erewasintheolddays,showingthedifferencesbetweengoodandbadtypographicdesign.Manypeo

pl
e
ar
e
ju
st
fa
sc
in
at
ed

by
th
ei
r P
C'
s t
ric

ks, a
nd think that a widely||praised program, called

up
on

th
e
sc
re
en

,w
ill
m
ak

ee
veryt

hingautomaticfrom
now

on.
Figure 5.3

Placeholder uncorrected draft 16

6 Placeholder

Placeholders are an old ConTEXt features andhave been around sincewe started usingMetaPost. They
are used as dummy figure, just in case one is not (yet) present. They are normally activated by loading
a MetaFun library:

\useMPLibrary[dum]

Just because it could be done conveniently, placeholders are now defined at the MetaPost end instead
of as useable MetaPost graphic at the TEX end. The variants and options are demonstrated using side
floats.

Figure 6.1

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "red",
alternative = "circle".

] ;
\stopMPcode

In addition to the traditional randomcircle we now also provide rectangles and triangles. Maybe some
daymore variants will show up.

Figure 6.2

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "green",
alternative = "square".

] ;
\stopMPcode

Herewe set the colors but in the image placeholdermechanismwe cycle through colors automatically.
Here we use primary, rather dark, colors.

Figure 6.3

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "blue",
alternative = "triangle".

] ;
\stopMPcode

If you want less dark colors, the reduction parameter can be used to interpolate between the given
color and white; its value is therefore a value between zero (default) and 1 (rather pointless as it pro
duces white).

Placeholder uncorrected draft 17

0 0.25

0.50 0.75

Figure 6.4

We demonstrate this with four variants, all cir
cles. Of course you can also use lighter colors, but
this optionwasneeded for the imageplaceholders
anyway.

\startMPcode
lmt_placeholder [

width = 4cm,
height = 3cm,
color = "yellow",
alternative = "circle".
reduction = 0.25,

] ;
\stopMPcode

There are only a fewpossible parameters. As you can see, proper dimensions need to be givenbecause
the defaults are pretty small.

name type default comment

color string red
width numeric 1
height numeric 1
reduction numeric 0
alternative string circle

Arrow uncorrected draft 18

7 Arrow

Arrows are somewhat complicated because they follow the path, are constructed using a pen, have a
fill and draw, and need to scale. One problem is that the size depends on the pen but the pen normally
is only known afterwards.

To some extent MetaFun can help you with this issue. In figure 7.1 we see some variants. The defini
tions are given below:

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm),
]

withpen pencircle scaled 2mm
withcolor "darkred" ;

\stopMPcode

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm),
length = 8,

]
withpen pencircle scaled 2mm
withcolor "darkgreen" ;

\stopMPcode

\startMPcode
draw lmt_arrow [

path = (fullcircle scaled 3cm rotated 145),
pen = (pencircle xscaled 4mm yscaled 2mm rotated 45),

]
withpen pencircle xscaled 1mm yscaled .5mm rotated 45
withcolor "darkblue" ;

\stopMPcode

\startMPcode
pickup pencircle xscaled 2mm yscaled 1mm rotated 45 ;
draw lmt_arrow [

path = (fullcircle scaled 3cm rotated 45),
pen = "auto",

]
withcolor "darkyellow" ;

\stopMPcode

There are some options that influence the shape of the arrowhead and its location on the path. You
can for instance ask for two arrowheads:

\startMPcode
pickup pencircle scaled 1mm ;

Arrow uncorrected draft 19

default length pen auto

Figure 7.1

draw lmt_arrow [
pen = "auto",
location = "both"
path = fullcircle scaled 3cm rotated 90,

] withcolor "darkgreen" ;
\stopMPcode

The shape can also be influenced although often this is not that visible:

\startMPcode
pickup pencircle scaled 1mm ;
draw lmt_arrow [

kind = "draw",
pen = "auto",
penscale = 4,
location = "middle",
alternative = "curved",
path = fullcircle scaled 3cm,

] withcolor "darkblue" ;
\stopMPcode

The location can also be given as percentage, as this example demonstrates. Watch how we draw only
arrow heads:

\startMPcode

Arrow uncorrected draft 20

pickup pencircle scaled 1mm ;
for i = 0 step 5 until 100 :

draw lmt_arrow [
alternative = "dimpled",
pen = "auto",
location = "percentage",
percentage = i,
dimple = (1/5 + i/200),
headonly = (i = 0),
path = fullcircle scaled 3cm,

] withcolor "darkyellow" ;
endfor ;

\stopMPcode

The supported parameters are:

name type default comment

path path
pen path

string auto
kind string fill fill or draw
dimple numeric 1/5
scale numeric 3/4
penscale numeric 3
length numeric 4
angle numeric 45
location string end end, middle or both
alternative string normal normal, dimpled or curved
percentage numeric 50
headonly boolean false

Shade uncorrected draft 21

8 Shade

This interface is still experimental!

Shading is complex. We go fromone color to another on a continuumeither linear or circular. We have
tomake sure that we cover the whole shape and thatmeans that we have to guess a little, although one
can influence this with parameters. It can involve a bit of trial and error, which is more complex that
using a graphical user interface but this is the price we pay. It goes like this:

\startMPcode
definecolor [name = "MyColor3", r = 0.22, g = 0.44, b = 0.66] ;
definecolor [name = "MyColor4", r = 0.66, g = 0.44, b = 0.22] ;

draw lmt_shade [
path = fullcircle scaled 4cm,
direction = "right",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] ;

draw lmt_shade [
path = fullcircle scaled 3cm,
direction = "left",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (45mm,0) ;

draw lmt_shade [
path = fullcircle scaled 5cm,
direction = "up",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (95mm,0) ;

draw lmt_shade [
path = fullcircle scaled 1cm,
direction = "down",
domain = { 0, 2 },
colors = { "MyColor3", "MyColor4" },

] shifted (135mm,0) ;
\stopMPcode

Normally this is good enough as demonstrated in figure 8.1 because we use shades as backgrounds.
In the case of a circular shade we need to tweak the domain because guessing doesn't work well.

\startMPcode
draw lmt_shade [

path = fullsquare scaled 4cm,
alternative = "linear",

Shade uncorrected draft 22

Figure 8.1 Simple circular shades.

direction = "right",
colors = { "MyColor3", "MyColor4" },

] ;

draw lmt_shade [
path = fullsquare scaled 3cm,
direction = "left",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (45mm,0) ;

draw lmt_shade [
path = fullsquare scaled 5cm,
direction = "up",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (95mm,0) ;

draw lmt_shade [
path = fullsquare scaled 1cm,
direction = "down",
alternative = "linear",
colors = { "MyColor3", "MyColor4" },

] shifted (135mm,0) ;
\stopMPcode

Figure 8.2 Simple rectangular shades.

Shade uncorrected draft 23

The direction relates to the boundingbox. Instead of a keyword you can also give two values, indicat
ing points on the boundingbox. Because a boundingbox has four points, the up direction is equivalent
to {0.5,2.5}.

The parameters center, factor, vector and domain are a bit confusing but at some point the way
they were implemented made sense, so we keep them as they are. The center moves the center of
the path that is used as anchor for one color proportionally to the bounding box: the given factor is
multiplied by half the width and height.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
domain = { .2, 1.6 },
center = { 1/10, 1/10 },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

center a

center b

Figure 8.3 Moving the centers.

A vector takes the given points on the path as centers for the colors, see figure 8.4.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
domain = { .2, 1.6 },
vector = { 2, 4 },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

Messingwith the radius in combinationwith the previouslymentioneddomain is really trial and error,
as seen in figure 8.5.

\startMPcode
draw lmt_shade [

Shade uncorrected draft 24

center a

center b

Figure 8.4 Using a vector (points).

path = fullcircle scaled 5cm,
domain = { 0.5, 2.5 },
radius = { 2cm, 6cm },
direction = "right",
colors = { "MyColor3", "MyColor4" },
trace = true,

] ;
\stopMPcode

center a

center b

Figure 8.5 Tweaking the radius.

But actually the radius used alone works quite well as shown in figure 8.6.

\startMPcode
draw lmt_shade [

path = fullcircle scaled 5cm,
colors = { "red", "green" },
trace = true,

] ;

draw lmt_shade [
path = fullcircle scaled 5cm,
colors = { "red", "green" },
radius = 2.5cm,

Shade uncorrected draft 25

trace = true,
] shifted (6cm,0) ;

draw lmt_shade [
path = fullcircle scaled 5cm,
colors = { "red", "green" },
radius = 2.0cm,
trace = true,

] shifted (12cm,0) ;
\stopMPcode

center a

center b

center a

center b

center a

center b

Figure 8.6 Just using the radius.

name type default comment

alternative string circular or linear
path path
trace boolean false
domain set of numerics
radius numeric

set of numerics
factor numeric
origin pair

set of pairs
vector set of numerics
colors set of strings
center numeric

set of numerics
direction string up, down, left, right

set of numerics two points on the boundingbox

Contour uncorrected draft 26

9 Contour

This feature started out as experiment triggered by a request on the mailing list. In the end it was a
nice exploration of what is possible with a bit of Lua. In a sense it is more subsystem than a simple
MetaPost macro because quite some Lua code is involved and more might be used in the future. It's
part of the fun.

A contour is a line through equivalent values 𝑧 that result from applying a function to two variables 𝑥
and 𝑦. There is quite a bit of analysis needed to get these lines. InMetaFunwe currently support three
methods for generating a colorful background and three for putting lines on top:

One solution is to use the the isolines and isobands methods are described on the marching squares
page of wikipedia:

https://en.wikipedia.org/wiki/Marching_squares

This method is relative efficient as we don't do much optimization, simply because it takes time and
the gain is not that much relevant. Because we support filling of multiple curves in one go, we get
efficient paths anyway without side effects that normally can occur frommany small paths alongside.
In these days of multi megabyte movies and sound clips a request of making a pdf file small is kind of
strange anyway. In practice the penalty is not that large.

As backgroundwe can use a bitmap. Thismethod is also quite efficient becausewe use indexed colors
which results in a very good compression. We use a simple mapping on a range of values.

A third method is derived from the one that is distributed as C source file at:

https://physiology.arizona.edu/people/secomb/contours
https://github.com/secomb/GreensV4

We can create a background image, which uses a sequence of closed curves2. It can also provide two
variants of lines around the contours (we tag them shape and shade). It's all a matter of taste. In the
meantime I managed to optimize the code a bit and I suppose that when I buy a new computer (the
code was developed on an 8 year old machine) performance is probably acceptable.

In order of useability you can think of isoband (band) with isolines (cell), bitmap (bitmap) with isolines
(cell) and finally shapes (shape) with edges (edge). But let's start with a couple of examples.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = .05,
ymin = -6, ymax = 6, ystep = .05,

levels = 7,
height = 5cm,
preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) + sin(y)",
background = "bitmap",

2 I have to figure out how to improve it a bit so that multiple path don't get connected.

Contour uncorrected draft 27

-1.82
-1.28
-0.54
0.11
0.84
1.56
1.96

0 2.51 5.03 7.54 10.05 12.57
-6

-3.6

-1.2

1.2

3.6

6

x = [0,12.566] ; y = [-6,6] ;

cos(x) + sin(y)

Figure 9.1

foreground = "edge",
linewidth = 1/2,
cache = true,

] ;
\stopMPcode

Infigure 9.1we see the result. There is a in this case black andwhite image generated andon topof that
we see lines. The step determines the resolution of the image. In practice using a bitmap is quite okay
and also rather efficient: we use an indexed colorspace and, as already was mentioned, because the
number of colors is limited such an image compresses well. A different rendering is seen in figure 9.2
wherewe use the shapemethod for the background. Thatmethod creates outlines but ismuch slower,
and when you use a high resolution (small step) it can take quite a while to identify the shapes. This is
why we set the cache flag.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = .10,
ymin = -6, ymax = 6, ystep = .10,

levels = 7,
preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) - sin(y)",
background = "shape",
foreground = "shape",
linewidth = 1/2,
cache = true,

] ;
\stopMPcode

Wementioned colorspace but haven't seen any color yet, so let's set some in figure 9.3. Two variants
are shown: a background shape with foreground shape and a background bitmap with a foreground
edge. The bitmap renders quite fast, definitely when we compare with the shape, while the quality is
as good at this size.

Contour uncorrected draft 28

-1.82

-1.28

-0.54

0.11

0.84

1.56

1.97

0 2.51 5.03 7.54 10.05 12.57

-6

-3.6

-1.2

1.2

3.6

6

x = [0,12.566] ; y = [-6,6] ;

cos(x) - sin(y)

Figure 9.2

\startMPcode{doublefun}
draw lmt_contour [

xmin = -10, xmax = 10, xstep = .1,
ymin = -10, ymax = 10, ystep = .1,

levels = 10,
height = 7cm,
color = "shade({1/2,1/2,0},{0,0,1/2})",
function = "x^2 + y^2",
background = "shape",
foreground = "shape",
linewidth = 1/2,
cache = true,

] xsized .45TextWidth ;
\stopMPcode

5.01
20.05
40.17
60.32
80.41
99.65
119.78
139.86
159.64
179.07
194.73

-10 -6 -2 2 6 10
-10

-6

-2

2

6

10

x = [-10,10] ; y = [-10,10] ;

x^2 + y^2

5.01
20.05
40.17
60.32
80.41
99.65
119.78
139.86
159.64
179.07
194.73

-10 -6 -2 2 6 10
-10

-6

-2

2

6

10

x = [-10,10] ; y = [-10,10] ;

x^2 + y^2

shape bitmap

Figure 9.3

We use the doublefun instance because we need to be sure that we don't run into issues with scaled
numbers, the default model in MetaPost. The function that gets passed is not using MetaPost but Lua,
so basically you can do very complex things. Here we directly pass code, but you can for instance also

Contour uncorrected draft 29

do this:

\startluacode
function document.MyContourA(x,y)

return x^2 + y^2
end

\stopluacode

and then function = "document.MyContourA(x,y)". As long as the function returns a valid num
ber we're okay. When you pass code directly you can use the preamble key to set local shortcuts. In
the previous examples we took sin and cos from the math library but you can also roll out your own
functions and/or use themore elaboratexmath library. The color parameter is also a function, one that
returns one or three arguments. In the next example we use lin to calculate a fraction of the current
level and total number of levels.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -3, xmax = 3, xstep = .01,
ymin = -1, ymax = 1, ystep = .01,

levels = 10,
default = .5,
height = 5cm,
function = "x^2 + y^2 + x + y/2",
color = "lin(l), 0, 1/2",
background = "bitmap"
foreground = "none",
cache = true,

] xsized TextWidth ;
\stopMPcode

0.05
1.1

2.61
4.11
5.56
7.04
8.57
10.05
11.48
12.66

-3 -1.8 -0.6 0.6 1.8 3
-1

-0.6

-0.2

0.2

0.6

1

x = [-3,3] ; y = [-1,1] ;

x^2 + y^2 + x + y/2

Figure 9.4

Instead of a bitmap we can use an isoband, which boils down to a set of tiny shapes that make up a
bigger one. This is shown in figure 9.5.

Contour uncorrected draft 30

\startMPcode{doublefun}
draw lmt_contour [

xmin = -3, xmax = 3, xstep = .01,
ymin = -1, ymax = 1, ystep = .01,

levels = 10,
default = .5,
height = 5cm,
function = "x^2 + y^2 + x + y/2",
color = "lin(l), 1/2, 0",
background = "band",
foreground = "none",
cache = true,

] xsized TextWidth ;
\stopMPcode

0.05
1.1

2.61
4.11
5.56
7.04
8.57
10.05
11.48
12.66

-3 -1.8 -0.6 0.6 1.8 3
-1

-0.6

-0.2

0.2

0.6

1

x = [-3,3] ; y = [-1,1] ;

x^2 + y^2 + x + y/2

Figure 9.5

You can draw several functions and see where they overlap:

\startMPcode{doublefun}
draw lmt_contour [

xmin = -pi, xmax = 4*pi, xstep = .1,
ymin = -3, ymax = 3, ystep = .1,

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)", "sin(x) + cos(y)",
"cos(x) + sin(y)", "cos(x) + cos(y)"

},
background = "bitmap",
linecolor = "black",
linewidth = 1/10,
color = "shade({1,1,0},{0,0,1})"
cache = true,

Contour uncorrected draft 31

] xsized TextWidth ;
\stopMPcode

1

2

3

4

5

6

7

-3.14 0 3.14 6.28 9.42 12.57

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-3.142,12.566] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 9.6

The range determines the 𝑧 value(s) that we take into account. You can also pass a list of colors to be
used. In figure 9.7 this is demonstrated. There we also show a variant foreground cell, which uses a
bit different method for calculating the edges.3

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = { "sin(x) + sin(y)", "sin(x) + cos(y)" },
background = "bitmap",
foreground = "cell",
linecolor = "white",
linewidth = 1/10,
colors = { (1/2,1/2,1/2), red, green, blue }
level = 3,
linewidth = 6,
cache = true,

] xsized TextWidth ;
\stopMPcode

Here the number of levels depends on the number of functions as each can overlap with another; for
instance the outcome of two functions can overlap or not which means 3 cases, and with a value not
being seen that gives 4 different cases.

3 This a bit of a playground: more variants might show up in due time.

Contour uncorrected draft 32

1

2

3

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y)

Figure 9.7

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

range = { -.1, .1 },
preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)",
"sin(x) + cos(y)",
"cos(x) + sin(y)",
"cos(x) + cos(y)"

},
background = "bitmap",
foreground = "none",
level = 3,
color = "shade({2/3,0,0},{2/3,1,2/3})"
cache = true,

] xsized TextWidth ;
\stopMPcode

Of course one can wonder how useful showing many functions but it can give nice pictures, as shown
in figure 9.8.

\startMPcode{doublefun}
draw lmt_contour [

xmin = -2*pi, xmax = 2*pi, xstep = .01,
ymin = -3, ymax = 3, ystep = .01,

range = { -.3, .3 },

Contour uncorrected draft 33

1

2

3

4

5

6

7

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.1,0.1]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 9.8

preamble = "local sin, cos = math.sin, math.cos",
functions = {

"sin(x) + sin(y)",
"sin(x) + cos(y)",
"cos(x) + sin(y)",
"cos(x) + cos(y)"

},
background = "bitmap",
foreground = "none",
level = 3,
color = "shade({1,0,0},{0,1,0})"
cache = true,

] xsized TextWidth ;
\stopMPcode

We can enlargen the window, which is demonstrated in figure 9.9. I suppose that such images only
make sense in educational settings.

In figure 9.10 we see different combinations of backgrounds (in color) and foregrounds (edges) in ac
tion.

\startMPcode{doublefun}
draw lmt_contour [

xmin = 0, xmax = 4*pi, xstep = 0,
ymin = -6, ymax = 6, ystep = 0,

levels = 5, legend = false, linewidth = 1/2,

preamble = "local sin, cos = math.sin, math.cos",
function = "cos(x) - sin(y)",
color = "shade({1/2,0,0},{0,0,1/2})",

Contour uncorrected draft 34

1

2

3

4

5

6

7

-6.28 -3.77 -1.26 1.26 3.77 6.28

-3

-1.8

-0.6

0.6

1.8

3

z = [-0.3,0.3]x = [-6.283,6.283] ; y = [-3,3] ;

sin(x) + sin(y), sin(x) + cos(y), cos(x) + sin(y), cos(x) + cos(y)

Figure 9.9

background = "bitmap", foreground = "cell",
] xsized .3TextWidth ;

\stopMPcode

There are quite some settings. Some deal with the background, some with the foreground and quite
some deal with the legend.

name type default comment

xmin numeric 0 needs to be set
xmax numeric 0 needs to be set
ymin numeric 0 needs to be set
ymax numeric 0 needs to be set
xstep numeric 0 auto 1/200 when zero
ystep numeric 0 auto 1/200 when zero
checkresult boolean false checks for overflow and NaN
defaultnan numeric 0 the value to be used when NaN
defaultinf numeric 0 the value to be used when overflow

levels numeric 10 number of different levels to show
level numeric only show this level (foreground)

preamble string shortcuts
function string x + y the result z value
functions list multiple functions (overlapping levels)
color string lin(l) the result color value for level l (1 or 3 values)
colors numeric used when set

background string bitmap band, bitmap, shape
foreground string auto cell, edge, shape auto

linewidth numeric .25
linecolor string gray

Contour uncorrected draft 35

width numeric 0 automatic when zero
height numeric 0 automatic when zero

trace boolean false

legend string all x y z function range all
legendheight numeric LineHeight
legendwidth numeric LineHeight
legendgap numeric 0
legenddistance numeric EmWidth
textdistance numeric 2EmWidth/3
functiondistance numeric ExHeight
functionstyle string ConTEXt style name
xformat string @0.2N number format template
yformat string @0.2N number format template
zformat string @0.2N number format template
xstyle string ConTEXt style name
ystyle string ConTEXt style name
zstyle string ConTEXt style name

axisdistance numeric ExHeight
axislinewidth numeric .25
axisoffset numeric ExHeight/4
axiscolor string black
ticklength numeric ExHeight

xtick numeric 5
ytick numeric 5
xlabel numeric 5
ylabel numeric 5

Contour uncorrected draft 36

bitmap edge bitmap cell bitmap none

shape shape shape edge shape none

band edge band cell band none

Figure 9.10

Surface uncorrected draft 37

10 Surface

This is work in progress so only some examples are shown here. Yet to be decided is howwe deal with
axis and such.

In figure 10.1 we see an example of a plot with axis as well as lines drawn.

\startMPcode{doublefun}
draw lmt_surface [

preamble = "local sin, cos = math.sin, math.cos",
code = "sin(x*x) - cos(y*y)"
xmin = -3,
xmax = 3,
ymin = -3,
ymax = 3,
xvector = { -0.3, -0.3 },
height = 5cm,
axis = { 40mm, 40mm, 30mm },
clipaxis = true,
axiscolor = "gray",

] xsized .8TextWidth ;
\stopMPcode

Figure 10.1

In figure 10.2 we don't draw the axis and lines. We also use a high resolution.

\startMPcode{doublefun}
draw lmt_surface [

Surface uncorrected draft 38

preamble = "local sin, cos = math.sin, math.cos",
code = "sin(x*x) - cos(y*y)"
color = "f, f/2, 1-f"
color = "f, f, 0"
xstep = .02,
ystep = .02,
xvector = { -0.4, -0.4 },
height = 5cm,
lines = false,

] xsized .8TextWidth ;
\stopMPcode

Figure 10.2

The preliminary set of parameters is:

name type default comment

code string color string"f, 0, 0"
linecolor numeric 1 gray scale
xmin numeric -1
xmax numeric 1
ymin numeric -1
ymax numeric 1
xstep numeric .1
ystep numeric .1
snap numeric .01
xvector list { -0.7, -0.7 }
yvector list { 1, 0 }
zvector list { 0, 1 }
light list { 3, 3, 10 }
bright numeric 100
clip boolean false

Surface uncorrected draft 39

lines boolean true
axis list { }
clipaxis boolean false
axiscolor string "gray"
axislinewidth numeric 1/2

Mesh uncorrected draft 40

11 Mesh

This is more a gimmick than of real practical use. A mesh is a set of paths that gets transformed into
hyperlinks. So, as a start you need to enable these:

\setupinteraction
[state=start,
color=white,
contrastcolor=white]

We just give a bunch of examples ofmeshes. A path is divided in smaller paths and each of them is part
of the same hyperlink. An application is for instance clickablemaps but (so far) only Acrobat supports
such paths.

\startuseMPgraphic{MyPath1}
fill OverlayBox withcolor "darkyellow" ;
save p ; path p[] ;
p1 := unitsquare xysized(OverlayWidth/4, OverlayHeight/4) ;
p2 := unitsquare xysized(2OverlayWidth/4,3OverlayHeight/5) shifted (
OverlayWidth/4,0) ;

p3 := unitsquare xysized(OverlayWidth/4, OverlayHeight) shifted (3
OverlayWidth/4,0) ;

fill p1 withcolor "darkred" ;
fill p2 withcolor "darkblue" ;
fill p3 withcolor "darkgreen" ;
draw lmt_mesh [paths = { p1, p2, p3 }] ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

Such a definition is used as follows. First we define the mesh as overlay:

\defineoverlay[MyPath1][\useMPgraphic{MyPath1}]

Then, later on, this overlay can be used as background for a button. Herewe just jump to another page.
The rendering is shown in figure 11.1.

\button
[height=3cm,
width=4cm,
background=MyPath1,
frame=off]
{Example 1}
[realpage(2)]

More interestingarenon-rectangular shapes soweshowabunchof them. Youcanpassmultiplepaths,
influence the accuracy by setting the number of steps and show the mesh with the tracing option.

\startuseMPgraphic{MyPath2}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight) ;

Mesh uncorrected draft 41

Example 1

Figure 11.1

save p ; path p ; p := for i=1 upto length(q) :
(center q) -- (point (i-1) of q) -- (point i of q) -- (center q) --

endfor cycle ;
fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
paths = { p }

] withcolor "darkred" ;

setbounds currentpicture to OverlayBox ;
\stopuseMPgraphic

\startuseMPgraphic{MyPath3}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight)
randomized 3mm ;

fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
paths = { meshed(q,OverlayBox,.05) }

] withcolor "darkgreen" ;
% draw OverlayMesh(q,.025) withcolor "darkgreen" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath4}
save q ; path q ; q := unitcircle xysized(OverlayWidth,OverlayHeight)
randomized 3mm ;

fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.0125,
paths = { q }

] withcolor "darkyellow" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

Mesh uncorrected draft 42

\startuseMPgraphic{MyPath5}
save q ; path q ; q := unitdiamond xysized(OverlayWidth,OverlayHeight)
randomized 2mm ;

q := q shifted - center q shifted center OverlayBox ;
fill q withcolor "darkgray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.0125,
paths = { q }

] withcolor "darkmagenta" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath6}
save p ; path p[] ;
p1 := p2 := fullcircle xysized(2OverlayWidth/5,2OverlayHeight/3) ;
p1 := p1 shifted - center p1 shifted center OverlayBox shifted (-1
OverlayWidth/4,0) ;

p2 := p2 shifted - center p2 shifted center OverlayBox shifted (1
OverlayWidth/4,0) ;

fill p1 withcolor "middlegray" ;
fill p2 withcolor "middlegray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.02,
paths = { p1, p2 }

] withcolor "darkcyan" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

\startuseMPgraphic{MyPath7}
save p ; path p[] ;
p1 := p2 := fullcircle xysized(2OverlayWidth/5,2OverlayHeight/3) rotated 45
;

p1 := p1 shifted - center p1 shifted center OverlayBox shifted (-1
OverlayWidth/4,0) ;

p2 := p2 shifted - center p2 shifted center OverlayBox shifted (1
OverlayWidth/4,0) ;

fill p1 withcolor "middlegray" ;
fill p2 withcolor "middlegray" ;
draw lmt_mesh [

trace = true,
auto = true,
step = 0.01,
box = OverlayBox enlarged -5mm,
paths = { p1, p2 }

] withcolor "darkcyan" ;

Mesh uncorrected draft 43

draw OverlayBox enlarged -5mm withcolor "darkgray" ;
setbounds currentpicture to OverlayBox ;

\stopuseMPgraphic

This is typical a feature that, if used at all, needs some experimenting but at least the traced images
look interesting enough. The six examples are shown in figure 11.2.

Example 2 Example 3

MyPath2 MyPath3

Example 4 Example 5

MyPath4 MyPath5

Example 6 Example 7

MyPath6 MyPath7

Figure 11.2

Function uncorrected draft 44

12 Function

It is tempting to make helpers that can do a lot. However, that also means that we need to explain a
lot. Instead it makes more sense to have specific helpers and just make another one when needed.
Rendering functions falls into this category. At some point users will come up with specific cases that
other users can use. Therefore, the solution presented here is not the ultimate answer. We start with
a simple example:

Figure 12.1

This image is defined as follows:

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -2, ymax = 2,

sx = 1mm, xsmall = 80, xlarge = 20,
sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

code = "1.5 * math.sind (50 * x - 150)",
]

xsized 8cm
;

\stopMPcode

We can drawmultiple functions in one go. The next sample split the drawing over a few ranges and is
defined as follows; in figure 12.2 we see the result.

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -2, ymax = 2,

sx = 1mm, xsmall = 80, xlarge = 20,

Function uncorrected draft 45

sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

xticks = "bottom",
yticks = "left",
xlabels = "nolimits",
ylabels = "yes",
code = "1.5 * math.sind (50 * x - 150)",

% frame = "ticks",
frame = "sticks",
ycaption = "\strut \rotate[rotation=90]{something vertical, using
\sin{x}}",

xcaption = "\strut something horizontal",
functions = {

[xmin = 1.0, xmax = 7.0, close = true, fillcolor = "darkred"],
[xmin = 7.0, xmax = 12.0, close = true, fillcolor = "darkgreen"],
[xmin = 12.0, xmax = 19.0, close = true, fillcolor = "darkblue"],
[

drawcolor = "darkyellow",
drawsize = 2

]
}

]
xsized TextWidth

;
\stopMPcode

Instead of the same function, we can draw different ones and when we use transparency we get nice
results too.

\definecolor[MyColorR][r=.5,t=.5,a=1]
\definecolor[MyColorG][g=.5,t=.5,a=1]
\definecolor[MyColorB][b=.5,t=.5,a=1]

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 20, xstep = .1,
ymin = -1, ymax = 1,

sx = 1mm, xsmall = 80, xlarge = 20,
sy = 4mm, ysmall = 40, ylarge = 4,

linewidth = .025mm, offset = .1mm,

functions = {
[

code = "math.sind (50 * x - 150)",
close = true,
fillcolor = "MyColorR"

Function uncorrected draft 46

-2

2

something horizontal

so
m
et
hi
ng

ve
rt
ic
al
, u
si
ng
si
n
𝑥

Figure 12.2

],
[

code = "math.cosd (50 * x - 150)",
close = true,
fillcolor = "MyColorB"

]
},

]
xsized TextWidth

;
\stopMPcode

It is important to choose a good step. In figure 12.4 we show 4 variants and it is clear that in this case
using straight line segments is better (or at least more efficient with small steps).

\startMPcode{doublefun}
draw lmt_function [

xmin = 0, xmax = 10, xstep = .1,
ymin = -1, ymax = 1,

Function uncorrected draft 47

Figure 12.3

sx = 1mm, sy = 4mm,

linewidth = .025mm, offset = .1mm,

code = "math.sind (50 * x^2 - 150)",
shape = "curve"

]
xsized .45TextWidth

;
\stopMPcode

You canmanipulate the axis (a bit) by tweaking the first and last ticks. In the case of figure 12.5 we also
put the shape on top of the axis.

\startMPcode{doublefun}
draw lmt_function [

xfirst = 9, xlast = 21, ylarge = 2, ysmall = 1/5,
yfirst = -1, ylast = 1, xlarge = 2, xsmall = 1/4,

xmin = 10, xmax = 20, xstep = .25,
ymin = -1, ymax = 1,

drawcolor = "darkmagenta",
shape = "steps",
code = "0.5 * math.random(-2,2)",
linewidth = .025mm,
offset = .1mm,
reverse = true,

]
xsized TextWidth

;
\stopMPcode

The whole repertoire of parameters (in case of doubt just check the source code as this kind of code is
not that hard to follow) is:

Function uncorrected draft 48

xstep=.10 and shape="curve" xstep=.01 and shape="curve"

xstep=.10 and shape="line" xstep=.01 and shape="line"

Figure 12.4

Figure 12.5

name type default comment

sx numeric 1mm horizontal scale factor
sy numeric 1mm vertical scale factor
offset numeric 0
xmin numeric 1
xmax numeric 1
xstep numeric 1
xsmall numeric optional step of small ticks
xlarge numeric optional step of large ticks

Function uncorrected draft 49

xlabels string no yes, no or nolimits
xticks string bottom possible locations are top, middle and bottom
xcaption string
ymin numeric 1
ymax numeric 1
ystep numeric 1
ysmall numeric optional step of small ticks
ylarge numeric optional step of large ticks
xfirst numeric left of xmin
xlast numeric right of xmax
yfirst numeric below ymin
ylast numeric above ymax
ylabels string no yes, no or nolimits
yticks string left possible locations are left, middle and right
ycaption string
code string
close boolean false
shape string curve or line
fillcolor string
drawsize numeric 1
drawcolor string
frame string options are yes, ticks and sticks
linewidth numeric .05mm
pointsymbol string like type dots
pointsize numeric 2
pointcolor string
xarrow string
yarrow string
reverse boolean false when true draw the function between axis and labels

Chart uncorrected draft 50

13 Chart

This is another example implementation but it might be handy for simple cases of presenting results.
Of course one can debate the usefulness of certain ways of presenting but here we avoid that discus
sion. Let's start with a simple pie chart (figure 13.1).

\startMPcode
draw lmt_chart_circle [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
trace = true,

] ;
\stopMPcode

1

4

32

5

7
6

Figure 13.1

As with all these LMTX extensions, you're invited to play with the parameters. in figure 13.2 we see a
variant that adds labels as well as one that has a legend.

The styling of labels and legends can be influenced independently.

\startMPcode
draw lmt_chart_circle [

height = 4cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
trace = true,
labelcolor = "white",
labelformat = "@0.1f",
labelstyle = "ttxx"

] ;
\stopMPcode

\startMPcode
draw lmt_chart_circle [

height = 4cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = false,

Chart uncorrected draft 51

trace = true,
linewidth = .125mm,
originsize = 0,
labeloffset = 3cm,
labelstyle = "bfxx",
legendstyle = "tfxx",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;

\stopMPcode

1.0

4.0

3.0
2.0

5.0

7.0
6.0

1

4

3
2

5

7
6

first

second

third

fourth

fifth

sixths

sevenths

Figure 13.2

A second way of rendering are histograms, and the interface is mostly the same. In figure 13.3 we see
two variants

\startMPcode
draw lmt_chart_histogram [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,

] ;
\stopMPcode

and one with two datasets:

\startMPcode
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

},
background = "lightgray",
trace = true,

] ;
\stopMPcode

Chart uncorrected draft 52

1 4 3 2 5 7 6 1 4 3 2 5 7 61 2 3 4 5 6 7

Figure 13.3

A cumulative variant is shown in figure 13.4 where we also add a background (color).

\startMPpage[offset=5mm]
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

},
percentage = true,
cumulative = true,
showlabels = false,
backgroundcolor = "lightgray",

] ;
\stopMPpage

Figure 13.4

A different way of using colors is shown in figure 13.5 where each sample gets its own (same) color.

\startMPcode
draw lmt_chart_histogram [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 1, 2, 3, 4, 5, 6, 7 }

Chart uncorrected draft 53

},
percentage = true,
cumulative = true,
showlabels = false,
background = "lightgray",
colormode = "local",

] ;
\stopMPcode

Figure 13.5

As with pie charts you can add labels and a legend:

\startMPcode
draw lmt_chart_histogram [

height = 6cm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,
labelstyle = "ttxx",
labelanchor = "top",
labelcolor = "white",
backgroundcolor = "middlegray",

] ;
\stopMPcode

The previous and next examples are shown in figure 13.6. The height specified here concerns the
graphic and excludes the labels,

\startMPcode
draw lmt_chart_histogram [

height = 6cm,
width = 10mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
trace = true,
maximum = 7.5,
linewidth = 1mm,
originsize = 0,

Chart uncorrected draft 54

labelanchor = "bot",
labelcolor = "black"
labelstyle = "bfxx"
legendstyle = "tfxx",
labelstrut = "yes",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;

\stopMPcode

1 4 3 2 5 7 6 1 4 3 2 5 7 6

first

second

third

fourth

fifth

sixths

sevenths

Figure 13.6

The third category concerns bar charts that run horizontal. Again we see similar options driving the
rendering (figure 13.7).

\startMPcode
draw lmt_chart_bar [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,

] ;
\stopMPcode

\startMPcode
draw lmt_chart_bar [

samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
showlabels = false,
backgroundcolor = "lightgray",

] ;
\stopMPcode

Chart uncorrected draft 55

Determining the offset of labels is manual work:

\startMPcode
draw lmt_chart_bar [

width = 4cm,
height = 5mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
percentage = true,
cumulative = true,
trace = true,
labelcolor = "white",
labelstyle = "ttxx",
labelanchor = "rt",
labeloffset = .25EmWidth,
backgroundcolor = "middlegray",

] ;
\stopMPcode

1
4
3
2
5
7
6

1

4

3

2

5

7

6

Figure 13.7

Here is one with a legend (rendered in figure 13.8):

\startMPcode
draw lmt_chart_bar [

width = 8cm,
height = 10mm,
samples = { { 1, 4, 3, 2, 5, 7, 6 } },
trace = true,
maximum = 7.5,
linewidth = 1mm,
originsize = 0,
labelanchor = "lft",
labelcolor = "black"
labelstyle = "bfxx"
legendstyle = "tfxx",
labelstrut = "yes",
legend = {

"first", "second", "third", "fourth",
"fifth", "sixths", "sevenths"

}
] ;
\stopMPcode

Chart uncorrected draft 56

1

4

3

2

5

7

6

first

second

third

fourth

fifth

sixths

sevenths

Figure 13.8

You can have labels per dataset as well as drawmultiple datasets in one image, see figure 13.9:

\startMPcode
draw lmt_chart_bar [

samples = {
{ 1, 4, 3, 2, 5, 7, 6 },
{ 3, 2, 5, 7, 5, 6, 1 }

},
labels = {

{ "a1", "b1", "c1", "d1", "e1", "f1", "g1" },
{ "a2", "b2", "c2", "d2", "e2", "f2", "g2" }

},
labeloffset = -EmWidth,
labelanchor = "center",
labelstyle = "ttxx",
trace = true,
center = true,

] ;

draw lmt_chart_bar [
samples = {

{ 1, 4, 3, 2, 5, 7, 6 }
},
labels = {

{ "a", "b", "c", "d", "e", "f", "g" }
},
labeloffset = -EmWidth,
labelanchor = "center",
trace = true,
center = true,

] shifted (10cm,0) ;
\stopMPcode

Chart uncorrected draft 57

a1

b1

c1

d1

e1

f1

g1

a2

b2

c2

d2

e2

f2

g2

a
b
c
d
e
f
g

Figure 13.9

name type default comment

originsize numeric 1mm
trace boolean false
showlabels boolean true
center boolean false

samples list
cumulative boolean false

percentage boolean false
maximum numeric 0
distance numeric 1mm

labels list
labelstyle string
labelformat string
labelstrut string auto
labelanchor string
labeloffset numeric 0
labelfraction numeric 0.8
labelcolor string

backgroundcolor string
drawcolor string white
fillcolors list primary (dark) colors
colormode string global or local

linewidth numeric .25mm

legendcolor string
legendstyle string
legend list

Pie charts have:

Chart uncorrected draft 58

name default

height 5cm
width 5mm
labelanchor
labeloffset 0
labelstrut no

Histograms come with:

name default

height 5cm
width 5mm
labelanchor bot
labeloffset 1mm
labelstrut auto

Bar charts use:

name default

height 5cm
width 5mm
labelanchor lft
labeloffset 1mm
labelstrut no

SVG uncorrected draft 59

14 SVG

There is not that much to tell about this command. It translates an svg image to MetaPost operators.
We took a few images from amozilla emoji font:

\startMPcode
draw lmt_svg [

filename = "mozilla-svg-002.svg",
height = 2cm,
width = 8cm,

] ;
\stopMPcode

Because we get pictures, you canmess around with them:

\startMPcode
picture p ; p := lmt_svg [filename = "mozilla-svg-001.svg"] ;
numeric w ; w := bbwidth(p) ;
draw p ;
draw p xscaled -1 shifted (2.5*w,0);
draw p rotatedaround(center p,45) shifted (3.0*w,0) ;
draw image (

for i within p : if filled i :
draw pathpart i withcolor green ;

fi endfor ;
) shifted (4.5*w,0);
draw image (

for i within p : if filled i :
fill pathpart i withcolor red withtransparency (1,.25) ;

fi endfor ;
) shifted (6*w,0);

\stopMPcode

Of course. often youwon't know in advancewhat is inside the image and how (well) it has been defined
so the previous example is more about showing someMetaPost muscle.

The supported parameters are:

SVG uncorrected draft 60

name type default comment

filename path
width numeric
height numeric

Poisson uncorrected draft 61

15 Poisson

When, after a post on the ConTEXt mailing list, Aditya pointed me to an article on mazes I ended up at
poisson distributions which to me looks nicer than what I normally do, fill a grid and then randomize
the resulting positions. With some hooks this can be used for interesting patterns too. The algorithm
is based on the discussion at:

http://devmag.org.za/2009/05/03/poisson-disk-sampling

Other websites mention some variants on that but I saw no reason to look into those in detail. I can
imaginemore random related variants in this domain so consider this an appetizer. The user is rather
simple because some macro is assumed to deal with the rendering of the distributed points. We just
show some examples (because the interface might evolve).

\startMPcode
draw lmt_poisson [

width = 40,
height = 40,
distance = 1,
count = 20,
macro = "draw"

] xsized 4cm ;
\stopMPcode

\startMPcode
vardef tst (expr x, y, i, n) =

fill fullcircle scaled (10+10*(i/n)) shifted (10x,10y)
withcolor "darkblue" withtransparency (1,.5) ;

enddef ;

draw lmt_poisson [
width = 50,
height = 50,
distance = 1,
count = 20,
macro = "tst",
arguments = 4

] xsized 6cm ;
\stopMPcode

Poisson uncorrected draft 62

\startMPcode
vardef tst (expr x, y, i, n) =

fill fulldiamond scaled (5+5*(i/n)) randomized 2 shifted (10x,10y)
withcolor "darkgreen" ;

enddef ;

draw lmt_poisson [
width = 50,
height = 50,
distance = 1,
count = 20,
macro = "tst",
initialx = 10,
initialy = 10,
arguments = 4

] xsized 6cm ;
\stopMPcode

\startMPcode{doublefun}
vardef tst (expr x, y, i, n) =

fill fulldiamond randomized (.2*i/n) shifted (x,y);
enddef ;

draw lmt_poisson [

Poisson uncorrected draft 63

width = 150,
height = 150,
distance = 1,
count = 20,
macro = "tst",
arguments = 4

] xsized 6cm withcolor "darkmagenta" ;
\stopMPcode

\startMPcode
vardef tst (expr x, y, i, n) =

draw externalfigure "cow.pdf" ysized (10+5*i/n) shifted (10x,10y);
enddef ;
draw lmt_poisson [

width = 20,
height = 20,
distance = 1,
count = 20,
macro = "tst"
arguments = 4,

] xsized 6cm ;
\stopMPcode

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

name:cow.pdffile:cow.pdfstate:unknown

Poisson uncorrected draft 64

The supported parameters are:

name type default comment

width numeric 50
height numeric 50
distance numeric 1
count numeric 20
macro string "draw"
initialx numeric 10
initialy numeric 10
arguments numeric 4

Fonts uncorrected draft 65

16 Fonts

Fonts are interesting phenomena but can also be quite hairy. Shapes can be missing or not to your
liking. There canbebugs too. Control over fontshas alwaysbeenon theagendaofTEXmacropackages,
and ConTEXt provides a lot of control, especially inMkIV. In LMTXwe add somemore to that: we bring
back MetaFont's but now in the MetaPost way. A simple example shows how this is (maybe I should
say: will be) done.

We define three simple shapes and do that (for now) in the simplefun instance because that's what is
used when generating the glyphs.

\startMPcalculation{simplefun}
vardef TestGlyphLB =

image (
fill (unitsquare xscaled 10 yscaled 16 shifted (0,-3))

withcolor "darkred" withtransparency (1,.5)
;

)
enddef ;

vardef TestGlyphRB =
image (

fill (unitcircle xscaled 15 yscaled 12 shifted (0,-2))
withcolor "darkblue" withtransparency (1,.5)

;
)

enddef ;

vardef TestGlyphFS =
image (

fill (unittriangle xscaled 15 yscaled 12 shifted (0,-2))
withcolor "darkgreen" withtransparency (1,.5)

;
)

enddef ;
\stopMPcalculation

This is not that spectacular, not is the following:

\startMPcalculation{simplefun}
lmt_registerglyphs [

name = "test",
units = 10, % 1000

] ;

lmt_registerglyph [
category = "test",
unicode = 123,
code = "draw TestGlyphLB ;",

Fonts uncorrected draft 66

width = 10, % 1000
height = 13, % 1300
depth = 3 % 300

] ;

lmt_registerglyph [
category = "test",
unicode = 125,
code = "draw TestGlyphRB ;",
width = 15,
height = 10,
depth = 2

] ;

lmt_registerglyph [
category = "test",
unicode = "/",
code = "draw TestGlyphFS ;",
width = 15,
height = 10,
depth = 2

] ;

\stopMPcalculation

We now define a font. We always use a font as starting point which has the advantage that we always
get something reasonable when we test. Of course you can use this mps font feature with other fonts
too.

\definefontfeature[metapost][metapost=test] % or: mps={category=test}

\definefont[MyFontA][Serif*metapost @ 10bp]
\definefont[MyFontB][Serif*metapost @ 12bp]

These fonts can now be used:

\MyFontA \dorecurse{20}{\{ /#1/ \} }\par
\MyFontB \dorecurse{20}{\{ /#1/ \} }\par

We get some useless text but it demonstrates the idea:

{/1/}{/2/}{/3/}{/4/}{/5/}{/6/}{/7/}
{/8/}{/9/}{/10/}{/11/}{/12/}{/13/}{/14/
}{/15/}{/16/}{/17/}{/18/}{/19/}{/20/}

{/1/}{/2/}{/3/}{/4/}{/5/}{/6/}
{/7/}{/8/}{/9/}{/10/}{/11/}{/12/
}{/13/}{/14/}{/15/}{/16/}{/17/}{
/18/}{/19/}{/20/}

Fonts uncorrected draft 67

If youknowabitmoreaboutConTEXt youcould think: sowhat,wasn't this alreadypossible? Sure, there
are various ways to achieve similar effects, but the method described here has a few advantages: it's
relatively easy andwe're talking about real fonts here. Thismeans that using the shapes for characters
is pretty efficient.

A more realistic example is given next. It is a subset of what is available in the ConTEXt core.

\startMPcalculation{simplefun}

pen SymbolPen ; SymbolPen := pencircle scaled 1/4 ;

vardef SymbolBullet =
fill unitcircle scaled 3 shifted (1.5,1.5) withpen SymbolPen

enddef ;
vardef SymbolSquare =

draw unitsquare scaled (3-1/16) shifted (1.5,1.5) withpen SymbolPen
enddef ;
vardef SymbolBlackDiamond =

fillup unitdiamond scaled (3-1/16) shifted (1.5,1.5) withpen SymbolPen
enddef ;
vardef SymbolNotDef =

draw center unitcircle
scaled 3
shifted (1.5,1.5)
withpen SymbolPen scaled 4

enddef ;

lmt_registerglyphs [
name = "symbols",
units = 10,
usecolor = true,
width = 6,
height = 6,
depth = 0,
code = "SymbolNotDef ;",

] ;

lmt_registerglyph [category = "symbols", unicode = "0x2022",
code = "SymbolBullet ;"

] ;
lmt_registerglyph [category = "symbols", unicode = "0x25A1",

code = "SymbolSquare ;"
] ;
lmt_registerglyph [category = "symbols", unicode = "0x25C6",

code = "SymbolBlackDiamond ;"
] ;

\stopMPcalculation

We could use these symbols in for instance itemize symbols. Youmight notice the potential difference
in bullets:

Fonts uncorrected draft 68

\definefontfeature[metapost][metapost=symbols]

\definefont[MyFont] [Serif*metapost sa 1]

\startitemize[packed]
\startitem {\MyFont • }\quad Regular rendering. \stopitem
\startitem {\MyFont\red • }\quad Rendering with color.
\stopitem

\startitem {\MyFont\blue\showglyphs • }\quad Idem but with boundingboxes
shown. \stopitem

\stopitemize

• • □ ◆ Regular rendering.
• • □ ◆ Rendering with color.
• • □ ◆ Idem but with boundingboxes shown.

When blown up, these symbols look as follows:

•□◆•□◆•□◆

You can use these tricks with basically any font, so also withmath fonts. However, at least for now, you
need to define these before the font gets loaded.

\startMPcalculation{simplefun}

pen KindergartenPen ; KindergartenPen := pencircle scaled 1 ;

% 10 x 10 grid

vardef KindergartenEqual =
draw image

(
draw (2,6) -- (9,5) ;
draw (2,4) -- (8,3) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenEqual"

enddef ;
vardef KindergartenPlus =

draw image
(

draw (1,4) -- (9,5) ;
draw (4,1) -- (5,8) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenPlus"

Fonts uncorrected draft 69

enddef ;
vardef KindergartenMinus =

draw image
(

draw (1,5) -- (9,4) ;
)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenMinus"

enddef ;
vardef KindergartenTimes =

draw image
(

draw (2,1) -- (9,8) ;
draw (8,1) -- (2,8) ;

)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenTimes"

enddef ;
vardef KindergartenDivided =

draw image
(

draw (2,1) -- (8,9) ;
)
shifted (0,-2)
withpen KindergartenPen
withcolor "KindergartenDivided"

enddef ;

lmt_registerglyphs [
name = "kindergarten",
units = 10,

% usecolor = true,
width = 10,
height = 8,
depth = 2,

] ;

lmt_registerglyph [category = "kindergarten", unicode = "0x003D",
code = "KindergartenEqual"

] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x002B",

code = "KindergartenPlus"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x2212",

code = "KindergartenMinus"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x00D7",

Fonts uncorrected draft 70

code = "KindergartenTimes"
] ;
lmt_registerglyph [category = "kindergarten", unicode = "0x002F",

code = "KindergartenDivided"
] ;

\stopMPcalculation

We also define the colors. If we leave usecolor to true, the text colors will be taken.

\definecolor[KindergartenEqual] [darkgreen]
\definecolor[KindergartenPlus] [darkred]
\definecolor[KindergartenMinus] [darkred]
\definecolor[KindergartenTimes] [darkblue]
\definecolor[KindergartenDivided][darkblue]

\definefontfeature[mathextra][metapost=kindergarten]

Here is an example:

\switchtobodyfont[cambria]

$ y = 2 \times x + a - b / 3 $

Scaled up:

𝑦 = 2× 𝑥+ 𝑎− 𝑏/3
Of course thiswon't work outwell (yet) with extensible yet, due to related definitions forwhichwedon't
have an interface yet. There is one thing that you need to keep inmind: the fonts are flushedwhen the
document gets finalized so you have to make sure that colors are defined at the level that they are still
valid at that time. So best put color definitions like the above in the document style.

This is an experimental interface anyway so we don't explain the parameters yet as there might be
more of them.

Color uncorrected draft 71

17 Color

There are by now plenty of examples made by users that use color and MetaFun provides all kind of
helpers. So dowe needmore? When I play aroundwith things or when users comewith questions that
then result in a nice looking graphic, the resultmight en dup as example of coding. The following is an
example of showing of colors. We have a helper that goes from a so called lab specification to rgb and
it does that via xyz transformations. It makes no real sense to interface this beyond this converter. We
use this opportunity to demonstrate how to make an interface.

\startMPdefinitions
vardef cielabmatrix(expr l, mina, maxa, minb, maxb, stp) =
image (
for a = mina step stp until maxa :
for b = minb step stp until maxb :
draw (a,b) withcolor labtorgb(l,a,b) ;

endfor ;
endfor ;

)
enddef ;

\stopMPdefinitions

Here we define amacro that makes a color matrix. It can be used as follows

\startcombination[nx=4,ny=1]
{\startMPcode draw cielabmatrix(20, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 20}}

{\startMPcode draw cielabmatrix(40, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 40}}

{\startMPcode draw cielabmatrix(60, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 60}}

{\startMPcode draw cielabmatrix(80, -100, 100, -100, 100, 5) ysized 35mm
withpen pencircle scaled 2.5 ; \stopMPcode} {\type {l = 80}}

\stopcombination

l = 20 l = 40 l = 60 l = 80

One can of course mess around a bit:

\startcombination[nx=4,ny=1]
{\startMPcode draw cielabmatrix(20, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 20}}

Color uncorrected draft 72

{\startMPcode draw cielabmatrix(40, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 40}}

{\startMPcode draw cielabmatrix(60, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 60}}

{\startMPcode draw cielabmatrix(80, -100, 100, -100, 100, 10) ysized 35mm
randomized 1 withpen pensquare scaled 4 ; \stopMPcode} {\type {l = 80}}

\stopcombination

l = 20 l = 40 l = 60 l = 80

Normally, when you don't go beyond this kind of usage, a simple macro like the above will do. But
when you want to make something that is upward compatible (which is one of the principles behind
the ConTEXt user interface(s), you can do this:

\startcombination[nx=4,ny=1]
{\startMPcode draw lmt_labtorgb [l = 20, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l = 20}}

{\startMPcode draw lmt_labtorgb [l = 40, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l = 40}}

{\startMPcode draw lmt_labtorgb [l = 60, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l = 60}}

{\startMPcode draw lmt_labtorgb [l = 80, step = 20] ysized 35mm withpen
pencircle scaled 8 ; \stopMPcode} {\type {l = 80}}

\stopcombination

l = 20 l = 40 l = 60 l = 80

This is a predefined macro in the reserved lmt_ namespace (don't use that one yourself, create your
own). First we preset the possible parameters:

presetparameters "labtorgb" [
mina = -100,
maxa = 100,
minb = -100,

Color uncorrected draft 73

maxb = 100,
step = 5,
l = 50,

] ;

Next we define the main interface macro:

def lmt_labtorgb = applyparameters "labtorgb" "lmt_do_labtorgb" enddef ;

Last we do the actual implementation, which looks a lot like the one we started with:

vardef lmt_do_labtorgb =
image (
pushparameters "labtorgb" ;
save l ; l := getparameter "l" ;
for a = getparameter "mina" step getparameter "step"

until getparameter "maxa" :
for b = getparameter "minb" step getparameter "step"

until getparameter "maxb" :
draw (a,b) withcolor labtorgb(l,a,b) ;

endfor ;
endfor ;

popparameters ;
)

enddef ;

Of course we can now add all kind of extra features but this is what we currently have. Maybe this
doesn't belong in the MetaFun core but it's not that much code and a nice demo. After all, there is
much in there that is seldom used.

Groups uncorrected draft 74

18 Groups

This is just a quick example of an experimental features.

\startMPcode
fill fullcircle scaled 2cm shifted (5mm,2cm) withcolor "darkblue" ;
fill fullcircle scaled 2cm shifted (15mm,2cm) withcolor "darkblue" ;

fill fullcircle scaled 2cm shifted (5mm,-2cm) withcolor "darkgreen" ;
fill fullcircle scaled 2cm shifted (15mm,-2cm) withcolor "darkgreen" ;

draw image (
fill fullcircle scaled 4cm withcolor "darkred" ;
fill fullcircle scaled 4cm shifted (2cm,0) withcolor "darkred" ;

setgroup currentpicture to boundingbox currentpicture
withtransparency (1,.5) ;

) ;

draw image (
fill fullcircle scaled 3cm withcolor "darkyellow"

withtransparency (1,.5) ;
fill fullcircle scaled 3cm shifted (2cm,0) withcolor "darkyellow"

withtransparency (1,.5) ;
) ;

addbackground withcolor "darkgray" ;
\stopMPcode

A group create an object that when transparency is applied is treated as a group.

(Groups might become more powerful in the future, like reusable components but then some more
juggling is needed.)

Extensions uncorrected draft 75

19 Extensions

19.1 Introduction
This is an uncorrected preliminary chapter.

The TEX and MetaPost macro languages each have their characteristics and as a result the Lua inter
faces in both these subsystems are different. There are however some similarities in fetching from,
scanning, and pushing back into these subsystems and by usingwrappers the nasty details get hidden
from users. Wrapping also permits these interfaces to evolve to a stable state.

In due timemuch will be documented but currently a lot is also a bit experimental because that is the
way I can converge to what works best. You can assume that the solutions in the mlib-*.lmt files in
some form stay (unless it looks too weird). Just stick to the abstractions and you will be fine.

The functionality describedhere is available in LMTX.Although someprototypes canbe found inMkIV
you should not expect the same behavior there.

19.2 The LUA interface (strings)

19.2.1 Strings
At some point the runscript primitive was added tomplib. Because officially the library is not bound
to Lua this neutral name was chosen. In LuaMetaTEX we have a follow up on that library and although
it's still neutralwe just assume thatLua isused. TheMetaFun followup is therefore calledLuaMetaFun,
and it used the new interfaces to implement efficient going back and forth between TEX, MetaPost and
Lua.

The runscriptmacro is used like this:

\startMPcode
draw

textext("This will print \quotation{Hi} in the console!")
xsized TextWidth
withcolor "darkblue" ;

runscript("print('Hi')");
\stopMPcode

This will print “Hi” in the console!
The runscript primitive triggers a callback that gets the string passed. This callback then does some
magic, normally compiling that string into byte code and execute it. The compiled function can return
a string that is then fed back into the MetaPost scantokens primitive command. So, that return value
has to be valid MetaPost!

Extensions uncorrected draft 76

\startMPcode
string s ;
s := runscript("mp.quoted('This will return a string!')") ;
draw textext(s)

xsized TextWidth
withcolor "darkgreen" ;

\stopMPcode

This will return a string!
The mp.quoted call is one of the build into ConTEXt ways to pipe back something to MetaPost. We will
cover this later. If you don't want to use that feature, the call would have looked like this:

\startMPcode
string s ;
s := runscript("return " &

"'" & ditto &
"Ditto is a string that contains a double qoute!"
& ditto & "'"

) ;
draw textext(s)

xsized TextWidth
withcolor "darkred" ;

\stopMPcode

Ditto is a string that contains a double qoute!
The ditto with ampersands trickery constructs a string with embedded quotes which is needed be
cause you want to pass back a string and MetaPost only considers something a string when it sees
double quotes.

19.2.2 Numerics
Instead of a string you can also pass a numeric:

\startMPcode
runscript 10000;
\stopMPcode

This time, on the console you will see something:

metapost > lua > 1: bad index: 10000
metapost > lua > 1: no result, invalid code: 10000

This I because at the Lua end this number should result in some action, in the case of ConTEXt calling
a registered function. Because the given number is unknown nothing is done. These messages come
from ConTEXt, and MetaPost will keep silent because we don't pass anything back.

Extensions uncorrected draft 77

This numeric interface only makes sense when the callback handles it and the way ConTEXt does that
is probably unique to that macro package. You can of course create MetaPost instances yourself (in
Lua) and handle callbacks your own way: you get a string, do this, you get a number, do that.

19.2.3 Helpers
In order to help users passing data to the Lua end there are some helpermacros defined using the lua
macro with suffixes:

draw lua.mp.foo(0,2,(3,4)) ;
fill lua.MP.foo(0,2,(3,4)) ;

The lowercase mp namespace is for ConTEXt itself so if you use that for your own extensions, there is
no guarantee against future clashes. The uppercase MP namespace is for users. In any case you need
to be aware of expansion, so foo should not expand to something weird (variable names and vardef
macro names are okay).

At the Lua end these are mapped onto functions, like:

function mp.foo(n,m,p)
-- do something

end
function MP.foo(n,m,p)

-- do something
end

19.3 Printing back
In the previous chapterwe saw mp.quoted being used to print back a string toMetaPost for processing
by scantokens. Not all function in the mp namespace are meant for usage, so best stick to what is
described here.

The most generic print is mp.print that takes multiple arguments. A numeric value is flushed as
serialized number and a string is passed along (so no quotes are added). A boolean becomes true or
false. A table with six elements is seen as a transform and otherwise passed as pair, color or cmyk
color definition. The print command takesmultiple arguments and the results are concatenated into
one string with other prints so far.

Because this mechanism is already available in MkIV we remain compatible which means that the
print functions are available in the mp namespace but also in the mp.aux namespace. In themeantime
we moved to the print namespace. The main print command does a guess about what it is fed and
will inject that as string. Thereby the next are all valid:

fill fullcircle scaled runscript("mp.print ('3cm')") withcolor "darkred" ;
fill fullcircle scaled runscript("mp.print.print('2cm')") withcolor "darkgreen" ;
fill fullcircle scaled runscript("mp.aux.print ('1cm')") withcolor "darkblue" ;

Extensions uncorrected draft 78

string string passed as it is but with percent, double quote and newline
escaped

boolean boolean the true or false primitives
integer number an integer
number number a float
numeric number a float (same as previous)
points number a scaled numeric with pt unit
pair numbers or table a pair (x,y) or (x,x)
pairpoints numbers or table idem but with scaled numbers and a pt unit
triplet numbers or table a rgb triplet (r,g,b)
tripletpoints numbers or table idem but with scaled numbers and a pt unit
quadruple numbers or table a cmyk quadruple (c,m,y,k)
quadruplepoints numbers or table idem but with scaled numbers and a pt unit
color numbers or table a numeric, triplet or quadruple
transform numbers or table a six element transform
print whatever the normal semi-intelligent printer
fprint format, whatever the normal semi-intelligent printer using a format
vprint variable thenormal semi-intelligent printerwith escapedpercents,

quotes and newlines
quoted string a valid string surrounded by quotes with an optional first

format specifier

Amore complex printer is path that takes upto three arguments. The first argument is a table. Entries
have two or six elements where the last two are control points. The second argument indicates the
connector: true and nil indicate .. while falsewill use --. When the last argument is true we have
a closed path. Alternatively the table can have a boolean cycle field. So these are all valid:

local t1 = { {0,0}, {1,0}, {1,1}, {0,1} }
local t2 = { {0,0}, {1,0}, {1,1}, {0,1}, cycle = true }

mp.print.path(t1)
mp.print.path(t1,nil,true)
mp.print.path(t1,true,true)
mp.print.path(t1,false)
mp.print.path(t1,false,true)
mp.print.path(ts,false)
mp.print.path(t1,"...",true)
mp.print.path(t1,"..",true)
mp.print.path(t2,"..")

As with the alreadymentioned simple printers there is a variant that scales: pathpoints (an alterna
tive is of course to scale the whole path by pt).

The result of what goes into the print functions is collected and flushed to MetaPost at the end of a
call. You can directly push something in the buffer with mp.direct and condense the (so far) buffered
content with mp.flush. Normally you will not need such low level handling.

Extensions uncorrected draft 79

19.4 Direct values
The print functions accumulate and flush at the end. Alternatively you can return a value. In that case
the type determines what gets done:

number native quantity
boolean native quantity (I need to check this!)
string feeds into scantokens
table feeds concatenated into scantokens

Instead of return you can also call an injector. The repertoire is similar to the printers: boolean,
cmykcolor, color, integer, number, numeric, pair, path, quadruplet, string, transform,
triplet and whatever (kind of automatic):

function MP.MyFunction()
mp.inject.string("This is just a string.")

end

The whd, xy and pt injectors inject triplets, pairs and numeric scaled from TEX scaled points to base
points.

19.5 Registering
Quite some of the build in functionality uses a slightly different approach. It roughly works as follows:

% reserve an index and set its value:

newscriptindex user_me_foo ; user_me_foo := scriptindex "user_me_foo" ;

% wrap the call into a macro:

def me_foo = runscript user_me_foo enddef ;

A macro can of course be more complex, for instance take arguments and push those into the script
call:

def me_foo(expr a, b) = runscript user_me_foo a b enddef ;

But before this is done at the MetaPost end, you need to define the Lua function:

local function user_me_foo()
-- do something useful

end

metapost.registerscript("user_me_foo",user_me_foo)

In this case you use the print and inject functions, of course only when you want to push back some
result.

Alternatively you can do:

Extensions uncorrected draft 80

metapost.registerdirect("user_me_foo",user_me_foo)
metapost.registertokens("user_me_foo",user_me_foo)

A direct script will treat return values as native, so string and tables are like quoted string and inter
preted objects (boolean, numeric, tables). The tokens variant will feed the strings and concatenated
tables into scantokens.

The script index can be fetched at the Lua end with:

local index = metapost.scriptindex(name)

19.6 Codes and such
Using the to be discussed scanners assumes that you know some of the internals (or at least concepts)
of MetaPost. Taco has written some excellent tutorials on the way MetaPost handles input. Here we
just mention what you can run into.

Eachprimitive,macroorvariable falls intoacategory. Theprimitivesaregrouped inaway thatpermits
handling them as category and the following table shows the grouping. Internally the subcategories
are calledmodes. You should treat these numbers as abstractions because they can change over time,
depending on how the library evolves. Modes can normally be ignored.

code mode name code category
64 1 #@ macrospecial
51 100 & ampersand
58 88 * secondarybinary
46 86 + plusorminus
48 90 ++ tertiarybinary
48 91 +-+ tertiarybinary
78 0 , comma
46 87 - plusorminus
50 0 .. pathjoin
57 89 / slash
77 0 : colon
76 0 := assignment
79 0 ; semicolon
53 94 < primarybinary
53 95 <= primarybinary
53 99 <> primarybinary
54 98 = equals
53 96 > primarybinary
53 97 >= primarybinary
64 2 @ macrospecial
64 3 @# macrospecial
36 56 ASCII unary
66 0 [leftbracket
9 0 \ relax
67 0] rightbracket
21 0 addto addto

Extensions uncorrected draft 81

70 2 also thingstoadd
55 93 and and
36 79 angle unary
36 78 arclength unary
40 118 arctime ofbinary
62 0 atleast atleast
26 1 batchmode mode
34 0 begingroup begingroup
36 17 blackpart unary
36 13 bluepart unary
32 21 boolean typename
36 85 bounded unary
40 121 boundingpath ofbinary
1 0 btex btex

36 57 char unary
43 21 charcode internal
43 24 chardp internal
43 23 charht internal
43 25 charic internal
43 22 charwd internal
22 36 clip setbounds
36 83 clipped unary
36 45 closefrom unary
32 28 cmykcolor typename
32 27 color typename
36 60 colormodel unary
70 1 contour thingstoadd
60 0 controls controls
36 71 cosd unary
63 0 curl curl
36 14 cyanpart unary
39 80 cycle cycle
69 1 dashed with
36 63 dashpart unary
19 1 def macrodef
30 0 delimiters delimiters
40 113 directiontime ofbinary
70 0 doublepath thingstoadd
4 3 else fiorelse
4 4 elseif fiorelse
19 0 enddef macrodef
6 0 endfor iteration
80 0 endgroup endgroup
5 1 endinput input
40 120 envelope ofbinary
28 2 errhelp message
28 1 errmessage message
26 4 errorstopmode mode

Extensions uncorrected draft 82

2 0 etex etex
29 0 everyjob everyjob
8 0 exitif exittest
13 0 expandafter expandafter
59 8 expr parametertype
35 38 false nullary
4 2 fi fiorelse
36 81 filled unary
36 72 floor unary
6 2 for iteration
6 1 forever iteration
6 3 forsuffixes iteration
36 12 greenpart unary
36 18 greypart unary
36 84 grouped unary
36 55 hex unary
3 1 if if
56 0 infont primarydef
23 0 inner protection
5 0 input input
16 0 interim interim
48 109 intersectiontimes tertiarybinary
43 3 jobname internal
36 47 known unary
36 58 length unary
17 0 let let
43 31 linecap internal
43 30 linejoin internal
36 74 llcorner unary
36 75 lrcorner unary
36 15 magentapart unary
36 52 makepath unary
36 53 makepen unary
12 0 maketext maketext
36 68 mexp unary
43 33 miterlimit internal
36 69 mlog unary
35 119 mpversion nullary
18 0 newinternal newinternal
26 2 nonstopmode mode
35 43 normaldeviate nullary
36 49 not unary
35 40 nullpen nullary
35 39 nullpicture nullary
43 2 numberprecision internal
43 1 numbersystem internal
32 30 numeric typename
36 54 oct unary

Extensions uncorrected draft 83

36 46 odd unary
71 0 of of
48 92 or tertiarybinary
23 1 outer protection
43 29 overloadmode internal
32 29 pair typename
32 24 path typename
36 61 pathpart unary
43 26 pausing internal
32 23 pen typename
35 42 pencircle nullary
40 117 penoffset ofbinary
36 62 penpart unary
32 25 picture typename
40 114 point ofbinary
40 116 postcontrol ofbinary
36 65 postscriptpart unary
40 115 precontrol ofbinary
36 64 prescriptpart unary
59 1 primary parametertype
19 3 primarydef macrodef
27 0 randomseed randomseed
36 44 readfrom unary
35 41 readstring nullary
36 11 redpart unary
43 37 restoreclipcolor internal
36 51 reverse unary
32 27 rgbcolor typename
58 101 rotated secondarybinary
11 0 runscript runscript
15 0 save save
58 103 scaled secondarybinary
10 0 scantokens scantokens
26 3 scrollmode mode
59 2 secondary parametertype
19 4 secondarydef macrodef
22 38 setbounds setbounds
22 37 setgroup setbounds
24 1 setproperty property
58 104 shifted secondarybinary
20 0 shipout shipout
25 2 show show
25 4 showdependencies show
25 1 showstats show
43 27 showstopping internal
25 0 showtoken show
25 3 showvariable show
26 5 silentmode mode

Extensions uncorrected draft 84

36 70 sind unary
58 102 slanted secondarybinary
36 67 sqrt unary
43 32 stacking internal
36 66 stackingpart unary
73 0 step step
37 0 str str
32 22 string typename
36 82 stroked unary
40 112 subpath ofbinary
40 111 substring ofbinary
59 9 suffix parametertype
61 0 tension tension
59 3 tertiary parametertype
19 5 tertiarydef macrodef
43 28 texscriptmode internal
59 10 text parametertype
43 18 time internal
72 0 to to
43 6 tracingcapsules internal
43 7 tracingchoices internal
43 9 tracingcommands internal
43 5 tracingequations internal
43 11 tracingmacros internal
43 14 tracingonline internal
43 12 tracingoutput internal
43 10 tracingrestores internal
43 8 tracingspecs internal
43 13 tracingstats internal
43 4 tracingtitles internal
32 26 transform typename
58 105 transformed secondarybinary
35 37 true nullary
43 35 truecorners internal
36 59 turningnumber unary
36 76 ulcorner unary
36 73 uniformdeviate unary
36 48 unknown unary
74 0 until until
36 77 urcorner unary
19 2 vardef macrodef
1 1 verbatimtex btex

38 0 void void
43 34 warningcheck internal
69 9 withcmykcolor with
69 6 withgreyscale with
75 0 within within
69 5 withoutcolor with

Extensions uncorrected draft 85

69 0 withpen with
69 3 withpostscript with
69 2 withprescript with
69 8 withrgbcolor with
69 4 withstacking with
31 0 write write
36 5 xpart unary
58 106 xscaled secondarybinary
36 7 xxpart unary
36 8 xypart unary
36 16 yellowpart unary
36 6 ypart unary
58 107 yscaled secondarybinary
36 9 yxpart unary
36 10 yypart unary
58 108 zscaled secondarybinary
49 0 { leftbrace
68 0 } rightbrace

Variables are of a certain type. Possible variable types are available in metapost.types via numeric
and verbose keys: 0: undefined, 1: vacuous, 2: boolean, 3: unknownboolean, 4: string, 5: unknown
string, 6: pen, 7: unknownpen, 8: path, 9: unknownpath, 10: picture, 11: unknownpicture, 12: trans
form, 13: color, 14: cmykcolor, 15: pair, 16: numeric, 17: known, 18: dependent, 19: protodependent,
20: independent, 21: tokenlist, 22: structured, 23: unsuffixedmacro, 24: suffixedmacro.

The possible command codes (as seen in the primitive table) are available in metapost.codes via nu
meric and verbose keys: 0: undefined, 1: btex, 2: etex, 3: if, 4: fiorelse, 5: input, 6: iteration, 7: repeat
loop, 8: exittest, 9: relax, 10: scantokens, 11: runscript, 12: maketext, 13: expandafter, 14: defined
macro, 15: save, 16: interim, 17: let, 18: newinternal, 19: macrodef, 20: shipout, 21: addto, 22: set
bounds, 23: protection, 24: property, 25: show, 26: mode, 27: randomseed, 28: message, 29: everyjob,
30: delimiters, 31: write, 32: typename, 33: leftdelimiter, 34: begingroup, 35: nullary, 36: unary, 37:
str, 38: void, 39: cycle, 40: ofbinary, 41: capsule, 42: string, 43: internal, 44: tag, 45: numeric, 46:
plusorminus, 47: secondarydef, 48: tertiarybinary, 49: leftbrace, 50: pathjoin, 51: ampersand, 52:
tertiarydef, 53: primarybinary, 54: equals, 55: and, 56: primarydef, 57: slash, 58: secondarybinary,
59: parametertype, 60: controls, 61: tension, 62: atleast, 63: curl, 64: macrospecial, 65: rightdelim
iter, 66: leftbracket, 67: rightbracket, 68: rightbrace, 69: with, 70: thingstoadd, 71: of, 72: to, 73: step,
74: until, 75: within, 76: assignment, 77: colon, 78: comma, 79: semicolon, 80: endgroup, 81: stop,
82: undefinedcs.

When you scan for input not all of these make sense, often you will stick to dealing with symbols like
brackets, braces, equal signs and variables or expressions.

19.7 Scanners
Themost low level scanners aretokenandsymbol. Althoughwehave them in themp.scannamespace
they are just library calls. You use them like:

if scan.symbol(true) == "[" then -- "]"
scan.symbol()

Extensions uncorrected draft 86

else
...

end

Herewe check if the upcoming token is a specific symbol. Thetruewill push back the token. A second
boolean argument will enforce expansion.

Scanning can be hairy because the engine is set up in a way that mix lookahead, expand, resolve and
processing. So, you can run into a numeric constant, but also in a not yet resolved quantity (take =
versus :=). When writing more complex scanners it helps to print codes and types.

Thescan.token function returns a command,modeandexpression typebut inpractice youonlyhave
to consider the first value. Other scanners are boolean, cmykcolor, color, expression, integer,
next, number, numeric, pair, path, pen, property, string, transform, plus some implemented
around these. Keep inmind that scanners are bound to an instance so the functions in thescanname
space are actually wrappers around the library calls.

Because some tokens trigger further scanning (e.g. expressions)we also have twodedicated sub tables
with scanners: tokenscanners and typescanners where, when indexed with a token (command) or
typeyouget theappropriate scanner to get a real result. Whenyou lookatwhat is built intoConTEXt you
will notice that we often look ahead and then trigger the appropriate scanner. This approach permits
to comeupwith syntaxes that are different thanwhatMetaPost normally does, so for instance brackets
and braces can be used to fence parameters and collections, while lists of comma separated numbers
can be grabbed that are not part of pairs, triplets, quadruples etc.

19.8 Special helpers

19.8.1 Hashes
This is typically one of the examples that popped up when Alan Braslau and I were exploring the new
possibilities. Due to the way MetaPost implements hashes using Lua might turn out to be more effi
cient. Here are some examples:

\startMPcode
newhash("foo") ;
tohash("foo","bar","gnu") ;
tohash("foo","rab","ung") ;
fill fullcircle scaled 1cm withcolor "lightgray" ;
draw textext(fromhash("foo","bar")) ;
draw textext(fromhash("foo","rab")) rotated 90 ;
disposehash("foo") ;

\stopMPcode

gnu

un
g

In this example we allocate a hash and afterwards get rid of it. When you don't allocate one it will be
automatically allocated. Hashes are persistent, so if you want to be sure you start fresh you'd better

Extensions uncorrected draft 87

create one explicitly. And if you use a large one, you'd better clean up afterwards.

\startMPcode
newhash("foo") ;
tohash("foo",1,"gnu") ;
tohash("foo",2,"ung") ;
fill fullcircle scaled 1cm withcolor "lightgray" ;
for i=1 upto 3 :

if inhash("foo",i) :
draw textext(fromhash("foo",i))

rotated ((i-1) * 90) ;
fi ;

endfor ;
\stopMPcode

gnu

un
g

Here we check if something is present in a hash. This example also demonstrates that we can use
numbers as key. And yes, you can also use boolean keys:

\startMPcode
newhash("foo") ;
tohash("foo",false,"gnu") ;
tohash("foo",true,"ung") ;
fill fullcircle scaled 1cm withcolor "lightgray" ;
draw textext(fromhash("foo",false)) ;
draw textext(fromhash("foo",true)) rotated 90 ;

\stopMPcode

gnu

un
g

Looking at the implementation of these macros (at the MetaPost end) and functions (at the Lua end)
will give you an idea how all these interfaces work together.

19.8.2 Modes
You can query the modes set at the TEX end. You can also check the systemmode.

\enablemode[weird]
\startMPcode

fill fullsquare xyscaled (TextWidth,5mm)
withcolor if texmode("weird") : "darkblue" else : "darkgreen" fi ;

\stopMPcode
\disablemode[weird]
\startMPcode

fill fullsquare xyscaled (TextWidth,5mm)
withcolor if texmode("weird") : "darkblue" else : "darkgreen" fi ;

Extensions uncorrected draft 88

\stopMPcode

19.8.3 Positions
Keeping track of positions is a core feature and accessible in MetaPosttoo. Here is a somewhat weird
example. Positions are always relative to a region, normally the page, but here we provide one via
\framed.

\framed [region=MyRegion,offset=overlay] \bgroup \hpos {here} \bgroup
\startMPcode

fill fullcircle scaled 10mm
withcolor "darkblue" ;

draw positionxy("here")
shifted - positionxy("MyRegion")
withpen pencircle scaled 2mm
withcolor "darkred" ;

draw positionxy("here")
shifted - positionxy("MyRegion")
shifted (wdpart positionwhd("MyRegion"),0)
withpen pencircle scaled 5mm
withcolor "darkgreen" ;

\stopMPcode
\egroup \egroup

positionanchor string
positionbox path using connector --
positioncolumn numeric
positioncurve path using connector ..
positiondepth numeric
positionhangafter numeric
positionhangindent numeric
positionheight numeric
positionhsize numeric
positionleftskip numeric
positionllx numeric
positionlly numeric
positionlowerleft pair
positionlowerright pair
positionpage numeric
positionparagraph numeric
positionparindent numeric
positionpath path using connector --

Extensions uncorrected draft 89

positionpx numeric
positionpxy pair
positionpy numeric
positionregion string
positionrightskip numeric
positionupperleft pair
positionupperright pair
positionurx numeric
positionury numeric
positionwhd (wd,ht,dp)
positionwidth numeric

Positioning can be tricky. You really need to make sure that the bounding box of the result is right
because when it changes, positions also change you get cyclic runs and quite possible graphics that
get larger and larger.

19.8.4 TEX quantities
You can set and get some of TEX's internal quantities:

\scratchdimen=100pt \scratchcounter=250 \scratchtoks={okay} \def\Good{good}
\startMPcode
draw textext(getdimen("scratchdimen")) shifted (0cm,0) withcolor "darkblue" ;
draw textext(getcount("scratchcounter")) shifted (3cm,0) withcolor "darkred" ;
draw textext(gettoks ("scratchtoks")) shifted (6cm,0) withcolor "darkgreen" ;
draw textext(getmacro("Good")) shifted (9cm,0) withcolor "darkyellow" ;
\stopMPcode

99.62639 250 okay good

Valid getters are getmacro, getdimen, getcount and gettoks and their counterparts are set... and
setglobal.... Instead of names you can use numbers for registers, but don't mess up the system
ones:

\startMPcode
setdimen(2,2*100pt) setcount(2,2*250) settoks(2,"OKAY") setmacro("Good","GOOD")
draw textext(getdimen(2)) shifted (0cm,0) withcolor "darkblue" ;
draw textext(getcount(2)) shifted (3cm,0) withcolor "darkred" ;
draw textext(gettoks (2)) shifted (6cm,0) withcolor "darkgreen" ;
draw textext(getmacro("Good")) shifted (9cm,0) withcolor "darkyellow" ;
\stopMPcode

199.2523 500 OKAY GOOD

19.8.5 UTF8
Because we use an utf8 engine we also have MetaPost accepting that encoding. The normal string
primitives are unchanged and operate on (ascii) bytes but we have some additional helpers (andmore

Extensions uncorrected draft 90

might show up if needed). Here is an example:

\startMPcode
string s ; s := "ÀÁÂÃÄÅàáâãäå" ;
draw textext(s) shifted (0cm,0) withcolor "darkyellow" ;
draw textext(utfnum("Â")) shifted (3cm,0) withcolor "darkmagenta" ;
draw textext(utflen(s)) shifted (6cm,0) withcolor "darkcyan" ;
draw textext(utfsub(s,3,4)) shifted (9cm,0) withcolor "darkblue" ;
draw textext(utfsub(s,6)) shifted (12cm,0) withcolor "darkred" ;
\stopMPcode

ÀÁÂÃÄÅàáâãäå 194 12 ÂÃ Åàáâãäå

19.8.6 Checkers
There are a couple of checkers, mostly used inmodules. Here's are a few that Alan needs for the node
module:

\startMPcode
draw image (

draw textext(if isarray p[1][2] : "Y__" else : "N__" fi) ;
draw textext(if isarray p[1] : "_Y_" else : "_N_" fi) ;
draw textext(if isarray p : "__Y" else : "__N" fi) ;

) xsized 3cm withcolor "darkred" ;
\stopMPcode

Y___Y___N
\startMPcode

draw image (
draw textext(prefix p[1][2]) shifted (10,0) withcolor "darkred" ;
draw textext(prefix p[1]) shifted (20,0) withcolor "darkgreen" ;
draw textext(prefix p) shifted (30,0) withcolor "darkblue" ;

) ysized 12mm ;
\stopMPcode

p p p
\startMPcode

draw image (
draw textext(dimension p[1][2]) shifted (10,0) withcolor "darkred" ;
draw textext(dimension p[1]) shifted (20,0) withcolor "darkgreen" ;
draw textext(dimension p) shifted (30,0) withcolor "darkblue" ;

) ysized 12mm ;
\stopMPcode

Extensions uncorrected draft 91

2 1 0
\startMPcode

picture p ; p := textext("some text") ;
path q ; q := fullcircle scaled 3cm ;
draw textext(tostring(isobject(p))) withcolor "darkgreen" ;
draw textext(tostring(isobject(q))) shifted (50,0) withcolor "darkblue" ;

\stopMPcode

true false

19.8.7 Key-value interfaces
There are plenty of examples in the mp-lmtx.mpxl file and more will be added. Just make sure you create your
own unique namespace and don't use the ones that ConTEXt uses (like lmt_).

Interface uncorrected draft 92

20 Interface

Because graphic solutions are always kind of personal or domain driven it makes not much sense to
cookup very generic solutions. If youhave a projectwhereMetaPost canbe of help, it alsomakes sense
to spend some timeon implementing thebasics that youneed. In that case you can just copy and tweak
what is there. The easiest way to do that is to make a test file and use:

\startMPpage
% your code

\stopMPpage

Often you don't need to write macros, and standard drawing commands will do the job, but when you
find yourself repeating code, a wapper might make sense. And this is why we have this key/value in
terface: it's easier to abstract your settings than to pass them as (expression or text) arguments to a
macro, especially when there are many.

You can find many examples of the key/value driven user interface in the source files and these are
actually not that hard to understand when you know a bit of MetaPost and the additional macros that
comewithMetaFun. In case youwonder about overhead: the performance of thismechanism is pretty
good.

Although the parameter handler runs on top of the Lua interface, you don't need to use Lua unless you
find that MetaPost can't do the job. I won't give examples of coding because I think that the source of
MetaFun provides enough clues, especially the file mp-lmtx.mpxl. As the name suggests this is part
of the ConTEXt version LMTX, which runs on top of LuaMetaTEX. I leave it open if I will backport this
functionality to LuaTEX and therefore MkIV.

An excellent explanation of this interface can be found at:

https://adityam.github.io/context-blog/post/new-metafun-interface/

So (at least for now) here I can stick to just mentioning the currently stable interface macros:

presetparameters name [...] Assign default values to a category of parame
ters. Sometimes it makes sense not to set a
default, because then you can check if a para
meter has been set at all.

applyparameters name macro This prepares the parameter handler for the
given category and calls the givenmacro when
that is done.

getparameters name [...] The parameters given after the category name
are set.

hasparameter names Returns truewhen a parameter is set, and
false otherwise.

hasoption names options Returns truewhen there is overlap in given
options, and false otherwise.

getparameter names Resolves the parameter with the given name.
because a parameter itself can have a parame

Interface uncorrected draft 93

ter list you can pass additional names to reach
the final destination.

getparameterdefault names Resolves the parameter with the given name.
because a parameter itself can have a parame
ter list you can pass additional names to reach
the final destination. The last value is used
when no parameter is found.

getparametercount names Returns the size if a list (array).
getmaxparametercount names Returns the size if a list (array) but descends

into lists to find the largest size of a sublist.

getparameterpath names string boolean Returns the parameter as path. The optional
string is one of --, .. or ... and the also op
tional boolean will force a closed path.

getparameterpen names Returns the parameter as pen (path).
getparametertext names boolean Returns the parameter as string. The boolean

can be used to force prepending a so called
\strut.

pushparameters category Pushed the given (sub) category onto the stack
so that we don't need to give the category each
time.

popparameters Pops the current (sub) category from the
stack.

Most commands accept a list of strings separated by one or more spaces, The resolved will then step
wise descend into the parameter tree. This means that a parameter itself can refer to a list. When a
value is an array and the last name is a number, the value at the given index will be returned.

"category" "name" ... "name"
"category" "name" ... number

The category is not used when we have pushed a (sub) category which can save you some typing and
also ismore efficient. Of course than canmean that you need to store values at a higher level when you
need them at a deeper level.

There are quite some extra helpers that relate to this mechanism, at the MetaPost end as well as at
the Lua end. They aim for instance at efficiently dealing with paths and can be seen at work in the
mentionedmodule.

There is one thing you should notice. While MetaPost has numeric, string, boolean and path variables
that can be conveniently be passed to and from Lua, communicating colors is a bit of a hassle. This is
because rgb and cmyk colors and gray scales use different types. For this reason it is strongly recom
mended to use strings that refer to predefined colors instead. This also enforces consistency with the
TEX end. As convenience you can define colors at the MetaFun end.

\startMPcode
definecolor [name = "MyColor", r = .5, g = .25, b = .25]

fill fullsquare xyscaled (TextWidth,5mm) withcolor "MyColor" ;
\stopMPcode

Interface uncorrected draft 94

