
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

low level

TEX

macros

1

Definitions

Contents

1 Preamble 1

2 Definitions 1

3 Runaway arguments 10

4 Introspection 11

5 nesting 12

6 Prefixes 15

1 Preamble

This chapter overlaps with other chapters but brings together some extensions to the

macro definition and expansion parts. As these mechanisms were stepwise extended,

the other chapters describe intermediate steps in the development.

Now, in spite of the extensions discussed here the main ides is still that we have TEX

act like before. We keep the charm of the macro language but these additions make for

easier definitions, but (at least initially) none that could not be done before using more

code.

2 Definitions

A macro definition normally looks like like this:1

\def\macro#1#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Such a macro can be used as:

\macro {1}{2}

\macro {1} {2} middle space gobbled

\macro 1 {2} middle space gobbled

\macro {1} 2 middle space gobbled

\macro 1 2 middle space gobbled

We show the result with some comments about how spaces are handled:

12

1 The \dontleavehmode command make the examples stay on one line.

2

Definitions

12 middle space gobbled

12 middle space gobbled

12 middle space gobbled

12 middle space gobbled

A definition with delimited parameters looks like this:

\def\macro[#1]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\hss}}

When we use this we get:

\macro [1]

\macro [1] leading space kept

\macro [1] trailing space kept

\macro [1] both spaces kept

Again, watch the handling of spaces:

1

1 leading space kept

1 trailing space kept

1 both spaces kept

Just for the record we show a combination:

\def\macro[#1]#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this:

\macro [1]{2}

\macro [1] {2}

\macro [1] 2

we can again see the spaces go away:

12

12

12

A definition with two separately delimited parameters is given next:

\def\macro[#1#2]%

3

Definitions

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

When used:

\macro [12]

\macro [12] leading space gobbled

\macro [12] trailing space kept

\macro [12] leading space gobbled, trailing space kept

\macro [1 2] middle space kept

\macro [1 2] leading space gobbled, middle and trailing space kept

We get ourselves:

12

12 leading space gobbled

12 trailing space kept

12 leading space gobbled, trailing space kept

1 2 middle space kept

1 2 leading space gobbled, middle and trailing space kept

These examples demonstrate that the engine does some magic with spaces before (and

therefore also between multiple) parameters.

We will now go a bit beyond what traditional TEX engines do and enter the domain of

LuaMetaTEX specific parameter specifiers. We start with one that deals with this hard

coded space behavior:

\def\macro[#^#^]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The #^ specifier will count the parameter, so here we expect again two arguments but

the space is kept when parsing for them.

\macro [12]

\macro [12]

\macro [12]

\macro [12]

\macro [1 2]

\macro [1 2]

Now keep in mind that we could deal well with all kind of parameter handling in Con-

TEXt for decades, so this is not really something wemissed, but it complements the to be

discussed other ones and it makes sense to have that level of control. Also, availability

4

Definitions

triggers usage. Nevertheless, some day the #^ specifier will come in handy.

12

12

12

12

1 2

1 2

We now come back to an earlier example:

\def\macro[#1]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

When we use this we see that the braces in the second call are removed:

\macro [1]

\macro [{1}]

1 1

This can be prohibited by the #+ specifier, as in:

\def\macro[#+]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

As we see, the braces are kept:

\macro [1]

\macro [{1}]

Again, we could easily get around that (for sure intended) side effect but it just makes

nicer code when we have a feature like this.

1 {1}

Sometimes you want to grab an argument but are not interested in the results. For this

we have two specifiers: one that just ignores the argument, and another one that keeps

counting but discards it, i.e. the related parameter is empty.

\def\macro[#1][#0][#3][#-][#4]%

{\dontleavehmode\hbox spread 1em

{\vl\type{#1}\vl\type{#2}\vl\type{#3}\vl\type{#4}\vl\hss}}

5

Definitions

The second argument is empty and the fourth argument is simply ignored which is why

we need #4 for the fifth entry.

\macro [1][2][3][4][5]

Here is proof that it works:

135

The reasoning behind dropping arguments is that for some cases we get around the

nine argument limitation, but more important is that we don’t construct token lists that

are not used, which is more memory (and maybe even cpu cache) friendly.

Spaces are always kind of special in TEX, so it will be no surprise that we have another

specifier that relates to spaces.

\def\macro[#1]#*[#2]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

This permits usage like the following:

\macro [1][2]

\macro [1] [2]

12 12

Without the optional ‘grab spaces’ specifier the second line would possibly throw an

error. This because TEX then tries to match][so the] [in the input is simply added

to the first argument and the next occurrence of][will be used. That one can be

someplace further in your source and if not TEX complains about a premature end of

file. But, with the #* option it works out okay (unless of course you don’t have that

second argument [2].

Now, you might wonder if there is a way to deal with that second delimited argument

being optional and of course that can be programmed quite well in traditional macro

code. In fact, ConTEXt does that a lot because it is set up as a parameter driven system

with optional arguments. That subsystem has been optimized to the max over years

and it works quite well and performance wise there is very little to gain. However, as

soon as you enable tracing you end up in an avalanche of expansions and that is no fun.

This time the solution is not in some special specifier but in the way a macro gets de-

fined.

\tolerant\def\macro[#1]#*[#2]%

6

Definitions

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The magic \tolerant prefix with delimited arguments and just quits when there is no

match. So, this is acceptable:

\macro [1][2]

\macro [1] [2]

\macro [1]

\macro

12 12 1

We can check how many arguments have been processed with a dedicated conditional:

\tolerant\def\macro[#1]#*[#2]%

{\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

We use this test:

\macro [1][2] \macro [1] [2] \macro [1] \macro

The result is: 2: 12 2: 12 1: 10: which is what we expect because we flush inline and

there is no change of mode. When the following definition is used in display mode, the

leading n= can for instance start a new paragraph and when code in \everypar you can

loose the right number when macros get expanded before the n gets injected.

\tolerant\def\macro[#1]#*[#2]%

{n=\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

In addition to the \ifarguments test primitive there is also a related internal counter

\lastarguments set that you can consult, so the \ifarguments is actually just a shortcut

for \ifcase \lastarguments.

We now continue with the argument specifiers and the next two relate to this optional

grabbing. Consider the next definition:

\tolerant\def\macro#1#*#2%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this test:

\macro {1} {2}

\macro {1}

\macro

7

Definitions

We get:

12 1\macro

This is okay because the last \macro is a valid (single token) argument. But, we can

make the braces mandate:

\tolerant\def\macro#=#*#=%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Here the #= forces a check for braces, so:

\macro {1} {2}

\macro {1}

\macro

gives this:

12 1

However, we do loose these braces and sometimes you don’t want that. Of course when

you pass the results downstream to another macro you can always add them, but it was

cheap to add a related specifier:

\tolerant\def\macro#_#*#_%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Again, the magic \tolerant prefix works will quit scanning when there is no match.

So:

\macro {1} {2}

\macro {1}

\macro

leads to:

{1}{2} {1}

When you’re tolerant it can be that you still want to pick up some argument later on.

This is why we have a continuation option.

\tolerant\def\foo [#1]#*[#2]#:#3{!#1!#2!#3!}

\tolerant\def\oof[#1]#*[#2]#:(#3)#:#4{!#1!#2!#3!#4!}

\tolerant\def\ofo [#1]#:(#2)#:#3{!#1!#2!#3!}

8

Definitions

Hopefully the next example demonstrates how it works:

\foo{3} \foo[1]{3} \foo[1][2]{3}

\oof{4} \oof[1]{4} \oof[1][2]{4}

\oof[1][2](3){4} \oof[1](3){4} \oof(3){4}

\ofo{3} \ofo[1]{3}

\ofo[1](2){3} \ofo(2){3}

As you can see we can have multiple continuations using the #: directive:

!!!3! !1!!3! !1!2!3!

!!!!4! !1!!!4! !1!2!!4!

!1!2!3!4! !1!!3!4! !!!3!4!

!!!3! !1!!3!

!1!2!3! !!2!3!

The last specifier doesn’t work well with the \ifarguments state because we no longer

know what arguments were skipped. This is why we have another test for arguments.

A zero value means that the next token is not a parameter reference, a value of one

means that a parameter has been set and a value of two signals an empty parameter.

So, it reports the state of the given parameter as a kind if \ifcase.

\def\foo#1#2{ [\ifparameter#1\or(ONE)\fi\ifparameter#2\or(TWO)\fi] }

Of course the test has to be followed by a valid parameter specifier:

\foo{1}{2} \foo{1}{} \foo{}{2} \foo{}{}

The previous code gives this:

[(ONE)(TWO)] [(ONE)] [(TWO)] []

A combination check \ifparameters, again a case, matches the first parameter that

has a value set.

We could add plenty of specifiers but we need to keep in ind that we’re not talking of an

expression scanner. We need to keep performance in mind, so nesting and backtracking

are no option. We also have a limited set of useable single characters, but here’s one

that uses a symbol that we had left:

\def\startfoo[#/]#/\stopfoo{ [#1](#2) }

The slash directive removes leading and trailing so called spacers as well as tokens that

represent a paragraph end:

9

Definitions

\startfoo [x] x \stopfoo

\startfoo [x] x \stopfoo

\startfoo [x] x \stopfoo

\startfoo [x] \par x \par \par \stopfoo

So we get this:

x x x x

The next directive, the quitter #;, is demonstrated with an example. When no match

has occurred, scanning picks up after this signal, otherwise we just quit.

\tolerant\def\foo[#1]#;(#2){/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo[#1]#;#={/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;#2{/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;(#2)#;#={/#1/#2/#3/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1/// /2/// /3///

//1// //2// //3//

///1/ ///2/ ///3/

I have to admit that I don’t really need it but it made some macros that I was redefining

10

Runaway arguments

behave better, so there is some self-interest here. Anyway, I considered some other

features, like picking up a detokenized argument but I don’t expect that to be of much

use. In the meantime we ran out of reasonable characters, but some day #? and #!

might show up, or maybe I find a use for #< and #>.

+ keep the braces

- discard and don’t count the argument

* ignore spaces

/ remove leading an trailing spaces and pars

= braces are mandate

_ braces are mandate and kept

^ keep leading spaces

: pick up scanning here

; quit scanning

3 Runaway arguments

There is a particular troublesome case left: a runaway argument. The solution is not

pretty but it’s the only way: we need to tell the parser that it can quit.

\tolerant\def\foo[#1=#2]%

{\ifarguments 0\or 1\or 2\or 3\or 4\fi:\vl\type{#1}\vl\type{#2}\vl}

The outcome demonstrates that one still has to do some additional checking for sane

results and there are alternative way to (ab)use this mechanism. It all boils down to a

clever combination of delimiters and \ignorearguments.

\dontleavehmode \foo[a=1]

\dontleavehmode \foo[b=]

\dontleavehmode \foo[=]

\dontleavehmode \foo[x]\ignorearguments

All calls are accepted:

2:a1

2:b

2:

1:x]

Just in case you wonder about performance: don’t expect miracles here. On the one

hand there is some extra overhead in the engine (when defining macros as well as when

11

Introspection

collecting arguments during a macro call) and maybe using these new features can sort

of compensate that. As mentioned: the gain is mostly in cleaner macro code and less

clutter in tracing. And I just want the ConTEXt code to look nice: that way users can look

in the source to see what happens and not drown in all these show-off tricks, special

characters like underscores, at signs, question marks and exclamation marks.

For the record: I normally run tests to see if there are performance side effects and

as long as processing the test suite that has thousands of files of all kind doesn’t take

more time it’s okay. Actually, there is a little gain in ConTEXt but that is to be expected,

but I bet users won’t notice it, because it’s easily offset by some inefficient styling. Of

course another gain of loosing some indirectness is that error messages point to the

macro that the user called for and not to some follow up.

4 Introspection

A macro has a meaning. You can serialize that meaning as follows:

\tolerant\protected\def\foo#1[#2]#*[#3]%

{(1=#1) (2=#3) (3=#3)}

\meaning\foo

The meaning of \foo comes out as:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

When you load the module system-tokens you can also say:

\luatokentable\foo

This produces a table of tokens specifications:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

tolerant protected control sequence: foo

488768 19 49 match argument 1

491814 12 91 other char [U+0005B

488942 19 50 match argument 2

379676 12 93 other char] U+0005D

491847 19 42 match argument *

491815 12 91 other char [U+0005B

488845 19 51 match argument 3

12

nesting

498558 12 93 other char] U+0005D

148002 20 0 end match

487013 12 40 other char (U+00028

487025 12 49 other char 1 U+00031

487031 12 61 other char = U+0003D

487778 21 1 parameter reference

487850 12 41 other char) U+00029

498226 10 32 spacer

491908 12 40 other char (U+00028

30475 12 50 other char 2 U+00032

487079 12 61 other char = U+0003D

30459 21 3 parameter reference

491001 12 41 other char) U+00029

379705 10 32 spacer

492012 12 40 other char (U+00028

488928 12 51 other char 3 U+00033

491754 12 61 other char = U+0003D

488831 21 3 parameter reference

491052 12 41 other char) U+00029

A token list is a linked list of tokens. The magic numbers in the first column are the

tokenmemory pointers. and becausemacros (and token lists) get recycled at some point

the available tokens get scattered, which is reflected in the order of these numbers.

Normally macros defined in the macro package are more sequential because they stay

around from the start. The second and third row show the so called command code and

the specifier. The command code groups primitives in categories, the specifier is an

indicator of what specific action will follow, a register number a reference, etc. Users

don’t need to know these details. This macro is a special version of the online variant:

\showluatokens\foo

That one is always available and shows a similar list on the console. Again, users nor-

mally don’t want to know such details.

5 nesting

You can nest macros, as in:

\def\foo#1#2{\def\oof##1{<#1>##1<#2>}}

13

nesting

At first sight the duplication of # looks strange but this is what happens. When TEX

scans the definition of \foo it sees two arguments. Their specification ends up in the

preamble that defines the matching. When the body is scanned, the #1 and #2 are

turned into a parameter reference. In order to make nested macros with arguments

possible a # followed by another # becomes just one #. Keep in mind that the definition

of \oof is delayed till the macro \foo gets expanded. That definition is just stored and

the only thing that get’s replaced are the two references to a macro parameter

control sequence: foo

487872 19 49 match argument 1

488927 19 50 match argument 2

491816 20 0 end match

487774 115 1 def def

491507 133 0 tolerant call oof

491831 6 35 parameter

30427 12 49 other char 1 U+00031

491810 1 123 left brace

487665 12 60 other char < U+0003C

491796 21 1 parameter reference

252074 12 62 other char > U+0003E

487663 6 35 parameter

508550 12 49 other char 1 U+00031

491209 12 60 other char < U+0003C

488867 21 2 parameter reference

491807 12 62 other char > U+0003E

491755 2 125 right brace

Now, when we look at these details, it might become clear why for instance we have

‘variable’ names like #4 and not #whatever (with or without hash). Macros are essen-

tially token lists and token lists can be seen as a sequence of numbers. This is not

that different from other programming environments. When you run into buzzwords

like ‘bytecode’ and ‘virtual machines’ there is actually nothing special about it: some

high level programming (using whatever concept, and in the case of TEX it’s macros)

eventually ends up as a sequence of instructions, say bytecodes. Then you need some

machinery to run over that and act upon those numbers. It’s something you arrive at

naturally when you play with interpreting languages.2

2 I actually did when I wrote an interpreter for some computer assisted learning system, think of a kind of

interpreted Pascal, but later realized that it was a a bytecode plus virtual machine thing. I’d just applied

what I learned when playing with eight bit processors that took bytes, and interpreted opcodes and such.

14

nesting

So, internally a #4 is just one token, a operator-operand combination where the operator

is “grab a parameter” and the operand tells “where to store” it. Using names is of course

an option but then one has to do more parsing and turn the name into a number3, add

additional checking in the macro body, figure out some way to retain the name for the

purpose of reporting (which then uses more token memory or strings). It is simply not

worth the trouble, let alone the fact that we loose performance, and when TEX showed

up those things really mattered.

It is also important to realize that a # becomes either a preamble token (grab an argu-

ment) or a reference token (inject the passed tokens into a new input level). Therefore

the duplication of hash tokens ## that you see in macro nested bodies also makes sense:

it makes it possible for the parser to distinguish between levels. Take:

\def\foo#1{\def\oof##1{#1##1#1}}

Of course one can think of this:

\def\foo#fence{\def\oof#text{#fence#text#fence}}

But such names really have to be unique then! Actually ConTEXt does have an input

method that supports such names, but discussing it here is a bit out of scope. Now,

imagine that in the above case we use this:

\def\foo[#1][#2]{\def\oof##1{#1##1#2}}

If you’re a bit familiar with the fact that TEX has a model of category codes you can

imagine that a predictable “hash followed by a number” is way more robust than en-

forcing the user to ensure that catcodes of ‘names’ are in the right category (read: is

a bracket part of the name or not). So, say that we go completely arbitrary names, we

then suddenly needs some escaping, like:

\def\foo[#{left}][#{right}]{\def\oof#{text}{#{left}#{text}#{right}}}

And, if you ever looked into macro packages, you will notice that they differ in the

way they assign category codes. Asking users to take that into account when defining

macros makes not that much sense.

So, before one complains about TEX being obscure (the hash thing), think twice. Your

demand for simplicity for your coding demand will make coding more cumbersome for

There’s nothing spectacular about all this and I only realized decades later that the buzzwords describes

old natural concepts.
3 This is kind of what MetaPost does with parameters to macros. The side effect is that in reporting you get

text0, expr2 and such reported which doesn’t make things more clear.

15

Prefixes

the complex cases that macro packages have to deal with. It’s comparable using TEX for

input or using (say) mark down. For simple documents the later is fine, but when things

become complex, you end up with similar complexity (or even worse because you lost

the enforced detailed structure). So, just accept the unavoidable: any language has its

peculiar properties (and for sure I do know why I dislike some languages for it). The

TEX system is not the only one where dollars, percent signs, ampersands and hashes

have special meaning.

6 Prefixes

Traditional TEX has three prefixes that can be used with macros: \global, \outer and

\long. The last two are no-op’s in LuaMetaTEX and if you want to know what they do

(did) you can look it up in the TEXbook. The 𝜀-TEX extension gave us \protected.

In LuaMetaTEX we have \global, \protected, \tolerant and overload related prefixes

like \frozen. A protected macro is one that doesn’t expand in an expandable context,

so for instance inside an \edef. You can force expansion by using the \expand primitive

in front which is also something LuaMetaTEX.

Frozenmacros cannot be redefined without some effort. This feature can to some extent

be used to prevent a user from overloading, but it also makes it harder for the macro

package itself to redefine on the fly. You can remove the lock with \unletfrozen and

add a lock with \letfrozen so in the end users still have all the freedoms that TEX

normally provides.

\def\foo{foo} 1: \meaning\foo

\frozen\def\foo{foo} 2: \meaning\foo

\unletfrozen \foo 3: \meaning\foo

\protected\frozen\def\foo{foo} 4: \meaning\foo

\unletfrozen \foo 5: \meaning\foo

1: macro:foo

2: macro:foo

3: macro:foo

4: protected macro:foo

5: protected macro:foo

This actually only works when you have set \overloadmode to a value that permits

redefining a frozen macro, so for the purpose of this example we set it to zero.

A \tolerant macro is one that will quit scanning arguments when a delimiter cannot

be matched. We saw examples of that in a previous section.

16

Prefixes

These prefixes can be chained (in arbitrary order):

\frozen\tolerant\protected\global\def\foo[#1]#*[#2]{...}

There is actually an additional prefix, \immediate but that one is there as signal for a

macro that is defined in and handled by Lua. This prefix can then perform the same

function as the one in traditional TEX, where it is used for backend related tasks like

\write.

Now, the question is of course, to what extent will ConTEXt use these new features.

One important argument in favor of using \tolerant is that it gives (hopefully) better

error messages. It also needs less code due to lack of indirectness. Using \frozen adds

some safeguards although in some places where ConTEXt itself overloads commands,

we need to defrost. Adapting the code is a tedious process and it can introduce errors

due to mistypings, although these can easily be fixed. So, it will be used but it will take

a while to adapt the code base.

One problemwith frozenmacros is that they don’t play nice with for instance \futurelet.

Also, there are places in ConTEXt where we actually do redefine some core macro that

we also want to protect from redefinition by a user. One can of course \unletfrozen

such a command first but as a bonus we have a prefix \overloaded that can be used as

prefix. So, one can easily redefine a frozen macro but it takes a little effort. After all,

this feature is mainly meant to protect a user for side effects of definitions, and not as

final blocker.4

A frozen macro can still be overloaded, so what if we want to prevent that? For this we

have the \permanent prefix. Internally we also create primitives but we don’t have a

prefix for that. But we do have one for a very special case which we demonstrate with

an example:

\def\FOO % trickery needed to pick up an optional argument

{\noalign{\vskip10pt}}

\noaligned\protected\tolerant\def\OOF[#1]%

{\noalign{\vskip\iftok{#1}\emptytoks10pt\else#1\fi}}

\starttabulate[|l|l|]

\NC test \NC test \NC \NR

\NC test \NC test \NC \NR

4 As usual adding features like this takes some experimenting and we’re now at the third variant of the

implementation, so we’re getting there. The fact that we can apply such features in large macro package

like ConTEXt helps figuring out the needs and best approaches.

17

Prefixes

\FOO

\NC test \NC test \NC \NR

\OOF[30pt]

\NC test \NC test \NC \NR

\OOF

\NC test \NC test \NC \NR

\stoptabulate

When TEX scans input (from a file or token list) and starts an alignment, it will pick up

rows. When a row is finished it will look ahead for a \noalign and it expands the next

token. However, when that token is protected, the scanner will not see a \noalign in

that macro so it will likely start complaining when that next macro does get expanded

and produces a \noalign when a cell is built. The \noaligned prefix flags a macro as

being one that will do some \noalign as part of its expansion. This trick permits clean

macros that pick up arguments. Of course it can be done with traditional means but

this whole exercise is about making the code look nice.

The table comes out as:

test test

test test

test test

test test

test test

One can check the flags with \ifflags which takes a control sequence and a number,

where valid numbers are:

1 frozen 2 permanent 4 immutable 8 primitive

16 mutable 32 noaligned 64 instance

The level of checking is controlled with the \overloadmode but I’m still not sure about

how many levels we need there. A zero value disables checking, the values 1 and 3 give

warnings and the values 2 and 4 trigger an error.

