
ChkTEX v1.6.6

Jens T. Berger Thielemann

April 7, 2012

1 Introduction

This program has been written in frustration because some constructs in LATEX
are sometimes non-intuitive, and easy to forget. It is not a replacement for
the built-in checker in LATEX; however it catches some typographic errors LATEX
oversees. In other words, it is Lint for LATEX. Filters are also provided for
checking the LATEX parts of CWEB documents.

It is written in ANSI C and compiles silently under GCC using “-Wall -ansi

-pedantic” and almost all warning flags. This means that you can compile &
use the program on your favorite machine. Full source included.

The program also supports output formats suitable for further processing by
editors or other programs, making errors easy to cycle through. Software is pro-
vided for beautifully interfacing against the AUC-TEX Emacs mode, CygnusED,
GoldEd and various Amiga message browsers.

The program itself does not have any machine requirements; However com-
piling for other platforms has not been done for a long time now so the code
has been removed. If interest rises it can be resurrected.

2 Features

ChkTEX begins to get quite a few bells & whistles now. However, you should be
aware of that in most cases, all this is transparent to the user. As you will see,
ChkTEX offers the ability to adapt to many environments and configurations.

• Supports over 40 warnings. Warnings include:

– Commands terminated with
space. Ignores “\tt”, etc.

– Space in front of references
instead of “˜”.

– Forgetting to group
parenthesis characters when
sub-/superscripting.

– Italic correction (“\/”)
mistakes (double, missing,
unnecessary).

– Parenthesis and environment

matching.

– Ellipsis detection; also checks
whether to use “\dots”,
“\cdots” or “\ldots”.

– Enforcement of normal space
after abbreviation. Detects
most abbreviations
automagically.

– Enforcement of
end-of-sentence space when
the last sentence ended with

1

capital letter.

– Math-mode on/off detection.

– Quote checking, both wrong
types (“"”) and wrong
direction.

– Recommends splitting three
quotes in a row.

– Searching for user patterns.

– Displays comments.

– Space in front of “\label”
and similar commands.

– Use of “x” instead of
“\times” between numbers.

– Multiple spaces in input
which will be rendered as one
space (or multiple spaces,
where that is undesirable).

– Warns about text which may
be ignored.

– Mathematical operators
typeset as variables.

– No space in front of/after
parenthesis.

– Demands a consistent quote
style.

– Punctuation inside inner
math mode/outside display
math mode.

– Use of TEX primitives where
LATEX equivalents are
available.

– Space in front of footnotes.

– Bogus characters following
commands.

• Fully customizable. Intelligent resource format makes it possible to make
ChkTEX respect your LATEX setup. Even command-line options may be
specified globally in the “chktexrc” file.

• Supports “\input” command; both TEX and LATEX version. Actually
includes the files. “TEXINPUTS”-equivalent search path.

• Intelligent warning/error handling. The user may promote/mute warnings
to suit his preferences. You may also mute warnings in the header of a
file; thus killing much unwanted garbage.

• Scripts included for checking CWEB files written in LATEX. (Requires perl
v5).

• Supports both LATEX 2.09 and LATEX2ε.

• Flexible output handling. Has some predefined formats and lets the user
specify his own format. Uses a “printf()” similar syntax. “lacheck”
compatible mode included for interfacing with the AUC-TEX Emacs mode.

• Written in ANSI C. “configure” script included for easy setup and in-
stallation on UNIX systems.

Still, it is important to realize that the output from ChkTEX is only intended
as a guide to fixing faults. However, it is by no means always correct. This
means that correct LATEX code may produce errors in ChkTEX, and vice versa:
Incorrect LATEX code may pass silently through.

2

3 Legal stuff

ChkTEX, documentation, installations scripts, CWEB filters and other materials
provided are copyright c© 1995–96 Jens T. Berger Thielemann, unless explicitly
stated otherwise.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to:

The Free Software Foundation, Inc.
51 Franklin Street
Fifth Floor
Boston
MA 02110-1301
USA

4 Availability

This program will be uploaded to CTAN; thus it can be found at any mirrors
of those.

5 Installation

A few words on installation on various platforms:

UNIX: Type “configure”, “make” and finally “make install”. To make sure
everything proceeded correctly, type “make check”. If you don’t have
superuser privileges and thus access to the default system areas, you should
type “configure –help” to help you set up correct paths.

If you haven’t installed any software like this before, that is distributed in
source form, here are some guidelines to help you install it locally at your
account. Please note that a mail to the system administrator may be less
work for you.

We assume that you have put the archive (“chktex.tar.gz”) in a subdir
of yours, with path “˜/tmp”. We further assume that your shell is “csh”
or “tcsh”. Do the following:

1. First of all, unpack the archive contents.

> cd ~/tmp

> gunzip chktex.tar.gz

> tar xf chktex.tar

3

2. Now, we can configure the program. There are some configuration
options you should know about:

“–enable-emacs-hack”: Install a small file which adds ChkTEX to
the command menu of AUC-TEX. This is to be considered as a
hack, and may break in future versions of AUC-TEX. It works
fine under AUC-TEX v2.9, though.
This option needs the path of your elisp directory as argument,
e.g. “–enable-emacs-hack=/home/myself/elisp” or similar.
You’ll also have to add the following line to your “.emacs” file:

(require ’chktex)

You can now access ChkTEX from the “Command” menu in AUC-
TEX. To cycle through the messages, type C-x ‘.

“–enable-lacheck-replace” This enables a quick hack for making
the AUC-TEX Emacs mode use ChkTEX instead of lacheck. This
is done by installing a stub script which “overrides” the original
lacheck executable.
While more stable than the previous solution, this is also sig-
nificantly less elegant — in computing terms, this is the “brute
force” approach.

“–enable-debug-info” ChkTEX has an ability to spit out various
diagnostic messages using the “-d” flag. This behaviour is on
by default. By adding the flag “–disable-debug-info” to the
commandline, this will not be compiled in.
This may be useful if you’re running short of disk space (the time
savings are neglible).

If you are installing the program on your local account, use the fol-
lowing command:

> configure --prefix ~/

Add eventual extra flags as specified above. This command will gen-
erate a significant amount of output, this can usually be ignored.

3. Finally, we can just build the program and install it.

> make

> make install

4. Finished! The program is now installed and ready to use. You may
now tell other people to put your bindir in their path in order to
benefit from your work. All that remains is to make the shell aware
of your installation.

> rehash

To make the remaining parts of your system aware of this, you’ll have
to log out and re-log in, I’m afraid. However, you should delay this
until you’ve completed this installation procedure.

5. If you wish to make sure that everything is OK (you ought to), you
may now ask ChkTEX to do a self-test:

> make check

4

Other platforms: First of all, you have to copy the “config.h.in” file to a
file named “config.h”. Then, edit it to reflect your system. Do the same
with “OpSys.h” (this file has been reduced significantly). If you wish, you
may define “DATADIR” to the path you want the global resource file to be
put.

Now, I would suggest that you take a peak at the “OpSys.c” file, and edit
it appropiately, for more comfort. This should not be necessary, though,
at least not the first time.

Finally, you may now compile and link all .c files. Do not forget to
define “HAVE_CONFIG_H” to 1 (on the command-line, for instance). If the
“config.h” you wish to use has another name, define “CONFIG_H_NAME”
to that (in that case, don’t define “HAVE_CONFIG_H”).

Put the directory path of the “chktexrc” file in a environment variable
named “CHKTEXRC”. The files “deweb.in” and “chkweb” should be moved
to a directory in your path. These files may need further setup, as they
haven’t got the location of perl initialized.

If your compiler/the compiled program complains (or crashes!), you may
try the hints listed below. Please note that it only makes sense to try
these hints if your compiler fails to produce a working program.

1. Increase the preprocessor buffers and line buffers. The ChkTEX
sources define macros sized 3–4k (expanding to about the same),
and passes arguments sized about 1k.

2. Use the magic switch which lets us use large “switch(...){...}”
statements; some of these statements have about 120 “case” entries.

3. The sources require that at least the first 12 of each identifier is
significant.

Note: You must install the new “chktexrc” file; ChkTEX will fail to function
otherwise!

After doing this, you may enhance ChkTEX’ behaviour by reading/editing
the “chktexrc” file.

6 Usage

6.1 ChkTEX

6.1.1 Synopsis

A UNIX-compliant template format follows:
chktex [-hiqrW] [-v[0-...]] [-l <rcfile>]

[-[wemn] <[1-42]|all>] [-d[0-...]]

[-p <pseudoname>] [-o <outputfile>] [-[btxgI][0|1]]

file1 file2 ...

6.1.2 Options

These are the options ChkTEX currently accepts. Please note that single-
lettered options requiring a numerical or no argument may be concatenated.

5

E.g. saying “-v0qb0w2” is the same as saying “-v0 -q -b0 -w2”, except for
being less to type.

Enough general talk; here’s a rather detailed description of all options:

Misc. options: General options which aren’t related to some specific subpart
of ChkTEX.

-h [–help] Gives you a command summary.

-i [–license] Shows distribution information.

-l [–localrc] Reads a resource-file formatted as the global resource-file
“chktexrc”, in addition to the global resource-file. This option needs
the name of the resource-file as a parameter. See also -g.

-r [–reset] This will reset all settings to their defaults. This may be
useful if you use the CMDLINE directive in your “chktexrc” file, and
wish to do something unusual.

-d [–debug] Needs a numeric argument; a bitmask telling what to out-
put. The values below may be added in order to output multiple
debugging info.

Value Dumps. . .

1 All warnings available and their current status.
2 Statistics for all lists in the resource file.
4 The contents of all lists in the resource file.
8 Misc. other status information.
16 Run-time info (note that this isn’t widely used).

The info is produced after all switches and resource files have been
processed.

It is possible to install versions of ChkTEX that ignore this flag; this
means that it is not certain that this flag works.

-W [–version] Displays version information, and exits.

Muting warning messages: Controls whether and in what form error mes-
sages will appear. Usually they accept a specific warning number (e.g.
“-w2”), but you may also say “all” (e.g. “-wall”) which does the opera-
tion on all warnings.

-w [–warnon] Makes the message number passed as parameter a warning
and turns it on.

-e [–erroron] Makes the message number passed as parameter an error
and turns it on.

-m [–msgon] Makes the message number passed as parameter a message
and turns it on. Messages are not counted.

-n [–nowarn] Turns the warning/error number passed as a parameter
off.

Output control flags: Determines the appearance and destination of the er-
ror reports.

-q [–quiet] Shuts up about copyright information.

6

-o [–output] Normally, all errors are piped to stdout. Using this option
with a parameter, errors will be sent to the named file instead. Only
information relative to the LATEX file will be sent to that file. Memory
problems and similar will as as always be sent to stderr. If a file with
the name given already exists, it will be renamed to “foobar.bak”
(“foobar.$cl” under MS-DOS), “foobar” being the name of the file.
See also “-b”.

-v [–verbosity] Specifies how much and how you wish the error reports
to be displayed. This is specified in the “chktexrc” file; we’ll list the
default values below. If you wish, you may thus edit the “chktexrc”
file to add or modify new formats.

The default is mode 1 (that is, the second entry in the “chktexrc”
file), using -v without any parameter will give you mode 2.

0 Will show the information in a way that should be suitable for
further parsing by awk, sed or similar. The format is as follows:

File:Line:Column:Warning number:Warning message

The colons may be replaced with another string; use the -s

switch for this.
As the program does not output all errors in quite order, this
output format is also suitable for piping through “sort”.

1 Shows the information in a way which is more comprehensible for
humans, but which still doesn’t need anything but a glass tty.

2 Shows the information in a fancy way, using escape codes and stuff.
It is the indeed most readable of all modes; however, it needs
proper set up of the “ChkTeX.h” at compilation time. UNIX
boxes, however, will find the information automatically.

3 Shows the information suitable for parsing by Emacs; this is the
same format as lacheck uses. More formally, it is the following:

"File", line Line: Warning message

To utilize this, type M-x compile RET. Delete whatever is writ-
ten in the minibuffer, and type chktex -v3 texfile.tex, and
you should be able to browse through the error messages. Use
C-x ‘ to parse the messages.

4 More or less the same as -v3, but also includes information on
where the error actually was found. Takes somewhat longer time
to parse, but much more informative in use.

-f [–format] Specifies the format of the output. This is done using a
format similar to “printf()”, where we support the specifiers listed
below.

7

Code Description

%b String to print between fields (from -s option).
%c Column position of error.
%d Length of error (digit).
%f Current f ilename.
%i Turn on inverse printing mode.
%I Turn off inverse printing mode.
%k kind of error (warning, error, message).
%l line number of error.
%m Warning message.
%n Warning number.
%u An underlining line (like the one which appears when

using “-v1”).
%r Part of line in front of error (‘S’ − 1).
%s Part of line which contains error (string).
%t Part of line after error (‘S’ + 1).

Other characters will be passed literally; thus you can say “%%” to
achieve a single percent sign in the output. Please note that we may
introduce other specifiers in the future, so don’t abuse this feature
for other characters.

Also, note that we do not support field lengths (yet). This may come
in the future, if I get the time. . .

The -v command is implemented by indexing into the “chktexrc”
file; read that for seeing how each format is implemented. If you
find yourself using a particular format often by using the -f switch,
consider putting it in the “chktexrc” file instead.

-V [–pipeverb] Which entry we’ll use in the “chktexrc” file whenever
stdout isn’t a terminal.

The default is to use the same mode as specified with the -v switch;
using -V without any parameter will give you mode 1.

This switch was implemented because GNU less has problems with
the escape codes ChkTEX uses for displaying inverse text. Under
UNIX, there’s another way around, though, which is slightly more
elegant. Add the following line to your “.envir” file:

setenv LESS -r

-p [–pseudoname] With this switch, you can provide the filename which
will be used when we report the errors. This may be useful in scripts,
especially when doing pipes. It is in other words similar to C’s #line
directive.

We will only assume this name for the uppermost file; files that this
one in turn \input are presented under their original names. This
seems most logical to me.

-s [–splitchar] String to use instead of the colons when doing -v0; e.g.
this string will be output between the fields.

Boolean switches: Common for all of these are that they take an optional
parameter. If it is 0, the feature will be disabled, if it is 1, it will be

8

enabled. All these features are on by default; and are toggled if you don’t
give any parameter.

-b [–backup] If you use the -o switch, and the named outputfile exists,
it will be renamed to filename.bak.

-I [–inputfiles] Execute \input statements; e.g. include the file in the
input. Our input parsing does of course nest; we use an input-stack
to keep track of this.

-H [–headererr] Show errors found in front of the \begin{document}

line. Some people keep lots of pure TEX code there, which errors
can’t be detected reliably (in other words, we will in most cases just
produce a lot of garbage).

-g [–globalrc] Read in the global resource file. This switch may be
useful together with the -l option.

-t [–tictoc] Display a twirling baton, to show that we’re working. -v0
does an -t0, too, as it assumes that the user then uses the program
non-interactively. This is now a no-op.

-x [–wipeverb] Ignore the “\verb” command found within the LATEX
file and its argument is completely by the checking routines. This is
done by simply overwriting them. If you somehow don’t like that (for
instance, you would like to count brackets inside those commands,
too), use this switch.

If you don’t specify any input LATEX-files on the commandline, we’ll read
from stdin. To abort stdin input, press the following keycombinations:

Machine Key-combination

UNIX Ctrl + D

MS-DOS Ctrl + Z , followed by return.

By default, we’re using the 1994 version of GNU’s “getopt()” routine.

• Options may be given in any order; the names of the LATEX-files do not
have to be the last arguments. This behaviour may be turned off by
creating an environment variable named “POSIXLY_CORRECT”.

• The special argument “–” forces an end of option-scanning.

• Long-named options begin with “–” instead of “-”. Their names may be
abbreviated as long as the abbreviation is unique or is an exact match for
some defined option. If they have an argument, it follows the option name
in the argument, separated from the option name by a “=”, or else the in
next argument.

6.1.3 The “chktexrc” file

You should also take a look at the “chktexrc” file. As it is self-documenting,
you should be able to get the meaning of each keyword by simply reading the
file. The method for finding it, however, has grown rather complex. An outline
is given below.

9

If ChkTEX finds multiple files when searching, each and everyone will be
read in the order specified below. The “Keyword =ă{ item item ...}” may
thus be necessary to reset previously defined lists.

In this list, “$foo” is assumed to be the environment variable “foo”:

1. First, we’ll take a look at the directory which was specified as “DATADIR”
during compilation. On UNIX boxes, this usually evaluates to some-
thing similar to “/usr/local/share/chktexrc”, under MS-DOS it is set
to “\emtex\data\chktexrc”.

2. Look in the following system directories:

Machine Directory

UNIX “$HOME/.chktexrc” or “$LOGDIR/.chktexrc”
MSDOS Program installation path

3. Look for it in the directory pointed to by an environment variable, as
specified in the table below:

Machine Directory

UNIX “$CHKTEXRC/.chktexrc”
MSDOS “$CHKTEXRC\chktexrc”, “$CHKTEX_HOME\chktexrc” or

“$EMTEXDIR\data\chktexrc”

4. Look for it in the current directory. On UNIX boxes, we expect the
filename to be “.chktexrc”; on other machines “chktexrc”.

If you for some reason wish to undo what the previous files may have done,
you may say “CmdLine { -g0 -r }” somewhere in the “chktexrc” file; this will
reset all previous settings.

6.1.4 Hints

I’ve tried to collect some advice that may be useful — if you have a favourite
hint, feel free to send it to me!

• If you use “german.sty”; it may be wise to put “-n18” in the “CmdLine”
entry in the “chktexrc” file. This will probably reduce the amount of false
warnings significantly.

• Put “-v” in the “CmdLine” entry of the “chktexrc” file; this makes the
fancy printing the default.

• If you’re working on a large project, it may pay off to make a local resource
file which is included in addition to the global one. In this one, add the
necessary info to reduce the amount of false warnings — these usually
don’t do anything but hide the real warnings.

• Create a total ignore environment, which ChkTEX will ignore completely.
In here, you can place all that code which outsmarts ChkTEX completely.
For instance, add the following lines at the top of your LATEX file:

% ChkTeX will ignore material within this environment

\newenvironment{ignore}{}{}

In addition, you should add the item “ignore” to the “VerbEnvir” entry
in the “chktexrc” file.

10

6.1.5 Bugs

No fatal ones, I think, but the program currently has some problems when a
LATEX command/parameter stretch over a two lines — some extra spaces may
be inserted into the input. I regard the program as fairly well tested; using the
SAS/C “cover” utility I was able to make sure that approximately 95% of the
code has actually been run successfully in the final version. This does indeed
leave some lines; most of these are procedure terminating brackets or “can’t
happen” lines, though.

We’ve got some problems when isolating the arguments of a command. Al-
though improved, it will certainly fail in certain cases; ChkTEX can for instance
not handle arguments stretching over two lines. This also means that “WIPEARG”
entries in the “chktexrc” file will only have the first half of their argument wiped
if the argument stretches over two lines. We will, however, take care not to wipe
parenthesis in such cases, in order to avoid false warnings.

Before submitting a bug report, please first see whether the problem can be
solved by editing the “chktexrc” file appropiately.

6.2 ChkWEB

This shell script is provided for checking CWEB files. The template is as follows:

chkweb [options] file1 file2 ...

As you may see from the script, it is only a trivial interface towards deweb and
ChkTEX. It does not support any individual options on the command line —
all options found will be passed onto ChkTEX. If “–” or a filename is found, the
remaining parameters will be ignored. The only real intelligence it features is
that it will try to append .w to filenames it can’t find.

If no filenames are given, we will read from stdin.

6.3 DeWEB

This program strips away C code and CWEB commands from CWEB sources.
It is called with the following synopsis:

deweb file1 file2 ...

deweb filters away all C & CWEB commands from a CWEB source code.
This leaves only the LATEX code. This stripped code, in turn, may then be
passed to a suitable syntax checker for LATEX, like ChkTEX and lacheck, or
spell-checkers like ispell.

When deweb strips away the C code from your CWEB source, it tries to
preserve line breaks. This means that the error reports from your favorite tool

will be correct regarding to line numbers. In most cases, the column position
will also be correct. This significantly simplifies finding the errors in the LATEX
source (in contrast to the output from cweave, which output is truly difficult to
figure anything out from).

deweb accepts a list of filenames on the argument line, and will send its
output to stdout. If no filenames are given, it will read from stdin, acting as a
filter. No options are currently accepted.

11

Macho users may try to pipe the output from deweb directly into LATEX,
theoretically, this should work. This would ease the debugging of the LATEX
code significantly, as when LATEX complains about wrong syntax, you’ll be able
to find the erroneous line much more easily. Don’t expect that the output looks
very much like the final one, though.

deweb should now understand all correct CWEB opcodes. If it complains about
not understanding a correct opcode, please inform the author.

6.3.1 Bugs

deweb will not even compile under Perl versions before perl v5. Unfortunately,
this means that we can’t even tell the user why we failed; Perl will just complain
about not being able to compile the regexps.

7 Explanation of error messages

Below is a description of all error-messages ChkTEX outputs. Error messages
set in italic type are turned off by default. Where margin paragraphs are listed
in the text, they refer to the keyword in the “chktexrc” file which controls the
discussed warning.

SilentWarning 1: Command terminated with space.

You tried to terminate a command with a blank space. Usually, this
is an error as these are ignored by LATEX. In most cases, you would
like to have a real space there.

\LaTeXis a typesetter.

LATEXis a typesetter.

\LaTeX\ is a typesetter.

LATEX is a typesetter.

LinkerWarning 2: Non-breaking space (‘˜’) should have been

used.

When reading a document, it is not very pretty when references are
split across lines. If you use the ~ character, LATEX will assign a very
high penalty for splitting a line at that point. ChkTEX issues this
warning if you have forgot to do this.

Please refer to figure \ref{foo}.

Please refer to figure 11.

Please refer to figure~\ref{foo}.

Please refer to figure 11.

12

Warning 3: You should enclose the previous

parenthesis with ‘{}’.

This is a warning which you may ignore, but for maximum aestethic
pleasure, you should enclose your bracket characters with ‘{}’s.

$ [(ab)^{-1}] \^{-2}$

[(ab)−1]−2

${[{(ab)}^{-1}]}^{-2}$

[(ab)−1]
−2

Italic

ItalCmd

NonItalic

Warning 4: Italic correction (‘\/’) found in

non-italic buffer.

If you try to use the \/ command when ChkTEX believes that the
buffer is not outputted as italic, you’ll get this warning.

This is an\/ example

This is an example.

This is an example.

This is an example.

Italic

ItalCmd

NonItalic

Warning 5: Italic correction (‘\/’) found more than

once.

If the buffer is italic, and you try to use the \/ command more than
once, you’ll get this warning.

This {\it example\/\/} is not amusing.

This example is not amusing.

This {\it example\/} is not amusing.

This example is not amusing.

Italic

ItalCmd

NonItalic

Warning 6: No italic correction (‘\/’) found.

You get this error if ChkTEX believes that you are switching from
italic to non-italic, and you’ve forgot to use the \/ command to
insert that extra little spacing. If you use the “em” option, you may
ignore this warning.

This {\it example } is not amusing, either.

This example is not amusing, either.

This {\it example\/} is not amusing, either.

This example is not amusing, either.

13

IJAccentWarning 7: Accent command ‘command’ needs use of

‘command’.

If you’re using accenting commands, ‘i’ and ‘j’ should lose their dots
before they get accented. This is accomplished by using the \i, \j,
\imath and \jmath command.

This is an example of use of accents: \’{i}.

This is an example of use of accents: í.

This is an example of use of accents: \’{\i}.

This is an example of use of accents: í.

HyphDash

NumDash

WordDash

Warning 8: Wrong length of dash may have been used.

This warning suggests that a wrong number of dashes may have
been used. It does this by classifying the dash according to the the
character in front and after the dashes.

If they are of the same type, ChkTEX will determine which keyword
to use in the “chktexrc” file. If not, it will shut up and accept that
it doesn’t know.

Character type Keyword in “chktexrc” file

Space WordDash

Number NumDash

Alphabetic character HyphDash

This is more or less correct, according to my references. Hopefully
this check can be even more improved (suggestions?).

It wasn’t anything - just a 2–-3 star–shots.

It wasn’t anything - just a 2—3 star–shots.

It wasn’t anything --- just a 2--3 star-shots

It wasn’t anything — just a 2–3 star-shots.

Warning 9: ‘%s’ expected, found ‘%s’.

Warning 10: Solo ‘%s’ found.

Either brackets or environments don’t match. ChkTEX expects to
find matching brackets/environments in the same order as their op-
posites were found, and no closing delimiters which haven’t been
preceded by an opening one.

While bracket matching is not an explicit error, it is usually a sign
that something is wrong.

14

CenterDots

LowDots

Warning 11: You should use ‘%s’ to achieve an

ellipsis.

Simply typing three “.” in a row will not give a perfect spacing
withing the between the dots. The \ldots is much more suitable
for this.

In math mode, you should also distinguish between \cdots and
\ldots; take a look at the example below.

Foo...bar. $1,...,3$. $1+...+3$. $1,\cdots,3$.

Foo...bar. 1, ..., 3. 1 + ...+ 3. 1, · · · , 3.

Foo\dots bar. $1,\ldots,3$. $1+\cdots+3$. $1,\ldots,3$.

Foo. . . bar. 1, . . . , 3. 1 + · · ·+ 3. 1, . . . , 3.

AbbrevWarning 12: Interword spacing (‘\ ’) should perhaps

be used.

One of the specified abbreviations were found. Unless you have pre-
viously said \frenchspacing, you’ll have incorrect spacing, which
one should avoid if possible.

This is an example, i.e. an demonstration.

This is an example, i.e. an demonstration.

This is an example, i.e.\ an demonstration.

This is an example, i.e. an demonstration.

Warning 13: Intersentence spacing (‘\@’) should

perhaps be used.

LATEX’ detection of whether a period ends a sentence or not, is only
based upon the character in front of the period. If it’s uppercase, it
assumes that it does not end a sentence. While this may be correct
in many cases, it may be incorrect in others. ChkTEX thus outputs
this warning in every such case.

I’ve seen an UFO! Right over there!

I’ve seen an UFO! Right over there!

I’ve seen an UFO\@! Right over there!

I’ve seen an UFO! Right over there!

Warning 14: Could not find argument for command.

ChkTEX will in some cases need the argument of a function to detect
an error. As ChkTEX currently processes the LATEX file on a line-by-
line basis, it won’t find the argument if the command which needed
it was on the previous line. On the other hand, this may also be an
error; you ought to check it to be safe.

15

\hat

This will give a LATEX error. . .

\hat{a}

â

Warning 15: No match found for ‘%s’.

This warning is triggered if we find a single, opening bracket or
environment. While bracket matching is not an explicit error, it is
usually a sign that something is wrong.

MathEnvirWarning 16: Mathmode still on at end of LaTeX file.

This error is triggered if you at some point have turned on math-
mode, and ChkTEX couldn’t see that you remembered to turn it
off.

Warning 17: Number of ‘character’ doesn’t match the

number of ‘character’.

Should be self-explanatory. ChkTEX didn’t find the same number of
an opening bracket as it found of a closing bracket.

Warning 18: You should use either “ or ” as an

alternative to ‘ " ’.

Self-explanatory. Look in the example, and you’ll understand why.

This is an "example"

This is an "example"

This is an ‘‘example’’

This is an “example”

Warning 19: You should use "’" (ASCII 39) instead of

"’" (ASCII 180).

On some keyboards you might get the wrong quote. This quote
looks, IMHO, ugly compared to the standard quotes, it doesn’t even
come out as a quote! Just see in the example.

‘‘There’s quotes and there’s quotes ”

“Thereťs quotes and thereťs quotesťť

‘‘There’s quotes and there’s quotes’’

“There’s quotes and there’s quotes”

UserwarnWarning 20: User-specified pattern found.

A substring you’ve specified using USERWARN in the “chktexrc” file,
has been found.

16

Warning 21: This command might not be intended.

I implemented this because a friend of mine kept on making these
mistakes. Easily done if you haven’t gotten quite into the syntax of
LATEX.

\LaTeX\ is an extension of \TeX\. Right?

LATEX is an extension of TEXṘight?

\LaTeX\ is an extension of \TeX. Right?

LATEX is an extension of TEX. Right?

Warning 22: Comment displayed.

ChkTEX dumps all comments it finds, which in some cases is useful.
I usually keep all my notes in the comments, and like to review
them before I ship the final version. For commenting out parts of
the document, the “comment” environment is better suited.

Warning 23: Either ”\,’ or ’\,” will look better.

This error is generated whenever you try to typeset three quotes in
a row; this will not look pretty, and one of them should be separated
from the rest.

“‘Hello’, I heard him said’’, she remembered.

“ ‘Hello’, I heard him said”, she remembered.

‘‘\,‘Hello’, I heard him said’’, she remembered.

“ ‘Hello’, I heard him said”, she remembered.

PostLinkWarning 24: Delete this space to maintain correct

pagereferences.

This message, issued when a space is found in front of a \index,
\label or similar command (can be set in the “chktexrc” file).
Sometimes, this space may cause that the word and the index hap-
pens on separate pages, if a pagebreak happens just there.

You might also use this warning to warn you about spaces in front
of footnotes; however, the warning text may not be entirely correct
then.

Indexing text \index{text} is fun!

Indexing text\index{text} is fun!

17

Warning 25: You might wish to put this between a

pair of ‘{}’

This warning is given whenever ChkTEX finds a “ˆ” ’ or a “_” followed
by either two or more numberic digits or two or more alphabetic
characters. In most situations, this means that you’ve forgotten
some {}’s.

$5\cdot10^10$

5 · 1010

$5\cdot10^{10}$

5 · 1010

Warning 26: You ought to remove spaces in front of

punctuation.

This warning is issued if ChkTEX finds space in front of an end-of-
sentence character.

Do you understand ?

Do you understand ?

Do you understand?

Do you understand?

Warning 27: Could not execute LaTeX command.

Some LATEX commands will be interpreted by ChkTEX; however,
some of them are sensible to errors in the LATEX source. Most no-
tably, the \input command relies on that the input file exists. . .

Italic

ItalCmd

NonItalic

Warning 28: Don’t use \/ in front of small

punctuation.

Italic correction should generally not be used in front of small punc-
tuation characters like ‘.’ and ‘,’; as it looks better when the pre-
ceding italic character leans “over” the punctum or comma.

It is just a {\it test\/}, don’t think anything else.

It is just a test , don’t think anything else.

It is just a {\it test}, don’t think anything else.

It is just a test, don’t think anything else.

Warning 29: \times may look prettier here.

In ASCII environments, it is usual to use the ‘x’ character as an
infix operator to denote a dimension. The mathemathical symbol ×
provided by the \times command is better suited for this.

The program opens a screen sized 640x200 pixels.

The program opens a screen sized 640x200 pixels.

The program opens a screen sized 640×200 pixels.

The program opens a screen sized 640× 200 pixels.

18

Warning 30: Multiple spaces detected in output.

This warning, intended for the novice, will remind you that even if
you type multiple spaces in your input, only a single space will come
out. Some ways to come around this is listed below.

White is a beautiful colour.

White is a beautiful colour.

White~~~~~{ }{ }{ }\ \ \ is a beautiful colour.

White is a beautiful colour.

VerbEnvirWarning 31: This text may be ignored.

Certain implementations of the verbatim environment and deriva-
tions of that, ignore all text on the same line as \end{verbatim}.
This will warn you about this.

Warning 32: Use ‘ to begin quotation, not ’.

Warning 33: Use ’ to end quotation, not ‘.

Warning 34: Don’t mix quotes.

Proper quotations should start with a ‘ and end with a ’; anything
else isn’t very pretty. Both these warnings are relative to this; look
in the example below.

There are ‘’examples’’ and there are ‘‘examples“.

There are ‘’examples” and there are “examples“.

There are ‘‘examples’’ and there are ‘‘examples’’.

There are “examples” and there are “examples”.

MathRomanWarning 35: You should perhaps use ‘cmd’ instead.

Most mathematical operators should be set as standard roman font,
instead of the math italic LATEX uses for variables. For many opera-
tors, LATEX provides a pre-defined command which will typeset the
operator correctly. Look below for an illustration of the point.

$sin^2 x + cos^2 x = 1$

sin2x+ cos2x = 1

$\sin^2 x + \cos^2 x = 1$

sin2 x+ cos2 x = 1

Warning 36: You should put a space in front of/after

parenthesis.

Warning 37: You should avoid spaces in front

of/after parenthesis.

19

Outside math mode, you should put a space in front of any group of
opening parenthesis, and no spaces after. If you have several after
each other, you should of course not put a space in between each;
look in the example below. Likewise, there should not be spaces in
front of closing parenthesis, but there should be at least one after.

This(an example(Nuff said)), illustrates(‘‘my’’)point.

This(an example(Nuff said)), illustrates(“my”)point.

This (an example (Nuff said)), illustrates (‘‘my’’) point.

This (an example (Nuff said)), illustrates (“my”) point.

QuoteStyleWarning 38: You should not use punctuation in front

of/after quotes.

For best looking documents, you should decide on how you wish to
put quotes relative to punctuation. ChkTEX recognizes two styles;
you may specify which you use in the “chktexrc” file. A description
on each style follows:

Traditional: This style is the most visually pleasing. It always puts
the punctuation in front of the quotes, which gives a continuous
bottom line.

However, it may in certain cases be ambigious. Consider the
following example from a fictious “vi(1)” tutorial (quote taken
from the Jargon file):

Then delete a line from the file by typing ‘‘dd.’’

Then delete a line from the file by typing “dd.”

That would be very bad — because the reader would be prone
to type the string d-d-dot, and it happens that in “vi(1)” dot
repeats the last command accepted. The net result would be
to delete two lines! This problem is avoided using logical style,
described below.

Logical: This style uses quotes as balanced delimiters like paren-
theses. While this is not the most visual pleasing, it is can’t be
misunderstood. The above sentence would then become:

Then delete a line from the file by typing ‘‘dd’’.

Then delete a line from the file by typing “dd”.

Warning 39: Double space found.

This warning is triggered whenever ChkTEX finds a space in front
of a hard space, or vice versa. This will be rendered as two spaces
(which you usually don’t wish).

For output codes, see table ~ \ref{foo}.

For output codes, see table 1.1.

For output codes, see table~\ref{foo}.

For output codes, see table 1.1.

20

MathEnvirWarning 40: You should put punctuation outside

inner/inside display math mode.

As recommended in the TEXbook, you should try to put punctuation
outside inner math mode, as this is gets formatted better.

Similarily, you should let any final punctuation in display math mode
end up within it. Look at the following example, which was taken
from the TEXbook:

for $x = a,b$, or c.

for x = a, b, or c.

for $x = a$, b, or c.

for x = a, b, or c.

PrimitivesWarning 41: You ought to not use primitive TeX in

LaTeX code.

This warning is triggered whenever you use a raw TEX command
which has been replaced by a LATEX equivalent. If you consider
yourself a purist (or want to be sure your code works under LATEX3),
you should use the LATEX equivalent.

NotPreSpacedWarning 42: You should remove spaces in front of

‘%s’

Some commands should not be prepended by a space character, for
cosmetical reasons. This notes you of this whenever this has hap-
pened.

This is a footnote \footnotemark[1] mark.

This is a footnote 1 mark.

This is a footnote\footnotemark[1] mark.

This is a footnote1 mark.

NoCharNextWarning 43: ‘%s’ is normally not followed by ‘%c’.

LATEX’ error message when calling \left \{ instead of left \{ is
unfortunately rather poor. This warning detects this and similar
errors.

8 Future plans

In a somewhat prioritized sequence, this is what I’d like to put into the program
— if I have the time.

• Do a final fix for maths mode. Currently, ChkTEX doesn’t recognize
constructions like $$a+b\text{for $a \leq 0$}$$, i.e. embedded math
mode.

21

• Support for regular expressions as user patterns. I’ll do it at once I get
the GNU “rx” package up and running (it doesn’t produce correct include
files).

• De-linearize the checker. Currently, it works on a line-by-line basis, in
most respects, at least. I hope to be able to remove this barrier; as this
will reduce the amount of false warnings somewhat.

• Probably some more warnings/errors; just have to think them out first.
Suggestions are appreciated — I’ve “stolen” most that similar programs
provides, and am running out of ideas, really.

It would also be nice to investigate the field of “globally” oriented warnings;
i.e. warnings regarding the document as a whole. Currently, ChkTEX
operates mainly on a local/“greedy” basis.

If you have suggestions/ideas on this topic, they’re certainly welcome,
including references to literature.

• Fix a few more bugs.

9 Notes

9.1 Wish to help?

As most other living creatures, I have only a limited amount of time. If you like
ChkTEX and would like to help improving it, here’s a few things I would like to
receive. The following ideas are given:

• Does anyone have a LATEX → troff conversion program? It would be
really nice if I could extract the relevant sections from this manual, and
present them as a man page. I will not, however, convert this manual to
TEXinfo in order to be able to do this; IMHO TEXinfo documents have
far too limited typographic possibilities.

This doesn’t mean that I’m not willing to restructure the document at all.
This manual already uses some kind of preprocessing in order to achieve
HTML output via LATEX2html, I’m willing to do the same in order to
produce troff output.

• Help me port the program! This is a prioritized one. It’s no fun writing
ANSI C when people haven’t got a C compiler.

Of course, I’ll provide whatever help necessary to modify the sources to fit
to the new platform. Take contact if you’re interested. I will include your
compiled binary in the distribution, and give you credit where appropiate.

Just one request: If you have to modify the sources in order to make
ChkTEX compile & work on the new platform, please enclose your changes
in something like “#ifdef __PLATFORM__...code...#endif”! It makes
life so much easier later, when we try to merge the two source trees.

• Reports on problems configuring and compiling ChkTEX on supported
(and unsupported) systems are welcomed.

22

• Filters for other file formats. I do believe that there are several formats
using LATEX for its formatting purposes, combining that with something
else. If you can write a program or script which filters everything away
but the LATEX code, it will surely be appreciated (and included). Look at
the deweb script to see what I mean.

• Arexx interfaces for other editors are also welcomed; these should be rather
fast to write. They should to the following:

1. Get the filename of the active file.

2. If possible, save the file to disk if there has been any changes.

3. Call the program “ChkTeX.rexx” with the filename as the only pa-
rameter.

• If somebody out there actually possesses (and uses) GoldED, it would be
nice if they checked whether the ARexx script included actually work. If
not, please send me a fixed copy; perhaps also one which supports point
2 above, too. If it does work, then please tell me so, so I can remove this
item.

I don’t have GoldEd in my possession; the script was just modelled af-
ter Juergen Zeschky’s, (<juergen@sokrates.nbg.de>) PGP ↔ GoldED
interface.

• If you update the “chktexrc” file in anyway that is not strictly local, I
would appreciate to receive your updated version.

• Suggestions for new warnings are always welcomed. Both formal (i.e. reg-
exps or similar) and non-formal (plain English) descriptions are welcomed.

Of course, people doing any of this will be mentioned in this document, and
thus receive eternal glory and appreciation.

9.2 Caps and stuff

This program uses the “getopt()” routine, as supplied from GNU. The source
included in this distribution has been modified slightly. To make the use of
C2LOCAL easier, portions which were #ifdef’ed out, have now been com-
mented out.

Where trademarks have been used, the author is aware of that they belong
to someone, and has tried to stick to the original caps.

10 About the author

A quick summary of who I am and what I do:
I’m 21 years old, and live in Oslo, the capital of Norway. I’m currently

studying maths and computer science at the University of Oslo; planning to get
a degree within mathematical modeling, with a dash of physics and emphazing
the computer part of the study. More precisely, in autumn’96 my studies consist
of mathematical analysis, statistics & probability calculations plus studying the
relationship between society and computers.

23

At home I now possess 4 computers, of which 1 is regular use: A vanilla
Amiga 1200, expanded only by a HD. The others are a 80286 PC and an Amiga
500, both semi-out-of-order. The last one is a Commodore VIC-20, which for
some peculiar reason never seems to be used. Plans are to get a Linux-capable
PC, though.

Most of the time in front of these computers (including SGI Indy’s and
SPARC stations at our university) is spent on C and shell programming, plus
some text-processing.

C and shell programming are not my only knowledge areas regarding com-
puters, however. I write the following languages more or less: Perl, Motorola
68000 assembly code, ARexx, Simula, C++, LATEX, HTML, AmigaGuide, Amos
Basic and Installer LISP. Once I also mastered Commodore Basic V2, the “lan-
guage” included with my VIC-20.

However, I also try to not to end up as a computer nerd. Thus, in addition
to the compulsory (?) interest for computers, I am a scout. Still running into
the woods, climbing the trees, falling down and climbing up once more, in other
words. To be more specific, I am a now a troop leader for ‘Ulven’ scout-group;
Norwegian Scouts Association. I am also a active rover in ‘Vålerenga’ scout-
group.

Certainly a lot more to tell (I play the piano and like cross-country skiing,
for instance); but I’ll stop here before you fall asleep. . .

11 Thanks

The author wishes to thank the following people (in alphabetical order):

Russ Bubley

russ@scs.leeds.ac.uk
He has been the main external beta-tester for this program, sending me
loads and loads of understandable and reproducible bug reports. If you
somehow think that ChkTEX is well-behaved and free from bugs, send
warm thoughts to Russ. He has also provided ideas for enhanced checks
and so forth.

In addition, he sent me a huge list of 238 common English abbreviations,
for inclusion in the “chktexrc” file! Together with the enhanced abbrevia-
tion recognizer, I do now believe most abbreviations should be catched. . .

Finally, he has also given me valuable hints for improving the program’s
outputting routine, and given me lots of suggestions for filtering unneces-
sary/false warnings away.

Gerd Böhm

Gerd.Boehm@physik.uni-regensburg.de
Improved and bug-fixed the MS-DOS port of ChkTEX v1.4, sending me
ready-to-yank code patches. The original port didn’t respect all the pe-
culiarities of the MS-DOS file-system, unfortunately.

Lars Frellesen

frelle@math-tech.dk
Sent a few bug reports regarding the filtering of messages. He has also
helped me to expand the “SILENT” keyword in the “chktexrc” file.

24

Wolfgang Fritsch

fritsch@hmi.de

Author of the OS/2 port, which he did using the emx compiler. Please
direct questions regarding strictly to that port to him (I would like to
receive a carbon copy, though).

Stefan Gerberding

stefan@inferenzsysteme.informatik.th-darmstadt.de

First one to report the Enforcer hit in v1.2 when using ChkTEX as a pipe.
Also came with suggestions to make ChkTEX more easily compile on early
gcc compilers.

He has also kept on beta-testing later versions of ChkTEX, giving me bug-
reports and enhancements requests.

Kasper B. Graversen

kbg2001@internet.dk
Lots of creative suggestions and improvements. Several of the warnings
implemented were based on his ideas. In addition, he has given advice for
improving the existing warnings.

Has also provided some OS-oriented code.

Frank Luithle

f_luithle@outside.sb.sub.de

Wrote a translation for v1.0. Unfortunately, he remained unreachable
after that. . . :-/

Nat

nat@nataa.frmug.fr.net
Reported the same bug as Gerberding. In addition, he taught me a few
tricks regarding the use of gcc + made me understand that the ANSI
standard isn’t unambigious; at least the getenv() call seem to be open
for interpretations. Many possible incompatibilities have been removed
due to these lessons.

Michael Sanders

sanders@umich.edu
Has found some of the bugs in this beast; both obscure and long-lived.
Has also provided motivation to clarify this document.

Bjørn Ove Thue

bjort@ifi.uio.no

Author of the MSDOS port; please direct questions regarding strictly to
that port to him (I would like to receive a carbon copy, though).

Martin Ward

Martin.Ward@durham.ac.uk
Sent a few bug-reports; also gave me information upon where to find
regexp code. He also provided a Perl script for checking ordinary text,
which ideas I was able to implement in ChkTEX. In addition, he sent me
the source code for lacheck; which also inspired some of the warnings.

25

12 Contacting the author

If you wish to contact me for any reason or would like to participate in the
development of ChkTEX, please write to:

Jens Berger
Spektrumvn. 4
N-0666 Oslo
Norway
E-mail: <jensthi@ifi.uio.no>

Any signs of intelligent life are welcomed; that should exclude piracy.
Since the original author is unreachable, the maintainer these days is:

Baruch Even
E-mail: <chktex@ev-en.org>

Have fun.

26

