
biber
A backend bibliography processor for biblatex

François Charette, Philip Kime
firmicus@ankabut.net,

Philip@kime.org.uk

Version biber 0.8 (biblatex 1.2)
11th February 2011

Contents

1 Introduction 1

1.1 About . . . . . . . . . . . 1
1.2 Requirements . . . . . . 1
1.3 License . . . . . . . . . . 2
1.4 History . . . . . . . . . . 2
1.5 Performance . . . . . . . 3
1.6 Acknowledgements . . . 3

2 Use 3

2.1 Options and config file . 4
2.2 Input/Output File Loca-

tions . . . . . . . . . . . . 7

2.3 Logfile . . . . . . . . . . 8
2.4 Collation and Localisation 8
2.5 Encoding of files . . . . . 10
2.6 Limitations . . . . . . . . 13
2.7 Editor Integration . . . . 13
2.8 BibTeX macros . . . . . . 15

3 Binaries 15

3.1 Binary Caches . . . . . . 16
3.2 Binary Architectures . . 16
3.3 Installing . . . . . . . . . 17
3.4 Building . . . . . . . . . 18

1 Introduction

1.1 About

biber is conceptually a bibtex replacement for biblatex. It is written in Perl
with the aim of providing a customised and sophisticated data preparation backend
for biblatex. Functionally, it offers a superset of bibtex’s capabilities but is
tightly coupled withbiblatex and cannot be used as a stand-alone tool with stand-
ard .bst styles.

1.2 Requirements

biber is distributed in two ways. There is a Perl source version which requires you
to have a working Perl installation (preferably version 5.12 but no less than 5.10) and
the ability to install the pre-requisite modules. Also provided are binaries for major
OSes built with the Perl PAR::Packer module and utilities.

Currently there are binaries available for:

• OSX Intel 64-bit
• Windows

1

http://biblatex-biber.sourceforge.net
mailto:firmicus@ankabut.net, Philip@kime.org.uk
mailto:firmicus@ankabut.net, Philip@kime.org.uk


• Linux 32-bit
• Linux 64-bit

These should work on any fairly recent OS version. Both binaries and Perl source
are available on SourceForge1.

1.3 License

biber is released under the free software Artistic License 2.02

1.4 History

bibtex has been the default (only …) integrated choice for bibliography processing
in TeX for a long time. It has well known limitations which stem from its data format,
data model and lack of Unicode support3. The .bst language for writing biblio-
graphy styles is painful to learn and use. It is not a general programming language
and this makes it really very hard to do sophisticated automated processing of bib-
liographies.
biblatex was a major advance for LaTeX users as it moved much of the bibli-

ography processing into LaTeX macros. However, biblatex still used bibtex as
a sorting engine for the bibliography and also to generate various labels for entries.
bibtex’s capabilities even for this reduced set of tasks was still quite restricted due
to the lack of Unicode support and the more and more complex programming issues
involved in label preparation and file encoding.
biber was designed specifically for biblatex in order to provide a powerful

backend engine which could deal with any required tasks to do with .bbl prepar-
ation. Its main features are:

• Deals with the full range of UTF-8
• Sorts in a completely customisable manner, using when available, CLDR col-

lation tailorings
• Allows for per-entrytype options
• Automatically encodes the .bbl into any supported encoding format4

• Processes all bibliography sections in one pass of the tool
• Handles UTF-8 citekeys and filenames (given a suitable fully UTF-8 compliant

TeX engine)
• Creates entry sets dynamically and allow easily defined static entry sets, all

processed in one pass
• Flexible user-customisable crossreference field inheritance model

1
http://sourceforge.net/projects/biblatex-biber/

2
http://www.opensource.org/licenses/artistic-license-2.0.php

3In fact, there is now a Unicode version
4‘Supported’ here means encodings supported by the Perl Encode module

2

http://sourceforge.net/projects/biblatex-biber/
http://www.opensource.org/licenses/artistic-license-2.0.php


• Support for related entries, to enable generic treatment of things like ‘trans-
lated as’, ‘reprinted as’, ‘reprint of’ etc.5

• Handles very complex auto-expansion and contraction of names and namel-
ists6

• Extensible modular data sources architecture for ease of adding more data
source types.

• Support for remote data sources

1.5 Performance

biber can’t really be compared with bibtex in any meaningful way performance-
wise. biber is written in perl and does a great deal more than bibtex which is
written in C. One of biber’s test cases is a 2150 entry, 15,000 line .bib file which
references a 630 entry macros file with a resulting 160 or so page (A4) formatted
bibliography. This takes biber about 100 seconds on average to process on a reas-
onable computer. This is perfectly acceptable, especially for a batch program …

1.6 Acknowledgements

François Charette originally wrote biber. Philip Kime joined in the development
in 2009.

2 Use

Firstly, running biber --help will display all options and a brief description of
each. This is the most useful brief source of usage information. biber returns an
exit code of 0 on success or 1 if there was an error.

Most biber options can be specified in long or short format. When mentioning
options below, they are referred to as ‘long form|short form’ when an option
has both a long and short form. As usual with such options, when the option re-
quires an argument, the long form is followed by an equals sign ‘=’ and then the
argument, the short form is followed by a space and then the argument. For ex-
ample, the --configfile|-g option can be given in two ways:

biber --configfile=somefile.conf

biber -g somefile.conf

With the backend=biber option, biblatex switches its backend interface and
passes all options and information relevant to biber’s operation in a control file

5In BibLaTeX 1.2
6In BibLaTeX 1.3

3



with extension .bcf7. This is conceptually equivalent to the .aux file which LaTeX
uses to pass information to bibtex. The .bcf file is XML and contains many op-
tions and settings which configure how biber is to process the bibliography and
generate the .bbl file.

The usual way to call biber is simply with the .bcf file as the only argument.
The ‘.bcf’ extension of the control file is not optional. biblatex always outputs
a control file with the .bcf extension. Specifying the ‘.bcf’ extension to biber is
optional. Assuming a control file called test.bcf, the following two commands
are equivalent:

biber test.bcf

biber test

2.1 Options and config file

biber sets its options using the following resource chain which is given in decreas-
ing precedence order:

command line options →
.bcf file→
biber.conf file →
biber hard-coded defaults

Users do not need to care directly about the contents or format of the .bcf file as
this is generated from the options which they specify for biblatex. To override
the .bcf options, users may use either a configuration file or the command line to
set options.

The configuration file is by default called biber.conf but this can be changed
using the --configfile|-g option. Unless --configfile|-g is used, the con-
fig file is looked for in the following places, in decreasing order of preference:

biber.conf in the current directory →
$HOME/.biber.conf →
$XDG_CONFIG_HOME/biber/biber.conf →
$HOME/Library/biber/biber.conf (Mac OSX only)
$APPDATA/biber.conf (Windows only) →

the output of kpsewhich biber.conf (if available on the system)

7BibLaTeX Control File

4



The config file format is a very flexible one which allows users to specify options in
most common formats, even mixed in the same file. It’s easier to see an example.
Here is a config file which displays the biber hard-coded defaults:

bblencoding UTF-8

bibencoding UTF-8

collate 1

<collate_options>

level 3

</collate_options>

debug 0

fastsort 0

mincrossrefs 2

nolog 0

nostdmacros 0

<nosort>

# ignore prefices like ’al-’ when sorting name fields

type_names \A\p{L}{2}\p{Pd}

# ignore diacritics when sorting author

type_names [\x{2bf}\x{2018}]

</nosort>

onlylog 0

quiet 0

sortcase true

sortlocale en_US.utf8

sortupper true

trace 0

validate_control 0

validate_structure 0

wraplines 0

You can see here that options with multiple key/value pairs of their own like
--collate_options|-c can be specified in Apache config format. Please see
the documentation for the Config::General Perl module8 if you really need de-
tails. In practise, if you use a config file at all for biber, it will contain very little
as you will usually set all options by setting options in biblatex which will pass
them to biber via the .bcf file.

The--collate_options|-c option takes a number of key/value pairs as value.
See section 2.4 for details.

8
http://search.cpan.org/search?query=Config::General&mode=all

5

http://search.cpan.org/search?query=Config::General&mode=all


Alias Fields
type_name author

afterword
annotator
bookauthor
commentator
editor
editora
editorb
editorc
foreword
holder
introduction
namea
nameb
namec
shortauthor
shorteditor
translator

type_title booktitle
eventtitle
issuetitle
journaltitle
maintitle
origtitle
title

Table 1: nosort option field type aliases

2.1.1 The nosort option

The value of the nosort option can only be set in the config file and not on the
command line. This is because the values are Perl regular expressions and would
need special quoting to set on the command line. This can get a bit tricky on some
OSes (like Windows) so it’s safer to set them in the config file. In any case, it’s
unlikely you would want to set them for particular biber runs; they would more
likely be set as your personal default and thus they would naturally be set in the
config file anyway. nosort allows you to ignore parts of a field for sorting. This is
done using perl regular expressions which specify what to ignore in a field. You
can specify as many patterns as you like for a specific field. Also available are some
field type aliases so you can, for example, specify patterns for all name fields or all
title fields. These field types all begin with the string ‘type_’, see Table 1.

6



For example, this option can be used to ignore diacritic marks and prefices in
names which should not be considered when sorting. Given (the default):

<nosort>

type_names \A\p{L}{2}\p{Pd}

type_names [\x{2bf}\x{2018}]

</nosort>

and the .bib entry:

author = {{al-Hasan}, ʿAlī},

the prefix ‘al-’ and the diacritic ‘ʿ’ will not be considered when sorting. See the perl
regular expression manual page for details of the regular expression syntax9.

If a nosort option is found for a specific field, it will override any option for a
type which also covers that field.

Here is another example. Suppose you wanted to ignore ‘The’ at the beginning
of a TITLE field when sorting, you could add this to your biber.conf:

<nosort>

title \AThe\s+

</nosort>

If you wanted to do this for all title fields listed in Table 1, then you would do this:

<nosort>

type_title \AThe\s+

</nosort>

Note: nosort can be specified for most fields but not for things like dates and
special fields as that wouldn’t make much sense.

2.2 Input/Output File Locations

2.2.1 Control file

The control file is normally passed as the only argument to biber. It is searched for
in the following locations, in decreasing order of priority:

Absolute filename →
In the --output_directory, if specified→

Relative to current directory→
Using kpsewhich, if available

9
http://perldoc.perl.org/perlre.html

7

http://perldoc.perl.org/perlre.html


2.2.2 Data sources

Bibliography data sources of type ‘file’ are searched for in the following locations,
in decreasing order of priority:

Absolute filename →
In the --output_directory, if specified→

Relative to current directory→
In the same directory as the control file→

Using kpsewhich for supported formats, if available

Users do not specify explicitly the bibliography database files; they are passed in the
.bcf control file, which is constructed from the biblatex \addbibresource{}
macros.

2.3 Logfile

By default, the logfile for biber will be named \jobname.blg, so, if you run

biber <options> test.bcf

then the logfile will be called ‘test.blg’. Like the .bbl output file, it will be cre-
ated in the --output_directory|-c, if this option is defined. You can override
the logfile name by using the --logfile option:

biber --logfile=lfname test.bcf

results in a logfile called ‘lfname.blg’.

Warning: be careful if you are expecting biber to write to directories which you
don’t have appropriate permissions to. This is more commonly an issue on non-
Windows OSes. For example, if you rely on kpsewhich to find your database files
which are in system TeX directories, you may well not have write permission there
so biber will not be able to write the .bbl. Use the --outfile|-O option to
specify the location to write the .bbl to in such cases.

2.4 Collation and Localisation

biber takes care of collating the bibliography for biblatex. It writes entries to
the .bbl file sorted by a completely customisable set of rules which are passed in
the .bcf file by biblatex. biber has two ways of performing collation:

8



--collate|-C

The default. This option makes biber use the Unicode::Collate module for
collation which implements the full UCA (Unicode Collation Algorithm). It also
has CLDR (Common Locale Data Repository) tailoring to deal with cases which are
not covered by the UCA. It is a little slower than --fastsort|-f but the advant-
ages are such that it’s rarely worth using --fastsort|-f

--fastsort|-f

Biber will sort using the OS locale collation tables. The drawback for this method
is that special collation tailoring for various languages are not implemented in the
collation tables for many OSes. For example, few OSes correctly sort ’å’ before ’ä’ in
the Swedish (sv_SE) locale. If you are using a common latin alphabet, then this is
probably not a problem for you.

The locale used for collation is determined by the following resource chain which
is given in decreasing precedence order:

--collate_options|-c (e.g. -c ’locale => ”de_DE”’) →
--sortlocale|-l →
LC_COLLATE environment variable →
LANG environment variable →
LC_ALL environment variable

With the default --collate|-C option, the locale will be used to look for a col-
lation tailoring for that locale. It will generate an informational warning if it finds
none. This is not a problem as the vast majority of collation cases are covered by
the standard UCA and many locales neither have nor need any special collation
tailoring.

With the --fastsort|-f option, the locale will be used to locate an OS locale
definition to use for the collation. This may or may not be correctly tailored, de-
pending on the locale and the OS.

Collation is by default case sensitive. You can turn this off using the biber option
--sortcase=false or from biblatex using its option sortcase=false.

--collate|-C by default collates uppercase before lower. You can reverse this us-
ing the biber option --sortupper=false or from biblatex by using its option

9



sortupper=false. Be aware though that some locales rightly enforce a particular
setting for this (for example, Danish). You will be able to override it but biber will
warn you if you do. sortupper has no effect when using --fastsort|-f–you
are at the mercy of what your OS locale does.

There are in fact many options to Unicode::Collate which can tailor the col-
lation in various ways in addition to the locale tailoring which is automatically per-
formed. Users should see the the documentation to the module for the various
options, most of which the vast majority of users will never need10. Options are
passed using the --collate_options|-c option as a single quoted string, each
option separated by comma, each key and value separated by ‘=>’. See examples.

2.4.1 Examples

biber

Call biber using all settings from the .bcf generated from the LaTeX run. Case
sensitive UCA sorting is performed taking the locale for tailoring from the environ-
ment if no sortlocale is defined in the .bcf

biber --sortlocale=de_DE

Override any locale setting in the .bcf or the environment.
biber --fastsort

Use slightly quicker internal sorting routine. This uses the OS locale files which
may or may not be accurate.

biber --sortcase=false

Case insensitive sorting.
biber --sortupper=false --collate_options=”backwards => 2”

Collate lowercase before upper and collate French accents in reverse order at UCA
level 2.

2.5 Encoding of files

biber takes care of reencoding the.bibdata as necessary. In normal use, biblatex
passes its bibencoding option value to biber via the .bcf file. It also passes the
value of its texencoding option (which maps to biber’s bblencoding|-E op-
tion) the default value of which depends on which TeX engine and encoding pack-
ages you are using (see biblatex manual for details).
biber performs the following tasks:

1. Decodes the .bib into UTF-8 if it is not UTF-8 already
2. Decodes LaTeX character macros into UTF-8 if --bblencoding|-E is UTF-8

10For details on the various options, see http://search.cpan.org/search?query=Unicode%
3A%3ACollate&mode=all

10

http://search.cpan.org/search?query=Unicode%3A%3ACollate&mode=all
http://search.cpan.org/search?query=Unicode%3A%3ACollate&mode=all


3. Encodes the output so that the.bbl is in the encoding that--bblencoding|-E
specifies

4. Warns if it is asked to output to the .bbl any UTF-8 decoded LaTeX character
macros which are not in the --bblencoding|-E encoding. Replaces with a
suitable LaTeX macro

Normally, you do not need to set the encoding options on the biber command line
as they are passed in the .bcf via the information in your biblatex environment.
However, you can override the .bcf settings with the command line or config file.
The resource chain for encoding settings is, in decreasing order of preference:

--bibencoding|-e and --bblencoding|-E →
biber config file →
.bcf control file

2.5.1 LaTeX macro decoding

As mentioned above, biber sometimes converts LaTeX character macros into UTF-8.
In fact there are two situations in which this occurs.

1. When --bblencoding|-E is UTF-8
2. Always for internal sorting purposes

This decoding is very useful but take note of the following two scenarios, which
relate to each of the two situations in which LaTeX macro decoding occurs:

Decoding when output is UTF-8

If you are using PDFLaTeX and \usepackage[utf8]{inputenc}, it is possible
that the UTF-8 characters resulting from biber’s internal LaTeX character macro
decoding break inputenc. This is because inputenc does not implement all of
UTF-8, only a commonly used subset.

An example–if you had \DJ in your .bib, biber decodes this correctly to ‘Đ’
and this breaks inputenc because it doesn’t understand that UTF-8 character. The
real solution here is to switch to a TeX engine with full UTF-8 support like XeTeX
or LuaTeX as these don’t use or need inputenc. However, you can also try the
--bblsafechars option which will try to convert any UTF-8 chars into LaTeX
macros on output. The biblatex option ‘texencoding=ascii’ (which corres-
ponds to thebiber option ‘--bblencoding|-E’) will automatically set--bblsafechars.

See also the biber --help output for the --bblsafecharsset option which
can customise the set of conversion characters to use.

Decoding for internal sorting

If your bblencoding is not UTF-8, and you are using some UTF-8 equivalent
LaTeX character macros in your.bib, then some.bblfields (currently only\sortinit{})

11



might end up with invalid characters in them, according to the .bbl encoding. This
is because some fields must be generated from the final sorting data which is only
available after the LaTeX character macro decoding step.

For example, suppose you are using PDFLaTeX with
\usepackage[latin1]{inputenc} and the followingbibtexdata source entry:

@BOOK{citekey1,

AUTHOR = {{\v S}imple, Simon},

}

With normal LaTeX character macro decoding, the {\v S} is decoded into ‘Š’ and
so with name-first sorting, \sortinit{} would be ‘Š’. This is an invalid char-
acter in latin1 encoding and so the .bbl would be broken. In such cases when
\sortinit{} is a char not valid in the bblencoding, biber tries to replace the
character with a suitable LaTeX macro. The solution is really to use UTF-8 .bbl en-
coding whenever possible. In extreme cases where even with UTF-8 encoding, the
char is not recognised by LaTeX due to an incomplete UTF-8 implementation (as
with inputenc), this might also mean switching TeX engines to one that supports
full UTF-8.

2.5.2 Examples

biber

Set bibencoding and bblencoding from the config file or .bcf.
biber --bblencoding=latin2

Encode the .bbl as latin2, overriding the .bcf.
biber --bblsafechars

Set bibencoding and bblencoding from the config file or .bcf. Force encoding
of UTF-8 chars to LaTeX macros using default conversion set.

biber --bblencoding=ascii

Encode the.bbl as ascii, overriding the.bcf. Automatically sets--bblsafechars
to force UTF-8 to LaTeX macro conversion.

biber --bblencoding=ascii --bblsafecharsset=full

Encode the.bbl as ascii, overriding the.bcf. Automatically sets--bblsafechars
to force UTF-8 to LaTeX macro conversion using the full set of conversions

biber --decodecharsset=full

Set bibencoding and bblencoding from the config file or .bcf. Use the full
LaTeX macro to UTF-8 conversion set because you have some more obscure charac-
ter macros in your .bib which you want to sort correctly

biber -u

Shortcut alias for biber --bibencoding=UTF-8

biber -U

Shortcut alias for biber --bblencoding=UTF-8

12



2.6 Limitations

Currently, users are restricted to a one-one mapping from datasource entry types/fields
to the biblatex supported entry type/fields. This is mitigated a little by the
type/field aliases which biblatex supports. In the future, users will be able to
customise the data source driver config in order to define their own entry type/field
aliases so that there is more flexibility in mapping data source entry type/fields to
internal biblatex types/fields.

Currently it is not possible to automatically expand name lists to their minim-
ally unique truncation which is required by some styles (APA for example). This
is quite a hard problem, a solution to which is implemented in an experimental
biber branch but which also needs biblatex support, envisaged for version 2.x.
It requires an enhanced .bbl format, amongst other things.

2.7 Editor Integration

Here is some information on how to integratebiber into some of the more common
editors

2.7.1 Emacs

Emacs has the very powerful AUcTeX mode for editing TeX and running compila-
tions. BibTeX is already integrated into AUCTeX and it is quite simple to add sup-
port forbiber. Use the Emacs Customise interface to modify theTeX-command-list
variable and add a Biber command.

M-x customise-variable

TeX-command-list

and then Ins somewhere a new command that looks like Figure 1.

Figure 1: Screenshot of AUCTeX command setup for Biber

Alternatively, you can add it directly in lisp to your .emacs like this:

13



(add-to-list ’TeX-command-list

(quote

(”Biber” ”biber %s” TeX-run-Biber nil t :help ”Run Biber”)))

However you add the command toTeX-command-list, customise the actualBiber
command parameters as you want them, using ‘%s’ as the LaTeX file name place
holder. Then define the following two functions in your .emacs.

(eval-after-load ”tex”

(quote (defun TeX-run-Biber (name command file)

”Create a process for NAME using COMMAND to format FILE with Biber.”

(let ((process (TeX-run-command name command file)))

(setq TeX-sentinel-function ’TeX-Biber-sentinel)

(if TeX-process-asynchronous

process

(TeX-synchronous-sentinel name file process))))

)

)

(eval-after-load ”tex”

(quote (defun TeX-Biber-sentinel (process name)

”Cleanup TeX output buffer after running Biber.”

(goto-char (point-max))

(cond

;; Check whether Biber reports any warnings or errors.

((re-search-backward (concat

”^(There \\(?:was\\|were\\) \\([0-9]+\\) ”

”\\(warnings?\\|error messages?\\))”) nil t)

;; Tell the user their number so that she sees whether the

;; situation is getting better or worse.

(message (concat ”Biber finished with %s %s. ”

”Type ‘%s’ to display output.”)

(match-string 1) (match-string 2)

(substitute-command-keys

”\\<TeX-mode-map>\\[TeX-recenter-output-buffer]”)))

(t

(message (concat ”Biber finished successfully. ”

”Run LaTeX again to get citations right.”))))

(setq TeX-command-next TeX-command-default))

)

)

You’ll then see a Biber option in your AUCTeX command menu or you can just
C-c C-c and type Biber.

14



2.7.2 TeXworks

It’s very easy to add biber support to TeXworks. In the Preferences, select the
Typesetting tab and then add a new Processing Tool as in Figure 2.

Figure 2: Screenshot of TeXworks processing tool setup for Biber

2.8 BibTeX macros

BibTeX defines automatically macros for month abbreviations like ‘jan’, ‘feb’
etc. biber also does this, defining them as numbers since that is what biblatex
wants. In case you are also defining these yourself (although if you are only using
biblatex, there isn’t much point), you will get macro redefinition warnings from
the btparse library. You can turn off biber’s macro definitions to avoid this by
using the option --nostdmacros.

3 Binaries

The binary distributions of biber are made using the Perl PAR::Packer module.
They can be used as a normal binary but have some behaviour which is worth not-
ing:

• Don’t be worried by the size of the binaries. PAR::Packer essentially con-
structs a self-extracting archive which unpacks the needed files first and so
the binaries look larger than what actually runs in memory.

• On the first run of a new version (that is, with a specific hash), they actually
unpack themselves to a temporary location which varies by operating system.

15



This unpacking can take a little while and only happens on the first run of a
new version. Please don’t kill the process if it seems to take some time to
do anything on the first run of a new binary. If you do, it will not unpack
everything and it will almost certainly break biber. You will then have to de-
lete your binary cache (see section 3.1 below) and re-run the biber executable
again for the first time to allow it to unpack properly.

3.1 Binary Caches

PAR::Packer works by unpacking the required files to a cache location. It only
does this on the first run of a binary by computing a hash of the binary and com-
paring it with the cache directory name which contains the hash. So, if you run
several versions of a binary, you will end up with several cached trees which are
never used. This is particularly true if you are regularly testing new versions of the
biber binary. It is a good idea to delete the caches for older binaries as they are not
needed and can take up a fair bit of space. The caches are located in a temporary
location which varies from OS to OS. The cache name is:

par-<username>/cache-<hash> (Linux/Unix/OSX)
par-<username>\cache-<hash> (Windows)

The temp location is not always obvious but these are sensible places to look (where
* can vary depending on username:

• /var/folders/*/*/-Tmp-/ (OSX, local GUI login shell)
• /var/tmp/ (OSX, remote ssh login shell)
• /tmp/ (Linux)
• C:\Documents and Settings\<username>\Local Settings\Temp (Win-

dows)
• C:\Windows\Temp (Windows)

To clean up, you can just remove the wholepar-<username>directory/folder and
then run the current binary again.

3.2 Binary Architectures

Binaries are available for the following architectures:

• linux_x86_32 — Linux x86 32-bit (built on Ubuntu 9.04)
• linux_x86_64 — Linux x86 64-bit (built on Ubuntu 9.04)
• MSWin — Windows. Should work on 32 or 64 bit (built on XP)
• darwin_x86_64 — OSX Intel 64-bit (built on OSX 10.6)

16



3.3 Installing

These instructions only apply to manually downloaded binaries. If biber came
with your TeX distribution just use it as normal.

Download the binary appropriate to you OS/arch11. Below I assume it’s on your
desktop.

You have to move the binary to somewhere in you command-line or TeX utility
path so that it can be found. If you know how to do this, just ignore the rest of this
section which contains some instructions for users who are not sure about this.

3.3.1 OSX

If you are using the TexLive MacTeX distribution:

sudo mv ~/Desktop/biber /usr/texbin/

sudo chmod +x /usr/texbin/biber

If you are using the macports TexLive distribution:

sudo mv ~/Desktop/biber /opt/local/bin/

sudo chmod +x /opt/local/bin/biber

The ‘sudo’ commands will prompt you for your password.

3.3.2 Windows

The easiest way is to just move the executable into your C:\Windows directory
since that is always in your path. A more elegant is to put it somewhere in your TeX
distribution that is already in your path. For example if you are using MiKTeX:

C:\Program Files\MiKTeX 2.8\miktex\bin\

3.3.3 Unix/Linux

sudo mv ~/Desktop/biber /usr/local/bin/biber

sudo chmod +x /usr/local/bin/biber

Make sure /usr/local/bin is in your PATH. Search Google for ‘set PATH linux’
if unsure about this. There are many pages about this, for example: http://www.
cyberciti.biz/faq/unix-linux-adding-path/

11
https://sourceforge.net/projects/biblatex-biber

17

http://www.cyberciti.biz/faq/unix-linux-adding-path/
http://www.cyberciti.biz/faq/unix-linux-adding-path/
https://sourceforge.net/projects/biblatex-biber


3.4 Building

Instructions for those who want/need to build an executable from the Perl version.
For this, you will need to have a recent Perl, preferably 5.12 at least with the follow-
ing modules:

• PAR

• PAR::Packer

• All biber pre-requisites

You should have the latest CPAN versions of all required modules as biber is very
specific in some cases about module versions and depends on recent fixes in many
cases. You can see if you have the biber Perl dependencies by the usual

perl ./Build.PL

invocation in the biber Perl distribution tree directory. Normally, the build proced-
ure for the binaries is as follows12:

• Get the biber source tree from SF and put it on the architecture you are build-
ing for

• cd to the root of the source tree
• perl Build.PL (this will check your module dependencies)
• Build test

• Build install (may need to run this as sudo on UNIXesque systems)
• cd dist/<arch>

• build.sh (build.bat on Windows)

This leaves a binary called ‘biber-<arch>’ (also with a ‘.exe’ extension on Win-
dows) in your current directory. The tricky part is constructing the information for
the build script. There are two things that need to be configured, both of which are
required by the PAR::Packer module:

1. A list of modules/libraries to include in the binary which are not automatic-
ally detected by the PAR::Packer dependency scanner

2. A list of extra files to include in the binary which are not automatically detec-
ted by the PAR::Packer dependency scanner

To build biber for a new architecture you need to define these two things as part
of constructing new build scripts:

• Make a new subfolder in the dist directory named after the architecture
you are building for. This name is arbitrary but should be fairly obvious like
‘solaris-sparc-64’, for example.

12On UNIXequse systems, you may need to specify a full path to the scripts e.g. ./Build

18



• Copy the biber.files file from an existing build architecture into this dir-
ectory.

• For all of the files with absolute pathnames in there (that is, ones we are not
pulling from the biber tree itself), locate these files in your Perl installation
tree and put the correct path in the file.

• Copy the build script from a vaguely similar architecture (i.e. Windows/non-
Windows …) to your new architecture directory.

• Change the --link options to point to where the required libraries reside on
your system.

• Change the --output option to name the resulting binary for your architec-
ture.

• Run the build script

The --link options can be a little tricky sometimes. It is usually best to build
without them once and then run ldd (or Windows equivalent) on the binary to see
which version/location of a library you should link to. You can also try just running
the binary and it should complain about missing libraries and where it expected
to find them. Put this path into the --link option. The --module options are
the same for all architectures and do not need to be modified. On architectures
which have or can have case-insensitive file systems, you should use the build script
from either Windows or OSX as a reference as these include a step to copy the main
biber script to a new name before packing the binary. This is required as otherwise
a spurious error is reported to the user on first run of the binary due to a name
collision when it unpacks itself.

19


	Introduction
	About
	Requirements
	License
	History
	Performance
	Acknowledgements

	Use
	Options and config file
	The nosort option

	Input/Output File Locations
	Control file
	Database files

	Logfile
	Collation and Localisation
	Examples

	Encoding of files
	LaTeX macro decoding
	Examples

	Limitations
	Editor Integration
	Emacs
	TeXworks

	BibTeX macros

	Binaries
	Binary Caches
	Binary Architectures
	Installing
	OSX
	Windows
	Unix/Linux

	Building


