
biber
A backend bibliography processor for biblatex

Philip Kime, François Charette
Philip@kime.org.uk,
firmicus@ankabut.net

Version biber 1.4 (biblatex 2.4)
19th November 2012

Contents
1 Important Changes 1

2 Introduction 2
2.1 About 2
2.2 Requirements 3
2.3 Compatibility Matrix . . 3
2.4 License 3
2.5 History 3
2.6 Performance 7
2.7 Acknowledgements 7

3 Use 7
3.1 Options and config file . . 8
3.2 Input/Output File Loca-

tions 21
3.3 Logfile 22

3.4 Collation and Localisation 22
3.5 Encoding of files 24
3.6 Editor Integration 28
3.7 BIBTEX macros and the

MONTH field 28
3.8 Biber data source drivers 29
3.9 Visualising the Output . 30
3.10 Extended BibTeX Data-

source Field Format . . . 30

4 Binaries 32
4.1 Binary Caches 33
4.2 Binary Architectures . . . 34
4.3 Installing 34
4.4 Building 35

1 Important Changes
Please see the Changes file which accompanies Biber for the details on changes in
each version. This section is just for important things like incompatible changes
which users should be aware of.

1.0
The --validate_structure option is now called --validate_datamodel

0.9.9
The output format option --graph has been moved to a new option --outformat.
The option --graph should now be specified as --outformat=dot and the
--dot_include option should be used to specify the elements to include in the
DOT output. For example:

biber --graph=section,field <file>

1

http://biblatex-biber.sourceforge.net
mailto:Philip@kime.org.uk, firmicus@ankabut.net
mailto:Philip@kime.org.uk, firmicus@ankabut.net

is now:

biber --outformat=dot --dot_include=section,field <file>

0.9.8
The sourcemap option syntax has changed.The syntax was too confusing. It is now
simplified and more powerful. It is uses a sequential processing model to apply
mappings to an entry. See section 3.1.1.

0.9.7
The user config file has a completely new format.The reason for this is that the older
Config::General format could not be extended to deal with more sophisticated
features like per-datasource restrictions. An XML format is much better and in fact
easier to understand. The old format of the map option (now called sourcemap)
was rather confusing because of limitations in the old config file format. Please see
section 3.1.1 and convert your config files to the new format.

0.9.6
Matching of citation keys and datasource entry keys is now case-sensitive. This
is to enforce consistency across the entire BibLaTeX and Biber processing chain.
All of the usual referencing mechanisms in LaTeX are case-sensitive and so is the
matching in BibLaTeX of citations to entries in the .bbl file generated by Biber.
It is inconsistent and messy to enforce case-insensitivity in only Biber’s matching
of citations keys to datasource entry keys. If Biber detects what looks like a case
mismatch between citation keys, it will warn you.
Summary of warnings/errors is now a new format. When Biber finishes writing the
.bbl, it gives a summary count of errors/warnings. It used to do this in the same
format as BibTEX, for compatibility. Now it uses a more consistent and easier to
parse format which matches all other Biber messages. Please note if you need to
support Biber in an external tool. I have updated the notes on AUCTEX support
below to reflect this.

2 Introduction
2.1 About
Biber is conceptually a BIBTEX replacement for Biblatex. It is written in Perl
with the aim of providing a customised and sophisticated data preparation backend
for Biblatex. You do not need to install Perl to use Biber—binaries are provided
for many operating systems via the main TEX distributions (TEXLive, MacTEX,
MiKTEX) and also via download from SourceForge. Functionally, Biber offers a
superset of BIBTEX’s capabilities but is tightly coupled with Biblatex and cannot

2

be used as a stand-alone tool with standard .bst styles. Biber’s role is to support
Biblatex by performing the following tasks:

• Parsing data from data sources
• Processing cross-references, entry sets, related entries
• Generating data for name, name list and name/year disambiguation
• Structural validation according to Biblatex data model
• Sorting reference lists
• Outputting data to a .bbl for Biblatex to consume

2.2 Requirements
Biber is distributed primarily as a stand-alone binary and is included in TEXLive,
MacTEX and MiKTEX. If you are using any of these distributions, you do not need
any additional software installed to use Biber. You do not need a Perl installation
at all to use the binary distribution of Biber1.
Biber’s git repository is on github2. Biber’s documentation, binary downloads and

supporting files are on SourceForge3 and this is the primary location for development
releases, forums and bugfixes etc. Biber is included into TEXLive, the binaries
coming from SourceForge.

2.3 Compatibility Matrix
Biber versions are closely coupled with Biblatex versions. You need to have the
right combination of the two. Biber will warn you during processing if it encounters
information which comes from a Biblatex version which is incompatible. Table 1
shows a compatibility matrix for the recent versions.

2.4 License
Biber is released under the free software Artistic License 2.04

2.5 History
BIBTEX has been the default (only …) integrated choice for bibliography processing
in TEX for a long time. It has well known limitations which stem from its data
format, data model and lack of Unicode support5. The .bst language for writing

1If you prefer, you can run Biber as a normal Perl program and doing this does require you to have
a Perl interpreter installed. See section 4.

2https://github.com/plk/biber
3http://sourceforge.net/projects/biblatex-biber/
4http://www.opensource.org/licenses/artistic-license-2.0.php
5In fact, there is now a Unicode version

3

https://github.com/plk/biber
http://sourceforge.net/projects/biblatex-biber/
http://www.opensource.org/licenses/artistic-license-2.0.php

Biber version Biblatex version
1.4 2.4
1.3 2.3
1.2 2.1, 2.2
1.1 2.1
1.0 2.0
0.9.9 1.7x
0.9.8 1.7x
0.9.7 1.7x
0.9.6 1.7x
0.9.5 1.6x
0.9.4 1.5x
0.9.3 1.5x
0.9.2 1.4x
0.9.1 1.4x
0.9 1.4x

Table 1: Biber/Biblatex compatibility matrix

bibliography styles is painful to learn and use. It is not a general programming
language and this makes it really very hard to do sophisticated automated processing
of bibliographies.
Biblatex was a major advance for LaTeX users as it moved much of the biblio-

graphy processing into LaTeX macros. However, Biblatex still used BIBTEX as a
sorting engine for the bibliography and also to generate various labels for entries.
BIBTEX’s capabilities even for this reduced set of tasks was still quite restricted due
to the lack of Unicode support and the more and more complex programming issues
involved in label preparation and file encoding.
Biber was designed specifically for Biblatex in order to provide a powerful backend

engine which could deal with any required tasks to do with .bbl preparation. Its
main features are:

• Deals with the full range of UTF-8
• Sorts in a completely customisable manner using, when available, CLDR col-
lation tailoring

• Allows for per-entrytype options
• Automatically encodes the .bbl into any supported encoding format6
• Processes all bibliography sections in one pass of the tool
• Output to GraphViz instead of .bbl in order to help visualise complex bibli-
ographies with many crossrefs etc. (see section 3.9)

6‘Supported’ here means encodings supported by the Perl Encode module

4

• Handles UTF-8 citekeys and filenames (given a suitable fully UTF-8 compliant
TEX engine)

• Creates entry sets dynamically and allows easily defined static entry sets, all
processed in one pass

• ‘Syntactic’ inheritance via new @XDATA entrytype and field. This can be
thought of as a field-based generalisation of the BIBTEX @STRING function-
ality (which is also supported).

• ‘Semantic’ inheritance via a generalisation of the BIBTEX crossreference mech-
anism. This is highly customisable by the user—it is possible to choose which
fields to inherit for which entrytypes and to inherit fields under different names
etc. Nested crossreferences are also supported.

• Handles complex auto-expansion and contraction of names and namelists (See
section 4.11.4 of the Biblatex manual for an excellent explanation with ex-
amples, this is quite an impressive feature …)

• Extensible modular data sources architecture for ease of adding more data
source types

• Support for remote data sources
• User-definable mapping and suppression of fields and entrytypes in data sources.
You can use this to, for example, ignore all ABSTRACT fields completely. See
section 3.1.1

• Support for related entries, to enable generic treatment of things like ‘trans-
lated as’, ‘reprinted as’, ‘reprint of’ etc.

• Customisable labels
• Multiple bibliography lists in the same section with different sorting and fil-
tering

• No more restriction to a static data model of specific fields and entrytypes
• Structural validation of the data against the data model with a customisable
validation model

Figure 1 shows the main functional units of processing in Biber. The most diffi-
cult tasks which Biber performs are the processing of Biblatex’s uniquename and
uniquelist options7, the sorting of lists8 and the initial data parse and remap
into an internal data model. Biber is getting on for around 20,000 lines of mostly
OO Perl and relies on certain splendid Perl modules such as Unicode::Collate,
Text::BibTeX and XML::LibXML.
It may be useful to know something about the different routes a datasource entry

can take as it passes through Biber.

1. All cited entries which are subsequently found in a datasource are instantiated
in the internal Biber data model.

7A rather tricky unbounded loop but with a guaranteed eventual stable exit state.
8This is a complex, arbitrary multi-field Schwartzian Transform which has to deal with potentially
different case and order settings for every field.

5

datasources .bcf control file

Decode to UTF-8

remap/parseUser biber.conf file

Instantiate dynamic sets and
related entries

Process XDATA

Process cross-references and
sets

Validate data model

Resolve label* fields
generate hashes

enforce mincrossrefs

Generate uniqueness data

Generate name visibility data

Generate more hashes and
labels

Perform sorting

Construct output objects

Encode to output encoding

output file

Figure 1: Overview of Biber’s main functional units

6

2. Some uncited entries on which cited entries depend are instantiated in the
internal Biber data model:
• Entries with entrytype @XDATA which are referenced from cited entries.
• Entries mentioned in the CROSSREF or XREF field of a cited entry (unless
they are also cited themselves in which case they are already instantiated
as per item 1 above).

• Clones of entries mentioned as a ‘related’ entry of a cited entry.
• Members of sets, either explicit @SET entrytype entries or dynamic sets.

3. Some uncited but instantiated entries are promoted to cited status so that
they make it into the output:
• Entries instantiated by being members of a set.
• Entries instantiated by being mentioned as a CROSSREF are promoted to
cited status if CROSSREF’ed or XREF’ed at least mincrosref times.

• Clones of entries mentioned as a ‘related’ entry of a cited entry.
4. Some of these auto-cited entries have the ‘dataonly’ option set on them so
that Biblatex will only use them for data and will not output them to the
bibliography:
• Clones of entries mentioned as a ‘related’ entry of a cited entry.

2.6 Performance
Biber can’t really be compared with BIBTEX in any meaningful way performance-
wise. Biber is written in Perl and does a great deal more than BIBTEX which is
written in C. One of Biber’s test cases is a 2150 entry, 15,000 line .bib file which
references a 630 entry macros file with a resulting 160 or so page (A4) formatted
bibliography. This takes Biber under 3 minutes to process on a reasonable computer.
This is perfectly acceptable, especially for a batch program.

2.7 Acknowledgements
François Charette originally wrote a first modest version of Biber. Philip Kime
joined in the development in 2009 and is largely responsible for making it what it is
today.

3 Use
Firstly, please note that Biber will not attempt to sanitise the content of BIBTEX
data sources. That is, don’t expect it to auto-escape any TEX special characters like
‘&’ or ‘%’ which it finds in, for example, your TITLE fields. It used to do this in earlier
versions in some cases but as of version 0.9, it doesn’t because it’s fraught with

7

problems and leads to inconsistent expectations and behaviour between different
data source types. In your BIBTEX data sources, please make sure your entries are
legal TEX code.
Running biber --help will display all options and a brief description of each.

This is the most useful brief source of usage information. Biber returns an exit code
of 0 on success or 1 if there was an error.
Most Biber options can be specified in long or short format. When mentioning

options below, they are referred to as ‘long form|short form’ when an option has
both a long and short form. As usual with such options, when the option requires
an argument, the long form is followed by an equals sign ‘=’ and then the argument,
the short form is followed by a space and then the argument. For example, the
--configfile|-g option can be given in two ways:

biber --configfile=somefile.conf
biber -g somefile.conf

With the backend=biber option, Biblatex switches its backend interface and
passes all options and information relevant to Biber’s operation in a control file
with extension .bcf9. This is conceptually equivalent to the .aux file which LaTeX
uses to pass information to BIBTEX. The .bcf file is XML and contains many options
and settings which configure how Biber is to process the bibliography and generate
the .bbl file.
The usual way to call Biber is simply with the .bcf file as the only argument.

Biblatex always writes the control file with a .bcf extension. Specifying the ‘.bcf’
extension to Biber is optional. Assuming a control file called test.bcf, the following
two commands are equivalent:

biber test.bcf
biber test

3.1 Options and config file
Biblatex options which Biber needs to know about are passed via the .bcf file. See
Table 2 for the Biblatex options which Biber uses and also for the scopes which are
supported for each option. Biber also has its own options which are set using the
following resource chain, given in decreasing precedence order:

command line options →
biber.conf file →
.bcf file→

9Biblatex Control File

8

Biblatex option Global Per-type Per-entry
alphaothers ✓ ✓

dataonly ✓ ✓

inheritance ✓

labelalpha ✓ ✓

labelalphatemplate ✓ ✓

labelnamespec ✓ ✓

labelnumber ✓ ✓

labeltitle ✓ ✓

labeltitleyear ✓ ✓

labelyear ✓ ✓

labelyearspec ✓ ✓

maxalphanames ✓ ✓ ✓

maxbibnames ✓ ✓ ✓

maxcitenames ✓ ✓ ✓

maxitems ✓ ✓ ✓

minalphanames ✓ ✓ ✓

minbibnames ✓ ✓ ✓

mincitenames ✓ ✓ ✓

minitems ✓ ✓ ✓

presort ✓ ✓ ✓

singletitle ✓ ✓

skipbib ✓ ✓

skiplab ✓ ✓

skiplos ✓ ✓

sortalphaothers ✓ ✓

sortexclusion ✓

sortfirstinits ✓

sorting ✓

structure ✓

uniquelist ✓ ✓ ✓

uniquename ✓ ✓ ✓

useauthor ✓ ✓ ✓

useeditor ✓ ✓ ✓

useprefix ✓ ✓ ✓

usetranslator ✓ ✓ ✓

Table 2: Biblatex options which Biber uses

9

Biber hard-coded defaults

Users do not need to care directly about the contents or format of the .bcf file as
this is generated from the options which they specify via Biblatex. The config file is
a place to set commonly used command-line options and also to set options which
cannot be set on the command line.
The configuration file is by default called biber.conf but this can be changed

using the --configfile|-g option. Unless --configfile|-g is used, the config file
is looked for in the following places, in decreasing order of preference:

biber.conf in the current directory →
$HOME/.biber.conf →
$XDG_CONFIG_HOME/biber/biber.conf →
$HOME/Library/biber/biber.conf (Mac OSX only)
$APPDATA/biber.conf (Windows only) →
the output of ‘kpsewhich biber.conf’ (if available on the system)

The config file is XML. Here Below is an example config file which displays the Biber
defaults:

<?xml version="1.0" encoding="UTF-8"?>
<config>
<bblencoding>UTF-8</bblencoding>
<bibencoding>UTF-8</bibencoding>
<bblsafechars>0</bblsafechars>
<bblsafecharsset>base</bblsafecharsset>
<collate>1</collate>
<collate_options>
<option name="level" value="4"/>
<option name="variable" value="non-ignorable"/>

</collate_options>
<debug>0</debug>
<decodecharsset>base</decodecharsset>
<fastsort>0</fastsort>
<graph>0</graph>
<mincrossrefs>0</mincrossrefs>
<nodieonerror>0</nodieonerror>
<noinit>
<!-- strip lowercase prefices like 'al-' when generating initials -->
<option value="\b\p{Ll}{2}\p{Pd}"/>
<!-- strip diacritics when generating initials -->
<option value="[\x{2bf}\x{2018}]"/>

</noinit>

10

<nolog>0</nolog>
<nostdmacros>0</nostdmacros>
<nosort>
<!-- strip prefices like 'El-' when sorting name fields -->
<option name="type_name" value="\A\p{L}{2}\p{Pd}"/>
<!-- strip diacritics when sorting name fields -->
<option name="type_name" value="[\x{2bf}\x{2018}]"/>

</nosort>
<onlylog>0</onlylog>
<quiet>0</quiet>
<sortcase>true</sortcase>
<sortlocale>en_US.utf8</sortlocale>
<sortupper>true</sortupper>
<trace>0</trace>
<validate_config>0</validate_config>
<validate_control>0</validate_control>
<validate_structure>0</validate_structure>
<wraplines>0</wraplines>

</config>

In practice, the most commonly used options will be set via Biblatex macros in your
document and automatically passed to Biber via the .bcf file. Certain options apply
only to Biber and can only be set in the config file, particularly the more complex
options. Most options are simple tags. Exceptions are the nosort, noinit and
collate_options options which are slightly more complex and can have sub-options
as shown. A much more complex option is the sourcemap option which is not set
by default and which is described in section 3.1.1.

3.1.1 The sourcemap option

The data source drivers implement a mapping from data source entrytypes and fields
into the Biblatex data model. If you want to override or augment the driver map-
pings you can use the sourcemap option which makes it possible to, for example,
have a data source with non-standard entrytypes or fields and to have these auto-
matically mapped into other entrytypes/fields without modifying your data source.
Essentially, this alters the source data stream which Biber uses to build the internal
Biblatex data model and is an automatic way of editing the datasource as it is read
by Biber. This option is completely equivalent to the Biblatex \DeclareSourcemap
macro which is in fact a per-document LaTeX macro-based interface to exactly the
same functionality (see the Biblatex manual).
Figure 2 is a graphical overview of the data flow for data model information. See

Figure 1 for a more complete overview of Biber’s processing steps.
The sourcemap option can only be set in the config file and not on the command

line as it has a complex structure. This option allows you to perform various data

11

datasource

remap

document data model mapping
from .bcf

default data model mapping
from .bcf

data model mapping
from Biber config file

parser validation

Biblatex data
model from .bcf

output file

Figure 2: Model data flow in Biber

source mapping tasks which can be useful for pre-processing data which you do not
generate yourself:

• Map data source entrytypes to different entrytypes.
• Map datasource fields to different fields.
• Add new fields to an entry
• Remove fields from an entry
• Modify the contents of a field using standard Perl regular expression match
and replace.

• Restrict any of the above operations to entries coming from particular data-
sources which you defined in \addresource{} macros.

• Restrict any of the above operations to entries only of a certain entrytype.

There is in fact, more flexibility than the above suggests, examples will show this
below. The format of the sourcemap option section in the config file is described
below, followed by examples which will make things clearer. Items in red are not
literal, they are descriptive meta-values which are explained in the accompanying
text. Items in blue are optional within their parent section. The general structure
is:

<sourcemap>
<maps datatype="driver1" map_overwrite="1|0">
<map1 map_overwrite="1|0"> ... </map1>

⋮

<mapn map_overwrite="1|0"> ... </mapn>

12

</maps>
⋮

<maps datatype="drivern" map_overwrite="1|0">
<map1 map_overwrite="1|0"> ... </map1>

⋮

<mapn map_overwrite="1|0"> ... </mapn>
</maps>

</sourcemap>

Here, driver1…drivern are the names of valid Biber data source drivers (see section
3.8). One thing to note here is the map_overwrite attribute. This boolean attribute
determines whether, for this driver mapping section, you may overwrite existing
fields when adding new fields or mapping them. This attribute can be overridden
on a per-map basis, see below. A warning will be issued either way saying whether
an existing field will or will not be overwritten. If omitted, it defaults to ‘0’.
The map elements are processed in sequence and contain a number of map_steps

which are also processed in sequence. Each map_step allows you to do a particular
thing or combination of things:

• Change the entrytype of an entry
• Change the name of a field
• Add extra fields the entry
• Change the contents of a field

These facilities are explained in more detail below, with examples. A map element
looks like this:

<map map_overwrite="0|1">
<per_datasource>datasource</per_datasource>
<per_type>entrytype</per_type>
<map_step map_type_source="source-entrytype"

map_field_source="source-field"
map_type_target="target-entrytype"
map_field_target="target-field"
map_match="match-regexp"
map_replace="replace-regexp"
map_field_set="set-field"
map_field_value="set-value"
map_append="1"
map_null="1"
map_origfield="1"
map_origfieldval="1"
map_origentrytype="1"
map_final="1"/>

</map>

13

• If there are any datasources named in per_datasource elements, this map-
ping only applies to entries coming from the named datasources. There can
be multiple per_datasource elements each specifying one of the datasource
names given in a Biblatex \addbibresource macro.

• If there are any entrytypess named in per_type elements, this mapping only
applies to entries of the named entrytypess.

• The map_overwrite attribute can be used to override the value for this at-
tribute set on the parent maps element. If omitted, it defaults to the parent
maps attribute value.

Each map_step is looked at in turn and compared with the datasource entry being
processed. A map_step works like this:

• Change the source-entrytype to target-entrytype, if defined. If map_final
is set then if the entrytype of the entry is not source-entrytype, processing
of this map immediately terminates.

• Change the source-field to target-field, if defined. If map_final is set,
then if there is no source-field field in the entry, processing of this map
immediately terminates.

• If map_match is defined but map_replace is not, only apply the step if the
source-field matches map_match. You can use parentheses as usual to cap-
ture parts of the match and can then use these later when setting a map_field_value.

• Perform a Perl regular expression match and replace on the value of source-field
if map_match and map_replace are defined. You may use (and almost certainly
will want to use) parentheses for back-references in map_replace. Do not quote
the regular expressions in any special (i.e. non-Perly) way—it’s not necessary.

• If map_field_set is defined, then its value is set-field which will be set to
a value specified by further attributes. If map_overwrite is false for this step
and the field to set already exists then the map step is ignored. If map_final
is also set on this step, then processing of the parent map stops at this point.
If map_append is set, then the value to set is appended to the current value of
set-field. The value to set is specified by a mandatory one and only one of
the following attributes:
○ map_field_value — The set-field is set to set-value
○ map_null — The field is ignored, as if it did not exist in the datasource
○ map_origentrytype — The set-field is set to the most recently men-
tioned source-entrytype name.
○ map_origfield — The set-field is set to the most recently mentioned
source-field name
○ map_origfieldval — The set-field is set to the most recently men-
tioned source-field value

14

With BibTeX and RIS datasources, you can specify the pseudo-field ‘entrykey’ for
source-field which is the citation key of the entry. Naturally, this ‘field’ cannot
be changed (used as set-field, target-field or changed using map_replace).
Note that for XML datasources (Endnote, Zotero RDF/XML etc.), the names of

fields and entrytypes are matched in a case sensitive manner. For all other datasource
types (BIBTEX, RIS etc.) entrytype and field name matching is case insensitive.
Here are some examples:

<map>
<per_datasource>example1.bib</per_datasource>
<per_datasource>example2.bib</per_datasource>
<map_step map_field_set="KEYWORDS" map_field_value="keyw1, keyw2"/>
<map_step map_field_source="ENTRYKEY"/>
<map_step map_field_set="NOTE" map_origfieldval="1"/>

</map>

This would add a KEYWORDS field with value ‘keyw1, keyw2’ and set the NOTE
field to citation key for the entry to all entries which are found in either the
examples1.bib or examples2.bib files. This assumes that the Biblatex source
contains \addresource{example1.bib} and \addresource{example2.bib}.

<map map_overwrite="0">
<map_step map_field_source="TITLE"/>
<map_step map_field_set="NOTE" map_origfieldval="1"/>

</map>

Copy the TITLE field to the NOTE field unless the NOTE field already exists.

<map map_overwrite="0">
<map_step map_field_source="AUTHOR" />
<map_step map_field_set="SORTNAME" map_origfieldval="1" map_final="1"/>
<map_step map_field_source="SORTNAME" map_match="\A(.+?)\s+and.∗" map_replace="$1"/>

</map>

For any entry with an AUTHOR field, try to set SORTNAME to the same as AUTHOR.
If this fails because SORTNAME already exists, stop, otherwise truncate SORTNAME to
just the first name in the name list.

<map map_overwrite="0">
<map_step map_type_source="CHAT" map_type_target="CUSTOMA" map_final="1"/>
<map_step map_field_set="TYPE" map_origentrytype="1"/>

</map>

Any @CHAT entrytypes would become @CUSTOMA entrytypes and would automatically
have a TYPE field set to ‘CHAT’ unless the TYPE field already exists in the entry
(because map_overwrite is false). This mapping applies only to entries of type
@CHAT since the first step has map_final set and so if the map_type_source does
not match the entry, processing of this map immediately terminates.

15

<map>
<per_datasource>examples.bib</per_datasource>
<per_type>ARTICLE</per_type>
<per_type>BOOK</per_type>
<map_step map_field_set="ABSTRACT" map_null="1"/>
<map_step map_field_set="NOTE" map_field_value="Auto-created this field"/>

</map>

Any entries of entrytype ARTICLE or BOOK from the ‘examples.bib’ datasource would
have their ABSTRACT fields removed and a NOTE field added with value ‘Auto-created
this field’.

<map>
<map_step map_field_set="ABSTRACT" map_null="1"/>
<map_step map_field_source="CONDUCTOR" map_field_target="NAMEA"/>
<map_step map_field_source="GPS" map_field_target="USERA"/>

</map>

This removes ABSTRACT fields from any entry, changes CONDUCTOR fields to NAMEA
fields and changes GPS fields to USERA fields

<map>
<map_step map_field_source="PUBMEDID"

map_field_target="EPRINT"
map_final="1"/>

<map_step map_field_set="EPRINTTYPE" map_origfield="1"/>
<map_step map_field_set="USERD"

map_field_value="Some string of things"/>
</map>

Applies only to entries with PUBMED fields and maps PUBMEDID fields to EPRINT fields,
sets the EPRINTTYPE field to ‘PUBMEDID’ and also sets the USERD field to the string
‘Some string of things’.

<map>
<map_step map_field_source="SERIES"

map_match="\A\d∗(.+)"
map_replace="\L$1"/>

</map>

Here, the contents of the SERIES field have leading numbers stripped and the re-
mainder of the contents lowercased.

<map>
<map_step map_field_source="TITLE"

map_match="Collected\s+Works.+Freud"
map_final="1"/>

<map_step map_field_set="KEYWORDS" map_field_value="freud"/>
</map>

16

Here, if for an entry, the TITLE field matches a particular regular expression, we set
a special keyword so we can, for example, make a references section just for certain
items.

<map>
<map_step map_field_source="LISTA" map_match="regexp" map_final="1"/>
<map_step map_field_set="LISTA" map_null="1"/>

</map>

If an entry has a LISTA field which matches regular expression ‘regexp’, then it is
removed.

<map>
<map_step map_field_source="AUTHOR"

map_match="Smith, Bill" map_replace="Smith, William"/>
<map_step map_field_source="AUTHOR"

map_match="Jones, Baz" map_replace="Jones, Barry"/>
</map>

Here, we use multiple match/replace for the same field to regularise some inconstant
name variants. Bear in mind that match/replace processing within a map element is
sequential and the changes from a previous match/replace are already committed.

<map map_overwrite="1">
<map_step map_field_source="AUTHOR" map_match="Doe," map_final="1"/>
<map_step map_field_set="SHORTAUTHOR" map_origfieldval="1"/>
<map_step map_field_set="SORTNAME" map_origfieldval="1"/>
<map_step map_field_source="SHORTAUTHOR"

map_match="Doe,\s*J(?:\.|ohn)(?:[-]*)(?:P\.|Paul)*"
map_replace="Doe, John Paul"/>

<map_step map_field_source="SORTNAME"
map_match="Doe,\s*J(?:\.|ohn)(?:[-]*)(?:P\.|Paul)*"
map_replace="Doe, John Paul"/>

</map>

Only applies to entries with an AUTHOR field matching ‘Doe,’. First the AUTHOR field
is copied to both the SHORTAUTHOR and SORTNAME fields, overwriting them if they
already exist. Then, these two new fields are modified to canonicalise a particular
name, which presumably has some variants in the datasource.

Other datasource types
For data sources other than BIBTEX, (e.g. ris, endnotexml and zoterordfxml), the
source entrytypes and fields are usually very differently modelled and named. For
example, here is how to drop dc:subject fields from various entrytypes in Zotero
XML RDF format data sources:

17

<maps datatype="zoterordfxml" map_overwrite="1">
<map>
<per_type>journalArticle</per_type>
<per_type>book</per_type>
<per_type>bookSection</per_type>
<map_step map_field_set="dc:subject" map_null="1"/>

</map>
</maps>

Or here, mapping journal articles into @Report entries for Endnote XML format
data sources within a particular data source.

<maps datatype="endnotexml" map_overwrite="1">
<map>
<per_datasource>endnote.xml</per_datasource>
<map_step map_type_source="Journal Article" map_type_target="Report"/>

</map>
</maps>

Or here, dropping the N2 field from RIS datasources, which are commonly used for
abstracts:

<maps datatype="ris" map_overwrite="1">
<map>
<map_step map_field_set="N2" map_null="1"/>

</map>
</maps>

3.1.2 The noinit option

The value of the noinit option can only be set in the config file and not on the
command line. This is because the values are Perl regular expressions and would
need special quoting to set on the command line. This can get a bit tricky on
some OSes (like Windows) so it’s safer to set them in the config file. noinit allows
you to ignore parts of a name when generating initials. This is done using Perl
regular expressions which specify what to ignore. You can specific multiple regular
expressions and they will be removed from the name before it is passed to the initials
generating system.
For example, this option can be used to ignore diacritic marks and prefices in

names which should not be considered when sorting. Given (the default):

<noinit>
<!-- strip lowercase prefices like 'al-' when generating initials -->
<option value="\b\p{Ll}{2}\p{Pd}"/>

18

<!-- strip diacritics when generating initials -->
<option value="[\x{2bf}\x{2018}]"/>

</noinit>

and the BIBTEX data source entry:

AUTHOR = {{al-Hasan}, ʿAlī},

the initials for the last name will be ‘H’ and not ‘a-H’. The initial for the first name
will be ‘A’ as the diacritic is also ignored. This is tricky in general as you cannot often
determine the difference between a name with a prefix and a hyphenated name with
only, say, two chars in the first part such as ‘Ho-Pun’. You can adjust this option
for your individual cases. By default, only lowercased prefices are looked for so as
to avoid breaking things like ‘Ho-Pun’ where you want the initials to be ‘H.-P.’,
for example. See the Perl regular expression manual page for details of the regular
expression syntax10.

3.1.3 The nosort option

The value of the nosort option can only be set in the config file and not on the
command line. This is because the values are Perl regular expressions and would
need special quoting to set on the command line. This can get a bit tricky on some
OSes (like Windows) so it’s safer to set them in the config file. In any case, it’s
unlikely you would want to set them for particular Biber runs; they would more
likely be set as your personal default and thus they would naturally be set in the
config file anyway. nosort allows you to ignore parts of a field for sorting. This is
done using Perl regular expressions which specify what to ignore in a field. You can
specify as many patterns as you like for a specific field. Also available are some field
type aliases so you can, for example, specify patterns for all name fields or all title
fields. These field types all begin with the string ‘type_’, see Table 3.
For example, this option can be used to ignore diacritic marks and prefices in

names which should not be considered when sorting. Given (the default):

<nosort>
<!-- strip prefices like 'al-' when sorting names -->
<option name="type_name" value="\A\p{L}{2}\p{Pd}"/>
<!-- strip diacritics when sorting names -->
<option name="type_name" value="[\x{2bf}\x{2018}]"/>

</nosort>

and the BIBTEX data source entry:

AUTHOR = {{al-Hasan}, ʿAlī},
10http://perldoc.perl.org/perlre.html

19

http://perldoc.perl.org/perlre.html

Alias Fields
type_name author

afterword
annotator
bookauthor
commentator
editor
editora
editorb
editorc
foreword
holder
introduction
namea
nameb
namec
shortauthor
shorteditor
translator

type_title booktitle
eventtitle
issuetitle
journaltitle
maintitle
origtitle
title

Table 3: nosort option field type aliases

20

the prefix ‘al-’ and the diacritic ‘ʿ’ will not be considered when sorting. See the Perl
regular expression manual page for details of the regular expression syntax11.
You may specify any number of option elements. If a nosort option is found for

a specific field, it will override any option for a type which also covers that field.
Here is another example. Suppose you wanted to ignore ‘The’ at the beginning of

a TITLE field when sorting, you could add this to your biber.conf:

<nosort>
<option name="title" value="\AThe\s+"/>

</nosort>

If you wanted to do this for all title fields listed in Table 3, then you would do this:

<nosort>
<option name="type_title" value="\AThe\s+"/>

</nosort>

Note: nosort can be specified for most fields but not for things like dates and
special fields as that wouldn’t make much sense.

3.1.4 The collate_options option

The collate_options option has format similar to nosort. See Section 3.4 for
details about the option, here is an example of a config file setting:

<collate_options>
<option name="level" value="3"/>
<option name="table" value="/home/user/data/otherkeys.txt"/>

</collate_options>

3.2 Input/Output File Locations
3.2.1 Control file

The control file is normally passed as the only argument to Biber. It is searched for
in the following locations, in decreasing order of priority:

Absolute filename →
In the --output_directory, if specified→
Relative to current directory→
Using kpsewhich, if available

11http://perldoc.perl.org/perlre.html

21

http://perldoc.perl.org/perlre.html

3.2.2 Data sources

Local data sources of type ‘file’ are searched for in the following locations, in de-
creasing order of priority:

Absolute filename →
In the --output_directory, if specified→
Relative to current directory→
In the same directory as the control file→
Using kpsewhich for supported formats, if available

Remote file data sources (beginning with http:// or ftp://) are retrieved to a
temp file and processed as normal. Users do not specify explicitly the bibliography
database files; they are passed in the .bcf control file, which is constructed from
the Biblatex ‘\addbibresource{}’ macros.

3.3 Logfile
By default, the logfile for Biber will be named \jobname.blg, so, if you run

biber <options> test.bcf

then the logfile will be called ‘test.blg’. Like the .bbl output file, it will be created
in the --output_directory|-c, if this option is defined. You can override the logfile
name by using the --logfile option:

biber --logfile=lfname test.bcf

results in a logfile called ‘lfname.blg’.

Warning: be careful if you are expecting Biber to write to directories which you
don’t have appropriate permissions to. This is more commonly an issue on non-
Windows OSes. For example, if you rely on kpsewhich to find your database files
which are in system TEX directories, you may well not have write permission there
so Biber will not be able to write the .bbl. Use the --outfile|-O option to specify
the location to write the .bbl to in such cases.

3.4 Collation and Localisation
Biber takes care of collating the bibliography for Biblatex. It writes entries to the
.bbl file sorted by a completely customisable set of rules which are passed in the
.bcf file by Biblatex. Biber has two ways of performing collation:

22

--collate|-C
The default. This option makes Biber use the Perl Unicode::Collate module for
collation which implements the full UCA (Unicode Collation Algorithm). It also has
CLDR (Common Locale Data Repository) tailoring to deal with cases which are not
covered by the UCA. It is a little slower than --fastsort|-f but the advantages
are such that it’s rarely worth using --fastsort|-f

--fastsort|-f
Biber will sort using the OS locale collation tables. The drawback for this method
is that special collation tailoring for various languages are not implemented in the
collation tables for many OSes. For example, few OSes correctly sort ’å’ before ’ä’
in the Swedish (sv_SE) locale. If you are using a common latin alphabet, then this
is probably not a problem for you.

The locale used for collation is determined by the following resource chain which is
given in decreasing precedence order:

--collate_options|-c (e.g. -c 'locale => "de_DE"') →
--sortlocale|-l →
LC_COLLATE environment variable →
LANG environment variable →
LC_ALL environment variable

With the default --collate|-C option, the locale will be used to look for a collation
tailoring for that locale. It will generate an informational warning if it finds none.
This is not a problem as the vast majority of collation cases are covered by the
standard UCA and many locales neither have nor need any special collation tailoring.
With the --fastsort|-f option, the locale will be used to locate an OS loc-

ale definition to use for the collation. This may or may not be correctly tailored,
depending on the locale and the OS.
Collation is by default case sensitive. You can turn this off globally using the Biber

option --sortcase=false or from Biblatex using its option
sortcase=false. The option can also be defined per-field so you can sort some
fields case sensitively and others case insensitively. See the Biblatex manual.
--collate|-C by default collates uppercase before lower. You can reverse this

globally for all sorting using the Biber option --sortupper=false or from
Biblatex by using its option sortupper=false. The option can also be defined
per-field so you can sort some fields uppercase before lower and others lower be-

23

fore upper. See the Biblatex manual. Be aware though that some locales rightly
enforce a particular setting for this (for example, Danish). You will be able to
override it but Biber will warn you if you do. sortupper has no effect when using
--fastsort|-f–you are at the mercy of what your OS locale does.
There are in fact many options to Unicode::Collate which can tailor the collation

in various ways in addition to the locale tailoring which is automatically performed.
Users should see the the documentation to the module for the various options, most
of which the vast majority of users will never need12. Options are passed using the
--collate_options|-c option as a single quoted string, each option separated by
comma, each key and value separated by ‘=>’. See examples.
Note: Biber sets the Unicode collation tailoring ‘variable’ to ‘non-ignorable’.

Effectively, this means that punctuation is not ignored when sorting. The default
setting is to ignore such ‘variable weight’ elements. Sorting bibliographies is slightly
more specialised than collating general text and punctuation often matters. In case
you want the UCA default behaviour, see examples.

3.4.1 Examples

biber
Call Biber using all settings from the .bcf generated from the LaTeX run. Case sens-
itive UCA sorting is performed taking the locale for tailoring from the environment
if no sortlocale is defined in the .bcf

biber --sortlocale=de_DE
Override any locale setting in the .bcf or the environment.

biber --fastsort
Use slightly quicker internal sorting routine. This uses the OS locale files which may
or may not be accurate.

biber --sortcase=false
Case insensitive sorting.

biber --sortupper=false --collate_options="backwards => 2"
Collate lowercase before upper and collate French accents in reverse order at UCA
level 2.

biber --collate_options="variable => 'shifted'"
Use the UCA default setting for variable weight punctuation (which is to ignore it
for sorting, effectively).

3.5 Encoding of files
Biber takes care of re-encoding the data source data as necessary. In normal use,
Biblatex passes its bibencoding option value to Biber via the .bcf file. It also passes

12For details on the various options, see http://search.cpan.org/search?query=Unicode%3A%
3ACollate&mode=all

24

http://search.cpan.org/search?query=Unicode%3A%3ACollate&mode=all
http://search.cpan.org/search?query=Unicode%3A%3ACollate&mode=all

the value of its texencoding option (which maps to Biber’s --bblencoding|-E
option) the default value of which depends on which TEX engine and encoding
packages you are using (see Biblatex manual for details).
Biber performs the following tasks:

1. Decodes the data source into UTF-8 if it is not UTF-8 already
2. Decodes LaTeX character macros into UTF-8 if --bblencoding|-E is UTF-8
3. Encodes the output so that the .bbl is in the encoding that --bblencoding|-E
specifies

4. Warns if it is asked to output to the .bbl any UTF-8 decoded LaTeX character
macros which are not in the --bblencoding|-E encoding. Replaces with a
suitable LaTeX macro

Normally, you do not need to set the encoding options on the Biber command line
as they are passed in the .bcf via the information in your Biblatex environment.
However, you can override the .bcf settings with the command line. The resource
chain for encoding settings is, in decreasing order of preference:

--bibencoding|-e and --bblencoding|-E →
Biber config file →
.bcf control file

3.5.1 LaTeX macro decoding

As mentioned above, Biber sometimes converts LaTeX character macros into UTF-8.
In fact there are two situations in which this occurs.

1. When --bblencoding|-E is UTF-8
2. Always for internal sorting purposes

This decoding is very useful but take note of the following two scenarios, which
relate to each of the two situations in which LaTeX macro decoding occurs:

Decoding when output is UTF-8
If you are using PDFLaTeX and \usepackage[utf8]{inputenc}, it is possible that
the UTF-8 characters resulting from Biber’s internal LaTeX character macro decod-
ing break inputenc. This is because inputenc does not implement all of UTF-8,
only a commonly used subset.
An example–if you had \DJ in your .bib data source, Biber decodes this correctly

to ‘Đ’ and this breaks inputenc because it doesn’t understand that UTF-8 character.
The real solution here is to switch to a TEX engine with full UTF-8 support like
X ETEX or LuaTEX as these don’t use or need inputenc. However, you can also try

25

the --bblsafechars option which will try to convert any UTF-8 chars into LaTeX
macros on output. For information on the --bblsafechars option, see section 3.5.2.

Decoding for internal sorting
If your bblencoding is not UTF-8, and you are using some UTF-8 equivalent LaTeX
character macros in your .bib data source, then some .bbl fields (currently only
\sortinit{}) might end up with invalid characters in them, according to the .bbl
encoding. This is because some fields must be generated from the final sorting data
which is only available after the LaTeX character macro decoding step.
For example, suppose you are using PDFLaTeX with

\usepackage[latin1]{inputenc} and the following BIBTEX data source entry:

@BOOK{citekey1,
AUTHOR = {{\v S}imple, Simon},

}

With normal LaTeX character macro decoding, the {\v S} is decoded into ‘Š’ and
so with name-first sorting, \sortinit{} would be ‘Š’. This is an invalid character in
latin1 encoding and so the .bbl would be broken. In such cases when \sortinit{}
is a char not valid in the bblencoding, Biber tries to replace the character with a
suitable LaTeX macro. The solution is really to use UTF-8 .bbl encoding whenever
possible. In extreme cases where even with UTF-8 encoding, the char is not recog-
nised by LaTeX due to an incomplete UTF-8 implementation (as with inputenc),
this might also mean switching TEX engines to one that supports full UTF-8 (like
XeTEX or LuaTEX).

3.5.2 LaTeX macro encoding

The opposite of decoding; converting UTF-8 characters into LaTeX macros. You
can force this with the --bblsafechars option which will do a generally good job
of making your .bbl plain ASCII. It can be useful in certain edge cases where your
bibliography introduces characters which can’t be handled by your main document.
See section 3.5.1 above for an example such case.
A common use case for LaTeX macro encoding is when the bibliography data

source is not ASCII but the .tex file is and so this case is automated for you: if the
Biblatex option ‘texencoding’ (which corresponds to the Biber option ‘--bblencoding|-E’)
is set to an ASCII encoding (‘ascii’ or ‘x-ascii’) and ‘--bibencoding|-e’ is not
ASCII, Biber will automatically set --bblsafechars.
See also the biber --help output for the --bblsafecharsset and

--decodecharsset options which can customise the set of conversion rules to use.

26

The builtin sets of characters and macros which Biber maps during encoding and
decoding are documented13.
It is possible to provide a customised encode/decode mapping file using the --recodedata

option. It must adhere to the format of the default data file for reencoding which
is recode_data.xml located in the same Perl install directory as Biber’s Recode.pm
module. Of course it is easier to find this in the Biber source tree. It is most likely
that if you want to use a custom mapping file, you would copy the default file and
edit it, removing some things and perhaps defining some custom recoding sets for
use with --bblsafecharsset and --decodecharsset.
Be careful to classify the entries using the correct ‘type’ attribute in the XML file

as this determines how the macro is treated by the code that does the replacement.
Just copy a similar type of macro from the default recoding data file if you are adding
new entries, which is unlikely as the file is quite comprehensive. There is only one
other thing to note. The ‘preferred’ attribute tells Biber to use a specific LaTeX
macro when mapping from UTF-8, just in case there are more than one mappings
from UTF-8 for a particular character. It’s unlikely you will need to use this.

3.5.3 Examples

biber
Set bibencoding and bblencoding from the config file or .bcf

biber --bblencoding=latin2
Encode the .bbl as latin2, overriding the .bcf

biber --bblsafechars
Set bibencoding and bblencoding from the config file or .bcf. Force encoding of
UTF-8 chars to LaTeX macros using default conversion set

biber --bblencoding=ascii
Encode the .bbl as ascii, overriding the .bcf. Automatically sets --bblsafechars
to force UTF-8 to LaTeX macro conversion

biber --bblencoding=ascii --bblsafecharsset=full
Encode the .bbl as ascii, overriding the .bcf. Automatically sets --bblsafechars
to force UTF-8 to LaTeX macro conversion using the full set of conversions

biber --decodecharsset=full
Set bibencoding and bblencoding from the config file or .bcf. Use the full LaTeX
macro to UTF-8 conversion set because you have some more obscure character mac-
ros in your .bib data source which you want to sort correctly

biber --recodedata=/tmp/recode.xml --decodecharsset=special
Specify a user-defined reencoding data file which defines a new reencoding set ‘spe-
cial’ and use this set for decoding LaTeX macros to UTF-8.
13https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/1.4/

documentation/utf8-macro-map.html

27

https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/1.4/documentation/utf8-macro-map.html
https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/1.4/documentation/utf8-macro-map.html

biber -u
Shortcut alias for biber --bibencoding=UTF-8

biber -U
Shortcut alias for biber --bblencoding=UTF-8

3.6 Editor Integration
Here is some information on how to integrate Biber into some of the more common
editors

3.6.1 Emacs

Emacs has the powerful AUCTEX mode for editing TEX and running compilations.
Updated files for AUCTEX 11.86 are available here:

http://sourceforge.net/projects/biblatex-biber/files/auctex-biber.zip

Drop the .el files in the .zip file over the ones in your AUCTEX installation tree,
delete the corresponding .elc files and run M-0 M-x byte-recompile-directory
and give the path of your AUCTEX main install directory where the new files reside.
Hopefully these modifications will make it into the official AUCTEX distributions
soon.
The additions augment AUCTEX in the following ways:

• Adds font-lock support for most Biblatex macros
• Auto-detects whether you are using Biber with Biblatex
• Can detect whether dependencies like data sources have changed without them
being open in Emacs

• Understands Biblatex and Biber messages so that AUCTEX will prompt you
with the best default command to run next when using C-cC-c

3.6.2 TEXworks

It’s very easy to add Biber support to TEXworks. In the Preferences, select the
Typesetting tab and then add a new Processing Tool as in Figure 3.

3.7 BibTEX macros and the MONTH field
BIBTEX defines macros for month abbreviations like ‘jan’, ‘feb’ etc. Biber also does
this, defining them as numbers since that is what Biblatex wants. In case you are
also defining these yourself (although if you are only using Biblatex, there isn’t much

28

http://sourceforge.net/projects/biblatex-biber/files/auctex-biber.zip

Figure 3: Screenshot of TEXworks processing tool setup for Biber

point), you will get macro redefinition warnings from the btparse library. You can
turn off Biber’s macro definitions to avoid this by using the option --nostdmacros.
Biber will look at any MONTH field in a BIBTEX data source and if it’s not a number

as Biblatex expects (because it wasn’t one of the macros as mentioned above or these
macros were disabled by --nostdmacros), it will try to turn it into the right number
in the .bbl. If you only use Biblatex with your BIBTEX data source files, you should
probably make any MONTH fields be the numbers which Biblatex expects.

3.8 Biber data source drivers
Biber uses a modular data source driver model to provide access to supported data
sources. The drivers are responsible for mapping driver entrytypes and fields to
the Biblatex data model according to a data model specification in the Biblatex file
blx-dm.def. The data model can be changed using Biblatex macros in case you
would like to, for example, use your own entrytype or field names or perhaps have
Biber do some validation on your data sources (see the Biblatex manual).
Data model mapping is an imprecise art and the drivers are the necessarily the

most messy parts of Biber. Most data source models are not designed with type-
setting in mind and are usually not fine-grained enough to provide the sorts of
information that Biblatex needs. Biber does its best to obtain as much meaningful
information from a data source as possible. Currently supported data sources drivers
are:

• BIBTEX — BIBTEX data files
• endnotexml — Endnote XML export format, version ≥ Endnote X1

29

Sub-option Description
crossref Show crossreference relationships
field Show fields within entries
related Show related entries and clones
section Show sections
xdata Show XDATA relationships
xref Show XREF relationships

Table 4: Valid sub-options for the dot_include option

• ris — Research Information Systems format
• zoterordfxml — Zotero RDF XML format, version 2.0.9

3.9 Visualising the Output
The option --outformat=dot will cause Biber to write a GraphViz14 .dot file instead
of a .bbl. This file graphs the bibliographic data as it exists after all processing.
You can transform this file using the dot program from GraphViz to generate a
high quality graphical representation of the data in a format of your choice. A good
output format choice with dot is SVG15 which can be viewed in any modern web
browser. This format has the advantage of tooltips and Biber uses these to give you
more information on connections between entries: hover the cursor on an arrow in
the output and it will tell you what it means. To output in SVG, use this command
after installing GraphViz:

dot -Tsvg <file>.dot -o <file>.svg

The --dot_include option takes a comma delimited string as argument. The ele-
ments of this string define the information to include in the .dot output graph. The
valid sub-options are shown in Table 4. If the --dot_include option is not given
then the default setting is implicitly used, which is:

--dot_include=crossref,section,xdata,xref

3.10 Extended BibTeX Datasource Field Format
Biber implements an extended BibTeX datasource format which allows users to
specify the script form and language for a field. In this way, it is possible to include
14http://www.graphviz.org
15Scalable Vector Graphics

30

http://www.graphviz.org

<key> (<entrytype>)

Cited entry

<key> (<entrytype>)

Uncited entry

<key> (<entrytype>)

dataonly entry

Section <number>

Section

<key> (SET)

Entry set

A B
B inherits by CROSSREF from A

A B
B inherits by XREF from A

A B
B inherits by XDATA from A

A B
A is a related entry of B

A B
B is a clone of A

Figure 4: Key to .dot output format

31

several variants of a field in an entry which give the field in different script forms
(translated, romanised etc.) with an option in cases of forms like translated forms,
to specify the language. This allows users within Biblatex to access such data when
formatting entries. The extended field format looks like this:

<field>_<form>_<lang>

Both <form> and <lang> are optional, naturally and if they are not present, default
to ‘default’ and ‘original’. respectively. <lang>, if specified, should be a known
babel language identifier. <form> can be one of:

• original (default if ommitted)
• translated
• romanised
• uniform

For example:

@BOOK{example1,
AUTHOR = { Булгаков, Павел and Розенфельд, Борис },
AUTHOR_translated_english = { Bulgakov, Pavel and Rosenfeld, Boris },
TITLE = { Славься, Отечествонашесвободное },
TITLE_romanised = { ʹSlavsâ, čOteestvo šnae svobodnoe },

}

This example has an AUTHOR field in Russian Cyrillic script and a variant the ‘trans-
lated’ form with and language setting of ‘english’. There is also a Russian Cyrillic
TITLE with an ISO 9 romanised variant.

4 Binaries
Biber is a Perl application which relies heavily on quite a few modules. It is packaged
as a stand-alone binary using the excellent PAR::Packer module which can pack an
entire Perl tree plus dependencies into one file which acts as a stand-alone binary and
is indistinguishable from such to the end user. You can also simply download the Perl
source and run it as a normal Perl program which requires you to have a working
Perl 5.14+ installation and the ability to install the pre-requisite modules. You
would typically only do this if you wanted to keep up with all the bleeding-edge git
commits before they had been packaged as a binary. Almost all users will not want
to do this and should use the binaries from their TEX distribution or downloaded
directly from SourceForge in case they need to use a more recent binary than is
included in their TEX distribution.
The binary distributions of Biber are made using the Perl PAR::Packer module.

They can be used as a normal binary but have some behaviour which is worth noting:

32

• Don’t be worried by the size of the binaries. PAR::Packer essentially con-
structs a self-extracting archive which unpacks the needed files first.

• On the first run of a new version (that is, with a specific hash), they actually
unpack themselves to a temporary location which varies by operating system.
This unpacking can take a little while and only happens on the first run of
a new version. Please don’t kill the process if it seems to take some
time to do anything on the first run of a new binary. If you do, it will
not unpack everything and it will almost certainly break Biber. You will then
have to delete your binary cache (see section 4.1 below) and re-run the Biber
executable again for the first time to allow it to unpack properly.

4.1 Binary Caches
PAR::Packer works by unpacking the required files to a cache location. It only does
this on the first run of a binary by computing a hash of the binary and comparing
it with the cache directory name which contains the hash. So, if you run several
versions of a binary, you will end up with several cached trees which are never used.
This is particularly true if you are regularly testing new versions of the Biber binary.
It is a good idea to delete the caches for older binaries as they are not needed and
can take up a fair bit of space. The caches are located in a temporary location which
varies from OS to OS. The cache name is:

par-<hex_encoded_username>/cache-<hash> (Linux/Unix/OSX)
par-<hex_encoded_username>\cache-<hash> (Windows)

The temp location is not always obvious but these are sensible places to look (where
* can vary depending on username):

• /var/folders/*/*/*/ (OSX, local GUI login shell)
• /var/tmp/ (OSX (remote ssh login shell), Unix)
• /tmp/ (Linux)
• C:\Documents and Settings\<username>\Local Settings\Temp (Windows/Cyg-
win)

• C:\Windows\Temp (Windows)

To clean up, you can just remove the whole par-<hex_encoded_username> direct-
ory/folder and then run the current binary again. You can see the active cache by
running biber with the --cache option which will print the current cache location
and exit.

33

4.2 Binary Architectures
Binaries are available for many architectures, directly on SourceForge and also via
TEXLive:

• linux_x86_32
• linux_x86_64
• MSWin32
• cygwin32
• darwin_x86_64
• darwin_x86_i386
• freebsd_x8616

• freebsd_amd6416

• solaris_x8616

If you want to run development versions, they are usually only regularly updated
for the core architectures which are not flagged as third-party built above. If you
want to regularly run the latest development version, you should probably git clone
the relevant branch and run Biber as a pure Perl program directly.

4.3 Installing
These instructions only apply to manually downloaded binaries. If Biber came with
your TEX distribution just use it as normal.
Download the binary appropriate to you OS/arch17. Below I assume it’s on your

desktop.
You have to move the binary to somewhere in you command-line or TEX utility

path so that it can be found. If you know how to do this, just ignore the rest of this
section which contains some instructions for users who are not sure about this.

4.3.1 OSX

If you are using the TEXLive MacTEX distribution:

sudo mv ~/Desktop/biber /usr/texbin/
sudo chmod +x /usr/texbin/biber

If you are using the MacPorts TEXLive distribution:

16Binary maintained by third party. See README in binary download directory for this platform
for support/contact details. Usually, the binary maintainer is also the binary build provider for
TEXLive.

17https://sourceforge.net/projects/biblatex-biber

34

https://sourceforge.net/projects/biblatex-biber

sudo mv ~/Desktop/biber /opt/local/bin/
sudo chmod +x /opt/local/bin/biber

The ‘sudo’ commands will prompt you for your password.

4.3.2 Windows

The easiest way is to just move the executable into your C:\Windows directory since
that is always in your path. A more elegant is to put it somewhere in your TEX
distribution that is already in your path. For example if you are using MiKTEX:

C:\Program Files\MiKTeX 2.9\miktex\bin\

4.3.3 Unix/Linux

sudo mv ~/Desktop/biber /usr/local/bin/biber
sudo chmod +x /usr/local/bin/biber

Make sure /usr/local/bin is in your PATH. Search Google for ‘set PATH linux’
if unsure about this. There are many pages about this, for example: http://www.
cyberciti.biz/faq/unix-linux-adding-path/

4.4 Building
Instructions for those who want/need to build an executable from the Perl version.
For this, you will need to have Perl 5.14+ with the following modules:

• All Biber pre-requisites
• PAR::Packer and all dependencies

You should have the latest CPAN versions of all required modules as Biber is very
specific in some cases about module versions and depends on recent fixes in many
cases. You can see if you have the Biber Perl dependencies by the usual

perl ./Build.PL

invocation in the Biber Perl distribution tree directory. Normally, the build proced-
ure for the binaries is as follows18:

• Get the Biber source tree from SF and put it on the architecture you are
building for

• cd to the root of the source tree
• perl Build.PL (this will check your module dependencies)

18On Unix-like systems, you may need to specify a full path to the scripts e.g. ./Build

35

http://www.cyberciti.biz/faq/unix-linux-adding-path/
http://www.cyberciti.biz/faq/unix-linux-adding-path/

• Build test
• Build install (may need to run this as sudo on Unix-like systems)
• cd dist/<arch>
• build.sh (build.bat on Windows)

This leaves a binary called ‘biber-<arch>’ (also with a ‘.exe’ extension on Win-
dows/Cygwin) in your current directory. The tricky part is constructing the inform-
ation for the build script. There are two things that need to be configured, both of
which are required by the PAR::Packer module:

1. A list of modules/libraries to include in the binary which are not automatically
detected by the PAR::Packer dependency scanner

2. A list of extra files to include in the binary which are not automatically detected
by the PAR::Packer dependency scanner

To build Biber for a new architecture you need to define these two things as part of
constructing new build scripts:

• Make a new sub-folder in the dist directory named after the architecture
you are building for. This name is arbitrary but should be fairly obvious like
‘solaris-sparc-64’, for example.

• Copy the biber.files file from an existing build architecture into this direct-
ory.

• For all of the files with absolute pathnames in there (that is, ones we are not
pulling from the Biber tree itself), locate these files in your Perl installation
tree and put the correct path in the file.

• Copy the build script from a vaguely similar architecture (i.e. Windows/non-
Windows …) to your new architecture directory.

• Change the --link options to point to where the required libraries reside on
your system.

• Change the --output option to name the resulting binary for your architec-
ture.

• Run the build script

The --link options can be a little tricky sometimes. It is usually best to build
without them once and then run ldd (or OS equivalent) on the binary to see which
version/location of a library you should link to. You can also try just running the
binary and it should complain about missing libraries and where it expected to find
them. Put this path into the --link option. The --module options are the same
for all architectures and do not need to be modified. On architectures which have
or can have case-insensitive file systems, you should use the build script from either
Windows or OSX as a reference as these include a step to copy the main Biber script
to a new name before packing the binary. This is required as otherwise a spurious

36

error is reported to the user on first run of the binary due to a name collision when
it unpacks itself.
See the PAR wiki page19 for FAQs and help on building with PAR::Packer. Take

special note of the FAQs on including libraries with the packed binary20.

4.4.1 Testing a binary build

You can test a binary that you have created by copying it to a machine which
preferably doesn’t have perl at all on it. Running the binary with no arguments
will unpack it in the background and display the help. To really test it without
having LaTeX available, get the two quick test files from SourceForge21, put them
in a directory and run Biber in that directory like this:

biber --validate_control --convert_control test

This will run Biber normally on the test files plus it will also perform an XSLT
transform on the .bcf and leave an HTML representation of it in the same directory
thus testing the links to the XML and XSLT libraries as well as the BIBTEX parsing
libraries. The output should look something like this (may be differences of Biber
version and locale of course but there should be no errors or warnings).

INFO - This is Biber 1.4
INFO - Logfile is 'test.blg'
INFO - BibLaTeX control file 'test.bcf' validates
INFO - Converted BibLaTeX control file 'test.bcf' to 'test.bcf.html'
INFO - Reading 'test.bcf'
INFO - Found 1 citekeys in bib section 0
INFO - Processing bib section 0
INFO - Looking for BibTeX format file 'test.bib' for section 0
INFO - Found BibTeX data file 'test.bib'
INFO - Decoding LaTeX character macros into UTF-8
INFO - Sorting list 'MAIN' keys
INFO - No sort tailoring available for locale 'en_GB.UTF-8'
INFO - Sorting list 'SHORTHANDS' keys
INFO - No sort tailoring available for locale 'en_GB.UTF-8'
INFO - Writing 'test.bbl' with encoding 'UTF-8'
INFO - Output to test.bbl

There should now be these new files in the directory:
19http://par.perl.org/wiki/Main_Page
20http://par.perl.org/wiki/FAQ, section entitled ‘My PAR executable needs some dynamic librar-
ies’

21https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/testfiles

37

http://par.perl.org/wiki/Main_Page
http://par.perl.org/wiki/FAQ
https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/testfiles

test.bcf.html
test.blg
test.bbl

38

	Important Changes
	Introduction
	About
	Requirements
	Compatibility Matrix
	License
	History
	Performance
	Acknowledgements

	Use
	Options and config file
	The sourcemap option
	The noinit option
	The nosort option
	The collate_options option

	Input/Output File Locations
	Control file
	Data sources

	Logfile
	Collation and Localisation
	Examples

	Encoding of files
	LaTeX macro decoding
	LaTeX macro encoding
	Examples

	Editor Integration
	Emacs
	TeXworks

	BibTeX macros and the MONTH field
	Biber data source drivers
	Visualising the Output
	Extended BibTeX Datasource Field Format

	Binaries
	Binary Caches
	Binary Architectures
	Installing
	OSX
	Windows
	Unix/Linux

	Building
	Testing a binary build

