Asymptote Reference Card

Program structure/functions
import "filename" import module
import "filename" as name import filename as module name
include "filename" include verbatim text from file
type f(type,...); optional function declaration
type name; variable declaration
type f(type arg,...) { function definition

statements

return wvalue;

}

Data types/declarations

boolean (true or false) bool
tri-state boolean (true, default, or false) bool3
integer int

float (double precision) real
ordered pair (complex number) pair
character string string
fixed piecewise cubic Bezier spline path
unresolved piecewise cubic Bezier spline guide
color, line type/width/cap, font, fill rule pen
label with position, alignment, pen attributes Label
drawing canvas picture
affine transform transform
constant (unchanging) value const
allocate in higher scope static
no value void
inhibit implicit argument casting explicit
structure struct

create name by data type typedef type name

3D data types (import three;)

ordered triple triple

3D path path3

3D guide guide3

3D affine transform transform3
Constants

exponential form 6.02e23

TEX string constant "abc...de"
A\, A\

TEX strings: special characters

C strings: constant ’abc...de’

C strings: special characters A\, A"\ NT?
C strings: newline, cr, tab, backspace \n \r \t \b

C strings: octal, hexadecimal bytes \0-\377 \xO-\xFF

Operators

arithmetic operations

modulus (remainder)

comparisons

not

and or (conditional evaluation of RHS)
and or xor

cast expression to type

increment decrement prefix operators
assignment operators

conditional expression

structure member operator
expression evaluation separator

Flow control

statement terminator

block delimeters

comment delimeters

comment to end of line delimiter
exit from while/do/for

next iteration of while/do/for
return value from function
terminate execution

abort execution with error message

Flow constructions (if/while/for/do)

if Cexpr) statement
else if(expr) statement
else statement

while (expr)
statement

for(expry; expro; exprs)
statement

for(type var :
statement

array)

do statement
while(expr);

(type) expr
++ -

+= —= %= [= Y=
expri 7 expro
name . member

>

{

/x x/

//

break;
continue;
return expr;
exit();
abort(string);

exprs



Arrays

array
array element i

array indexed by elements of int array A
anonymous array

array containing n deep copies of x
length

cyclic flag

pop element x

push element x

append array a

insert rest arguments at index i

delete element at index i

delete elements with indices in [i,]]
delete all elements

test whether element n is initialized
array of indices of initialized elements
complement of int array in {0,...,n-1}
deep copy of array a

array {0,1,...,n-1}

array {n,n+1,...,m}

array {n-1,n-2,...,0}

array {£(0),£(1),...,f(n-1)}

array obtained by applying f to array a
uniform partition of [a,b] into n intervals
concat specified 1D arrays

return sorted array

return array sorted using ordering less
search sorted array a for key

index of first true value of bool array a
index of nth true value of bool array a

Initialization

initialize variable
initialize array

path connectors

straight segment

Beziér segment with implicit control points
Beziér segment with explicit control points
concatenate

lift pen

..tension atleast 1..

..tension atleast infinity..

Labels

implicit cast of string s to Label

Label s with relative position and alignment
Label s with absolute position and alignment
Label s with specified pen

draw commands

draw path with current pen

draw path with pen

draw labeled path

draw arrow with pen

draw path on picture

draw visible portion of line through two pairs

type[]l name;
name [i]

name [A]

new type [dim]
array(n,x)

name .length
name.cyclic
name .pop ()

name .push(x)
name .append(a)
name.insert(i,...)
name .delete (i)
name .delete(i,j)
name .delete()
name.initialized(n)
name .keys
complement (a,n)
copy (a)

sequence (n)
sequence (n,m)
reverse(n)
sequence(f,n)
map(f,a)
uniform(a,b,n)
concat(a,b,...)
sort(a)
sort(a,less)
search(a,key)
find(a)

find(a,n)

type name=value;
type [l name={...};

fill commands

fill path with current pen
fill path with pen
fill path on picture

label commands

label a pair with optional alignment z
label a path with optional alignment z
add label to picture

clip commands

clip to path
clip to path with fill rule
clip picture to path

pens

Grayscale pen from value in [0,1]
RGB pen from values in [0,1]
CMYK pen from values in [0,1]
RGB pen from heximdecimal string]
heximdecimal string from rgb pen)]
hsv pen from values in [0,1]
invisible pen

default pen

current pen

solid pen

dotted pen

wide dotted current pen

wide dotted pen

dashed pen

long dashed pen

dash dotted pen

long dash dotted pen

PostScript butt line cap
PostScript round line cap
PostScript projecting square line cap
miter join

round join

bevel join

..controls cO and cl.pen with miter limit

s
Label(s,real,pair)
Label(s,pair,pair)
Label (s, pen)

draw(path)

draw (path,pen)
draw(Label,path)
draw (path,pen,Arrow)
draw(picture,path)
drawline(pair,pair)

zero-winding fill rule

even-odd fill rule

align to character bounding box (default)
align to TEX baseline

pen with font size (pt)

LaTeX pen from encoding,family,series,shape
TEX pen

scaled TEX pen
PostScript font from strings

pen with opacity in [0,1]
construct pen nib from polygonal path
pen mixing operator

£i11(path)
£ill(path,pen)
fill(picture,path)

label(Label,pair,z)
label(Label,path,z)
label (picture,Label)

clip(path)
clip(path,pen)
clip(picture,path)

gray(g)
rgb(r,g,b)
cmyk(r,g,b)
rgb(string)
hex (pen)
hsv(h,s,v)
invisible
defaultpen
currentpen
solid

dotted

Dotted
Dotted(pen)
dashed
longdashed
dashdotted
longdashdotted
squarecap
roundcap
extendcap
miterjoin
roundjoin
beveljoin
miterlimit(real)
zerowinding
evenodd
nobasealign
basealign
fontsize(real)
font (strings)
font (string)
font (string,real)
Courier(series,shape)
opacity(real)
makepen (path)
+



path operations

number of segments in path p length(p) identity transform identity ()

number of nodes in path p size(p) shift by values shift(real,real)

is path p cyclic? cyclic(p) shift by pair shift(pair)

is segment i of path p straight? straight(p,i) scale by x in the x direction xscale(x)

is path p straight? piecewisestraight(p) scale by y in the y direction yscale(y)

coordinates of path p at time t point(p,t) scale by x in both directions scale(x)

direction of path p at time t dir(p,t) scale by real values x and y scale(x,y)

direction of path p at length(p) dir(p) map (z,y) = (z+sy,y) slant(s)
unit(dir(p)+dir(q)) dir(p,q) rotate by real angle in degrees about pair z rotate(angle,z=(0,0))
acceleration of path p at time t accel(p,t) reflect about line from P--Q reflect(P,Q)

radius of cur\{ature of path p a.t time t radius(p,t) String operations

precontrol point of path p at time t precontrol(p,t)

postcontrol point of path p at time t postcontrol(p,t) concatenate operator +

arclength of path p arclength(p) string length length(string)

time at which arclength(p)=L arctime(p,L) position > pos of first occurence of t in s find(s,t,pos=0)

point on path p at arclength L arcpoint (p,L) position < pos of last occurence of t in s rfind(s,t,pos=-1)
first value t at which dir(p,t)=z dirtime(p,z) string with t inserted in s at pos insert(s,pos,t)

time t at relative fraction 1 of arclength(p) reltime(p,1) string s with n characters at pos erased erase(s,pos,n)

point at relative fraction 1 of arclength(p) relpoint(p,1) substring of string s of length n at pos substr(s,pos,n)

point midway along arclength of p midpoint (p) string s reversed reverse(s)

path running backwards along p reverse(p) string s with before changed to after replace(s,before,after)
subpath of p between times a and b subpath(p,a,b) string s translated via {{before,after},...} replace(s,string [][] table)
times for one intersection of paths p and q intersect(p,q) format x using C-style format string s format (s,x)

times at which p reaches minimal extents
times at which p reaches maximal extents

mintimes (p)
maxtimes (p)

affine transforms

casts hexidecimal string to an integer
casts x to string using precision digits

hex(s)

string(x,digits=realDigits)

time (format="%a %b %d 4T %Z %Y")
seconds (t,format)

time (seconds,format)
split(s,delimiter="")

current time formatted by format

time in seconds of string t using format
string corresponding to seconds using format
split s into strings separated by delimiter

intersection times of paths p and q
intersection times of path p with ‘--a--b--’
intersection times of path p crossing z =x

intersections(p,q)
intersections(p,a,b)
times(p,x)
times(p,z)

intersection times of path p crossing y =z.y
intersection point of paths p and q
intersection points of p and q

intersection of extension of P--Q and p--q
lower left point of bounding box of path p
upper right point of bounding box of path p
subpaths of p split by nth cut of knife
winding number of path p about pair z

pair z lies within path p?

pair z lies within or on path p?

path surrounding region bounded by paths
path filled by draw(g,p)

unit square with lower-left vertex at origin
unit circle centered at origin

circle of radius r about ¢

arc of radius r about ¢ from angle a to b
unit n-sided polygon

unit n-point cyclic cross

pictures

add picture pic to currentpicture
add picture pic about pair z

intersectionpoint(p,q)
intersectionpoints(p,q)

extension(P,Q,p,q)

min(p)
max (p)
cut(p,knife,n)

windingnumber (p,z)

interior(p,z)
inside(p,2z)
buildcycle(...)
strokepath(g,p)
unitsquare
unitcircle
circle(c,r)
arc(c,r,a,b)
polygon(n)
cross(n)

add(pic)
add(pic,z)

May 2014 v1.1. Copyright © 2014 John C. Bowman

Permission is granted to make and distribute copies of this card, with or

without modifications, provided the copyright notice and this permission

notice are preserved on all copies.



