
tracecc and trana, version 1.3.7

Dipl.-Ing. D. Krause

November 26, 2003

Contents

1 Overview 3

2 Special instructions for tracecc 3
2.1 How to write tracecc special instructions. 3

2.1.1 Notation for special instructions. 3
2.1.2 Output special instruction. 3

2.2 Adding the header file for trace functions. 4
2.3 Starting and finishing debug output. 4
2.4 Trace output. 4
2.5 Other special instructions. 6

2.5.1 Turning debug mode temporarily on / off. 6
2.5.2 Turn line numbers on / off. 6
2.5.3 Reading a text file to an array of strings. 6
2.5.4 Reading a file into an array of bytes. 6
2.5.5 Reading output of a command. 7
2.5.6 Adding code in debug mode only. 7

3 Running tracecc 8
3.1 Program invocation. 8
3.2 Options . 8

3.2.1 Getting help. 8
3.2.2 Debugging . 8
3.2.3 IDE integration. 9
3.2.4 Output file style. 10

3.3 Command line options and permanent options (preferences). . . 10
3.3.1 Overview . 10
3.3.2 Inspecting permanent options. 11
3.3.3 Installing permanent options. 11
3.3.4 Removing permanent options. 11
3.3.5 Ignoring permanent options temporarily. 11

4 Formatting trace output using trana 12
4.1 Overview . 12
4.2 Running trana. 13

4.2.1 Command line arguments. 13
4.2.2 Command line options and permanent options. 14
4.2.3 Getting help. 14

1

5 Inspecting output with Vim 15
5.1 Folding by indent level. 15
5.2 Folding by markers. 15
5.3 Navigating through the folded file. 15

2

1 Overview

Tracecc is a debugging preprocessor for C, C++, Objective-C and Java. It pro-
cesses .ctr, .cpt, .mtr and .jtr files to produce .c, .cpp, .m or .java files.
The input files contain tracing instructions in a special notation. Depending on the
options given to tracecc the tracing instructions are converted into C code (when
producing debug versions) or removed (when producing a shipping version).
When a debug version of a program is run it produces output either to standard
output or to a debug file.
The trana program converts the plain text debug file (as written by the program)
into a beautified version. This beautified version can be opened by editors like
gvim1 which are capable of folding.

2 Special instructions for tracecc

2.1 How to write tracecc special instructions

2.1.1 Notation for special instructions

• $(instruction arguments)
The special instruction is finished by the closing bracket.
Here an example:

$(trace-init myfile.deb)

The functiontrace-init is invoked with argumentmyfile.deb.

• $! instruction arguments
The special instruction is finished by the end of line.
Example:

$!trace-init myfile.deb

Both notations are equivalent.

2.1.2 Output special instruction

• $? format arguments
The output special instruction is finished by the end of line,formatandar-
gumentsare used as inprintf()- or fprintf()-calls.

$? "x is %d", x

1http://www.vim.org

3

http://www.vim.org

2.2 Adding the header file for trace functions

Use

$(trace-include)

to insert an include-line for the trace functions.
This instruction should be placed after the last "normal" include line.
When running tracecc for debugging it is replaced by

#include <dktrace.h>

otherwise by an empty line.

2.3 Starting and finishing debug output

The

$(trace-init filename)

produces code to start trace output.
Depending on the tracecc options trace output goes to the specified filename or to
standard output.
The

$(trace-end)

instruction produces code to finish trace output.

2.4 Trace output

The

$? format arguments

instruction produces trace output.

4

Example:

int my_square(int i)
{

int back = 0;
$? "+ my_square i=%d ", i
back = i * i;
$? "- my_square back=%d", back
return back;

}

The format string in the lines for entering a function (and only in these lines)
should have a plus sign, a space and the function name in the beginning. This is
needed by the trana program.
The format string in the lines for returning from a function (and only in these
lines) should have a minus sign, a space and the function name at the beginning.
Format strings for lines indicating an error condition should have an exclamation
mark at the beginning.
Format strings for all lines indicating normal program flow should have a dot at
the beginning.
Example:

double my_square_root(double d)
{

double back = 0.0;
$? "+ my_square_root %lf", d
if(d >= 0) {

back = sqrt(d);
$? ". argument %lf ok", d

} else {
$? "! wrong argument %lf", d

}
$? "- my_square_root %lf", back
return back;

}

5

2.5 Other special instructions

2.5.1 Turning debug mode temporarily on / off

• $(trace-off)
$(debug-off)
turns debugging temporarily off.

• $(trace-on)
$(debug-on)
turns debugging back on.

• $(timestamp-on)
turns timestamps in trace messages on.

• $(timestamp-off)
turns timestamps in trace messages off.

These options only take affect if tracecc is run generally in debug mode.
The purpose is to disable trace messages for special code sections (i.e. functions)
to decrease output file size.

2.5.2 Turn line numbers on / off

• $(lineno-on)
turns line number printing on.

• $(lineno-off)
turns line number printing off.

2.5.3 Reading a text file to an array of strings

• $(string-file filename)
reads the given file and converts it into an array of string pointers finished
by aNULLpointer.

2.5.4 Reading a file into an array of bytes

• $(byte-file filename)
reads the given file and converts it into an array of unsigned chars.

6

2.5.5 Reading output of a command

• $(pipe command)
$(| command)
runs the given command and inserts the output of the command execution
at the current place in the file.

2.5.6 Adding code in debug mode only

• $(trace-code code)
$(! code)
inserts the source code at this position only if tracecc is run in debug mode.

7

3 Running tracecc

3.1 Program invocation

Use

tracecc

or

tracecc options

to run tracecc on the current directory.
Use

tracecc options inputfile outputfile

to run tracecc for a given input and output file.
Use

tracecc options directory

to run on a specified directory.

3.2 Options

3.2.1 Getting help

• -h
--help
shows a help text.

• -v
--version
shows version information.

3.2.2 Debugging

• -d
--debug-enable
turns debug mode on.

• -d-
--debug-enable=no
turns debug mode off.

• -s
--debug-stdout
configures trace messages to go to standard output instead of the file.

8

• -s-
--debug-stdout=no
makes sure that trace messages go to file, not to standard output.

• -t
--debug-timestamp
adds a time stamp to the trace messages.

• -t-
--debug-timestamp=no
removes the time stamp from the trace messages.

• -k
--keyword
adds the "trace" keyword to all trace messages.

• -k-
--keyword=no
removes the trace keyword from the trace messages.

3.2.3 IDE integration

• -m
--make
causes tracecc to check the modification times of files before processing
when running on a directory.

• -m-
--make=no
turns modification time check off.

• -l
--linenumbers
adds#line xx "yyy" lines to the destination file. This allows to track
down compiler errors to the original source.

• -l-
--linenumbers=no
turns line number compiler directives off.

• -i
--debug-ide
configures trace messages to be printed in an IDE style (if debug mode is
on).

9

• -i-
--debug-ide=no
turns IDE style for trace messages off.

3.2.4 Output file style

• -p
--cpp-comments
allows C++ style comments to be passed to the destination file.

• -p-
--cpp-comments=no
converts C++ style comments into normal C comments.

• -b boxwidth
--boxwidth= boxwidth
sets the box width for comment boxes.

3.3 Command line options and permanent options (preferences)

3.3.1 Overview

Tracecc – as most other dklibs based programs – can be configured to use perma-
nent options in conjunction with the command line options.
If tracecc is run permanent options are processed before the command line options
are read.
This has both advantages and disadvantages:

• You can configure options to be permanent, so you do not have to type them
for each program invokation.

• You must keep in mind that permanent options might be in use.

The following options can be set permanently:

Table 1: Permanent options overview

Option on Option off Purpose
-d -d- Debug mode
-s -s- Trace messages to standard output
-i -i none IDE style for debug messages
-k -k- Keyword "trace" in trace messages

to be continued

10

Continuation
-t -t- Timestamp in trace messages
-l -l- Line number compiler directives
-p -p- Allow C++ style comments

-b width Comment box width
-m -m- Make style when running on directories

3.3.2 Inspecting permanent options

Use

tracecc -C

tracecc --show-configuration

to inspect permanent options.

3.3.3 Installing permanent options

Use

tracecc -c options

tracecc --configure options

to set permanent options.

3.3.4 Removing permanent options

Use

tracecc -u

tracecc --unconfigure

to remove all permanent options.

3.3.5 Ignoring permanent options temporarily

Use

tracecc -r options

tracecc --reset options

to skip processing of permanent options.
When the-r option is processed all options – also those set by command line
arguments – are reset to the default values.
If -r is used it is strongly recommended to use it as the first argument.

11

4 Formatting trace output using trana

4.1 Overview

Once you have run

tracecc -d

make

and executed your program you will have a debug file.
The suggested suffix for debug files is .deb or .tr.
This debug file (or trace messages file) is a plain text file where each line is started
by a file name and a line number.
If the -k option was specified when running tracecc the trace keyword occures
next.
If the formatargument was choosen as suggested in section2.4on page4 the next
character should be one of the following:

• +
if the line indicates a function invokation.

• -
if the line indicates a return from a function.

• .
if the line is informational.

• !
if the line indicates an error or something critical.

Next there is text consisting of comments and/or variable contents.

This flat file is difficult to read so we want to use the folding capabilities of editors
as i.e. VIM .
Before we can do so we must convert the file to prepare it.
V IM can do text folding based on markers (special text placed in the file) or based
on the indent level.
Under normal circumstances I suggest to use the indent level.

12

4.2 Running trana

4.2.1 Command line arguments

The command line syntax for trana is

trana options
trana options inputfile
trana options inputfile outputfile

You can use the following options:

• -m
--marker
adds markers for vim folding to the output file. This is only necessary if
you want to have folding based on markers.

• -t
--trace-only
transfers only those lines to the output file which contain the trace keyword.
This is only necessary if you wrote trace output to standard output and it is
mixed with normal program output. In this case the -k keyword is necessary
when running tracecc. In general this is not recommended.

• -n
--numeric
inserts the numeric indent level before each line.

• -p
--position
transfers the source position to the output file.

You can turn of an option by appending a minus to the short form or a "=no" to
the long form.
Example

• -m-
- -marker=no

13

4.2.2 Command line options and permanent options

The options above can be installed permanently by

trana -c options

The current permanent options can be viewed by

trana -C

To remove all permanent options use

trana -u

To skip permanent options for one program invokation use

trana -r options

The long options

--configure
--show-configuration
--unconfigure
--reset

can be used instead.

4.2.3 Getting help

• -h
--help
shows a help text.

• -v
--version
shows version information.

14

5 Inspecting output with Vim

When inspecting output produced by trana you can do folding either by indent
level or by markers.
Folding means that a number of lines is hidden, a summary line is shown instead.
Opening a fold means the summary line is replaced by the text formerly hidden.

5.1 Folding by indent level

Type the following commands:

:setlocal sw=2
:setlocal foldmethod=indent
:setlocal foldopen=all

5.2 Folding by markers

Type the following commands:

:setlocal foldmethod=marker
:setlocal foldopen=all

5.3 Navigating through the folded file

In on-text-mode (not command-mode) use the key sequencezr to open all folds
one level. Usezm to close one fold level.
To open one fold place type the key sequencezo after placing the cursor on the
summary line. The key sequencezc closes one fold.
The

:setlocal foldopen=all

automaticall opens all the folds you place the cursor in.

15

	Overview
	Special instructions for tracecc
	How to write tracecc special instructions
	Notation for special instructions
	Output special instruction

	Adding the header file for trace functions
	Starting and finishing debug output
	Trace output
	Other special instructions
	Turning debug mode temporarily on / off
	Turn line numbers on / off
	Reading a text file to an array of strings
	Reading a file into an array of bytes
	Reading output of a command
	Adding code in debug mode only

	Running tracecc
	Program invocation
	Options
	Getting help
	Debugging
	IDE integration
	Output file style

	Command line options and permanent options (preferences)
	Overview
	Inspecting permanent options
	Installing permanent options
	Removing permanent options
	Ignoring permanent options temporarily

	Formatting trace output using trana
	Overview
	Running trana
	Command line arguments
	Command line options and permanent options
	Getting help

	Inspecting output with Vim
	Folding by indent level
	Folding by markers
	Navigating through the folded file

