
The dklibs library set, version 1.3.7

Dipl.-Ing. D. Krause

November 26, 2003

Contents

1 Overview 4

2 License 5

3 Acronyms 6

4 Installation 7
4.1 Installation on *nix systems. 7
4.2 Installation on Windows systems. 8

4.2.1 Using the nt.mak file. 8
4.2.2 Manual installation. 10

5 Usage guidelines 11
5.1 A worst case scenario. 11
5.2 Conclusions. 11

6 Headers and modules 12
6.1 dk.h .12
6.2 dkconfig.h - Configuration. 12
6.3 dkconfd.h - Default configuration. 12
6.4 dkproto.h - Prototypes/Declarations. 12
6.5 dkerror.h - Error codes. 13
6.6 dktypes.h - Data types. 15
6.7 dkmem.h - Dynamic memory allocation. 16
6.8 dkenc - Encoding. 18
6.9 dkslsupp - Syslog support. 20
6.10 dksfc - Preprocessor definitions for file types and permissions. . . 22
6.11 dksf - Interface to system functions. 24

6.11.1 Information about files. 24
6.11.2 Directory traversal. 28
6.11.3 File name expansion. 31
6.11.4 Other functions. 33

6.12 dkstr - String handling. 40
6.13 dktok - Group input characters to tokens. 43

6.13.1 Overview. 43
6.13.2 Functions. 43
6.13.3 Example . 44

6.14 dksignal - Signal handling. 47
6.15 dklog - Log messages (obsoleted). 49

6.15.1 Writing log messages. 49

1

6.15.2 Customizing log output. 50
6.16 dkss - String search (obsoleted). 53
6.17 dkbf - Bit fields . 55
6.18 dkma - Mathematical operations. 56
6.19 dkstream - I/O API . 59

6.19.1 Doing I/O operations. 59
6.19.2 Writing handler functions. 62

6.20 dkof - output filtering. 67
6.20.1 Overview. 67
6.20.2 Functions. 67
6.20.3 Usage. 68

6.21 dkcp - Dealing with codepages. 70
6.21.1 Overview. 70
6.21.2 Functions. 70
6.21.3 Codepage file structure. 70
6.21.4 Example . 71

6.22 dksto - Sorted and unsorted data storage. 72
6.22.1 Overview. 72
6.22.2 An example. 75

6.23 dkstt - String tables. 79
6.24 dkapp - Application. 80
6.25 dktcpip - TCP/IP networking. 92

7 Administration 97
7.1 Installation . 97
7.2 Preferences management. 97

7.2.1 Preferences storage. 97
7.2.2 Configuration files example. 98
7.2.3 Preferences storage on 32-bit W* systems. 101

7.3 Recommended environment variables for W*32 systems. 103

8 Security 104

9 Tutorial 105
9.1 About the tutorial. .105
9.2 Introduction to the dkapp module.105

9.2.1 The simple Hello-world-program. 105
9.2.2 Adding application support.106
9.2.3 Setting preferences. .108
9.2.4 Internationalization. .109
9.2.5 Logging. .113

2

9.2.6 Retrieving command line arguments. 116
9.3 Memory allocation .118
9.4 Sorting and searching. .120
9.5 Generic I/O .126

9.5.1 Using the generic I/O.126
9.5.2 Writing stream callback functions. 131
9.5.3 Establishing a callback function.133
9.5.4 Callback example. .133

10 Appendix 134
10.1 Preferences Overview. .134

10.1.1 General preferences.134
10.1.2 Preferences for security checks.136

10.2 Macros in preferences. .137
10.3 Search order for the dkapp_find_file() function. 138
10.4 Search order for the dkapp_find_cfg() function. 141

3

1 Overview

This package contains a set of libraries.
The main purpose of the libraries is to support application development.
Thedkport library provides a portability layer and hides system-specific code
from the application developer. Thedkc library contains reusable code for differ-
ent purposes, i.e.:

• sorted data storage using AVL-trees

• I/O abstraction layer

• application features

– string tables for internationalization

– file search

– logging

Thedknet library contains code for portable TCP/IP network access.
Thedktrace library is needed if you use thetracecc preprocessor for debug
messages.

4

2 License

This software is published under the terms of the
GNU Library General Public License, Version 2.
See theCO P Y I N Gfile for license conditions.

5

3 Acronyms

Acronym Meaning

RANF Really a nice feature.

6

4 Installation

4.1 Installation on *nix systems

• Unpack the distribution.

• Call

./configure
make
make install

to configure the package, compile the software and install it.
The usual options can be specified forconfigure .

7

4.2 Installation on Windows systems

4.2.1 Using the nt.mak file

A makefile is provided for Visual C++ users on NT workstations, the file is named
nt.mak .
Building these libraries was tested using Visual C++ 5 on Windows NT 4 work-
station SP 6a.
Thedkconfd.h file contains defaults for this system.
A section

#if __BORLANDC__ || __BCPLUSPLUS__
...
#endif

is contained too. This section is for Borland C++ 3.1 on DOS.
When using Borland/Imprise compilers on Windows systems you need to figure
out how to define the settings correctly.
As a starting point you should replace the contents of the__BO R L A N D C__ sec-
tion by the contents of the "#if _MSC_VER >= 1100 " section.
Starting with version 1.0.5 one can use the makefiledll.mak to create *.DLL
files.
Before you use the makefiles you may need to apply some changes:

• VC
must point to your Visual C++’s base directory in which the subdirectories
include , lib andbin reside.

• PROGRAMS
must point to the directory where all your software is to be installed. The di-
rectory’s name depends on the language installed on your system. Typically
this isC:/Programs or C:/Programme .

• VENDOR
is the name of the subdirectory for installation and should need no change.

• LANG
specifies your preferred language and must be set toen or de .

• ZL_...
enableszlib support.
If zlib support is enabled for this library set it must be enabled for all the
programs using the libraries too.

8

• BZL_...
enablesbzlib support.
If bzlib support is enabled for this library set it must be enabled for all
the programs using the libraries too.

From your Visual C++’sbin directory runVC V A R S32. B A T to set the environ-
ment variables needed. Other compilers may require another procedure.
To build the libraries type

nmake -f nt.mak

To install the libraries type

nmake -f nt.mak install

During installation you will see warnings about string tables which were not found.
Don’t worry about them, you are just about to build these string tables.
Copy all the*.exe files into your W* directory or another directory mentioned
in thePA T H environment variable.
Different W* versions have different options forcopy andxcopy so the makefile
needs to be modified when using the home product line. RANF!

9

4.2.2 Manual installation

• Create a new workspace for a Win32 console application nameddkconfig .

• In this workspace create a project for another Win32 console application
namedtracecc .

• Create a new project for a Win32 static library namedlibdkport .

• Create a new project for a Win32 static library namedlibdkio .

• Add the source files to the projects, seeMakefile.in which source to
add to which project.

• The libdkio library depends on thelibdkport library.

• Both programs depend on both libraries.

• Correct the header search paths for all the projects.

• Build all the projects.

• Copy tracecc.exe anddkconfig.exe into a directory contained in
thePA T H environment variable.

• Copy thelibdkio.lib and libdkport.lib libraries into a special
L I B directory.

• Copy all the header files into a specialI N C L U D Edirectory.

10

5 Usage guidelines

5.1 A worst case scenario

The reason for the rewrite was to enable dynamic linking. Although I do not like
to use shared libraries - or worse: DLLs - shared libraries are a good choice for
extensions to existing software.
If a program uses shared libraries it might happen one installs a newer version of
the library but does not update all applications using this library.
In the new library the contents of some data types may have changed (most likely
these changes add new members to the data types).
If such datatypes are used statically the application has reserved less space for the
variables than the new library functions assume.
If a library function tries to access the "last" components of such a variable it
accesses memory not belonging to the variable.
Thus, other data is corrupted or a segmentation violation can happen.

5.2 Conclusions

• Do not instantiate types fromdktypes.h statically in the application code
(except the simple data types).

• Use the..._open/new functions instead to allocate the variables dynam-
ically.
These allocation functions are placed in the same modules as the functions
accessing these data types so they use the same data type definitions.

• Do not access member variables directly, use the functions provided in the
modules instead.

11

6 Headers and modules

All functions returningint values return values!= 0 on success and0 on error
if not specified otherwise.
All functions returning pointers return valid pointers on success andNULL on
errors if not specified otherwise.

6.1 dk.h

If you use the library set you should always includedk.h to have configuration
information and data types available.

6.2 dkconfig.h - Configuration

This file is included bydk.h and includes other files likeconfig.h if available
or dkconfd.h if there is noconfig.h file available.
Additionaly the filedkconftr.h is included. This file transforms configure’s
HAVE_... constants intoDK_HAVE_... constants.
During installation a newdkconfig.h file is created by thedkconfig pro-
gram. This file directly containsDK_HAVE_... constants.
The transformation toDK_HAVE_... constants is done to avoid collisions with
other packagesconfigure results.

6.3 dkconfd.h - Default configuration

This file contains some default configurations for Windows PCs. If you use an-
other compiler than MSVC 5.0 you should check whether the constants are de-
fined correctly.

6.4 dkproto.h - Prototypes/Declarations

This file is included automatically bydk.h and contains macro definitions to
handle ANSI-C’s prototypes and K&R-C’s function declarations.

12

6.5 dkerror.h - Error codes

This file containsint codes for errors.

• DK_ERR_NONE
No error occured.

• DK_ERR_SYSERR
A system error occured, seeerrno for more information.

• DK_ERR_NOMEM
The system could not allocate memory dynamically.

• DK_ERR_BUFFER_LENGTH
The buffer was too small to keep the result.

• DK_ERR_MATH_OOR
After a mathematical operation the result does not fit into the result data
type range.

• DK_ERR_DIV_ZERO
A division by0 occured.

• DK_ERR_NO_GETHOSTBYNAME
A gethostbyname() function is needed but not available.

• DK_ERR_NO_SUCH_HOST
No information about the specified host were found.

• DK_ERR_TRY_AGAIN
The operation is not possible at this time, but can be executed later.

• DK_ERR_NO_RECOVERY
An unexpected server error occured in gethostbyname().

• DK_ERR_NO_DNS_RESPONSE
The response from the DNS server contained no data.

• DK_ERR_UNKNOWN_ERROR
An unknown error occured, no details are available.

• DK_ERR_INVALID_ARGS
Invalid arguments were passed to a function or system call.

• DK_ERR_GETHOSTNAME_FAILED
The function failed to obtain the current host name.

13

• DK_ERR_NOT_NOW
The operation is not possible at this time but maybe later.

• DK_ERR_INVALID_FILEHANDLE
An invalid file handle was specified.

• DK_ERR_CONNECTION_CLOSED_BY_PEER
A TCP/IP connection was closed by the peer.

• DK_ERR_INTERRUPTED
An operation was interrupted, i.e. by a signal.

• DK_ERR_NO_OOB_DATA
When asking for out of band (urgent) data no such data was available.

• DK_ERR_NOT_CONNECTED
We need to create a connection first.

• DK_ERR_TIMED_OUT
An operation was timed out.

• DK_ERR_IO
An I/O error occured

• DK_ERR_RESOURCES
The required ressources are not available.

• DK_ERR_AF_NO_SUPPORT
The address family is not supported.

• DK_ERR_MSG_SIZE
A message or buffer was too large.

• DK_ERR_PIPE
A write operation was performed on a pipe which has no reader assigned.

• DK_ERR_NEED_ADDR
An address is needed to perform the operation.

• DK_ERR_HOST_UNREACHABLE
The target host is unreachable.

• DK_ERR_NET_INTERFACE_DOWN
The local network interface is down.

14

• DK_ERR_NET_UNREACHABLE
The target network is unreachable.

• DK_ERR_ACCESS
Access to ressources needs privileges the user does not have.

• DK_ERR_PROTO_NOT_SUPPORTED
The specified protocol is not supported.

• DK_ERR_ADDRESS_IN_USE
The address is already in use.

• DK_ERR_ADDRESS_NOT_AVAILABLE
The address is no available.

• DK_ERR_ALREADY_CONNECTED
There is already a connection established.

• DK_ERR_CONNECT_IN_PROGRESS
A connect operation is already in progress.

• DK_ERR_CONNECTION_REFUSED_BY_PEER
The attempt to connect was refused be the peer.

• DK_ERR_BUSY
The peer is too busy to accept a connection.

• DK_ERR_STRING_TOO_LONG
A string was too long to handle it.

• DK_ERR_NO_SUCH_FILE
No file matching the given pattern was found.

• DK_ERR_NOT_UNIQUE
Multiple file names match the pattern but a unique file name is needed.

• DK_ERR_FINISHED
Traversing a collection is finished, there are no more elements available.

• DK_ERR_FUNCTION_UNSUPPORTED
The functionality is not supported on this system.

6.6 dktypes.h - Data types

This file containes data type definitions. It is automatically included bydk.h .

15

6.7 dkmem.h - Dynamic memory allocation

This module is repsonsible for memory allocation and deallocation.
Depending on your system you might want to use either themalloc /free or
thefarmalloc /farfree function pair. The following functions are defined in
the module:

• void *dkmem_alloc(size_t elsize, size_t nelem);
This function allocates memory fornelem elements of a data type of size
elsize .

• void dkmem_free(void *p);
deallocates memory obtained bydkmem_alloc .

Other functions are defined to reset, copy and compare memory regions.

• void dkmem_res(void *ptr, size_t bytes);
resetsbytes bytes at addressptr to 0.

• void dkmem_cpy(void *d, void *s, size_t n);
copiesn bytes from source addresss to destination addressd.

• int dkmem_cmp(void *s1, void *s2, size_t n);
compares 2 buffers ofn bytes.
If the contents of the buffers is equal0 is returned, otherwise a non-0-value.

Some macros are defined:

• #define dk_new(t,s)\
(t *)dkmem_alloc(sizeof(t),((size_t)s))
can be used for memory allocation.

• #define dk_delete(p) dkmem_free((void *)(p))
can be used to free memory.

• DK_MEMRES(ptr,sz)
resets memory (sz bytes starting at addressptr).

• DK_MEMCPY(d,s,n)
copiesn bytes from addresss to d.

• DK_MEMCMP(a,b,n)
compares buffers of sizen at addressesa andb.

16

Example:

char text1[] = { "Test-String" };
char text2[sizeof(text1)]; /* same size */
size_t lgt;
char *ptr;
lgt = strlen(text1);
lgt++;
/* get memory dynamically */
ptr = dk_new(char,lgt);
/* check for success */
if(ptr) {

/* copy from text1 to ptr */
DK_MEMCPY(ptr,text1,lgt);
/* set text2 to 0 */
DK_MEMRES(text2,lgt);
/* compare text1 and text2 (result should be != 0) */
printf("text1, text2: %d\n", DK_MEMCMP(text1,text2,lgt));
/* compare text1 and ptr (result should be == 0) */
printf("ptr, text1: %d\n", DK_MEMCMP(ptr,text1,lgt);
/* release the memory */
dk_delete(ptr);

}

17

6.8 dkenc - Encoding

Thedkenc module can be used for encoding changes. The functionsdkenc_ntohl ,
dkenc_ntohs , dkenc_htonl anddkenc_htons have the same functional-
ity asntohl , ntohs , htonl andhtons .
The conversion routines are useful not only for networking but for portable file
saving too.
Some stupid systems haventohl , ntohs , htonl andhtons in a DLL dealing
with TCP/IP networking. Special initialization functions must be called before
using this DLLs functions. RANF!
On PCs without TCP/IP the DLL is typically not installed. RANF!
On PCs with dialup-connection the initialization functions might create a connec-
tion. RANF!

To avoid this the functionality was re-implemented.
Another group of encoding problems is the use of UNICODE characters.
UNICODE uses 32 bits per character, thedk_unicodechar data type can be
used to store these characters.
If a program needs to deal with a given subset of characters (i.e. ISO-LATIN-
8859-1) it would waste a lot of memory when using 32 bits for each character.
Compressed representations for UNICODEstrings are available as UTF8 or UTF16-
encoding.
Thedkenc_uc2utf8 function can be used to create UTF8 from 32-bit-UNICODE.

int
dkenc_uc2utf8(

dk_unicodechar c, dk_utf8 *u8p, int u8l
);

converts one 32-bit-UNICODE character into a number of bytes. These bytes are
stored in the bufferu8p . The buffer length must be given asu8l . The function
returns the number of bytes used in the buffer or0 if the buffer is too small.

18

Thedkenc_utf82uc function converts from UTF8 to 32-bit-UNICODE.

int
dkenc_utf82uc(

dk_unicodechar *ucp,dk_utf8 *u8p,int u8l,int *u8u
);

reads UTF8-encoded data from the bufferu8p with a lengthu8l . It builds one
32-bit-UNICODE character (if possible) and stores it in a variableucp points to.
The number of bytes fromu8p used to build the UNICODE character is stored in
a variableu8u points to.
The function returns1 on success and0 on error.

19

6.9 dkslsupp - Syslog support

The module contains the function

• int dkslsupp_get_code(char * str);

to map a syslog description string likeauth.notice to a numeric value like
37 .
The string consists of facility and priority separated by a dot.
Table1 lists the facilities, table2 on the next page lists the priorities. The function
returns the corresponding syslog message code or0 if no matching code was
found.

Table 1: Facility keywords

Keyword Meaning

auth messages related to user authentication

authpriv

cron messages generated by unattended scheduled jobs

daemon messages generated by daemons and services

ftp messages generated by the FTP service

kern messages generated by the OS kernel

lpr messages generated by the print system

mail messages generated by the mail transport system

news messages generated by the NNTP service

syslog messages generated by the syslog service

user messages generated by programs run from normal users

uucp messages generated by the UUCP service

local0 site-specific messages

local1

local2

local3

local4

local5

local6

local7

20

Table 2: Priority keywords

Keyword Meaning

emerg The system is unusable.

alert An action must be taken immediately.

crit A critical error occured.

err An error occured.

warning A warning condition occured.

notice Notification about a normal but significant condition.

info Information message.

debug A debug-level message.

21

6.10 dksfc - Preprocessor definitions for file types and permis-
sions

The header file dksfc.h contains preprocessor definitions for file types and permis-
sions used by the dksf module. The following definitions as described in table3
are available for file types.

Table 3: File types

Preprocessor definition Meaning

DK_FT_REG Regular file

DK_FT_DIR Directory

DK_FT_FIFO FIFO

DK_FT_CHR Character device

DK_FT_BLK Block device

DK_FT_SOCKET Socket

DK_FT_OTHER Other file types

DK_FT_SYMLINK Symbolic link

The following definitions are available for permissions:

Table 4: Permissions

Preprocessor definition Meaning

DK_PERM_SUID SUID-Bit

DK_PERM_SGID SGID-Bit

DK_PERM_VTX VTX-Bit (sticky-bit)

DK_PERM_U_READ read permission for owner

DK_PERM_U_WRITE write permission for owner

DK_PERM_U_EXECUTE execution permission for owner

DK_PERM_G_READ read permission for group

DK_PERM_G_WRITE write permission for group

DK_PERM_G_EXECUTE execution permission for group

DK_PERM_O_READ read permission for others

DK_PERM_O_WRITE write permission for others

. . . to be continued

22

Continuation

DK_PERM_O_EXECUTE execution permission for others

DK_PERM_CREATE_DIR mode suggested for directory creation

DK_PERM_CREATE_FILE mode suggested for file creation

23

6.11 dksf - Interface to system functions

Thedksf module contains data types and functions to access system functions.

6.11.1 Information about files

Thedk_stat_t data type is used to store information about files.

• dk_stat_t *dkstat_open(char *filename);
retrieves information about the filefilename . A dk_stat_t variable is
allocated dynamically and filled with the information.
On success a pointer to the new variable is returned, otherwise (the file does
not exist or there is not enough memory available)NULL.
If a valid pointer is returned the memory must be freed by use ofdkstat_close()
when it is not longer needed.

• void dkstat_close(dk_stat_t *ptr);
frees the memory allocated bydkstat_open() .

• int dkstat_filetype(dk_stat_t *ptr);
returns anint value for the filetype. The value is as follows:

– DK_FT_REG
for regular files,

– DK_FT_DIR
for a directory,

– DK_FT_FIFO
for FIFOs/Pipes,

– DK_FT_CHR
for character special devices,

– DK_FT_BLK
for block special devices,

– DK_FT_SOCKET
for sockets and

– DK_FT_OTHERfor all other filetypes.

If filename is a symbolic link this value is or-combined withDK_FT_SYMLINK.

24

Example:

void print_filetype(char *filename)
{

if(filename) {
dk_stat_t *info;
info = dkstat_open(filename);
if(info) {

int ft;
ft = dkstat_filetype(info);
switch(ft & (~DK_FT_SYMLINK)) {

case DK_FT_REG: {
printf("regular file: %s\n", filename);

} break;
/* ... */

}
dkstat_close(info);

}
}

}

25

• int dkstat_permissions(dk_stat_t *ptr);
returns the permissions to the file as or-combination of the following con-
stants:

– DK_PERM_U_READ
Read permission for the file owner.

– DK_PERM_U_WRITE
Write permission for the file owner.

– DK_PERM_U_EXECUTE
Execution permission for the file owner.

– DK_PERM_G_READ
Read permission for the file owners group.

– DK_PERM_G_WRITE
Write permission for the file owners group.

– DK_PERM_G_EXECUTE
Execution permission for the file owners group.

– DK_PERM_O_READ
Read permission for everybody.

– DK_PERM_O_WRITE
Write permission for everybody.

– DK_PERM_O_EXECUTE
Execution permission for everybody.

– DK_PERM_SUID
The set-user-id-bit is set.

– DK_PERM_SGID
The set-group-id-bit is set.

– DK_PERM_VTX
The system should try to keep the executable image in memory.

• unsigned long dkstat_inode(dk_stat_t *ptr);
returns the inode number converted tounsigned long .

• unsigned long dkstat_device(dk_stat_t *ptr);
returns the device number converted tounsigned long .

• unsigned long dkstat_rdevice(dk_stat_t *ptr);
returns the relative device number converted tounsigned long .

26

• unsigned long dkstat_nlinks(dk_stat_t *ptr);
returns the number of links to the file.

• dk_long_long_unsigned_t dkstat_size(
dk_stat_t *ptr
);
returns the file size converted todk_long_long_unsigned_t .
Note:
Thedk_long_long_unsigned_t is along long unsigned on sys-
tems which supportlong long andunsigned long on systems without
long long support.
If the system has large file support but nolong long support the function
may produce wrong result for large files.
It is recommended to usedkstat_size_ok() instead.

• dk_long_long_unsigned_t dkstat_size_ok(
dk_stat_t *ptr, int *ok
);
returns the file size converted todk_long_long_unsigned_t .
The ok argument points to a variable used for error notification. If the
function produces a wrong result because the system has large file support
but no long long data type and the file is too large the variable is set to
DK_ERR_MATH_OOR. Otherwise the variable is left unchanged.

• long dkstat_uid(dk_stat_t *ptr);
returns the file owners UID converted tolong .

• long dkstat_gid(dk_stat_t *ptr);
returns the file groups GID converted tolong .

• char *dkstat_ctime(dk_stat_t *ptr);
returns a pointer to a buffer containing the file creation time converted to a
string.
This buffer belongs to thedk_stat_t variable, you must never change
nor free this buffer.

• char *dkstat_atime(dk_stat_t *ptr);
returns a pointer to a buffer containing the last file access time converted to
a string.

• char *dkstat_mtime(dk_stat_t *ptr);
returns a pointer to a buffer containing the last file modification time con-
verted to a string.

27

6.11.2 Directory traversal

Information for directory traversal is stored in variables of typedk_dir_t .

• dk_dir_t *dkdir_open(char *name);
opens a directory for traversal.
The function returns a valid pointer on success,NULLon error.
Thedkdir_next() function needs this pointer to traverse the directory.
If you are done with the directory the variable must be released by calling
dkdir_close() .

• void dkdir_close(dk_dir_t *ptr);
closes the directory, releases the ressources used to traverse the directory
and deallocates the memory.

• int dkdir_next(dk_dir_t *ptr);
tries to find the next directory entry. If there is yet another entry the function
returns!= 0 , otherwise0.
On success you can use the following functions to obtain information about
the entry found.

• char *dkdir_get_fullname(dk_dir_t *ptr);
returns a pointer to a buffer containing the entries full name.

• char *dkdir_get_shortname(dk_dir_t *ptr);
returns a pointer to a buffer containing the entries short name.

28

• long dkdir_uid(dk_dir_t *ptr);
long dkdir_gid(dk_dir_t *ptr);
char *dkdir_ctime(dk_dir_t *ptr);
char *dkdir_atime(dk_dir_t *ptr);
char *dkdir_mtime(dk_dir_t *ptr);
int dkdir_filetype(dk_dir_t *ptr);
int dkdir_permissions(dk_dir_t *ptr);
unsigned long dkdir_inode(dk_dir_t *ptr);
unsigned long dkdir_device(dk_dir_t *ptr);
unsigned long dkdir_rdevice(dk_dir_t *ptr);
unsigned long dkdir_nlinks(dk_dir_t *ptr);
dk_long_long_unsigned_t dkdir_size(dk_dir_t *ptr);
dk_long_long_unsigned_t dkdir_size_ok(
dk_dir_t *ptr, int *ok
);
retrieve information about the current entry (seedkstat_... above).

29

Example:

void dir_list(char *dirname)
{

dk_dir_t *ptr;
if(dirname) {

ptr = dkdir_open(dirname);
if(ptr) {

while(dkdir_next(ptr)) {
printf("full name: %s\n", dkdir_get_fullname(ptr));
printf("short name: %s\n", dkdir_get_shortname(ptr));
printf("size: %lu\n", dkdir_size(ptr));
/* ... */

}
dkdir_close(ptr);

}
}

}

30

6.11.3 File name expansion

A real operating systems shell automatically expands wildcards in command line
arguments.
Poor operating systems leave this up to the application programmer. RANF!
Newer poor operating systems allow to use whitespaces in file names. A real
operating systems shell automatically builds one argument from multiple strings
surrounded by quotes. Poor shells don’t do that and leave this up to the program-
mer too. RANF!
Thedk_fne_t data type can be used to expand filenames.

• dk_fne_t *dkfne_open(
char *name, int files, int dirs
);
dynamically allocates a newdk_fne_t variable and returns a pointer to
that variable.
The variable is initiliazed to expand the given filenamename. Specify
files to 1 if names of regular files are an acceptable file name expan-
sion result, otherwise0. Specifydirs to 1 if names of directories are
an acceptable file name expansion result, otherwise0. On success a valid
pointer is returned, otherwiseNULL.
If you are done expanding the filename, the variable must be deallocated by
dkfne_close() .

• void dkfne_close(dk_fne_t *ptr);
deallocates a variable created bydkfne_open() .

• int dkfne_next(dk_fne_t *ptr);
checks whether a further filename can be constructed, returns1 for success,
0 for error.
If this function indicates success you can use the following two functions to
obtain the filename.

• char *dkfne_get_fullname(dk_fne_t *ptr);
returns the full name.

• char *dkfne_get_shortname(dk_fne_t *ptr);
returns the short name.

31

Example:

/* resolve * and ? in pattern */
void list_matching_filenames(char *pattern)
{

dk_fne_t *fn;
if(pattern) {

printf("Searching for regular files\n");
fn = dkfne_open(pattern, 1, 0);
if(fn) {

while(dkfne_next(fn)) {
printf("file %s\n", dkfne_get_shortname(fn));
printf("long %s\n", dkfne_get_fullname(fn));

}
}
printf("Searching for directories\n");
fn = dkfne_open(pattern, 0, 1);
if(fn) {

while(dkfne_next(fn)) {
printf("file %s\n", dkfne_get_shortname(fn));
printf("long %s\n", dkfne_get_fullname(fn));

}
}

}
}

32

6.11.4 Other functions

Getting the current working directory The function

int dksf_getcwd(char *buffer, size_t lgt);

can be used to obtain the current working directory. The directory name is written
into buffer , lgt specifies the buffer length in bytes.
The function returns1 on success,0 on error (buffer too small. . .).

Finding the executable file for a command The function

int
dksf_get_executable(

char *buf, size_t len, char *cd, char *pr
);

finds the file executed whenpr is typed on the command line and writes the file
name into the buffer specified bybuf with sizelen . The argumentcd specifies
the current working directory.
The function returns1 on success,0 on error.

Finding the file type suffix The function

char *dksf_get_file_type_dot(char *name);

returns a pointer to a filename’s file type suffix.
The pointer points to the dot. On errorNULL is returned.

Combining two file name compounds The function

int
dksf_path_combine(

char *buf, size_t len, char *p1, char *p2
);

concatenates the two file name compoundsp1 andp2 and writes the result into
the buffer specified bybuf andlen .
Argumentp1 must be an absolute path name,p2 can be either an absolute path
(in this case p1 is ignored) or a path relative top1 .
The function returns1 on success,0 on error.

33

Making directories The function

int dksf_mkdir(char *path, int mode);

creates a new directory with the name specified inpath .
The DK_PERM... - constants are used inmode to specify permissions to the
directory. The function returns1 on success,0 on error.

Deleting files The function

int dksf_remove_file(char *filename);

deletes the named file. Either theunlink() or remove() function is called.

Deleting directories The function

int dksf_remove_directory(char *filename);

can be used to delete a file or directory. All the directories contents including
subdirectories will be deleted.

Changing permissions The function

int dksf_chmod(char *path, int mode);

changes a file or directories permissions.

Getting the current users UID

int dksf_have_getuid(void);
long dksf_getuid(void);
int dksf_have_geteuid(void);
long dksf_geteuid(void);

Thedksf_have_getuid() function checks whether the system knows about
the concept of user IDs and has a function to get the current user’s ID.
If user IDs are available on the systemdksf_getuid() returns the current
user’s UID converted tolong .
Some systems have mechanisms likesu to use permissions of other user IDs. In
this case the new user ID is also referred to as effective user ID.
Thedksf_have_geteuid() function checks whether the system supports ef-
fective user IDs. If so,dksf_geteuid() returns the effective user ID converted
to long .

34

Getting the current group ID

int dksf_have_getgid(void);
long dksf_getgid(void);
int dksf_have_getegid(void);
long dksf_getegid(void);

The functions are similar to the functions above but group IDs are checked instead
of user IDs.

Dealing with process IDs

int dksf_have_getpid(void);

can be used to check whether there is a possibility to obtain a process ID, if so

long dksf_getpid(void);

returns the process ID converted tolong .

Parent process ID

int dksf_have_getppid(void);

can be used to check whether there is a possibility to obtain the parent process’es
ID, if so

long dksf_getppid(void);

returns the parent process’es ID converted tolong .

Dealing with the process group

int dksf_have_getpgrp(void);

can be used to check whether there is a possibility to obtain the current process’es
process group ID, if so

long dksf_getpgrp(void);

returns this process group ID converted tolong .

35

Another processes process group

int dksf_have_getpgid(void);

can be used to check whether there is a possibility to obtain another process’es
process group, if so

long dksf_getpgid(long p);

returns this process group ID.

Finding the users login name

int dksf_get_uname(char *buffer, size_t sz);
int dksf_get_euname(char *buffer, size_t sz);

write the users login name into the buffer or the login name belonging to the cur-
rent effective user ID. Thesz parameter is the buffer size in bytes.
On *nix systems the usualgetuid() /getpwuid() functions are used.
If the GetUserNameA() function is available on W* systems this function is
used first.
If this function is not available or fails we try several places in the registry, i.e.
HKLM/System/CurrentControlSet/control:Current User
or HKLM/Network/Logon:username . Different W* versions might use dif-
ferent places. RANF!
If your W* version is newer than W* 98 or W* NT 4.0 there is not yet support for
registry lookups in the library. In this cases the environment variableLO G N A M E

or US E R N A M Emust be set.

Finding a users home directory

int dksf_get_home(char *buffer, size_t sz);
int dksf_get_ehome(char *buffer, size_t sz);

retrieve the current users home directory or the home directory belonging to the
current effective user ID.
On *nix systems the usualgetuid() /getpwuid() functions are used.
On W* systems there is no such API. Instead there are different places for home
directories and different environment variables pointing to the directories depend-
ing on the W* version. RANF! We need to inspect multiple environment variables,
i.e. HO M E, US E R P R O F I L EandHO M E D R I V E/HO M E P A T H.

36

Finding the host- and domainname

int dksf_get_hostname(char *buffer, size_t sz);
int dksf_get_domainname(char *buffer, size_t sz);

retrieve host- and domainname of the current host.
On *nix the usualgethostname() /sysinfo() functions are used.
On Windows theGetComputerNameA() function is used if available to deter-
mine the hostname. If the function is unavailable or fails several registry settings
are tested, I have found host related information in

• System
CurrentControlSet
Services
Tcpip
Parameters:Hostname ,

• System
CurrentControlSet
Control
ComputerName
ActiveComputerName:ComputerName ,

• System
CurrentControlSet
Control
ComputerName
ComputerName:ComputerName ,

• System
CurrentControlSet
Services
VxD
MSTCP:HostName and

• System
CurrentControlSet
Services
VxD
VNETSUP:ComputerName

depending on the W* version. For future W* versions I expect the places to differ
again. RANF!

37

Finding a directory for temporary files

int dksf_get_tempdir(char *buffer, size_t sz);

finds a directory for temporary files.
TheTM P D I R, TE M PandTM Penvironment variables are inspected first.
If this fails a set of directory names typically used is inspected.

Check whether writing to a file should be allowed

int dksf_allowed_to_write(
char *fn, int ignchk, int *rsn

);

checks whether it should be allowed to open the filefn for write access.
If fn is a symbolic link write access should be denied if any of the following
conditions is fullfilled:

• DK_SF_SEC_OWNER
The link owner is not the owner of the destination file.

• DK_SF_SEC_WG
The link resides in a group writable directory.

• DK_SF_SEC_WO
The link resides in a world writable directory.

The ignchk arguments is an or-combination ofDK_SF_SEC_... values to
skip tests.
If write access should be denied andrsn is a valid pointer, the variable is set to
theDK_SF_SEC_... condition for the test responsible for denying write access.

More secure fopen

FILE
*dksf_msfo(char *fn, char *m, int ignchk, int *rsn);

tries to open the filefn in the modem. The dksf_allowed_to_write()
function is used for security checks,ignchk andrsn are passed to this function.
If the dkapp module is linked to your program it is recommended to use the
dkapp_fopen() function (see6.24on page80) to open files. This allows to
use command line preferences to skip some of the security checks.

38

Opening files with security check

FILE *dksf_fopen(char *fn, char *mode);

callsdksf_allowed_to_write() and tries tofopen() the file on success.
If the dkapp module is linked to your program it is recommended to use the
dkapp_fopen() function (see6.24on page80) to open files. This allows to
use command line preferences to skip some of the security checks.

Getting the maximum length of a filename

long dksf_get_maxpathlen(void);

returns the maximum length for filenames in characters.

Getting the maximum number of open files

long dksf_get_maxfiles(void);

returns the maximum number of open files.

39

6.12 dkstr - String handling

The dkstr module contains some string handling functions. On some systems
strrchr() is not available. For case insensitive comparisons some systems use
stricmp() , othersstrcasecmp() .
This module contains – among others – fallback functions for these functions.

• int dkstr_casecmp(char *s1, char *s2);
compares the strings case insensitive and returns1 if s1 comes lexigraphi-
cally afters2 , -1 if s1 comes lexigraphically befores2 and0 if the strings
are equal.
The function usesstrcasecmp() or stricmp() if available, otherwise
it has it’s own code.

• char *dkstr_dup(char *s);
creates a new copy of the string, memory is allocated dynamically using the
dkmem_alloc() function.
The memory should be freed usingdkmem_free() if it is not longer
needed.

• char *dkstr_chr(char *s, int c);
searches for the first occurence of characterc in string s and returns a
pointer to that character if found. OtherwiseNULL is returned.

• char *dkstr_rchr(char *s, int c);
searches for the last occurence of characterc in string s and returns a
pointer to that character if found. OtherwiseNULL is returned.

• char *dkstr_start(char *s, char *w);
searches for the first non-whitespace in strings and returns a pointer to that
character (orNULL if none is found).
In wa set of whitespace characters can be specified.
If NULL is given here a default set of whitespaces is used.

• void dkstr_chomp(char *s, char *w);
removes trailing whitespaces from the strings .

• char *dkstr_next(char *s, char *w);
finishes the first substring (set of non-whitespaces) in strings by replacing
the first whitespace after the substring by a null-byte and returns a pointer
to the start of the next substring.

40

• int dkstr_find_multi_part_cmd(
char **cmd, char ***cmdset, int cs
);
looks up for the commandcmdconsisting of several words in a tablecmdset
of such commands.
The index of the command in the table is returned or-1 if it was not found.
Thecs variable controls case-sensitivity of search.

• int dkstr_is_abbr(
char *line, char *pattern, char spec, int cs
);
compares theline against thepattern and returns1 for equality or0 if
the texts are different.
If the pattern contains the special characterspec the text inline may
be abbreviated at this point.
The cs argument controls whether the comparison is done case-sensitive
(1) or case-insensitive (0).
When callingdkstr_is_abbr(line, "Te$st", ’$’, 1) we get
success if line is "Test", "Tes" or "Te".

• int dkstr_find_multi_part_abbr(
char **cmd, char ***cmdset, char s, int cs
);
behaves likeint dkstr_find_multi_part_cmd(char **cmd,
char ***cmdset, int cs); but usesdkstr_is_abbr() for com-
parisons,s marks the place of abbreviation.

41

Example:

#include <stdio.h>
#include <dkstr.h>
void main(void)
{

char test_line[] = { " This is a test line. \n" };
char *ptr1, *ptr2;
int i;
printf(

"Line at the beginning: >%s<\n",
test_line

);
ptr1 = dkstr_start(test_line, NULL);
printf(

"Without leading whitespaces: >%s<\n",
ptr1

);
dkstr_chomp(ptr1, NULL);
printf(

"Without trailing whitespaces: >%s<\n",
ptr1

);
i = 1;
while(ptr1) {

ptr2 = dkstr_next(ptr1, NULL);
printf(

"Word %d: %s\n",
i++, ptr1

);
ptr1 = ptr2;

}
}

42

6.13 dktok - Group input characters to tokens

6.13.1 Overview

The dktok module can be used to group input characters to tokens.
To do so we need to create a dk_tokenizer_t structure first. After we are done
analyzing input we must release this structure. When creating the tokenizer, we
need a buffer where the tokens can be stored, we also specify, which characters
are quotes, white spaces, single character tokens, line ends or comments starters.
A function to process the tokens is specified and a pointer to store additional infor-
mation.
The function for token processing is of type

int fct(void *d, void *tpv, char *s, int *ec)

whered is a pointer to the memory for string additional information,tpv is a
pointer to the tokenizer,s is a pointer to the buffer containing the token andec is
a pointer to a variable which can be set by the function if an error occurs.
The function must return 1 on success, 0 on errors which require aborting the
program.

6.13.2 Functions

The module provides the following functions:

• dk_tokenizer_t *dktok_new(
size_t b,char **q,char *s,char *w,char *n,char c,
dk_fct_tokenizer *f,void *d
);
allocates a new tokenizer structure.
Theb parameter is the size of the largest token to process in bytes. A buffer
to store tokens is allocated too.
q is a pointer to an array of strings containing quote characters. Each string
contains 2 characters, the starting and the finishing quote. The array must
be finished by aNULLpointer.
s is a pointer to a string containing all characters which are a token for
theirselves.
w is a pointer to a string containing all characters which are white spaces.
c is the character which starts comments spanning until the end of line.
f is the token handling function which is invoked for every token,d is a
pointer to additional data.
The dktok_delete() function must be used to release the memory for the
tokenizer and all it’s contents.

43

• void dktok_start(dk_tokenizer_t * tp);
initializes the tokenizer. A program must call this function before character
processing is started.

• int dktok_add(dk_tokenizer_t * tp, char c);
adds one character to the tokenizer. As long as the result of this function is
> 0 we can continue adding further characters.

• int dktok_stop(dk_tokenizer_t * tp);
must be run after adding the last character.
If the result of this function is> 0 all input was processed successfully.

• int dktok_get_error_code(dk_tokenizer_t * tp);
returns the error code (which was generated by the user defined token han-
dling funtion).

• unsigned long dktok_get_lineno(
dk_tokenizer_t * tp
);
returns the current line number. This can be used for error messages.

• void dktok_reset_error_code(dk_tokenizer_t * tp);
resets the internal error code.

6.13.3 Example

#include <stdio.h>
#include <stdlib.h>
#include <dktok.h>

static char *quotes[] = {
(char *)"\"\"",
(char *)"’’",
NULL

};

static char sct[] = { "{}=;" };

static char nl[] = { "\n" };

static char whsp[] = { " \t\r\b" };

static char inbuffer[512];

44

int fct(void *d, void *tpv, char *s, int *ec)
{

int back = 1;
dk_tokenizer_t *tp;
if(tpv) {

tp = (dk_tokenizer_t *)tpv;
$? "%s", TR_STR(s)
printf("%10lu \"%s\"\n", dktok_get_lineno(tp), s);

}
return back;

}

int main(int argc, char *argv[])
{

size_t sz;
int cc; char *ptr;
dk_tokenizer_t *tp;

$(trace-init dktok.deb)
tp = dktok_new(256,quotes,sct,whsp,nl,’#’,fct,NULL);
if(tp) {

dktok_start(tp);
cc = 1;
while(cc) {

sz = fread((void *)inbuffer,1,sizeof(inbuffer),stdin);
if(sz > 0) {

ptr = inbuffer;
while((sz--) && cc) {

if(!dktok_add(tp, *(ptr++))) cc = 0;
}

} else {
cc = 0;

}
}
if(!dktok_get_error_code(tp)) { dktok_stop(tp); }
dktok_delete(tp);

} else {
fprintf(stderr, "Not enough memory!\n");
fflush(stderr);

}

45

$(trace-end)
exit(0); return 0;

}

46

6.14 dksignal - Signal handling

In the UNIX world there are three models of signal handling:

• signal()
This is the simplest model, for many purposes it is dangereous to use be-
cause a signal handler must reinstall itself.
If the signal handler is running and the same signal is delivered before the
signal handler reinstalled itself the program is terminated.

• sigset()
This allows you to install permanent signal handlers without the race condi-
tion shown above.

• sigaction()
This is the POSIX function set for signal handling.

This module unifies signal handling from the application programmers point of
view. An application might look like this:

#include <stdio.h>
#include <dksignal.h>
#if DK_HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if DK_HAVE_UNISTD_H
#include <unistd.h>
#endif
dk_signal_ret_t handler(int signo)
{

dksignal_refresh(signo,handler);
printf("Signal %d occured\n", signo);

}
void main(void)
{

switch(dksignal_available()) {
case 1: printf("signal()\n"); break;
case 2: printf("sigset()\n"); break;
case 3: printf("sigaction()\n"); break;
default:

printf("No signal handling installed.\n");
break;

}

47

old_disp = dksignal_set(SIGINT,handler);
sleep(10);
(void)dksignal_set(SIGINT, handler);

}

The dk_signal_ret_t is the return type for signal handlers. Possibly this
must be set toint in dktypes.h if there are errors/warnings when compiling
the module.
Thedk_signal_fct_t is the prototype for signal handler.
dk_signal_disp_t is a pointer to such a function.
The macrodksignal_refresh() reinstalls the handler, if only thesignal()
function is available for signal handling. Otherwise this macro does nothing. The
dksignal_available() function can be used at runtime to get information
about the signal handling available. It returns0 if no signal handling is available,
1 for thesignal() function,2 for thesigset() function and3 for POSIX
signal handling.
The dksignal_set() function installs a new signal handler and returns the
address of the previous signal handler.

48

6.15 dklog - Log messages (obsoleted)

Note: This module is obsoleted. Logging is done by thedkapp module now.

6.15.1 Writing log messages

Thedklog module allows you to write log messages.
Without special setup log messages are written to diagnostic output (stderr).
There are different log levels available for different "heavinesses".

• DK_LOG_LEVEL_NONE
No log messages are printed.

• DK_LOG_LEVEL_PANIC
Condititions requiring a system shutdown immediately.

• DK_LOG_LEVEL_FATAL
Unrecoverable error in application.

• DK_LOG_LEVEL_ERROR
An error occured.

• DK_LOG_LEVEL_WARNING
A warning is to be issued.

• DK_LOG_LEVEL_INFO
Print some information the user should know.

• DK_LOG_LEVEL_PROGRESS
Print progress messages while working.

• DK_LOG_LEVEL_DEBUG
Messages for debugging purposes.

• DK_LOG_LEVEL_IGNORE
Message can be ignored (Please do not use this message level).

There are two functions to write log messages:

• int dklog_msg(int level, char **strings, int num);

• int dklog_msg_ss(int level, char **strings, int num);

49

The first function expects the log level as first argument, when a pointer to an array
of strings to print and the number of strings.
All the strings in the array are printed as they are, it is your turn to insert all the
spaces needed. . .
The second function uses the string search feature (if configured) and can be used
for internationalization. The last argument is again the number of strings to print.
For each string to print the arraystrings must contain three elements:

• a string table name (i.e. "messages"),

• a search key (i.e. "error.no-such-file") and

• a default value to be printed if string search is not configured or no matching
entry was found (i.e. "File not found!").

String search is explained later.

6.15.2 Customizing log output

Thedklog module uses objects of typedk_log_t to write messages.
There is always oneactivelog object.
If you only want to change which log messages are to be ignored and which are
to be issued it is sufficient to apply changes to the current active log object.

dk_log_t
*dklog_get(void);

int
dklog_get_minlevel(dk_log_t *ptr);

void
dklog_set_minlevel(dk_log_t *ptr, int minlevel);

The functiondklog_get() returns a pointer to the current active log object.
This pointer can be used to retrieve (dklog_get_minlevel()) and set (dklog_set_minlevel())
the minimum log level.

50

If you need a more customized logging (i.e. using the syslog feature or printing to
file) you need to create your own log function and log object.
First write a log function like:

static void
log_to_file(void *vptr, int l, char **p, int n)
{

FILE *fipo;
char **ptr, int i;
fipo = (FILE *)vptr;
if(fipo && p && n) {

fprintf(fipo, "Heaviness: %d Message: ", l);
ptr = p;
for(i = 0; i < n; i++) {

if(*ptr) {
fprintf(fipo, *ptr);

}
ptr++;

}
fprintf(fipo, "\n");

}
}

The vptr argument is a pointer to some assisting data. If no assisting data is
needed (i.e. when logging to syslog) this pointer isNULLand can be ignored.
The second argument is the log level.
The remaining arguments are a pointer to an array of pointers to strings and the
length of that array.

51

Now your application may look like this:

FILE *logfile;
dk_log_t *old_log, *new_log;
logfile = fopen("logfile.log", "w");
if(logfile) {

/* create new log structure */
new_log =
dklog_new_for((void *)logfile, log_to_file);
if(new_log) {

/* get current log settings */
old_log = dklog_get();
/* set minimum level */
dklog_set_minlevel(

new_log, DK_LOG_LEVEL_WARNING
);
/* use new log behaviour */
dklog_set(new_log);
/*

... application code possibliy doing logs
can be placed here ...

*/
/* restore old log settings */
dklog_set(old_log);
/* release log object */
dklog_delete(new_log);

} else {
/* ERROR: not enough memory to create new variable */

}
fclose(logfile);

} else { /* ERROR: failed to open logfile */
}

52

6.16 dkss - String search (obsoleted)

Note:This module is obsoleted. String search is done by thedkapp module now.

String search can be used for internationalization.
The function

char *dkss_find(char *table, char *key, char *def);

searches in the string table identified bytable for an entry matching the named
key .
If a matching entry is found, that entries value is returned, otherwise the default
valuedef .
Before you can search for strings the module must be set up. To do so first create
a string search function like:

char *
my_string_search(

void *vptr, char *table, char *key, char *def
)
{

char *back;
/* back = ... */
return back;

}

This function has to load the named string table into memory if not yet loaded,
search for a matching entry and return that entries value if found ordef if not.
The pointervptr can be used for assisting data.
The memory containing the value must not be overwritten or released by subse-
quent calls to the function.
Once you have a function your application may look like this:

dk_ss_t *old_ss, *new_ss;
/*

* retrieve pointer to current
* active string search object
*/

old_ss = dkss_get_object();
/*

* create new customized
* string search object

53

*/
new_ss =
dkss_new_for((void *)samepointer, my_string_search);
if(new_ss) {

/*
* configure new string search object
* as active object
*/

dkss_set_object(new_ss);
/*

... internationalized application code ...

... calling dkss_find() ...
*/
/*

* activate old string search object,
* de-activate the new one
*/

dkss_set_object(old_ss);
/* release the new string search object */
dkss_delete(new_ss);

} else {
/*

* ERROR: Not enough memory,
* failed to create object
*/

}

By default there is no string search object active,dkss_find() returns the de-
fault value.

54

6.17 dkbf - Bit fields

Thedkbf module contains a data type and the following functions to deal with
bit fields:

• dk_bitfield_t *dkbf_open(size_t bits);
creates a new bit field and returns a pointer to the new bit field.
The argumentbits specifies the length of the field in bits.
Once you are done with the bit field you must release it using the
void dkbf_close(dk_bitfield_t *bf); function.

• void dkbf_set(
dk_bitfield_t *bf, size_t bit, int val
);
sets bit numberbit to 1 if val 6= 0 or to 0 ifval = 0.

• int dkbf_get(dk_bitfield_t *bf, size_t bit);
retrieves the value of bit numberbit from the bit field.

• void dkbf_close(dk_bitfield_t *bf);
destroys a bitfield and releases the memory associated with it.

55

6.18 dkma - Mathematical operations

Thedkmath module contains functions for mathematical operations ondouble ,
long andunsigned long numbers.
Checks are performed to indicate results out of range and to prevent divisions by
0.
The following functions are available:

• optype dkma_mathop _optypeabbr
(optype o1, optype o2
);

• optype dkma_mathop _optypeabbr _ok(
optype o1, optype o2, int *ok
);

opttypeabbr can bel for opttype long , ul for unsigned long and
double for double .
mathop specifies which operation to perform, it can beadd , sub , mul or div .
The functions return the operations result.
Seedkma.h for a list of all functions. The..._ok -functions store the check
result in the variableok points to. If there is no error the variable is not modified.
If there is an error the variable is set toDK_ERR_MATH_OOR(for result out of
range) orDK_ERR_DIV_ZERO(for division by zero).
Functions without_ok store the check result in a static variable in the module.
The value of this variable can be retrieved by

int dkma_get_error(int reset_variable);

The function returns the error flag variables value. Ifreset_variable is != 0
the variable is reset.
The module also contains functions to convertlong andunsigned long to
double and vice versa, also with range checking.

56

An application using the module could look like this:

void print_circle_area(double radius)
{

double area;
/* reset error condition */
(void)dkma_get_error(1);
/* area = radius * radius * M_PI; */
/* do operation */
area = dkma_mul_double(

dkma_mul_double(radius,radius),
M_PI

);
/* check and reset error condition */
if(dkma_get_error(1)) {

printf("Radius too large: %lg\n", radius);
} else {

printf("Area = %lg\n", area);
}

}

57

The same function could use it’s own error flag:

void print_circle_area(double radius)
{

double area;
int result_not_ok;

/* reset error condition */
result_ok = DK_ERR_NONE;
/* area = radius * radius * M_PI; */
/* do operation */
area = dkma_mul_double_ok(

dkma_mul_double_ok(
radius,radius, &result_not_ok

),
M_PI,
&result_not_ok

);
/* check error condition */
if(result_not_ok) {

printf("Radius too large: %lg\n", radius);
} else {

printf("Area = %lg\n", area);
unsigned long ularea;
ularea = dkma_double_to_ul_ok(

area, &result_not_ok
);
if(result_not_ok) {

printf("Area too large to express");
printf(" it as unsigned long.\n");

} else {
printf("Area (int) = %lu\n", ularea);

}
}
result_ok = DK_ERR_NONE;

}

58

6.19 dkstream - I/O API

6.19.1 Doing I/O operations

I/O-operations are hidden from the application code, the application only uses
dkstream_... functions. Real I/O is done by handler functions. Information
about a stream is contained int thedk_stream_t data type.
The following functions are available in the module:

• Note: When linking thedkapp module into your program you should use

– dkapp_stream_openfile() ,

– dkapp_stream_opengz() and

– dkapp_stream_openbz2()

(see6.24on page80) instead ofdkstream_open...() .
This allows to specify command line preferences to skip some of the secu-
rity checks.

• dk_stream_t dkstream_openfile(
char *n, char *m, int ign, int *rsn
);
opens the filen in the given modem, creates adk_stream_t variable and
sets thisdk_stream_t up to use the file for I/O operations.
A pointer to the newdk_stream_t variable is returned.
The variable must be released usingdkstream_close after finishing
I/O.
The ign parameter can be used toskipcertain tests. An or-combination of
DK_SF_SEC_... constants can be specified here, see6.11.4on page38.
If any of the security checks fails the file is not opened, ifrsn contains a
valid pointer the key number of the failed test is stored in that variable.

• dk_stream_t dkstream_opengz(
char *n, char *m, int ign, int *rsn
);
opens the file asgzip -file in the given mode, allocates memory for a
dk_stream_t variable and sets thisdk_stream_t up to use the file
for I/O operations.
A pointer to the newdk_stream_t variable is returned.
The variable must be released usingdkstream_close after finishing
I/O.

59

• dk_stream_t dkstream_openbz2(
char *n, char *m, int ign, int *rsn
);
opens the file asbzip2 -file in the given mode, allocates memory for a
dk_stream_t variable and sets thisdk_stream_t up to use the file for
I/O operations.
A pointer to the newdk_stream_t variable is returned.
The variable must be released usingdkstream_close after finishing
I/O.

• void dkstream_close(dk_stream_t *st);
releases the resources connected to thedk_stream_t (i.e. closes files. . .)
and releases thedk_stream_t itself.

• size_t dkstream_write(
dk_steam_t *st, char *b, size_t l
);
writes l bytes starting from buffer addressb to the stream.
The function returns the number of bytes successfully written.

• size_t dkstream_read(
dk_stream_t *st, char *b, size_t l
);
readsl bytes from the specified stream into the buffer starting at addressb.
The number of bytes read is returned.

• char *dkstream_gets(
dk_stream_t *st, char *b, size_t l
);
reads a line from the specified stream into the bufferb of lengthl .
Read operations are aborted after(l-1) bytes or when finding a newline.
A valid pointer is returned on success,NULLon error.

• int dkstream_puts(dk_stream_t *st, char *b);
writes a string from bufferb to the specified stream and returns1 on success
and0 on error.

• int
dkstream_wb_word(dk_stream_t *st, dk_word w);
writes a 16-bit-word in network byte order to the stream.

• int
dkstream_wb_uword(dk_stream_t *st, dk_uword w);
writes an unsigned 16-bit-word in network byte order to the stream.

60

• int
dkstream_wb_dword(dk_stream_t *st, dk_dword w);
writes a 32-bit-double-word in network byte order to the stream.

• int
dkstream_wb_udword(dk_stream_t *st, dk_udword w);
writes an unsigned 32-bit-double-word in network byte order to the stream.

• int
dkstream_wb_string(dk_stream_t *st, char *str);
writes a string to a stream. The string length (including the finishing null-
byte) is written as unsigned 32-bit-double-word in network byte order first
followed by the string itself.

• int
dkstream_rb_word(dk_stream_t *st, dk_word *w);
reads a 16-bit-word from the stream, converts it to host byte order and saves
it to the specified variable.

• int
dkstream_rb_uword(dk_stream_t *st, dk_uword *w);
reads an unsigned 16-bit-word from the stream, converts it to host byte order
and saves it to the specified variable.

• int
dkstream_rb_dword(dk_stream_t *st, dk_dword *w);
reads a 32-bit-double-word from the stream, converts it to host byte order
and saves it to the specified variable.

• int
dkstream_rb_udword(dk_stream_t *st, dk_udword *w);
reads an unsigned 32-bit-double-word from the stream, converts it to host
byte order and saves it to the specified variable.

• char *
dkstream_rb_string(dk_stream_t *st);
reads a string from the specified stream and returns a pointer to the string.
First the function reads the string length as unsigned 32-bit-double-word.
Then it allocates memory for the string usingdk_new() .
The last step is to read the string into the new buffer.
The buffer must be freed by usingdk_delete() when it is no longer
needed.

61

6.19.2 Writing handler functions

To use other I/O mechanisms you have to provide two functions:

• a handler function (sometimes referred to as callback function) and

• a function to open a resource and create a stream.

Thedkstream_... functions use thedk_stream_api_t data type to pass
arguments to the handler function and to obtain the result.
The function must be of type

void handler_function(dk_stream_api_t *apiptr);

The function has to check whetherapiptr is a valid pointer. A pointer to the
dk_stream_t originating the handler request can be retrieved as

dk_stream_t *s;
s = (dk_stream_t *)(apiptr->strm);

The handler again has to check whether this is a valid pointer or not. The assisting
data can be retrieved from

s->data

The assisting data pointer is allowed to beNULL if the handler function can work
without additional data.
The componentapiptr->cmd contains anint value indicating the type of re-
quest. It can have the following values:

DK_STREAM_CMD_TESTThe handler function is asked whether it can handle
a certain request type.
This command is primarily used to check for a functionality likefgets() read-
ing until an end of line occurs. See table5.

Table 5: DK_STREAM_CMD_TEST

Component Contents

(apiptr->params).cmd
The command to check for. Anint value
as used in the request type.

apiptr->return_value
1 on success (command can be handled),
0 on error (can not handle command)

62

DK_STREAM_CMD_AT_ENDThe handler function must perform a check whether
the end of readable data is reached (no more data available). See table6.

Table 6: DK_STREAM_CMD_AT_END

Component Contents

apiptr->return_value
1 when end of data reached,
0 when there is still data available.

DK_STREAM_CMD_FGETSWe have to read a line of text into a buffer. See
table7.

Table 7: DK_STREAM_CMD_FGETS

Component Contents

(apiptr->params).buffer Start adress of buffer to fill.

(apiptr->params).length Buffer length in bytes.

apiptr->return_value 1 on success,0 on error.

DK_STREAM_CMD_RDBUFThe handler function has to read data from the stream
into a buffer.

Table 8: DK_STREAM_CMD_RDBUF

Component Contents

(apiptr->params).buffer Start adress of buffer to fill.

(apiptr->params).length Buffer length in bytes.

apiptr->return_value 1 on success (any data was read),0 on error.

(apiptr->results).used
Number of bytes successfully read, valid
only when return_value indicated success.

DK_STREAM_CMD_FPUTSThe handler function has to write a string.

Table 9: DK_STREAM_CMD_FPUTS

Component Contents

(apiptr->params).buffer Start adress of string.
. . . to be continued

63

Continuation

apiptr->return_value 1 on success,0 on error.

(apiptr->results).used
Number of bytes written, valid only if
return_value indicates success.

DK_STREAM_CMD_WRBUFThe handler has to write data from a buffer to the
stream. See table10.

Table 10: DK_STREAM_CMD_WRBUF

Component Contents

(apiptr->params).buffer Start adress of buffer.

(apiptr->params).length Buffer length in bytes.

apiptr->return_value 1 on (partial) success,0 on error.

(apiptr->results).used
Number of bytes successfully written. Only
valid if return_value indicates success.

DK_STREAM_CMD_FLUSHThe handler function should perform an intermedi-
ate flush if possible. I/O-operations on files and gezipped files can perform flushes
before the end of data is reached.
Some encoding mechanisms (i.e. ASCII85 as used in PS level 3) handle fixed
block sizes only (except the last block). In these cases intermediate flushes must
not be executed.

Table 11: DK_STREAM_CMD_FLUSH

Component Contents

apiptr->return_value 1 on success,0 on error.

DK_STREAM_CMD_FINALThe handler function must perform a final flush.
No further data is to be written.
Encoding mechanisms dealing with fixed block sizes can now handle the possibly
incomplete last block. See table12.

Table 12: DK_STREAM_CMD_FINAL

Component Contents
. . . to be continued

64

Continuation

apiptr->return_value 1 on success,0 on error.

DK_STREAM_CMD_REWINDThe stream must be rewound to set the current
stream position to the start of stream.

Table 13: DK_STREAM_CMD_REWIND

Component Contents

apiptr->return_value 1 on success,0 on error.

DK_STREAM_CMD_FINISH The handler function must release all resources
which were allocated by thedkstream_open_... function. This is invoked
as a part ofdkstream_close() .

Table 14: DK_STREAM_CMD_FINISH

Component Contents

(apiptr->params).buffer Start adress of buffer to fill.

(apiptr->params).length Buffer length in bytes.

apiptr->return_value 1 on success,0 on error.

Seefile_stream_function() in dkstream.c as an example.
The dkstream_open_... function must open/allocate I/O ressources. This
allocation process must result in one variable.
Now dkstream_new can be called, a pointer to the variable and a pointer to the
appropriate handler function must be provided.
During dkstream_close() a call to the handler function is made with com-
mandDK_STREAM_CMD_FINISH.
This is the point to close/deallocate the ressources beforedkstream_close()
callsdkstream_delete() .
Seedkstream_openfile() in moduledkstream.c as an example.

65

Now the new I/O system can be used like in the program skeleton:

dk_stream_t *st;
/*

The next step allocates ressources for
the I/O source/destination and sets up
a new dk_stream_t variable.

*/
st = dkstream_open_...(...);
/*

We must check for success.
*/
if(st) {

/*
Here we can do I/O operations.

*/
/*

Finally we must release I/O ressources
and deallocate the memory for the dk_stream_t.

*/
dkstream_close(st);
st = NULL;

}

66

6.20 dkof - output filtering

6.20.1 Overview

Some file formats – i.e. PostScript and PDF – can use compressed and encoded
data, different compression and encoding methods can be combined.
This module can be used to create compressed and encoded data.
The interface to thewriting application is an expanded dk_stream_t API. The
dk_stream_t represents the filter pipeline consisting of different filter cells. Each
cell implements one compression or encoding method. If data is written to the
dk_stream_t it goes to the top level cell first. This applies the first filtering method,
i.e. flate compression. Output from this cell goes as input to the cell below, i.e. an
ASCII85 encoding cell. Output from this cell goes downward, i.e. into a buffering
cell collecting data to write buffers of a given size. Output from cell 0 (the bottom
cell) goes to a target dk_stream_t.

6.20.2 Functions

The following functions are available:

• dk_stream_t *dkof_open(dk_stream_t *target, size_t nof);
creates a new filter stream and returns a pointer to it. Thetargetargument is
the target stream responsible for writing/saving the encoded data. Thenof
argument is the number of filter cells needed.

• void dkof_close(dk_stream_t *str);
closes a filter stream created by dkof_open(). The target filter stream isnot
closed.

• int dkof_set(dk_stream_t *str, size_t n, int what);
sets a filter cell method.str is the filter stream returned by dkof_open().n
is the number of the filter cell to set up, it must be in the range 0. . .no f−1.
Cell no f−1 is the filter first applied to the data stream, cell 0 is applied last.
whatselects the filter cell type, it can be one of the following:

– DK_OF_TYPE_FLATE
flate compression.

– DK_OF_TYPE_ASCII85
ASCII-85-encoding.

– DK_OF_TYPE_BUFFERED
a buffering filter, writing data in buffers of 512 bytes.

67

• int dkof_start_chunk(dk_stream_t *str);
starts a new data chunk. The filter cells are initialized.

• int dkof_end_chunk(dk_stream_t *str);
finishes a data chunk. All filter cells are flushed, associated data is closed.

• void dkof_set_crnl(dk_stream_t *str, int v);
enables/disables – depending onv – the CR/NL sequence instead of simple
newline. This is used by the ASCII85 encoding output.

6.20.3 Usage

dk_stream_t *os1, *os2;
os1 = dkstream_for_file(stdout); /* open real output stream */
if(os1) {

os2 = dkof_open(os1, 3); /* create filter stream */
if(os2) {

dkof_set_crnl(os2,1);
if(dkof_set(os2,0,DK_OF_TYPE_BUFFERED)) {

if(dkof_set(os2,1,DK_OF_TYPE_ASCII85)) {
if(dkof_set(os2,2,DK_OF_TYPE_FLATE)) { {

dkstream_puts(os1, "%!PS-Adobe-3.0 EPSF-3.0\r\n");
/* ... */
dkstream_puts(os1, "colorimage\r\n");
if(dkof_start_chunk(os2)) {

unsigned char buffer[3];
for(y = 0; y < height; y++) {

for(x = 0; x < width; x++) {
buffer[0] = get_red(x,y);
buffer[1] = get_green(x,y);
buffer[2] = get_blue(x,y);
if(dkstream_write(os2, buffer, 3) != 3) {

/* issue error message */
}

}
}
if(dkof_end_chunk(os2)) {

/* ... */
dkstream_puts(os1, "showpage\r\n");

}
}

}

68

}
}
dkstream_close(os2);

}
dkstream_close(os1);

}

69

6.21 dkcp - Dealing with codepages

6.21.1 Overview

Some systems need to deal with codepages. On Windows writing the german
umlaut ö to a file requires to put another character than writing the same umlaut
into a console window.
Codepages can be used for translation, so one can use the same message string to
write to multiple destinations.
Codepages can be read from file or from somewhere else (i.e. network) using the
dk_stream_t interface.
Once a codepage has been created and set up it can be used to convert characters
for a specific output.

6.21.2 Functions

The following functions are available in the module:

• unsigned char *dkcp_open DK_P1(dk_stream_t *,st)
allocates memory for an array of unsigned characters and initializes it by
reading the codepage information from the stream.
The array must be freed after usage by calling either dk_delete() or dkmem_free()
on it.

• unsigned char dkcp_convert DK_P2(unsigned char *, codepage,
unsigned char, c)
converts one character using the specified codepage.

• void dkcp_fputs DK_P3(FILE *, out, unsigned char *,
cp, char *, str)
writes a stringstr to a fileout using the codepagecp.

6.21.3 Codepage file structure

The codepage file is read line by line. A raute character is the beginning of a
comment which is finished by the end of line. Each line contains one conversion
rule. Conversion rules consist of two codes: the original character code and the
destination character code. The original character code is the character we want to
print in decimal notation. The destination character code is the decimal notation
for the byte we must write to show the character. If the destination can not show
the character, the destination character code is a minus sign.

70

6.21.4 Example

The example file cp.850 shows how to change character encoding when printing
strings to a MS-DOS console.

#
Character encoding changes for output on
MS-DOS-prompt
#
161 173
162 -
163 156
164 207
165 190
166 221
167 245
168 249
169 184
170 -
171 174
172 175
173 -
174 169
175 238
176 -
177 241
178 253
179 252

71

6.22 dksto - Sorted and unsorted data storage

6.22.1 Overview

Thedksto module contains data types and functions to store data in sorted and
unsorted containers.
Unsorted containers are implemented as double-linked lists, sorted containers can
use both double-linked lists and AVL-trees.
Iterators can be used to traverse the containers.
The following functions are available:

• dk_storage_t *dksto_open(int pathlen);
allocates memory for a new container and returns a pointer to the new vari-
able.
For sorted containers using AVL-tree implementationpathlen specifies
the maximum path length in the tree.
The following constants can be used to create appropriate maximum path
lengths and numbers of elementes:

DK_STO_SIZE_HUGE (0) 1536 exceeds 1.30699e+308
DK_STO_SIZE_LARGE (1) 1024 1.17987e+214

DK_STO_SIZE_MEDIUM (2) 512 1.17534e+107
DK_STO_SIZE_SMALL (3) 128 6.59035e+26

DK_STO_SIZE_TINY (4) 64 2.77779e+13

For unsorted data storage useDK_STO_SIZE_TINY.
The container must be freed by callingdksto_close() when it is not
longer needed.

• dk_storage_t *dksto_open(dk_storage_t *st);
closes a container and releases the resources allocated for the container in-
cluding any iterators.
The data objects referenced by the container are not freed.

• int dksto_set_eval_c(

72

dk_storage_t *st, dk_fct_eval_c_t *f, int cr
);
int dksto_set_eval_uc(
dk_storage_t *st, dk_fct_eval_uc_t *f, int cr
);
int dksto_set_eval_s(
dk_storage_t *st, dk_fct_eval_s_t *f, int cr
);
int dksto_set_eval_us(
dk_storage_t *st, dk_fct_eval_us_t *f, int cr
);
int dksto_set_eval_i(
dk_storage_t *st, dk_fct_eval_i_t *f, int cr
);
int dksto_set_eval_ui(
dk_storage_t *st, dk_fct_eval_ui_t *f, int cr
);
int dksto_set_eval_l(
dk_storage_t *st, dk_fct_eval_l_t *f, int cr
);
int dksto_set_eval_ul(
dk_storage_t *st, dk_fct_eval_ul_t *f, int cr
);
int dksto_set_eval_f(
dk_storage_t *st, dk_fct_eval_f_t *f, int cr
);
int dksto_set_eval_d(
dk_storage_t *st, dk_fct_eval_d_t *f, int cr
);
int dksto_set_comp(
dk_storage_t *st, dk_fct_comp_t *f, int cr
);
set up evaluation or comparison functions for sorted storage.
These functions must be called before the first object is added into the con-
tainer. Evaluation and comparison functions are explained later.

• int dksto_use_trees(dk_storage_t *st, int ok);
allows the usage of AVL-trees for the container (ok != 0) or denies it.
This function must be called before the first object is added into the con-
tainer.
By default it is allowed to use trees. TheAV L T R E E environment vaiable

73

can be set toyes or no to change the default setting.

• int dksto_add(dk_storage_t *st, void *obj);
stores an object reference in the container.

• int dksto_remove(dk_storage_t *st, void *obj);
removes an object reference from the container.

• dk_storage_iterator_t *
dksto_it_open(dk_storage_t *st);
creates a new iterator on the containerst and returns a pointer to it. The
iterator should be freed bydksto_it_close() when it is not longer
needed.
Note: Whenst is closed bydksto_close() all iterators connected to
it will be closed automatically.

• void dksto_it_close(dk_storage_iterator_t *it);
closes an iterator and deallocates it’s ressources.

• void *dksto_it_find_exact(
dk_storage_iterator_t *it, void *o);
searches in the container for the given object reference and returns a pointer
or NULL.
In sorted containers subsequent calls todksto_it_next() will return
pointers to objects "equal to" or "larger" than the given object.

• void *
dksto_it_find_like(
dk_storage_iterator_t *it, void *o
);
searches for an object with the same evaluation as the given object.
In sorted containers subsequent calls todksto_it_next() will return
pointers to objects "equal to" or "larger" than the given object.

• void *dk_sto_it_next(dk_storage_iterator_t *it);
can be used to traverse a container. It returns a pointer to the "next" object.

• void *dksto_it_reset(dk_storage_iterator_t *it);
resets the iterator sovoid *dk_sto_it_next(); finds the first ele-
ment.

74

6.22.2 An example

Imagine you want to create data sets for employees, containing name, first name
and age for each one.
You might use data structures as:

typedef struct {
char *name; char *fname; unsigned age;

} Person;

We assume to have two functions available to create and destroy data sets:

Person
*new_person(char *name, char *fname, unsigned age);

void
delete_person(Person *person);

To sort data by name, first name and age you will need the following comparison
and evaluation functionality:

• compare two data sets by name,

• compare a data set against a string containing a name,

• compare two data sets by first name,

• compare a data set against a string containing a first name and

• evaluate a data set by retrieving the age.

The first four items in the list are comparisons, they can be handled in one C-
function by passing different comparison criteria.
Item 5 requires an evaluation function:

int compare_fct(void *p1, void *p2, int criteria)
{

int back = 0;
/*

* make sure we have valid pointers
*/

if(p1 && p2) {
switch(criteria) {

case 0: {
/* compare 2 data sets by name */

75

back =
strcmp(((Person *)p1)->name, ((Person *)p2)->name);

} break;
case 1: {

/* compare a data set against a given name */
back =
strcmp(((Person *)p1)->name, (char *)p2);

} break;
case 2: {

/* compare 2 data sets by first name */
back =
strcmp(((Person *)p1)->fname, ((Person *)p2)->fname);

} break;
case 3: {

/* compare a data set against a given first name */
back =
strcmp(((Person *)p1)->fname, (char *)p2);

} break;
}
}
return back;

}

unsigned get_age(void *p, int criteria)
{

unsigned back = 0;
if(p) {

back = ((Person *)p)->age;
}
return back;

}

Now we can establish four containers (three for sorted storing, one for unsorted
storing.

dk_storage_t *s1, *s2, *s3, *s4;
dk_storage_iterator_t *i1, *i2, *i3, *i4;
s1 = dksto_open(0);
s2 = dksto_open(0);
s3 = dksto_open(0);
s4 = dksto_open(DK_STO_SIZE_TINY);
if(s1 && s2 && s3 && s4) {

76

i1 = dksto_it_open(s1);
i2 = dksto_it_open(s2);
i3 = dksto_it_open(s3);
i4 = dksto_it_open(s4);
/* sorted by name */
dksto_set_comp(s1,compare_fct,0);
/* sorted by first name */
dksto_set_comp(s2,compare_fct,2);
/* sorted by age */
dksto_set_eval_u(s3,get_age,0);
/* ... use the containers ... */

}
if(s1) dksto_close(s1); if(s2) dksto_close(s2);
if(s3) dksto_close(s3); if(s4) dksto_close(s4);

The code to insert data into the containers is as follows:

Person *p;
while(...) {

p = new_person(...);
if(p) {

if(dksto_add(s4,p)) {
dksto_add(s1,p); /* perform checks here too */
dksto_add(s2,p);
dksto_add(s3,p);

} else {
delete_person(p);
fatal("NOT ENOUGH MEMORY TO STORE PERSON!");

}
}

}

To find userJ O E AV E R A G Eand all first names coming afterJ O Euse

char *name = "Joe";
Person *p;
/*

Note criteria 3 for comparison
of data set against pure name

*/
p = (Person *)dksto_it_find_like(i2,name,3);
if(p) {

77

printf(
"Name %s, First name: %s, Age %u\n",
p->name, p->fname, p->age

);
while((p = (Person *)dksto_it_next(i2)) != NULL) {

printf(
"Name %s, First name: %s, Age %u\n",
p->name, p->fname, p->age

);
}

}

78

6.23 dkstt - String tables

String tables are key/value-pairs in binary form. They can be used to localize an
application. Thedk_stt_t data type is used to represent a string table.
The following functions are available in the module:

• dkstt_open(dk_stream_t *st);
reads a string table from the specified stream, allocates all memory neces-
sary and returns a pointer to the string table (orNU L L).
The stream must be open and remains open.

• char *dkstt_find(
dk_stt_t *s, char *key, char *def
);
searches for an entry matching the given key in the string table and returns
a pointer to the value (orNU L L).

• dkstt_close(dk_stt_t *s);
closes a string table and deallocates all memory used by it. All pointers
returned bydkstt_find() -calls to this string table become invalid and
can no longer be used.

79

6.24 dkapp - Application

The dkapp module encapsulates things needed by full-featured command line
applications like:

• Preferences handling.
Preferences are persistent key/value pairs of strings residing in configura-
tion files or registry entries.
Preferences can be overwritten by command line arguments. The applica-
tion can exclude scopes (command line preferences, preferences set by the
application itself, user set preferences, administrator set preferences) when
retrieving preferences.
Preferences are valid in scopes, a scope consists of

– a username,

– an application name and

– a host name.

A scope is valid if the scopes username matches the current username, the
application name matches the current application name and the scopes host
name matches the current host name. If we have - for instance - the user
namejoe , the application namedosomething and the host namepc the
following scopes are valid:

– */*/*

– */*/pc

– */dosomething/*

– */dosomething/pc

– joe/*/*

– joe/*/pc

– joe/dosomething/*

– joe/dosomething/pc

The last scope has highest priority, preferences defined in this scope over-
write all others.

• File search depending on the users preferred language and region.
This is used to read the string tables and help text files matching the users
preferences.

80

• Logging.
Log output can be written to

– standard output (stdout),

– standard error output (stderr),

– a logfile or

– thesyslog system (if available on the given host).

A log level is assigned to each message logged indicating the "heaviness"
of the message.
Preferences can be used to control which "heaviness" is required for each
of the log destinations.

• Getting names for temporary files.
Normally a call totmpnam(NULL) returns a pointer to a file name residing
in a directory like/var/tmp specifically created to store temporary files.
On W* systems this returns a filename in the root directory of the current
drive. RANF because write access to everything outside the temporary and
home directories should be denied for normal (stupid) users.

The following functions are available in the module:

• dk_app_t *
dkapp_open DK_PR((int argc, char *argv[]));
allocates memory for a newdk_app_t and returns a pointer to it.
Thedk_app_t variable is initialized using themain() functionsargc
andargv arguments:

– A copy of theargv arguments is made.

– All arguments starting with a leading--/ are interpreted as prefer-
ences and removed from the copy.

– The application tries to retrieve user name, host name and application
name.
The application name is derived fromargv[0] by extracting the file
name part and removing the file type suffix (if available).

– The application retrieves information about the users home directory
and the directory for temporary files.

– The filename for the file executed is searched.

– The directory containing the file executed is searched. This directory
is assumed to be the application directory and the directory for shared
files.

81

– If the directory ends onbin the directory for shared files is estimated
by replacing thebin by lib . The application name is appended to
build a new name for the application directory.

– The dk_storage_t components for preferences management are
initialized.

– The preferences fileappdefault is read from the shared directory
on systems without a registry.

– The preferences fileappdefault. application is read from the
shared directory on systems without a registry.

– The preferences file

* /etc/appdefaults or

* C:/ETC/ALL.DEF

is read on systems without a registry.

– The preferences file

* /etc/appdefaults. application or

* C:/ETC/ application .DEF

is read on systems without a registry.

– The preferences fileall is read from$HOME/.defaults on sys-
tems without a registry.

– The preferences file$HOME/.defaults/ application is read
on systems without a registry.
On systems where leading dots in filename are not allowed the files
are searched in$HOME/defaults .
If preferences are defined multiple time the setting with the highest
priorized scope is valid.
If the highest scope occurs several times the latest setting is valid.

– The preference/dir/app is looked up. If this preference is defined
it’s value is used for the application directory.

– The preference/dir/shared is looked up. If this preference is
defined it’s value is used for the shared directory.

– The preference/dir/tmp is looked up. If this preference is defined
it’s value is used for the temporary directory.

– A subdirectory is created in the temporary directory to keep this appli-
cations temporary files.
The subdirectories name is consists of the PID as hexadecimal string

82

and the suffix ".TMP".
On systems without thegetpid() functions another unique number
is choosed.
Note: There is a possible race condition because there is some time
between the file name check and the directory creation. To prevent
other users from exploiting this it is recommended to set/dir/tmp
to point to a directory inside the users home directory.

– Logging to file is initialized.
The following preferences can be used to set up logging to file:

* /log/file/name
The name of the logfile.

* /log/file/level
The minimum "heaviness" for log message, can be "none" (no
output), "panic", "fatal", "error", "warning", "info", "progress" or
"debug".
Only messages having at least the required heaviness are logged
to file.
The default is "warning".

* /log/file/keep
The keep level.
To prevent programs from filling the hard disk log files are deleted
at the programs end unless there was at least one message of a
given heaviness.
The default is "error".

* /log/file/time
This boolean flag specifies whether the current time is written for
each log message or not.
The default is "yes".

* /log/file/split
This boolean flag is of interest only when time stamps are saved
together with log messages. It specifies whether the time stamps
are written to separate lines or not.
The default is "yes".

– Logging tostdout is set up using the preferences

* /log/stdout/level ,

* /log/stdout/time and

* /log/stdout/split .

– Logging tostderr is set up using the preferences

83

* /log/stderr/level ,

* /log/stderr/time and

* /log/stderr/split .

– If syslog is available,openlog() is called.

– The PID of the current process is retrieved.

– The users preferred language is retrieved from the command line pref-
erence/ui/lang , the environment variableLA N Gor the/ui/lang
preference from any other source. The first value found is used.

– Internal string tables are read.

– Log messages about the program startup are issued.

For boolean flags the following values (case-insensitive) indicate "true":

– 1,

– yes ,

– y ,

– on ,

– ok and

– true .

In the preferences defining the application directory, the shared directory
and the log file name the following macros (case-sensitive) are allowed:

– $(app.name)
The application name.

– $(temp.dir)
The directory for temporary files.

– $(user.name)
The users login name.

– $(user.home)
The users home directory.

– $(user.uid)
The users UID.

– $(user.gid)
The users GID.

– $(user.euid)
The effective UID.

84

– $(user.egid)
The effective GID.

– $(host.name)
The host name (short form).

– $(host.domain)
The hosts DNS domain.

– $(process.pid)
The process ID of the running process.

– $(process.ppid)
The PID of the parent process.

– $(process.pgid)
The process group ID of the current process.

• dk_app_t *dkapp_open_ext1(
int argc, char *argv[], char *g, char *etc,
int sil, int nostdout
);
does the same asdkapp_open() , it is extended version 1.
Theg parameter is the application group name (package name), this param-
eter may beNU L L if no package name is used.
The etc parameter points to the system configuration directory (by de-
fault "/etc" on U*x systems), one should use a variable defined via the
configure mechanism here. This parameter may beNU L L if not needed.
Thesil parameter can be used to make the application behave silently.
Thenostdout parameter can be used to deny writing of log messages to
stdout andstderr . This is for GUI applications which do not have a
console attached by default.
In general one should prefer to usedkapp_open_ext1() instead of

– dkapp_open() and

– dkapp_set_groupname() or dkapp_set_silent()

becausedkapp_open_ext1() can use the package name and the silence
flag during application startup.

• int dkapp_set_groupname(dk_app_t *a, char *name);
sets the application group name (package name) for an application.
Note: It is recommended to usedkapp_open_ext1() to set the group
name.

85

• int dkapp_set_silent(dk_app_t *a, int flag);
sets the application to silent behaviour (the minimum log levels are in-
creased so no log messages are written) iff lag 6= 0.
If a is NULL a module specific variable is set to make all applications cre-
ated by subsequentdkapp_open() calls work silently.
Note: It is recommended to usedkapp_open_ext1() to set the applica-
tion in silent mode from the beginning.

• void dkapp_set_source_filename(
dk_app_t *a, char *n
);
sets the filename to be issued with the next log messages.
This function and the following one can be used to create messages contain-
ing filename and line number in the source file causing the error.

• void dkapp_set_source_lineno(
dk_app_t *a, unsigned long l
);
sets the line number to be issued with the next log message.

• int dkapp_log_msg(
dk_app_t *a, int p, char **msg, int az
);
writes a log message of priorityp. The priority can be

– DK_LOG_LEVEL_PANIC
in panic conditions,

– DK_LOG_LEVEL_FATAL
for fatal errors,

– DK_LOG_LEVEL_ERROR
for errors,

– DK_LOG_LEVEL_WARNING
for warnings,

– DK_LOG_LEVEL_INFO
for normal messages,

– DK_LOG_LEVEL_PROGRESS
to show that the program is still working or

– DK_LOG_LEVEL_DEBUG
for debug output.

86

The message consists of several strings,msg points to an array of string
pointers,az is the number of array elements.

• int dkapp_get_pref(
dk_app_t *a, char *key,
char *buf, size_t lgt, int ex
);
retrieves the preference value for the givenkey and stores the value in
bufferbuf of sizelgt .
The parameterex specifies which preference sources areexcludedfrom the
lookup process, specify

– DK_APP_PREF_EXCL_CMD
for command line options,

– DK_APP_PREF_EXCL_PROG
for programs own settings,

– DK_APP_PREF_EXCL_USER
for the users preferences files and

– DK_APP_PREF_EXCL_SYSTEM
for preferences set by the administrator.

To exclude mulitple data sources or-combine the values.
A value0 uses all data sources for lookup.
The function returns0 if no value was found, otherwise another value.

• int dkapp_set_pref(
dk_app_t *a, char *key, char *value
);
sets a preference value.

• int dkapp_transform_string(
dk_app_t *app,char *dest,size_t sz,char *src
);
transforms the stringsrc to bufferdest of sizesz and replaces$(...) -
macros by their values.
In addition to the macros mentioned above the following macros can be
used:

– $(app.dir)
The application directory.

– $(shared.dir)
The shared directory.

87

• int dkapp_find_cfg(
dk_app_t *a, char *name, char *buffer, size_t sz
);
searches for a file having the givenname and writes the full filename into
thebuffer of lengthsz .
The function can be used to search for compressed and localized versions
of configuration and resource files.
It searches in the Windows directory and subdirectories (on W* systems)
and in the system configuration directory and subdirectories.
The directories are checked for a subdirectory structure matching the users
preferred language, region and encoding.
See section10.4on page141for details.

• int dkapp_find_file(
dk_app_t *a, char *name, char *buffer, size_t sz
);
searches for a file having the givenname and writes the full filename into
the bufferbuffer of lengthsz .
This function can be used to search for compresseed and localized versions
of resource and configuration files.
It searches in the current directory, in the application directory, the applica-
tion group directory, the shared directory, the Windows directory and sub-
directories (on W* systems) and in the system configuration directory and
subdirectories1.
Each of these directories is checked for a subdirectory structure taking care
of languages, regions and encodings.
See section10.3on page138for details.

• char *dkapp_find_string(
dk_app_t *a, char *t, char *k, char *d
);
searches for a string table entry with keyk in tablet and returns a pointer
to the string found or the default string pointerd.

• void dkapp_find_multi(
dk_app_t *app, dk_string_finder_t *f, char *table
);
searches for multiple strings at once and sets up pointers.

• void dkapp_help(

1named as the application or the application group

88

dk_app_t *a, char *filename, char **def_strings
);
searches for a localized help filefilename and prints this to stdout. If
the file is not found, theNU L L-terminated string arraydef_strings is
printed.

• dk_stream_t *dkapp_read_file(
dk_app_t *app, char *filename
);
searches for the givenfilename (localized, possibly compressed) and
opens it for read access.

• dk_stream_t *dkapp_write_file(
dk_app_t *app, char *filename
);
tries to open the filefilename for write access and returns adk_stream_t
pointer on success.

• int dkapp_get_argc(
dk_app_t *a
);
char **dkapp_get_argv(
dk_app_t *a
);
can be used to retrieve the command line arguments without command line
preferences settings.

• int dkapp_tmpnam(
dk_app_t *a, char *buffer, size_t sz
);
fills write a pathname for a temporary file into the buffer.

• void dkapp_unconfigure(
dk_app_t *app
);
causes the application to delete the applications preference file or the reg-
istry key whendkapp_close(); is called.

• void dkapp_err_traverse_dir(
dk_app_t *app, char *name
);
issues an error message that the given directory cannot be traversed.

89

• void dkapp_err_stat_failed(
dk_app_t *app, char *name
);
issues an error message that no information is available about the given file.

• void dkapp_err_cwd(
dk_app_t *app
);
issues an error message telling that the current working directory cannot be
estimated.

• void dkapp_err_memory(
dk_app_t *app, size_t elsize, size_t nelem
);
issues an error message that the application failed to allocate memory for
nelem elements of sizeelsize .

• dkapp_err_matchfile(
dk_app_t *app, char *name
);
issues an error message that there is no file matching the name pattern.

• void dkapp_err_matchdir(
dk_app_t *app, char *name
);
issues an error message that there is no directory name matching the pattern.

• void dkapp_err_fopenr(
dk_app_t *app, char *name
);
issues an error message that the program failed to open the file for read
access.

• void dkapp_err_fopenw(
dk_app_t *app, char *name
);
issues an error message that the program failed to open the file for write
access.

• void dkapp_err_fwrite(
dk_app_t *app, char *name
);
issues an error message that there was an error during a write operation.

90

• void dkapp_err_fread(
dk_app_t *app, char *name
);
issues an error message that there was an error during a read operation.

• void dkapp_close(
dk_app_t *a
);
closes the application and releases all memory allocated by thedk_app_t
variable.
This should be a programs last action before exiting.

• dk_stream_t *dkapp_stream_openfile(
dk_app_t *a, char *n, char *m
);
dk_stream_t *dkapp_stream_opengz(
dk_app_t *a, char *n, char *m
);
dk_stream_t *dkapp_stream_openbz2(
dk_app_t *a, char *n, char *m
);
FILE *dkapp_fopen(
dk_app_t *a, char *n, char *m
);
are used to open files. The command line preferences of the application
a control which security checks are performed if the file with namen is
opened for writing (the checks are performed additionally to the platform-
dependant permission checks). By default writing is denied ifn is a sym-
bolic link and at least one of the following conditions is fullfilled:

– The owner of the link is not the owner of the link target file.

– The link is placed in a group writable directory.

– The link is placed in a world writable directory.

One can skip – for example the first check – by typing

<app> --/sec/ign/link-owner=true

See table16on page136for a list of preferences to skip security checks.
If a check fails the file is not opened and a log message is issued.

91

6.25 dktcpip - TCP/IP networking

This module is for the client side only. On the server side you should directly deal
with BSD sockets, TLI/XTI or Windows sockets to get the best performance. The
dktcpip module contains support for the following data types:

• dk_ip_addr_t
stores an address.

• dk_tcpip_t
contains data for a transport endpoint.

Before using any of the networking functions the application must call
int dktcpip_start(void);
to initialize TCP/IP networking. If you are done with networking call
int dktcpip_end DK_PR((void));
to clean up the networking system.
Between the two function calls you can

• create transport endpoints,

• configure transport endpoints,

• bring transport endpoints up (connect them to a peer),

• transfer data via transport endpoints,

• bring transport endpoints down and

• destroy transport endpoints.

The following functions are in the module:

• int dktcpip_start(void);
connects the process to the TCP/IP-networking subsystem and returns1 on
success and0 on error.
On *nix systems the function simply returns1, on W* systems it calls
WSAStartup() .
If the function returns successfully the process must call
int dktcpip_end(void);
before terminating.

• int dktcpip_end(void);
disconnects the process from the TCP/IP-networking subsystem. On W*
systems it callsWSACleanup() , on *nix systems it simply returns1.

92

• dk_tcpip_t *dktcpip_new(void);
creates a new transport endpoint and returns a pointer to the endpoint data
or NU L L on error.
On success the endpoint must be destroyed bydktcpip_delete() when
it is not longer needed.

• void dktcpip_delete(dk_tcpip_t *p);
destroys a transport endpoint and releases the memory associated with it.

• dk_ip_addr_t *dktcpip_get_addr(
dk_tcpip_t *p, int w
);
retrieves a pointer to one of four address buffers contained in the endpoint
data.
The parameterwdetermines which address is selected:

– DK_IP_ADDR_REMOTE_WISHED
the remote address we want to connect to.
For connectionless transport this is the address to which we want to
send.

– DK_IP_ADDR_REMOTE_FOUND
the remote address we are connected to.
For connectionless transport this is the address from which we re-
ceived the last datagram.

– DK_IP_ADDR_LOCAL_WISHED
the local address we want to bind to.

– DK_IP_ADDR_LOCAL_FOUND
the local address we are bound to.

A valid pointer is returned on success,NU L L on error.
Thedktcpipaddr_set... functions described below use this pointer.

• int dktcpipaddr_set_ip_byname(

93

dk_ip_addr_t *a, char *hn, dk_tcpip_t *p
);
int dktcpipaddr_set_ip_loopback(
dk_ip_addr_t *a
);
dktcpipaddr_set_ip_local(
dk_ip_addr_t *a, dk_tcpip_t *p
);
int dktcpipaddr_set_ip_any(
dk_ip_addr_t *a
);
are used to set the IP address part of the structure to

– the IP address of a given host namehn (host name or IP address in
dotted notation),

– the local loopback interface,

– the local IP address or

– any IP address.

• int dktcpip_addr_set_port(
dk_ip_addr_t *a, unsigned short min, unsigned short
max
);
sets the port range. Themin andmax port number must be specified in
host notation.
If you want exactly one port number, use equalmin andmax.

• int dktcpip_set_connectionless(
dk_tcpip_t *p, int flag
);
configures the endpoint for connectionless transport (UDP) iff lag 6= 0 or
connection-oriented transport (TCP) iff lag = 0.
By default the endpoints are set up for TCP.

• int dktcpip_set_timeout(
dk_tcpip_t *t, double to
);
configures a timeout for the socket operations in microseconds.

• int dktcpip_set_nonblock(
dk_tcpip_t *t, int fl
);

94

configures the endpoint for non-blocking transport iff l 6= 0.

• int dktcpip_set_reuse(
dk_tcpip_t *t, int fl
);
sets theSO_REUSEADDRoption for the socket iff l 6= 0. This is usefull for
TCP sockets only.

• int dktcpip_set_broadcast(
dk_tcpip_t *t, int fl
);
sets theSO_BROADCASToption for the socket iff l 6= 0. This allows UDP
sockets to send broadcast datagrams.

• int dktcpip_set_keepalive(
dk_tcpip_t *t, int fl
);
configures the socket to set theSO_KEEPALIVEoption to send periodic
test messages to keep the socket alive if no data is transmitted.

• int dktcpip_up(dk_tcpip_t *t);
tries to bring the endpoint up (make it ready to send and receive data).
Before you do this the socket must be configured for connection-oriented or
connectionless transport.
The local wished address must be configured.
For connection-oriented transport the remote wished address must be con-
figured.
If it is necessary to call

– dktcpip_set_timeout() ,

– dktcpip_set_reuse() ,

– dktcpip_set_broadcast() or

– dktcpip_set_keepalive()

this should be done before callingdktcpip_up() .

• int dktcpip_read(
dk_tcpip_t *t, char *buf, size_t *lgt
);
tries to read data from the network to a buffer. Thelgt argument points
to a variable containing the buffer size when invoking the function and the

95

number of used bytes after returning.
For connectionless transport the remote wished address must be configured
before calling this function.

• int dktcpip_respond(dk_tcpip_t *t);
sets the remote wished address to the remote found address.
This is usefull for connectionless transport to send data to the same address
we received the last datagram from.

• int dktcpip_write(
dk_tcpip_t *t, char *buf, size_t *lgt
);
sends data. Thelgt parameter points to a variable containing the buffer
length when invoking the function and the number of bytes really sent when
returning.
For connectionless transport the remote wished address must be configured
before invoking this function.

• int dktcpip_closewrite(dk_tcpip_t *t);
indicates that the process makes no further write attempts on the endpoint.

• int dktcpip_is_rdclosed(dk_tcpip_t *t);
checks whether the peer has finished writing, so we found end of input from
network.

• int dktcpip_down(dk_tcpip_t *t);
shuts down the endpoint.
For connection-oriented transportdktcpip_closewrite() is called to
have an orderly release,dktcpip_read() is called until
dktcpip_is_rdclosed() returns true.

• int dktcpip_get_error_code(
dk_tcpip_t *t, int cl
);
retrieves a code for the last error on the endpoint.
If cl 6= 0 the error condition is cleared.

96

7 Administration

7.1 Installation

A configure script should be contained in every source package using thedk
libraries.
A directory layout should be used like this:

• ${prefix}/bin
should be used for binary executables.

• ${prefix}/lib/myapp1
should be used to store additional files (i.e. string tables, help text files . . .)
supporting themyapp1 executable program.

7.2 Preferences management

7.2.1 Preferences storage

If an application (i.e.myapp1) starts it first searches for the directory where the
executable file came from. This directory is established as the application direc-
tory and as the shared directory.
If this directories last part isbin thebin in the shared directory name is replaced
by lib .
If the shared directory contains a subdirectory matching the application name
(myapp1) this subdirectory is established as the new application directory.
Before the preference files are read the command line arguments are inspected.
If there are arguments starting with--/... they are treated as preference over-
writes, removed from the argument list and inserted into the preferences storage
as preference/... .
First the files

• appdefaults and

• appdefaults. application (hereappdefaults.myapp1)

are read from the shared directory. These files should be used to set the/dir/app
and/dir/shared preferences if your installation does not follow the directory
layout explained above.
If the software is installed on a file server you can install network-wide preference
settings here instead of creating files in each hosts/etc directory.
The next preferences files read are

• /etc/appdefaults (C:/ETC/ALL.DEF on W* systems) and

97

• /etc/appdefaults. application (C:/ETC/ application .DEF
on W* systems).

These files should be used to set preference defaults for all users.
Next the filesall andapplication are read from the subdirectory.defaults
(defaults on W* systems) in the users home directory. Users can establish
preferences here.
The preferences files are only used on systems without a registry.

7.2.2 Configuration files example

We assume to have an applicationmyapp1 installed, so we have the binary file
residing as/network/apps/ours/bin/myapp1 and the additional files in
directory/network/apps/ours/lib/myapp1 and its subdirectories.
/network/apps/ours/lib/appdefaults might contain the following
text:

#
valid for all users, all applications on all hosts
we could also write [*/*/*] instead
#
[*]
#
set the shared directory and the
application directory
#
/dir/shared = /network/apps/ours/lib
#
see the macro in the next line
#
/dir/app = /network/apps/ours/lib/$(app.name)
#
use the local /tmp directory for temporary files
#
/dir/tmp = /tmp
#
set the language
#
/ui/lang = de_DE
#
Set up logging
#

98

/log/file/level = info
/log/file/keep = error
/log/file/name = $(app.name).$(process.pid).log
/log/file/time = off
#
now we have special settings for a
guest account named joe
who speaks english
#
[joe]
/ui/lang = en_US
#
Application poorapp comes without support
for german
#
[*/poorapp]
/ui/lang = en_US

A user could write $HOME/.defaults/all like:

#
This is valid for all applications on all
hosts and could be written as [*/*]
#
[*]
#
The language should be french
#
/ui/lang = fr
#
We keep temporary files under our control
#
/dir/tmp = $(user.home)/tmp
#
We want all the debug information if an
error occured
#
/log/file/level = debug
/log/file/time = on
/log/file/split = on
#
The poorapp applications does not speak french

99

#
[poorapp]
/ui/lang = en_US

The last two lines could be removed, in$HOME/.defaults we could create a
file poorapp instead:

#
on every host
#
[*]
#
language english
#
/ui/lang = en_US

100

7.2.3 Preferences storage on 32-bit W* systems

Preferences are stored in 4 registry keys:

• HKLM/Software/Dkapp

• HKLM/Software/Dkapp/ appname

• HKCU/Software/Dkapp

• HKCU/Software/Dkapp/ appname

The keys in HKLM are valid for all users, the keys in HKCU are used for user-
specific settings.
An administrator can use the HKLM -keys to provide default settings. Normal
users need only read permissions to the HKLM -keys.
Values inHKLM/Software/Dkapp andHKCU/Software/Dkapp are gen-
eral settings for all applications, values inHKLM/Software/Dkapp/ appname
andHKCU/Software/Dkapp/ appname are for specific applications.
The registry value name consists of the preference scope and the preference name
separated by colon. In the HKLM keys the scope consists of a user name (or wild-
cardall) and a host name (or wildcardall) separated by a slash. In the HKCU

keys the scope simply consists of a host name.

101

Examples:
The value

"all/all:/ui/lang" = "de_DE"

in HKLM/Software/Dkapp sets the default language to german for all users
on all hosts using all applications.

The value

"joe/all:/ui/lang" = "en"

in HKLM/Software/Dkapp sets the default language to english for userjoe
an all hosts using all applications.

The value

"all/all:/ui/lang" = "en"

in HKLM/Software/Dkapp/app1 sets the language to english for all users
on all hosts when using applicationapp1 .

If userpedro wants to have all applications in spanish he can set

"all:/ui/lang" = "sp"

in HKCU/Software/Dkapp . Because applicationapp1 is available in english
only he needs an additional entry

"all:/ui/lang" = "sp"

in HKCU/Software/Dkapp/app1 .

102

7.3 Recommended environment variables for W*32 systems

W*32 systems use different locations in the registry to store information about the
current user, the home directory, the temporary directory etc.
Also for data storage different places on the hard disk are used depending on the
W* version and the users language.
The following environment variables should be set on W*32 systems:

Variable Contents

LOGNAME The username of the user running the program.

HOME The home directory of the user running the program.

TMPDIR The directory to be used for storing temporary files.

COMPUTERNAME The hostname.

103

8 Security

The following functions and modules should not be used in SUID/SGID programs,
networking daemons or W*32 services:

• thedkapp module,

• dksf_get_uname() ,

• dksf_get_euname() ,

• dksf_get_home() ,

• dksf_get_ehome() ,

• dksf_get_hostname() ,

• dksf_get_tempdir() ,

• dksf_get_domainname() ,

• dksf_get_executable() .

When using

• dksf_getpid() ,

• dksf_getppid() ,

• dksf_getuid() ,

• dksf_getgid() ,

• dksf_geteuid() ,

• dksf_getegid() ,

• dksf_getpgrp() ,

• dksf_getpgid() ,

it is recommended to use the appropriatedksf_have_get...() functions to
check the system’s support fordksf_getpid() . . .dksf_getpgid() .

104

9 Tutorial

9.1 About the tutorial

This tutorial gives an introduction to some of the library modules.
It is restricted to typical usage cases.
It does not cover all the functions contained in the modules, read more in the
"Headers and modules" section.
Only minimum error checking is shown in the examples, many of theif() state-
ments would normally have anelse counterpart issuing error messages or warn-
ings.

9.2 Introduction to the dkapp module

9.2.1 The simple Hello-world-program

In this tutorial we will expand the following simple programhello01.c :

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

printf("Hello world!\n");
printf("Goodbye world!\n");
exit(0);
return 0;

}

105

9.2.2 Adding application support

To add application support we change the source tohello02.c :

#include <dkapp.h>

#include <stdio.h>
#if DK_HAVE_STDLIB_H
#include <stdlib.h>
#endif

dk_app_t *app = NULL;

static int success = 0;

int main(int argc, char *argv[])
{

app = dkapp_open(argc, argv);
if(app) {

printf("Hello world!\n");
printf("Goodbye world!\n");
success = 1;
dkapp_close(app); app = NULL;

}
success = (success ? 0 : 1);
exit(success);
return success;

}

This source must be linked using the libraries-ldkc -ldkport -lz -lm . If
the dk libraries were compiled withoutzlib support-lz is not needed here.
If the application is started by simply typing

./hello02

the expected output

Hello world!
Goodbye world!

appears.
The command

106

./hello02 --/log/stdout/level=progress

already shows some logging.
The--/... arguments can be used to override preference settings in the config-
uration files or registry keys.
Here it is used to set the required message priority for printing tostdout down
to progress .

Application "hello02" started.
Hello world!
Goodbye world!
Application "hello02" finished.

If you type

./hello02 --/log/file/keep=debug

you will find a file hello02.3181.log (the number in the middle can differ)
having contents like

2001/02/14 19:01:31
Application "hello02" started.
2001/02/14 19:01:31
Application "hello02" finished.

107

9.2.3 Setting preferences

In your home directory create a subdirectory.defaults on U*x or defaults
on W*.
In this directory we need some files namedhell02 , hell03 , hello04
The contents of the files should be as follows:

/dir/app = /home/myname/src/libs/Docu/tutorial
/log/file/level = debug
/log/file/keep = error
/log/stderr/level = progress

Write the name of thetutorial directory you use instead of
/home/myname/src/libs/Docu/tutorial .
The other settings advise the programs to write debug messages and all higher
priorized messages to the log file but the logfile is deleted at the processes end
unless there was an error message or a higher priorized message.
All progress indication messages and higher priorized messages are also shown
on standard error output.
The different priorities are expressed as

• none (no messages are issued to the specified destination),

• panic (the system is unusable),

• fatal (unrecoverable error, program should exit immediately),

• error ,

• warning ,

• info (things that might be of interest),

• progress (show the user what we are doing) and

• debug .

108

9.2.4 Internationalization

Now we want to print messages in the users preferred language.
We enhace our program tohello03.c as follows:

#include <dkapp.h>

#include <stdio.h>

#if DK_HAVE_STDLIB_H
#include <stdlib.h>
#endif

dk_app_t *app = NULL;

static int success = 0;

static char *messages[2];

static dk_string_finder_t finder[] = {
{ "hello", &(messages[0]), "Hello world!" },
{ "goodbye", &(messages[1]), "Goodbye world!" },
{ NULL, NULL, NULL }

};

int main(int argc, char *argv[])
{

app = dkapp_open(argc, argv);
if(app) {

dkapp_find_multi(app, finder, "h03msg");
printf("%s\n", messages[0]);
printf("%s\n", messages[1]);
success = 1;
dkapp_close(app); app = NULL;

}
success = (success ? 0 : 1);
exit(success);
return success;

}

109

When starting./hello03 output is as follows:

Warning: String table "h03msg" not found!.
Hello world!
Goodbye world!

We are notified that no string tableh03msg was found.
To create string tables we prepare a fileh03msg.str as follows:

hello03 string table

"hello"
en = "Hello, I am an internationalized program."
sp = "Buenos dias."
de = "Moin moin."

"goodbye"
en = "Now it’s time to say goodbye."
sp = "Adios muchachos."
de = "Und wech."

A # and the following text until the end of line are comments.
The file consists of a list of entries. Each entry is started by a unique key, i.e.
"hello" or "goodbye" . The key is followed by a list of language/value pairs.
The language information consists of the language itself and optionally informa-
tion about region and encoding, soen_US, en.UTF-8 anden_US.UTF-8 are
acceptable values too.
In the value the special codes\ t, \ ¨, \ n, \ r and\ 0 can be used. The binary string
tables are created by calling

stc h03msg.str .

This creates subdirectories for the different languages in the current working di-
rectory, the directories are nameden , de andsp .
Now start./hello03 again.
Also test

./hello03 --/dir/app=. --/ui/lang=de

./hello03 --/dir/app=. --/ui/lang=sp

The--/dir/app=... option is only necessary if there is a default preference
configured pointing to another directory.

110

To establish defaults for the preferences you need to find out the current working
directory (usepwd on *n*x).
Now write a file$HOME/.defaults/hello03 having a contents like this:

/ui/lang = en
/ui/lang/env = off
/dir/app = /home/jim/programming/c/tests

For /ui/lang choose your preferred language (one of the three in the text string
table).
The /ui/lang/env setting tells the application to ignore theLA N G environ-
ment variable.
The directory must be replaced by the current directory estimated above (where
you run the test programs).

111

Now lets revisit the source againg.
The array messages is an array of pointers to the localized messages. The array
elements must be initialized before they can be used.
This is done bydkapp_find_multi(app, finder, "h03msg"); . We
use theapp pointer created bydkapp_open() before. Binary string tables are
searched in files namedh03msg.stt .
The finder array contains information about the pointers to set. Each entry
consists of the key, the address of the string pointer to set and a default value to
be used if no string table or no matching entry is found.
Thefinder array is finished by an element having all components set toNU L L.
When using string tables be aware of some traps:

• When adding elements to thedk_string_finder_t make sure to in-
crease the size of the string array appropriately.

• Neverprintf/fprintf the message directly, i.e. by
printf(messages[0]);
Instead usefputs(messages[0],stdout);
or printf("%s",messages[0]); .
The strings found in the string table might contain percent signs which are
treated as format string beginners.

• Do not forget the finishing element in thedk_string_finder_t array.

112

9.2.5 Logging

We change our program tohello04.c as follows:

#include <dklogc.h>
#include <dkapp.h>

#include <stdio.h>
#if DK_HAVE_STDLIB_H
#include <stdlib.h>
#endif

dk_app_t *app = NULL;

static int success = 0;

static char *messages[7];

static dk_string_finder_t finder[] = {
{ "/msg/pan", &(messages[0]),

"Test panic message!"
},
{ "/msg/fat", &(messages[1]),

"Test fatal error message!"
},
{ "/msg/err", &(messages[2]),

"Test error message."
},
{ "/msg/wrn", &(messages[3]),

"Test warning message."
},
{ "/msg/inf", &(messages[4]),

"Test informational message."
},
{ "/msg/prg", &(messages[5]),

"Test progress message."
},
{ "/msg/dbg", &(messages[6]),

"Test debug message."
},
{ NULL, NULL, NULL }

};

113

static char *an_array_of_strings[] = {
"Jim ",
"and Joe",
" are drinking beer.",

};

int main(int argc, char *argv[])
{

app = dkapp_open(argc, argv);
if(app) {

dkapp_find_multi(app, finder, "h04msg");
dkapp_log_msg(

app, DK_LOG_LEVEL_PANIC,
&(messages[0]), 1

);
dkapp_log_msg(

app, DK_LOG_LEVEL_FATAL,
&(messages[1]), 1

);
dkapp_log_msg(

app, DK_LOG_LEVEL_ERROR,
&(messages[2]), 1

);
dkapp_log_msg(

app, DK_LOG_LEVEL_WARNING,
&(messages[3]), 1

);
dkapp_log_msg(

app, DK_LOG_LEVEL_INFO,
&(messages[4]), 1

);
dkapp_log_msg(

app, DK_LOG_LEVEL_PROGRESS,
&(messages[5]), 1

);
dkapp_log_msg(

app, DK_LOG_LEVEL_DEBUG,
&(messages[6]), 1

);
dkapp_log_msg(

114

app, DK_LOG_LEVEL_INFO,
an_array_of_strings, 3

);
success = 1;
dkapp_close(app); app = NULL;

}
success = (success ? 0 : 1);
exit(success);
return success;

}

theDK_LOG_LEVEL_... constants. are indklogc.h
The dkapp_log_msg() function is used to issue messages. Each message
consists of one ore more strings. The function needs a pointer to an array of
strings or a pointer to a pointer to a string and the number of strings to use.
Before you run the programhello04 you need to run

stc h04msg.str .

Now you can set different values in the/log/... preferences in
$HOME/.defaults/hello04 and run

./hello04

115

9.2.6 Retrieving command line arguments

File hello05.c shows how to retrieve the command line argumentswithout
preference overrides:

#include <dkapp.h>

#include <stdio.h>

#if DK_HAVE_STDLIB_H
#include <stdlib.h>
#endif

dk_app_t *app = NULL;

static int success = 0;

int main(int argc, char *argv[])
{

int my_argc, i;
char **my_argv, **lfdptr;
app = dkapp_open(argc, argv);
if(app) {

success = 1;
my_argc = dkapp_get_argc(app);
my_argv = dkapp_get_argv(app);
lfdptr = my_argv;
i = 0;
while(i < my_argc) {

if(*lfdptr) {
printf("%5d \"%s\"\n", i, *lfdptr);

}
i++; lfdptr++;

}
dkapp_close(app); app = NULL;

}
success = (success ? 0 : 1);
exit(success);
return success;

}

116

Run

./hello05 a b c --/log/stdout/level=progress \
--/ui/lang=en d e

(line too long, wrapped) and you will see the output

Application "hello05" started.
0 "./hello05"
1 "a"
2 "b"
3 "c"
4 "d"
5 "e"

Application "hello05" finished.

appear.
After closing the application usingdkapp_close() the pointer returned by
dkapp_get_argv() can no longer be used.

117

9.3 Memory allocation

In lesson9.4 on page120 we will create an in-memory-database for bank ac-
counts.
For each bank account we store a customer id and the accounts current value.
Before we do so we have to define the data type and to create functions to obtain
and release the memory needed.
File stotest.c shows these functions:

#include <dksto.h>
#include <dkmem.h>

typedef struct {
unsigned long customer_id;
double how_much;

} bank_account;

bank_account *
new_bank_account(unsigned long cid)
{

bank_account *back = NULL;
back = dk_new(bank_account,1);
if(back) {

back->customer_id = cid;
back->how_much = 0.0;

}
return back;

}

void
delete_bank_account(bank_account *baptr)
{

if(baptr) {
dk_delete(baptr);

}
}

As you can see we do not callmalloc() /free() directly, instead we use the
dk_new() anddk_delete() macros to do so.
dk_delete() expects the data type as argument and the number of datatypes.

118

It returns a pointer to the new element(s).
Thedk_delete() macro uses the same pointer to release the memory.
Note:This file does not contain a complete program yet, you can create an object
module only.

119

9.4 Sorting and searching

We can sort the bank accounts by customer id and by the account value.
To distinguish we define constants for the sort criteria:

#define COMPARE_BY_UID 0
#define COMPARE_BY_MONEY 1
#define COMPARE_AGAINST_UID 2

Now we create a comparison function. The arguments to this function are generic
pointers (void *) which must be converted to the matching data type before they
are used.
The third argument specifies which criteria to use for comparison.
In the case COMPARE_AGAINST_UID-branch the second(void *) pointer
is converted to a(unsigned long *) pointer. This is used to find the data
belonging to a given account id.

120

static
int
compare_bank_accounts(void *bl, void *br, int what)
{

int back = 0;
bank_account *bal, *bar;
bal = (bank_account *)bl; bar = (bank_account *)br;
switch(what) {

case COMPARE_BY_MONEY: {
if(bal->how_much > bar->how_much) {

back = 1;
} else {

if(bal->how_much < bar->how_much) {
back = -1;

}
}

} break;
case COMPARE_AGAINST_UID : {

uidptr = (unsigned long *)br;
if(bal->customer_id > (*uidptr)) {

back = 1;
} else {

if(bal->customer_id < (*uidptr)) {
back = -1;

}
}

} break;
default : {

if(bal->customer_id > bar->customer_id) {
back = 1;

} else {
if(bal->customer_id < bar->customer_id) {

back = -1;
}

}
} break;

}
return back;

}

121

In the main function we create two containers (dk_storage_t). If this suc-
ceeded we create iterators for the containers (dk_storage_iterator_t).
If this succeeded too we set the comparison functions for the containers. As you
can see data inst_cid is sorted by customer id, data inst_val is sorted by the
accounts value.
When we are done with the iterators and containers we release the memory.

int main(int argc, char *argv[])
{

dk_storage_t *st_cid, *st_val;
dk_storage_iterator_t *it_cid, *it_val;

st_cid = dksto_open(0); st_val = dksto_open(0);
if(st_cid) { it_cid = dksto_it_open(st_cid); }
if(st_val) { it_val = dksto_it_open(st_val); }
if(st_cid && st_val && it_cid && it_val) {

dksto_set_comp(
st_cid, compare_bank_accounts,
COMPARE_BY_UID

);
dksto_set_comp(

st_val, compare_bank_accounts,
COMPARE_BY_MONEY

);
/* ... banking takes place here */

}
if(it_val) {

dksto_it_close(it_val); it_val = NULL;
}
if(it_cid) {

dksto_it_close(it_cid); it_cid = NULL;
}
if(st_val) {

dksto_close(st_val); st_val = NULL;
}
if(st_cid) {

dksto_close(st_cid); st_cid = NULL;
}
exit(0); return 0;

}

122

After we finished banking operations we have to clean up memory. Code for this
is inserted before we continue in the
+/- remove all bank account data section.

int main(int argc, char *argv[])
{

dk_storage_t *st_cid, *st_val;
dk_storage_iterator_t *it_cid, *it_val;
int can_continue;
char inputline[256];
bank_account *baptr1, *baptr2, *baptr3;

st_cid = dksto_open(0); st_val = dksto_open(0);
if(st_cid) { it_cid = dksto_it_open(st_cid); }
if(st_val) { it_val = dksto_it_open(st_val); }
if(st_cid && st_val && it_cid && it_val) {

dksto_set_comp(
st_cid, compare_bank_accounts,
COMPARE_BY_UID

);
dksto_set_comp(

st_val, compare_bank_accounts,
COMPARE_BY_MONEY

);
/* ... + banking takes place here */
/* ... - banking takes place here */
/* ... + remove all bank account data */
dksto_it_reset(&it_cid);

while((baptr1=(bank_account *)dksto_it_next(&it_cid))!=NULL) {
delete_bank_account(baptr1);

}
/* ... - remove all bank account data */

}
if(it_val) { dksto_it_close(it_val); it_val = NULL; }
if(it_cid) { dksto_it_close(it_cid); it_cid = NULL; }
if(st_val) { dksto_close(st_val); st_val = NULL; }
if(st_cid) { dksto_close(st_cid); st_cid = NULL; }
exit(0); return 0;

}

123

Now we are ready to add the functionality. The program reads standard input and
expects the following commands:

g <account>
s <account> <value>
p a
p v

Theg command retrieves an account’s value and prints it,s sets a new value for
an account,p a prints all accounts values sorted by account id andp v print all
account values sorted by value.
Some possible input is shown inST O T E S T. I N .
The program code consists of a loop reading input line by line. Each line is parsed
to find a command, and options as account id and value.
The following code finds the account data for a given account id
accountnumber :

baptr1 = dksto_it_find_like(
it_cid,
(void *)(&accountnumber),
COMPARE_AGAINST_UID

);

We are searching in the container which is sorted by account id.
Each account data is compared against a given account id stored in the variable
accountnumber . A pointer to that variable is passed to the function.
The search criteriaCO M P A R E_A G A I N S T_U I D tells the comparison function to
treat the secondvoid *) pointer as a pointer tounsigned long .
Note:You can specify another search criteria than the containers sorting criteria
but make sure the criteria choice makes sense.
In our example it would not be useful to use theCO M P A R E_A G A I N S T_U I D

search criteria onit_val because data is sorted by value in the containerst_val .
The +/- create new account section shows how to create a new bank ac-
count and insert it into the two containers:

baptr1 = dk_new(bank_account,1);
if(baptr1) {

baptr1->customer_id = accountnumber;
baptr1->how_much = value;
if(dksto_add(st_cid,baptr1)) {

if(!dksto_add(st_val,baptr1)) {
dksto_remove(st_cid,baptr1);
delete_bank_account(baptr1);

124

}
} else {

delete_bank_account(baptr1);
}

}

If the account data can not be added to the containers it is destroyed.
The+/- update existing account section shows how to update an existing
account:

dksto_remove(st_val,baptr1);
baptr1->how_much = value;
if(!dksto_add(st_val,baptr1)) {

dksto_remove(st_cid,baptr1);
delete_bank_account(baptr1);

}

The reference to the account data is removed from thedk_storage_t sorted
by value because the position of the account in the container may change. After
updating the accounts value it is inserted again.
The+/- ... print, sorted... section shows how to traverse a container:

dksto_it_reset(it_cid);
while((baptr1 = dksto_it_next(it_cid)) != NULL) {

printf("%10lu\t%10lg\n", baptr1->customer_id,
baptr1->how_much

);
}

After resetting the iterator usingdksto_it_reset() , dksto_it_next()
is invoked until it returnsNU L L.

125

9.5 Generic I/O

Thedk_stream_t data type provides an I/O interface so functions do not need
to know I/O details. The function simply writes to or reads from thedk_stream_t
and does not need to care whether it is connected to a file, a port (not yet imple-
mented) or a network connection (also not yet implemented). When writing to file
we have the choice whether to compress or not and which compression algorithm
to select.

9.5.1 Using the generic I/O

We will write a compression/decompression program named fc. The program will
take two arguments, a source file name and a destination file name. Depending
on the file name extensions.gz , .bz2 or other it treats input and output file as
gzip - or bzip2 compressed or uncompressed files. Thecopy_streams()
function copies from a source streamsrc to a destination streamdst .

static
int
copy_streams DK_P2(

k_stream_t *, dst, dk_stream_t *, src
)
{

int back;
char buffer[MY_BUFFERSIZE];
int can_continue;
size_t bufused, bufwritten;
can_continue = back = 1;
while(can_continue) {

bufused =
dkstream_read(src,buffer,sizeof(buffer));
if(bufused) {

bufwritten =
dkstream_write(dst,buffer,bufused);
if(bufwritten != bufused) {

can_continue = 0;
back = 0;

}
} else {

can_continue = 0;
}

}

126

return back;
}

This function has not to care about the streams’ details.

127

Themain() function is responsible for setting up the stream:

int main(int argc, char *argv[])
{

int exval = 0;
int inputtype, outputtype;
dk_stream_t *instr, *outstr;
char *p1, *p2;
if(argc == 3) {

inputtype = outputtype = 0;
p1 = dksf_get_file_type_dot(argv[1]);
p2 = dksf_get_file_type_dot(argv[2]);
inputtype = get_type(p1);
outputtype = get_type(p2);
instr = outstr = NULL;
switch(inputtype) {

case 1:
instr =
dkstream_opengz(argv[1], "rb", 0, NULL);

break;
case 2:

instr =
dkstream_openbz2(argv[1], "rb", 0, NULL);

break;
default :

instr =
dkstream_openfile(argv[1], "rb", 0, NULL);

break;
}
switch(outputtype) {

case 1:
outstr =
dkstream_opengz(argv[2], "wb", 0, NULL);

break;
case 2:

outstr =
dkstream_openbz2(argv[2], "wb", 0, NULL);

break;
default:

outstr =
dkstream_openfile(argv[2], "wb", 0, NULL);

128

break;
}
if(instr && outstr) {

exval = copy_streams(outstr, instr);
}
if(outstr) {

dkstream_close(outstr); outstr = NULL;
}
if(instr) {

dkstream_close(instr); instr = NULL;
}

}
exval = (exval ? 0 : 1);
exit(exval); return exval;

}

All it has to do is to select the correctdkstream_open... function corre-
sponding to the file name.

129

Thedkstream_..._word() anddkstream_..._uword() functions read
and write 16-bit-words.
Thedkstream_..._dword() anddkstream_..._udword() functions
are for 32-bit-words.
These functions automatically convert to and fromnetwork byte order.

Thedkstream_rb_string() anddkstream_wb_string() functions can
be used to read and write strings.
The string length (including the trailing null-byte) is written first as 16-bit-unsigned
word, the string follows.
This allows the thedkstream_rb_string() function to read the string length
first, allocate memory and read the string.
The string memory obtained fromdkstream_rb_string() must be freed by
dk_delete() when it is not longer needed.

There are two functionsdkstream_gets() anddkstream_puts() similar
to thefgets() andfputs() functions.
If there is nofgets() -like function in thedk_stream_t’s underlying mech-
anism, characters are read one by one until a line is completed.
This may slow down your application.

130

9.5.2 Writing stream callback functions

Among others eachdk_stream_t contains a(void *) pointer to the support-
ing data and a(dk_stream_fct_t *) pointer to a function doing the real I/O
behind the scenes.
The function takes a pointer to adk_stream_api_t object as argument used
for passing arguments and return value.

The cmd component of thedk_stream_api_t object tells the callback func-
tion what to do:

• DK_STREAM_CMD_TEST
is used to check whether the stream supports a given command.
The command number to check for is passed inparams.cmd .
If the operation is supportedreturn_value must be set to1, otherwise
0.

• DK_STREAM_CMD_RDBUF
indicates a read request. The buffer address and buffer length are passed in
params.buffer andparams.length .
On success (anything was read)return_value must be set to1 by the
callback function,params.used must contain the number of bytes really
read. On error the function must setreturn_value to 0.

• DK_STREAM_CMD_WRBUF
indicates a write request. If anything was written the function has to set
return_value to 1, results.used must contain the number of bytes
written.
On errorreturn_value must be set to0.

• DK_STREAM_CMD_FINISH
indicates the closing of the stream. All buffers must be flushed, ressources
must be released, files must be closed . . .

• DK_STREAM_CMD_FINAL
indicates the end of the streams operations. Buffers are to be flushed. All
resources must be kept usable.

• DK_STREAM_CMD_REWIND
requests to rewind the stream. On successreturn_value must be set to
1, otherwise0.

• DK_STREAM_CMD_FLUSH
asks for a buffer flush.

131

• DK_STREAM_CMD_AT_END
asks whether we are at the streams end during a read operation. If so we
have to setreturn_value to 1, otherwise0.

• DK_STREAM_CMD_GETS
requests to read a line of test. The buffer pointer and length are passed to
the function,1 and0 are expected inreturn_value to indicate success
and error.

• DK_STREAM_CMD_PUTS
wants to write a null-terminated string. The string pointer is passed to the
function,return_value must be set to the return status.

132

9.5.3 Establishing a callback function

It is recommended to write a...stream_open...() function. This func-
tion should first open the underlaying connection and aquire resources. The next
step is to calldkstream_new() . If dkstream_new() fails the underlaying
connection must be closed and the resources need to be released.

9.5.4 Callback example

There is no sample code shown here, look indkstream.c instead.
The file_stream_function() is the callback function used for regular
files.
The dkstream_openfile() function opens a file,name andmode are the
same as used forfopen() .
If the file is opened successfully adk_stream_t is allocated and set up for the
(FILE *) pointer returned by fopen,file_stream_function is the call-
back function.

133

10 Appendix

10.1 Preferences Overview

10.1.1 General preferences

Table 15: Preferences

Preference Value

/ui/lang language code for language_region.encoding

/ui/lang/env boolean, indicates whether theLA N G environ-
ment variable overwrites/ui/lang

/dir/app directory name for application base directory

/dir/shared directory name for shared directory

/dir/tmp directory name of temporary directory

/log/file/name file name for log file

/log/file/level minimum message priority for logging to file

/log/file/keep priority necessary to keep log file when program
exits

/log/file/codepage file name of codepage file to use when logging to
file

/log/file/time boolean, indicates whether to include date and
time in log messages printed to file

/log/file/split boolean, indicates whether to break log file lines
after date and time

/log/stdout/level minimum message priority for logging to stan-
dard output

/log/stdout/time boolean, indicates whether to include date and
time in log messages printed to standard output

/log/stdout/codepage file name of codepage file to use when logging to
standard output

/log/stdout/split boolean, indicates whether to break log lines af-
ter date and time when logging to standard output

/log/stderr/level minimum message priority for logging to stan-
dard error stream

. . . to be continued

134

Continuation

/log/stderr/codepage file name of codepage file to use when logging to
standard error stream

/log/stderr/time boolean, indicates whether to include date and
time when logging to standard error stream

/log/stderr/split boolean, indicates whether to break log lines af-
ter date and time when logging to standard error
stream

/log/stdout/ide
/log/stderr/ide
/log/file/ide

string, allows an application to behave like a com-
piler if it knows about a source file name and line
number.
Choices are as follows:

• none
Normal behaviour.

• g$cc
Simulate Gnu C compiler.

• ms$vc
Simulate MS Visual C++ 5.0 compiler.

• w$orkshop
Simulate Sun Workshop C compiler.

• t$asm
Simulate Borland C 3.1’s Turbo Assem-
bler.

You can specify eithergcc or simply the abbre-
viationg, abbreviation is allowed after the dollar
sign.

/storage/trees boolean, indicates whether tree structures are al-
lowed for sorted storage (do not set this)

135

10.1.2 Preferences for security checks

These preferences – if used – decrease security and can be set on command line
only.
Be sure to know what you are doing.

Table 16: Preferences for security checks

Preference Value

/sec/ign/link-owner Boolean, skips the check whether the
owner of a symbolic link is the owner of
the target file.

/sec/ign/dir-group-writable Boolean, skips the check whether the
symbolic link resides in a group writable
directory.

/sec/ign/dir-world-writable Boolean, skips the check whether the
symbolic link resides in a group- or
world-writable directory.

136

10.2 Macros in preferences

The following macros can be used to define/log/file/name , /dir/app ,
/dir/shared and/dir/tmp .
Example:

"/dir/app"="/usr/local/lib/$(app.name)"

The translation is done by the
int dkapp_transform_string(dk_app_t *a, char *d, size_t
sz, char *s)
function.

Table 17: Preferences

Macro Replacement text

app.name the name of the current application

user.name the users login name

user.home the users home directory

user.uid the users UID

user.gid the users GID

user.euid the users effective UID

user.egid the users effective GID

host.name the host name (short)

host.domain the DNS domain the host belongs to

app.dir the application base directory
(can not be used to define/dir/app)

shared.dir the shared directory
(can not be used to define/dir/shared)

temp.dir the temporary directory
(can not be used to define/dir/tmp)

process.pid the PID of the current process

process.ppid the PID of the parent process

process.pgid the process group ID

137

10.3 Search order for the dkapp_find_file() function

In this section we use the following placeholders:

• prefix
is the installation prefix (the directory where the software on your system
resides).
On U*x systems this is mostly /usr/local, on W* systems C:\ Programs is
oftenly used.

• appname
is the name of the application without the leading directory and a trailing
suffix (i.e. .exe).

• groupname
is the name of the software package the application belongs to. I.e. the pro-
gramsklpr , klpq , klprm , klpc andsnmpyalc belong to the group
yanolc .

• application-directory
is a directory containing resources for a specific application. This is set via
the /dir/app preference. If this preference is not defined the directory
defaults toprefix/lib/appname.

• shared-directory
is a directory containing resources used by several applications. This is set
via the /dir/shared preference. If this preference is not defined the
directory defaults toprefix/lib.

• %WINDIR%
is your Windows directory which is found by theGetWindowsDirectoryA()
function (on W* systems only).

• sysconfdir
is the directory containing configuration files on your system. This is con-
figured via the-sysconfdir= option when running./configure on
U*x systems and defaults toprefix/etc or/etc .

• language, regionandencoding
are the preferred languagem, region and encoding as specified by the/ui/l
preference or theLA N Genvironment variable. A value ofen_US.UTF-8
sets the language toen , the region tous and the encoding toutf-8 .

138

Thedkapp_find_file() function searches for

filename
filename.gz when compiled with gzip support,
filename.bz2 when compiled with bzip2 support

in the following directories:
current directory
application-directory/language/region/encoding
application-directory/language/region
application-directory/language/encoding
application-directory/language
application-directory/region/encoding
application-directory/region
application-directory/encoding
application-directory
shared-directory/groupname/language/region/encoding
shared-directory/groupname/language/region
shared-directory/groupname/language/encoding
shared-directory/groupname/language
shared-directory/groupname/region/encoding
shared-directory/groupname/region
shared-directory/groupname/encoding
shared-directory/groupname
shared-directory/language/region/encoding
shared-directory/language/region
shared-directory/language/encoding
shared-directory/language
shared-directory/region/encoding
shared-directory/region
shared-directory/encoding
shared-directory
%WINDIR%/appname/language/region/encoding
%WINDIR%/appname/language/region
%WINDIR%/appname/language/encoding
%WINDIR%/appname/language
%WINDIR%/appname/region/encoding
%WINDIR%/appname/region
%WINDIR%/appname/encoding
%WINDIR%/appname
%WINDIR%/groupname/language/region/encoding
%WINDIR%/groupname/language/region

139

%WINDIR%/groupname/language/encoding
%WINDIR%/groupname/language
%WINDIR%/groupname/region/encoding
%WINDIR%/groupname/region
%WINDIR%/groupname/encoding
%WINDIR%/groupname
%WINDIR%/language/region/encoding
%WINDIR%/language/region
%WINDIR%/language/encoding
%WINDIR%/language
%WINDIR%/region/encoding
%WINDIR%/region
%WINDIR%/encoding
%WINDIR%
sysconfdir/appname/language/region/encoding
sysconfdir/appname/language/region
sysconfdir/appname/language/encoding
sysconfdir/appname/language
sysconfdir/appname/region/encoding
sysconfdir/appname/region
sysconfdir/appname/encoding
sysconfdir/appname
sysconfdir/groupname/language/region/encoding
sysconfdir/groupname/language/region
sysconfdir/groupname/language/encoding
sysconfdir/groupname/language
sysconfdir/groupname/region/encoding
sysconfdir/groupname/region
sysconfdir/groupname/encoding
sysconfdir/groupname
sysconfdir/language/region/encoding
sysconfdir/language/region
sysconfdir/language/encoding
sysconfdir/language
sysconfdir/region/encoding
sysconfdir/region
sysconfdir/encoding
sysconfdir

140

10.4 Search order for the dkapp_find_cfg() function

Thedkapp_find_cfg() function searches for

filename
filename.gz when compiled with gzip support,
filename.bz2 when compiled with bzip2 support

in the following directories:
%WINDIR%/appname/language/region/encoding
%WINDIR%/appname/language/region
%WINDIR%/appname/language/encoding
%WINDIR%/appname/language
%WINDIR%/appname/region/encoding
%WINDIR%/appname/region
%WINDIR%/appname/encoding
%WINDIR%/appname
%WINDIR%/groupname/language/region/encoding
%WINDIR%/groupname/language/region
%WINDIR%/groupname/language/encoding
%WINDIR%/groupname/language
%WINDIR%/groupname/region/encoding
%WINDIR%/groupname/region
%WINDIR%/groupname/encoding
%WINDIR%/groupname
%WINDIR%/language/region/encoding
%WINDIR%/language/region
%WINDIR%/language/encoding
%WINDIR%/language
%WINDIR%/region/encoding
%WINDIR%/region
%WINDIR%/encoding
%WINDIR%
sysconfdir/appname/language/region/encoding
sysconfdir/appname/language/region
sysconfdir/appname/language/encoding
sysconfdir/appname/language
sysconfdir/appname/region/encoding
sysconfdir/appname/region
sysconfdir/appname/encoding
sysconfdir/appname
sysconfdir/groupname/language/region/encoding

141

sysconfdir/groupname/language/region
sysconfdir/groupname/language/encoding
sysconfdir/groupname/language
sysconfdir/groupname/region/encoding
sysconfdir/groupname/region
sysconfdir/groupname/encoding
sysconfdir/groupname
sysconfdir/language/region/encoding
sysconfdir/language/region
sysconfdir/language/encoding
sysconfdir/language
sysconfdir/region/encoding
sysconfdir/region
sysconfdir/encoding
sysconfdir

142

	Overview
	License
	Acronyms
	Installation
	Installation on *nix systems
	Installation on Windows systems
	Using the nt.mak file
	Manual installation

	Usage guidelines
	A worst case scenario
	Conclusions

	Headers and modules
	dk.h
	dkconfig.h - Configuration
	dkconfd.h - Default configuration
	dkproto.h - Prototypes/Declarations
	dkerror.h - Error codes
	dktypes.h - Data types
	dkmem.h - Dynamic memory allocation
	dkenc - Encoding
	dkslsupp - Syslog support
	dksfc - Preprocessor definitions for file types and permissions
	dksf - Interface to system functions
	Information about files
	Directory traversal
	File name expansion
	Other functions

	dkstr - String handling
	dktok - Group input characters to tokens
	Overview
	Functions
	Example

	dksignal - Signal handling
	dklog - Log messages (obsoleted)
	Writing log messages
	Customizing log output

	dkss - String search (obsoleted)
	dkbf - Bit fields
	dkma - Mathematical operations
	dkstream - I/O API
	Doing I/O operations
	Writing handler functions

	dkof - output filtering
	Overview
	Functions
	Usage

	dkcp - Dealing with codepages
	Overview
	Functions
	Codepage file structure
	Example

	dksto - Sorted and unsorted data storage
	Overview
	An example

	dkstt - String tables
	dkapp - Application
	dktcpip - TCP/IP networking

	Administration
	Installation
	Preferences management
	Preferences storage
	Configuration files example
	Preferences storage on 32-bit W* systems

	Recommended environment variables for W*32 systems

	Security
	Tutorial
	About the tutorial
	Introduction to the dkapp module
	The simple Hello-world-program
	Adding application support
	Setting preferences
	Internationalization
	Logging
	Retrieving command line arguments

	Memory allocation
	Sorting and searching
	Generic I/O
	Using the generic I/O
	Writing stream callback functions
	Establishing a callback function
	Callback example

	Appendix
	Preferences Overview
	General preferences
	Preferences for security checks

	Macros in preferences
	Search order for the dkapp_find_file() function
	Search order for the dkapp_find_cfg() function

