
1 Compatibility

1.1 TEX Font Metric
Not finished...

1

1.2 Subfont Support
Plain TEX is only capable of handling 7 or 8-bit encodings and all font usable by
TEX can not contain more than 256 glyphs. But many languages requires more
characters than this limit. Well known examples are Chinese, Japanese, and
Korean (CJK) languages. CJK fonts may contain even more than ten thousands
of glyphs in single font. Thus, plain TEX has fundamental problem in treating
those languages. There are several way to typeset text written in languages
with larger character set. One way to do this is to split large font into multiple
smaller fonts, subfonts, and manage characters by identifier of subfont to which
character belong and single-byte code within that subfont. There are several
TEX or LATEX macro packages does this process automatically, like CJK-LATEX,
HLATEX, and NTT-jTEX.

However, dvipdfmx want single multibyte font rather than multiple sub-
fonts for various reason, and it provide a way to map subfonts originated from
a single font to a single intermediate font without relying on virtual fonts. This
is essentially the inverse process of what macro packages like CJK-LATEX does.
Support for CJK-LATEX and HLATEX is realized by this feature. This mapping
is done through subfont definition (SFD) file. The subfont definition file de-
scribes how font is split into a set of subfonts, and is used by ttf2pk program to
automate things and consintently manage them in font-independend manner.
Please refer documents from ttf2pk program for detailed information on SFD
file format.

To enable this feature, you should use a special name of format

tex_font_name@SFD_name@

in font mapping file for TEX font name rather than listing font mapping for all
subfonts separately. For example, to map subfonts of traditional chinese font
with prefix bsmi to single intermediate font with Big-5 encoding, write

bsmi@Big5@ ETen-B5-H bsmi00lp

The effect of using this font name is that if dvipdfmx encounters fonts with
prefix bsmi such as bsmi01within DVI file and if the font has subfont identifier
(digits following bsmi in this case) allowed for SFD Big5, dvipdfmxmaps those
subfonts to an intermediate double-byte font bsmi@Big5@ and re-encode text in
Big-5 encoding accroding to the rule for subfont creation described in the SFD
file Big5. The mapping is done when dvipdfmx is interpreting DVI file but not
when it is handling text and font for PDF output.

2

2 Font and Encoding
Managing font is rather complicated task in TEX and in using DVI drivers. It is
also true for dvipdfmx, rather, it is worse than in other DVI drivers. Dvipdfmx
supports a variety of font formats and they are sometimes treated differently
depending on how they are used, and they are sometimes converted to differ-
ent font format for embedding to output PDF file.1 Dvipdfmx tries to absorb
difference of font format as much as possible. And indeed there are mostly no
distinction between them unless you use multi-byte encodings.

2.1 Supported Font Format
The following font formats are currently supported by dvipdfmx:

• PK font
TEX's PK font format is supported as in dvipdfmwith fewmodification to
avoid problems rarely heppens in some PDF viewers. Always embedded
as Type 3 (bitmap) font.

• PostScript Type 1 font
PostScript Type 1 fonts are supported as in dvipdfm but it was completely
rewritten. They are always converted to CFF (Compact Font Format)
which is another representation of PostScript Type 1 font such as PFB and
PFA. As PDF support Type 1 font, there are no need to convert them to
CFF, however, conversion to CFFmakes it easier to fully support Unicode
and higher compression ratio is expected since CFF format is free from en-
cryption. PostScript Type 1 font may be embedded as Type 1C (CFF) or
CIDFontType 0 CIDFont. Multiple-Master font is not supported yet.

• TrueType font
Both TTF and TTC (TrueType Collection) is supported. There are many
enhancement to dvipdfm including subsetting. They may be embedded
as TrueType (simple) font or as CIDFontType 2 CIDFont which is basi-
cally CID-keyed version of Type 42 font. Dvipdfmx may fail to handle
old TrueType font for Mac OS since it depend on extension made for
Windows and OS/2.

• OpenType font
OpenType fonts with TrueType outlines (.ttf) and with PostScript out-
lines (.otf) is both supported. They may be embedded as simple font
(Type 1C or TrueType), CIDFontType 2, or CIDFontType 0 CIDFont de-
pending on outline format and their use.

In addition to the fonts listed above, there are special kind of font supported
by dvipdfmx for CJK support, which is described in “Acrobat and Printer Res-
ident Font”.

1There might be minor quality loss introduced by font format conversion. But there should
not be any quality loss when the document is rendered at enough resolution. Dvipdfmx does
not do outline format conversion such as TrueType to PostScript conversion. Hinting is preserved
whenever possible. The only expection is ghost stem hint in Type 1 font. It is not distinguished
from ordinary stem hints in Type 1 to CFF conversion.

3

-e number Set horizontal scaling of font.

-s number Slant the font.

-r Obsolete...

-b number Specify boldness parameter of fake bold font.

-l string ...

2.2 Font Mapping
Not finished yet.

4

2.3 Accessing Glyphs in Font
Todealwith problems releted to font youmay encounterwhenusingdvipdfmx,
you should know that there are several different way to use font in dvipdfmx.
They are classified according as how dvipdfmx access glyphs contained in a
font, and is determined from what is specified in encoding field of font map-
ping record. Dvipdfmx basically uses PostScript based glyph access to get glyph
descriptions (glyph metrics or outline data describing detailed shape of glyph)
for when encoding file or CMap PostScript Resource is used as encoding. Unicode
based glyph access is chosen when keyword unicode is specified as encoding.

PostScript based glyph access PostScript Type 1 font traditionally uses glyph
names which is a string representing them, such as AE and quoteleft,
to uniquely identify individual glyphs contained in a font. Glyph de-
scriptions are stored with those string keys and accessed with it. In CID
font format, which is relatively newer format in PostScript, non-negative
integers called CID (Character Identifier) are used instead of strings for
this purpose. CID-keyed font is originally developed for supporting large
character set such asChinese, Japanese, andKorean in PostScript. In those
languages, using strings is quite inefficient and it is difficult to give con-
sice names to all glyphs and tomanage it since there aremore than several
ten thousands of glyphs actually used in publishing. Glyphs are uniquely
identified by specifying both CID and character collection to which the
glyphs belongs.

Unicode based glyph access Glyphs are accessed through Unicode and tags
representing variant forms. This is experimental feature and is discussed
in a separate section. See the section “Unicode Support”.

Both the above method is supported for all font format2 except PK font and
non-embedded CIDFont mentioned in “Acrobat and Printer Resident Font”.
However, as natural way to access glyphs depend on font format, dvipdfmx
may require auxiliary file(s) to absorb the difference of font format. Those files
are described in “Adobe Glyph List and CID-To-Code Mapping” in details. In
some situations, dvipdfmx mixes those method to increase reliability on find-
ing glyphs. Thus, you should install at least Adobe Glyph List file. And CJK
TrueType font users must install CID-To-Code Mapping files adequate to each
languages to enable PostScript based glyph access.

Each method have their own mirit and demirit: PostScript based glyph ac-
cess is, in general, more flexible and reliable in that users can re-encode font
rather arbitrary by supplying encoding file or CMap, and all glyphs are ac-
cessible in this way for PostScript fonts. It is well suited for using PostScript
and PostScript flavored OpenType fonts, but it may not work as reliably for
TrueType because conversions are sometimes involved several times to enable
access to glyph with PostScript glyph names or CIDs. Using Unicode is much
simpler in some cases but tend to lack flexibility and reliability in many cases
mostly due to limitations in dvipdfmx, and several problems are never resolved
in dvipdfmx as a DVI driver.

2That is not exactly true: CIDs can not be used for Type 1 and glyph names can not be used for
OpenType CIDFont. TrueType fonts must have Unicode cmap for Unicode access.

5

As long as you stay on 8-bit encodings, the only choice is to use PostScript
based glyph access and there are essentialy no difference with dvips on using
font. Just specify the name of encoding file (.enc file) which defines correspon-
dence between input codes in DVI and glyphs in actual font to which TEX font
is mapped. For CJK support and other multi-byte character support, CMap
is used in place of encoding file to translate input codes to CIDs in PostScript
based glyph access. Dvipdfmx can work relatively nicely with TrueType and
OpenType fonts (not different thanusingType 1 font). ForCJK-LATEXandOmega
users, Unicode is reasonable choice but dvipdfmx can't fulfill all requirement
for high-quality publishing. If you have good quiality OpenType font with
PostScript outline andwant to use all of glyphs containedwithin them, PostScript
based glyph access might be suited for your purposes.

2.4 CMap and Encoding File
Nothing yet...

6

2.5 Adobe Glyph List and CID-To-Code Mapping
As mentioned earlier on this section, there are several method to access glyphs
in a font. However, since each font formats uses differentway to identify glyphs,
some font format may not work well for some situation. To minimize restric-
tions and differences on using font, dvipdfmx tries to compensate difference
of font format using auxiliary files, Adobe Glyph List and CID-To-Code Mapping
files.

Adobe Glyph List This resource associate PostScript glyphnameswith it's cor-
responding Unicode characters.

CID-To-Code Mapping This resource describes the mapping from CIDs in a
given character collection to character codes in some character encoding
(inverse mapping of usual CMap). When the target encoding is Unicode
encodings, the term ToUnicode CMapmay be used to denote this resource
in this document.

The Adobe Glyph List file is required for supporting PostScript based glyph
access in TrueType or OpenType font with TrueType outlines if font itself does
not provide information for associating PostScript glyph names with glyphs
contained in font. This information is stored in an auxiliary TrueType table
called post table (version 2.0)3 and most of TrueType fonts has this table for
compatibility with PostScript. However, TrueType fonts often has incomplete
table and OpenType font may not have this table at all. In this case, Adobe
Glyph List file may be used to find glyphs through Unicode if font supports
Unicode encoding. It is also required to enable Unicode based glyph access in
PostScript Type 1 font. Installation of this resource is recommended since other
features relies on it too.

The file name of this resource must be glyphlist.txt and must be located
in dvipdfmx's search path for “other text files”. The content of this file should
look like:

comment
A;0041
AE;00C6

Lines starting with # is a comment. All other lines actually describes the map-
ping, the first field is PostScript glyph name, a semicolon delimiting each fields
follows, and the next field is correspondingUnicode values (separated by spaces
if the glyphs is mapped to a sequence of multiple Unicode characters) in upper-
case hexadecimal notion.

For CID fonts (CJK) support, CID-To-Code Mapping resource is required
for supporting PostScript based glyph access in TrueType and OpenType font
with TrueType outlines. You should at least install ToUnicode CMap appropri-
ate for language you use. Dvipdfmx also support other type of CID-To-Code
mapping than ToUnicode for several CJK encodings to support older TrueType
fonts not supporting Unicode. Table 1 lists CID-To-Code Mappings required
for each encodings supported by dvipdfmx and for Adobe's character collec-
tions. Those files are available from Adobe. You may already have those files

3Apple seems to have more sophisticated extension to manage glyphs but dvipdfmx not sup-
porting this yet.

7

Table 1: CID-to-Code mapping file for each TrueType encodings.

Encoding Platform Character Collection ToCode Mapping

Unicode Adobe-GB1 Adobe-GB1-UCS2

Adobe-CNS2 Adobe-CNS1-UCS2

Adobe-Japan1 Adobe-Japan1-UCS2

Adobe-Korea1 Adobe-Korea1-UCS2

RPC Windows Adobe-GB1 Adobe-GB1-GBK-EUC

Mac OS Adobe-GB1-GBpc-EUC

Big5 Windows Adobe-CNS1 Adobe-CNS1-ETen-B5

Mac OS Adobe-CNS1-B5pc

SJIS Windows Adobe-Japan1 Adobe-Japan1-90ms-RKSJ

Mac OS Adobe-Japan1-90pv-RKSJ

Wansung Windows Adobe-Korea1 Adobe-Korea1-KSCms-UHC

Mac OS Adobe-Korea1-KSCpc-EUC

somewhere on your hard-disk if you have installed localize versions of Adobe
(Acrobat) Reader (or with Acrobat Reader Asian Font Packs) or GhostScript.
As this resource file uses same syntax as ordinary CMap PostScript resources,
they should be installed in dvipdfmx's search path for “cmap files”.

There is known problem in ToUnicode CMaps: Apple and Microsoft using
different Unicode assignment for several CJK symbols, and Adobe seems fol-
lowing Apple's one. This will cause problems when using TrueType fonts for
Microsoft Windows platform with PostScript based glyph access. Dvipdfmx
automatically adjust fewproblematic symbols frequently used such as horizon-
tal ellipsis (three-dot leader), wave dash, and double vertical line, but it will not
work perfectly. Another format may be introduced to resolve this issue.

8

Table 2: Acrobat and PostScript printer resident font supported by dvipdfmx.

Language Character Collection PostScript Font Name

Chinese (trad.) Adobe-CNS1-0 MHei-Medium-Acro

MSung-Light-Acro

Adobe-CNS1-4 AdobeMingStd-Light-Acro

Chinese (simpl.) Adobe-GB1-2 STSong-Light-Acro

Adobe-GB1-4 AdobeSongStd-Light-Acro

Japanese Adobe-Japan1-2 HeiseiMin-W3-Acro

HeiseiKakuGo-W5-Acro

Ryumin-Light

GothicBBB-Medium

Adobe-Japan1-4 KozMinPro-Regular-Acro

KozGoPro-Medium-Acro

Korean Adobe-Korea1-0 HYGoThic-Medium-Acro

HYSMyeongJo-Medium-Acro

Adobe-Korea1-2 AdobeMyungjoStd-Medium-Acro

2.6 Acrobat and Printer Resident Font
As CJK fonts contains too many glyphs, it takes quite long time and cost much
to create font with enough quality. Due to this fact, there are not so many CJK
fonts freely available there and sometimes they tend to be rather expensive.
Furthermore, file size become very large when they are embedded into PDF.

To deal with those problems, dvipdfmx supports several fonts that act like
“PDF Standard Font for CJK” listed in table 2. For those fonts, minimal font in-
formation usually required by PDF viewers are available from the dvipdfmx's
built-in data. They does not contain any glyph (outline or bitmap) data re-
quired to draw actual shape of each glyphs, hence, PDF viewers must replace
those fonts with suitable one. This means that the reproducibility of document
layout, when the document is opened on the recipient's system, is not guaran-
teed at all, however, it works quite well for CJK text if you do not use special
glyphs in your document. Please use those fonts if you are sure that all peoples
who receives your document have suitable font installed on their system and if
your interest is only the file size.

This feature is provided only for convenience and please do not expect you
can always obtain correct result since font substitution is dependent on the abil-
ity of PDF viewers. Note that proportional glyphs are not supported for those
fonts. Basically, only glyphs of which widths are determined solely from their

9

CID and character collection but do not differ among different font are sup-
ported; i.e., full-, half-, quarter-, and third-width forms.

All of the above fonts containing “-Acro” in their PostScript font name are
available from Adobe as part of Acrobat Reader Asian Font Packs for use with
Acrobat Reader, other font may found in PostScript printers.

2.7 Notes on OpenType CIDFont Support
There are few differences in OpenType CIDFont support between dvipdfmx
and other software regarding the treatment of “OpenType” fonts: In dvipdfmx
generated PDF file, embedded CID fonts inherit all glyph metric information
from the original OpenType font's glyph metrics tables in their CIDFont dic-
tionary entries W (horizontal metrics) and W2 (vertical metrics). This difference
especially affects when you are using pre-rotated forms of proportional glyphs;
The W2 metrics of CIDFont may contain proportional vertical displacement in
the case of dvipdfmx, while other converter like Distiller may treat them like
fixed-pitch font, and place each glyphs with position adjustment for compen-
sating the difference from OpenType vertical metrics. You should prepare TeX
font metrics using information from vmtx and VORG for vertical typesetting.

For the position vector (it describes displacement from the origin used for
horizontal writing to the origin used for vertical writing), the vertical compo-
nent of position vector is taken from VORG table whenever available, otherwise,
all vertical component of the position vector is set to sTypoAscender value in
OS/2 table, and the horizontal component is set to a half of horizontal advance
width. Currently, dvipdfmx does not make use of BASE table.

2.8 Using TrueType Font as CID-keyed Font
When a valid CMap is specified in the encoding field of font mapping and
font is mapped to TrueType font, dvipdfmx will treat that TrueType font as
CIDFontType 2 CIDFont. However, as TrueType font is not CIDFont, they does
not supports accessing glyphs with CIDs. Hence, dvipdfmx requires auxiliary
resource, CID-To-Code Mapping, to achieve compatibility between PostScript
flavored font (CID-keyed font) and TrueType font. Please refer “Adobe Glyph
List and CID-To-Code Mapping” for description about this resource.

In addition to this resource, the name of character collection to be used for
this font should be specified in font mapping record. This tells dvipdfmx in-
formation about glyph set covered by the font and ordering of them, and is
specified by appending a / and a string denoting character collection immedi-
ately after the font name as follows:

mincho UniJIS-UCS2-H ttmincho/AJ14

In the above example, ttmincho is converted to CIDFontType 2 CIDFont with
Adobe-Japan1-4 character collection. This can be implicit if you are not using
Identity CMaps; dvipdfmx will use the information available from CMaps ap-
plied to TrueType font: The following font mapping record

mincho UniJIS-UCS2-H ttmincho

10

implies Adobe-Japan1-4 since the CMap UniJIS-UCS2-H is a mapping from
character codes inUCS-2 to CIDs inAdobe-Japan1-4 character collection. How-
ever,

mincho Identity-H ttmincho

does not suggest any useful information since Identity CMap is generic CMap
that does not implies any specific character collection. In this case, dvipdfmx
will use font's internal glyph ordering. If you meant the font mincho using
Adobe-Japan1 ordering, you should explicitly specify this as

mincho Identity-H ttmincho/AJ12

Abbreviation AK1, AC1, AG1, and AJ1 can be used in character collection
field forAdobe's character collectionAdobe-Korea1, Adobe-CNS1, Adobe-GB1,
and Adobe-Japan1 respectively. If you want to use other character collection,
you must specify it with full name, e.g., for Adobe-Japan2-0,

min-hk-h Identity-H ttmincho/Adobe-Japan2-0

There are several limitations and problems in using TrueType fonts in this
way. The reason for this is, of course, because TrueType font is not CIDFont.
For CJK fonts, you should be careful about use of proportional glyphs.

11

3 Unicode Support
Since the version 200408XX, there is some support for Unicode in dvipdfmx.
This feature is highly experimental, especially features described in the section
“Selecting Glyph Variants” and “Discretionary Ligatures” is provided only for
testing purpose and to investigate what is required for basic Unicode support.
Please be aware that format of configuration files and optionsmentioned in this
section is subject to futrue change.

3.1 Unicode Support in Dvipdfmx
Dvipdfmx accepts encoding keywordunicode, in addition to default and none,
in the font mapping file for all font formats supported by dvipdfmx except PK
font and non-embedded CID font.

TrueType and OpenType font must have Windows UCS-2 format 4 cmap
(character mapping) subtable or Windows UCS-4 format 12 cmap subtable.
For Type 1 font support, you must install Adobe Glyph List (AGL) file4 in the
dvipdfmx search path for “other text files”. AGL file describes mapping from
PostScript glyph names to the corresponding Unicode values. All features re-
lated to Unicode requires this file for PostScript Type 1 font (and sometimes for
TrueType font) support. Type 1 font support is not fully functional yet: Glyph
substitution and PUA assignment of ligatures described later are not supported
for Type 1 font.

If you have single bigUnicodeOmega fontmetric (OFM) file, simply specify
unicode in the encoding field of fontmap file:

cyberbit unicode cyberbit

for Omega and Aleph, or if you are using CJK-LATEX package,

cyberb@Unicode@ unicode cyberbit

should work. In the previous versions of dvipdfmx, some tricks are used to
support Unicode encoding as inputDVI encoding. If your fontmap file contains
the following line,

cyberb@Unicode@ Identity-H cyberbit/UCS

you should modify it as the above example.
As there are no TEX font metric format supporting four-byte character code,

Unicode support in dvipdfmx is limited to a single Unicode code block of the
same group-plane per single TEX font. When font is embedded into PDF, they
are converted to CIDFont format. So, if Unicode encoding is used, the result-
ing PDF file may not print correctly when it is sent to PostScript (clone) printer
after conversion to PostScript. Please refer Adobe's web site5 for PostScript in-
terpreter versions supporting CID-keyed font.

4http://partners.adobe.com/asn/tech/type/unicodegn.jsp
5Adobe Solutions Network, Type Technology - CID-Keyed Fonts.

12

http://partners.adobe.com/asn/tech/type/unicodegn.jsp
http://partners.adobe.com/asn/tech/type/cidfonts.jsp

3.2 Selecting Glyph Variants
There are several problems in using Unicode with TEX. If you switch from
legacy TEX's way to Unicode, you will soon be troubled about how to pick up
desired glyphs from a font: Recently developed fonts in “intelligent” font for-
mat such asOpenType tend to have all variant forms of single character in single
font file, and they offer away to select a specific instance of characters frommul-
tiple variants rather than providing multiple font with different styles: You can
not choose desired glyph simply by changing font file in this case. Dvipdfmx
can partially resolve this issue.

In OpenType font format, application program may use data contained in
OpenType Layout (OTL) GSUB (glyph substitution) table to choose a glyph from
multiple variants representing same character. For example, if user request to
replace numerals 0123456789 in font's default style with oldstyle 0123456789,
the program looks for OTL table if font supports glyph substitution for oldstyle
numerals. In dvipdfmx, how OTL glyph substitution is done is controled by a
file with suffix .otl (not zero-t-one). The content of this file looks like:

script latn;
language *;

@numeral = [zero-nine];
required {

substitute @numeral by @numeral.onum;
};

In the above example, script that this file is supposed to control is latn (Latin
script) and all features belong to languages that uses this script may be used.
The line starting with “@” declares a class of Unicode characters, @numeral rep-
resents zero, one, ..., nine here. This is the same as writing

@numeral = [uni0030 uni0031 uni0032 uni0033 uni0034
uni0035 uni0036 uni0037 uni0038 uni0039];

where all characters are explicitely listed by their Unicode values. The block
enclosed by braces actually specifies the rule of glyph substitution: All glyphs
corresponding to @numeral in a font is replaced with the resulting glyphs after
OTL feature onum (oldstyle figures) is applied. The keyword required forces
dvipdfmx to abort if one or more of glyphs for @numeral is missing in font or
if they do not have oldstyle forms. Dvipdfmx currently supports prefered to
warn all missing glyphs and optional to silently ignore them.

After you have finished writing configuration file, and suppose that you
have saved it as oldstyle.otl,6 you can turn on OTL onum feature with the
option -l (lowercase L):

lplru-onum unicode pala -l oldstyle

As there are several features common to several languageswith same script,
it is desirable to place them into single file. For this purpose, dvipdfmx supports
option in configuration file which is enabled by specifying tag identifies that
option in dvipdfmx font mapping file.

6This filemust be locatedunder dvipdfmx's search path for format “other text files” (This usually
includes current working directory).

13

For example, to put substitution rules for oldstyle and small caps in single
configuration file, use option as:

script latn;
language *;

@numeral = [zero-nine];
@lowercase = [a-z];
@lcasesupp = [agrave-odieresis oslash-ydieresis];
option oldstyle {

required {
substitute @numeral by @numeral.onum;

};
};
option smallcap {

required {
substitute @lowercase by @lowercase.smcp;

};
prefered {

substitute @lcasesupp by @lcasesupp.smcp;
};

};

If you save this file as latin.otl, then you can select smallcap option by

lplrcu unicode pala -l latin:smallcap

to replace lowercase letters with small caps.
An another quick example that illustrate the use of this feature is selection

of simplified forms and traditional forms for Chinese.

script hani;
language (dflt|ZHT_|ZHS_);

@hanideo = [uni4E00-uni9FAF];

Rules common to smpl and trad may appear here.

option smpl {
optional {

substitute @hanideo by @hanideo.smpl;
};

};
option trad {

optional {
substitute @hanideo by @hanideo.trad;

};
};

Here language tag ZHT_ represents traditional Chinese and ZHS_ is simplified
Chinese, and dflt is the default language for script hani (CJK Ideograph)which
may differ among fonts. All features with script hani and language dflt, ZHT_,
or ZHS_ can be controlled within this configuration.

14

3.3 Discretionary Ligatures
The glyph substitution feature described in the previous section is limited to
single glyph to single glyph substitution. However, OpenType font may con-
tain ligatures not frequently used and not found in Unicode. To use those liga-
tures, you must assign code point to them. To do this, use assign command in
OTL configuration file as follows.

optional { # Ignore if missing
assign uniE00B to Q_u.dlig;
assign uniE018 to s_p.dlig;

};

Theabove example assignUnicode codepointU+E00B in PrivateUseArea (PUA)
to ligature “Qu” of letter “Q” and “u”, and U+E018 to “sp” ligature of “s” and
“p”. As those ligatures are not frequently used, they may be described in OTL
GSUB feature dlig (discretionary ligatures) but not in ligawhich is for standard
ligatures.

The last argument to this command is of the form

input_char_sequence.otl_tag

where the input char sequence is the sequence of input Unicode character
represented ascharacter name or uniXXXX form. Thecharcter names is the same
as PostScript glyph names listed in AGL file, but they are restricted only to
the names corresponding to single Unicode character, and names like Asmall
(small cap A) should not be used here. They are joined with underscores to
represent ligature. For examples, if there are ligature of “T” and slashed-l, the
input character sequence can be T_lslash, T_uni0142, uni0054_lslash, and
so on. The order that ligature component appears in the character sequence
should be in writing order. It may not be left-to-right order in some script. The
number of ligature components in single input character sequence is currently
limited up to 16 Unicode characters.

Unicode value to which the ligature glyph is mapped is single Unicode
value in the PUA range. As far as concerned with ligatures, PUA assignment
can be font specific, since users usually do not directly input character codes
representing ligatureswhenpreparingdocument. However, it is recommended
to assign unique code point among all fonts as much as possible.

For list of registered OpenType Layout tag and it's brief description, please
refer OpenType Specification, “OpenType Layout tag registry”.7 Dvipdfmx
currently only supports GSUB substitution with lookup type 1 (single) and type
4 (ligature), and lookup type 2 (multiple) will never be supported. It might be
possible to support lookup type 3 (alternate) substitution but there are prob-
lems in how to identify glyph variants of same kind among other fonts (there
may be problem even in same font with different versions). Glyph substitu-
tion is basically limited to one-to-one or many-to-one substitution. The sub-
stituted glyph with many-to-one substitution must be accessed through PUA;
dvipdfmxwill not replace multiplecharacters in DVI file with single glyph and
contextual substitution will never be done. TEX is responsible for doing such
things. What dvipdfmx will offer is to allow access to a glyph by some way.

7http://www.microsoft.com/typography/otspec/ttoreg.htm

15

http://www.microsoft.com/typography/otspec/ttoreg.htm

3.4 ToUnicode CMap Support
In PDF, Unicode appears whenever exchange of text information between PDF
viewers and other applications happens, or when PDF viewers interact with
users. Dvipdfmx try to create ToUnicode CMap, which explicitly tell the map-
ping from character code to Unicode, when doing so is preferable and is possi-
ble. This is important to ensure that PDF viewers correctly handle text strings
within PDF document for extraction of text information. If Unicode mapping
can not be done, copy-and-pasting text, searching text, and conversion from
PDF to other format such as plain-text or HTML, will not work. This feature is
not available for PK font.

There are nothing to be done to enable ToUnicode support if you are us-
ing unicode encoding. However, dvipdfmx requires AGL file for Type1 and
TrueType font if single-byte encoding is used; it read mapping data neces-
sary for converting PostScript glyph names to Unicode from AGL file. For this
feature to work correctly, both font and encoding file must use proper glyph
names.

ToUnicode CMap is created for each encodings and if 10% of glyph names
can not be converted to Unicode, ToUnicode CMap is not embedded for that
encoding. Please use “-v” option to find out which encodings dvipdfmx failed
creating or embedding ToUnicode CMap, or option “-vv” to see all glyphswith
no Unicode mapping available.

If dvipdfmx reports as noUnicodemapping available for someglyphnames.
And if you know the correspondence between glyph names and Unicode for
those glyph names. You can append entries to AGL file. For example, CMMI
(Computer Modern Italic) font contains “sharp” and Unicode code point for
this glyph is U+266F, but AGL file from Adobe lacks entry for this glyph name.
Hence, You should add the following lines

Addition for CMMI
sharp;266F

to the file glyphlist.txt. All lines starting with # is treated as comment and
is simply ignored.

Dvipdfmx adjust few glyph names like “oneoldstyle”, “summationtext”,
and “parenleftbig” as suitable; those glyphnames are converted to glyphnames
with suffix like “one.oldstyle”, “summation.text”, and “parenleft.big” when
the original glyph name does not have valid Unicode code point assigned or is
mapped to Private Use Area; and then Unicode values for glyph names with-
out suffix is used, e.g., Unicode value for “oneoldstyle” is notAdobe's corporate
use mapping U+F731 but U+0031. (Glyph names written in the embedded font
remains unmodified. This conversion is done temporarily only for the purpose
of ToUnicode CMap creation.)

For CID font using character collection different from the one published by
Adobe,8 dvipdfmx looks for ToUnicode CMap file and copy them to output
PDF file. The name of this resource file must be in the form registry-ordering-
UCS2 where registry and ordering is the registry and ordering of the character
collection used by the font. When preparing ToUnicode CMap, please do not
use usecmap operator as dvipdfmx can not handle them correctly yet.

8Excluding Adobe-Japan2 which contains glyphs from JIS X 0212:1990 (Hojyo Kanji).

16

4 Vertical Writing

4.1 Vertical Writing Support in Dvipdfmx
In dvipdfmx, all font have an attribute writing mode which takes value 0 or 1
(horizontal or vertical) and all text is set either in horizontal composition mode or
in vertical compositionmode. The text compositionmode is controlled by a special
DVI command and only supported by some extension to TEX, and font's writing
mode changes according as the WMode (writingmode) of current CMap used for
that font, or in the case that unicode is used as encoding, it should be explicitly
specified with -w option in font mapping record (the default is horizontal).

Glyphs in vertical font (writing mode 1) is rotated 90 degrees in the counter
clock-wise direction in horizontal composition and is aligned at vertical center.
The baseline should be adjusted by TEX if both horizontal and vertical text are
used in the document.

AaGg ⥭ 慱 g AaGg ⥭ 慱 g

The font should provide enough information to place glyphs in vertical text
correctly: The position vector which describes relation between current text
position (O' in the example below) to the origin in glyph coordinate system (O)
and the vertical displacement vector which is displacement from current text
position to next text position (O”) is necessary.

g
O

O' O”

Vertical Advance

Top-side Bearing

The example on left is wrong
in that top-side bearing and
vertical advance is not set
properly. OpenType font
should have vmtx table to
set those values and if the
font uses PostScript outline
they should also have VORG
in addition to that. If those
tables are not found and if
the font is not designed es-
pecially suitable for vertical
writing, correct result may
not be obtained.

The vertical component of vertical displacement vector (vertical advance) is
obtained from vmtx table (horizontal component is always zero). The vertical
component of position vector is obtained from VORG table for OpenType font
with PostScript outline, and is determined from top-side bearing in vmtx and
glyph's bounding box for TrueType. The horizontal component of position vec-
tor is set to a half of horizontal width. The default value of advance height is
sum of typographic ascent and descent distance, and for vertical component of
position vector, the default is set to ascent. Those default values should work
for CJK font, however, it is not adequate to latin glyphs in general.

17

The “width” in TEX font metric (TFM) is interpreted as the vertical advance
for vertical font, andmust be consistent with vertical metrics of actual font. The
“height” (“depth”) is the distance from centerline to “right” (“left”) -most side
of box surrounding glyph (those values affect only when dvipdfmx is calculat-
ing bounding box of text, e.g., when creating link annotation).

OpenType font may use OpenType Layout GPOS table to adjust placement
of several glyphs or to modify glyph metrics for vertical writing. However,
dvipdfmx does not support them. All glyphs should have fixed metric both for
horizonal and vertical composition and they never change depending on the
context in dvipdfmx. Virtual font might be enough to get similar effect as OTL
GPOS for simple task such as reducing excess white space on top-side but may
not always work as intended.

In preparing document, it is recommended to use extended version of TEX
natively supporting vertical writing (i.e., not relying on glyph rotation) when-
ever possible: Text selection in PDF viewer might not work correctly for “verti-
cal” textwith glyphs rotated (for example text on the previous page), and itmay
seriously affect searching text if glyph rotation is done by \special command
since it result in glyph-by-glyph rotation, furthermore output is very wasteful
as transfomation matrix is set every time glyph is placed; dvipdfmx does not
do optimization for that. Things are a bit better with dvipdfmx's glyph rota-
tion feature since it treat text as a text as much as possible and rotate whole text
rather than rotating each glyphs.

There are several (not so many) features useful for vertical wrting in PDF.
To rotate whole page 90 degrees in the clock-wise direction, you can use pdf:
special command

\special{pdf:put @pages << /Rotate 90 >>}

PDF viewer will rotate pages if they support that. This is usefull for pseudo-
vertical writing using glyph rotation. The other thing is Direction entry in
PDF document's viewer preferences dictionary. You can set this to R2L via

\special{pdf:docview <<
/ViewerPreferences << /Direction /R2L >>

>>}

This does not affect rendering of page contents but PDF applications (such as
n-up program) that recognize this dictionary entry may use it. For example,
Acrobat arranges pages in the correct order when the document is opened in
viewmode “Continuous - Facing” (first page on right and second page on left).
This preference dictionary entry merely declares that the natural direction to
which text or lines proceeds is from right to left.

4.2 Vertical Composition
Undocumented yet.

18

5 Test

MS Arial Unicode font using Japanese forms骨草 by default. To select

Simplified Chinese forms骨草, you must use OTL feature smpl, and trad

feature for Traditional Chinese forms骨草.

ABCDEFGabcdefgαβγδεζη
ABCDEFGabcdefgαβγδεζη
ABCDEFGabcdefgαβγδεζη
ABCDEFGabcdefgαβγδεζη
ABCDEFGabcdefgαβγδεζη
ABCDEFGabcdefgαβγδεζη
TheQuantumspitz attack Kafka checkspecial fact
fjord craft fb fhfftffbffhffkSS
ſi ſl ſbſhſk ſſh ſſiſſl
TheQuantum spitz attack Kafka check special fact
fjord craft fb fh fftffbffhffkSS
ſi ſl ſb ſh ſk ſſh ſſi ſſl
TheQuantumspitz attack Kafkacheckspecial fact
fjord craft fb fhfftffbffhffkSS
ſi ſlſbſhſk ſſh ſſiſſl
TheQuantum spitz attack Kafka checkspecial fact
fjord craft fbfhfftffbffhffkSS
ſi ſlſbſhſk ſſh ſſiſſl

19

6 Related Files
There are three attached files in this PDF document:

The attached file dpxunicode.tex is Lambda source of this document.

The attached file dpxunicode-res.zip is zip archive containingOFM, .fd,
and dvipdfmx fontmap files used to produce this document.

The attached file glyphlist-cm-add.txt is plain text file. This file de-
scribes additional PS glyph name to Unicode mapping entries for glyphs
contained in Computer Modern font (but not in the original AGL file).

If your PDF viewer does not support extracting embedded files, please use
pdftosrc program from pdfTEX project9 to extract embedded files. To do this,
first search PDF file (openwith binary editor, not with PDF viewer) by keyword
/Filespec, you should find data sections looks like:

58 0 obj
<<
/Type /Filespec
/F (dpxunicode.tex)
/EF <<
/F 55 0 R
>>
>>

Record two numbers between /F and R whithin the block /EF << >> (55 and 0
in this example) and run pdftosrc program as

pdftosrc dpxunicode.pdf 55 0

on console. Then you'll get dpxunicode.55 which is extracted embedded file.
The appropriate file name for this data is recorded in /F (...).

9http://www.tug.org/applications/pdftex/

20

\documentclass[10pt,a4paper]{article}
%% fancyvrb
\usepackage{fancyvrb}
\fvset{gobble=2,xleftmargin=20pt}
%% pict2e
\usepackage[dvipdfm]{pict2e}%
%% color
\usepackage[dvipdfm]{color}
\definecolor{primary1}{cmyk}{0.6,0.6,0.2,0.2}
\definecolor{primary2}{cmyk}{0.6,0.6,0.2,0.0}
\definecolor{primary3}{cmyk}{0.4,0.4,0.2,0.0}
%% hyperref
\usepackage[dvipdfm,bookmarks]{hyperref}
\hypersetup{colorlinks,linkcolor=primary1,urlcolor=primary1}
%%
%% The following code fill margin with pattern.
%% UTF-8 to UCS-2 conversion is specified for text in annotation.
%% This should be UTF-16 instead of UCS-2.
%%
\AtBeginDvi{%
%% Natual language
\special{pdf:put @catalog << /Lang (en-US) >> }
\special{pdf:tounicode UTF8-UCS2}%
%% Pattern
%\special{pdf:obj @Ptrn:01 <<
% /Type/Pattern
% /PatternType 1 /PaintType 2 /TilingType 3
% /BBox [0 0 16 16] /XStep 16 /YStep 16
% /Resources << /ProcSet [/PDF] >>
%>>
%stream
%0.16 0 0 0.16 0 0 cm 4 w
%50 0 m 50 28 28 50 0 50 c S 100 50 m 72 50 50 28 50 0 c S
%50 100 m 50 72 72 50 100 50 c S 0 50 m 28 50 50 72 50 100 c S
%100 50 m 100 78 78 100 50 100 c 22 100 0 78 0 50 c
%0 22 22 0 50 0 c 78 0 100 22 100 50 c S
%0 0 m 20 10 25 5 25 0 c f 0 0 m 10 20 5 25 0 25 c f
%100 0 m 80 10 75 5 75 0 c f 100 0 m 90 20 95 25 100 25 c f
%100 100 m 80 90 75 95 75 100 c f 100 100 m 90 80 95 75 100 75 c f
%0 100 m 20 90 25 95 25 100 c f 0 100 m 10 80 5 75 0 75 c f
%50 50 m 70 60 75 55 75 50 c 75 45 70 40 50 50 c f
%50 50 m 60 70 55 75 50 75 c 45 75 40 70 50 50 c f
%50 50 m 30 60 25 55 25 50 c 25 45 30 40 50 50 c f
%50 50 m 60 30 55 25 50 25 c 45 25 40 30 50 50 c f
%endstream%
%}%
%%
%% Put the following PDF code at the beginning of page.
%%
%\special{pdf:bop
%/_Cs01 cs 0.6 0.6 0.2 0.2 /_Pt01 scn
%0 0 596 842 re 72 72 452 700 re f*}%
}%
%% bophook:
%% Put resources necessary to draw pattern into page resource
%% dictionary for all pages.
%\usepackage{bophook}
%\AtBeginPage{%
%\special{pdf:put @resources <<
% /Pattern << /_Pt01 @Ptrn:01 >>
% /ColorSpace << /_Cs01 [/Pattern /DeviceCMYK] >>
%>>
%}%
%}

\renewcommand{\rmdefault}{lpl}
%\renewcommand{\ttdefault}{mcr}
\renewcommand{\ttdefault}{cmttu}

\hyphenation{OpenType}
\hyphenation{TrueType}
\hyphenation{PostScript}
\hyphenation{ToUnicode}
\hyphenation{Unicode}
\hyphenation{Windows}
\hyphenation{CIDFont}
\hyphenation{CIDFontType}
\hyphenation{Microsoft}
\hyphenation{Apple}

\ocp\OCPutf=inutf8
\ocplist\OCPlistutf=
 \addbeforeocplist 1000 \OCPutf
 \nullocplist
\pushocplist\OCPlistutf

%\usepackage{fancyhdr}
%\pagestyle{fancy}
%\lhead{\popocplist\rightmark\pushocplist\OCPlistutf}%
%\rhead{\thepage}
%\chead{}
%\cfoot{}
\newcommand{\dvipdfmx}{dvipdfm\textit{x}}
\newcommand{\wquote}[1]{“#1”}%
\newcommand{\ubullet}{•}
\newcommand{\utbullet}{‣}

\begin{document}

\section{Compatibility}

\subsection{\TeX{} Font Metric}
Not finished...
\clearpage

\subsection{Subfont Support}

Plain \TeX{} is only capable of handling 7 or 8-bit encodings and all
font usable by \TeX{} can not contain more than 256 glyphs.
But many languages requires more characters than this limit.
Well known examples are Chinese, Japanese, and Korean (CJK) languages.
CJK fonts may contain even more than ten thousands of glyphs in
single font. Thus, plain \TeX{} has fundamental problem in treating
those languages. There are several way to typeset text written in
languages with larger character set. One way to do this is to
split large font into multiple smaller fonts, \textit{subfonts},
and manage characters by identifier of subfont to which character
belong and single-byte code within that subfont.
There are several \TeX{} or \LaTeX{} macro packages does this process
automatically, like CJK-\LaTeX{}, H\LaTeX{}, and NTT-j\TeX{}.

However, dvipdfmx want single multibyte font rather than multiple subfonts
for various reason, and it provide a way to map subfonts originated from a
single font to a single \textit{intermediate font} without relying on virtual fonts.
This is essentially the inverse process of what macro packages like CJK-\LaTeX{}
does. Support for CJK-\LaTeX{} and H\LaTeX{} is realized by this feature.
This mapping is done through \textit{subfont definition} (SFD) file.
The subfont definition file describes how font is split into a set of subfonts,
and is used by \verb|ttf2pk| program to automate things and consintently manage
them in font-independend manner.
Please refer documents from \verb|ttf2pk| program for detailed information on
SFD file format.

To enable this feature, you should use a special name of format
\begin{Verbatim}[commandchars=\\\{\}]
 \textit{tex_font_name}@\textit{SFD_name}@
\end{Verbatim}
in font mapping file for \TeX{} font name rather than listing font mapping
for all subfonts separately.
For example, to map subfonts of traditional chinese font with prefix
\verb|bsmi| to single intermediate font with Big-5 encoding, write
\begin{Verbatim}
 bsmi@Big5@ ETen-B5-H bsmi00lp
\end{Verbatim}
The effect of using this font name is that if dvipdfmx encounters fonts
with prefix \verb|bsmi| such as \verb|bsmi01| within DVI file and
if the font has subfont identifier (digits following \verb|bsmi| in this case)
allowed for SFD \verb|Big5|, dvipdfmx maps those subfonts to an intermediate
double-byte font \verb|bsmi@Big5@| and re-encode text in Big-5 encoding
accroding to the rule for subfont
creation described in the SFD file \verb|Big5|.
The mapping is done when dvipdfmx is interpreting DVI
file but not when it is handling text and font for PDF output.

\clearpage

\section{Font and Encoding}

Managing font is rather complicated task in \TeX{} and in using
DVI drivers. It is also true for dvipdfmx, rather, it is worse than
in other DVI drivers. Dvipdfmx supports a variety of font formats and
they are sometimes treated differently depending on how they are used,
and they are sometimes converted to different font format for embedding
to output PDF file.\footnote{%
There might be minor quality loss introduced by font format conversion.
But there should not be any quality loss when the document is rendered
at enough resolution. Dvipdfmx does not do outline format conversion
such as TrueType to PostScript conversion.
Hinting is preserved whenever possible. The only expection is ghost stem
hint in Type 1 font. It is not distinguished from ordinary stem hints
in Type 1 to CFF conversion.}
Dvipdfmx tries to absorb difference of font format as much as possible.
And indeed there are mostly no distinction between them unless
you use multi-byte encodings.

\subsection{Supported Font Format}
The following font formats are currently supported by dvipdfmx:
\begin{itemize}
\item[\ubullet]\textbf{PK font}

\TeX{}'s PK font format is supported as in dvipdfm with
few modification to avoid problems rarely heppens in some
PDF viewers. Always embedded as Type 3 (bitmap) font.

\item[\ubullet]\textbf{PostScript Type 1 font}

PostScript Type 1 fonts are supported as in dvipdfm but it
was completely rewritten.
They are always converted to CFF (Compact Font Format) which is another
representation of PostScript Type 1 font such as PFB and PFA.
As PDF support Type 1 font, there are no need to convert them to CFF,
however, conversion to CFF makes it easier to fully support Unicode
and higher compression ratio is expected since CFF format is free from
encryption. PostScript Type 1 font may be embedded as Type 1C (CFF) or
CIDFontType 0 CIDFont. Multiple-Master font is not supported yet.

\item[\ubullet]\textbf{TrueType font}

Both TTF and TTC (TrueType Collection) is supported.
There are many enhancement to dvipdfm including subsetting.
They may be embedded as TrueType (simple) font or as CIDFontType 2
CIDFont which is basically CID-keyed version of Type 42 font.
Dvipdfmx may fail to handle old TrueType font for Mac OS since
it depend on extension made for Windows and OS/2.

\item[\ubullet]\textbf{OpenType font}

OpenType fonts with TrueType outlines (\verb|.ttf|) and
with PostScript outlines (\verb|.otf|) is both supported.
They may be embedded as simple font (Type 1C or TrueType),
CIDFontType 2, or CIDFontType 0 CIDFont depending on outline format
and their use.
\end{itemize}

In addition to the fonts listed above, there are special kind of font
supported by dvipdfmx for CJK support, which is described in
\wquote{Acrobat and Printer Resident Font}.

\subsection{Font Mapping}
Not finished yet.

\begin{table}
\begin{center}
\setlength{\tabcolsep}{5pt}%
\renewcommand{\arraystretch}{1.5}%
\setlength{\doublerulesep}{2.0pt}%
\setlength{\arrayrulewidth}{1.0pt}%
\begin{tabular}{ll}
\hline\hline
\texttt{-e \itshape number} & Set horizontal scaling of font.\\
\texttt{-s \itshape number} & Slant the font.\\
\texttt{-r} & Obsolete...\\
\texttt{-b \itshape number} & Specify boldness parameter of fake bold font.\\
\texttt{-l \itshape string} & ...\\
\hline\hline
\end{tabular}
\end{center}
\end{table}
\clearpage

\subsection{Accessing Glyphs in Font}

To deal with problems releted to font you may encounter when using
dvipdfmx, you should know that there are several different way to use
font in dvipdfmx.
They are classified according as how dvipdfmx access glyphs contained
in a font, and is determined from what is specified in encoding field of
font mapping record. Dvipdfmx basically uses
\textit{PostScript based glyph access} to get glyph descriptions
(glyph metrics or outline data describing detailed shape of glyph) for
when \textit{encoding file} or \textit{CMap PostScript Resource} is used
as encoding.
\textit{Unicode based glyph access} is chosen when keyword \verb|unicode|
is specified as encoding.
\begin{description}
\item[PostScript based glyph access]

PostScript Type 1 font traditionally uses glyph names which is a
string representing them, such as \verb|AE| and \verb|quoteleft|,
to uniquely identify individual glyphs contained in a font.
Glyph descriptions are stored with those string keys and accessed with it.
In CID font format, which is relatively newer format in PostScript,
non-negative integers called CID (Character Identifier) are used instead
of strings for this purpose. CID-keyed font is originally developed for
supporting large character set such as Chinese, Japanese, and Korean in
PostScript. In those languages, using strings is quite inefficient and it
is difficult to give consice names to all glyphs and to manage it
since there are more than several ten thousands of glyphs actually used
in publishing.
Glyphs are uniquely identified by specifying both CID and
\textit{character collection} to which the glyphs belongs.

\item[Unicode based glyph access]

Glyphs are accessed through Unicode and tags
representing variant forms.
This is experimental feature and is discussed in
a separate section. See the section \wquote{Unicode Support}.

\end{description}

Both the above method
is supported for all font format\footnote{%
That is not exactly true: CIDs can not be used for Type 1 and
glyph names can not be used for OpenType CIDFont. TrueType fonts
must have Unicode cmap for Unicode access.}
except
PK font and non-embedded CIDFont mentioned in
\wquote{Acrobat and Printer Resident Font}.
However, as natural way to access glyphs depend on font format,
dvipdfmx may require auxiliary file(s) to absorb the difference of
font format. Those files are described in
\wquote{Adobe Glyph List and CID-To-Code Mapping} in details.
In some situations, dvipdfmx mixes those method to increase reliability
on finding glyphs. Thus, you should install at least Adobe Glyph
List file. And CJK TrueType font users must install CID-To-Code
Mapping files adequate to each languages to enable PostScript based
glyph access.

Each method have their own mirit and demirit:
PostScript based glyph access is, in general, more flexible and reliable
in that users can re-encode font rather arbitrary by supplying encoding
file or CMap, and all glyphs are accessible in this way for PostScript fonts.
It is well suited for using PostScript and PostScript flavored OpenType fonts,
but it may not work as reliably for TrueType because conversions are sometimes
involved several times to enable access to glyph with PostScript glyph
names or CIDs.
Using Unicode is much simpler in some cases but tend to lack flexibility
and reliability in many cases mostly due to limitations in dvipdfmx,
and several problems are never resolved in dvipdfmx as a DVI driver.

As long as you stay on 8-bit encodings, the only choice is to use
PostScript based glyph access and there are essentialy no difference
with dvips on using font. Just specify the name of encoding file
(\verb|.enc| file) which defines correspondence between input codes in
DVI and glyphs in actual font to which \TeX{} font is mapped.
For CJK support and other multi-byte character support, CMap is used
in place of encoding file to translate input codes to CIDs in PostScript
based glyph access.
Dvipdfmx can work relatively nicely with TrueType and OpenType fonts
(not different than using Type 1 font).
For CJK-\LaTeX{} and Omega users, Unicode is reasonable choice but
dvipdfmx can't fulfill all requirement for high-quality publishing.
If you have good quiality OpenType font with PostScript outline and
want to use all of glyphs contained within them, PostScript based
glyph access might be suited for your purposes.

\subsection{CMap and Encoding File}
Nothing yet...
\clearpage

\subsection{Adobe Glyph List and CID-To-Code Mapping}

As mentioned earlier on this section, there are several method
to access glyphs in a font. However, since each font formats uses
different way to identify glyphs, some font format may not work
well for some situation. To minimize restrictions and differences on
using font, dvipdfmx tries to compensate difference of font format
using auxiliary files, \textit{Adobe Glyph List} and
\textit{CID-To-Code Mapping} files.
\begin{description}
\item[Adobe Glyph List]
This resource associate PostScript glyph names with it's corresponding
Unicode characters.

\item[CID-To-Code Mapping]
This resource describes the mapping from CIDs in a given character collection
to character codes in some character encoding (inverse mapping of usual CMap).
When the target encoding is Unicode encodings, the term
\textit{ToUnicode CMap} may be used to denote this resource in this document.
\end{description}

The Adobe Glyph List file is required for supporting PostScript based glyph access
in TrueType or OpenType font with TrueType outlines if font itself does not
provide information for associating PostScript glyph names with glyphs contained
in font.
This information is stored in an auxiliary TrueType table called \verb|post| table
(version 2.0)\footnote{%
Apple seems to have more sophisticated extension to manage glyphs
but dvipdfmx not supporting this yet.}
and most of TrueType fonts has this table for compatibility with
PostScript.
However, TrueType fonts often has incomplete table and OpenType font may not
have this table at all. In this case, Adobe Glyph List file may be used
to find glyphs through Unicode if font supports Unicode encoding.
It is also required to enable Unicode based glyph access in PostScript
Type 1 font. Installation of this resource is recommended since other features
relies on it too.

The file name of this resource must be \verb|glyphlist.txt| and must be
located in dvipdfmx's search path for \wquote{other text files}.
The content of this file should look like:
\begin{Verbatim}
 # comment
 A;0041
 AE;00C6
\end{Verbatim}
Lines starting with \verb|#| is a comment. All other lines actually describes
the mapping, the first field is PostScript glyph name, a semicolon delimiting each
fields follows, and the next field is corresponding Unicode values (separated by
spaces if the glyphs is mapped to a sequence of multiple Unicode characters) in
uppercase hexadecimal notion.

\begin{table}[tb]
\caption{CID-to-Code mapping file for each TrueType encodings.}\label{tab:tocode}
\begin{center}
\setlength{\tabcolsep}{5pt}%
\renewcommand{\arraystretch}{1.5}%
\setlength{\doublerulesep}{2.0pt}%
\setlength{\arrayrulewidth}{1.0pt}%
\begin{tabular}{llll}
\hline\hline
\textbf{Encoding} & \textbf{Platform} & \textbf{Character Collection} & \textbf{ToCode Mapping}\\
\hline\hline
Unicode & & Adobe-GB1 & Adobe-GB1-UCS2\\
 & & Adobe-CNS2 & Adobe-CNS1-UCS2\\
 & & Adobe-Japan1 & Adobe-Japan1-UCS2\\
 & & Adobe-Korea1 & Adobe-Korea1-UCS2\\
\hline
RPC & Windows & Adobe-GB1 & Adobe-GB1-GBK-EUC\\
 & Mac OS & & Adobe-GB1-GBpc-EUC\\
\hline
Big5 & Windows & Adobe-CNS1 & Adobe-CNS1-ETen-B5\\
 & Mac OS & & Adobe-CNS1-B5pc\\
\hline
SJIS & Windows & Adobe-Japan1 & Adobe-Japan1-90ms-RKSJ\\
 & Mac OS & & Adobe-Japan1-90pv-RKSJ\\
\hline
Wansung & Windows & Adobe-Korea1 & Adobe-Korea1-KSCms-UHC\\
 & Mac OS & & Adobe-Korea1-KSCpc-EUC\\
\hline\hline
\end{tabular}
\end{center}
\end{table}

For CID fonts (CJK) support, CID-To-Code Mapping resource is required
for supporting PostScript based glyph access in TrueType and OpenType font
with TrueType outlines.
You should at least install ToUnicode CMap appropriate for language
you use. Dvipdfmx also support other type of CID-To-Code mapping than ToUnicode
for several CJK encodings to support older TrueType fonts not supporting Unicode.
Table \ref{tab:tocode} lists CID-To-Code Mappings required for each encodings
supported by dvipdfmx and for Adobe's character collections.
Those files are available from Adobe. You may already have those files
somewhere on your hard-disk if you have installed localize versions of
Adobe (Acrobat) Reader (or with Acrobat Reader Asian Font Packs) or GhostScript.
As this resource file uses same syntax as ordinary CMap PostScript resources,
they should be installed in dvipdfmx's search path for \wquote{cmap files}.

There is known problem in ToUnicode CMaps:
Apple and Microsoft using different Unicode assignment for several CJK symbols,
and Adobe seems following Apple's one.
This will cause problems when using TrueType fonts for Microsoft Windows
platform with PostScript based glyph access.
Dvipdfmx automatically adjust few problematic symbols frequently used such as
horizontal ellipsis (three-dot leader), wave dash, and double vertical line,
but it will not work perfectly.
Another format may be introduced to resolve this issue.
\clearpage

\subsection{Acrobat and Printer Resident Font}

As CJK fonts contains too many glyphs, it takes quite long time and
cost much to create font with enough quality. Due to this fact, there are
not so many CJK fonts freely available there and sometimes they tend
to be rather expensive. Furthermore, file size become very large
when they are embedded into PDF.

\begin{table}[tb]
\caption{Acrobat and PostScript printer resident font supported by dvipdfmx.}%
\label{tab:acrofonts}
\begin{center}
\setlength{\tabcolsep}{5pt}%
\renewcommand{\arraystretch}{1.5}%
\setlength{\doublerulesep}{2.0pt}%
\setlength{\arrayrulewidth}{1.0pt}%
\begin{tabular}{lll}\hline\hline
\textbf{Language} & \textbf{Character Collection} & \textbf{PostScript Font Name}
\\
\hline\hline
Chinese (trad.) & Adobe-CNS1-0 & MHei-Medium-Acro\\
 & & MSung-Light-Acro\\
 & Adobe-CNS1-4 & AdobeMingStd-Light-Acro\\
\hline
Chinese (simpl.) & Adobe-GB1-2 & STSong-Light-Acro\\
 & Adobe-GB1-4 & AdobeSongStd-Light-Acro\\
\hline
Japanese & Adobe-Japan1-2 & HeiseiMin-W3-Acro\\
 & & HeiseiKakuGo-W5-Acro\\
 & & Ryumin-Light\\
 & & GothicBBB-Medium\\
 & Adobe-Japan1-4 & KozMinPro-Regular-Acro\\
 & & KozGoPro-Medium-Acro\\
\hline
Korean & Adobe-Korea1-0 & HYGoThic-Medium-Acro\\
 & & HYSMyeongJo-Medium-Acro\\
 & Adobe-Korea1-2 & AdobeMyungjoStd-Medium-Acro\\
\hline\hline
\end{tabular}
\end{center}
\end{table}

To deal with those problems, dvipdfmx supports several fonts
that act like \wquote{PDF Standard Font for CJK} listed in
table \ref{tab:acrofonts}.
For those fonts, minimal font information usually required by PDF viewers
are available from the dvipdfmx's built-in data. They does not
contain any glyph (outline or bitmap) data required to draw actual shape
of each glyphs, hence, PDF viewers must replace those fonts with suitable one.
This means that the reproducibility of document layout, when the document
is opened on the recipient's system, is not guaranteed at all, however,
it works quite well for CJK text if you do not use special glyphs in your
document. Please use those fonts if you are sure that all peoples who
receives your document have suitable font installed on their system and
if your interest is only the file size.

This feature is provided only for convenience and
please do not expect you can always obtain correct
result since font substitution is dependent on the ability of PDF viewers.
Note that proportional glyphs are not supported for those fonts.
Basically, only glyphs of which widths are determined solely from their
CID and character collection but do not differ among different font are
supported; i.e., full-, half-, quarter-, and third-width forms.

All of the above fonts containing \wquote{-Acro} in their PostScript
font name are available from Adobe as part of Acrobat Reader
Asian Font Packs for use with Acrobat Reader, other font may found
in PostScript printers.

\subsection{Notes on OpenType CIDFont Support}

There are few differences in OpenType CIDFont support between dvipdfmx
and other software regarding the treatment of \wquote{OpenType} fonts:
In dvipdfmx generated PDF file, embedded CID fonts inherit all glyph metric
information from the original OpenType font's glyph metrics tables
in their CIDFont dictionary entries \verb|W| (horizontal metrics) and
\verb|W2| (vertical metrics). This difference especially
affects when you are using pre-rotated forms of proportional glyphs; The
\verb|W2| metrics of CIDFont may contain proportional vertical displacement
in the case of dvipdfmx, while other converter like Distiller may treat them
like fixed-pitch font, and place each glyphs with position adjustment for
compensating the difference from OpenType vertical metrics.
You should prepare TeX font metrics using information from
\verb|vmtx| and \verb|VORG| for vertical typesetting.

For the position vector (it describes displacement from the origin used
for horizontal writing to the origin used for vertical writing), the
vertical component of position vector is taken from \verb|VORG| table whenever
available, otherwise, all vertical component of the position vector is
set to \verb|sTypoAscender| value in \verb|OS/2| table, and the horizontal
component is set to a half of horizontal advance width.
Currently, dvipdfmx does not make use of \verb|BASE| table.

\subsection{Using TrueType Font as CID-keyed Font}

When a valid CMap is specified in the encoding field of font mapping and
font is mapped to TrueType font, dvipdfmx will treat that TrueType font
as CIDFontType 2 CIDFont. However, as TrueType font is not CIDFont, they
does not supports accessing glyphs with CIDs. Hence, dvipdfmx requires
auxiliary resource, CID-To-Code Mapping, to achieve compatibility between
PostScript flavored font (CID-keyed font) and TrueType font.
Please refer \wquote{Adobe Glyph List and CID-To-Code Mapping} for description
about this resource.

In addition to this resource, the name of character collection to be used for
this font should be specified in font mapping record. This tells
dvipdfmx information about glyph set covered by the font and ordering of
them, and is specified by appending a \verb|/| and a string denoting character
collection immediately after the font name as follows:
\begin{Verbatim}
 mincho UniJIS-UCS2-H ttmincho/AJ14
\end{Verbatim}
In the above example, \verb|ttmincho| is converted to CIDFontType 2 CIDFont
with Adobe-Japan1-4 character collection. This can be implicit if you are
not using Identity CMaps; dvipdfmx will use the information available from
CMaps applied to TrueType font: The following font mapping record
\begin{Verbatim}
 mincho UniJIS-UCS2-H ttmincho
\end{Verbatim}
implies Adobe-Japan1-4 since the CMap \verb|UniJIS-UCS2-H| is a mapping from
character codes in UCS-2 to CIDs in Adobe-Japan1-4 character collection.
However,
\begin{Verbatim}
 mincho Identity-H ttmincho
\end{Verbatim}
does not suggest any useful information since Identity CMap is generic
CMap that does not implies any specific character collection.
In this case, dvipdfmx will use font's internal glyph ordering.
If you meant the font \verb|mincho| using Adobe-Japan1 ordering,
you should explicitly specify this as
\begin{Verbatim}
 mincho Identity-H ttmincho/AJ12
\end{Verbatim}

Abbreviation AK1, AC1, AG1, and AJ1 can be used in character collection
field for Adobe's character collection Adobe-Korea1, Adobe-CNS1, Adobe-GB1,
and Adobe-Japan1 respectively. If you want to use other character collection,
you must specify it with full name, e.g., for Adobe-Japan2-0,
\begin{Verbatim}
 min-hk-h Identity-H ttmincho/Adobe-Japan2-0
\end{Verbatim}

There are several limitations and problems in using TrueType fonts in this way.
The reason for this is, of course, because TrueType font is not CIDFont.
For CJK fonts, you should be careful about use of proportional glyphs.
\clearpage

\section{Unicode Support}

Since the version 200408XX, there is some support for Unicode in dvipdfmx.
This feature is highly experimental, especially features described in the
section \wquote{Selecting Glyph Variants} and
\wquote{Discretionary Ligatures} is provided only for testing purpose and to
investigate what is required for basic Unicode support.
Please be aware that format of configuration files and options mentioned
in this section is subject to futrue change.

\subsection{Unicode Support in Dvipdfmx}

Dvipdfmx accepts encoding keyword \verb|unicode|, in addition to
\verb|default| and \verb|none|, in the font mapping file for all font
formats supported by dvipdfmx except PK font and non-embedded CID font.

TrueType and OpenType font must have Windows UCS-2 format 4 cmap (character mapping)
subtable or Windows UCS-4 format 12 cmap subtable.
For Type 1 font support, you must install Adobe Glyph List (AGL) file%
\footnote{\href{http://partners.adobe.com/asn/tech/type/unicodegn.jsp}%
{\tt http://partners.adobe.com/asn/tech/type/unicodegn.jsp}}
in the dvipdfmx search path for \wquote{other text files}.
AGL file describes mapping from PostScript glyph names to the
corresponding Unicode values. All features related to Unicode requires this
file for PostScript Type 1 font (and sometimes for TrueType font) support.
Type 1 font support is not fully functional yet: Glyph substitution and
PUA assignment of ligatures described later are not supported for Type 1 font.

If you have single big Unicode Omega font metric (OFM) file, simply specify
\verb|unicode| in the encoding field of fontmap file:
\begin{Verbatim}
 cyberbit unicode cyberbit
\end{Verbatim}
for Omega and Aleph, or if you are using CJK-\LaTeX{} package,
\begin{Verbatim}
 cyberb@Unicode@ unicode cyberbit
\end{Verbatim}
should work.
In the previous versions of dvipdfmx, some tricks are used to support
Unicode encoding as input DVI encoding. If your fontmap file contains the
following line,
\begin{Verbatim}
 cyberb@Unicode@ Identity-H cyberbit/UCS
\end{Verbatim}
you should modify it as the above example.

As there are no \TeX{} font metric format supporting four-byte character code,
Unicode support in dvipdfmx is limited to a single Unicode code block of the
same group-plane per single \TeX{} font.
When font is embedded into PDF, they are converted to CIDFont format.
So, if Unicode encoding is used, the resulting PDF file may not print
correctly when it is sent to PostScript (clone) printer after conversion to
PostScript.
Please refer Adobe's web site\footnote{%
Adobe Solutions Network,
Type Technology~-~
\href{http://partners.adobe.com/asn/tech/type/cidfonts.jsp}{CID-Keyed Fonts}.%
}
for PostScript interpreter versions supporting CID-keyed font.
\clearpage

\subsection{Selecting Glyph Variants}

There are several problems in using Unicode with \TeX{}. If you switch from
legacy \TeX{}'s way to Unicode, you will soon be troubled about how to pick
up desired glyphs from a font:
Recently developed fonts in \wquote{intelligent} font format such as OpenType
tend to have all
variant forms of single character in single font file, and they offer a way to
select a specific instance of characters from multiple variants rather than
providing multiple font with different styles: You can not choose desired
glyph simply by changing font file in this case. Dvipdfmx can partially
resolve this issue.

In OpenType font format, application program may use data contained in
OpenType Layout (OTL) \verb|GSUB| (glyph substitution) table to choose a
glyph from multiple variants representing same character. For example, if
user request to replace numerals 0123456789 in font's default style with
oldstyle {\fontfamily{lpl-onum}\selectfont 0123456789}, the program
looks for OTL table if font supports glyph substitution for oldstyle
numerals.
In dvipdfmx, how OTL glyph substitution is done is controled by a
file with suffix \verb|.otl| (not zero-t-one).
The content of this file looks like:
\begin{Verbatim}
 script latn;
 language *;

 @numeral = [zero-nine];
 required {
 substitute @numeral by @numeral.onum;
 };
\end{Verbatim}
In the above example, script that this file is supposed to control
is \verb|latn| (Latin script) and all features belong to
languages that uses this script may be used. The line starting with
\wquote{\verb|@|} declares a class of
Unicode characters, \verb|@numeral| represents \verb|zero|,
\verb|one|, ..., \verb|nine| here. This is the same as writing
\begin{Verbatim}
 @numeral = [uni0030 uni0031 uni0032 uni0033 uni0034
 uni0035 uni0036 uni0037 uni0038 uni0039];
\end{Verbatim}
where all characters are explicitely listed by their Unicode values.
The block enclosed by braces actually specifies the
rule of glyph substitution: All glyphs corresponding to \verb|@numeral|
in a font is replaced with the resulting glyphs after OTL feature \verb|onum|
(oldstyle figures) is applied.
The keyword \verb|required| forces dvipdfmx to abort if one or
more of glyphs for \verb|@numeral| is missing in font or
if they do not have oldstyle forms. Dvipdfmx currently supports
\verb|prefered| to warn all missing glyphs and \verb|optional| to silently
ignore them.

After you have finished writing configuration file, and suppose that
you have saved it as \verb|oldstyle.otl|,\footnote{%
This file must be located under dvipdfmx's search path for
format \wquote{other text files} (This usually includes current
working directory).}
you can turn on
OTL \verb|onum| feature with the option \verb|-l| (lowercase L):
\begin{Verbatim}
 lplru-onum unicode pala -l oldstyle
\end{Verbatim}

As there are several features common to several languages with same script,
it is desirable to place them into single file. For this purpose, dvipdfmx
supports \verb|option| in configuration file which is enabled by specifying
tag identifies that option in dvipdfmx font mapping file.

For example, to put substitution rules for oldstyle and small caps in single
configuration file, use \verb|option| as:
\begin{Verbatim}
 script latn;
 language *;

 @numeral = [zero-nine];
 @lowercase = [a-z];
 @lcasesupp = [agrave-odieresis oslash-ydieresis];
 option oldstyle {
 required {
 substitute @numeral by @numeral.onum;
 };
 };
 option smallcap {
 required {
 substitute @lowercase by @lowercase.smcp;
 };
 prefered {
 substitute @lcasesupp by @lcasesupp.smcp;
 };
 };
\end{Verbatim}
If you save this file as \verb|latin.otl|, then you can select \verb|smallcap|
option by
\begin{Verbatim}
 lplrcu unicode pala -l latin:smallcap
\end{Verbatim}
to replace lowercase letters with {\sc small caps}.

An another quick example that illustrate the use of this feature
is selection of simplified forms and traditional forms for Chinese.
\begin{Verbatim}
 script hani;
 language (dflt|ZHT_|ZHS_);

 @hanideo = [uni4E00-uni9FAF];

 # Rules common to smpl and trad may appear here.

 option smpl {
 optional {
 substitute @hanideo by @hanideo.smpl;
 };
 };
 option trad {
 optional {
 substitute @hanideo by @hanideo.trad;
 };
 };
\end{Verbatim}
Here language tag \verb|ZHT_| represents traditional Chinese and
\verb|ZHS_| is simplified Chinese, and \verb|dflt| is the default
language for script \verb|hani| (CJK Ideograph) which may differ
among fonts. All features with script \verb|hani| and language
\verb|dflt|, \verb|ZHT_|, or \verb|ZHS_| can be controlled within
this configuration.

\subsection{Discretionary Ligatures}
\fontfamily{lpl-alig}\selectfont%

The glyph substitution feature described in the previous section
is limited to single glyph to single glyph substitution.
However, OpenType font may contain ligatures not frequently used
and not found in Unicode. To use those ligatures, you must assign
code point to them. To do this, use \verb|assign| command in OTL
configuration file as follows.
\begin{Verbatim}
 optional { # Ignore if missing
 assign uniE00B to Q_u.dlig;
 assign uniE018 to s_p.dlig;
 };
\end{Verbatim}
The above example assign Unicode code point \verb|U+E00B| in Private Use Area
(PUA) to ligature \wquote{Qu} of letter \wquote{Q} and \wquote{u},
and \verb|U+E018| to \wquote{sp} ligature of \wquote{s} and \wquote{p}.
As those ligatures are not frequently used, they may be described in OTL
\verb|GSUB| feature \verb|dlig| (discretionary ligatures) but not
in \verb|liga| which is for standard ligatures.

The last argument to this command is of the form
\begin{Verbatim}[commandchars=\\\{\}]
 {\itshape input_char_sequence.otl_tag}
\end{Verbatim}
where the {\tt\itshape input_char_sequence} is
the sequence of input Unicode character represented as
character name or \verb|uniXXXX| form.
The charcter names is the same as PostScript glyph names listed in AGL file,
but they are restricted only to the names corresponding to single Unicode
character, and names like \verb|Asmall| (small cap A) should not be used
here. They are joined with underscores to represent ligature.
For examples, if there are ligature of \wquote{T} and slashed-l,
the input character sequence can be \verb|T_lslash|, \verb|T_uni0142|,
\verb|uni0054_lslash|, and so on.
%They must follow Adobe's glyph naming convention as described in
%Adobe Solution Network, \textit{Unicode and Glyph Names}.%
%\footnote{\href{http://partners.adobe.com/asn/tech/type/unicodegn.jsp}%
%{\tt http://partners.adobe.com/asn/tech/type/unicodegn.jsp}}
The order that ligature component appears in the character sequence should be
in writing order. It may not be left-to-right order in some script.
The number of ligature components in single input character sequence is
currently limited up to 16 Unicode characters.

Unicode value to which the ligature glyph is mapped is single Unicode value
in the PUA range. As far as concerned with ligatures, PUA assignment can be
font specific, since users usually do not directly input character codes
representing ligatures when preparing document. However, it is recommended to
assign unique code point among all fonts as much as possible.

For list of registered OpenType Layout tag and it's
brief description, please refer OpenType Specification,
\wquote{OpenType Layout tag registry}.\footnote{%
\href{http://www.microsoft.com/typography/otspec/ttoreg.htm}%
{\tt http://www.microsoft.com/typography/otspec/ttoreg.htm}
}
Dvipdfmx currently only supports \verb|GSUB| substitution with
lookup type 1 (single) and type 4 (ligature), and lookup type 2 (multiple)
will never be supported. It might be possible to support lookup type
3 (alternate) substitution but there are problems in how to identify
glyph variants of same kind among other fonts (there may be problem
even in same font with different versions).
Glyph substitution is basically limited to one-to-one or many-to-one
substitution. The substituted glyph with many-to-one substitution must be
accessed through PUA; dvipdfmx will not replace multiple characters in DVI
file with single glyph and contextual substitution will never be done.
\TeX{} is responsible for doing such things. What dvipdfmx will offer is to
allow access to a glyph by some way.
\fontfamily{lpl}\selectfont

\subsection{ToUnicode CMap Support}

In PDF, Unicode appears whenever exchange of text information between PDF
viewers and other applications happens, or when PDF viewers interact with users.
Dvipdfmx try to create ToUnicode CMap, which explicitly tell the mapping from
character code to Unicode, when doing so is preferable and is possible.
This is important to ensure that PDF viewers correctly handle text strings within
PDF document for extraction of text information. If Unicode mapping can not
be done, copy-and-pasting text, searching text, and conversion from PDF to other
format such as plain-text or HTML, will not work.
This feature is not available for PK font.

There are nothing to be done to enable ToUnicode support if you are using
\verb|unicode| encoding.
However, dvipdfmx requires AGL file for Type1 and TrueType font
if single-byte encoding is used; it read mapping data necessary for
converting PostScript glyph names to Unicode from AGL file.
For this feature to work correctly, both font and encoding file must use
proper glyph names.

ToUnicode CMap is created for each encodings and if 10\% of glyph names can not
be converted to Unicode, ToUnicode CMap is not embedded for that encoding.
Please use \wquote{\verb|-v|} option to find out which encodings dvipdfmx failed
creating or embedding ToUnicode CMap, or option \wquote{\verb|-vv|} to see
all glyphs with no Unicode mapping available.

If dvipdfmx reports as no Unicode mapping available for some glyph names.
And if you know the correspondence between glyph names and Unicode for
those glyph names. You can append entries to AGL file. For example,
CMMI (Computer Modern Italic) font contains \wquote{sharp} and
Unicode code point for this glyph is \verb|U+266F|, but AGL file from
Adobe lacks entry for this glyph name. Hence, You should add the following
lines
\begin{Verbatim}
 # Addition for CMMI
 sharp;266F
\end{Verbatim}
to the file \verb|glyphlist.txt|. All lines starting with \verb|#| is
treated as comment and is simply ignored.

Dvipdfmx adjust few glyph names like \wquote{oneoldstyle},
\wquote{summationtext}, and \wquote{parenleftbig} as suitable;
those glyph names are converted to glyph names
with suffix like \wquote{one.oldstyle}, \wquote{summation.text}, and \wquote{parenleft.big}
when the original glyph name does not have valid Unicode code point assigned or is
mapped to Private Use Area; and then Unicode values for glyph names without suffix
is used, e.g., Unicode value for \wquote{oneoldstyle} is not Adobe's corporate use
mapping \verb|U+F731| but \verb|U+0031|.
(Glyph names written in the embedded font remains unmodified. This
conversion is done temporarily only for the purpose of ToUnicode CMap creation.)

For CID font using character collection different from the one published
by Adobe,%
\footnote{%
Excluding \mbox{Adobe-Japan2} which contains glyphs from JIS X 0212:1990
(Hojyo Kanji).
}
dvipdfmx looks for ToUnicode CMap file and copy them to output PDF file. The name
of this resource file must be in the form \textit{registry}-\textit{ordering}-UCS2
where \textit{registry} and \textit{ordering} is the registry and ordering of
the character collection used by the font. When preparing ToUnicode CMap,
please do not use \verb|usecmap| operator as dvipdfmx can not handle them
correctly yet.
\clearpage

\section{Vertical Writing}

\subsection{Vertical Writing Support in Dvipdfmx}

In dvipdfmx, all font have an attribute \textit{writing mode} which takes
value 0 or 1 (horizontal or vertical) and all text is set either in
\textit{horizontal composition mode} or in
\textit{vertical composition mode}.
The text composition mode is controlled by a special DVI command and only
supported by some extension to \TeX{}, and font's writing mode
changes according as the \verb|WMode| (writing mode) of current CMap
used for that font, or in the case that \verb|unicode| is used as
encoding, it should be explicitly specified with \verb|-w| option in font
mapping record (the default is horizontal).

Glyphs in vertical font (writing mode 1) is rotated 90 degrees in the
counter clock-wise direction in horizontal composition
and is aligned at vertical center. The baseline should be adjusted by \TeX{}
if both horizontal and vertical text are used in the document.
\bigskip

\begin{center}
{%
\font\vfont=fixedpitch-v at 18pt
\font\hfont=arialuni at 18pt
\newlength{\zw}\settowidth{\zw}{\hfont 凸}%
\newlength\awid\settowidth{\awid}{\hfont AaGg}%
\newlength\kwid\settowidth{\kwid}{\hfont 凸凹凸}%
\rule{1.4\awid}{1pt}\hskip-1.2\awid{\hfont AaGg}%
\hskip 0.2\zw
\rule{1.2\kwid}{1pt}\hskip-1.1\kwid{\vfont 回転g}
\hskip\zw%
\raise-0.3\zw\hbox{\rule{1.4\awid}{1pt}\hskip-1.2\awid{\hfont AaGg}}%
\hskip 0.2\zw
\rule{1.2\kwid}{1pt}\hskip-1.1\kwid{\vfont 回転g}
}%
\end{center}
\bigskip

The font should provide enough information to place glyphs in
vertical text correctly: The position vector which describes relation
between current text position (\textit{O'} in the example
below) to the origin in glyph coordinate system (\textit{O}) and the
vertical displacement vector which is displacement from current text
position to next text position (\textit{O”}) is necessary.

\newlength{\lmpwidth}\setlength{\lmpwidth}{200pt}%
\newlength{\mpmargin}\setlength{\mpmargin}{18pt}%
\newlength{\rmpwidth}\setlength{\rmpwidth}{\textwidth}%
\addtolength{\rmpwidth}{-\lmpwidth}%
\addtolength{\rmpwidth}{-\mpmargin}%
\hskip-\mpmargin%
\begin{minipage}[h]{\lmpwidth}
\setlength{\unitlength}{\lmpwidth}%
\divide\unitlength by 1000%
\newcommand{\colorA}[1]{\special{pdf:bc [0.4]}#1\special{pdf:ec}}%
\newcommand{\colorB}[1]{\special{pdf:bc [0.6]}#1\special{pdf:ec}}%
% 938 278 740
% B 34 -209 491 529
\begin{picture}(1000,1000)(0,0)
%\popocplist%
\small\linethickness{1bp}%
\font\vfont=fixedpitch-v at \lmpwidth
%%
\put(0,500){\makebox(0,0)[l]{\colorA{\vfont{}g}}}%
\put(210,256){\colorB{\dashbox{20}(738,457){}}}%
\put(0,500){\colorB{\line(1,0){938}}}%
\put(740,222){\colorB{\line(0,1){556}}}%
%%
\put(0,222){\line(1,0){938}}%
\put(0,222){\line(0,1){556}}%
\put(0,778){\line(1,0){938}}%
\put(938,222){\line(0,1){556}}%
%%
\put(740,222){\makebox(0,0)[c]{\circle*{20}}}%
\put(750,180){\textit{O}}%
\put(0,500){\makebox(0,0)[c]{\circle*{20}}}%
\put(-52,515){\textit{O'}}%
\put(720,232){\vector(-740,278){700}}%
\put(938,500){\makebox(0,0)[c]{\circle*{20}}}%
\put(948,515){\textit{O”}}%
\put(30,500){\vector(1,0){878}}%
%%
\put(500,850){\makebox(0,0)[c]{Vertical Advance}}%
\put(0,820){\line(1,0){938}}%
\put(0,800){\line(0,1){40}}%
\put(938,800){\line(0,1){40}}%
%%
\put(100,120){\makebox(0,0)[c]{Top-side Bearing}}%
\put(0,180){\line(1,0){210}}%
\put(0,160){\line(0,1){40}}%
\put(210,160){\line(0,1){40}}%
%\pushocplist\OCPlistutf
\end{picture}
\end{minipage}%
\hfill
\begin{minipage}[h]{\rmpwidth}
The example on left is {\em wrong} in that top-side bearing and vertical
advance is not set properly. OpenType font should have \verb|vmtx| table
to set those values and if the font uses PostScript outline they should also
have \verb|VORG| in addition to that. If those tables are not found
and if the font is not designed especially suitable for vertical writing,
correct result may not be obtained.
\end{minipage}

The vertical component of vertical displacement vector (vertical advance)
is obtained from \verb|vmtx| table (horizontal component is always
zero).
The vertical component of position vector is obtained from \verb|VORG|
table for OpenType font with PostScript outline, and is determined from
top-side bearing in \verb|vmtx| and glyph's bounding box for TrueType.
The horizontal component of position vector is set to a half of horizontal
width.
The default value of advance height is sum of typographic ascent and
descent distance, and for vertical component of position vector,
the default is set to ascent. Those default values should work for
CJK font, however, it is not adequate to latin glyphs in general.

The \wquote{width} in \TeX{} font metric (TFM) is interpreted as the vertical
advance for vertical font, and must be consistent with vertical metrics
of actual font. The \wquote{height} (\wquote{depth}) is the distance from
centerline to \wquote{right} (\wquote{left}) -most side of box
surrounding glyph (those values affect only when dvipdfmx is calculating
bounding box of text, e.g., when creating link annotation).

OpenType font may use OpenType Layout \verb|GPOS| table to adjust placement
of several glyphs or to modify glyph metrics for vertical writing.
However, dvipdfmx does not support them. All glyphs should have fixed
metric both for horizonal and vertical composition and they never change
depending on the context in dvipdfmx. Virtual font might be enough to
get similar effect as OTL \verb|GPOS| for simple task such as reducing
excess white space on top-side but may not always work as intended.

In preparing document, it is recommended to use extended version of
\TeX{} natively supporting vertical writing (i.e., not relying on glyph
rotation) whenever possible:
Text selection in PDF viewer might not work correctly for \wquote{vertical}
text with glyphs rotated (for example text on the previous page), and it
may seriously affect searching text if glyph rotation is done by
\verb|\special| command since it result in glyph-by-glyph rotation,
furthermore output is very wasteful as transfomation matrix is set every
time glyph is placed; dvipdfmx does not do optimization for that.
Things are a bit better with dvipdfmx's glyph rotation feature since
it treat text as a text as much as possible and rotate whole text rather
than rotating each glyphs.

There are several (not so many) features useful for vertical wrting in PDF.
To rotate whole page 90 degrees in the clock-wise direction,
you can use \verb|pdf:| special command
% verbatim/Verbatim dislikes angle bracket in UTF-8 input???
\popocplist
\begin{Verbatim}
 \special{pdf:put @pages << /Rotate 90 >>}
\end{Verbatim}
\pushocplist\OCPlistutf
PDF viewer will rotate pages if they support that. This is usefull for
pseudo-vertical writing using glyph rotation.
The other thing is \verb|Direction| entry in PDF document's viewer
preferences dictionary. You can set this to \verb|R2L| via
\popocplist
\begin{Verbatim}
 \special{pdf:docview <<
 /ViewerPreferences << /Direction /R2L >>
 >>}
\end{Verbatim}
\pushocplist\OCPlistutf
This does not affect rendering of page contents but PDF applications (such
as n-up program) that recognize this dictionary entry may use it.
For example, Acrobat arranges pages in the correct order when the document
is opened in view mode \wquote{Continuous - Facing} (first page on right
and second page on left).
This preference dictionary entry merely declares that the natural direction
to which text or lines proceeds is from right to left.

\subsection{Vertical Composition}
Undocumented yet.

\clearpage
%%%%
%%%%
\section{Test}
{%
\font\chsfont=fixedpitch-smpl at 20pt%
\font\chtfont=fixedpitch-trad at 20pt%
\font\jpnfont=fixedpitch at 20pt%
MS Arial Unicode font using Japanese forms {\jpnfont 骨草} by default.
To select Simplified Chinese forms {\chsfont 骨草}, you must use OTL
feature \verb|smpl|, and \verb|trad| feature for Traditional Chinese
forms {\chtfont 骨草}.
}

{\popocplist%
\huge
\noindent\obeylines
{%
ABCDEFGabcdefg^^^^03b1^^^^03b2^^^^03b3^^^^03b4^^^^03b5^^^^03b6^^^^03b7
\itshape
ABCDEFGabcdefg^^^^03b1^^^^03b2^^^^03b3^^^^03b4^^^^03b5^^^^03b6^^^^03b7
\scshape
ABCDEFGabcdefg^^^^03b1^^^^03b2^^^^03b3^^^^03b4^^^^03b5^^^^03b6^^^^03b7
}%
{%
\bfseries
ABCDEFGabcdefg^^^^03b1^^^^03b2^^^^03b3^^^^03b4^^^^03b5^^^^03b6^^^^03b7
\itshape
ABCDEFGabcdefg^^^^03b1^^^^03b2^^^^03b3^^^^03b4^^^^03b5^^^^03b6^^^^03b7
\scshape
ABCDEFGabcdefg^^^^03b1^^^^03b2^^^^03b3^^^^03b4^^^^03b5^^^^03b6^^^^03b7
}%
\pushocplist\OCPlistutf}

{\fontfamily{lpl-alig}\selectfont
\Large
\noindent\obeylines
The Quantum spitz attack Kafka check special fact
fjord craft fb fh fft ffb ffh ffk SS
ſi ſl ſb ſh ſk ſſh ſſi ſſl
{\itshape
The Quantum spitz attack Kafka check special fact
fjord craft fb fh fft ffb ffh ffk SS
ſi ſl ſb ſh ſk ſſh ſſi ſſl
}
{\bfseries
The Quantum spitz attack Kafka check special fact
fjord craft fb fh fft ffb ffh ffk SS
ſi ſl ſb ſh ſk ſſh ſſi ſſl
}
{\bfseries\itshape
The Quantum spitz attack Kafka check special fact
fjord craft fb fh fft ffb ffh ffk SS
ſi ſl ſb ſh ſk ſſh ſſi ſſl
}
}
\clearpage

\section{Related Files}

There are three attached files in this PDF document:

%%%%
%%%% File attachment
%%%%
%% Icon
\special{pdf:obj @icon:file <<
 /Type /XObject
 /Subtype /Form
 /BBox [0 0 100 145]
 /Matrix [1 0 0 1 0 -10]
 /Resources << >>
>>
stream
6 w
0.5 G 87 7 m 7 7 l 7 128 l S
0 G 0.2 0.1 0.0 0.0 k 10 10 m 90 10 l 90 100 l 60 130 l 10 130 l b
0.5 G 87 97 m 57 97 l 57 127 l S
0 G 90 100 m 60 100 l 60 130 l S
endstream
}%
%%
\newcommand{\dpxfspecref}[1]{@fspec:#1}%
\newcommand{\dpxxstrmref}[1]{@xstrm:#1}%
\newcommand{\loadattachfile}[2]{%
\special{pdf:fstream \dpxxstrmref{#1}\space (#2) <<
 /Type /EmbeddedFile
>>}%
\special{pdf:obj \dpxfspecref{#1}\space <<
 /Type /Filespec
 /F (#2)
 /EF << /F \dpxxstrmref{#1} >>
>>}%
\special{pdf:names /EmbeddedFiles [(#2) \dpxfspecref{#1}]}
}%
\newcommand{\attachfile}[2]{%
\makebox[10pt][l]{%
\special{pdf:ann width 10pt height 13pt depth 2pt
<<
 /Type /Annot
 /Subtype /FileAttachment
 /T (Author of This Document)
 /Contents (#2)
 /F 4
 /Name /PushPin
 /FS \dpxfspecref{#1}
 /AP << /N @icon:file >>
>>}}}%
\newenvironment{attachitemize}[0]{\begin{itemize}}{\end{itemize}}%
\newcommand{\attachitem}[3]{%
\loadattachfile{#1}{#2}%
\item[{\attachfile{#1}{#3}}] The attached file \texttt{#2} is {#3}.%
}%
%%%%
%%%%

\begin{attachitemize}
\attachitem{src}{\jobname.tex}{Lambda source of this document}
\attachitem{res}{\jobname-res.zip}{zip archive containing OFM, .fd, and
dvipdfmx fontmap files used to produce this document}
\attachitem{agl}{glyphlist-cm-add.txt}{plain text file}
This file describes additional PS glyph name to Unicode mapping entries
for glyphs contained in Computer Modern font (but not in the original AGL file).
\end{attachitemize}

If your PDF viewer does not support extracting embedded files, please use
\verb|pdftosrc| program from pdf\TeX{} project%
\footnote{%
\href{http://www.tug.org/applications/pdftex/}%
{\tt http://www.tug.org/applications/pdftex/}
}
to extract embedded files.
To do this, first search PDF file (open with binary editor, not with PDF viewer)
by keyword \verb|/Filespec|, you should find data sections looks like:
\popocplist%
\begin{Verbatim}[commandchars=\\\{\}]
 58 0 obj
 <<
 /Type /Filespec
 /F (\jobname.tex)
 /EF <<
 /F 55 0 R
 >>
 >>
\end{Verbatim}
\pushocplist\OCPlistutf
Record two numbers between \verb|/F| and \verb|R| whithin the
block \texttt{/EF << >>} (55 and 0 in this example) and run
\texttt{pdftosrc} program as
\begin{Verbatim}[commandchars=\\\{\}]
 pdftosrc \jobname.pdf 55 0
\end{Verbatim}
on console.
Then you'll get \texttt{\jobname.55} which is extracted embedded file.
The appropriate file name for this data is recorded in \verb|/F (...)|.

\end{document}

{
\font\vfont=fixedpitch-v at 18pt
\popocplist
{\vfont ^^^^e100^^^^e101^^^^e102^^^^e200^^^^e201^^^^e210}
\pushocplist\OCPlistutf
}%

\end{document}

Author of This Document
Lambda source of this document

chinese.otl

#reserve [uniE200-uniE2FF];

#
May conflict if chinese is loaded or if hanideo option is
specified for korean: Japanese and Korean not always conflict
but Japanese and Chinese often can't coexist in single font
(otherwise one of them must be shifted to PUA).
#
Not supported yet (loading multiple config. is not supported yet)
#
#conflict chinese korean:hanideo;

script hani;
language (dflt|ZHT_|ZHS_);

@hanideo = [uni4E00-uni9FAF];
option smpl {
 optional {
 # I don't know which is actually substituted...
	substitute @hanideo by @hanideo.smpl;
 };
};

option trad {
 optional {
	substitute @hanideo by @hanideo.trad;
 }
};

japanese.otl

#reserve [uniE100-uniE2FF];

#
May conflict if chinese is loaded or if hanideo option is
specified for korean: Japanese and Korean not always conflict
but Japanese and Chinese often can't coexist in single font
(otherwise one of them must be shifted to PUA).
#
Not supported yet (loading multiple config. is not supported yet)
#
#conflict chinese korean:hanideo;

script (hira|kana|hani);
language (dflt|JAN_);

#
Applying a chain of substitution is not handled well.
There should be lookup order etc...
#

Punctuations:
Differently placed between vertical and horizontal.
Might have slightly different shape.
@jpunct = [uni3001 uni3002];

Vertical forms of parens are rotated.
@jparen = [uni3008-uni3011]; # uni3014-uni301B...

Prolonged sound mark and wave dash, n-dot leader...:
Vertical form of prolonged sound mark is not just
rotation (plus mirroring around vertical center).
@jother = [uni30FC uni301C];

Font may have glyphs designed for ruby. "small" kanas are
usually not used for ruby, hence font may not have ruby forms
for them.
@hkana = [uni3042 uni3044 uni3046 uni3048 uni304A
 uni304B-uni3062 uni3064-uni3082
 uni3084 uni3086 uni3088
 uni3089-uni308D uni308F-uni3094];
@kkana = [uni30A2 uni30A4 uni30A6 uni30A8 uni30AA
 uni30AB-uni30C2 uni30C4-uni30E2
 uni30E4 uni30E6 uni30E8
 uni30E9-uni30ED uni30EF-uni30F4];

"small" kanas are placed differently in vertical writing
than horizontal.
@hksmall = [uni3041 uni3043 uni3045 uni3047 uni3049
 uni3063
 uni3083 uni3085 uni3087]; # a i u e o tsu ya yu yo
@kksmall = [uni30A1 uni30A3 uni30A5 uni30A7 uni30A9
 uni30C3
 uni30E3 uni30E5 uni30E7];

#
This file should be written in utf-8 but...
#
optional {
 # Ligatures fit into square
 # They are direction dependent in general.
 assign uniE100 to uni682A_uni5F0F_uni4F1A_uni793E.dlig; # Corporation
 assign uniE101 to uni6709_uni9650_uni4F1A_uni793E.dlig; # LTD. company
 assign uniE102 to uni8CA1_uni56E3_uni6CD5_uni4EBA.dlig; # Foundation
 # And many more...

 assign uniE200 to uni5E73_uni6210.dlig; # Heisei
 assign uniE201 to uni662D_uni548C.dlig; # Showa

 # The following all have prefix milli...
 assign uniE210 to uni30DF_uni30EA_uni30D0_uni30FC_uni30EB.dlig; # milli-bar
 # And many more...
};
@jligs = [uniE100-uniE102 uniE200-uniE201 uniE210]; #

This is useless example for MS Arial Unicode.
TrueType not have vrt2 but vert...
option vertical {
 required {
 substitute @jparen by @jparen.vert; # Parens must be substituted
 };
 prefered {
 # MS Arial Unicode doesn't have.. adjusted by GPOS?
 substitute @jother by @jother.vert;
 substitute @jpunct by @jpunct.vert;
 };
};

option ruby {
 prefered { # Kana designed for ruby
 substitute @hkana by @hkana.ruby;
 substitute @kkana by @kkana.ruby;
 };
};

#
Some option might depend on/conflict with other options...
We need control for this.
#

requires Adobe-Japan1-4
option expert_v {
 required {
 substitute @jparen by @jparen.vrt2;
 substitute @jother by @jother.vrt2;
 substitute @jpunct by @jpunct.vrt2;
 substitute @hksmall by @hksmall.vrt2;
 substitute @kksmall by @kksmall.vrt2;
 };
 prefered {
 # Kana designed for vertical writing
 substitute @hkana by @hkana.vkna;
 substitute @kkana by @kkana.vkna;

 # Vertical form for ligatures
 substitute @jligs by @jligs.vrt2;
 };
};

#
There should be something for sorting options...
But multiple option applied to single font is not supported yet.
#

latin.otl

#reserve [uniE000-uniE020];

script latn;
language dflt;

@numeral = [zero-nine];
@lowercase = [a-z];
@lcasesupp = [agrave-odieresis oslash-ydieresis];

option otherligs {
 language *;

 prefered { # Warn if missing
 assign uniE000 to f_b.liga;
 assign uniE001 to f_j.liga;
 assign uniE002 to f_t.liga;
 assign uniE003 to f_h.liga;
 assign uniE004 to f_k.liga;
 assign uniE005 to t_t.liga;
 assign uniE006 to f_f_t.liga;
 assign uniE007 to f_f_b.liga;
 assign uniE008 to f_f_h.liga;
 assign uniE009 to f_f_k.liga;
 assign uniE00A to S_S.liga;
 assign uniE00D to c_h.liga;
 assign uniE00E to c_k.liga;
 };

 optional { # Ignore if missing
 assign uniE00B to Q_u.dlig;
 assign uniE00C to T_h.dlig;
 # assign uniE00D to c_h.dlig;
 assign uniE00F to c_t.dlig;
 assign uniE018 to s_p.dlig;
	assign uniE019 to t_z.dlig;
 };

 optional {
 assign uniE010 to longs_i.hlig;
 assign uniE011 to longs_l.hlig;
 assign uniE012 to longs_longs.hlig;
 assign uniE013 to longs_longs_i.hlig;
 assign uniE014 to longs_longs_l.hlig;
 assign uniE015 to longs_b.hlig;
 assign uniE016 to longs_h.hlig;
 assign uniE017 to longs_k.hlig;
 };
};

option oldstyle {
 required { # Error if missing
 substitute @numeral by @numeral.onum;
 };
 optional {
 substitute sterling by sterling.onum;
 };
};

option smallcap {
 required {
 substitute @lowercase by @lowercase.smcp;
 };
 prefered {
 substitute @lcasesupp by @lcasesupp.smcp;
 };
};

option german { # Language specific
 language DEU_;

 prefered {
 assign uniE00E to c_k.liga;
	assign uniE00A to S_S.liga;
 };
};

arialuni.ofm

cmittu.ofm

cmslttu.ofm

cmtcscu.ofm

cmttu.ofm

fixedpitch-smpl.ofm

fixedpitch-trad.ofm

fixedpitch-v.ofm

fixedpitch.ofm

lplbcu.ofm

lplbicu.ofm

lplbiu-alig.ofm

lplbiu-onum.ofm

lplbiu.ofm

lplbu-alig.ofm

lplbu-onum.ofm

lplbu.ofm

lplicu.ofm

lplrcu.ofm

lplriu-alig.ofm

lplriu-onum.ofm

lplriu.ofm

lplru-alig.ofm

lplru-onum.ofm

lplru.ofm

mcrbiu.ofm

mcrbu.ofm

mcrriu.ofm

mcrru.ofm

ot1cmttu.fd

\ProvidesFile{ot1cmttu.fd}
 [Font definition file for testing...]
%% Copyied from ot1cmtt.fd
\DeclareFontFamily{OT1}{cmttu}{\hyphenchar \font\m@ne}

\DeclareFontShape{OT1}{cmttu}{m}{n}{<-> cmttu} {}
\DeclareFontShape{OT1}{cmttu}{m}{it}{<-> cmittu} {}
\DeclareFontShape{OT1}{cmttu}{m}{sl}{<-> cmslttu}{}
\DeclareFontShape{OT1}{cmttu}{m}{sc}{<-> cmtcscu}{}

\DeclareFontShape{OT1}{cmttu}{m} {ui}{<->ssub* cmttu/m/it}{}
\DeclareFontShape{OT1}{cmttu}{bx}{n} {<->ssub* cmttu/m/n} {}
\DeclareFontShape{OT1}{cmttu}{bx}{it}{<->ssub* cmttu/m/it}{}
\DeclareFontShape{OT1}{cmttu}{bx}{ui}{<->ssub* cmttu/m/it}{}
\endinput
%%
%% End of file `ot1cmttu.fd'.

ot1lpl-alig.fd

\ProvidesFile{ot1lpl-alig.fd}
 [2001/06/04 font definitions for OT1/lpl-alig.]

\DeclareFontFamily{OT1}{lpl-alig}{}
\DeclareFontShape{OT1}{lpl-alig}{m}{n} {<-> lplru-alig} {}
\DeclareFontShape{OT1}{lpl-alig}{m}{sc}{<-> lplrcu}{}
\DeclareFontShape{OT1}{lpl-alig}{m}{it}{<-> lplriu-alig}{}
\DeclareFontShape{OT1}{lpl-alig}{b}{n} {<-> lplbu-alig} {}
\DeclareFontShape{OT1}{lpl-alig}{b}{sc}{<-> lplbcu}{}
\DeclareFontShape{OT1}{lpl-alig}{b}{it}{<-> lplbiu-alig}{}

\DeclareFontShape{OT1}{lpl-alig}{m}{sl}{<->ssub * lplru-alig} {}
\DeclareFontShape{OT1}{lpl-alig}{b}{sl}{<->ssub * lplbu-alig} {}

\DeclareFontShape{OT1}{lpl-alig}{bx}{n} {<->ssub * lpl-alig/b/n} {}
\DeclareFontShape{OT1}{lpl-alig}{bx}{sc}{<->ssub * lpl-alig/b/sc}{}
\DeclareFontShape{OT1}{lpl-alig}{bx}{sl}{<->ssub * lpl-alig/b/sl}{}
\DeclareFontShape{OT1}{lpl-alig}{bx}{it}{<->ssub * lpl-alig/b/it}{}

\DeclareFontShape{OT1}{lpl-alig}{m} {ui}{<->ssub * lpl-alig/m/it}{}
\DeclareFontShape{OT1}{lpl-alig}{b} {ui}{<->ssub * lpl-alig/b/it}{}
\DeclareFontShape{OT1}{lpl-alig}{bx}{ui}{<->ssub * lpl-alig/b/it}{}
\endinput

ot1lpl-onum.fd

\ProvidesFile{ot1lpl-onum.fd}
 [2001/06/04 font definitions for OT1/lpl-onum.]

\DeclareFontFamily{OT1}{lpl-onum}{}
\DeclareFontShape{OT1}{lpl-onum}{m}{n} {<-> lplru-onum} {}
\DeclareFontShape{OT1}{lpl-onum}{m}{sc}{<-> lplrcu}{}
\DeclareFontShape{OT1}{lpl-onum}{m}{it}{<-> lplriu-onum}{}
\DeclareFontShape{OT1}{lpl-onum}{b}{n} {<-> lplbu-onum} {}
\DeclareFontShape{OT1}{lpl-onum}{b}{sc}{<-> lplbcu}{}
\DeclareFontShape{OT1}{lpl-onum}{b}{it}{<-> lplbiu-onum}{}

\DeclareFontShape{OT1}{lpl-onum}{m}{sl}{<->ssub * lplru-onum} {}
\DeclareFontShape{OT1}{lpl-onum}{b}{sl}{<->ssub * lplbu-onum} {}

\DeclareFontShape{OT1}{lpl-onum}{bx}{n} {<->ssub * lpl-onum/b/n} {}
\DeclareFontShape{OT1}{lpl-onum}{bx}{sc}{<->ssub * lpl-onum/b/sc}{}
\DeclareFontShape{OT1}{lpl-onum}{bx}{sl}{<->ssub * lpl-onum/b/sl}{}
\DeclareFontShape{OT1}{lpl-onum}{bx}{it}{<->ssub * lpl-onum/b/it}{}

\DeclareFontShape{OT1}{lpl-onum}{m} {ui}{<->ssub * lpl-onum/m/it}{}
\DeclareFontShape{OT1}{lpl-onum}{b} {ui}{<->ssub * lpl-onum/b/it}{}
\DeclareFontShape{OT1}{lpl-onum}{bx}{ui}{<->ssub * lpl-onum/b/it}{}
\endinput

ot1lpl.fd

\ProvidesFile{ut1lpl.fd}
 [2001/06/04 font definitions for OT1/lpl.]

\DeclareFontFamily{OT1}{lpl}{}
\DeclareFontShape{OT1}{lpl}{m}{n} {<-> lplru} {}
\DeclareFontShape{OT1}{lpl}{m}{sc}{<-> lplrcu}{}
\DeclareFontShape{OT1}{lpl}{m}{it}{<-> lplriu}{}
\DeclareFontShape{OT1}{lpl}{b}{n} {<-> lplbu} {}
\DeclareFontShape{OT1}{lpl}{b}{sc}{<-> lplbcu}{}
\DeclareFontShape{OT1}{lpl}{b}{it}{<-> lplbiu}{}

\DeclareFontShape{OT1}{lpl}{m}{sl}{<->ssub * lplru} {}
\DeclareFontShape{OT1}{lpl}{b}{sl}{<->ssub * lplbu} {}

\DeclareFontShape{OT1}{lpl}{bx}{n} {<->ssub * lpl/b/n} {}
\DeclareFontShape{OT1}{lpl}{bx}{sc}{<->ssub * lpl/b/sc}{}
\DeclareFontShape{OT1}{lpl}{bx}{sl}{<->ssub * lpl/b/sl}{}
\DeclareFontShape{OT1}{lpl}{bx}{it}{<->ssub * lpl/b/it}{}

\DeclareFontShape{OT1}{lpl}{m} {ui}{<->ssub * lpl/m/it}{}
\DeclareFontShape{OT1}{lpl}{b} {ui}{<->ssub * lpl/b/it}{}
\DeclareFontShape{OT1}{lpl}{bx}{ui}{<->ssub * lpl/b/it}{}
\endinput

ot1mcr.fd

\ProvidesFile{ut1mcr.fd}
 [2001/06/04 font definitions for OT1/mcr.]

\DeclareFontFamily{OT1}{mcr}{}
\DeclareFontShape{OT1}{mcr}{m}{n} {<-> mcrru} {}
\DeclareFontShape{OT1}{mcr}{m}{it}{<-> mcrriu}{}
\DeclareFontShape{OT1}{mcr}{b}{n} {<-> mcrbu} {}
\DeclareFontShape{OT1}{mcr}{b}{it}{<-> mcrbiu}{}

\DeclareFontShape{OT1}{mcr}{m} {sc}{<->ssub * mcr/m/n}{}
\DeclareFontShape{OT1}{mcr}{m} {sl}{<->ssub * mcr/m/n} {}
\DeclareFontShape{OT1}{mcr}{b} {sc}{<->ssub * mcr/b/n}{}
\DeclareFontShape{OT1}{mcr}{m} {sl}{<->ssub * mcr/b/n} {}

\DeclareFontShape{OT1}{mcr}{bx}{n} {<->ssub * mcr/b/n} {}
\DeclareFontShape{OT1}{mcr}{bx}{sc}{<->ssub * mcr/b/sc}{}
\DeclareFontShape{OT1}{mcr}{bx}{sl}{<->ssub * mcr/b/sl}{}
\DeclareFontShape{OT1}{mcr}{bx}{it}{<->ssub * mcr/b/it}{}

\DeclareFontShape{OT1}{mcr}{m} {ui}{<->ssub * mcr/m/it}{}
\DeclareFontShape{OT1}{mcr}{b} {ui}{<->ssub * mcr/b/it}{}
\DeclareFontShape{OT1}{mcr}{bx}{ui}{<->ssub * mcr/b/it}{}
\endinput

cid-x.map

%% Dvipdfmx Font Mapping File

%%
%% Palatino Linotype
%%
lplru unicode pala
lplbu unicode palab
lplriu unicode palai
lplbiu unicode palabi
%%
%% URW Palladio (Type 1)
%% No greek, lacks some ligatures(?).
%lplru unicode uplr8a
%lplbu unicode uplb8a
%lplriu unicode uplri8a
%lplbiu unicode uplbi8a
%%
%% Small Caps
%%
lplrcu unicode pala -l latin:smallcap
lplbcu unicode palab -l latin:smallcap
%%
%% OSF
%%
lplru-onum unicode pala -l latin:oldstyle
lplbu-onum unicode palab -l latin:oldstyle
lplriu-onum unicode palai -l latin:oldstyle
lplbiu-onum unicode palabi -l latin:oldstyle
%%
%% All ligatures enabled
%%
%% OFM must use same PUA assignment.
%%
lplru-alig unicode pala -l latin:otherligs
lplbu-alig unicode palab -l latin:otherligs
lplbiu-alig unicode palabi -l latin:otherligs
lplriu-alig unicode palai -l latin:otherligs
%%
%% Monotype Courier New
%%
mcrru unicode cour
mcrbu unicode courbd
mcrbiu unicode courbi
mcrriu unicode couri
%%
%% Computer Modern Typewriter (Type 1)
%% For testing Type 1 Unicode support.
%% Not fully supported...
%%
%% You should be warned about visualspace.
cmttu unicode cmtt10
cmittu unicode cmitt10
cmslttu unicode cmsltt10
cmtcscu unicode cmtcsc10
%%
%%
fixedpitch-smpl unicode arialuni -l chinese:smpl
fixedpitch-trad unicode arialuni -l chinese:trad
fixedpitch unicode arialuni
%%
%% arialuni is useless for vertical writing...
%%
fixedpitch-v unicode arialuni -w 1 -l japanese:vertical
%%
arialuni unicode arialuni
%%EOF

ligmap.txt

f_b uniE000
f_j uniE001
f_t uniE002
f_h uniE003
f_k uniE004
t_t uniE005
f_f_t uniE006
f_f_b uniE007
f_f_h uniE008
f_f_k uniE009
S_S uniE00A
Q_u uniE00B
T_h uniE00C
c_h uniE00D
c_k uniE00E
c_t uniE00F
longs_i uniE010
longs_l uniE011
longs_longs uniE012
longs_longs_i uniE013
longs_longs_l uniE014
longs_b uniE015
longs_h uniE016
longs_k uniE017
s_p uniE018
t_z uniE019

UTF8-UCS2

Makefile

.SUFFIXES : .tex .dvi .pdf

SOURCE = dpxunicode.tex
TEX = lambda

RESOURCES = *.otl *.ofm *.fd cid-x.map ligmap.txt UTF8-UCS2 Makefile

DVITOPDF_PROG = dvipdfmx
DVITOPDF_OPTS =

all: $(SOURCE) dpxunicode.dvi dpxunicode-res.zip
	$(DVITOPDF_PROG) $(DVITOPDF_OPTS) dpxunicode

zip: dpxunicode-res.zip

dpxunicode-res.zip: $(RESOURCES)
	zip dpxunicode-res.zip $(RESOURCES)

.tex.dvi:
	$(TEX) -interaction=nonstopmode $<

clean:
	rm -rf dpxunicode.dvi *.log *.ofl *~

clean-all: clean
	rm -rf *.aux *.out dpxunicode-res.zip

Author of This Document
zip archive containing OFM, .fd, and dvipdfmx fontmap files used to produce this document

Additional entries for CMR10, CMMI10, CMSY10
#
CMR10
suppress -> COMBINING SHORT SOLIDUS OVERLAY
#supress;0337
CMMI10
tie -> COMBINING INVERTED BREVE
vector -> COMBINING RIGHT ARROW ABOVE
arrowhookleft, arrowhookright missing
#
pi1;03D6
rho1;03F1
arrowlefttophalf;21BC
arrowleftbothalf;21BD
arrowrighttophalf;21C0
arrowrightbothalf;21C1
triangleright;25C3
triangleleft;25B9
flat;266D
natural;266E
sharp;266F
slurbelow;2323
slurabove;2322
lscript;2113
vector;20D7
epsilon1;03F5
star;22C6
#tie;0311
CMSY10
owner -> CONTAINS AS MEMBER
circlecopyrt -> COMBINING ENCLOSING CIRCLE
mapsto + [RIGHTWARDS ARROW] -> [RIGHTWARDS ARROW FROM BAR]
arrownortheast;2197
arrowsoutheast;2198
similarequal;2245
arrownorthwest;2196
arrowsouthwest;2199
prime;2032
owner;220B
triangle;25B3
triangleinv;25BD
negationslash;0338
#mapsto;21A6
Rfractur;211C
Ifractur;2111
latticetop;22A4
unionmulti;228E
turnstileleft;22A2
turnstileright;22A3
floorleft;230A
floorright;230B
ceilingleft;2308
ceilingright;2309
angbracketleft;2329
angbracketright;232A
bardbl;2225
arrowbothv;2195
arrowdblbothv;21D5
wreathproduct;2240
coproduct;2210
unionsq;2294
intersectionsq;2293
subsetsqequal;2286
supersetsqequal;2287
diamondmath;22C4
circleminus;2296
circledivide;2298
circledot;2299
circlecopyrt;20DD
equivasymptotic;2243
precedesequal;227C
followsequal;227D
lessmuch;226A
greatermuch;226B
follows;227B
#--end

Author of This Document
plain text file

http://www.tug.org/applications/pdftex/

	Compatibility
	TeX Font Metric
	Subfont Support

	Font and Encoding
	Supported Font Format
	Font Mapping
	Accessing Glyphs in Font
	CMap and Encoding File
	Adobe Glyph List and CID-To-Code Mapping
	Acrobat and Printer Resident Font
	Notes on OpenType CIDFont Support
	Using TrueType Font as CID-keyed Font

	Unicode Support
	Unicode Support in Dvipdfmx
	Selecting Glyph Variants
	Discretionary Ligatures
	ToUnicode CMap Support

	Vertical Writing
	Vertical Writing Support in Dvipdfmx
	Vertical Composition

	Test
	Related Files

