The dklibs library set, version 1.3.7

Dipl.-Ing. D. Krause

November 26, 2003

Contents

1 Overview 4
2 License S
3 Acronyms 6
4 Installation 7
4.1 |Installationon*nixsystems. 7
4.2 Installation on Windows systems. 8
4.2.1 Usingthentmakfile 8

4.2.2 Manualinstallation 10

5 Usage guidelines 11
5.1 Aworstcasescenario.o 11
52 Conclusions. 11

6 Headers and modules 12
6.1 dkh. 12
6.2 dkconfig.h - Configuration. 12
6.3 dkconfd.h - Default configuratian. 12
6.4 dkproto.h - Prototypes/Declarations. 12
6.5 dkerrorh-Errorcodes., 13
6.6 dktypes.h-Datatypes. 15
6.7 dkmem.h - Dynamic memory allocation. 16
6.8 dkenc-Encoding. o 18
6.9 dkslsupp-Syslogsuppart. 20
6.10 dksfc - Preprocessor definitions for file types and permissions 22
6.11 dksf - Interface to system functions 24
6.11.1 Information aboutfiles 24

6.11.2 Directorytraversal. 28

6.11.3 Filenameexpansion. 31

6.11.4 Otherfunctions 33

6.12 dkstr- String handling. 40
6.13 dktok - Group input characterstotokens 43
6.13.1 Overview. e 43

6.13.2 Functions. e 43

6.13.3 Example 44

6.14 dksignal - Signal handling. 47
6.15 dklog - Log messages (obsoleted). 49
6.15.1 Writinglogmessages. 49

1

6.15.2 Customizinglogoutput. 50

6.16 dkss - String search (obsoleted) 53
6.17 dkbf-Bitfields. 55
6.18 dkma - Mathematical operations. 56
6.19 dkstream-1/OAPI. 59
6.19.1 Doingl/Ooperations 59
6.19.2 Writing handler functions. 62
6.20 dkof - outputfiltering. 0oL 67
6.20.1 Overview. e e 67
6.20.2 Functions. 67
6.20.3 Usage e e 68
6.21 dkcp - Dealing with codepages. 70
6.21.1 Overview. e e 70
6.21.2 Functions. 70
6.21.3 Codepagefilestructute. 70
6.21.4 Example 71
6.22 dksto - Sorted and unsorted data storage. 72
6.22.1 OVerview. e 72
6.22.2 Anexample L o oo 75
6.23 dkstt-Stringtables oL 79
6.24 dkapp - Application 80
6.25 dktcpip- TCP/IPnetworking 92
Administration 97
7.1 Installation 97
7.2 Preferencesmanagement 97
7.2.1 Preferencesstorage 97
7.2.2 Configuration filesexample 98
7.2.3 Preferences storage on 32-bit W* systems. 101
7.3 Recommended environment variables for W*32 systems. . . 103
Security 104
Tutorial 105
9.1 Aboutthetutorial. o 105
9.2 Introductiontothedkappmodule. 105
9.2.1 The simple Hello-world-program. 105
9.2.2 Adding applicationsupport. 106
9.2.3 Setting preferences. 108
9.2.4 Internationalization 109
9.25 Logging. 113

9.2.6 Retrieving command line arguments 116

9.3 Memoryallocation. 118
9.4 Sortingandsearching. 120
95 Genericl/O. e 126
9.5.1 Usingthegenericl/O. 126
9.5.2 Writing stream callback functions 131
9.5.3 Establishing a callback function. 133
9.54 Callbackexample. 133

10 Appendix 134
10.1 PreferencesOverview. o v oo 134
10.1.1 General preferences 134
10.1.2 Preferences for security checks. 136

10.2 Macrosinpreferences. 137
10.3 Search order for the dkapp_find_file() function. 138
10.4 Search order for the dkapp_find_cfg() functian. 141

1 Overview

This package contains a set of libraries.

The main purpose of the libraries is to support application development.

The dkport library provides a portability layer and hides system-specific code
from the application developer. Thikkc library contains reusable code for differ-

ent purposes, i.e.:
* sorted data storage using AVL-trees
* 1/O abstraction layer
 application features

— string tables for internationalization
— file search
— logging

Thedknet library contains code for portable TCP/IP network access.
Thedktrace library is needed if you use theacecc preprocessor for debug
messages.

2 License

This software is published under the terms of the
GNU Library General Public License, Version 2.
See theCoprYINGfile for license conditions.

3 Acronyms

Acronym

Meaning

RANF

Really a nice feature.

4 Installation

4.1 Installation on *nix systems

» Unpack the distribution.
 Call

Jconfigure
make
make install

to configure the package, compile the software and install it.
The usual options can be specified émnfigure

4.2 Installation on Windows systems
4.2.1 Using the nt.mak file

A makefile is provided for Visual C++ users on NT workstations, the file is named
nt.mak .

Building these libraries was tested using Visual C++ 5 on Windows NT 4 work-
station SP 6a.

Thedkconfd.h file contains defaults for this system.

A section

#if _ BORLANDC_ _ || __ BCPLUSPLUS
#endif

is contained too. This section is for Borland C++ 3.1 on DOS.

When using Borland/Imprise compilers on Windows systems you need to figure
out how to define the settings correctly.

As a starting point you should replace the contents of tlBORLANDC _ sec-

tion by the contents of the#if MSC_VER >=1100 " section.

Starting with version 1.0.5 one can use the makefilenak to create *.DLL

files.

Before you use the makefiles you may need to apply some changes:

* VC
must point to your Visual C++’s base directory in which the subdirectories
include ,lib andbin reside.

* PROGRAMS
must point to the directory where all your software is to be installed. The di-
rectory’s name depends on the language installed on your system. Typically
this isC:/Programs or C:/Programme .

* VENDOR
is the name of the subdirectory for installation and should need no change.

* LANG
specifies your preferred language and must be sen tor de.

¢ ZL ...
enablexzlib support.
If zlib support is enabled for this library set it must be enabled for all the
programs using the libraries too.

 BZL ...
enabledzlib support.
If bzlib support is enabled for this library set it must be enabled for all
the programs using the libraries too.

From your Visual C++'sin directory runVCVARS32. BAT to set the environ-
ment variables needed. Other compilers may require another procedure.
To build the libraries type

nmake -f nt.mak
To install the libraries type
nmake -f nt.mak install

During installation you will see warnings about string tables which were not found.
Don’t worry about them, you are just about to build these string tables.

Copy all the*.exe files into your W* directory or another directory mentioned

in the PATH environment variable.

Different W* versions have different options foopy andxcopy so the makefile
needs to be modified when using the home product lirren R

4.2.2 Manual installation

» Create a new workspace for a Win32 console application natkezhfig

* In this workspace create a project for another Win32 console application
namedracecc

» Create a new project for a Win32 static library naniibdkport
» Create a new project for a Win32 static library nanfibdkio

» Add the source files to the projects, ddakefile.in which source to
add to which project.

» Thelibdkio library depends on thiébdkport library.
» Both programs depend on both libraries.

» Correct the header search paths for all the projects.

* Build all the projects.

» Copytracecc.exe anddkconfig.exe into a directory contained in
thePATHenvironment variable.

» Copy thelibdkio.lib and libdkport.lib libraries into a special
LiB directory.

» Copy all the header files into a spedial cLuUDEdirectory.

10

5 Usage guidelines

5.1 A worst case scenario

The reason for the rewrite was to enable dynamic linking. Although | do not like
to use shared libraries - or worse: DLLs - shared libraries are a good choice for
extensions to existing software.

If a program uses shared libraries it might happen one installs a newer version of
the library but does not update all applications using this library.

In the new library the contents of some data types may have changed (most likely
these changes add new members to the data types).

If such datatypes are used statically the application has reserved less space for the
variables than the new library functions assume.

If a library function tries to access the "last" components of such a variable it
accesses memory not belonging to the variable.

Thus, other data is corrupted or a segmentation violation can happen.

5.2 Conclusions

» Do notinstantiate types frontktypes.h statically in the application code
(except the simple data types).

» Usethe.. open/new functions instead to allocate the variables dynam-
ically.
These allocation functions are placed in the same modules as the functions
accessing these data types so they use the same data type definitions.

» Do not access member variables directly, use the functions provided in the
modules instead.

11

6 Headers and modules

All functions returningint values return valuds 0 on success and on error
if not specified otherwise.

All functions returning pointers return valid pointers on success ML on
errors if not specified otherwise.

6.1 dk.h

If you use the library set you should always inclutieh to have configuration
information and data types available.

6.2 dkconfig.h - Configuration

This file is included bydk.h and includes other files likeonfig.h if available
ordkconfd.h if there is noconfig.h file available.

Additionaly the filedkconftr.h is included. This file transforms configure’s
HAVE_... constants int®K _HAVE_... constants.

During installation a nevdkconfig.h file is created by thekconfig pro-
gram. This file directly containBK_HAVE_... constants.

The transformation tdK_HAVE ... constants is done to avoid collisions with
other packagesonfigure results.

6.3 dkconfd.h - Default configuration

This file contains some default configurations for Windows PCs. If you use an-
other compiler than MSVC 5.0 you should check whether the constants are de-
fined correctly.

6.4 dkproto.h - Prototypes/Declarations

This file is included automatically bgk.h and contains macro definitions to
handle ANSI-C’s prototypes and K&R-C'’s function declarations.

12

6.5 dkerror.h - Error codes
This file containsnt codes for errors.

« DK_ERR_NONE
No error occured.

« DK_ERR_SYSERR
A system error occured, seerno for more information.

« DK_ERR_NOMEM
The system could not allocate memory dynamically.

« DK_ERR_BUFFER_LENGTH
The buffer was too small to keep the result.

« DK_ERR_MATH_OOR
After a mathematical operation the result does not fit into the result data
type range.

« DK_ERR_DIV_ZERO
A division by 0 occured.

« DK_ERR_NO_GETHOSTBYNAME
A gethostbyname() function is needed but not available.

« DK_ERR_NO_SUCH_HOST
No information about the specified host were found.

« DK_ERR_TRY_AGAIN
The operation is not possible at this time, but can be executed later.

« DK_ERR_NO_RECOVERY
An unexpected server error occured in gethostbyname().

« DK_ERR_NO_DNS_RESPONSE
The response from theN3s server contained no data.

« DK_ERR_UNKNOWN_ERROR
An unknown error occured, no details are available.

« DK_ERR_INVALID_ARGS
Invalid arguments were passed to a function or system call.

« DK_ERR_GETHOSTNAME_FAILED
The function failed to obtain the current host name.

13

DK_ERR_NOT_NOW
The operation is not possible at this time but maybe later.

DK _ERR_INVALID FILEHANDLE
An invalid file handle was specified.

DK_ERR_CONNECTION_CLOSED_BY_PEER
A TCP/IP connection was closed by the peer.

DK_ERR_INTERRUPTED
An operation was interrupted, i.e. by a signal.

DK_ERR_NO_OOB_DATA
When asking for out of band (urgent) data no such data was available.

DK_ERR_NOT_CONNECTED
We need to create a connection first.

DK_ERR_TIMED_OUT
An operation was timed out.

DK_ERR_IO
An I/O error occured

DK_ERR_RESOURCES
The required ressources are not available.

DK_ERR_AF_NO_SUPPORT
The address family is not supported.

DK_ERR_MSG_SIZE
A message or buffer was too large.

DK_ERR_PIPE
A write operation was performed on a pipe which has no reader assigned.

DK_ERR_NEED_ADDR
An address is needed to perform the operation.

DK_ERR_HOST_UNREACHABLE
The target host is unreachable.

DK_ERR_NET_INTERFACE_DOWN
The local network interface is down.

14

* DK_ERR_NET_UNREACHABLE
The target network is unreachable.

« DK_ERR_ACCESS
Access to ressources needs privileges the user does not have.

« DK_ERR_PROTO_NOT_SUPPORTED
The specified protocol is not supported.

« DK_ERR_ADDRESS_IN_USE
The address is already in use.

« DK_ERR_ADDRESS_ NOT_AVAILABLE
The address is no available.

* DK_ERR_ALREADY_CONNECTED
There is already a connection established.

« DK_ERR_CONNECT_IN_PROGRESS
A connect operation is already in progress.

« DK_ERR_CONNECTION_REFUSED BY_ PEER
The attempt to connect was refused be the peer.

« DK_ERR_BUSY
The peer is too busy to accept a connection.

« DK_ERR_STRING_TOO_LONG
A string was too long to handle it.

* DK_ERR_NO_SUCH_FILE
No file matching the given pattern was found.

« DK_ERR_NOT_UNIQUE
Multiple file names match the pattern but a unique file name is needed.

« DK_ERR_FINISHED
Traversing a collection is finished, there are no more elements available.

* DK_ERR_FUNCTION_UNSUPPORTED
The functionality is not supported on this system.

6.6 dktypes.h - Data types

This file containes data type definitions. It is automatically includedkig .

15

6.7 dkmem.h - Dynamic memory allocation

This module is repsonsible for memory allocation and deallocation.
Depending on your system you might want to use eithemtladloc /free or
thefarmalloc /farfree function pair. The following functions are defined in
the module:

» void *dkmem_alloc(size_t elsize, size_t nelem);
This function allocates memory forelem elements of a data type of size
elsize

* void dkmem_free(void *p);
deallocates memory obtained igmem_alloc .

Other functions are defined to reset, copy and compare memory regions.

* void dkmem_res(void *ptr, size_t bytes);
resetdytes bytes at addregstr to O.

» void dkmem_cpy(void *d, void *s, size t n);
copiesn bytes from source addresdo destination address

* int dkmem_cmp(void *sl1, void *s2, size_t n);
compares 2 buffers of bytes.
If the contents of the buffers is equals returned, otherwise a ndivvalue.

Some macros are defined:

» #define dk_new(t,s)\
(t *)dkmem_alloc(sizeof(t),((size_t)s))
can be used for memory allocation.

 #define dk_delete(p) dkmem_free((void *)(p))
can be used to free memory.

* DK_MEMRES(ptr,sz)
resets memorysg bytes starting at addreps).

« DK_MEMCPY(d,s,n)
copiesn bytes from address to d.

« DK_MEMCMP(a,b,n)
compares buffers of sizeat addresses andb.

16

Example:

char textl[] = { "Test-String" };

char text2[sizeof(textl)]; /* same size */

size t Igt;

char *ptr;

gt = strlen(textl);

lgt++;

[* get memory dynamically */

ptr = dk_new(char,lgt);

[* check for success */

if(ptr) {
[* copy from textl to ptr */
DK_MEMCPY (ptr,textl,lgt);
[* set text2 to 0 */
DK_MEMRES(text2,Igt);
[* compare textl and text2 (result should be != 0) */
printf("textl, text2: %d\n", DK_MEMCMP(textl,text2,Igt));
[* compare textl and ptr (result should be == 0) */
printf("ptr, textl: %d\n", DK_MEMCMP(ptr,textl,igt);
[* release the memory */
dk_delete(ptr);

17

6.8 dkenc - Encoding

Thedkenc module can be used for encoding changes. The funatibeisc_ntohl
dkenc_ntohs ,dkenc_htonl anddkenc _htons have the same functional-
ity asntohl , ntohs , htonl andhtons .

The conversion routines are useful not only for networking but for portable file
saving too.

Some stupid systems hamtohl |, ntohs , htonl andhtons inaDLL dealing
with TCP/IP networking. Special initialization functions must be called before
using this DLLs functions. RNF!

On PCs without TCP/IP the DLL is typically not installedARF!

On PCs with dialup-connection the initialization functions might create a connec-
tion. RANF!

To avoid this the functionality was re-implemented.

Another group of encoding problems is the use ofiCoDE characters.

UNICODE uses 32 bits per character, tik _unicodechar data type can be
used to store these characters.

If a program needs to deal with a given subset of characters (i.e. ISO-LATIN-
8859-1) it would waste a lot of memory when using 32 bits for each character.
Compressed representations forldODE strings are available as1#8 or UTF16-
encoding.

Thedkenc_uc2utf8 function can be used to creata E8 from 32-bit-UNICODE.

int
dkenc_uc2utf8(
dk_unicodechar c, dk_utf8 *u8p, int u8l

);

converts one 32-bit-NICODE character into a number of bytes. These bytes are
stored in the buffeu8p. The buffer length must be given a8l . The function
returns the number of bytes used in the buffe@ @irthe buffer is too small.

18

Thedkenc_utf82uc function converts from WF8 to 32-bit-UNICODE.

int
dkenc_utf82uc(
dk_unicodechar *ucp,dk _utf8 *u8p,int u8l,int *u8u

);

reads UF8-encoded data from the buffaBp with a lengthu8l . It builds one
32-bit-UNICODE character (if possible) and stores it in a variald@ points to.
The number of bytes frora8p used to build the tlicODE character is stored in
a variableu8u points to.

The function returng on success an@ on error.

19

6.9 dkslsupp - Syslog support

The module contains the function

 int dkslsupp_get _code(char * str);

to map a syslog description string lileth.notice

37.

The string consists of facility and priority separated by a dot.
Tablel lists the facilities, tabl@ on the next page lists the priorities. The function
returns the corresponding syslog message cod@ ibmo matching code was

to a numeric value like

Isers

found.
Table 1: Facility keywords

Keyword Meaning

auth messages related to user authentication
authpriv

cron messages generated by unattended scheduled jobs

daemon | messages generated by daemons and services
ftp messages generated by the FTP service
kern messages generated by the OS kernel
lpr messages generated by the print system
mail messages generated by the mail transport system
news messages generated by the NNTP service

syslog messages generated by the syslog service
user messages generated by programs run from normal {
uucp messages generated by the UUCP service

localO site-specific messages

locall

local2

local3

local4

local5

local6

local7

20

Table 2: Priority keywords

Keyword Meaning
emerg The system is unusable.
alert An action must be taken immediately.
crit A critical error occured.
err An error occured.
warning | A warning condition occured.
notice Notification about a normal but significant conditio
info Information message.
debug A debug-level message.

21

n.

6.10 dksfc - Preprocessor definitions for file types and permis-
sions

The header file dksfc.h contains preprocessor definitions for file types and permis-
sions used by the dksf module. The following definitions as described in3able

are available for file types.

Table 3: File types

Preprocessor definition Meaning
DK_FT_REG Regular file
DK_FT_DIR Directory

DK_FT_FIFO FIFO
DK_FT_CHR Character device
DK_FT_BLK Block device

DK_FT_SOCKET | Socket
DK_FT_OTHER Other file types
DK_FT_SYMLINK | Symbolic link

The following definitions are available for permissions:

Table 4: Permissions

Preprocessor definition

Meaning

DK_PERM_SUID

SuID-Bit

DK_PERM_SGID

SGID-Bit

DK_PERM_VTX

V TX-Bit (sticky-bit)

DK_PERM_U_READ

read permission for owner

DK_PERM_U_WRITE

write permission for owner

DK_PERM_U_EXECUTH

execution permission for owner

DK_PERM_G_READ

read permission for group

DK_PERM_G_WRITE

write permission for group

DK_PERM_G_EXECUTE

execution permission for group

DK_PERM_O_READ

read permission for others

DK_PERM_O_WRITE

write permission for others

... to be continued

22

Continuation

DK_PERM_O_EXECUTE

execution permission for others

DK_PERM_CREATE_DIR

mode suggested for directory creati

on

DK_PERM_CREATE_FILE mode suggested for file creation

23

6.11 dksf - Interface to system functions

Thedksf module contains data types and functions to access system functions.

6.11.1 Information about files

Thedk stat t data type is used to store information about files.

» dk_stat_t *dkstat_open(char *filename);
retrieves information about the fifdkename . A dk stat t variableis
allocated dynamically and filled with the information.
On success a pointer to the new variable is returned, otherwise (the file does
not exist or there is not enough memory availaitNe)LL
If a valid pointer is returned the memory must be freed by usikstfat close()
when it is not longer needed.

» void dkstat close(dk_stat t *ptr);
frees the memory allocated lokstat_open()

* int dkstat_filetype(dk_stat t *ptr);
returns annt value for the filetype. The value is as follows:
— DK_FT_REG
for regular files,

— DK_FT_DIR
for a directory,

— DK_FT_FIFO
for FIFOs/Pipes,

— DK_FT_CHR
for character special devices,

— DK_FT_BLK
for block special devices,

— DK_FT_SOCKET
for sockets and

— DK_FT_OTHERor all other filetypes.

If filename is a symbolic link this value is or-combined willK_FT_SYMLINK

24

Example:

void print_filetype(char *filename)
{
if(filename) {
dk_stat_t *info;
info = dkstat_open(filename);
if(info) {
int ft;
ft = dkstat_filetype(info);
switch(ft & (~DK_FT_SYMLINK)) {
case DK _FT_REG: {
printf("regular file: %s\n", filename);
} break;
* ... %
}
dkstat_close(info);
}
}
}

25

 int dkstat_permissions(dk_stat_t *ptr);
returns the permissions to the file as or-combination of the following con-
stants:

— DK_PERM_U_READ
Read permission for the file owner.

— DK_PERM_U_WRITE
Write permission for the file owner.

— DK_PERM_U_EXECUTE
Execution permission for the file owner.

— DK_PERM_G_READ
Read permission for the file owners group.

— DK_PERM_G_WRITE
Write permission for the file owners group.

— DK_PERM_G_EXECUTE
Execution permission for the file owners group.

— DK_PERM_O_READ
Read permission for everybody.

— DK_PERM_O_WRITE
Write permission for everybody.

— DK_PERM_O_EXECUTE
Execution permission for everybody.

— DK_PERM_SUID
The set-user-id-bit is set.

— DK_PERM_SGID
The set-group-id-bit is set.

— DK_PERM_VTX
The system should try to keep the executable image in memory.

* unsigned long dkstat_inode(dk_stat t *ptr);
returns the inode number convertecutzsigned long

* unsigned long dkstat_device(dk_stat_t *ptr);
returns the device number converteditssigned long

» unsigned long dkstat_rdevice(dk _stat t *ptr);
returns the relative device number convertednisigned long

26

» unsigned long dkstat_nlinks(dk_stat t *ptr);
returns the number of links to the file.

» dk_long_long_unsigned_t dkstat_size(
dk_stat t *ptr

)i

returns the file size converteddé long_long_unsigned_t

Note:

Thedk_long_long_unsigned_t is along long unsigned on sys-

tems which suppotonglong andunsignedlong on systems without
longlong support.

If the system has large file support butloaglong support the function
may produce wrong result for large files.

It is recommended to usikstat_size ok() instead.

» dk_long_long_unsigned_t dkstat_size ok(
dk_stat_t *ptr, int *ok
);
returns the file size converteddé_long_long_unsigned_t
The ok argument points to a variable used for error notification. If the
function produces a wrong result because the system has large file support
but nolonglong data type and the file is too large the variable is set to
DK_ERR_MATH_OORtherwise the variable is left unchanged.

* long dkstat_uid(dk_stat t *ptr);
returns the file owners 10 converted tdong .

* long dkstat gid(dk_stat_t *ptr);
returns the file groups ® converted tdong .

» char *dkstat_ctime(dk_stat _t *ptr);
returns a pointer to a buffer containing the file creation time converted to a
string.
This buffer belongs to thek stat t variable, you must never change
nor free this buffer.

» char *dkstat_atime(dk_stat_t *ptr);
returns a pointer to a buffer containing the last file access time converted to
a string.

e char *dkstat mtime(dk_stat_t *ptr);
returns a pointer to a buffer containing the last file modification time con-
verted to a string.

27

6.11.2 Directory traversal

Information for directory traversal is stored in variables of tggedir_t

dk_dir_t *dkdir_open(char *name);

opens a directory for traversal.

The function returns a valid pointer on succddslLL on error.
Thedkdir_next() function needs this pointer to traverse the directory.

If you are done with the directory the variable must be released by calling
dkdir_close()

void dkdir_close(dk_dir_t *ptr);
closes the directory, releases the ressources used to traverse the directory
and deallocates the memory.

int dkdir_next(dk_dir_t *ptr);

tries to find the next directory entry. If there is yet another entry the function
returns!=0 , otherwise0.

On success you can use the following functions to obtain information about
the entry found.

char *dkdir_get_fullname(dk_dir_t *ptr);
returns a pointer to a buffer containing the entries full name.

char *dkdir_get_shortname(dk_dir_t *ptr);
returns a pointer to a buffer containing the entries short name.

28

* long dkdir_uid(dk_dir_t *ptr);
long dkdir_gid(dk_dir_t *ptr);
char *dkdir_ctime(dk_dir_t *ptr);
char *dkdir_atime(dk_dir_t *ptr);
char *dkdir_mtime(dk_dir_t *ptr);
int dkdir_filetype(dk_dir_t *ptr);
int dkdir_permissions(dk_dir_t *ptr);
unsigned long dkdir_inode(dk_dir_t *ptr);
unsigned long dkdir_device(dk _dir_t *ptr);
unsigned long dkdir_rdevice(dk_dir_t *ptr);
unsigned long dkdir_nlinks(dk_dir_t *ptr);
dk_long_long_unsigned_t dkdir_size(dk_dir_t *ptr);
dk_long_long_unsigned_t dkdir_size ok(
dk_dir_t *ptr, int *ok
);

retrieve information about the current entry (sistat_... above).

29

Example:

void dir_list(char *dirname)
{
dk_dir_t *ptr;
if(dirname) {
ptr = dkdir_open(dirname);
if(ptr) {
while(dkdir_next(ptr)) {
printf("full name: %s\n", dkdir_get_ fullname(ptr));
printf("short name: %s\n", dkdir_get_shortname(ptr));
printf("size: %lu\n”, dkdir_size(ptr));
[* ..
}
dkdir_close(ptr);

30

6.11.3 File name expansion

A real operating systems shell automatically expands wildcards in command line
arguments.

Poor operating systems leave this up to the application programmar!'R

Newer poor operating systems allow to use whitespaces in file names. A real
operating systems shell automatically builds one argument from multiple strings
surrounded by quotes. Poor shells don’t do that and leave this up to the program-
mer too. RNF!

Thedk fne_t data type can be used to expand filenames.

» dk_fne_t *dkfne_open(
char *name, int files, int dirs
);
dynamically allocates a nedk fne t variable and returns a pointer to
that variable.
The variable is initiliazed to expand the given filenamame. Specify
files to 1 if names of regular files are an acceptable file name expan-
sion result, otherwis®. Specifydirs to 1 if names of directories are
an acceptable file name expansion result, other@is®n success a valid
pointer is returned, otherwid¢ULL
If you are done expanding the filename, the variable must be deallocated by
dkfne_close()

» void dkfne_close(dk_fne_t *ptr);
deallocates a variable createddikfne _open()

* int dkfne_next(dk_fne_t *ptr);
checks whether a further filename can be constructed, retuorsuccess,
0 for error.
If this function indicates success you can use the following two functions to
obtain the filename.

» char *dkfne_get_fullname(dk_fne_t *ptr);
returns the full name.

» char *dkfne_get_shortname(dk _fne_t *ptr);
returns the short name.

31

Example:

[* resolve * and ? in pattern */
void list_matching_filenames(char *pattern)

{
dk_fne_t *fn;
if(pattern) {
printf("Searching for regular files\n");
fn = dkfne_open(pattern, 1, 0);
if(fn) {
while(dkfne_next(fn)) {
printf("file %s\n", dkfne_get_shortname(fn));
printf("long %s\n", dkfne_get_fullname(fn));
}
}
printf("Searching for directories\n");
fn = dkfne_open(pattern, 0, 1);
if(fn) {
while(dkfne_next(fn)) {
printf("file %s\n", dkfne_get_shortname(fn));
printf("long %s\n", dkfne_get_fullname(fn));
}
}
}
}

32

6.11.4 Other functions
Getting the current working directory The function
int dksf_getcwd(char *buffer, size t Igt);

can be used to obtain the current working directory. The directory name is written
into buffer ,Igt specifies the buffer length in bytes.
The function returnd on succesq) on error (buffer too small. . .).

Finding the executable file for a command The function

int
dksf_get_executable(
char *buf, size_t len, char *cd, char *pr

);

finds the file executed whepr is typed on the command line and writes the file
name into the buffer specified lipuf with sizelen . The argumentd specifies
the current working directory.

The function returng on success) on error.

Finding the file type suffix The function
char *dksf _get file_type dot(char *name);

returns a pointer to a filename’s file type suffix.
The pointer points to the dot. On ermdtJLLis returned.

Combining two file name compounds The function

int
dksf_path_combine(
char *buf, size_ t len, char *pl, char *p2

);

concatenates the two file name compoupiisandp2 and writes the result into
the buffer specified bpuf andlen .

Argumentpl must be an absolute path nanp2, can be either an absolute path
(in this case p1 is ignored) or a path relativepto

The function returng on success) on error.

33

Making directories The function
int dksf_mkdir(char *path, int mode);

creates a new directory with the name specifiedath .
The DK_PERM... - constants are used imode to specify permissions to the
directory. The function returnk on success) on error.

Deleting files The function
int dksf_remove_file(char *filename);

deletes the named file. Either thelink() orremove() function is called.

Deleting directories The function
int dksf_remove_directory(char *filename);

can be used to delete a file or directory. All the directories contents including
subdirectories will be deleted.

Changing permissions The function
int dksf_chmod(char *path, int mode);

changes a file or directories permissions.

Getting the current users UID

int dksf_have_getuid(void);
long dksf_getuid(void);
int dksf_have_geteuid(void);
long dksf_geteuid(void);

Thedksf_have_getuid() function checks whether the system knows about
the concept of usemls and has a function to get the current usen’s |

If user IDs are available on the systedksf getuid() returns the current
user’s UD converted tdong .

Some systems have mechanisms Bketo use permissions of other usersl In
this case the new useb Is also referred to as effective user. |

Thedksf_have_geteuid() function checks whether the system supports ef-
fective user bs. If so,dksf_geteuid() returns the effective usebpliconverted
tolong .

34

Getting the current group 1D

int dksf_have_getgid(void);
long dksf_getgid(void);
int dksf_have_getegid(void);
long dksf_getegid(void);

The functions are similar to the functions above but graegpdre checked instead
of user bs.

Dealing with process IDs
int dksf_have_getpid(void);

can be used to check whether there is a possibility to obtain a pracgi$sd
long dksf_getpid(void);

returns the proces®Iconverted tdong .

Parent process ID
int dksf_have_getppid(void);

can be used to check whether there is a possibility to obtain the parent process’es
ID, if so

long dksf_getppid(void);

returns the parent process’@sdonverted tdong .

Dealing with the process group
int dksf_have_getpgrp(void);

can be used to check whether there is a possibility to obtain the current process’es
process groupd, if SO

long dksf_getpgrp(void);

returns this process group tonverted tdong .

35

Another processes process group
int dksf_have_getpgid(void);

can be used to check whether there is a possibility to obtain another process’es
process group, if so

long dksf _getpgid(long p);

returns this process group.l

Finding the users login name

int dksf_get_uname(char *buffer, size t sz);
int dksf_get_euname(char *buffer, size t sz);

write the users login name into the buffer or the login name belonging to the cur-
rent effective userd. Thesz parameter is the buffer size in bytes.

On *nix systems the usugketuid() /getpwuid() functions are used.

If the GetUserNameA() function is available on W* systems this function is
used first.

If this function is not available or fails we try several places in the registry, i.e.
HKLM/System/CurrentControlSet/control:Current User

or HKLM/Network/Logon:username . Different W* versions might use dif-
ferent places. RNF!

If your W* version is newer than W* 98 or W* NT 4.0 there is not yet support for
registry lookups in the library. In this cases the environment variable NAME
or USERNAMHENUSt be set.

Finding a users home directory

int dksf_get_home(char *buffer, size t sz);
int dksf_get_ehome(char *buffer, size t sz);

retrieve the current users home directory or the home directory belonging to the
current effective usem.

On *nix systems the usugketuid() /getpwuid() functions are used.

On W* systems there is no such API. Instead there are different places for home
directories and different environment variables pointing to the directories depend-
ing on the W* version. RNF! We need to inspect multiple environment variables,
i.e. HOMEUSERPROFILEaNdHOMEDRIVEHOMEPATH

36

Finding the host- and domainname

int dksf_get_hostname(char *buffer, size t sz);
int dksf_get_domainname(char *buffer, size_t sz);

retrieve host- and domainname of the current host.

On *nix the usuabethostname() /sysinfo() functions are used.

On Windows theGetComputerNameA() function is used if available to deter-
mine the hostname. If the function is unavailable or fails several registry settings
are tested, | have found host related information in

» System
CurrentControlSet
Services
Tcpip
Parameters:Hosthame

» System
CurrentControlSet
Control
ComputerName
ActiveComputerName:ComputerName

* System
CurrentControlSet
Control
ComputerName
ComputerName:ComputerName

» System
CurrentControlSet
Services
VxD
MSTCP:HostName and

» System
CurrentControlSet
Services
VxD
VNETSUP:ComputerName

depending on the W* version. For future W* versions | expect the places to differ
again. RANF!

37

Finding a directory for temporary files
int dksf_get_tempdir(char *buffer, size t sz);

finds a directory for temporary files.
TheTMPDIR TEMPandTMPenvironment variables are inspected first.
If this fails a set of directory names typically used is inspected.

Check whether writing to a file should be allowed

int dksf_allowed_to_write(
char *fn, int ignchk, int *rsn

);

checks whether it should be allowed to open theffilefor write access.
If fn is a symbolic link write access should be denied if any of the following
conditions is fullfilled:

« DK_SF_SEC_OWNER
The link owner is not the owner of the destination file.

* DK_SF_SEC_WG
The link resides in a group writable directory.

« DK_SF_SEC WO
The link resides in a world writable directory.

Theignchk arguments is an or-combination BK_SF_SEC ... values to
skip tests.

If write access should be denied arsth is a valid pointer, the variable is set to
theDK_SF_SEC ... condition for the test responsible for denying write access.

More secure fopen

FILE
*dksf_msfo(char *fn, char *m, int ignchk, int *rsn);

tries to open the filédn in the modem The dksf allowed to write()

function is used for security checkgnchk andrsn are passed to this function.

If the dkapp module is linked to your program it is recommended to use the
dkapp_fopen() function (see5.24 on pageS0) to open files. This allows to
use command line preferences to skip some of the security checks.

38

Opening files with security check
FILE *dksf_fopen(char *fn, char *mode);

callsdksf_allowed_to_write() and tries tdopen() the file on success.

If the dkapp module is linked to your program it is recommended to use the
dkapp_fopen() function (see5.24 on pageS0) to open files. This allows to
use command line preferences to skip some of the security checks.

Getting the maximum length of a filename
long dksf_get_maxpathlen(void);

returns the maximum length for filenames in characters.

Getting the maximum number of open files
long dksf_get maxfiles(void);

returns the maximum number of open files.

39

6.12 dkstr - String handling

Thedkstr module contains some string handling functions. On some systems
strrchr() is not available. For case insensitive comparisons some systems use
stricmp() , othersstrcasecmp()

This module contains — among others — fallback functions for these functions.

 int dkstr_casecmp(char *sl1, char *s2);
compares the strings case insensitive and retlrihsl comes lexigraphi-
cally afters2, -1 if s1 comes lexigraphically befois2 andO if the strings
are equal.
The function usestrcasecmp() orstricmp() if available, otherwise
it has it's own code.

o char *dkstr_dup(char *s);
creates a new copy of the string, memory is allocated dynamically using the
dkmem_alloc() function.
The memory should be freed usimigmem_free() if it is not longer
needed.

e char *dkstr_chr(char *s, int c);
searches for the first occurence of charactan strings and returns a
pointer to that character if found. OtherwiS&JLLis returned.

e char *dkstr_rchr(char *s, int c);
searches for the last occurence of characten string s and returns a
pointer to that character if found. OtherwiS&JLLis returned.

e char *dkstr_start(char *s, char *w);
searches for the first non-whitespace in stsngnd returns a pointer to that
character (oNULL if none is found).
In wa set of whitespace characters can be specified.
If NULLIs given here a default set of whitespaces is used.

» void dkstr_chomp(char *s, char *w);
removes trailing whitespaces from the strigwg

» char *dkstr_next(char *s, char *w);
finishes the first substring (set of non-whitespaces) in sgibyg replacing
the first whitespace after the substring by a null-byte and returns a pointer
to the start of the next substring.

40

 int dkstr_find_multi_part_cmd(
char **c¢md, char ***cmdset, int cs
);
looks up for the commaneind consisting of several words in a taldendset
of such commands.
The index of the command in the table is returnedloif it was not found.
Thecs variable controls case-sensitivity of search.

* int dkstr_is_abbr(
char *line, char *pattern, char spec, int cs
);
compares théne against thgattern and returnd for equality orO if
the texts are different.
If the pattern contains the special charactgrec the textinline may
be abbreviated at this point.
The cs argument controls whether the comparison is done case-sensitive
(1) or case-insensitived).
When callingdkstr_is_abbr(line, "Te$st", '$’, 1) we get
success if line is "Test", "Tes" or "Te".

e int dkstr_find_multi_part_abbr(
char **c¢md, char ***cmdset, char s, int cs

);
behaves likeint dkstr_find_multi_part_cmd(char **cmd,
char ***cmdset, int cs); but useslkstr_is_abbr() forcom-

parisonss marks the place of abbreviation.

41

Example:

#include <stdio.h>
#include <dkstr.h>
void main(void)

{

char test line[] = { " This is a test line.
char *ptrl, *ptr2;

int i

printf(
"Line at the beginning: >00s<\n",
test_line

)i

ptrl = dkstr_start(test_line, NULL);

printf(
"Without leading whitespaces: >%s<\n",
ptrl

)i

dkstr_chomp(ptrl, NULL);

printf(

"Without trailing whitespaces: >%s<\n",
ptrl
)i
i = 1;
while(ptrl) {
ptr2 = dkstr_next(ptrl, NULL);
printf(
"Word %d:
i++, ptrl
);
ptrl = ptr2;
}

42

"}

%s\n",

6.13 dktok - Group input characters to tokens
6.13.1 Overview

The dktok module can be used to group input characters to tokens.

To do so we need to create a dk_tokenizer_t structure first. After we are done
analyzing input we must release this structure. When creating the tokenizer, we
need a buffer where the tokens can be stored, we also specify, which characters
are quotes, white spaces, single character tokens, line ends or comments starters.
A function to process the tokens is specified and a pointer to store additional infor-
mation.

The function for token processing is of type

int fct(void *d, void *tpv, char *s, int *ec)

whered is a pointer to the memory for string additional informatiapy is a
pointer to the tokenizegis a pointer to the buffer containing the token atds

a pointer to a variable which can be set by the function if an error occurs.

The function must return 1 on success, 0 on errors which require aborting the
program.

6.13.2 Functions

The module provides the following functions:

» dk_tokenizer_t *dktok new(
size_t b,char **qg,char *s,char *w,char *n,char c,
dk_fct_tokenizer *f,void *d
);
allocates a new tokenizer structure.
Theb parameter is the size of the largest token to process in bytes. A buffer
to store tokens is allocated too.
g is a pointer to an array of strings containing quote characters. Each string
contains 2 characters, the starting and the finishing quote. The array must
be finished by &NULL pointer.
s is a pointer to a string containing all characters which are a token for
theirselves.
w is a pointer to a string containing all characters which are white spaces.
c is the character which starts comments spanning until the end of line.
f is the token handling function which is invoked for every tokdns a
pointer to additional data.
The dktok_delete() function must be used to release the memory for the
tokenizer and all it's contents.

43

void dktok_start(dk _tokenizer_t * tp);
initializes the tokenizer. A program must call this function before character
processing is started.

int dktok_add(dk_tokenizer_t * tp, char c);
adds one character to the tokenizer. As long as the result of this function is
> 0 we can continue adding further characters.

int dktok stop(dk_tokenizer_t * tp);
must be run after adding the last character.
If the result of this function is> 0 all input was processed successfully.

int dktok_get_error_code(dk_tokenizer_t * tp);
returns the error code (which was generated by the user defined token han-
dling funtion).

unsigned long dktok get_lineno(
dk_tokenizer_t * tp
);

returns the current line number. This can be used for error messages.

void dktok_reset_error_code(dk_tokenizer_t * tp);
resets the internal error code.

6.13.3 Example

#include <stdio.h>
#include <stdlib.h>
#include <dktok.h>

static char *quotes[] = {

h

(char *)"\"\"",
(char *)™™,
NULL

static char sct]] = { "{}=" };

static char nl[] = { "\n" };

static char whsp[] = { " \t\r\b" };

static char inbuffer[512];

44

int fct(void *d, void *tpv, char *s, int *ec)
{
int back = 1,
dk_tokenizer_t *tp;
if(tpv) {
tp = (dk_tokenizer_t *)tpv;
$? "%s", TR_STR(S)
printf("%10lu \"%s\"\n", dktok_get_lineno(tp), s);
}

return back;

}

int main(int argc, char *argvl[])
{ .
size_t sz;
int cc; char *ptr;
dk_tokenizer_t *tp;

$(trace-init dktok.deb)
tp = dktok_new(256,quotes,sct,whsp,nl,’# ,fct, NULL);
if(tp) {
dktok_start(tp);
cc = 1,
while(cc) {
sz = fread((void *)inbuffer,1,sizeof(inbuffer),stdin);
if(sz > 0) {
ptr = inbuffer;
while((sz--) && cc) {
if('dktok _add(tp, *(ptr++))) cc = O;
}
} else {
cc = 0
}
}
if(!dktok_get_error_code(tp)) { dktok_stop(tp); }
dktok_delete(tp);
} else {
fprintf(stderr, "Not enough memory\n");
fflush(stderr);

}

45

}

$(trace-end)
exit(0); return O;

46

6.14 dksignal - Signal handling

In the UNIX world there are three models of signal handling:

* signal()
This is the simplest model, for many purposes it is dangereous to use be-
cause a signal handler must reinstall itself.
If the signal handler is running and the same signal is delivered before the
signal handler reinstalled itself the program is terminated.

* sigset()
This allows you to install permanent signal handlers without the race condi-
tion shown above.

* sigaction()
This is the POSIX function set for signal handling.

This module unifies signal handling from the application programmers point of
view. An application might look like this:

#include <stdio.h>
#include <dksignal.h>
#if DK_HAVE_STDLIB_H
#include <stdlib.h>
#endif
#if DK_HAVE_UNISTD_H
#include <unistd.h>
#endif
dk_signal_ret_t handler(int signo)
{
dksignal_refresh(signo,handler);
printf("Signal %d occured\n”, signo);
}
void main(void)
{
switch(dksignal_available()) {
case 1: printf("signal()\n"); break;
case 2: printf("sigset()\n"); break;
case 3: printf("sigaction()\n"); break;
default:
printf("No signal handling installed.\n");
break;

a7

old_disp = dksignal_set(SIGINT,handler);

sleep(10);
(void)dksignal_set(SIGINT, handler);
}
The dk_signal_ret_t is the return type for signal handlers. Possibly this

must be set tant in dktypes.h if there are errors/warnings when compiling
the module.

Thedk_signal_fct_t is the prototype for signal handler.

dk_signal_disp_t is a pointer to such a function.

The macradksignal_refresh() reinstalls the handler, if only thegnal()
function is available for signal handling. Otherwise this macro does nothing. The
dksignal_available() function can be used at runtime to get information
about the signal handling available. It retuthg no signal handling is available,

1 for thesignal() ~ function, 2 for thesigset() function and3 for POSIX
signal handling.

The dksignal_set() function installs a new signal handler and returns the
address of the previous signal handler.

48

6.15 dklog - Log messages (obsoleted)

Note: This module is obsoleted. Logging is done by thk@app module now.

6.15.1 Writing log messages

Thedklog module allows you to write log messages.
Without special setup log messages are written to diagnostic owstioler).
There are different log levels available for different "heavinesses".

« DK_LOG_LEVEL_NONE
No log messages are printed.

« DK_LOG_LEVEL_PANIC
Condititions requiring a system shutdown immediately.

« DK_LOG_LEVEL_FATAL
Unrecoverable error in application.

« DK_LOG_LEVEL_ERROR
An error occured.

« DK_LOG_LEVEL_WARNING
A warning is to be issued.

« DK_LOG_LEVEL_INFO
Print some information the user should know.

« DK_LOG_LEVEL_PROGRESS
Print progress messages while working.

« DK_LOG_LEVEL_DEBUG
Messages for debugging purposes.

« DK_LOG_LEVEL_IGNORE
Message can be ignored (Please do not use this message level).

There are two functions to write log messages:
* int dklog_msg(int level, char **strings, int num);

 int dklog_msg_ss(int level, char **strings, int num);

49

The first function expects the log level as first argument, when a pointer to an array
of strings to print and the number of strings.

All the strings in the array are printed as they are, it is your turn to insert all the
spaces needed...

The second function uses the string search feature (if configured) and can be used
for internationalization. The last argument is again the number of strings to print.
For each string to print the arrayrings must contain three elements:

* astring table name (i.e. "messages"),
» a search key (i.e. "error.no-such-file") and

» adefault value to be printed if string search is not configured or no matching
entry was found (i.e. "File not found!").

String search is explained later.

6.15.2 Customizing log output

Thedklog module uses objects of tygkk log t to write messages.

There is always onactivelog object.

If you only want to change which log messages are to be ignored and which are
to be issued it is sufficient to apply changes to the current active log object.

dk_log_t

*dklog_get(void);

int

dklog_get_minlevel(dk_log_t *ptr);

void
dklog_set_minlevel(dk_log_t *ptr, int minlevel);

The functiondklog_get() returns a pointer to the current active log object.
This pointer can be used to retriewtk(og_get_minlevel()) and set@klog_set_minlevel()
the minimum log level.

50

If you need a more customized logging (i.e. using the syslog feature or printing to
file) you need to create your own log function and log object.
First write a log function like:

static void
log_to_file(void *vptr, int |, char **p, int n)
{

FILE *fipo;

char **ptr, int i,

fipo = (FILE *)vptr;

if(fipo && p && n) {

fprintf(fipo, "Heaviness: %d Message: ",);
ptr = p;
for(i = 0; i < n; i++) {
if(*ptr) {
fprintf(fipo, *ptr);
}
ptr++;
}
fprintf(fipo, "\n");
}

}

Thevptr argument is a pointer to some assisting data. If no assisting data is

needed (i.e. when logging to syslog) this pointeXidLLand can be ignored.
The second argument is the log level.

The remaining arguments are a pointer to an array of pointers to strings and the
length of that array.

51

Now your application may look like this:

FILE *logfile;
dk _log_t *old_log, *new_log;
logfile = fopen("logfile.log”, "w");

if(logfile) {

[* create new log structure */

new_log =

dklog_new_for((void *)logfile, log_to_file);
if(new_log) {

[* get current log settings */
old_log = dklog_get();
[* set minimum level */
dklog_set_minlevel(
new_log, DK_LOG_LEVEL _WARNING
);
/* use new log behaviour */
dklog_set(new_log);
/*
. application code possibliy doing logs
can be placed here ...
*/
[* restore old log settings */
dklog_set(old_log);
[* release log object */
dklog_delete(new_log);
} else {
/* ERROR: not enough memory to create new variable */
}
fclose(logfile);
} else { /* ERROR: failed to open logfile */

}

52

6.16 dkss - String search (obsoleted)

Note: This module is obsoleted. String search is done bylitepp module now.

String search can be used for internationalization.
The function

char *dkss_find(char *table, char *key, char *def);

searches in the string table identifiedtaple for an entry matching the named

key .

If a matching entry is found, that entries value is returned, otherwise the default
valuedef .

Before you can search for strings the module must be set up. To do so first create
a string search function like:

char *
my_string_search(
void *vptr, char *table, char *key, char *def

)
{

char *back;
/* back = ... */
return back;

}

This function has to load the named string table into memory if not yet loaded,
search for a matching entry and return that entries value if fouigrif not.

The pointewvptr can be used for assisting data.

The memory containing the value must not be overwritten or released by subse-
guent calls to the function.

Once you have a function your application may look like this:

dk_ss t *old_ss, *new_ss;

/*

* retrieve pointer to current
* active string search object
*/

old_ss = dkss_get_object();
/*

* create new customized

* string search object

53

*
new_ss =
dkss_new_for((void *)samepointer, my_string_search);
if(new_ss) {
/*
* configure new string search object
* as active object

*

dkss_set_object(new_ss);

/*
.. internationalized application code ...
. calling dkss_find() ...

*

/*

* activate old string search object,
* de-activate the new one
*/
dkss_set_object(old_ss);
[* release the new string search object */
dkss_delete(new_ss);
} else {
/*
* ERROR: Not enough memory,
* failed to create object
*/
}

By default there is no string search object actiess_find() returns the de-
fault value.

54

6.17 dkbf - Bit fields

The dkbf module contains a data type and the following functions to deal with
bit fields:

» dk_bitfield_t *dkbf_open(size_t bits);
creates a new bit field and returns a pointer to the new bit field.
The argumenbits specifies the length of the field in bits.
Once you are done with the bit field you must release it using the
void dkbf close(dk_bitfield t *bf); function.

» void dkbf_set(
dk_bitfield_t *bf, size_t bit, int val
);
sets bit numbebit to 1 if val # 0 or to O ifval = 0.
« int dkbf get(dk_bitfield t *bf, size t bit);
retrieves the value of bit numbbit from the bit field.

» void dkbf_close(dk_bitfield_t *bf);
destroys a bitfield and releases the memory associated with it.

55

6.18 dkma - Mathematical operations

Thedkmath module contains functions for mathematical operationdauble |,

long andunsigned long numbers.

Checks are performed to indicate results out of range and to prevent divisions by
0.

The following functions are available:

» optype dkma_mathop _optypeabbr
(optype 01, optype 02
);

» optype dkma_mathop _optypeabbr ok(
optype 01, optype 02, int *ok
);

opttypeabbr can bel for opttype long , ul for unsignedlong and
double for double .

mathop specifies which operation to perform, it candmd , sub , mul or div .

The functions return the operations result.

Seedkma.h for a list of all functions. The.._ok -functions store the check
result in the variablek points to. If there is no error the variable is not modified.
If there is an error the variable is setK_ERR_MATH_OQ@r result out of
range) oDK_ERR_DIV_ZERfor division by zero).

Functions without ok store the check result in a static variable in the module.
The value of this variable can be retrieved by

int dkma_get_error(int reset_variable);

The function returns the error flag variables valugeHet_variable is!=0
the variable is reset.

The module also contains functions to condertg andunsignedlong to
double and vice versa, also with range checking.

56

An application using the module could look like this:

void print_circle_area(double radius)

{

}

double area,;
[* reset error condition */
(void)dkma_get_error(1);
[* area = radius * radius * M_PI; */
[* do operation */
area = dkma_mul_double(
dkma_mul_double(radius,radius),
M_PI
)i
[* check and reset error condition */
if(dkma_get_error(1)) {
printf("Radius too large: %lg\n", radius);
} else {
printf("Area = %lIg\n", area);

}

57

The same function could use it's own error flag:

void print_circle_area(double radius)

{

}

double area,;
int result_not_ok;

[* reset error condition */
result ok = DK_ERR_NONE;
[* area = radius * radius * M_PI; */
/* do operation */
area = dkma_mul_double_ok(
dkma_mul_double_ok(
radius,radius, &result_not_ok
),
M_PI,
&result_not_ok
)i
[* check error condition */
if(result_not_ok) {
printf("Radius too large: %lg\n", radius);
} else {
printf("Area = %lIg\n", area);
unsigned long ularea;
ularea = dkma_double_to_ul_ok(
area, &result_not ok
);
if(result_not_ok) {
printf("Area too large to express");
printf(" it as unsigned long.\n");
} else {
printf("Area (int) = %lu\n", ularea);
}

}
result_ ok = DK_ERR_NONE;

58

6.19 dkstream - I/O API
6.19.1 Doing I/O operations

I/O-operations are hidden from the application code, the application only uses
dkstream_... functions. Real I/0O is done by handler functions. Information
about a stream is contained int ttie_stream_t data type.

The following functions are available in the module:

* Note: When linking thedkapp module into your program you should use

— dkapp_stream_openfile() ,
— dkapp_stream_opengz() and
— dkapp_stream_openbz2()

(see6.240n paged0) instead ofdkstream_open...()
This allows to specify command line preferences to skip some of the secu-
rity checks.

» dk_stream_t dkstream_openfile(
char *n, char *m, int ign, int *rsn
);
opens the filen in the given moden creates ak _stream_t variable and
sets thisdk_stream_t up to use the file for I/O operations.
A pointer to the newdk_stream_t variable is returned.
The variable must be released usidkstream_close after finishing
I/0.
Theign parameter can be useddkipcertain tests. An or-combination of
DK_SF_SEC_... constants can be specified here, 8dd..40n page3s.
If any of the security checks fails the file is not openedsii contains a
valid pointer the key number of the failed test is stored in that variable.

o dk_stream_t dkstream_opengz(
char *n, char *m, int ign, int *rsn
);
opens the file agzip -file in the given mode, allocates memory for a
dk_stream_t variable and sets thidk_stream_t up to use the file
for 1/0 operations.
A pointer to the newdk_stream_t variable is returned.
The variable must be released usidkstream_close after finishing
I/0.

59

» dk_stream_t dkstream_openbz2(
char *n, char *m, int ign, int *rsn
);
opens the file abzip2 -file in the given mode, allocates memory for a
dk_stream_t variable and sets thdk_stream_t up to use the file for
I/O operations.
A pointer to the newdk_stream_t variable is returned.
The variable must be released usidkstream_close after finishing
I/0.

» void dkstream_close(dk_stream_t *st);
releases the resources connected takhetream_t (i.e. closesfiles...)
and releases thak _stream_t itself.

» size_t dkstream_write(
dk_steam_t *st, char *b, size t |
);
writes| bytes starting from buffer addrebgo the stream.
The function returns the number of bytes successfully written.

 size_t dkstream_read(
dk_stream_t *st, char *b, size t |
);
readd bytes from the specified stream into the buffer starting at addiress
The number of bytes read is returned.

» char *dkstream_gets(
dk_stream_t *st, char *b, size t |
)i
reads a line from the specified stream into the busfef lengthl .
Read operations are aborted affet) bytes or when finding a newline.
A valid pointer is returned on succe$d,JLLon error.

 int dkstream_puts(dk_stream_t *st, char *b);
writes a string from buffeb to the specified stream and retufinen success
andO on error.

e int
dkstream_wb_word(dk_stream_t *st, dk_word w);
writes a 16-bit-word in network byte order to the stream.
e int
dkstream_wb_uword(dk_stream_t *st, dk_uword w);
writes an unsigned 16-bit-word in network byte order to the stream.

60

int
dkstream_wb_dword(dk_stream_t *st, dk_dword w);
writes a 32-bit-double-word in network byte order to the stream.

int
dkstream_wb_udword(dk_stream_t *st, dk_udword w);
writes an unsigned 32-bit-double-word in network byte order to the stream.

int

dkstream_wb_string(dk_stream_t *st, char *str);

writes a string to a stream. The string length (including the finishing null-
byte) is written as unsigned 32-bit-double-word in network byte order first
followed by the string itself.

int

dkstream_rb_word(dk_stream_t *st, dk_word *w);

reads a 16-bit-word from the stream, converts it to host byte order and saves
it to the specified variable.

int

dkstream_rb_uword(dk_stream_t *st, dk_uword *w);

reads an unsigned 16-bit-word from the stream, converts it to host byte order
and saves it to the specified variable.

int

dkstream_rb_dword(dk_stream_t *st, dk_dword *w);

reads a 32-bit-double-word from the stream, converts it to host byte order
and saves it to the specified variable.

int

dkstream_rb_udword(dk_stream_t *st, dk udword *w);

reads an unsigned 32-bit-double-word from the stream, converts it to host
byte order and saves it to the specified variable.

char *

dkstream_rb_string(dk_stream_t *st);

reads a string from the specified stream and returns a pointer to the string.
First the function reads the string length as unsigned 32-bit-double-word.
Then it allocates memory for the string usidi new() .

The last step is to read the string into the new buffer.

The buffer must be freed by usindk delete() when it is no longer
needed.

61

6.19.2 Writing handler functions

To use other I/O mechanisms you have to provide two functions:
» a handler function (sometimes referred to as callback function) and
« afunction to open a resource and create a stream.

The dkstream_... functions use thek_stream_api_t data type to pass
arguments to the handler function and to obtain the result.
The function must be of type

void handler_function(dk_stream_api_t *apiptr);

The function has to check whethapiptr is a valid pointer. A pointer to the
dk_stream_t originating the handler request can be retrieved as

dk_stream_t *s;
s = (dk_stream_t *)(apiptr->strm);

The handler again has to check whether this is a valid pointer or not. The assisting
data can be retrieved from

s->data

The assisting data pointer is allowed toNBLL if the handler function can work
without additional data.

The componenapiptr->cmd contains annt value indicating the type of re-
quest. It can have the following values:

DK_STREAM_CMD_TESTThe handler function is asked whether it can handle
a certain request type.

This command is primarily used to check for a functionality figets() read-
ing until an end of line occurs. See talile

Table 5: DK_STREAM_CMD_TEST

Component Contents

The command to check for. Amt value
as used in the request type.

1 on success (command can be handled),
0 on error (can not handle command)

62

(apiptr->params).cmd

apiptr->return_value

DK_STREAM_CMD_AT_ENDhe handler function must perform a check whether
the end of readable data is reached (no more data available). Seé.table

Table 6: DK_STREAM_CMD_AT_END

Component

Contents

apiptr->return_value

1 when end of data reached,
0 when there is still data available.

DK_STREAM_CMD_FGETS3Ve have to read a line of text into a buffer. See

table7.

Table 7: DK_STREAM_CMD_FGETS

Component

Contents

(apiptr->params).buffer

Start adress of buffer to fill.

(apiptr->params).length

Buffer length in bytes.

apiptr->return_value

1 on succesd) on error.

DK_STREAM_CMD_RDBUFRhe handler function has to read data from the stream

into a buffer.

Table 8: DK_STREAM_CMD_RDBUF

Component

Contents

(apiptr->params).buffer

Start adress of buffer to fill.

(apiptr->params).length

Buffer length in bytes.

apiptr->return_value

1 on success (any data was redpn error.

(apiptr->results).used

d

Number of bytes successfully read, va
only when return_value indicated success|

DK_STREAM_CMD_FPUTS he handler function has to write a string.

Table 9: DK_STREAM_CMD_FPUTS

Component

Contents

(apiptr->params).buffer

Start adress of string.

... to be continued

63

‘ Continuation ‘

apiptr->return_value 1 on succesd) on error.

Number of bytes written, valid only if
return_value indicates success.

(apiptr->results).used

DK_STREAM_CMD_WRBUFhe handler has to write data from a buffer to the
stream. See tablk0.

Table 10: DK_STREAM_CMD_WRBUF

Component Contents
(apiptr->params).buffer Start adress of buffer.
(apiptr->params).length Buffer length in bytes.
apiptr->return_value 1 on (partial) succes$), on error.

: Number of bytes successfully written. Only
(apiptr->results).used valid if return_value indicates success. T

DK_STREAM_CMD_FLUSH he handler function should perform an intermedi-
ate flush if possible. I/O-operations on files and gezipped files can perform flushes
before the end of data is reached.

Some encoding mechanisms (i.e. ASCII85 as used in PS level 3) handle fixed
block sizes only (except the last block). In these cases intermediate flushes must
not be executed.

Table 11: DK_STREAM_CMD_FLUSH

Component Contents

apiptr->return_value 1 on succesq) on error.

DK_STREAM_CMD_FINALThe handler function must perform a final flush.
No further data is to be written.

Encoding mechanisms dealing with fixed block sizes can now handle the possibly
incomplete last block. See table.

Table 12: DK_STREAM_CMD_FINAL

Component Contents
... to be continued

64

Continuation

apiptr->return_value 1 on succesd) on error.

DK_STREAM_CMD_REWINDhe stream must be rewound to set the current
stream position to the start of stream.

Table 13: DK_STREAM_CMD_REWIND

Component Contents

apiptr->return_value 1 on succesd) on error.

DK_STREAM_CMD_FINISH The handler function must release all resources
which were allocated by thékstream_open_... function. This is invoked
as a part otlkstream_close()

Table 14: DK_STREAM_CMD_FINISH

Component Contents
(apiptr->params).buffer Start adress of buffer to fill.
(apiptr->params).length Buffer length in bytes.
apiptr->return_value 1 on succesd) on error.

Seefile_stream_function() in dkstream.c as an example.
The dkstream_open_... function must open/allocate I/O ressources. This

allocation process must result in one variable.

Now dkstream_new can be called, a pointer to the variable and a pointer to the
appropriate handler function must be provided.

During dkstream_close() a call to the handler function is made with com-
mandDK_STREAM_CMD_FINISH

This is the point to close/deallocate the ressources bdf@teeam_close()
callsdkstream_delete()

Seedkstream_openfile() in moduledkstream.c as an example.

65

Now the new I/O system can be used like in the program skeleton:

dk_stream_t *st;

/*
The next step allocates ressources for
the I/O source/destination and sets up
a new dk_stream_t variable.
*/
st = dkstream_open_...(...);
/*
We must check for success.
*/
if(st) {
/*
Here we can do /O operations.
*/
/*
Finally we must release 1/0O ressources
and deallocate the memory for the dk_stream_t.
*/
dkstream_close(st);
st = NULL,;
}

66

6.20 dkof - output filtering
6.20.1 Overview

Some file formats — i.e. PostScript andfP— can use compressed and encoded
data, different compression and encoding methods can be combined.

This module can be used to create compressed and encoded data.

The interface to thevriting application is an expanded dk_stream RIA The
dk_stream_t represents the filter pipeline consisting of different filter cells. Each
cell implements one compression or encoding method. If data is written to the
dk_stream_t it goes to the top level cell first. This applies the first filtering method,
i.e. flate compression. Output from this cell goes as input to the cell below, i.e. an
ASCII85 encoding cell. Output from this cell goes downward, i.e. into a buffering
cell collecting data to write buffers of a given size. Output from cell O (the bottom
cell) goes to a target dk_stream_t.

6.20.2 Functions

The following functions are available:

» dk_stream_t *dkof_open(dk_stream_t *target, size_t nof);
creates a new filter stream and returns a pointer to it.tafgetargument is
the target stream responsible for writing/saving the encoded datandfhe
argument is the number of filter cells needed.

* void dkof _close(dk_stream_t *str);
closes a filter stream created by dkof_open(). The target filter streaot is
closed.

* int dkof_set(dk_stream_t *str, size_t n, int what);
sets a filter cell methodstr is the filter stream returned by dkof_openi).
is the number of the filter cell to set up, it must be in the rangerf — 1.
Cellnof — 1 is the filter first applied to the data stream, cell O is applied last.
whatselects the filter cell type, it can be one of the following:

— DK_OF_TYPE_FLATE
flate compression.

— DK_OF_TYPE_ASCII85
ASCII-85-encoding.

— DK_OF_TYPE_BUFFERED
a buffering filter, writing data in buffers of 512 bytes.

67

o int dkof_start_chunk(dk_stream_t *str);
starts a new data chunk. The filter cells are initialized.

« int dkof_end_chunk(dk_stream_t *str);
finishes a data chunk. All filter cells are flushed, associated data is closed.

* void dkof_set_crnl(dk_stream_t *str, int v);
enables/disables — dependingwn the CR/NL sequence instead of simple
newline. This is used by the ASCII85 encoding output.

6.20.3 Usage
dk_stream_t *osl, *0s2;
osl = dkstream_for_file(stdout); [* open real output stream */
if(osl) {
os2 = dkof open(osl, 3); [* create filter stream */
if(os2) {

}

dkof_set_crnl(os2,1);
if(dkof_set(0s2,0,DK_OF_TYPE_BUFFERED)) {
if(dkof_set(0s2,1,DK_OF_TYPE_ASCII85)) {
if(dkof_set(0s2,2,DK_OF_TYPE_FLATE)) { {
dkstream_puts(osl, "%!PS-Adobe-3.0 EPSF-3.0\r\n");
r* ..*
dkstream_puts(osl, "colorimage\r\n®);
if(dkof_start_chunk(os2)) {
unsigned char buffer[3];
fory = 0; y < height; y++) {
for(x = 0; x < width; x++) {
buffer[0] = get_red(x,y);
buffer[1] get_green(x,y);
buffer[2] get_blue(x,y);
if(dkstream_write(os2, buffer, 3) = 3) {
[* issue error message */
}

}
if(dkof_end_chunk(os2)) {

A |

dkstream_puts(osl, "showpage\r\n®);

}
}
}

68

}

}

dkstream_close(0s2);

}

dkstream_close(osl);

69

6.21 dkcp - Dealing with codepages
6.21.1 Overview

Some systems need to deal with codepages. On Windows writing the german
umlaut 6 to a file requires to put another character than writing the same umlaut
into a console window.

Codepages can be used for translation, so one can use the same message string to
write to multiple destinations.

Codepages can be read from file or from somewhere else (i.e. network) using the
dk_stream_t interface.

Once a codepage has been created and set up it can be used to convert characters
for a specific output.

6.21.2 Functions

The following functions are available in the module:

 unsigned char *dkcp_open DK_P1(dk_stream_t *,st)
allocates memory for an array of unsigned characters and initializes it by
reading the codepage information from the stream.
The array must be freed after usage by calling either dk_delete() or dkmem_free()
on it.

» unsigned char dkcp_convert DK_P2(unsigned char *, codepage,
unsigned char, c)
converts one character using the specified codepage.

» void dkcp_fputs DK_P3(FILE *, out, unsigned char *,
cp, char *, str)
writes a stringstr to a fileout using the codepagsp.

6.21.3 Codepage file structure

The codepage file is read line by line. A raute character is the beginning of a
comment which is finished by the end of line. Each line contains one conversion
rule. Conversion rules consist of two codes: the original character code and the
destination character code. The original character code is the character we want to
print in decimal notation. The destination character code is the decimal notation
for the byte we must write to show the character. If the destination can not show
the character, the destination character code is a minus sign.

70

6.21.4 Example

The example file cp.850 shows how to change character encoding when printing
strings to a MS-DOS console.

#
Character encoding changes for output on
MS-DOS-prompt

#

161 173
162 -
163 156
164 207
165 190
166 221
167 245
168 249
169 184
170 -
171 174
172 175
173 -
174 169
175 238
176 -
177 241
178 253
179 252

71

6.22 dksto - Sorted and unsorted data storage
6.22.1 Overview

Thedksto module contains data types and functions to store data in sorted and
unsorted containers.

Unsorted containers are implemented as double-linked lists, sorted containers can
use both double-linked lists and AVL-trees.

Iterators can be used to traverse the containers.

The following functions are available:

» dk_storage t *dksto_open(int pathlen);
allocates memory for a new container and returns a pointer to the new vari-
able.
For sorted containers using AVL-tree implementatpathlen specifies
the maximum path length in the tree.
The following constants can be used to create appropriate maximum path
lengths and numbers of elementes:

DK_STO_SIZE_HUGE (0) 1536 exceeds 1.30699e+308
DK_STO_SIZE LARGE (1) 1024 1.17987e+214
DK_STO_SIZE_MEDIUM (2) 512 1.17534e+107
DK_STO_SIZE_SMALL (3) 128 6.59035e+26
DK_STO SIZE_TINY (4) 64 2.77779e+13

For unsorted data storage U3K_STO_SIZE_TINY.
The container must be freed by callidgsto _close() when it is not
longer needed.

» dk_storage_t *dksto_open(dk_storage t *st);
closes a container and releases the resources allocated for the container in-
cluding any iterators.
The data objects referenced by the container are not freed.

 int dksto_set eval c(

72

dk_storage_t *st, dk_fct _eval c_t *f, int cr
);

int dksto_set_eval_uc(

dk_storage t *st, dk _fct_eval uc t *f, int cr
);

int dksto_set _eval_s(

dk_storage_t *st, dk _fct _eval s t *f, int cr
);

int dksto_set_eval_us(

dk_storage_t *st, dk_fct_eval us_t *f, int cr
);

int dksto_set_eval_i(

dk_storage_t *st, dk _fct_eval i t *f, int cr
);

int dksto_set_eval_ui(

dk_storage_t *st, dk_fct_eval_ui_t *f, int cr
);

int dksto_set_eval_I(

dk_storage_t *st, dk _fct_eval | t *f, int cr
);

int dksto_set_eval_ul(

dk_storage_t *st, dk_fct_eval_ul_t *f, int cr
);

int dksto_set_eval_f(

dk_storage t *st, dk _fct_eval f t *f, int cr
);

int dksto_set_eval_d(

dk_storage_t *st, dk_fct eval d t *f, int cr
);

int dksto_set_comp(

dk_storage_t *st, dk_fct_comp_t *f, int cr
);

set up evaluation or comparison functions for sorted storage.
These functions must be called before the first object is added into the con-
tainer. Evaluation and comparison functions are explained later.

int dksto_use_trees(dk_storage t *st, int ok);

allows the usage of AVL-trees for the containek (=0) or denies it.

This function must be called before the first object is added into the con-
tainer.

By default it is allowed to use trees. Te/LTREE environment vaiable

73

can be set tges or no to change the default setting.

int dksto_add(dk_storage t *st, void *obj);
stores an object reference in the container.

int dksto_remove(dk_storage t *st, void *obj);
removes an object reference from the container.

dk_storage_iterator t *

dksto_it_open(dk_storage _t *st);

creates a new iterator on the contaisérand returns a pointer to it. The
iterator should be freed bgksto_it_close() when it is not longer

needed.

Note: Whenst is closed bydksto close() all iterators connected to
it will be closed automatically.

void dksto it close(dk_storage_iterator_t *it);
closes an iterator and deallocates it's ressources.

void *dksto_it_find_exact(

dk_storage_iterator_t *it, void *0);

searches in the container for the given object reference and returns a pointer
or NULL

In sorted containers subsequent callglksto it _next() will return
pointers to objects "equal to" or "larger” than the given object.

void *

dksto _it_find_like(

dk_storage_iterator_t *it, void *o

);

searches for an object with the same evaluation as the given object.
In sorted containers subsequent callslksto it_next() will return
pointers to objects "equal to" or "larger” than the given object.

void *dk_sto_it_next(dk_storage_iterator_t *it);
can be used to traverse a container. It returns a pointer to the "next" object.

void *dksto_it_reset(dk_storage_iterator_t *it);
resets the iterator seoid *dk_sto_it_next(); finds the first ele-
ment.

74

6.22.2 An example

Imagine you want to create data sets for employees, containing name, first name
and age for each one.
You might use data structures as:

typedef struct {
char *name; char *fname; unsigned age;
} Person;

We assume to have two functions available to create and destroy data sets:

Person
*new_person(char *name, char *fname, unsigned age);

void
delete_person(Person *person);

To sort data by name, first name and age you will need the following comparison
and evaluation functionality:

» compare two data sets by name,

e compare a data set against a string containing a name,

compare two data sets by first name,
* compare a data set against a string containing a first name and
 evaluate a data set by retrieving the age.

The first four items in the list are comparisons, they can be handled in one C-
function by passing different comparison criteria.
Item 5 requires an evaluation function:

int compare_fct(void *pl, void *p2, int criteria)

{
int back = 0;
/*
* make sure we have valid pointers
*/

if(pl && p2) {
switch(criteria) {
case 0O: {
[* compare 2 data sets by name */

75

back =

strcemp(((Person *)pl)->name, ((Person *)p2)->name);
} break;

case 1: {

[* compare a data set against a given name */
back =

strcmp(((Person *)pl)->name, (char *)p2);

} break;

case 2: {

[* compare 2 data sets by first name */

back =

strcemp(((Person *)pl)->fname, ((Person *)p2)->fname);
} break;

case 3: {
[* compare a data set against a given first name */
back =
strcmp(((Person *)pl)->fname, (char *)p2);
} break;

}

}

return back;

}

unsigned get_age(void *p, int criteria)

{

unsigned back = 0;

if(p) {
back = ((Person *)p)->age;

}

return back;

}

Now we can establish four containers (three for sorted storing, one for unsorted
storing.

dk_storage t *sl, *s2, *s3, *s4;
dk_storage_iterator t *il, *i2, *i3, *i4,

sl = dksto_open(0);
s2 = dksto_open(0);
s3 = dksto_open(0);
s4 = dksto_open(DK_STO_SIZE_TINY);

if(sl && s2 && s3 && s4) {

76

i1 = dksto_it_open(sl);
i2 = dksto_it_open(s2);
I3 = dksto_it_open(s3);
i4 = dksto_it_open(s4);

[* sorted by name */
dksto_set_comp(sl,compare_fct,0);

[* sorted by first name */
dksto_set_comp(s2,compare_fct,2);

[* sorted by age */
dksto_set_eval_u(s3,get_age,0);

[* ... use the containers ... */

}

if(sl) dksto_close(sl); if(s2) dksto_close(s2);
if(s3) dksto_close(s3); if(s4) dksto_close(s4);

The code to insert data into the containers is as follows:

Person *p;
while(...) {
p = new_person(...);
if(p) {
if(dksto_add(s4,p)) {
dksto_add(s1,p); [* perform checks here too */
dksto_add(s2,p);
dksto_add(s3,p);
} else {
delete person(p);
fatal("NOT ENOUGH MEMORY TO STORE PERSON!);

}
}
}

To find userJ OE AVERAGEand all first names coming aft@io E use

char *name = "Joe";
Person *p;
/*
Note criteria 3 for comparison
of data set against pure name
*/
P =
if(p) {

Person *)dksto_it_find_like(i2,name,3);

77

printf(

"Name %s, First name: %s, Age %u\n",
p->name, p->fname, p->age

)i
while((p = (Person *)dksto_it_next(i2)) != NULL) {
printf(

"Name %s, First name: %s, Age %u\n",
p->name, p->fname, p->age

);
}

78

6.23 dkstt - String tables

String tables are key/value-pairs in binary form. They can be used to localize an
application. Thadk_stt t data type is used to represent a string table.
The following functions are available in the module:

» dkstt_open(dk_stream_t *st);
reads a string table from the specified stream, allocates all memory neces-
sary and returns a pointer to the string tableNorL).
The stream must be open and remains open.

o char *dkstt_find(
dk_stt t *s, char *key, char *def
);
searches for an entry matching the given key in the string table and returns
a pointer to the value (dduLL).

 dkstt_close(dk_stt_t *s);
closes a string table and deallocates all memory used by it. All pointers
returned bydkstt_find() -calls to this string table become invalid and
can no longer be used.

79

6.24 dkapp - Application

The dkapp module encapsulates things needed by full-featured command line
applications like:

» Preferences handling.

Preferences are persistent key/value pairs of strings residing in configura-
tion files or registry entries.
Preferences can be overwritten by command line arguments. The applica-
tion can exclude scopes (command line preferences, preferences set by the
application itself, user set preferences, administrator set preferences) when
retrieving preferences.
Preferences are valid in scopes, a scope consists of

— ausername,

— an application name and

— a host name.
A scope is valid if the scopes username matches the current username, the
application name matches the current application name and the scopes host
name matches the current host name. If we have - for instance - the user

namejoe , the application naméosomething and the host namgc the
following scopes are valid:

_ e
— *[*Ipc

— */dosomething/*

— */dosomething/pc
— joel*[*

— joel*Ipc

— joe/dosomething/*
— joe/dosomething/pc

The last scope has highest priority, preferences defined in this scope over-
write all others.

* File search depending on the users preferred language and region.
This is used to read the string tables and help text files matching the users
preferences.

80

 Logging.
Log output can be written to

— standard output (stdout),
— standard error output (stderr),

a logfile or

thesyslog system (if available on the given host).

A log level is assigned to each message logged indicating the "heaviness"
of the message.

Preferences can be used to control which "heaviness" is required for each
of the log destinations.

» Getting names for temporary files.
Normally a call taampnam(NULL) returns a pointer to a file name residing
in a directory like/var/tmp specifically created to store temporary files.
On W* systems this returns a filename in the root directory of the current
drive. RANF because write access to everything outside the temporary and
home directories should be denied for normal (stupid) users.

The following functions are available in the module:

o dk_app_t *
dkapp_open DK_PR((int argc, char *argv[]));
allocates memory for a nedk_app_t and returns a pointer to it.
Thedk_app_t variable is initialized using thenain() functionsargc
andargv arguments:

— A copy of theargv arguments is made.

— All arguments starting with a leading/ are interpreted as prefer-
ences and removed from the copy.

— The application tries to retrieve user name, host name and application
name.
The application name is derived fromngv[0] by extracting the file
name part and removing the file type suffix (if available).

— The application retrieves information about the users home directory
and the directory for temporary files.

— The filename for the file executed is searched.

— The directory containing the file executed is searched. This directory
is assumed to be the application directory and the directory for shared
files.

81

— If the directory ends obin the directory for shared files is estimated
by replacing thebin by lib . The application name is appended to
build a new name for the application directory.

— Thedk_storage t components for preferences management are
initialized.

— The preferences filappdefault is read from the shared directory
on systems without a registry.

— The preferences filappdefault. application is read from the
shared directory on systems without a registry.

— The preferences file

* letc/appdefaults or
» C:/[ETC/ALL.DEF

is read on systems without a registry.
— The preferences file

* letc/appdefaults. application or
*» C:/ETC/ application .DEF

is read on systems without a registry.

— The preferences filall is read from$HOME/.defaults on sys-
tems without a registry.

— The preferences fil8HOME/.defaults/ application is read
on systems without a registry.
On systems where leading dots in filename are not allowed the files
are searched iiHOME/defaults
If preferences are defined multiple time the setting with the highest
priorized scope is valid.
If the highest scope occurs several times the latest setting is valid.

— The preferencédir/app is looked up. If this preference is defined
it's value is used for the application directory.

— The preferencedir/shared is looked up. If this preference is
defined it's value is used for the shared directory.

— The preferencé&dir/tmp is looked up. If this preference is defined
it's value is used for the temporary directory.

— A subdirectory is created in the temporary directory to keep this appli-
cations temporary files.
The subdirectories name is consists of the Bs hexadecimal string

82

and the suffix ".TMP".

On systems without thgetpid() ~ functions another unique number

is choosed.

Note There is a possible race condition because there is some time
between the file name check and the directory creation. To prevent
other users from exploiting this it is recommended to/d&ttmp

to point to a directory inside the users home directory.

— Logging to file is initialized.
The following preferences can be used to set up logging to file:

* /log/file/name
The name of the logfile.

* [logffile/level
The minimum "heaviness" for log message, can be "none" (no
output), "panic”, "fatal”, "error", "warning", "info
"debug".
Only messages having at least the required heaviness are logged
to file.

The default is "warning".

* [logffile/keep
The keep level.
To prevent programs from filling the hard disk log files are deleted
at the programs end unless there was at least one message of a
given heaviness.
The default is "error".

* [log/file/time
This boolean flag specifies whether the current time is written for
each log message or not.
The default is "yes".

* [log/file/split
This boolean flag is of interest only when time stamps are saved
together with log messages. It specifies whether the time stamps
are written to separate lines or not.
The default is "yes".

, "progress" or

— Logging tostdout is set up using the preferences

* [log/stdout/level ,
* [log/stdout/time and
* [log/stdout/split

— Logging tostderr s set up using the preferences

83

* [log/stderr/level ,
* /log/stderr/time and
* [log/stderr/split

— If syslog is availableppenlog() is called.
— The RD of the current process is retrieved.

— The users preferred language is retrieved from the command line pref-
erencdui/lang , the environment variableaN Gor the/ui/lang
preference from any other source. The first value found is used.

— Internal string tables are read.
— Log messages about the program startup are issued.

For boolean flags the following values (case-insensitive) indicate "true™:

-1,
- Yes,
~y,

- on,

— ok and
— true .

In the preferences defining the application directory, the shared directory
and the log file name the following macros (case-sensitive) are allowed:

— $(app.name)
The application name.

— $(temp.dir)
The directory for temporary files.

— $(user.name)
The users login name.

— $(user.home)
The users home directory.

— $(user.uid)
The users W.

— $(user.gid)
The users ®.

— $(user.euid)
The effective UD.

84

— $(user.egid)
The effective GD.

— $(host.name)
The host name (short form).

— $(host.domain)
The hosts DNS domain.

— $(process.pid)
The processn of the running process.

— $(process.ppid)
The RD of the parent process.

— $(process.pgid)
The process grouml of the current process.

» dk_app_t *dkapp_open_extl(
int argc, char *argv[], char *g, char *etc,
int sil, int nostdout
)i
does the same atkapp_open() , itis extended version 1.
Theg parameter is the application group name (package name), this param-
eter may beNu L L if no package name is used.
The etc parameter points to the system configuration directory (by de-
fault "/etc" on U*x systems), one should use a variable defined via the
configure mechanism here. This parameter mayoe. L if not needed.
Thesil parameter can be used to make the application behave silently.
Thenostdout parameter can be used to deny writing of log messages to
stdout andstderr . This is for GUI applications which do not have a
console attached by default.
In general one should prefer to udkeapp_open_ext1() instead of

— dkapp_open() and
— dkapp_set_groupname() or dkapp_set_silent()

becauselkapp _open_extl() can use the package name and the silence
flag during application startup.

 int dkapp_set_groupname(dk_app_t *a, char *name);
sets the application group name (package name) for an application.
Note: It is recommended to usgkapp open_extl() to set the group
name.

85

* int dkapp_set_silent(dk_app_t *a, int flag);
sets the application to silent behaviour (the minimum log levels are in-
creased so no log messages are writtem)afy # O.
If a is NULL a module specific variable is set to make all applications cre-
ated by subsequedkapp_open() calls work silently.
Note: It is recommended to usikapp _open_extl() to set the applica-
tion in silent mode from the beginning.

» void dkapp_set_source_filename(
dk_app_t *a, char *n
);
sets the filename to be issued with the next log messages.
This function and the following one can be used to create messages contain-
ing filename and line number in the source file causing the error.

» void dkapp_set _source_lineno(
dk_app_t *a, unsigned long |
);

sets the line number to be issued with the next log message.

* int dkapp_log_msg(
dk_app_t *a, int p, char **msg, int az
)i

writes a log message of priority. The priority can be

— DK_LOG_LEVEL_PANIC
in panic conditions,

— DK _LOG_LEVEL_FATAL
for fatal errors,

— DK _LOG_LEVEL_ERROR
for errors,

— DK_LOG_LEVEL_WARNING
for warnings,

— DK_LOG_LEVEL_INFO
for normal messages,

— DK_LOG_LEVEL_PROGRESS
to show that the program is still working or

— DK_LOG_LEVEL_DEBUG
for debug output.

86

The message consists of several stringsg points to an array of string
pointers,az is the number of array elements.

int dkapp_get_pref(

dk_app_t *a, char *key,

char *buf, size t Igt, int ex

)i

retrieves the preference value for the gidey and stores the value in
bufferbuf of sizelgt .

The parameteex specifies which preference sourcesexeludedrom the
lookup process, specify

— DK_APP_PREF_EXCL_CMD
for command line options,

— DK_APP_PREF_EXCL_PROG
for programs own settings,

— DK_APP_PREF_EXCL_USER
for the users preferences files and

— DK_APP_PREF_EXCL_SYSTEM
for preferences set by the administrator.

To exclude mulitple data sources or-combine the values.
A valueO uses all data sources for lookup.
The function return$ if no value was found, otherwise another value.

int dkapp_set pref(
dk_app_t *a, char *key, char *value
);

sets a preference value.

int dkapp_transform_string(

dk_app_t *app,char *dest,size_t sz,char *src

);

transforms the stringrc to bufferdest of sizesz and replace$(...) -
macros by their values.

In addition to the macros mentioned above the following macros can be

used:

— $(app.dir)
The application directory.

— $(shared.dir)
The shared directory.

87

* int dkapp_find_cfg(
dk_app_t *a, char *name, char *buffer, size t sz
);
searches for a file having the giveame and writes the full filename into
thebuffer of lengthsz .
The function can be used to search for compressed and localized versions
of configuration and resource files.
It searches in the Windows directory and subdirectories (on W* systems)
and in the system configuration directory and subdirectories.
The directories are checked for a subdirectory structure matching the users
preferred language, region and encoding.
See sectiori0.40n pagel4lfor details.

* int dkapp_find_file(
dk_app_t *a, char *name, char *buffer, size t sz
);
searches for a file having the giveame and writes the full filename into
the bufferbuffer of lengthsz.
This function can be used to search for compresseed and localized versions
of resource and configuration files.
It searches in the current directory, in the application directory, the applica-
tion group directory, the shared directory, the Windows directory and sub-
directories (on W* systems) and in the system configuration directory and
subdirectories
Each of these directories is checked for a subdirectory structure taking care
of languages, regions and encodings.
See sectiori0.30n pagel38for details.

 char *dkapp_find_string(
dk_app_t *a, char *t, char *k, char *d
);
searches for a string table entry with Keyn tablet and returns a pointer
to the string found or the default string pointer

» void dkapp_find_multi(
dk_app_t *app, dk_string_finder_t *f, char *table
);

searches for multiple strings at once and sets up pointers.

* void dkapp_help(

Inamed as the application or the application group

88

dk_app_t *a, char *filename, char **def_strings

)i

searches for a localized help filkename and prints this to stdout. If
the file is not found, théNu L L-terminated string arragief _strings is
printed.

dk_stream_t *dkapp_read_file(

dk_app_t *app, char *filename

);

searches for the givefilename (localized, possibly compressed) and
opens it for read access.

dk_stream_t *dkapp_write_file(

dk_app_t *app, char *filename

);

tries to open the fililename for write access and returnsla_stream_t
pointer on success.

int dkapp_get_argc(

dk_app_t *a

);

char **dkapp_get_argv(

dk_app_t *a

);

can be used to retrieve the command line arguments without command line
preferences settings.

int dkapp_tmpnam(
dk_app_t *a, char *buffer, size t sz
);

fills write a pathname for a temporary file into the buffer.

void dkapp_unconfigure(

dk_app_t *app

)i

causes the application to delete the applications preference file or the reg-
istry key whendkapp_close(); is called.

void dkapp_err_traverse_dir(
dk_app_t *app, char *name
);

issues an error message that the given directory cannot be traversed.

89

» void dkapp_err_stat failed(
dk_app_t *app, char *name
);

issues an error message that no information is available about the given file.

» void dkapp_err_cwd(
dk_app_t *app
);
issues an error message telling that the current working directory cannot be
estimated.

» void dkapp_err_memory(
dk_app_t *app, size_t elsize, size_t nelem
)i
issues an error message that the application failed to allocate memory for
nelem elements of sizelsize

» dkapp_err_matchfile(
dk_app_t *app, char *name
);

iIssues an error message that there is no file matching the name pattern.

» void dkapp_err_matchdir(
dk_app_t *app, char *name
);

issues an error message that there is no directory name matching the pattern.

» void dkapp_err_fopenr(
dk_app_t *app, char *name
);
issues an error message that the program failed to open the file for read
access.

» void dkapp_err_fopenw(
dk_app_t *app, char *name
);
issues an error message that the program failed to open the file for write
access.

» void dkapp_err_fwrite(
dk_app_t *app, char *name
)i

issues an error message that there was an error during a write operation.

90

» void dkapp_err_fread(
dk_app_t *app, char *name
);

issues an error message that there was an error during a read operation.

» void dkapp_close(
dk_app_t *a
);
closes the application and releases all memory allocated lgkthegpp_t
variable.
This should be a programs last action before exiting.

o dk_stream_t *dkapp_stream_openfile(
dk_app_t *a, char *n, char *m
);
dk_stream_t *dkapp_stream_opengz(
dk_app_t *a, char *n, char *m
);
dk_stream_t *dkapp_stream_openbz2(
dk_app_t *a, char *n, char *m
);
FILE *dkapp_fopen(
dk_app_t *a, char *n, char *m
)i
are used to open files. The command line preferences of the application
a control which security checks are performed if the file with namis
opened for writing (the checks are performed additionally to the platform-
dependant permission checks). By default writing is deniedif a sym-
bolic link and at least one of the following conditions is fullfilled:

— The owner of the link is not the owner of the link target file.
— The link is placed in a group writable directory.
— The link is placed in a world writable directory.

One can skip — for example the first check — by typing
<app> --/sec/ign/link-owner=true

See tablel6 on pagel36for a list of preferences to skip security checks.
If a check fails the file is not opened and a log message is issued.

91

6.25 dktcpip - TCP/IP networking

This module is for the client side only. On the server side you should directly deal
with BSD sockets, TLI/XTI or Windows sockets to get the best performance. The
dktcpip module contains support for the following data types:

o dk_ip_addr_t
stores an address.

o dk_tcpip_t
contains data for a transport endpoint.

Before using any of the networking functions the application must call
int dktcpip_start(void);

to initialize TCP/IP networking. If you are done with networking call
int dktcpip_end DK_PR((void));

to clean up the networking system.

Between the two function calls you can

* create transport endpoints,

* configure transport endpoints,

bring transport endpoints up (connect them to a peer),

transfer data via transport endpoints,
* bring transport endpoints down and
* destroy transport endpoints.

The following functions are in the module:

* int dktcpip_start(void);
connects the process to the TCP/IP-networking subsystem and rétams
success and on error.
On *nix systems the function simply returids on W* systems it calls
WSAStartup()
If the function returns successfully the process must call
int dktcpip_end(void);
before terminating.

* int dktcpip_end(void);
disconnects the process from the TCP/IP-networking subsystem. On W*
systems it call’WSACleanup() , on *nix systems it simply returnk.

92

o dk_tcpip_t *dktcpip_new(void);
creates a new transport endpoint and returns a pointer to the endpoint data
or NULL on error.
On success the endpoint must be destroyeakibgpip_delete() when
it is not longer needed.

» void dktcpip_delete(dk_tcpip_t *p);
destroys a transport endpoint and releases the memory associated with it.

» dk_ip_addr_t *dktcpip_get_addr(
dk_tcpip_t *p, int w
);
retrieves a pointer to one of four address buffers contained in the endpoint
data.
The parametew determines which address is selected:

— DK_IP_ADDR_REMOTE_WISHED
the remote address we want to connect to.
For connectionless transport this is the address to which we want to
send.

— DK_IP_ADDR_REMOTE_FOUND
the remote address we are connected to.
For connectionless transport this is the address from which we re-
ceived the last datagram.

— DK_IP_ADDR_LOCAL_WISHED
the local address we want to bind to.

— DK_IP_ADDR_LOCAL_FOUND
the local address we are bound to.

A valid pointer is returned on succe$&)LL on error.
Thedktcpipaddr_set... functions described below use this pointer.

* int dktcpipaddr_set_ip_byname(

93

dk_ip_addr_t *a, char *hn, dk_tcpip_t *p
)i

int dktcpipaddr_set_ip_loopback(
dk _ip_addr_t *a

);

dktcpipaddr_set_ip_local(
dk_ip_addr_t *a, dk_tcpip_t *p
);

int dktcpipaddr_set_ip_any(
dk_ip_addr_t *a

);

are used to set the IP address part of the structure to

— the IP address of a given host name (host name or IP address in
dotted notation),

— the local loopback interface,
— the local IP address or
— any IP address.

int dktcpip_addr_set_port(

dk_ip_addr_t *a, unsigned short min, unsigned short

max

);

sets the port range. Thmin and max port number must be specified in
host notation

If you want exactly one port number, use eqomh andmax.

int dktcpip_set_connectionless(

dk_tcpip_t *p, int flag

);

configures the endpoint for connectionless transport (UDP)aifj = O or
connection-oriented transport (TCP)filag = 0.

By default the endpoints are set up for TCP.

int dktcpip_set_timeout(
dk_tcpip_t *t, double to
);

configures a timeout for the socket operations in microseconds.

int dktcpip_set_nonblock(
dk_tcpip_t *t, int fl
);

94

configures the endpoint for non-blocking transportlit