
Article

Notarizing Your App Before Distribution
Give users even more confidence in your software by submitting it to Apple for
notarization.

Framework

Security

On This Page

Overview

Topics

See Also

!

!

!Overview
Notarization gives users more confidence that the Developer ID-signed software you distribute
has been checked by Apple for malicious components. Notarization is not App Review. The
Apple notary service is an automated system that scans your software for malicious content,
checks for code-signing issues, and returns the results to you quickly. If there are no issues, the
notary service generates a ticket for you to staple to your software; the notary service also
publishes that ticket online where Gatekeeper can find it.

When the user first installs or runs your software, the presence of a ticket (either online or
attached to the executable) tells Gatekeeper that Apple notarized the software. Gatekeeper
then places descriptive information in the initial launch dialog to help the user make an informed
choice about whether to launch the app.

You can notarize several different types of software deliverables, including:

macOS apps

Non-app bundles, such as kernel extensions

Disk images (UDIF format)

Flat installer packages

Notarization also protects your users if your Developer ID signing key is exposed. The notary
service maintains an audit trail of the software distributed using your signing key. If you discover
unauthorized versions of your software, you can work with Apple to revoke the tickets
associated with those versions.

Important

DocumentationSecurity
Notarizing Your App Before Distribution
Language: Swift
API Changes: None

"

Discover Design Develop Distribute Support Account

https://developer.apple.com/documentation
https://developer.apple.com/documentation/security
https://developer.apple.com/
https://developer.apple.com/discover/
https://developer.apple.com/design/
https://developer.apple.com/develop/
https://developer.apple.com/distribute/
https://developer.apple.com/support/
https://developer.apple.com/account/
https://developer.apple.com/search/


Beginning in macOS 10.14.5, all new or updated kernel extensions and all software from
developers new to distributing with Developer ID must be notarized in order to run. In a
future version of macOS, notarization will be required by default for all software.

Prepare Your Software for Notarization
Notarization requires Xcode 10 or later. Building a new app for notarization requires macOS
10.13.6 or later. Uploading and stapling an app requires macOS 10.12 or later.

Apple's notary service requires you to adopt the following protections:

Enable code-signing for all of the executables you distribute.

Enable the Hardened Runtime capability for your executable targets, as described in Enable
hardened runtime.

Use a “Developer ID” application, kernel extension, or installer certificate for your code-
signing signature. (Don't use a Mac Distribution or local development certificate.) For more
information, see Create, export, and delete signing certificates.

Include a secure timestamp with your code-signing signature. (The Xcode distribution
workflow includes a secure timestamp by default. For custom workflows, include the --
timestamp option when running the codesign tool.)

Donʼt include the com.apple.security.get-task-allow entitlement with the value
set to any variation of true. If your software hosts third-party plug-ins and needs this
entitlement to debug the plug-in in the context of a host executable, see Avoid the Get-
Task-Allow Entitlement.

Link against the macOS 10.9 or later SDK.

Apple recommends that you notarize all of the software that youʼve distributed, including older
releases, and even software that doesnʼt meet all of these requirements or that is unsigned.
Apple s̓ notary service uses a variety of methods, including telemetry, to determine which of the
above rules to relax for preexisting software. For more information, see Notarize Your
Preexisting Software.

Important

Some preexisting software might not run properly after being successfully notarized. For
example, Gatekeeper might find code signing issues that a relaxed notarization process
didnʼt enforce. Always review the notary log for any warnings, and test your software
before distribution.

Add the Entitlements Needed by Plug-ins
When you enable the extra security enforced by the hardened runtime, as notarization requires,
this impacts both your app and any plug-ins that your app hosts. Plug-ins donʼt declare their
own entitlements. Instead, they inherit the entitlements of the host process. Therefore, a host
app must include all the entitlements that prospective plug-ins require, even when the plug-ins
are notarized separately.

For example, if a plug-in employs deep integration with the host executable via C function

https://help.apple.com/xcode/mac/current/#/devf87a2ac8f
https://help.apple.com/xcode/mac/current/#/dev154b28f09
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/resolving_common_notarization_issues#3087731


pointer overrides, or uses a JavaScript engine for custom workflows, the host executable must
declare the Allow Unsigned Executable Memory Entitlement or Allow
Execution of JIT-compiled Code Entitlement, respectively. In some cases, a plug-
in fails to even load if the host executable lacks the proper entitlement.

Also include resource access entitlements, like the Address Book or Location access
entitlements, and the related purpose strings, that support your app s̓ plug-ins. For example, if
a Print Dialog Extension (PDE) that provides fax services wants to access a user s̓ contact list,
the host executable must declare the Address Book Entitlement and include the
NSContactsUsageDescription purpose string in its Information Property List for the plug-
in to operate.

For a complete list of hardened runtime entitlements, see Hardened Runtime Entitlements. For
information about usage strings, see Accessing Protected Resources.

Important

On macOS 10.14.x, for executables using the hardened runtime, PDEs load only if the host
executable has the Disable Library Validation Entitlement.

Notarize Your App Automatically as Part of the Distribution
Process
Before distributing your app directly to customers, your Account Holder must sign the app with
your Developer ID. Xcode s̓ Organizer window includes a workflow for generating a distributable
version of your app. In Xcode 10 and later, this workflow includes an option to notarize your app
automatically. To notarize your app using this workflow, do the following:

e. Open your Xcode project.

g. Create an archive of your app.

h. Open Xcode's Organizer window.

i. In the Archives tab, select the archive you created.

j. Click Distribute App to view the distribution options.

k. Choose Developer ID for your method of distribution.

l. Click Next.

m. Choose Upload to send your archive to the Apple notary service.

n. Click Next.

https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-unsigned-executable-memory
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_allow-jit
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_personal-information_addressbook
https://developer.apple.com/documentation/bundleresources/information_property_list/nscontactsusagedescription
https://developer.apple.com/documentation/bundleresources/information_property_list
https://developer.apple.com/documentation/security/hardened_runtime_entitlements
https://developer.apple.com/documentation/uikit/core_app/protecting_the_user_s_privacy/accessing_protected_resources
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_security_cs_disable-library-validation


When you click Next, Xcode uploads your archive to the notary service. When the upload is
complete, the notary service begins the scanning process, which usually takes less than an
hour. While the notary service scans your software, you can continue to prepare your archive
for distribution. For example, you can export the archive and perform any final testing that you
require prior to making your software available to customers.

When the notarization process finishes, Xcode downloads the ticket and staples it to your
archive. At that point, export your archive again to receive a distributable version of your
software that includes the notary ticket.

For more information about how to use the Xcode UI to upload your software, see Upload a
macOS app to be notarized.

Notarize Your Preexisting Software
Notarizing your preexisting software lets Gatekeeper warn users when they try to run it. It also
helps the notary service distinguish your legitimate software from variants that have been
tampered with. You can notarize an existing disk image, installer package, or ZIP archive
containing your app.

To notarize your preexisting software, do the following:

e. Make Xcode 10 your active Xcode installation. (If you're not sure whether Xcode 10 is the
active installation, use the xcode-select command-line to make it active. For information
about how to use this tool, see the man page for it, as described in Reading UNIX Manual
Pages.)

g. Upload your software to the Apple notary service, as described in Upload Your App to the
Notarization Service.

h. Staple the returned ticket to your existing software, as described in Staple the Ticket to
Your Distribution.

Note

You donʼt need to rebuild or re-sign your software before submitting it for notarization,
but you must use Xcode 10 to perform the notarization steps. Submit everything youʼve
previously released, as well as your most recent version, to protect users who continue to

https://help.apple.com/xcode/mac/current/#/dev88332a81e
https://developer.apple.com/documentation/os/reading_unix_manual_pages
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/customizing_the_notarization_workflow#3087734
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/customizing_the_notarization_workflow#3087720


use older versions of your software.

For tips on how to resolve issues that can occur during notarization, see Resolving Common
Notarization Issues.

Add a Notarization Step to Your Build Scripts
If you use an automated build system, you can integrate the notarization process into your
existing build scripts. The altool and stapler command-line tools (included with Xcode)
allow you to upload your software to the Apple notary service, and to staple the resulting ticket
to your executable.

For information about how to incorporate notarization into your custom build scripts, see
Customizing the Notarization Workflow.

Topics

Notarization Customizing the Notarization Workflow

Notarize your app from the command line to handle special distribution cases.

Resolving Common Notarization Issues

Handle common problems reported in the notarization log file, or that arise during ticket
stapling.

See Also

https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/resolving_common_notarization_issues
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/customizing_the_notarization_workflow
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/customizing_the_notarization_workflow
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/resolving_common_notarization_issues


Secure Code Code Signing Services

Examine and validate signed code running on the system.

Preparing Your App to Work with Pointer Authentication

Test your app against the arm64e architecture to ensure that it works seamlessly with
enhanced security features.

App Sandbox Entitlements

Manage access to system resources and user data in macOS apps to contain damage if
an app becomes compromised.

Hardened Runtime Entitlements

Manage security protections and resource access for your macOS apps.

https://developer.apple.com/documentation/security/code_signing_services
https://developer.apple.com/documentation/security/preparing_your_app_to_work_with_pointer_authentication
https://developer.apple.com/documentation/security/app_sandbox_entitlements
https://developer.apple.com/documentation/security/hardened_runtime_entitlements

