
The language mix VOORJAAR 2019 1

The language mix

Abstract
During the third ConTEXt conference that ran in parallel
to EuroTEX 2009 in The Hague we had several sessions
where mkiv was discussed and a few upcoming features
were demonstrated. The next sections summarize some of
that. It’s hard to predict the future, especially because new
possibilities show up once LuaTEX is opened up more, so
remarks about the future are not definitive.

1 TEX
From now on, if I refer to TEX in the perspective of
LuaTEX I mean “Good Old TEX”, the language as well
as the functionality. Although LuaTEX provides a cou-
ple of extensions it remains pretty close to compatible
to its ancestor, certainly from the perspective of the
end user.

As most ConTEXt users code their documents in the
TEX language, this will remain the focus of mkiv. After
all, there is no real reason to abandon it. However,
although ConTEXt already stimulates users to use
structure where possible and not to use low level TEX
commands in the document source, we will add a
few more structural variants. For instance, we already
introduced \startchapter and \startitem in addition
to \chapter and \item.

We even go further, by using key/value pairs for
defining section titles, bookmarks, running headers,
references, bookmarks and list entries at the start
of a chapter. And, as we carry around much more
information in the (for TEX so typical) auxiliary data
files, we provide extensive control over rendering the
numbers of these elements when they are recalled (like
in tables of contents). So, if you really want to use
different texts for all references to a chapter header, it
can be done:

\startchapter
[label=emcsquare,
title={About $e=mc^2$},
bookmark={einstein},
list={About $e=mc^2$ (Einstein)},
reference={$e=mc^2$}]

... content ...

\stopchapter

Under the hood, the mkiv code base is becoming quite
a mix and once we have a more clear picture of where
we’re heading, it might become even more of a hybrid.
Already for some time most of the font handling is
done by Lua, and a bit more logic and management
might move to Lua as well. However, as we want to
be downward compatible we cannot go as far as we
want (yet). This might change as soon as more of the
primitives have associated Lua functions. Even then it
will be a trade off: calling Lua takes some time and it
might not pay off at all.

Some of the more tricky components, like vertical
spacing, grid snapping, balancing columns, etc. are
already in the process of being Luafied and their
hybrid form might turn into complete Lua driven
solutions eventually. Again, the compatibility issue
forces us to follow a stepwise approach, but at the cost
of (quite some) extra development time. But whatever
happens, the TEX input language as well as machinery
will be there.

2 MetaPost
I never regret integrating MetaPost support in
ConTEXt and a dream came true when mplib became
part of LuaTEX. Apart from a few minor changes in
the way text integrates into MetaPost graphics the
user interface in mkiv is the same as in mkii. Insofar
as Lua is involved, this is hidden from the user. We
use Lua for managing runs and conversion of the result
to pdf. Currently generating MetaPost code by Lua
is limited to assisting in the typesetting of chemical
structure formulas which is now part of the core.

When defining graphics we use the MetaPost lan-
guage and not some TEX-like variant of it. Information
can be passed to MetaPost using special macros (like
\MPcolor), but most relevant status information is
passed automatically anyway.

You should not be surprised if at some point we can
request information from TEX directly, because after
all this information is accessible. Think of something
w := texdimen(0) ; being expanded at the MetaPost
end instead of w := \the\dimen0 ; being passed to
MetaPost from the TEX end.

3 Lua
What will the user see of Lua? First of all he or she can

2 MAPS 58 Hans Hagen

use this scripting language to generate content. But
when making a format or by looking at the statistics
printed at the end of a run, it will be clear that Lua
is used all over the place.

So how about Lua as a replacement for the TEX
input language? Actually, it is already possible to make
such “ConTEXt Lua Documents” using mkiv’s built in
functions. Each ConTEXt command is also available as
a Lua function.

\startluacode
context.bTABLE {

framecolor = "blue",
align= "middle",
style = "type",
offset=".5ex",

}
for i=1,10 do

context.bTR()
for i=1,20 do

local r= math.random(99)
if r < 50 then

context.bTD {
background = "color",
backgroundcolor = "blue"

}
context(context.white("%#2i",r))

else
context.bTD()
context("%#2i",r)

end
context.eTD()

end
context.eTR()

end
context.eTABLE()

\stopluacode

Of course it helps if you know ConTEXt a bit. For
instance we can as well say:

if r < 50 then
context.bTD {

background = "color",
backgroundcolor = "blue",
foregroundcolor = "white",

}
else

context.bTD()
end
context("%#2i",r)
context.eTD()

And, knowing Lua helps as well, since the following is
more efficient:

\startluacode
local colored = {

background = "color",
backgroundcolor = "bluegreen",
foregroundcolor = "white",

}
local basespec = {

framecolor = "bluered",
align= "middle",
style = "type",
offset=".5ex",

}
local bTR, eTR = context.bTR, context.eTR
local bTD, eTD = context.bTD, context.eTD
context.bTABLE(basespec)

for i=1,10 do
bTR()
for i=1,20 do

local r= math.random(99)
bTD((r < 50 and colored) or nil)
context("%#2i",r)
eTD()

end
eTR()

end
context.eTABLE()

\stopluacode

Since in practice the speedup is negligible and the
memory footprint is about the same, such optimiza-
tions seldom make sense.

At some point this interface will be extended, for
instance when we can use TEX’s main (scanning,
parsing and processing) loop as a so-called coroutine
and when we have opened up more of TEX’s internals.
Of course, instead of putting this in your TEX source,
you can as well keep the code at the Lua end.

84 52 23 74 5 28 77 37 8 57 68 70 83 9 30 50 91 94 45 8

72 26 72 48 72 35 2 75 90 76 51 36 2 16 56 23 28 26 27 13

60 14 72 35 53 83 78 29 85 6 38 59 89 59 96 84 40 89 66 56

13 24 75 19 11 29 91 1 99 92 37 81 12 55 77 85 2 76 36 65

68 65 95 89 15 64 87 78 88 35 22 47 13 52 49 11 87 25 51 61

3 54 27 92 57 27 94 17 30 83 47 88 34 81 26 74 30 28 83 78

40 86 32 89 16 23 31 51 9 23 32 13 50 48 6 43 82 91 13 79

4 16 69 48 83 88 28 16 17 47 20 66 16 7 27 98 46 8 28 76

29 62 63 68 6 63 75 27 92 36 57 17 47 75 34 43 54 48 96 69

44 42 88 74 56 80 48 5 28 10 41 37 55 94 92 59 59 82 53 98

Figure 1. The result of the displayed Lua code.

The script that manages a ConTEXt run (also called
context) will process files with that consist of such
commands directly if they have a cld suffix or when

The language mix VOORJAAR 2019 3

you provide the flag --forcecld.1

context yourfile.cld

But will this replace TEX as an input language?
This is quite unlikely because coding documents in
TEX is so convenient and there is not much to gain
here. Of course in a pure Lua based workflow (for
instance publishing information from databases) it
would be nice to code in Lua, but even then it’s mostly
syntactic sugar, as TEX has to do the job anyway.
However, eventually we will have a quite mature Lua
counterpart.

4 XML
This is not so much a programming language but more
a method of tagging your document content (or data).
As structure is rather dominant in xml, it is quite
handy for situations where we need different output
formats and multiple tools need to process the same
data. It’s also a standard, although this does not mean
that all documents you see are properly structured.
This in turn means that we need some manipulative
power in ConTEXt, and that happens to be easier to
do in mkiv than in mkii.

In ConTEXt we have been supporting xml for a
long time, and in mkiv we made the switch from
stream based to tree based processing. The current
implementation is mostly driven by what has been
possible so far but as LuaTEX becomes more mature,
bits and pieces will be reimplemented (or at least
cleaned up and brought up to date with developments
in LuaTEX).

One could argue that it makes more sense to use
xslt for converting xml into something TEX, but
in most of the cases that I have to deal with much
effort goes into mapping structure onto a given layout
specification. Adding a bit of xml to TEX mapping to
that directly is quite convenient. The total amount of
code is probably smaller and it saves a processing step.

We’re mostly dealing with education-related docu-
ments and these tend to have a more complex structure
than the final typeset result shows. Also, readability of
code is not served with such a split as most mappings
look messy anyway (or evolve that way) due to the
way the content is organized or elements get abused.

There is a dedicated manual for dealing with xml
in mkiv, so we only show a simple example here. The
documents to be processed are loaded in memory and
serialized using setups that are associated to elements.

We keep track of documents and nodes in a way
that permits multipass data handling (rather usual
in TEX). Say that we have a document that contains
questions. The following definitions will flush the (root
element) questions:

\startxmlsetups xml:mysetups
\xmlsetsetup{#1}{questions}{xml:questions}

\stopxmlsetups

\xmlregistersetup{xml:mysetups}

\startxmlsetups xml:questions
\xmlflush{#1}

\stopxmlsetups

\xmlprocessfile{main}{somefile.xml}{}

Here the #1 represents the current xml element. Of
course we need more associations in order to get
something meaningful. If we just serialize then we have
mappings like:

\xmlsetsetup{#1}{question|answer}{xml:*}

So, questions and answers are mapped onto their
own setup which flushes them, probably with some
numbering done at the spot.

In this mechanism Lua is sort of invisible but quite
busy as it is responsible for loading, filtering, accessing
and serializing the tree. In this case TEX and Lua hand
over control in rapid succession.

You can hook in your own functions, like:

\xmlfilter{#1}
{(wording|feedback|choice)/function(cleanup)}

In this case the function cleanup is applied to elements
with names that match one of the three given.2

Of course, once you start mixing in Lua in this way,
you need to know how we deal with xml at the Lua
end. The following function show how we calculate
scores:

\startluacode
function xml.functions.totalscore(root)

local n = 0
for e in xml.collected(root,"/outcome") do

if xml.filter(e,"action[text()='add']") then
local m = xml.filter

1 Similar methods exist for processing xml files.

2 This example is inspired by one of our projects where the cleanup
involves sanitizing (highly invalid) html data that is embedded as a CDATA stream, a trick to prevent the xml file to be invalid.

4 MAPS 58 Hans Hagen

(e,"xml:///score/text()")
n = n + (tonumber(m or 0) or 0)

end
end
tex.write(n)

end
\stopluacode

You can either use such a function in a filter or just
use it as a TEX macro:

\startxmlsetups xml:question
\blank
\xmlfirst{#1}{wording}
\startitemize

\xmlfilter{#1}
{/answer/choice/command(xml:answer:choice)}

\stopitemize
\endgraf
score: \xmlfunction{#1}{totalscore}
\blank

\stopxmlsetups

\startxmlsetups xml:answer:choice
\startitem

\xmlflush{#1}
\stopitem

\stopxmlsetups

The filter variant is like this:

\xmlfilter{#1}{./function('totalscore')}

So you can take your choice and make your source look
more xml-ish, Lua-like or TEX-wise. A careful reader
might have noticed the peculiar xml:// in the function
code. When used inside mkiv, the serializer defaults
to TEX so results are piped back into TEX. This prefix
forced the regular serializer which keeps the result at
the Lua end.

Currently some of the xml related modules, like
mathml and handling of tables, are really a mix of
TEX code and Lua calls, but it makes sense to move
them completely to Lua. One reason is that their input
(formulas and table content) is restricted to non-TEX
anyway. On the other hand, in order to be able to share
the implementation with TEX input, it also makes
sense to stick to some hybrid approach. In any case,
more of the calculations and logic will move to Lua,
while TEX will deal with the content.

A somewhat strange animal here is xsl-fo. We do
support it, but the mkii implementation was always

somewhat limited and the code was quite complex. So,
this needs a proper rewrite in mkiv, which will happen
indeed. It’s mostly a nice exercise of hybrid technology
but until now I never really needed it. Other bits and
pieces of the current xml goodies might also get an
upgrade.

There is already a bunch of functions and macros
to filter and manipulate xml content and currently
the code involved is being cleaned up. What direction
we go also depends on users’ demands. So, with
respect to xml you can expect more support, a better
integration and an upgrade of some supported xml
related standards.

5 Tools
Some of the tools that ship with ConTEXt are also
examples of hybrid usage.

Take this:

mtxrun --script server --auto

On my machine this reports:

MTXrun | running at port: 31415
MTXrun | document root: c:/data/develop/context/

lua
MTXrun | main index file: unknown
MTXrun | scripts subpath: c:/data/develop/context

/lua
MTXrun | context services: http://localhost:31415

/mtx-server-ctx-startup.lua

The mtxrun script is a Lua script that acts as a con-
troller for other scripts, in this case mtx-server.lua
that is part of the regular distribution. As we use
LuaTEX as a Lua interpreter and since LuaTEX has
a socket library built in, it can act as a web server,
limited but quite right for our purpose.3

The web page that pops up when you enter the
given address lets you currently choose between the
ConTEXt help system and a font testing tool. In
figure ?? you seen an example of what the font testing
tool does.

Here we have LuaTEX running a simple web server
but it’s not aware of having TEX on board. When you
click on one of the buttons at the bottom of the screen,
the server will load and execute a script related to the
request and in this case that script will create a TEX
file and call LuaTEX with ConTEXt to process that
file. The result is piped back to the browser.

You can use this tool to investigate fonts (their
bad and good habits) as well as to test the currently

3 This application is not intentional but just a side effect.

The language mix VOORJAAR 2019 5

available OpenType functionality in mkiv (bugs as
well as goodies).

So again we have a hybrid usage although in this
case the user is not confronted with Lua and/or TEX
at all. The same is true for the other goodie, shown in
figure ??. Actually, such a goodie has always been part
of the ConTEXt distribution but it has been rewritten
in Lua.

The ConTEXt user interface is defined in an xml
file, and this file is used for several purposes: initial-
izing the user interfaces at format generation time,
typesetting the formal command references (for all
relevant interface languages), for the wiki, and for the
mentioned help goodie.

Using the mix of languages permits us to provide
convenient processing of documents that otherwise
would demand more from the user than it does now.
For instance, imagine that we want to process a series
of documents in the so-called epub format. Such a
document is a zipped file that has a description and
resources. As the content of this archive is prescribed
it’s quite easy to process it:

context --ctx=x-epub.ctx yourfile.epub

This is equivalent to:

texlua mtxrun.lua --script context --ctx=x-epub.
ctx yourfile.epub

So, here we have LuaTEX running a script that itself
(locates and) runs a script context. That script loads
a ConTEXt job description file (with suffix ctx). This
file tells what styles to load and might have additional
directives but none of that has to bother the end user.
In the automatically loaded style we take care of read-
ing the xml files from the zipped file and eventually
map the embedded html like files onto style elements
and produce a pdf file. So, we have Lua managing a
run and mkiv managing with help of Lua reading from
zip files and converting xml into something that TEX

is happy with. As there is no standard with respect
to the content itself, i.e. the rendering is driven by
whatever kind of structure is used and whatever the
css file is able to map it onto, in practice we need
an additional style for this class of documents. But
anyway it’s a good example of integration.

6 The future
Apart from these language related issues, what more
is on the agenda? To mention a few integration related
thoughts:

� At some point I want to explore the possibility
to limit processing to just one run, for instance
by doing trial runs without outputting anything
but still collecting multipass information. This
might save some runtime in demanding workflows
especially when we keep extensive font loading and
image handling in mind.

� Related to this is the ability to run mkiv as a ser-
vice but that demands that we can reset the state
of LuaTEX and actually it might not be worth the
trouble at all given faster processors and disks.
Also, it might not save much runtime on larger
jobs.

� More interesting can be to continue experiment-
ing with isolating parts of ConTEXt in such a way
that one can construct a specialized subset of func-
tionality. Of course the main body of code will
always be loaded as one needs basic typesetting
anyway.

Of course we keep improving existing mechanisms and
improve solutions using a mix of TEX and Lua, using
each language (and system) for what it can do best.

7 Notes

Hans Hagen
Pragma ADE, Hasselt
pragma (at) wxs dot nl

