
Article

Customizing the Notarization Workflow
Notarize your app from the command line to handle special distribution cases. Framework

Security

On This Page

Overview

Topics

See Also

!

!

!

Overview
The easiest way to notarize your app is through the Xcode user interface, as described in
Notarizing Your App Before Distribution. However, if you have a more complex scenario, you can
use command line tools to manually notarize your app. This workflow can be useful in a number
of cases, like when you need to:

Notarize software youʼve already shipped.

Notarize plug-ins for other software packages.

Create complex distributions, like disk images or installer packages.

Add the notarization process to a scripted build environment.

Export a Package for Notarization
To prepare an app for notarization, you must export the app from Xcode. Using the Xcode
interface, you automatically export your app when you click Distribute App in the Organizer
window. But in a scripted build environment, you must use the xcodebuild utility to perform
the export. Because export directly follows archiving, the archive s̓ post-action script is a
convenient place from which to perform the export. You can edit the post-action from the
scheme editor in Xcode.

DocumentationSecurity
Notarizing Your App Before Distribution
Customizing the Notarization Workflow
Language: Swift
API Changes: None

"

Discover Design Develop Distribute Support Account

https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://developer.apple.com/documentation
https://developer.apple.com/documentation/security
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution
https://developer.apple.com/
https://developer.apple.com/discover/
https://developer.apple.com/design/
https://developer.apple.com/develop/
https://developer.apple.com/distribute/
https://developer.apple.com/support/
https://developer.apple.com/account/
https://developer.apple.com/search/

The script begins by exporting the archive with xcodebuild:

You tell xcodebuild which archive to export using an environment variable automatically
defined by Xcode, and provide a location for the output by defining the EXPORT_PATH variable.
Use the exportOptionsPlist flag to indicate an options property list that configures the
export operation. You typically obtain this file by exporting from Xcode just once. The export
options file appears alongside the app itself in the export directory:

Alternatively, you can create a custom export options property list file with a text or property list
editor. For a complete description of the available keys, use the help flag:

$ xcodebuild -help

Because you can't upload the .app bundle directly to the notary service, youʼll need to create a
compressed archive containing the app:

APP_PATH="$EXPORT_PATH/$PRODUCT_NAME.app"
ZIP_PATH="$EXPORT_PATH/$PRODUCT_NAME.zip"

Create a ZIP archive suitable for altool.
/usr/bin/ditto -c -k --keepParent "$APP_PATH" "$ZIP_PATH"

As a convenience, open the export folder in Finder.
/usr/bin/open "$EXPORT_PATH"

Alternatively, you can create a disk image or installer containing your app. The notary service
accepts disk images (UDIF format), signed flat installer packages, and ZIP archives. It
processes nested software as well, like packages inside a disk image.

Important

If you distribute your software via a custom third-party installer, you need two rounds of
notarization. First you notarize the installer s̓ payload (everything the installer will install).
You then package the notarized (and stapled, as described in Staple the Ticket to Your
Distribution) items into the installer and notarize it as you would any other executable.

EXPORT_PATH="$TEMP_DIR/Export"
/usr/bin/xcodebuild -exportArchive -archivePath "$ARCHIVE_PATH" -exportOptionsPlist "$SRCROOT/ExportOptions.plist" -exportPath "$EXPORT_PATH"

Upload Your App to the Notarization Service
You upload your app for notarization using altool. Xcode 10 or later supports notarization, so
if you have more than one version of Xcode installed on your Mac, be sure to use the xcode-
select utility to choose the appropriate version:

$ sudo xcode-select -s /path/to/Xcode10.app

You can then use xcrun to invoke the altool command with the notarize-app flag:

The notary service generates a ticket for the top-level file that you specify, as well as each
nested file. For example, if you submit a disk image that contains a signed installer package
with an app bundle inside, the notarization service generates tickets for the disk image, installer
package, and app bundle.

Include the primary-bundle-id flag—which is required—to specify an identifier that helps
you keep track of automated correspondence from the notarization service. The value you give
doesnʼt need to match the bundle identifier of the submitted app or have any particular value. It
only needs to make sense to you. The notarization service includes the value whenever it emails
you regarding the given altool submission.

Add the username and password flags to supply your App Store Connect credentials.
Because App Store Connect now requires two-factor authentication (2FA) on all accounts, you
must create an app-specific password for altool, as described in Using app-specific
passwords.

To avoid including your password as cleartext in a script, you can provide a reference to a
keychain item, as shown in the previous example. This assumes the keychain holds a keychain
item named AC_PASSWORD with an account value matching the username AC_USERNAME. Note
that altool canʼt access your iCloud keychain for security reasons, so the item must be in
your login keychain. You can add a new keychain item using the Keychain Access app, or from
the command line using the security utility:

If altool succeeds, it prints a request identifier:

altool[16765:378423] No errors uploading 'OvernightTextEditor_11.6.8.zip'.
RequestUUID = 2EFE2717-52EF-43A5-96DC-0797E4CA1041

Save the RequestUUID to use later when checking the status of your request. For more
information about altool and its required flags, use the help flag:

$ xcrun altool --help

Check the Status of Your Request

$ xcrun altool --notarize-app --primary-bundle-id "com.example.ote.zip" --username "AC_USERNAME" --password "@keychain:AC_PASSWORD" --file OvernightTextEditor_11.6.8.zip

$ security add-generic-password -a "AC_USERNAME" -w <secret_password> -s "AC_PASSWORD"

https://support.apple.com/en-us/HT204397

After uploading your app, the notarization process typically takes less than an hour. When the
process completes, you receive an email indicating the outcome. Additionally, you can use
altool with the notarization-history flag to inspect the status of all of your notarization
requests:

Passing a page value of 0, as in the above example, returns the most recent requests, and
prints a table of results:

To obtain detailed information about a particular submission, use altool along with the
notarization-info flag and the UUID for the submission or from the history table above:

Among other details, the tool reports a log file URL that you can use to download a JSON-
formatted log file:

 RequestUUID: 2EFE2717-52EF-43A5-96DC-0797E4CA1041
 Date: 2018-07-02 20:32:01 +0000
 Status: invalid
 LogFileURL: https://osxapps.itunes.apple.com/...
 Status Code: 2
Status Message: Package Invalid

The log file enumerates any issues that notarization found.

$ xcrun altool --notarization-history 0 -u "AC_USERNAME" -p "@keychain:AC_PASSWORD"

Notarization History - page 0

Date RequestUUID Status Status Code Status Message
------------------------- ------------------------------------ ----------- ----------- ----------------
2018-07-02 20:32:01 +0000 2EFE2717-52EF-43A5-96DC-0797E4CA1041 invalid 2 Package Invalid
2018-06-29 13:23:13 +0000 6D020E28-9890-48E5-851C-4275169D07CC invalid 2 Package Invalid

$ xcrun altool --notarization-info 2EFE2717-52EF-43A5-96DC-0797E4CA1041 -u "AC_USERNAME"

{
 "archiveFilename": "Overnight TextEditor.app",
 "issues": [
 {
 "message": "The signature of the binary is invalid.",
 "path": "Overnight TextEditor.app/Contents/MacOS/Overnight TextEditor",
 "severity": "error"
 }
],
 "jobId": "2EFE2717-52EF-43A5-96DC-0797E4CA1041",
 "logFormatVersion": 1,
 "status": "Invalid",
 "statusSummary": "Archive contains critical validation errors",

Note

Always check the log file, even if notarization succeeds, because it might contain
warnings that you can fix prior to your next submission.

For information about how to deal with common problems, see Resolving Common Notarization
Issues.

Staple the Ticket to Your Distribution
Notarization produces a ticket that tells Gatekeeper that your app is notarized. After
notarization completes successfully, the next time any user attempts to run your app on macOS
10.14 or later, Gatekeeper finds the ticket online. This includes users who downloaded your app
before notarization.

You should also attach the ticket to your software using the stapler tool, so that future
distributions include the ticket. This ensures that Gatekeeper can find the ticket even when a
network connection isnʼt available. To attach a ticket to your app, use the stapler tool:

$ xcrun stapler staple "Overnight TextEditor.app"

While you can notarize a ZIP archive, you canʼt staple to it directly. Instead, run stapler
against each individual item that you originally added to the archive. Then create a new ZIP file
containing the stapled items for distribution. Although tickets are created for standalone
binaries, it s̓ not currently possible to staple tickets to them.

Ensure Your Build Server Has Network Access
To incorporate notarization into a custom workflow, your build server needs access to certain
network resources.

In particular, because altool is a front end for the Transporter command line tool, it uses the
same IP address ranges and ports as that tool. See System and network requirements in the
Transporter User Guide for details.

In addition, stapler uses CloudKit to download tickets, which requires access to the following
IP address ranges, all on port 443:

17.248.128.0/18
17.250.64.0/18
17.248.192.0/19

 "ticketContents": null,
 "uploadDate": "2018-07-02T20:32:01Z"
}

https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/resolving_common_notarization_issues
https://help.apple.com/itc/transporteruserguide/#/apdATD1E112-D1E1A1303-D1E112A1126
https://help.apple.com/itc/transporteruserguide/#/
https://developer.apple.com/documentation/cloudkit

Topics

Xcode Archives Customizing the Xcode Archive Process

Archive, export, and notarize your app in one step using Xcode post-action build
scripts.

See Also

Notarization Resolving Common Notarization Issues

Handle common problems reported in the notarization log file, or that arise during ticket
stapling.

https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/customizing_the_notarization_workflow/customizing_the_xcode_archive_process
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution/resolving_common_notarization_issues

