
MACTEX OVERVIEW

RICHARD KOCH

1. Introduction and History

This is the root document for a series of related documents which explain how to construct
MacTeX.

Wendy McKay conceived the idea of a Macintosh install package which would provide
everything needed to use TeX on a Macintosh. After advocating the idea at a couple of
earlier TUG conferences, she organized a lunch for Macintosh users at the TUG Practi-
cal TeX Meeting, 2005, in Chapel Hill, North Carolina. At that lunch, she pointed to
Jonathan Kew and assigned the construction of the installer to him (how could Jonathan
refuse!). Jonathan had to leave the conference the next morning, and we expected that
he would construct the package over several weeks after he returned to England. Instead,
Jonathan stayed up all night and had a package the next morning. Over breakfast, he
willed maintenance of it to me.

Originally, MacTeX installed a TeX Distribution created by Gerben Wierda, based on
teTeX. But in 2006, Thomas Esser, the author of teTeX, announced that the project was
ending and recommended that users switch to TeX Live. Gerben Wierda then began
revising his distribution to contain a mixture of teTeX and TeX Live, announcing the
new distribution, gwTeX, in November, 2006 at the annual TUG meeting in Marrakesh,
Morocco. But at that same meeting, Gerben held up a sign containing the words “I quit”
and announced that he would no longer support his distribution. I then constructed test
versions of MacTeX, one using the old teTeX, one using gwTeX, and another using the full
TeX Live. To my surprise and delight, the TUG authorities pushed for the package based
on the full TeX Live, and since 2007, that is what MacTeX installs.

2. The Various SubProjects

This document is provided inside a build tree for MacTeX. Do not rearrange folders in this
tree. As MacTeX is constructed, these folders will gradually be filled with bits and pieces
of the package, until finally the complete package is inside one of the folders.

The MacTeX install package contains a series of subpackages which install the various
pieces of MacTeX. A user can choose which packages to install by clicking the “Custom”
button during installation. Each subpackage is built in a folder of the build system, and
each such folder contains a subfolder named “DOC” with the documentation needed to

Date: March 12, 2020.

1

MACTEX OVERVIEW 2

build that portion of MacTeX. The subpackages needed for MacTeX are Ghostscript, GUI
Applications, and TeX Live.

We build a special version of MacTeX for the DVD. That portion requires Ghostscipt and
TeXDist.

Finally we build two extra packages: BasicTeX and MinimalTeX.

3. Building Binaries

To create a new TeX Live and MacTeX release, it is first necessary to compile the TeX Live
binaries. This step is entirely covered by the material in the Binary folder of this Build
tree. The resulting binaries aren’t used directly; instead they are forwarded to Karl Berry,
who inserts them into TeX Live. The binaries are built several weeks before the remaining
packages are made.

One document in the Binary folder is so important that it is duplicated at the top level of the
folder as the file BuildStatus-2020. This is a plain text document. The document explains
everything needed to obtain the source code and compile it. To compile, just copy Terminal
commands from the BuildStatus document, paste them into Terminal, and execute. The
binaries are then copied from the TeX Live build directory to Binary/RawCode.

Asymptote is a special case. Its source is contained in the TeX Live source, but it is built
separately. A folder in Build called AsymptoteBuild contains all material needed to do
that. To build, copy this folder to the build platform. Then follow the instructions in the
document AsymptoteBuild-2020 inside the AsymptoteBuild folder. The end result will be
a binary named asy, which is then moved to Binary/RawCode.

A shell script in the Binary directory combines these binaries and creates tar.xz files to be
sent to Karl Berry.

The documents BuildStatus-2020 and AsymptoteBuild-2020 are plain text files so they can
be easily edited. New flags or compile steps may be required in a subsequent year. They
should immediately be added to these documents during compiling so there is an accurate
record for the future.

In 2020 and the future, we support the versions of macOS still supported with security
updates by Apple. In practice, this means the last three systems of macOS. For example,
in 2020 we will support High Sierra, Mojave, and Catalina. Apple will introduce a beta of
the next macOS at the June developer conference WWDC, and release it in the fall, and
we always make certain that MacTeX supports that. So for most of the year we support
four versions of macOS.

4. Apple’s PackageMaker

All remaining steps create Apple install packages.

MACTEX OVERVIEW 3

Apple supplies command line programs to create install packages, and Jonathan Kew
provided a shell script to create his original Install Package by calling these programs.
After I took over, I switched to using an Apple GUI program called PackageMaker to make
the install packages. For a few years, Apple worked to extend PackageMaker, but then
stopped work; several features remained unimplemented. Around that time, I rediscovered
Apple’s command line programs, which had also been extended. Using them is much
easier than using the GUI program, and now I provide shell scripts to call the command
line programs.

Install packages created by the original PackageMaker were actually folders; the Finder
disguised these folders to look like flat files to the user. The packages had extension “.pkg”
if they installed a single package, and “.mpkg” if they contained several pieces which the
user could selectively install. The “.mpkg” folders contained the individual “.pkg” folders
inside an encompassing folder. Since these packages were really folders, they had to be
zipped to upload to various servers. This caused problems because some users had third
party unzip utilities which did not work properly.

Apple introduced a new operating system, Mountain Lion, in late summer of 2012. While
the older install packages continued to work, this system introduced a new version of
install packages which were flat files and no longer needed to be zipped. These packages
were automatically compressed during creation. In Mountain Lion, install packages must
be signed by a registered Developer. We switched to the new style and began signing
immediately after this condition was announced.

5. An Overview of Package Creation

The BasicTeX install package is a good place to learn how packages are created, because
it is self contained and small enough to encourage experimentation.

The first step in creating this and similar packages is to rename all folders in /usr/local.
Thus bin becomes bin-temp and texlive becomes texlive-temp. This step insures that
none of the contents of these folders becomes part of BasicTeX.

Next BasicTeX is installed in /usr/local/texlive/2020basic using the TeX Live Unix in-
staller. This is explained in detail in the BasicTeX portion of this project. Then a shell
script named buildPackage.sh copies this distribution to a folder named root inside the
BasicTeX folder. Everything now depends on this root folder, so the 2020basic distribution
in /usr/local can be removed and the contents renamed back to their original names.

The final step will run a script which calls an Apple command line app to create an install
package, pointing to root as the contents of the package. Before discussing that step,
however, we have to face the twin issues of notarizing install packages, and creating apps
which adopt a hardened-runtime.

MACTEX OVERVIEW 4

6. Notarizing and Hardened Runtimes

By 2002, Apple had released macOS. I retired from the University of Oregon that year,
and the UO dorms got ethernet connections. When freshmen moved into their rooms, they
found a CD and a page of instructions taped over the ethernet port. The instructions said
that students had to install the anti-virus software on the CD to their computer before
connecting to the ethernet. “Failure to follow these instructions,” the sheet added, “will
result in loss of ethernet connections in this room.”

The final line on the page read “Macintosh users can ignore these instructions.”

Those days have long gone, and anyone who goes to WWDC, the Apple developer confer-
ence, will discover that Apple now employs many engineers working on security threats.
Unix has very good protection for the kernel, so intruders are not likely to get root access.
But most Macs are owned by a single user, and the fear is that one of that user’s applica-
tions will be hacked and then used to gather dangerous information about the user. Two
months ago, I received an email saying “As you see, I broke into your computer. I recorded
your actions on video as you visited porn sites, and I found damaging information in your
mail. I have your email contact list. Send me $979 in bitcoin this week, or else I will send
all the videos and damaging information to everyone on your contact list.”

I ignored the message, but it got me thinking. Several years ago, Apple invented a tech-
nology called sandboxing, and required that all applications in the Apple App Store be
sandboxed. A sandboxed application runs in its own environment and is allowed only lim-
ited contact with the outside world. Typically it is not allowed to use the video camera,
or access the users mail, or access the contact list. It is not allowed to run other programs
outside its sandbox. This last restriction is particularly cumbersome; a sandboxed appli-
cation could not call TeX to typeset a document. Thus the GUI apps installed by MacTeX
are not sandboxed, and not available in the App Store.

In 2019, Apple introduced technology to help the remaining developers maintain security on
the Macintosh. It is called a hardened runtime. An application adopting this technology
executes with “additional security protections and resource access restrictions.” There
are 13 such restrictions, including using the video camera, using the address book, using
the photos library, linking with third party libraries, and executing JIT-compiled code.
However, Apple provides 13 exceptions for these restrictions. If an application needs to
access the video camera, it can request an exception to that restriction. It is legal to request
all 13 exceptions, and then an application runs exactly as it does now. These exceptions
do not have to be approved by Apple; they are granted automatically by checking various
boxes when hardened runtimes are adopted.

Details about these restrictions and exceptions are available at

https://developer.apple.com/documentation/security/hardened_runtime_entitlements#

overview.

MACTEX OVERVIEW 5

In summary, this technology helps developers assist efforts to improve security. If they do
not use the camera, then even if their applications are compromised, the attacker cannot
use the camera. On the other hand, developers can do anything they do now.

To encourage adoption of this technology, Apple began requiring that standard methods
for distributing software, like zip files, dmg packages, and install packages, be notarized.
This involves sending the package to Apple, where machines search for viruses and send
back a certificate if none are found. Apple says that no human hands are involved in this
process. But command line apps and other applications in such an install package must
adopt a hardened runtime.

For the initial TeX Live 2019 release, only one package was notarized: Ghostscript-9.27.
This package has two binaries: gs-X11 and gs-noX11. The first is compiled with X11
support and the second is compiled without that support. When the package is installed, a
symbolic link named gs is created pointing to an appropriate binary, depending on whether
that particular machine has X11.

But X11 on macOS is provided by a third party. So gs-noX11 has a hardened runtime with
no entitlements while gs-X11 has one entitlement, allowing it to link with a third party
Library.

Although all of this was introduced with Catalina, macOS 10.15, Apple did not fully turn
on this requirement until February 3, 2020. Any software created and signed after that
date must be notarized or it will be rejected by Catalina and later systems. Notice that
software signed before this date is still accepted, so legacy copies of MacTeX continue to
work.

All packages in MacTeX 2020 are notarized.

Complete details on notarization are given in “MacTeX-2019, notification, and hardened
runtimes”, pages 115-118, in TUGBOAT 2019,2, available on the TUG web site.

7. More on Building BasicTeX

When work began on BasicTeX, we created an install package with no hardened runtimes
and attempted to notarize it. Notarization failed and Apple sent back a detailed error
report, showing that 33 binaries needed hardened runtimes. Thirty of these were in the
bin directory. The other three were lz4, wget, and xz, in the directory tlpkg/installer/,
within folders named lz4, wget, and xz.

Experiments with shell scripts showed that the 30 binaries were exactly the elements of the
bin directory which are not links and for which “file $f” gives “Mach-O 64-bit executable
x86 64”.

Further experiments showed that a couple of binaries required an entitlement to link with
a third party library, because they linked with a third party library for X11.

MACTEX OVERVIEW 6

Finally we wrote a script named “liposcriptsignallapps” which signs all binaries in the
BasicTeX root with entitlements described earlier. This script is run after “buildPackage”
builds the root directory.

At this point, two scripts named “pkgbuildscript.sh” and “productbuildscript.sh” are run
to create the BasicTeX install package. It is signed using a third script named “signPack-
age.sh”.

We then run the script “sendnotarizerequest.sh”, which sends BasicTeX-2020.pkg to Apple
for notarization. After a delay of 10 to 15 minutes, a notification and email appear from
Apple stating that notarization was successful. We then ran the script “stapleresult.sh”,
which adds the certificate of notarization to the install package. The package is then ready
for distribution.

If notarization does not succeed, further scripts are run which obtain detailed error reports
from Apple.

There is one slight complication. All of these connections to Apple are handled by a script
in Catalina called “xcrun atool”. Apple recently adopted two-factor authentication for
tools which communicate with Apple Technical Support. But this authentication method
is very clumsy if shell scripts are being used. So Apple has an alternate method in which a
password is created for atool at the Apple Developer Site and then included with the call
to atool. Details are given in later documents.

8. Summary

Each package in MacTeX has similar documentation in a folder named DOC. Almost all
packages work like BasicTeX. There is a root folder containing the material to be installed.
Part of the documentation explains how to construct this root folder. There is a “script”
folder containing the post-install script. There are scripts to build an install package, sign
it, sign the apps inside, notarize the package, and add the notarization certificate.

9. How To Make Yearly Updates in Packages

Each of the build folders needs to be updated the following year when TeX Live is built
again. Often this is just a matter of searching for, say, 2020, and replacing it with
2021.

10. Signing Packages

Starting with Mac OS 10.8, Mountain Lion, install packages must be signed. Signing
requires a “Signing Certificate” from Apple, which is kept in the developer’s keychain.
The signature is not kept in this MacTeX Developer package — when install packages are
signed, the software looks up the developer’s signature in their keychain.

Packages must be signed after they are constructed using the command line program “prod-
uctsign”. “Productsign” accepts an input package and outputs a corresponding signed

MACTEX OVERVIEW 7

package, so after building, individual portions of this developer package will contain two
install packages. The command to run producsign is inside a short script in each folder
named “signPackage.”

Obtaining a certificate requires a developer account at https://developer.apple.com/.
Full access costs $100 a year. As soon as you log in, you’ll see an entry “Developer
Certificate Utility” with lots of information about certificates.

You will ultimately be given two certificates, one for signing install packages and another
for signing applications. For instance, my certificates are called “Developer ID Installer:
Richard Koch” and “Developer ID Application: Richard Koch”. The system will reject the
“Application” certificate when signing packages, so use the “Installer” certificate.

Obtaining certificates can be tricky. Good luck.

Apple delivers the certificates in just a few minutes, but the exact name of the certificate
is important. I spent several days debugging because I neglected the space between “In-
staller:” and “Richard Koch”. If you are like me, you’ll have lots of certificates managed
by Keychain Access, some obsolete, and it can be difficult to keep straight the active ones.
Follow the instructions from Apple carefully, since the process isn’t quite as straightforward
as it first seems.

The really tricky part comes if you switch computers. Apple has special software to bun-
dle the certificates and keychain information on the old computer, and then install this
information on the new machine. Follow these instructions carefully.

