
TUG-BINARY

RICHARD KOCH

1. TeX Live Binaries

Starting in 2017, we support versions of macOS which are still receiving security updates
from Apple. Thus in 2018 we should support the latest three systems, currently El Capi-
tan, Sierra, and High Sierra. Shortly after TeX Live is released, Apple holds the developer
conference, WWDC, and releases a first beta of the next system. This system is usu-
ally released in September. So for most of the year, we should support four versions of
macOS.

In 2018, a very unusual event occurred. We compiled the binaries on El Capitan, and then
discovered that they did not run on two machines running El Capitan, instead crashing
immediately with an “undefined instruction” error. One of these machines was a MacBook
introduced in 2007, and the other was an iMac introduced in 2007. Both of these machines
were made obsolete by Sierra, which could not run on them.

Usually if we compile on a version of macOS, the binaries run on that version and all later
versions. This is the first time binaries compiled on a version of macOS would not run
on all machines running that same version of macOS. We can test three or four versions
of macOS, but it would be impossible to test all Macintosh models running a particular
version.

So we compiled the 2018 binaries on Yosemite; these binaries did run on the 2007 machines.
This means that in 2018, we suppose four versions of macOS: Yosemite, El Capitan, Sierra,
and High Sierra. In 2019, we will compile on Sierra and return to the policy of supporting
the three most recent versions of macOS.

This is the portion of the TUG documentation which deals with making the TeX Live
binaries. Building is a two stage process. First TeX Live and asymptote are compiled on
the oldest supported system, currently Yosemite. Then the resulting binaries are processed
here, forming the binaries sent to TUG for inclusion in TeX Live. (We sometimes build
TeX Live on the latest operating system, currently High Sierra, to check that users who
compile themselves will be happy.)

A clean package file will contain

• the folder AsymptoteBuild containing information for building asymptote.

Date: March 31, 2018.
1



2 RICHARD KOCH

• the folder BuildStatusDocs, containing technical details for building TeX Live and
lisp

• the script ”liposcript”

• the empty folder ”RawCode”

• “TUG” folder with this document

The main MacTeX folder containing the Binary Folder must contain “xz”, the binary which
compresses packages, since the scripts in the Binary directory call it.

2. Compiling the Binaries

The “BuildStatusDocs” folder contains a crucial document named

BuildStatus-2018

This document contains the precise shell commands needed to obtain and build the TeX
Live binaries. The document is an ordinary TextEdit plain text file so it can be easily
edited if changes in the process are required. I find it convenient to put a copy of the
document on the desktop of the build machine, merging editing changes back into the
master document from time to time.

Building xindy requires obtaining and compiling CLISP. A separate document in the Build-
StatusDocs folder explains how to do that.

Building asymptote requires obtaining, compiling, and installing three libraries. Complete
instructions are included in the AsymptoteBuild folder, in the document

AsymptoteBuild-2018

The end result of these processes will be a folder of binaries and an isolated binary for asy.
Place these items in the RawCode folder on this machine. Then run Terminal, change to
the Binary directory, and run the command

sudo sh liposcript

This will create a folder named x86 64-darwin and a file named x86 64-darwin.tar.xz. Send
the second xz file to Karl Berry.

3. Special Considerations for Xindy in 2018

We began compiling Xindy in 2010. In 2011, these binaries no longer worked. The author
of Xindy pointed out that two lisp files did not change: xindy,mem and xindy.run. So
from 2011 on, we compiled xindy using clisp, but replaced these two files with the 2010
versions.



TUG-BINARY 3

In 2017, we adopted the modern approach of supporting only the three latest versions of
macOS. That year’s lisp files xindy.mem and xindy.run worked, so we used them rather
than the 2010 versions. But this year, the 2018 versions of these files did not work, so at
first we returned to the 2010 versions.

Herbert Schult pointed out to me that the 2010 version of xindy.run contains 32 bit binaries,
but the 2017 version contains 64 bit binaries. Starting this year, Apple will begin phasing
out 32 bit code on the Macintosh. So instead of using the 2010 version of the lisp files, this
year and in the future we will use the 2017 versions of xindy.mem and xindy.run.

The liposcript which converts the binaries to x86 64-darwin automatically makes this sub-
stitution.

4. Special Considerations for LuaTeX in 2017 and 2018

In 2017, it was discovered that luaTeX could not call lua modules on the Macintosh.
Ultimately this behavior was traced to the strip code. When TeX Live is built, part of the
process calls ”strip” to shrink the size of binaries by removing debugging code.

The Macintosh strip code has special flags which reduce the code size, but preserve luaTeX’s
ability to call lua modules. The required call, with flags, is “strip -u -r”. Use of this call is
somewhat controversial in the TeX Live community, but it turns out that the flags barely
change code size over using the full “strip”. So the code to build TeX Live 2018 is

cd

cd texlive2018dev/source

extern STRIP="strip -u -r"

./Build --enable-xindy CLISP=/Users/koch/clisp/clisp-build/clisp

The Binary directory contains a folder named LuaNew with a small test of luaTeX to make
sure that this fix works.


