
TUG-GHOSTSCRIPT

RICHARD KOCH

1. Ghostscript

This is the portion of the TUG documentation which deals with making the Ghostscript
package. A clean package file will contain

• “About” folder with public documentation explaining how the package was con-
structed

• “Binaries” folder with empty subfolders “10.3–10.4”, “10.5”, “10.6” and the file
“liposcript”

• Files “buildPackage.sh” and “buildPackage1.sh”

• Files “Description.plist” and “Info.plist”

• “resources” folder containing various files

• “source” folder containing “ghostscript-fonts-std-8.11.tar” and a folder of fonts
named “fonts”. The tar folder contains a packed version of these fonts. (This
folder is not needed in the current package because Ghostscript now contains the
35 standard fonts. It will eventually be removed.)

• “TUG” folder with this document

To construct the package, download the latest Ghostscript tar file from http://www.

ghostscript.com/ and put the file in the “source” folder. Then unzip this file; the result-
ing folder is the source code for Ghostscript.

2. OverView

This folder contains an “About” folder giving an overview of the construction of the
Ghostscript package. You may want to read that document, because otherwise the compi-
lation steps below will seem unnecessarily baroque.

1



2 RICHARD KOCH

3. Leopard binaries

Build Ghostscript on Leopard Intel and Leopard PPC. On each of these operating systems,
built a Ghostscript binary with X11 support, and a binary without X11 support. Before
building, make sure that Apple’s X11 package is installed on both systems.

We’ll use Intel as an example. Move a copy of the Ghostscript source code to the Intel
Leopard system. Using Terminal, switch directories to /usr and rename local to local-temp.
Then in the Ghostscript source code type

make clean

./configure

make

sudo make install

Use the Finder’s “Go” menu to go to /usr/local/bin and copy gs to the desktop. Rename
it gs-X11-Intel. Next go to /usr and

sudo rm -R local

sudo mv X11R6 X11R6-temp

If there is a folder named X11, rename it as well. Then rebuild Ghostscript as above, move
gs in /usr/local/bin to the desktop, and name it gs-noX11-Intel.

Finally, clean up /usr by moving /usr/local-temp back to /usr/local, moving X11R6-temp
to X11R6, and similarly for X11 if it existed.

Repeat this entire process on PowerPC Leopard, calling the resulting binaries gs-X11-PPC
and gs-noX11-PPC.

Finally, move the four resulting binaries to the Binaries/10.5 directory of this MacTeX
Ghostscript build tree.

4. Tiger binaries

Repeat the entire process on Intel Tiger, and on PowerPC Panther. On both of these sys-
tems, Ghostscript must be compiled without cups support. So in the build step, write

make clean

./configure --disable-cups

make

sudo make install

This will give four binaries. Name them gs-X11-tigerIntel, gs-noX11-tigerIntel, gs-X11-
pantherPPC, and gs-noX11-pantherPPC and put them in the Binaries/10.3–10.4 directory
of this MacTeX Ghostscript build tree.



TUG-GHOSTSCRIPT 3

5. Snow Leopard binary

Build one binary on Snow Leopard (Intel only, of course). Since X11 is installed by default
on this system, it is only necessary to build a version of Ghostscript supporting X11.
Repeat all of the steps in the Leopard build above. Call the resulting binary gs-X11-64
and put it in the Binaries/10.6 directory of this MacTeX Ghostscript build tree.

6. Putting It All Together

On whatever platform you use to build install packages, switch to the MacTeX build tree’s
Ghostscript folder; change to the Binaries directory, and type

sh liposcript

This will lipo the various binaries together. The script will automatically throw away old
copies and then create new copies of gs-noX11-tiger, gs-X11-tiger, gs-noX11, gs-X11, and
gs-X11-64. Leave them in the directories where the liposcript put them.

Then rename the package to reflect the current ghostscript version number. This step is
common to all packages in MacTeX, so the method for doing so is described in the root
TUG document for the entire build system.

Next change directory to /usr and rename /usr/local to /usr/local-temp. Copy the Ghostscript
source folder to your machine and install Ghostscript using

make clean

./configure

make

sudo make install

In this step we are not interested in the binaries, but instead in the support files for
Ghostscript.

Then change to the main Ghostscript directory of the MacTeX build system and type

sudo sh buildPackage.sh

This step will copy Ghostscript support files from /usr/local to the root directory of Mac-
TeX’s Ghostscript build folder. It will add the binaries constructed earlier, and add the
Ghostscript fonts from source/fonts. Finally, it will build the final install package.

To finish, remove /usr/local and move /usr/local-temp back to /usr/local.

7. Adjusting the Ghostscript Install Package

The folder resources/English.lproj contains some files which are shown to the user during
installation. One of these files is a brief Welcome document, a second is a longer ReadMe



4 RICHARD KOCH

file, and a third shows the License for the code. After the Ghostscript install package is
constructed, you may need to revise these documents. For example, the Welcome document
contains the release date. Usually TeX Live authors are overly ambitious and predict a
release several months earlier than it actually occurs, and you’ll need to change the release
date from time to time.

A special script is provided to make changes in these support files without rebuilding
everything. The script is called buildPackage1.sh. This script uses the already constructed
root folder, and makes a new install package using this root, and possible new versions of
Description.plist, Info.plist, and the documents in resources/English.lproj.


